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Hanne and Flemming



Preface

Hanne Riis Nielson and Flemming Nielson turned 60 in 2014 and 2015, respectively.
Congratulations! To celebrate the 60th birthdays, and to honor the birthday children, a
colloquium was held at the Technical University of Denmark on January 8, 2016, to
deliver the Festschrift and presentations of most contributions as our birthday presents.

This volume is dedicated to Hanne and Flemming and to their work. The Festschrift
features contributions from colleagues who have worked together with Hanne and
Flemming through their scientific life.

We would like to thank all the contributors to this Festschrift—for their hard work,
for their both scientifically interesting and individual articles, as well as for their
enthusiasm to contribute. The mix of articles resembles very nicely the impressively
wide area in which Hanne and Flemming have worked and made fundamental
contributions. Both the Festschrift and the colloquium were a wonderful way to
celebrate them.

Our thanks also go to all the reviewers whose support made excellent articles even
better. We are also indebted to Alfred Hofmann at Springer for his feedback and advice
on our project, and to Anna Kramer from Springer for her fast responses to all our
questions about Festschrifts and all matters around them.

October 2015 Christian W. Probst
Chris Hankin

René Rydhof Hansen
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Effect Systems Revisited—Control-Flow Algebra
and Semantics

Alan Mycroft1(B), Dominic Orchard2(B), and Tomas Petricek1

1 University of Cambridge, Cambridge, UK
{alan.mycroft,tomas.petricek}@cl.cam.ac.uk

2 Imperial College London, London, UK
d.orchard@imperial.ac.uk

Abstract. Effect systems were originally conceived as an inference-
based program analysis to capture program behaviour—as a set of
(representations of) effects. Two orthogonal developments have since
happened. First, motivated by static analysis, effects were generalised
to values in an algebra, to better model control flow (e.g. for may/must
analyses and concurrency). Second, motivated by semantic questions, the
syntactic notion of set- (or semilattice-) based effect system was linked
to the semantic notion of monads and more recently to graded monads
which give a more precise semantic account of effects.

We give a lightweight tutorial explanation of the concepts involved in
these two threads and then unify them via the notion of an effect-directed
semantics for a control-flow algebra of effects. For the case of effectful
programming with sequencing, alternation and parallelism—illustrated
with music—we identify a form of graded joinads as the appropriate
structure for unifying effect analysis and semantics.

1 Introduction and Musical Homily

Instead of the usual introduction explaining effect systems and exemplifying
their various forms, we start with a musical example. This motivates a particular
algebraic approach to describing effects, including concurrency, based around the
development of Nielson and Nielson along with Amtoft [2,26].

Section 2 again starts as tutorial, first relating set-based effect systems with
syntactic labelled monads (due to Wadler and Thiemann [39]) and later with a
semantic relationship to graded monads [16,28]. This relationship is parallel to
that between types as syntax and types as semantic objects such as sets and
domains—or that of algebra as symbol-pushing versus algebraic models.

Section 3 is more novel and argues that (graded) monads alone are insufficient
to model effects representing parallelism, and even certain forms of conditional.
We identify the notion of control-flow effect operators, as opposed to ordinary
effect operators, to characterise the situation.

c© Springer International Publishing Switzerland 2016
C.W. Probst et al. (Eds.): Nielsons’ Festschrift, LNCS 9560, pp. 1–32, 2016.
DOI: 10.1007/978-3-319-27810-0 1



2 A. Mycroft et al.

Section 4 continues by showing how the joinad structure [29,32], which refines
monads, can be “graded” (indexed) to unite the above two orthogonal develop-
ments of effect systems—giving a particular control-flow algebra which provides
an algebraic-and-semantic model of effect systems including parallelism.

Anyway, enough of this chatter—the show must go on!

let happyBirthdayMelody() =
for line = 1 to 4 do

play(G, 0.75); play(G, 0.25);
if line = 3 then play(G2, 1); play(E2, 1); play(C2, 1); play(B, 1); play(A, 1);
else play(A, 1); play(G, 1);

if line = 2 then play(D2, 1); play(C2, 2); else play(C2, 1); play(B, 2);

Fig. 1. Happy birthday to Hanne and Flemming

Motivation: richer effect systems. When writing about effect systems, many
authors still consider only set-based systems. However, as shown by Nielson and
Nielson [26], richer effect systems are useful. In addition to sequential composi-
tion, such systems also capture recursion (looping), choice (to model condition-
als), and spawning threads. We demonstrate the importance of such rich effect
structures in this section, albeit using parallel composition rather than spawning.

1.1 Effect Systems for Music

In our first example, we honour the celebratory nature of this paper and consider
an effect system for music. More specifically, we look at a program (Fig. 1) that
plays the melody of the “Happy Birthday to You” song.1 We use a simple imper-
ative language2 with a primitive play(N, l) which plays the note N (drawn from
the usual CDEFGAB range, with suffix ‘2’ meaning an octave higher, along with
the silent note ‘rest’) for duration l (a rational number) and blocks until l time
has elapsed. The function iterates over four phrases of the song. Each phrase
starts with notes G G, so these are played always. The third phrase (Happy
birthday dear Hanne and Flemming) has a different melody, which is handled
using the first if. The first two phrases also differ (the second if).

Set-based effect system. The most basic effect system that we could add to the
language is shown in Fig. 2. It annotates programs with effects Φ—here the set of
notes that are played. (We generally use F , G, H to range over effects, but while
discussing music—perhaps containing the note F—we use Φ instead. Similarly

1 To slightly shorten the example, the melody of the last phrase repeats that of the
first. Musicians are invited to use the correct notes: F2;F2;E2;C2;D2;C2.

2 This easily maps to the λ-calculus-with-constants formulation used in later sections
by replacing the for statement with if and a tail-recursive call, and by treating e; e′

as shorthand for let x = e in e for some fresh variable x.
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(play)
Γ � play(N, l) : void, {N} (if)

Γ � e0 : bool, Φ0 Γ � e1 : τ, Φ1 Γ � e2 : τ, Φ2

Γ � if e0 then e1 else e2 : τ, Φ0 ∪ Φ1 ∪ Φ2

(seq)
Γ � e1 : τ1, Φ1 Γ � e2 : τ2, Φ2

Γ � e1; e2 : τ2, Φ1 ∪ Φ2
(for)

Γ � e : void, Φ

Γ � for i = n1 to n2 do e : void, Φ

Fig. 2. Simple set-based effect system for music

the singleton type is written void rather than unit to avoid conflict with the
monad unit operator later.) The (play) rule annotates play with a singleton set
containing the played note, ignoring its duration. Sequential composition (seq)

and (if) simply union the sets of sub-expressions and (for) ignores the repetition
and just uses the annotation of the body. Thus, for the above program, the simple
effect systems reports the effect {G,A,B,C2,D2,E2,G2}.

This is a good start (we now know the range of notes that our piano needs
to have!), but it does not tell us very much about the structure of the song.

Adding Kleene star and choice. If we want to track the effects of our song more
precisely, we can follow Nielson and Nielson and use an effect system with a richer
structure [26]. For music, we might use annotations of the following structure:

Φ = C,D,E, . . . , rest (primitives: notes, including rest)
| Φ1 + Φ2 (choice)
| Φ1 • Φ2 (sequencing)
| Φ∗ (looping)

(where (∗) binds more tightly than (•) which binds more tightly than (+))

(play)
Γ � play(N, l) : void, N

(if)
Γ � e0 : bool, Φ0 Γ � e1 : τ, Φ1 Γ � e2 : τ, Φ2

Γ � if e0 then e1 else e2 : τ, Φ0 • (Φ1 + Φ2)

(seq)
Γ � e1 : τ1, Φ1 Γ � e2 : τ2, Φ2

Γ � e1; e2 : τ2, Φ1 • Φ2
(for)

Γ � e : void, Φ

Γ � for i = n1 to n2 do e : void, Φ∗

Fig. 3. A richer effect system for music with Kleene star and choice

The effect system shown in Fig. 3 uses the new structure of effect annotations.
Sequential composition (seq) annotates the expression e1; e2 with Φ1 • Φ2. The
for loop is annotated with Φ∗ meaning that the body is executed zero or more
times. The conditional if-then-else is annotated with Φ0 • (Φ1 +Φ2) meaning that
it evaluates the guard expression first, followed by one of the branches.

Using the revised effect system, the effect annotation of “Happy Birthday to
You” becomes: (G •G • (G2 • E2 •C2 •B •A+A •G • (D2 •C2+C2 •B)))∗. This
contains a lot more information about the song! It is still an approximation—we
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only know there are zero or more repetitions, and not how the choices are made
or note durations. However we do know in which order the notes are played and
what variations there might be. Such an effect system could be used in a music
programming language as an interface to communicate higher-order function
(combinator) behaviour (see e.g., effect systems for music live coding [1]).

Why richer effects matter. Effect systems can inform optimisations, aid program
understanding, and help reject buggy programs. Richer effect systems therefore
let us specify valid transformations/programs more precisely.

The above effect system has two interesting properties. Firstly, in the revised
Nielson-Nielson-style system, each syntactic element is annotated with a distinct
operation in an abstract effect structure. This means that we are, in some sense,
describing the most powerful and general non-dependently-typed effect system
for the language. For example, separating sequencing and alternation allows both
‘may’ and ‘must’ properties to be analysed. For the effects of if with Φ0•(Φ1+Φ2),
the usual set-based approach where • = + = ∪ gives a ‘may’ analysis. A ‘must’
analysis is obtained by instead taking + = ∩, i.e. each branch of a conditional
must satisfy the minimal requirements specified by the effect.

Secondly, the laws (equational theory) of the programming language imply
equations on the effect structure, and vice versa. For example, consider the
following program law (inspired by the introduction of Benton et al. [4]):

{if b then c else c′}; c′′ ≡ if b then {c; c′′} else {c′; c′′}
corresponding to effect algebra axiom (Φ+Φ′)•Φ′′ = (Φ •Φ′′)+ (Φ′ •Φ′′), where
sequential composition is right-distributive over alternation. Thus, axioms of the
effect algebra make language properties more explicit and easier to understand.

Adding parallelism. These •/+/(∗) operators often suffice to summarise
program behaviour—indeed they capture a range of classical dataflow analyses
when appropriately interpreted. However, languages for expressing music need
an additional construct, namely parallel composition, to play multiple phrases
at the same time. For example, to accompany “Happy Birthday to You” with
chords C, G7 and F, we need a parallel-composition construct e1 par e2 and
define:

let chord C(l) = play(C, l) par play(E, l) par play(G, l)
let chord G7(l) = play(G, l) par play(B, l) par play(D, l) par play(F, l)
let chord F(l) = play(F, l) par play(A, l) par play(C, l)

Following the methodology of the previous section, we now need a corresponding
extension of our effect system. We add a new operation for parallel composition
to the effect structure, written Φ1 &Φ2, and supply the following typing rule:

(par)
Γ � e1 : τ1, Φ1 Γ � e2 : τ2, Φ2

Γ � e1 par e2 : τ1 × τ2, Φ1&Φ2

We can now write a program that accompanies the melody with the above chords
as harmony. For the last two lines, we play C and F chords for line 3 and then
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C, G7, C for line 4, giving an effect that is the parallel composition & of the
melody program above and the effect of the chords (C&E&G) • ((F&A&C) +
((G&B&D&F) • (C&E&G))). Note that the effect structure above allows us to
capture the fact that one chord finishes before the next chord starts. However,
we would need to enrich effects with durations to be able to use effect-based
reasoning to argue that the melody and harmony synchronise as our ears expect.

Our modelling of music is inspired by Nielson and Nielson who considered
spawning processes in CML, in an effect system over what they termed behav-
iours. This included basic effects of channel allocation, sending and receiving
(similar to session types [11]), a τ action for internal communication, binary
effect operators for sequencing and alternation, and unary effect operator SPAWN

to denote task spawning. We prefer to use a binary parallel-composition operator
instead of SPAWN as commutativity of parallelism is more easily expressed.

Parallelism and other operators. How does the & operator relate to other effect
operators? In CCS and the π-calculus, Milner’s interleaving-semantic view iden-
tifies our (Φ1 &Φ2) with (Φ1•Φ2)+(Φ2•Φ1); two concurrent events are equivalent
to the same two events in some non-deterministic order [22]. In Milner’s work,
this rests on his assumption that events are atomic and, indeed, the model is
sufficient for many purposes (e.g. when the primitive operations are serialised
into one-at-a-time interactions).

However, doing so is against our aim of providing a fully general system and it
excludes many effect systems we wish to consider. In music, events have duration
and so we need to distinguish three basic effect operators: assuming Φ1 and Φ2

are notes (or pieces of music) then Φ1 • Φ2 means play Φ1 then Φ2, and Φ1 + Φ2

means play Φ1 or Φ2, and Φ1&Φ2 means play Φ1 at the same time as Φ2. This
justifies the idea of having three separate effect operators which can, if desired,
be interpreted so as to satisfy interleaving, but not to build in interleaving.

1.2 Section Conclusion and Placement

“The methodology of annotated type and effect systems consists of: (i)
expressing a program analysis by means of an annotated type or effect
system, (ii) showing the semantic correctness of the analysis, (iii) devel-
oping an inference algorithm and proving it syntactically sound and com-
plete.” (Nielson et al. [25])

This paper addresses a particular subset of effect systems (i), ones express-
ible in terms of primitive effects composed with operations for sequential and
parallel composition along with alternation (and iteration, considered briefly in
Sect. 5). In Sect. 2, we overview some of the literature connecting effect systems
to monads, first syntactically and then semantically, and we explain how graded
monads [16] provide an effect-directed semantics. This refines a usual monadic
semantics and aids correctness (ii) by unifying analysis and semantics.

Section 3 explores how (graded) monads have limited ability to express non-
sequential control flow (choice/parallelism); monads per se capture only sequential
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composition (corresponding to • in effect annotations). For the musical example,
we must also capture control flow corresponding to the + and & effect operations.
We propose that joinads [32] fill this role. Section 4 recalls joinads, introducing a
variant that we call conditional joinads; these are graded analogously to monads.
The resulting graded conditional joinads provide an effect-directed denotational
semantics for rich effect systems. Relevant work from the literature is scattered
throughout, but more is given along with discussion in Sect. 5.

This paper does not consider inference algorithms (iii), and indeed we do not
discuss polymorphism over type or effects, which are precursors to principality,
or near principality, of type and effect inference systems.

Whilst much of the material here is grounded in category theory, we aim at
a more accessible presentation, mostly in terms of set-theoretic or programming
concepts. Throughout we assume an underlying Cartesian-closed category for our
semantics and so use the λ-calculus as its internal language to aid readability.

Paper outline. The following diagram summarises the big picture of the paper,
where � indicates a richer structure to the right:

Types � Effect monoids
& types

� Effect control-flow
algebras & types

>�� CCCs >�� Graded
monads

>�� Graded joinads
Section 4

Sets/Domains � Monads � Joinads

The top line gives syntax of program analyses (types and effects); the bot-
tom gives the related semantic interpretations. The left-hand denotes the use of
Cartesian-closed categories to refine a set- or domain-based semantics with types
to give a type-directed semantics. In a similar way (in the middle part), graded
monads unify (refine) a monadic semantics with the information from a tradi-
tional monoidal effect system, giving effect-directed semantics. The right-hand
part expresses our analogous construction, relating the generalisation of monads
to joinads with the generalisation of monoidal effects to richer (semiring-like)
structures for control flow, by graded joinads.

2 Monads and Effect Systems

Effect systems are a class of static analyses for program side-effects [9,18,37].
They are typically inductively defined over the syntax (and types) of a program,
presented as augmented typing rules (rather than a flow-based analysis such
as dataflow), hence their full title: type-and-effect systems. (Another view is
that the effect annotations are types of a different kind). Effect systems have
been used for a variety of applications, including analysing memory access [9],
message passing [12], control side-effects and unstructured control primitives
(goto/comefrom) encoded as continuations [13], and atomicity in concurrency [7].

We overview effect systems briefly (Sect. 2.1) and relate these to semantics in
a gradual way: first syntactically to monadic typing (Sect. 2.2), then semantically



Effect Systems Revisited—Control-Flow Algebra and Semantics 7

in a type-directed way (Sect. 2.3) and finally in an effect-directed way using
graded monads (Sect. 2.4) (from [16,28]).

Our base language is the call-by-value simply-typed λ-calculus with con-
stants, conditionals, and parallel composition, with syntax:

e ::=x | kτ | λx.e | e1 e2 | letx = e1 in e2 | if e1 then e2 else e3 | e1 par e2

where kτ are constants of type τ (kτ of function type can produce effects).
Throughout x, y range over variables. The par construct is considered only in
Sect. 4; letx = e1 in e2 is treated as a simple abbreviation for (λx.e2) e1.

Semantics. We mainly use a denotational-semantic framework: the meaning
of an expression e is a value �e� in a mathematical domain, defined inductively
over the structure of e. The meaning of an expression depends on both its free
variables and its type derivation, accordingly �Γ � e : τ� is typically a value in the
space of denotations �Γ � → �τ�. Free-variable contexts Γ = x1 :τ1, ..., xn :τn are
interpreted as environments ranged over by γ. Conventionally these are products
�τ1� × ... × �τn� indexed by positions but for our purposes we index by variable
names written 〈x1 : �τ1�, ..., xn : �τn�〉. We write γ[x 	→ v] for the environment
γ with variable x updated to value v. Finally, the space of denotations is often
presented as a category. While this can be a unifying framework, it can impose
additional overhead (e.g. the need for ‘strength’ of monads, Appendix A) so here
we largely keep to a set-based special-case framework.

Correctness of denotational models is established here relative to an axiomatic
semantics (equational theory)—a congruence relation ≡ (on e), typically derived
from an operational semantics (rewrite rules). A denotational semantics is sound
when e ≡ e′ ⇒ �e� = �e′�, and complete if the converse holds. This extends
naturally to equalities Γ � e ≡ e′ : τ, F relative to a type (and effect) derivation,
and their interpretations �Γ � e : τ, F � = �Γ � e′ : τ, F �.

We assume the standard operational and axiomatic semantics of the call-
by-value λ-calculus for our base language (with β-reduction on syntactic values
(λx.e) v → e[v/x] and its corresponding β-equality). The axiomatic semantics of
if and par are given in Sect. 4.2. The denotational and axiomatic semantics are
specialised for particular notions of effect and effectful primitives.

2.1 Traditional Effects

Type and effect judgements take the form: Γ � e : τ, F asserting that an expres-
sion e has a type τ and at most produces immediate effects F , in the context
Γ . Effects F are taken from a set F and types have the form: τ ::=τ1

F−→ τ2 | ι
where ι ranges over primitive types (e.g. bool, int, void). Throughout τ ranges
over types and F over effects. Function types give an anchor for the latent effects
of a function, which arise when the function is applied. In Sect. 1, only imme-
diate effects appeared explicitly, but we can see happyBirthdayMelody as having
the latent effect of playing the music when called, but no immediate effects.
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(var)
Γ, x :τ � x : τ, ⊥ (let)

Γ � e1 : τ, F Γ, x :τ � e2 : τ ′, G

Γ � letx = e1 in e2 : τ ′, F � G

(const)
Γ � kτ : τ, ⊥ (if)

Γ � e0 : bool, F Γ � e1 : τ, G Γ � e2 : τ, H

Γ � if e0 then e1 else e2 : τ, F � G � H

(abs)
Γ, x :τ � e : τ ′, F

Γ � λx.e : τ
F−→ τ ′, ⊥

(app)
Γ � e1 : τ

H−→ τ ′, F Γ � e2 : τ, G

Γ � e1 e2 : τ ′, F � G � H

Fig. 4. Gifford-Lucassen effect system for an impure λ-calculus, using semilattice nota-
tion (concretely they used sets of effects).

(write)
Γ � e1 : refρ τ, F Γ � e2 : τ, G

Γ � write e1 e2 : void, F � G � wrρ
(read)

Γ � e : refρ τ, F

Γ � read e : τ, F � rdρ

Fig. 5. Effect-specific (derived) rules instantiating kτ for memory access.

Early definitions of effect systems described a lattice structure on effects but
rely only on effects forming a join semi -lattice, where the least-upper-bound
(join) operation combines effect annotations and the least element annotates
pure computations [9,18]. This was demonstrated for sets with union: (F =
P(S),∪, ∅). Originally, effects were considered for the polymorphic λ-calculus
with type and effect polymorphism. The discussion in this paper is monomorphic.
We use meta-variables for effects and types which may be instantiated, giving
meta-level polymorphism.

Figure 4 shows a type and effect system for our base language, following
Gifford and Lucassen’s approach. We generalise from sets to an arbitrary
bounded join semilattice (F ,�,⊥). Figure 5 shows additional rules for an
instance of the calculus which tracks memory accesses to memory regions ρ.
This instance has additional types ref ρ and effectful primitives read and write
with their respective effects rdρ and wrρ (note, these are derived rules, from
(const) and (app)). Figure 6 gives the usual (sub) rule for sub-effecting, over-
approximating effects with respect to an ordering [37] and an alternative syntax-
directed (coerce) rule.

2.2 Effects and Monads—Syntactically

We summarise Wadler and Thiemann’s work which goes halfway towards a
semantic unification of monads and effects [39]. We distinguish the notion of

(sub)
Γ � e : τ, F

Γ � e : τ, G
if F � G (coerce)

Γ � e : τ, F

Γ � coerceF,Ge : τ, G
if F � G

Fig. 6. Implicit and explicit sub-effecting rules.
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syntactic monads (basically a type constructor, written M here) from semantic
monads (written T following tradition) which model effectful computation.

Monads are a class of algebraic structure from category theory that have been
found to provide a useful model for the sequential composition of computations
that have various kinds of side effect, such as state, non-determinism, exceptions,
and continuations [23,24]. The idea is that impure, call-by-value computations
can be modelled semantically by functions A → TB where A and B model
input and output types respectively and TB is a structure3 encoding the side
effects which occur during the computation of a B output value. The operations
and axioms of a monad provide an (associative) sequential composition ◦̂ such
that, given functions f : A → TB and g : B → TC, then g ◦̂ f : A → TC
with an identity (modelling a trivially pure computation) îd : A → TA. Usual
presentations of monads decompose the definition of ◦̂. A more formal definition
is delayed until Definition 1.

Wadler and Thiemann observed that (semilattice) effect systems and mon-
ads are homomorphic: they have the same shape and carry related informa-
tion [39]. They show this via two languages: Effect, a λ-calculus with an effect
system, recursion, and mutable references (for which Figs. 4 and 5 give a similar
definition), and Monad, a typed λ-calculus for monadic programming without
an effect system. The standard monadic approach to programming (such as in
Haskell) introduces a parameterised data type M to encapsulate and encode
effects, where Mτ represents a computation that may perform some effects to
compute a value of type τ . In the Monad language, this type constructor M is
additionally labelled with a set of effects F denoting the (maximum) set of side
effects which may be performed by that computation, written MF .

The Monad language adds the following constructs for manipulating monadic
computations, where (return) constructs a pure monadic computation and
(bind) provides composition of monadic computations.

(return)
Γ �M e : τ

Γ �M 〈e〉 : M∅τ
(bind)

Γ �M e : MF τ Γ, x : τ � e′ : MGτ ′

Γ �M letx ⇐ e in e′ : MF∪Gτ ′

Effectful operations in the language are given monadic types, with state-using
functions: read : ref τ → M{rd}τ and write : ref τ → τ → M{wr}τ , which are
composable with (bind). For example, the following increments location r:

r : ref int �M let x ⇐ read r in write r (x + 1) : M{rd,wr}int

Wadler and Thiemann show that all terms e in the Effect language can be
translated4 to terms [e] in the Monad language, with type-and-effect judgements
3 Mathematically, T is an endofunctor, but languages such as Haskell (and the Monad

language in this section) expose monads syntactically as parametric type constructors
M ; thus side-effecting functions have analogous types τ → Mτ ′. We try not to labour
either this distinction or that between types (often written A, B instead of τ, τ ′

above) and the categorical objects A, B which model them (more formally �τ�, �τ ′�).
4 We use [−] for translation into another language and reserve �−� for semantic inter-

pretation (denotation) as in the next section.



10 A. Mycroft et al.

Γ � e : τ, F of Effect mapped to [Γ ] �M [e] : MF [τ ] of Monad where [τ ] is
defined:

[τ F−→ τ ′] = [τ ] → MF [τ ′]
[int] = int (and similarly for other base types)

Contexts Γ are translated to [Γ ] by applying [τ ] pointwise. For expressions e,
we show (a simplified version of) Wadler and Thiemann’s encoding for variables,
abstraction, and application:

[x] = 〈x〉 [λx.e] = 〈λx.[e]〉 [e e′] = let f ⇐ [e] in let x ⇐ [e′] in f x

Variables are translated by wrapping them in the “return” construct 〈−〉, lifting
the computation to a trivially effectful monadic value of type M∅[τ ] to keep in
step with the type/effect translation. The translation of λ-abstraction translates
the body, places it within a (pure) λ-term in Monad, and finally wraps this in
an effectless 〈−〉 similarly to variables, thus having type M∅([τ ] → MF [τ ′]) for
effects F in the body of the function. For application, the function term e (say
with effect F and latent effect H) and argument term e′ (with effect G) are
translated and bound to f and x respectively using monadic binding, giving a
left-to-right call-by-value evaluation order of the effects. Thus, f : [τ ] → MH [τ ′]
and x : [τ ] by the typing of let and the overall term has type MF∪G∪H [τ ′].

2.3 Effects and Monads—Weakly Semantically

So far, we discussed effect systems from a purely syntactic perspective. In this
section, we interpret families of labelled syntactic monadic types MF as a single
semantic monad T, ignoring the effect label. This gives a semantics that is syntax-
and type-directed. In Sect. 2.4, we show how graded monads provide a stronger
effect-directed semantics, where effect labels are part of the semantics—i.e. each
MF is separately interpreted as a semantic object TF .

The Monad language is based on a monadic denotational semantics (similar
to Moggi’s monadic meta language [24]). The translation from Effect to Monad,
coupled with a monadic semantics for Monad, provides a monadic semantics for
Effect (similar to a semantics for an impure λ-calculus [23]). The semantics of
Monad is given by mapping the monadic let (bind) and 〈−〉 (return) constructs
into the operations of a monad in the semantic domain. We first define monads,
balancing both the categorical and programming language viewpoints:

Definition 1. A monad T is an operator on spaces (here either categories,
e.g. semantic domains, or programming language types) along with a family of
constants unitA : A → TA and a family of operations extendA,B mapping from
space A → TB to space TA → TB satisfying the axioms:

extend unit x = x [M1] extend f (unit x) = f x [M2]
extend (extend g (f x)) = extend g (extend f x) [M3]
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Given functions f : A → TB and g : B → TC, their composition, given by
g ◦̂ f = (extend g) ◦ f : A → TC, is associative (by axiom [M3]) and has unit as
identity (by [M1],[M2]). This definition is the Kleisli triple form of a monad.

Remark 1. Mathematically, monads are endofunctors on the category of spaces
of semantic values. On the other hand, programming-language monads are unary
type constructors with associated polymorphic unit and extend operations. In
Haskell, unit is written return, and extend is written ‘>>=’ (with its two argu-
ments reversed), called bind. These are presumed to follow the above equations.

Example 1 (State monad). Let StateA = S → (A × S) for some store type S,
modelling a mapping from a store S to a result value A paired with a new store.
State is a monad with the following operations:

extend f x = λs. let (a, s′) = x s in (f a) s′ unitx = λs. (x, s)

where extend f : A → (S → (B × S)) and x : S → (A × S). The extend
operation ‘threads’ state through a computation. An effectful function, of type
f : A → StateB, is a state transformer (by uncurrying A → (S → (B × S)) ∼=
A × S → B × S, cf. small-step operational semantics reductions 〈e, s〉 → 〈e′, s′〉
mapping terms paired with stores). The unit operation lifts a value to a pure
computation where the state is unchanged (a trivial state transformer).

Here we give a type-directed semantics for Monad, mapping type derivations
to denotations as functions (more generally, morphisms) from the interpretation
of the context Γ to that of the resulting type τ , i.e. [[Γ �M e : τ ]] : [[Γ ]] → [[τ ]].

Monadic Denotational Semantics. For the monadic semantics of Monad, the
syntactic notion of a monad represented by the type constructors MF is mapped
to an abstract semantic monad T (note there is a single monad T capturing the
meaning of the family of type constructors). Thus, the interpretation of types is:

[[τ → τ ′]] = [[τ ]] → [[τ ′]] [[MF τ ]] = T[[τ ]] (1)

We assume some additional interpretation of base types ι into suitable sets in
the domain of the semantics (e.g., �int� = Z⊥).

The interpretation of type(-and-effect) derivations ending in (bind) and
(return) rules are then (omitting the type subscripts on unit and extend):

�Γ �M letx ⇐ e in e′ : MF∪Gτ ′� : �Γ � → T�τ ′� =
λγ . extend (λv. �Γ, x :τ �M e′ : MGτ ′� γ[x 	→v]) (�Γ �M e : MF τ� γ)

�Γ �M 〈e〉 : M∅τ� : �Γ � → T�τ� = unit ◦ �Γ �M e : τ�

The semantics for Monad resembles the desugaring of Haskell’s do-notation into
methods of the Monad type class. Seen categorically, the semantics requires some
additional structure: the monad T must be strong. This is implicit in the category
of sets and Cartesian-closed categories and is elided here (see Appendix A).
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This monadic semantics for Monad (and thus for Effect via translation [−])
can be shown sound and complete with respect to the axiomatic semantics (due
to the strong monad axioms, see [23,24] with semantics on similar calculi).

Wadler and Thiemann showed the syntactic correspondence between the
types-and-effects of Effect and (annotated) monadic typing of Monad, and sound-
ness results on their operational semantics. However they did not give a deno-
tational semantics marrying effect annotations to monads—all labelled monadic
type constructors MF are interpreted within a single semantic monad T (Eq. (1))
and hence lose the effect information F . While Wadler and Thiemann conjec-
tured that a general ‘coherent’ denotational semantics can be given to unify
effect systems with a monadic-style semantics, it was Katsumata who provided
the missing piece—graded monads [16]. These allow each syntactic type MF τ to
be interpreted as a semantic object TF �τ� in which only the effects represented
by F are modelled. Thus Eq. (1) is refined to �MF τ� = TF �τ�.

2.4 Effects and Monads—Strongly Semantically via Gradedness

Graded monads provide a model of sequential composition for computational
effects similar to monads, but which carry, and can be refined by, effect infor-
mation. A graded monadic type T has two parameters, an effect (say F ) and
a type (say A as usual) written TF A. Note that we use superscripted effects
on syntactic monads representing effects MF but write the effects of graded
monads as subscripts. Effects F are drawn from a (partially) ordered5 monoid
(F , •, I,�) generalising a semilattice (F ,�,⊥,�). Here • represents sequential
composition of effects and I the trivial, pure effect; (•) must be (�)-monotonic.
The ordering � can capture both sub-effecting (treating a smaller effect as a
larger one giving a ‘may’ analysis for if-then-else) and super-effecting (giving a
‘must’ analysis)—see Remark 2. For if-then-else it is often convenient that � has
least upper bounds; we also return to this point later.

A graded monad structure on T provides (associative) sequential composition
◦̂ for all f : A → TF B and g : B → TGC such that g ◦̂ f : A → TF•GC with an
identity îd : A → TIA, constructing a pure computation.

Definition 2 (Graded monads [16,21], without ordering). Let (F , •, I)
be a monoid. An (F-)graded monad T is a family of endofunctors TF A (or,
in the programming-language view, an effect-annotated unary type constructor)
along with two families of operations (polymorphic functions): unitIA : A → TIA

and extension operations extendF,G
A,B which map functions g : A → TGB to

extendF,G
A,B g : TF A → TF•GB, satisfying the following axioms (omitting type

subscripts) for all F,G,H ∈ F :

extendF,I unitI x = x [M1] extendI,F f (unitI x) = f x [M2]

extendF,G•H (extendG,H h (g x)) = extendF•G,H h (extendF,G g x) [M3]

5 Katsumata uses ‘pre-ordered’ but we simply consider (�)∩(�−1) equivalence classes.
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A graded monad is a homomorphism (structure-preserving map) between a
monoidal algebra of effects F and a monoidal structure for effect semantics.
The axioms [M1-3] rely on the monoid axioms on F e.g. [M1–2] as diagrams are:

The equality edges (double lines) explain the need for the monoid axioms of
graded monads: for [M1] that F = F • I for all F and for [M2] that F = I • F .
The diagram for [M3], not shown for brevity, needs the associativity axiom.

Definition 3 (Graded monads, with ordering). Katsumata’s definition of
graded monads includes the pre-ordering � and subsequently a family of mor-
phisms, which we call coerceF,G

A : TF A → TGA for every F � G satisfying:

coerceF,F
A = idTF A (reflexivity) coerceG,H

A ◦ coerceF,G
A = coerceF,H

A (transitivity)

coerceF•X,G•Y
B ◦extendF,X

A,Bf = extendG,Y
A,B(coerceX,Y

B ◦f)◦coerceF,G
A (monotonicity)

Example 2 (Graded state monad, appears in [27]). Example 1 showed the state
monad StateA = S → (A × S) in which all read and write operations are
represented. We now refine this to a graded monad StateF in which only read
and write operations expressed by F may be represented. Suppose S is the space
of functions from a set of locations Loc, ranged over by ρ, to Val (abusively, we
conflate the notions of ‘region’ and ‘location’ here.) Take effects F ∈ F to be sets
of tokens rd ρ and wr ρ, giving an ordered effect monoid (F ,∪, ∅,⊆). We refine
State to StateF A = (RF → Val) → (A×(WF → Val)) where RF = {ρ | rd ρ ∈ F}
and WF = {ρ | wr ρ ∈ F} are respectively the subsets of Loc where StateF might
read and write. The effect-graded operations are then:

extendF,G f x = λs. let (a, s′)=x (s|RF ) in unit∅ x = λs. (x, s)
let (b, s′′)=(f a) ((s � s′)|RG) in (b, s′ � s′′)

The incoming store s of extend is restricted into substore s|RF
for the reads made

by x. Operator s � s′ merges stores preferring the right-hand-side mapping for
locations ρ ∈ dom (s) ∪ dom (s′), which is then restricted by |RG

to the substore
of locations read by f a. Locations read by f a use values in s′ in preference (�)
to those in s. Finally the resulting store prefers writes from s′′ over those in s′.

Note that unit∅ is isomorphic to the identity as R∅ = W∅ = ∅, and so s there
is the empty mapping. Hence any denotation in A → State∅B is necessarily a
pure function—useful for enabling various optimisations relating to purity.

Graded Monadic Semantics. Graded monads enable effect-directed seman-
tics, where syntactic effect labels are incorporated as semantic objects; type-and-
effect judgements are mapped to denotations of the form �Γ � e : τ, F � : �Γ � →
TF �τ�. This gives a monadic semantics for Wadler and Thiemann’s Monad lan-
guage, generalised to a monoidal effect system, where syntactic type construc-
tors MF τ are mapped to the (semantic) graded monad TF �τ�. The semantics



14 A. Mycroft et al.

of Monad is analogous to that of the previous section:

�Γ �M letx ⇐ e in e′ : MF•Gτ ′� : �Γ � → TF•G�τ ′� =
λγ . extendF,G (λv. �Γ, x :τ �M e′ : MGτ ′� γ[x 	→v]) (�Γ �M e : MF τ� γ)

�Γ �M 〈e〉 : M∅τ� : �Γ � → T∅�τ� = unitI ◦ �Γ �M e : τ�

Via the translation from Effect to Monad, this also provides an effect-directed
semantics of the effectful simply-typed λ-calculus via graded monads.

The axioms of a (strong) graded monad provide a sound semantics, with
respect to a standard β-equational theory, as shown by Katsumata [16].

Grading for Semantics-and-Analysis Co-Design. The correspondence
between the effect annotations and the indices of a graded monad provides a
kind of co-design principle for defining semantics and effect systems: start with
a graded monad and follow the shape of a usual monadic semantics; an effect
system for the term language emerges from the indices and the inductive defi-
nition of the semantics. Conversely, start with an effect system, say the one in
the introduction for music. An effect-graded semantics then requires semantic
operations annotated by each of the effect operations used,6 with a structure
that reflects that of the effect system. In this way, graded approaches aid a kind
of co-design process between analysis and semantics.

This relationship extends to the equational theory of a language and the
axioms of its underlying semantic structures. For example, consider the following
equation (relative to a type derivation) of the Monad language:

Γ �M letx ⇐ e in 〈x〉 ≡ e : MF τ

This syntactic equality relies on the monoid axiom F • I = F to ensure that the
types of the left- and right-hand side (MF•I τ and MF τ respectively) are equal.
Soundness of the semantics, with respect to this equation, thus requires that
�Γ � letx ⇐ e in 〈x〉 : MF•I τ� = �Γ � e : MF τ�. The proof of this denotational
equality uses the graded monad axiom [M1], which itself uses the monoidal
axiom F • I = F (see diagram (2)). A proof search procedure (whether by-hand
or automatic) can be guided by the link between the syntax of effect annotations
and their corresponding indices (grades) in the semantics: the required semantic
axioms are those which witness the syntactic axioms.

Terminology. Graded monads have been previously called parameterised effect
monads by Katsumata [16] (relating to the work of Mellies [20]) and indexed
monads [28]. We opt for the name graded monad here to avoid confusion with
the idea of indexed monads in topos theory and the parameterised monads of
Atkey [3] or parametricity. The graded terminology has recently become a pop-
ular name for this concept [21,36].
6 Section 3 addresses the subtlety here that if-then-else is reflected with operation +

in the music effect while Katsumata’s graded monads use a relation �.
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2.5 Type-Directed and Effect-Directed Analysis and Semantics

As noted earlier, the semantics of an expression may depend on its associated
type derivation. For example, in the presence of a derivation of � λx.x : int → int,
the term λx.x is interpreted as the identity function on Z. We call these type-
directed semantics or analyses (more precisely type-derivation-directed).

A type-directed semantics tends to simplify definitions and reasoning. For
example, consider an untyped denotational semantics on a Scott domain sat-
isfying D ∼= Z + (D → D) vs. a type-directed semantics where each type has
a distinct domain, e.g., Dint = Z and Dσ→τ = Dσ → Dτ . The former has a
more complicated semantics, with injections on sum types and deconstructors
to identify semantically meaningful terms, which are unnecessary in the latter.

Our notion of type-and-effect-directed semantics (or just effect-directed for
brevity) naturally extends this idea to effect annotations. In such a language the
apply function λf.λx.f x has many effects and types, in particular every instance
of (τ F−→ τ ′) → τ

F−→ τ ′ for types τ, τ ′ and effects F . Any expression e of this
type can be interpreted monadically as belonging to semantic domain ([[τ ]] →
T[[τ ′]]) → T([[τ ]] → T[[τ ′]]) for some monad T. Via graded monads, an effect-
directed semantic domain refines this to ([[τ ]] → TF [[τ ′]]) → TI([[τ ]] → TF [[τ ′]]).
So if we knew, for example, that F is the trivial pure effect I and the graded
monad is such that TIA = A then an effect-directed semantics could simply
interpret e as a value in ([[τ ]] → [[τ ′]]) → [[τ ]] → [[τ ′]]). This was seen with the
State graded monad in Example 2.

3 Control-Flow Effects and Monad Limitations

Section 2 developed, in tutorial style, the theory for effects expressed monad-
ically, including grading (precise denotational models of types and effects)—
but limited to the situation where effect annotations form an ordered monoid
(F , I, •,�), expressing sequential composition. This leaves the additional effect
operators (+, &) for alternation (conditionals) and parallel composition (which
Sect. 1 argued were essential for modelling music) and the question of how to
incorporate them into an effect algebra and graded semantics. We defer treat-
ment of (&) to Sect. 4, and here focus on the rather interesting issues centred
around the question of how well can monads capture conditionals—both seman-
tically and in terms of relating an (+)-enriched effect algebra to monad grading.

We explore three specific issues. Section 3.1 examines how well monads can
give a general semantics to if-then-else and similar control-flow operations;
Sect. 3.2 shows that while Wadler and Thiemann’s work only handles a semi-
lattice of effects, Katsumata’s graded monads use an ordered monoid of effects
and which can very nearly capture (+) as well as (•). These two issues turn
out to be two sides of the same coin. Finally, Sect. 3.3 argues that certain oper-
ations augmenting the usual monad operations of unit and extend should be
characterised as control-flow operators and thus merit being operations on the
augmented effect monoid too. This all sets the scene for Sect. 4 where joinads
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(a specific extension to monads), graded by a control-flow algebra dubbed
joinoids (augmenting monoids), complete the development.

3.1 (Graded) Monadic Semantics for Conditionals

Consider a denotational interpretation for (type derivations over) conditionals
�Γ � if e then e′ else e′′ : τ� where e, e′, e′′ may be effectful expressions (in a
simple system where effects do not form part of judgements). Following the
denotational tradition, the denotation of a compound expression is some function
of those of its sub-expressions, traditionally expressed for some COND as:

�if e then e′ else e′′� = COND(�e�, �e′�, �e′′�)

Formally, our semantics interprets type derivations, hence is more accurately:

�Γ � if e then e′ else e′′ : τ� = COND(�Γ � e : bool�, �Γ � e′ : τ�, �Γ � e′′ : τ�)

for some CONDX,A : (X → TB) × (X → TA) × (X → TA) →
(X → TA) instantiated at X = �Γ �, the space of environments, and
A = �τ�. Given that if-then-else does not bind variables, this can be written
λ(x, y, z).λγ.COND(x γ, y γ, z γ) where CONDA : TB × TA × TA → TA. It is
convenient to use the notation COND on computations and COND in semantic
rules to avoid the clutter of γ.

In categories which have coproducts (sum types), and hence booleans B, the
semantics of effectful if-then-else can be simply derived from existing monad
operations. Such categories (including our set-based framework) have a para-
metric operation7 condA : B× A × A → A with axioms: cond(true, x, y) = x and
cond(false, x, y) = y. By instantiating cond at TA to get condTA : B×TA×TA →
TA, we obtain one possible definition for COND using sequential composition:

CONDA(x, y, z) = extendB,A (λb. condTA (b, y, z)) x

This derived semantics is dichotomous—it encodes the laws that if-then-else
returns one of its branches (i.e., if true then e else e′ ≡ e and if false then e else e′ ≡
e′)—and sequential—it encodes the axiom (assuming fresh variable x) that

if e then e′ else e′′ ≡ let x = e in if x then e′ else e′′

There are other reasonable non-dichotomous or non-sequential semantics we
may wish to model, thus the derived model above is quite limited. Prolog-
style backtracking provides a good example of a non-dichotomous if-then-else
as both branches are explored in some fixed order (leading to non-commutative
+ operator on effects); we could even imagine a variant of if-then-else where the
boolean indicates whether the then branch is explored before or after the else
branch. Similar non-commutativity arises for case expressions with overlapping

7 Categorically, a natural transformation, derived from coproducts with B = 1 + 1.
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patterns. Non-sequential if-then-else is exemplified in “parallel if ” which satisfies
the semantic property (for a system where non-termination is an effect):

�if e then e′ else e′′� = �e′� if �e′� = �e′′� (and even if �e� = ⊥).

Speculative behaviour (with software-transactional memory for rolling-back
effects) is a non-sequential if-then-else. Non-dichotomous variants may also give a
collecting semantics which captures computation trees instead of single traces—
the derived semantics using condA can only capture a dynamic trace.

In the music example, we used operators •, + and & to model the effects of
the sequencing, conditional and parallel language constructs. However, for full
generality, we should use a ternary operator ?+(F,G,H) to capture the effects of
conditionals. Nonetheless, sequential semantic variants of if-then-else require that
?+(F,G,H) = F • (G+H). The + operator can be defined G+H = ?+(I,G,H)
where I is the identity of •. Most interpretations of if-then-else in the rest of
the paper are sequential, but not all are dichotomous—Example 4 shows a non-
standard ‘synchronous’ semantics for conditionals in music, where duration of
if-then-else is the maximum of both branches. In short, we choose not to require
conditionals to have the monadic derived semantics.

A language with effects and parallelism similarly requires a semantic model
for how effectful computation are composed in parallel. While we noted one
interpretation of conditionals can be derived from coproducts in the domain,
there is no analogous derived structure to be found for parallelism since the
‘obvious’ operation parA,B : A × B → A × B can only be the identity function
(by parametricity). In contrast, an operation par′

A,B : TA × TB → T(A × B)
(called merge in the next section) for some monad T can perform an effect-specific
implementation of parallelism, e.g., arbitrary effect interleaving.

3.2 Effect Operators for Conditional

Until now, monads have been graded by an ordered effect monoid. But we now
want to model richer effect operators such as that of if-then-else as above, with
F • (G + H) or ?+(F,G,H) for non-sequential variants.

It turns out that a special case for + can nearly be derived from the order-
ing structure. Katsumata writes: “When giving an effect system, it is desirable
to have the join operator on effects (. . . [augmenting the] monoid structure),
because we can use it to unify the effects given to different branches of case
expressions.” [16] Suppose all joins (least upper bounds) of � exist (not an
existing requirement for graded monads), then we can define + to be the join
operator—thus obtaining an effect algebra (F , I, •,+). Monotonicity of • (w.r.t.
�) becomes a distributive law x • (y + z) = (x • y) + (x • z).

A general effect-directed denotational semantics for if (with ternary ?+ on
effects) is then captured by a graded version of COND, to wit CONDF,G,H

A :
TFB × TGA × THA → T?+(F,G,H)A, lifted on environments �Γ � to CONDF,G,H

�Γ �,A

�Γ � if e then e′ else e′′ : τ, ?+(F,G,H)�
= CONDF,G,H

�Γ �,�τ� (�Γ � e : bool, F �, �Γ � e′ : τ,G�, �Γ � e′′ : τ,H�)
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We can then analogously construct a graded monadic version of the derived
(non-general) semantics of if-then-else. Assuming the effect ordered monoid addi-
tionally has all least upper bounds (written + as above) we set ?+(F,G,H) =
F • (G + H) and define CONDF,G,H

A by:

CONDF,G,H
A (x, y, z) = extendF,G+H(λb. condTG+HA (b, coerceG,G+H y,

coerceH,G+H z)) x

Remark 2. Note that if we instantiate F to be sets of effects with (•) = (∪)
and I = { } then interpreting (+) = (∪) and (�) = (⊆) produces a traditional
‘may’ set-based effect system, while interpreting (+) = (∩) and (�) = (⊇) gives
a ‘must’ form of effect system. This does not appear to be generally appreciated,
and shows that Katsumata’s graded-monad-with-an-ordering approach to effect
systems captures both the (•) and (+) operators introduced by the Nielsons.

So, amusingly, monads provide one (derived) semantics for conditionals, and
semilattice-ordered-monoids provide one way of separating the effects for • and
+, but neither is fully general. Just as we argued that not all semantics for
if-then-else could be factored via parametric conditional, we also argue that
not all (+) operations on augmented effect monoids can be expressed as the
least upper bound of an ordering (�) originally envisaged as sub-effecting. The
required property is merely that F � F+G and G � F+G (we argued in Sect. 3.1
that + may not be commutative, and we also do not require its idempotency).
Multisets of effects provide an example: we may naturally define (+) to capture
addition on multiplicities, while (�) captures maximum on multiplicities.

3.3 Control-Flow Operators

The semantics of Sect. 2 is abstract, using a (graded) monad to sequentially
compose effects. The semantics can then be specialised to a particular notion
of side effect (e.g., state, exceptions) by instantiating the monad and providing
effect-specific constants, such as with the state monad (Example 2) and the
read and write operations. The denotations of these additional operations are
necessarily of the form A → TB (a Kleisli morphism) so that they can be
composed via the monadic structure of the semantics. In a graded setting, these
denotations introduce members of F , e.g. �read�τ,ρ : �ref τ� → T{rdρ} �τ�.

We observe that any function with negative occurrences of the computation
type TA (i.e., left of a function arrow) cannot be the denotation of an expression.
This is because the semantics generates only Kleisli morphisms and the interpre-
tation of types only introduces T on the right hand side of an arrow. Instead, such
operators are effect control-flow operators, e.g., CONDA : TB×TA×TA → TA.

From a different perspective, that of control-flow graphs, computation values
TA correspond to closed basic blocks and functions A → TB to open blocks
with incoming dataflow which are composed by extend; unit constructs an empty
block. By contrast, operations whose type has TA appearing to the left of a
function arrow (e.g. TA → . . .) correspond to control-flow operations. For exam-
ple, the type TA × TA → TA corresponds to an operator which merges basic
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blocks for branching, and indeed bind (which is extend with its arguments flipped)
bind : TA → (A → TB) → TB is the primitive control-flow operator for sequen-
tial composition which appends a closed basic block to an open basic block,
creating a new composite block.

It is clear from our definition that CONDA : TB × TA × TA → TA is a
control-flow operator. Similarly, condA : B×A×A → A is a control operator when
instantiated at A = TB but can also be a non-control operator: e.g., when A = Z

it is effectively a multiplexer. Due to parametricity, condTB cannot however do
any ‘interesting control flow’, it must either select one branch or another, while
a function cond′

A : B × TA × TA → TA of the same type but parametric only
in A could combine effects from both branches. Similarly, parametricity means
instantiations of parA,B : A×B → A×B cannot exhibit observable parallelism—
this needs a function typed parA,B : TA × TB → T(A × B).

Control-flow operators also provide a link to abstract interpretation [6]. Prim-
itive effectful operations in the concrete semantics are abstracted to effects in
an effect algebra. Control-flow operators compose these primitive effectful oper-
ations in the concrete semantics and are abstracted to operations of the effect
algebra. This yields effect monoids (or effect joinoids later in the paper). Effect-
graded semantics provide a form of concrete “correct by construction” semantic
models, corresponding to abstract effect algebras.

4 Joinads and Rich Effect Systems for Control Flow

As discussed in the previous section, for richer languages (with paral-
lelism, music, or speculative evaluation) we need richer semantic structure to
model effects, one that provides control combinators additional to sequential
composition—most importantly for branching and parallel composition. The
structure of a joinad does just this: extending monads with operations for mod-
elling alternation (conditionals) and parallelism [29,32].

This paper introduces a variant of joinads (Sect. 4.1), based on the COND
conditional operator of Sect. 3, instead of the classical formulation (Sect. 4.3)
based on choose and fail operations. We name these conditional joinads—more
fully “joinads with conditional instead of choose and fail”. The choose-and-fail
variant is convenient for capturing pattern matching (its original motivation)
but the conditional formulation is more flexible and convenient here.

We repeat the development of Sect. 2 showing how conditional joinads provide
a type-directed semantics for conditionals and parallel composition (Sect. 4.2).
We compare this with classical joinads (Sect. 4.3) which model conditionals sim-
ilarly to the derived model of Sect. 3. We then introduce graded conditional
joinads to give a more precise effect-directed semantics (Sect. 4.4).

4.1 Joinads and Conditional Joinads

Many monads are equipped with additional combinators that provide different
ways of composing computations compared to the standard sequential compo-
sition guaranteed by a monad. This is particularly so in source-level uses of
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monads on data types in Haskell. The original motivation for joinads was to
capture common combinators for parallel, concurrent, and reactive program-
ming (and then develop a new notation for programming with joinads) [29,32].
This is similar to our aim of capturing additional common ways of composing
effectful computations. To quote the original work:

“We identify joinads, an abstract notion of computation that is stronger
than monads and captures many [of their] ad-hoc extensions. In par-
ticular, joinads are monads with . . . additional operations: one of type
M a → M b → M (a × b) captures various forms of parallel composition
[and] one of type M a → M a → M a that is inspired by choice . . .
Algebraically, [these] operations form a near-semiring with commutative
multiplication.” (Petricek, Mycroft, Syme [29])

The meaning of the operations differs for various notions of computation. For
concurrency effects (the obvious interpretation), parallel composition means run-
ning tasks in parallel and choice is non-determinism. However, the operations
also make sense for parsers— parallel composition means that two parsers both
recognise an input, and choice means at least one parser recognises it [29].

The joinad structure appears in many libraries, for example, Mirage, a Library
Operating System written in OCaml [19]. Mirage is effectively a large parame-
terised module, which when applied to modules representing the underlying hard-
ware abstraction, can execute equally well as an application under Linux or as an
entire OS on a bare-metal virtual machine. Its core is based on the co-operative
threading library Lwt [38], which exhibits the joinad structure. In Lwt, processes
are expressed monadically (using return and extend as usual) for their sequential
parts; the <&> (called ‘merge’ here) and <?> (‘choose’ here) provide parallelism
and first-to-arrive alternation respectively.

4.2 Type-Directed Semantics Using Conditional Joinads

As discussed in Sect. 3, the derived (graded) monadic semantics for conditionals
is restrictive. Instead, conditional joinads are more flexible, allowing the seman-
tics of conditionals to be parameterised. As an intermediate between monads
and conditional joinads, we first extend monads with a conditional operation.

For brevity, we lift operations to environment-passing style, where for some
OP : A×B → C then OPX = λγ.OP(f γ, g γ) : (X → A)×(X → B) → (X → C).
Such X are implicitly instantiated to �Γ � to avoid clutter.

Definition 4 (Conditional monad). Given booleans B in the base category
C, a conditional monad extends a monad T on C with the parametric operation
(natural transformation) mcondA : TB × TA × TA → TA satisfying axioms of
associativity (3, 4), commutativity (5), units (6, 7), and right-distributivity (8):
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mcondA(unitB b, x,mcondA(unitB b′, y, z)) (3)
≡ mcondA(unitB (b ∨ b′),mcondA(unitB b, x, y), z)

mcondA(unitB b,mcondA(unitB b′, x, y), z) (4)
≡ mcondA(unitB (b ∧ b′), x,mcondA(unitB b, y, z))

mcondA(unitB b, x, y) ≡ mcondA(unitB ¬b, y, x) (5)
mcondA(unitB true, x, unitA y) ≡ x (6)
mcondA(unitB false, unitAx, y) ≡ y (7)
extendA,B f mcondA(b, x, y) ≡ mcondB(b, extendA,B f x, extendA,B f y) (8)

The idea behind mcondA is that it generalises the standard conditional condA :
B × A × A → A to a true control-flow operator with respect to effects. The
two unit axioms (6, 7) are a restricted form of the standard if-β dichotomous
behaviour of cond (that is, condA(true, x, y) = x and condA(false, x, y) = y) when
the guard and the unselected branch are both pure (i.e., factor through unit).

The mcond operation provides a general operation for modelling the syntactic
if construct from the source language. Given a typing-derivation for the term
if e then e′ else e′′, a type-directed semantics is obtained by directly passing the
semantics of sub-expressions to the effect control-flow operator mcondA:

�Γ � if e then e′ else e′′ : τ, F • (G + H)�
= mcond�τ� (�Γ � e : bool, F �, �Γ � e′ : τ,G�, �Γ � e′′ : τ,H�) (9)

Proposition 1. A monad T on a category C with coproducts (providing booleans
B and the condA operation) is a conditional monad, where mcondA is defined:

mcondA(x, y, z) = extendB,A (λb. condTA (b, y, z)) x

The proof follows straightforwardly from the monad and condA axioms. This
gives the standard derived semantics for conditionals.

Definition 5 (Conditional joinads). A conditional joinad extends a condi-
tional monad T with a parametric operation mergeA,B : TA×TB → T(A×B) sat-
isfying associativity (10), commutativity (11), unit (12), and distributivity (13):

mergeA×B,C(mergeA,B(x, y), z) ≡ map assoc mergeA,B×C(x,mergeB,C(y, z)) (10)
mergeA,B(x, y) ≡ map swap (mergeB,A(y, x)) (11)

mergeA,B(unitA x, y) ≡ map (λy′.(x, y′)) y (12)
mergeA,B(mcondA(b, x, y), z) ≡ mcondA(b,mergeA,B(x, z),mergeA,B(y, z)) (13)

where map is the morphism-mapping of the functor T, i.e., given f : A → B
then map f : TA → TB, and assoc (a, (b, c)) = ((a, b), c) and swap (a, b) = (b, a).

Categorically, merge therefore witnesses that T is a symmetric monoidal functor
with additional right-distributivity with mcond.

We use the merge operation directly for the semantics of the par construct:

�Γ � e par e′ : τ × τ ′, F&G� = merge
�τ�,�τ ′�

(�Γ � e : τ, F �, �Γ � e′ : τ ′, G�) (14)
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We now have a fully parameterised semantics for if-then-else and par via condi-
tional joinads. For music, notes can be played in parallel; for concurrency, two
tasks can be run in parallel (multiple threads) or using interleaved concurrency.

The axioms of a conditional joinad include the commutativity of merge (as
in the original joinad formulation); this has pros and cons. On the one hand,
commutativity provides a natural intuition for parallel execution (both true par-
allelism and non-deterministic interleaving). On the other hand, commutativity
forbids various kinds of static scheduling by sequencing, e.g., left-first or right-
first scheduling, since sequential composition is typically not commutative.

Theorem 1 (Soundness). Given a monadic semantics for the simply-effect-
and-typed λ-calculus with a conditional joinad semantics for if (Definition 5) and
par (Definition 5) then, for all e, e′, Γ, τ, F :

Γ � e ≡ e′ : τ, F ⇒ �Γ � e : τ, F � = �Γ � e′ : τ, F �

with respect to the following equational theory defined by ≡ (we omit the typing),
augmenting CBV β-equality:

(ifβ1’) if true then e elsex ≡ e

(ifβ2’) if false thenx else e′ ≡ e′

(if-dist-par) (if b then e else e′) par e′′ ≡ if b then (e par e′′) else (e′ par e′′)
(if-dist-seq) letx = (if e then e′ else e′′) in e′′′

≡ if e then (letx = e′ in e′′′) else (letx = e′′ in e′′′)
(par-pure) x par e ≡ (x, e)
(par-sym) e par e′ ≡ swap (e′ par e)

(par-assoc) e par (e′ par e′′) ≡ assoc ((e par e′) par e′′)

where in (if-dist-par) b is pure i.e. Γ � b : bool, I. In (par-pure) the left-hand
side is a pure computation represented with a variable x thus Γ � x : τ, I.
Further, (if-)β1′ (if-)β2′ have pure terms (variables) in the unselected branches.

Proof. By induction on ≡ and following from the conditional joinad axioms.

4.3 Classical Joinads

We introduced the conditional variant of joinads. The original joinad struc-
ture [29,32] has instead of mcondA : TB×TA×TA → TA two operations called
choose and fail (also known as the MonadPlus type class in Haskell [10]) of type:

chooseA : TA × TA → TA failA : void → TA

The choose operation models a choice between two computations. The fail opera-
tion creates a failing computation that is the unit element with respect to choose
and choose must be associative, i.e. these two operations form a monoid on TA.
Furthermore, merge must be right-distributive with chooseA and failA absorbing
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with respect to extend and merge, that is, applying extend to a computation that
fails produces a computation equivalent to fail, and failure of one parallel branch
makes both fail. Algebraically, this means that operations form a near-semiring
with choose as addition and merge as multiplication [29]. Similar structure is
shown in the work of Rivas et al. [35]. This guarantees various desirable syntac-
tic equivalences when used for a language semantics.

These operations (together with their axioms) let us encode conditionals as:

mcondA(x, y, z) = chooseA (extendB,A (λb. condA(b, y, failA)
(extendB,A (λb. condA(b, z, failA)) x)

Here, both branches are turned into computations that fail if they should not
be executed (and succeed otherwise). This definition of joinads was inspired by
ML-style pattern matching and so the fail operation represents a commit point.
Given suitable definitions for choose and fail, the above definition of mcond can
capture the derived (from extend and cond) monadic semantics, but is also rather
more general in that it can also use a free joinad (and hence a non-dichotomous
conditional semantics)—leading to a trace containing a (free version of) choice
at each conditional branch, but where one of the branches is trivially fail.

Remark 3. For atomic/independent computations, parallelism can be modelled
as a choice between the two ways of sequencing the computations (see Sect. 1,
also Milner [22]) e.g. merge (for par) can be defined in terms of choose and extend:

mergeA,B(x, y) = chooseA×B (extend (λa. extend (λb. unit (a, b)) y) x)
(extend (λb. extend (λa. unit (a, b)) x) y)

We might consider this as a candidate for modelling parallel composition, thus
requiring fewer semantic primitives for a language with conditionals and paral-
lelism. However, the above does not capture the semantics for our music lan-
guage (where playing notes in parallel produces a different sound than that of
any sequencing) or for languages with parallelism based on multiple threads.
More flexibility is therefore provided by making parallelism a separate semantic
notion via the joinad (or conditional joinad) merge operation.

The next section generalises conditional joinads to a graded form to allow
effect systems to refine the semantics of conditionals and parallelism.

4.4 Control-Flow Algebras and Graded Joinads

Traditional set-based ‘may’ effect systems use a semilattice of effects, which we
see as a special case of effect monoids. Effect monoids are a simple control-
flow algebra, capturing just sequential control flow. Monads can be seen as an
instance of effect monoids, but over endofunctors (type constructors) encoding
effects. These syntactic and semantic descriptions of effects are unified via graded
monads to give an effect-directed semantics (Sect. 2).

Section 1 defined effect systems capable of capturing choice and parallelism
via a rich control-flow algebra of effects, as suggested by Nielson and Nielson.
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We formalise this class of control-flow algebra below, calling it a joinoid. Both
the effect systems of Sect. 1 and conditional joinads (Sect. 4.1) are instances of
this control-flow algebra: at the level of syntax (analysis/types) and semantics
respectively. However, the link between a joinoid-based effect system and its
semantics (via conditional joinads) has only been loosely coupled and intuitive
so far. This section introduces the graded conditional joinad structure (the joinad
analogue of graded monads) to make this correspondence concrete, providing an
effect-directed semantics for effect systems over a joinoid control-flow algebra.

Definition 6 (Joinoid). Let F be a set with I ∈ F , binary operations • and
&, a ternary operator ?+ and a binary relation �. Then (F , •, I,&, ?+,�) is a
joinoid control-flow algebra ( joinoid for short) if, letting F + G = ?+(I, F,G):

– (F , •, I) is a monoid, representing sequential composition and purity;
– (F ,&, I) is a commutative monoid, representing parallel composition;
– (F ,+) is a semigroup, representing choice between two conditional; branches
– with right-distributivity axioms:

(F + G) • H = (F • H) + (G • H) (F + G)&H = (F &H) + (G&H)

– all operations are monotonic with respect to �.

Definition 7 (Graded conditional joinads). Given a joinoid on F , a graded
conditional joinad is a graded monad T for the ordered monoid (F , •, I,�)
together with the following two parametric operations:

mergeF,G
A,B : TF A × TGB → TF&G(A × B)

mcondF,G,H
A : TFB × TGA × THA → T?+(F,G,H)A

which satisfy analogous equations to a conditional joinad (Definition 4, p. 20, and
Definition 5) but with the presence of the grades and where coerceF,G

A commutes
with merge and mcond to witness monotonicity.

Remark 4. Graded monads are a lax8 homomorphism between a monoids of
effects (F , •, I) and monoidal structure over C (of composing type constructors
on C). Similarly, graded joinads are a lax homomorphism, given by T and wit-
nessed by the graded conditional joinad operations, between a joinoid of effects
(F , •, I,&, ?+,�) and a joinoid structure over C. Thus, the joinoid axioms are
preserved by T. For example, &-commutativity F&G = G&F is preserved by T
as witnessed by the axiom: (where x : TF A and y : TGB)

mergeF,G
A,B(x, y) : TF&G(A × B) ≡ map swap mergeG,F

B,A(y, x) : TG&F (A × B)

8 Laxity means that the homomorphic map T : F → [C, C] from effects to type-
constructors (endofunctors) on C has functions witnessing the mapping between
structure on F and on [C, C], e.g., mergeF,G

A,B : TF A × TGB → TF&G(A × B), rather
than equalities, e.g., TF A × TGB = TF&G(A × B).
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Example 3 (Graded non-determinism joinad). Non-deterministic computations
can be modelled as computations that return a list of possible results. The
standard monadic model is to use List A = void + (A × List A). Using a graded
joinad, we can be more precise—and add an annotation that captures an upper
bound on the length of the list resulting from a computation. Thus our graded
type is Listn A =

∑
m≤n Am which represents a list that has at most n elements.

The associated joinoid control-flow algebra is (N, ∗, 1, ∗, λ(x, y, z).x ∗ (ymax
z)). Sequential composition multiplies the degrees of non-determinism of the two
computations as does parallel composition. For conditionals (?+) multiplies the
degree of the guard with the maximum of the two branches. These annotations
are consistent (sound) with the following graded joinad operations. We write
[v1, ..., vn] for lists of length n, with :: for cons and @ for concatenation:

mcondn,m,p([], x, y) = [] mcondn,m,p(true ::g, x, y) = x@mcondn−1,m,p(g, x, y)
mcondn,m,p(false ::g, x, y) = y @mcondn−1,m,p(g, x, y)

unit x = [x]
mergen,m([u1, ..., un], [v1, ..., vm]) = [(u1, v1), ..., (u1, vm), (u2, v1), ...(un, vm)]
extend f [u1, ..., un] = f(u1)@...@f(un)

The unit operation returns a singleton list and extend concatenates lists produced
by applying f to all possible inputs (indeed, n ∗ 1 = n). The merge operation
takes the cross product and mcond concatenates the results of either the left or
right branch depending on each possible guard. Note that merge is commutative
up-to isomorphism, or commutative where equality is order-agnostic.

The key point of this example is that the graded conditional joinad structure
itself captures the essence of effect annotations. The definition is consistent with
respect to the lengths specified in the effect grades. In some way, the semantics
already entails the effect system for the language. This is made explicit next.

Effect-Directed Semantics Using Graded Joinads. The previous graded
monadic semantics connected the structure and axioms of an effect system to
a semantics for sequential composition, but did not capture parallelism or all
possible forms of alternation. Graded joinads provide the opportunity for more
fine-grained semantics and reasoning above conditionals and parallel composi-
tion. The following gives the graded conditional joinad effect-directed semantics:

�Γ � e par e′ : τ × τ ′, F&G� = mergeF,G
�τ�,�τ ′� (�Γ � e : τ, F �, �Γ � e′ : τ ′, G�)

�Γ � if e0 then e1 else e2 : τ, ?+(F,G,H)� =
mcondF,G,H

�τ� (�Γ � e0 : bool, F �, �Γ � e1 : τ,G�, �Γ � e2 : τ,H�)

As before, the semantics is defined over derivations, hence the left-hand side of
each interpretation ends in the (par) and (if) type-and-effect rules respectively.
Effect annotations in the judgements correspond to the grades on the operations.

Theorem 2 (Syntactic soundness). For all judgements Γ � e : τ, F then:
�Γ � e : τ, F � : �Γ � → TF �τ� where �τ

F−→ τ ′� = �τ� → TF �τ ′� and there is an
interpretation for all base types.
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Proof. A straightforward analysis of the definition of �−�.

Theorem 3 (Soundness). Given a graded conditional joinad semantics for the
simply-effect-and-typed λ-calculus with if then, for all e, e′, Γ, τ, F :

Γ � e ≡ e′ : τ, F ⇒ �Γ � e : τ, F � = �Γ � e′ : τ, F �

with respect to the equational theory for our language, in Theorem 1.

The syntactic soundness theorem (essentially that �−� preserves the typing struc-
ture and the semantics has corresponding grades) closes the gap between richer
type-and-effect systems and semantics based on graded conditional joinads. It
demonstrates the usefulness of the general approach advocated in this paper—
a language with semantics based on graded conditional joinads comes equipped
with an effect systems based on a joinoid control-flow algebra. Conversely, if we
start with a joinoid effect system, the annotations can be used to determine the
right structure of our semantics.

Example 4 (Graded music joinad). We tie the graded joinad discussion back to
our motivating musical example with a simple graded conditional joinad model.
As in Sect. 1, we use a joinad control-flow algebra to capture possible notes but
not to capture their timing. Recall that music effects were drawn from terms
defined by Φ = N | Φ1 + Φ2 | Φ1 • Φ2 | Φ1&Φ2 where N is the set of all possible
notes and rests, e.g. N = {C,D,E, . . . , rest}. We adjoin an additional effect ε
representing a zero-length rest to be the identity for •. Equality on Φ terms is
defined such that the joinoid axioms hold.

Musical computations are modelled by tuples of a value, a duration d drawn
from R, and a soundtrack—a function g mapping from time within interval
[0, d] ∈ R to sets of notes to be played at that time, returning ∅ outside that
interval. This is given by the data type MusicF A = A × R × (R → P(N )|F )
where sets of notes drawn from P(N ) are restricted to the notes appearing in
effect annotation F , written |F . Soundtracks g and g′ are combined with a time
offset d for g′ using the operator g + g′@d = λt.if t ≤ d then g(t) else g′(t − d)).

We provide the following graded conditional joinad definition, with additional
effect-specific operation play for modelling note-playing.

mcondm,n,p (true, d, g) (v′, d′, g′) (v′′, d′′, g′′) = (v′, d + max(d′, d′′), g + g′@d)

mcondm,n,p (false, d, g) (v′, d′, g′) (v′′, d′′, g′′) = (v′′, d + max(d′, d′′), g + g′′@d)

mergem,n (v, d, g) (v′, d′, g′) = ((v, v′), max(d, d′), λt. g(t) ∪ g′(t))

unitε v = (v, 0, λt. ∅)

extendm,n f (v, d, g) = let (v′, d′, g′) = f v in (v′, d + d′, g + g′@d)

playn (n, d) = ((), d, λt. if 0 ≤ t ≤ d ∧ n �= rest then {n} else ∅)

For example, play(C, 0.75) : MusicC �void� which is modelled by the unit value ()
of type void, the duration 0.75, and the constant function λt.{C}.
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As discussed earlier, there is an important design decision regarding mcond.
Consider the expression if b then play(D, 0.5) else play(E, 1). In our semantics, the
expression always takes time 1: if b is true, it plays D for 0.5 and then rests for 0.5.
This is because our mcond operation implicitly synchronises the branches. This
is only possible because we interpret conditionals using the joinad control-flow
operator mcond that has access to computations of both of the branches.

Now consider the derived semantics for conditionals obtained via extend
along with condA : B → A → A → A instantiated at computation types
A = MusicF �void�. This leads to quite a different semantics in that we have:

mcond (true, d, g) (v′, d′, g′) (v′′, d′′, g′′) = (v′, d + d′, g + g′@d)
mcond (false, d, g) (v′, d′, g′) (v′′, d′′, g′′) = (v′′, d + d′′, g + g′′@d)

Here, the total time of the if operation is the total time of the executed branch,
meaning that the conditional, now being dichotomous, does not perform implicit
synchronisation. By turning mcond into a to-be-specified control-flow operator
instead of requiring the monad-derived semantics, we get additional flexibility
and can choose between the two behaviours. (This example provides another
practical use for non-dichotomous semantics for if-then-else.)

4.5 Classical Joinads—Grading and Control-Flow Algebra

Classical joinads (with choose and fail instead of mcond) can similarly be formu-
lated as a control-flow algebra [29]. We briefly give the definitions here.

Definition 8 (Joinad control-flow algebra). (F , •,+,&, 0, I) is a joinad
control-flow algebra if (F , •, I) is a monoid, (F ,+, 0, •) is a near-semiring and
(F ,+, 0,&) is a near-semiring with commutative &. This can be extended with an
ordering � on F w.r.t. which operations •,+, & are required to be monotonic.

This definition captures the structure and axioms of a joinad. The first near-
semiring requirement means that (F ,+, 0) is a monoid, that 0 is the •-absorbing
element (0•F = 0), and (F +G)•H = (F •H)+(G•H) (sequencing distributes
over alternation). The second near-semiring requirement implies that (F ,&) is
a semigroup, 0&F = 0, and & distributes over alternation.

Definition 9 (Gradedclassical joinads). Given (F , •,+,&, 0, I,�)—a joinad
control-flow algebra—then a graded joinad is an ordered graded monad for the
ordered monoid (F , •, I,�) together with the following three operations:

chooseF,G
A : TF A × TGA → TF+GA failA : void → T0A

mergeF,G
A,B : TF A × TGB → TF&G(A × B)

The operations are required to satisfy the joinad control-flow algebra laws (Defin-
ition 8), which are syntactically the same as standard joinad laws, but annotated
with corresponding effects. We omit these for brevity.
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This structure provides a useful effected-directed model for effectful pat-
tern matching, in contrast to standard if-then-else conditionals. All examples of
joinads [29,32] can be turned into graded joinads via the trivial (single element)
joinoid control-flow algebra or by adding some suitable effect algebra which
refines the existing semantics. For parsers, annotations may capture the degree
of non-determinism (how many choices there are) and the length of the required
input. In parallel programming, the annotations on graded joinads can estimate
the maximal evaluation time (with • as addition; + and & taking the maximum)
or the minimal evaluation time (same, with + as minimum).

5 Discussion

Kleene Algebras and Recursion. In our musical introduction, we introduced
iteration (for loops) and modelled this in the effect system by a Kleene-star-like
unary operator Φ∗. Recursion, or iteration, is another useful control-flow operator
that we may wish to distinguish in an effect system and its semantics.

Similarly to conditionals, we can give a derived semantics for effectful recur-
sion in terms of underlying operations in the semantic domain. Given fix which
maps every f : A → A to fixAf : A, we can derive an effectful fixed-point:
mfixA = fixTA (extendA,A f) operator mapping f : A → TA to mfixA f : TA
(i.e., a fixed point is taken over the monadic extension of f , i.e., mfixA f =
(extendA,A f) ◦ (extendA,A f) ◦ ...). This is similar to the approach of Kleene
monads [10]. Interestingly, replacing extend with the graded monad version in
the above fixed-point definition forces an additional requirement on the effect
algebra, that • is idempotent; that is, f : A → TF A is mapped to mfixF

Af : TF A

where mfixF
Af = fixTF A(extendF,F

A,Af) where extendF,F
A,A : TF A → TF•F A and thus

F • F = F . For some effect systems this would suffice, but for others we may
want to introduce an effect element ω (‘repeat forever’) or traces via regular
languages. We see this as a maxim: give a semantic operator for every effect
operator; sometimes these can be derived from existing operators but we should
avoid building in this as a requirement.

Following the philosophy of this paper, an abstract effect-directed semantics
for recursion is best served by a control-flow algebra for effect annotations with
F ∗ and a graded operation mfixF

A which maps f : A → TF A to mfixF
A f : TF ∗A.

This provides a more general model for static analysis and semantics.

Other Related Work. Benton et al. previously defined an effect-directed
semantics for state, similar in motivation to the work on graded monads but
specialised [4]. This is used for precise semantic reasoning based on refinements
from effect analysis. They show various effect-driven transformations, which are
proven sound in their semantics. Their work gives a deep treatment to some of
the themes we have touched on here more broadly. We focused more on the idea
of generalising the treatment of control-flow operators in the presence of effects.

The work on algebraic effects and handlers provides an alternative approach,
connecting effect systems and monads [15,34]. This approach focuses on effectful
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operations (read/write/etc.) and equations between them. This is a change of
perspective to monads, which consider first an encoding of effects rather than
the effectful operations. The work of Power and Plotkin starts with the effectful
operations and generates an encoding as the free structure arising from the
operations quotiented by their equational theory [33]. Recent work by Kammar
et al. has used these approaches to give effect-dependent optimisations with a
sound semantics [14,15]. That work can be similarly described as effect-directed
semantics, but from a different perspective to that laid down by the line of
work of Wadler-Thiemann, Katsumata, and this paper. The work on algebraic
effects largely focuses on the building blocks of effects: the effectful operations and
their algebraic theories. We have instead focused on the scaffolding : control-flow
structures which compose effectful computations.

Coeffects, the dual of effects, which track how a program depends on its con-
text or how it consumes resources have been similarly given a coeffect-directed
categorical denotational semantics [5,30,31]. Coeffect structures tend to com-
prise some form of resource semiring with a semiring-graded comonad in the
semantics [8].

Conclusions and Further Work. The semantic understanding of effect sys-
tems and their use for static analysis has rather diverged. Nielson and Niel-
son developed richer effect algebras, but left the proof of correctness (with
respect to semantics) to users of these algebras. By contrast, Wadler, Thiemann,
Katsumata et al., (and Atkey via parameterised monads [3]) have developed
models which link (semilattice-based) effects directly to semantic models, so
that a model of a computation only includes elements consistent with their effect
annotations.

We showed that monads and graded monads do not capture richer control
flow (in particularly parallelism and some forms of conditional). We argued that
certain operators in extensions of monads are control-flow operators distinguish-
able by their type, and provided a link between such types and control-flow
graphs. We showed that joinads (monads extended with operations for alter-
nation and parallelism, on top of the existing monadic sequential composition)
provide a practical example of these control-flow algebras, and that they express
concepts similar to those of Nielson and Nielson. Joinads can also be graded in
a similar manner to Katsumata’s graded monads, thus providing a framework
where semantic models can only express values appropriate to syntactic effects.

Further work might explore other control-flow algebras that could be simi-
larly “graded”, beyond those discussed here, such as backtracking [17]. Another
avenue is to establish the conditions under which the graded connection between
syntax and semantics induces soundness, or even goes as far as completeness.
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A Issues Surrounding Monadic Strength

A monadic semantics for an effectful simply-typed λ-calculus requires that mon-
ads are strong. This captures the idea (implicit in the category of sets, but not
in all categories) that a free variable may be captured by an outer λ-binding.
Strong monads have an additional operation: strA,B : A × TB → T(A × B)
satisfying various axioms (see [23,24]) which amount to saying that the effects
encoded in the result of str are the effects encoded by the second argument.

The monadic semantics for (bind) in Monad (shown in Sect. 2.3), omitting
the type subscripts on extend and str, is then:

�Γ �M letx ⇐ e in e′ : MF•Gτ ′� : �Γ � → T�τ ′�
= λγ . extend �Γ, x :τ �M e′ : MGτ ′� (str (γ, �Γ �M e : MF τ� γ))

The str operation turns an environment γ : �Γ � and a result T�τ� into T(�Γ � ×
�τ�) for composition with extend �Γ, x :τ �M . . .� : T(�Γ � × �τ�) → T�τ ′�.

Graded monads can be similarly strong with operation strFA,B : A × TF B →
TF (A × B), satisfying analogous axioms to the usual strong monad axioms [16].
The graded semantics is then the analogous one to the above.

We might consider adding an effect operation S : F → F corresponding to
use of strength in the semantics e.g., strFA,B : A×TF B → TSF (A×B). However,
an axiom of (non-graded) strong monads is that for all x ∈ A, y ∈ TB then
map fst (strA,B(x, y)) = y which for graded strength would imply that SF = F .
We accordingly exclude S from the effect algebra since it is necessarily identity.
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Abstract. We extend an existing two-phase static analysis for an adap-
tive programming language to also deal with dynamic resources. The
focus of our analysis is on predicting how these are used, in spite of the
different, ever changing operating environments to which applications
automatically adapt their behaviour. Our approach is based on a type
and effect system at compile time, followed by a control flow analysis
carried on at loading time. Remarkably, the second analysis cannot be
anticipated, because information about availability, implementation and
other aspects of resources are unknown until the application is injected
in the current environment.

1 Introduction

Today’s software systems are expected to operate every time, everywhere within
a highly dynamic and open operational environment. Also software is eating the
world by pervading the objects of our everyday life, such as webTV, coffeemak-
ers, wearable devices, cars, smartphones, ebook readers, and Smart Cities, on a
broader scale. The operational environment of software systems, often referred
to as the context, has indeed turned to be a virtual computing platform that
provides access to groups of heterogeneous smart resources. The main distin-
guishing characteristic of these resources is that in principle they are always
connected to the Internet, possibly linking to it through different access points,
so to coordinate and interact each other. For instance, your smart alarm clock
can activate your coffeemaker to prepare you a cup of coffee. In general, the
Internet of Things scenario is the most significant example of this computing
framework. In this vision, the physical resources (e.g. the coffeemaker) are diffi-
cult to tell apart from the virtual ones (e.g. your wireless network), in that they
are potentially unlimited and “virtualised” in order to appear fully dedicated to
their users. In addition, they can choose on their own where, when and to whom
they are visible and in which portions of their context. A further important
feature is that smart resources can collect and exchange information of various
kind. According to their knowledge, smart resources can perform actions that
also modify the environment.

A key challenge is designing software systems that run without compromising
their intended behaviour or their non-functional requirements, e.g. quality of
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service, when injected in highly dynamic and open operational environments.
Programming these systems thus requires new programming language features
and effective mechanisms to sense the modifications of the actual context and to
properly adapt to changes. We refer to [2] for a comprehensive discussion on the
software engineering challenges of the open world assumption and adaptation.

Several approaches have been considered for adapting applications accord-
ing to the resources currently available in their running context, and to the
form these resources assume. In this paper, we address this issue from a
language-based perspective, by relying on MLCoDa [5,8,9], a core ML with
Context-Oriented Programming features [13,17]. Its main novelty is to be a two-
component language: a declarative part for handling the context and a functional
one for computing. The context in MLCoDa is a knowledge base implemented in
Datalog, and queries to the context return information about resources, as well
as handles to access them.

The MLCoDa context has been designed to hide the complexity of the opera-
tional environment and to provide an abstraction from low level details such as
protocol handling, data marshalling, networking technologies, and so on. Con-
sequently, it masks the heterogeneity of the virtual computing infrastructure to
facilitate the design and the development of applications.

As usual, applications are assumed to know in advance the kind of smart
resources that are possibly hosted in the environment. However, the resources
that are actually present in the context and their form can only be discovered
when the application enters the context and is about to run. Technically, each
resource is supposed to come equipped with a resource manager and with a
public API. An application can manipulate a resource through a handle provided
by its manager, that also governs the life-cycle of the resource, its availability,
etc. The handle enables the application to operate over a resource through the
mechanisms declared by the API. Actually, this contains information about the
kind of the resource, such as the available operations, their signatures etc. In
particular, by querying the context, an MLCoDa application can operate on a
resource both explicitly by retrieving its handle, and implicitly by inspecting
its current status through system predicates. For example, a home automation
system controlling the house can query the alarm clock to retrieve the level of
battery. In the MLCoDa programming model, the running context consists of
two parts: the system and the application context. The first one is provided by
the MLCoDa virtual machine through its API, while the other one stores specific
knowledge of the application, filled in by the programmer. In the execution model
the actual state of a resource, as well as its usage constraints, is completely known
only at runtime. A relevant goal is therefore to ensure that an application that
enters into a context finds all the needed resources and uses them correctly. This
assurance can offer the basis for providing highly “reliable” service management
for virtual computing platforms such as the Internet of Things.

In this paper we suitably extend the two-step static analysis of [9] to take care
of resources. We call our proposal last mile analysis, right because full knowledge
on the context is only available at runtime.



Last Mile’s Resources 35

Technically, the MLCoDa compiler produces a triple (C, e, H) consisting of
the application context, the object code and an effect over-approximating the
behaviour of the application. The third component H describes resource usage,
independently of the possible context running the application, so it contains
parameters to be instantiated when available. Using the above triple, the MLCoDa

virtual machine performs a linking and a verification phase at loading time: the
last mile. During the linking phase, the initial context is constructed, by merging
the application and the system contexts. Then the verification phase checks
whether the application adapts to all evolutions of the initial context that may
occur at runtime (a functional property), and whether it respects the constraints
on the usage of the resources (a non-functional property). Only programs that
pass this verification phase will be run.

To efficiently perform the last mile analysis, we build a graph G describing
the possible evolutions of the initial context. Technically, we compute G from H,
through a static analysis specified in terms of Flow Logic [14,16]. The evolution
graph facilitates checking functional and non-functional properties, reducing them
to reachability. The non-functional properties are similar to those expressible in
CTL* [1], in that they predicate over nodes, i.e. contexts, and paths of G.

This paper is organised as follows. The next section intuitively introduces
MLCoDa and our approach, with the help of some illustrative examples. The
syntax and the operational semantics of our extension of MLCoDa are formally
given in Sect. 3. The next two sections describe our two-phase static analysis:
Sect. 4 presents the type and effect system, while Sect. 5 presents the loading
time analysis. Section 6, summarises our results and discusses some future work.

2 An Example

Consider a mobile application used for accessing to some databases of a company.
The vendors, among which Jane and Bob, can access the databases from both
inside and outside the office. The access control policies are part of the context of
the application, so they are stored as Datalog facts and predicates. For example,
the following facts specify which databases Bob and Jane can access, whereas
the predicate allows an administrator to grant permissions:

has_auth(Bob,DB1).
has_auth(Jane,DB1).
has_auth(Jane,DB2).
has_auth(x,db) ← delegate(z,x,db), is_admin(z)

The context typically includes other information ranging on a wide collection,
e.g. users, administrators, location of users and company offices, information
about the company ICT services, etc. Also, the context contains information
about the application state, e.g. the application is connected to the database
through the company intranet or through an external proxy.

The following MLCoDa code implements a simple application which accesses a
database and performs a query to retrieve data about customers. The execution
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depends on the location and on the capabilities of the user: when inside the
office, the user can directly connect to and query the database. Otherwise, the
communication exploits a proxy which allows getting the database handle.

1 fun main () =
2 let records = (table){
3 ← office(),current_usr(name),has_auth(name,handle).
4 let c = open_db(handle) in
5 query(c, select * from table)
6 ← ¬office(),current_usr(name),has_auth(name,handle),
7 proxy(ip),crypto_key(k).
8 let chan = connect(ip) in
9 let c = get_db(chan) in

10 let data = crypto_query(c, k, select * from table) in
11 decrypt(k, data)
12 } in let result = #(records customers) in
13 display(result);
14 let balance_customer = choose_customer(result)
15 let socket = connect(server1) in
16 write(socket, balance_customer)

The core of the snippet above is the behavioural variation (lines 2–11) bound
to records that downloads the table of customers. The behavioural variation is
a construct similar to pattern matching where goals replace patterns and whose
execution triggers a dispatching mechanism. In our case, there are two alterna-
tives which depend on the location and on the capabilities of the current user.
Note that every resource available to the application is only accessible through a
handle provided by the context and only manipulated through system functions
provided by the API. As an example, when outside the office the IP address of an
available proxy is retrieved by the predicate proxy that binds the handle to the
variable ip. Then the application calls the API function connect to establish
a communication through chan. By exploiting this channel the application gets
a handle to the database (the API function get db at line 9) in order to obtain
the required data. Note that the third argument of the call to crypto query
is a lambda expression (in a sugared syntax) that invokes another API function
select-from (as common, we assume that the cryptographic primitives are
supplied by the system). Other resources occur in the snippet above: the data-
base connection c at line 4, a cryptographic key k at line 7, the address and
a connection to the server1 at line 15. Other API functions are: open db at
line 4, query at line 5, decrypt at line 11 and write at line 16. (Note that at
line 14 we assume that the function choose customer interactively asks the
name of the customer to the user.)

To dynamically update the context, we use the constructs tell and
retract, that add and remove Datalog facts, respectively. For example, the
following code transfers the right to access the database DB2 from Jane to Bob:

retract has_auth(Jane,DB2)
tell has_auth(Bob,DB2)
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An application fails to adapt to a context (functional failure), when the dis-
patching mechanism fails. Another kind of failure happens when an application
does not manipulate resources as expected (non-functional failure).

As an example of non-functional failure, assume that the company at a cer-
tain point decides to protect data about its customers. To do that, it constraints
a vendor’s application to open no further connections once connected to the
company proxy, when out of the office — inside, a firewall is assumed to do
the job. The application above violates this constraint because it computes the
balance of a customer and sends it to server1.

Our two-phase static analysis prevents programs from experiencing either
kind of failures. It consists of a type and effect system at compile time and of a
control flow analysis at loading time.

The compilation results in a triple (Cp, e,H) made of the application context,
the object code and an effect. Types are (almost) standard, and H is an over-
approximation, called history expression, of the actual runtime behaviour of e.
The effect abstractly represents the changes and the queries performed on the
context and the invocations to the API functions at runtime.

For example, the type of function main is unit → unit, and the history
expression of the fragment between lines 6 and 11 is

H = ask G · connect(address)〈Hc〉 · get db(channel)〈Hg〉·
crypto query(database)〈Hq〉 · decrypt(key)〈Hk〉

where ask G represents (a call to the Datalog deduction machinery on) the
goal in lines 6 and 7, followed by four abstract calls, corresponding to the API
invocations in lines 8–11 (· stands for sequential composition). The abstract
calls have the form f(k)〈H〉, where k is the kind of the resource affected by f
and the history expression H is its latent effect as declared by the API. For
example, get db(channel)〈Hg〉 corresponds to the invocation at line 9, and indi-
cates that the resource is a channel, and that Hg is the latent effect of the
system function get db. Note that the function f changes the resource state
and the context, e.g. through a tell/retract. Consequently, the latent effect
registers these modifications. Indeed, most likely Hg will contain an element
tell connected(Jane,DB2) to record in the context that the system function
connected the current user to the selected database, say Jane to DB2.

At loading time, the virtual machine of MLCoDa performs two steps: linking
and verification. The first step links the API to its actual implementation, and it
constructs the initial context C, by combining the one of the application Cp with
the system context that includes information on the actual state of the system,
e.g. available resources and their usage constraints. Of course, the context C is
checked for consistency. Then our last mile verification begins: it checks whether
no functional failure occurs, i.e. whether the application adapts to all evolutions
of C that may occur at runtime. And then it checks non-functional failures,
i.e. whether resources are used in accordance with the rules established by the
system that loads the program. Only those which pass the verification will be
run. To do that conveniently and efficiently, we build a graph G describing the
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Ca �

C1 C2 C3 C4 C5 C6

connect get db crypto query decrypt connect

Fig. 1. Two evolution graphs showing a functional failure (top) and a non-functional
failure (bottom) (Colour figure online)

possible evolutions of the initial context C, through a control flow analysis of
the history expression H. The nodes of G over-approximate the context arising
at runtime and its edges are labelled by the action which carried out the context
change. A distinguished aspect of our analysis is that it depends on the initial
context C, right because our application may behave correctly in one context
and fail in another.

The example above is rather simple, but suffices to show a functional and
a non-functional failure. For the first, consider Alan who runs the application
above. The graph shown in Fig. 1 (top) results from our analysis, where Ca is the
initial context. Since he is not authorised to access the company database, the
behavioural variation records fails (the predicate has auth is false in Ca).
The failure is shown in the graph of Fig. 1 because the failure node (dotted and
in red in the pdf) � is reachable.

A non-functional failure occurs when Jane runs the application outside the
office. The initial context now is different from Ca, and the graph in Fig. 1 (bot-
tom) displays how this context evolves when the API calls in the code are carried
out. Since Jane is outside, the second case of the behavioural variation records
is selected. The application violates the constraint informally introduced above
(once connected from outside, no other connections are allowed), because the
function connect attempts to establish a new connection to server1 at line
15 (represented by the dotted edge and the node, drawn in blue in the pdf).

3 MLCoDa with Resources

We briefly define the syntax and the operational semantics of our extension of
MLCoDa to explicitly deal with resources; we mainly concentrate on its peculiar
constructs, as those inherited by Datalog and ML are standard.

Syntax. MLCoDa consists of two sub-components: a Datalog with negation to
describe the context and a core ML extended with COP features.

The Datalog part is standard: a program is a set of facts and clauses. We
assume that each program is safe [7]; to deal with negation, we adopt Stratified
Datalog under the Closed World Assumption.
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The functional part inherits most of the ML constructs. Besides the usual
ones, our values include Datalog facts F , behavioural variations and resource
handles r. Also, we introduce the set x̃ ∈ DynV ar of parameters, i.e. variables
assuming values depending on the properties of the running context, while x, y ∈
V ar are standard identifiers, disjoint from parameters. Our COP constructs
include behavioural variations (x){V a}, each consisting of a variation V a, i.e. a
list G1.e1, . . . , Gn.en of expressions ei guarded by Datalog goals Gi (x possibly
free in ei). At runtime, the first goal Gi satisfied by the context determines the
expression ei to be selected (dispatching). The dlet construct implements the
context-dependent binding of a parameter x̃ to a variation V a. The tell/retract
constructs update the context by asserting/retracting facts. The append operator
e1∪e2 concatenates behavioural variations, so allowing for dynamic composition.
The application of a behavioural variation #(e1, e2) applies e1 to its argument
e2. To do so, the dispatching mechanism is triggered to query the context and
to select from e1 the expression to run, if any. We assume that the programmer
can invoke a set of functions provided by the API, by writing f(e1, . . . , en). The
syntax follows:

x̃ ∈DynV ar (V ar ∩ DynV ar = ∅) C,Cp ∈ Context r ∈ Res f ∈ API

V a ::=G.e | G.e, V a

v ::=c | λyx.e | (x){V a} | F | r

e ::=v | x | x̃ | e1 e2 | let x = e1 in e2 | if e1 then e2 else e3 |
dlet x̃ = e1 whenG in e2 | tell(e1) | retract(e1) | e1 ∪ e2 | #(e1, e2) |
f(e1, . . . , en)

Semantics. For the Datalog evaluation, we adopt the top-down standard seman-
tics for stratified programs [7]. Given a context C ∈ Context and a goal G,
C � Gwith θ means that the goal G, under the substitution θ replacing con-
stants for variables, is satisfied in the context C.

The small-step operational semantics of MLCoDa is defined for expressions
with no free variables, but possibly with free parameters, allowing for openness.
For that, we have an environment ρ : DynV ar → V a, mapping parameters to
variations. A transition ρ 	 C, e → C ′, e′ says that in the environment ρ, the
expression e is evaluated in the context C and reduces to e′ changing C to C ′.
We assume that the initial configuration is ρ0 	 C, ep where ρ0 contains the
bindings for all system parameters, and C results from linking the system and
the application contexts.

Figure 2 shows the inductive definitions of the reduction rules for the con-
structs typical of MLCoDa; the other ones are standard, and such are the con-
gruence rules that reduce subexpressions, e.g. ρ 	 C, tell(e) → C ′, tell(e′) if
ρ 	 C, e → C ′, e′. See [11] for full definitions. Below, we briefly comment on the
rules displayed.

The rule for tell(e)/retract(e) evaluates the expression e until it reduces to
a fact F , which is a value of MLCoDa. Then, the evaluation yields the unit value
() and a new context C ′, obtained from C by adding/removing F . The following
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(Tell1)

ρ � C, e → C
′
, e

′

ρ � C, tell(e) → C
′
, tell(e

′
)

(Tell2)

ρ � C, tell(F ) → C ∪ {F}, ()

(Retract1)

ρ � C, e → C
′
, e

′

ρ � C, retract(e) → C
′
, retract(e

′
)

(Retract2)

ρ � C, retract(F ) → C\{F}, ()

(Dlet1)

ρ[G.e1, ρ(x̃)/x̃] � C, e2 → C
′
, e

′
2

ρ � C, dlet x̃ = e1 when G in e2 → C
′
, dlet x̃ = e1 when G in e

′
2

(Dlet2)

ρ � C, dlet x̃ = e1 when G in v → C, v

(Par)

ρ(x̃) = V a dsp(C, V a) = (e, {− →c /− →y })
ρ � C, x̃ → C, e{− →c /− →y }

(Append1)

ρ � C, e1 → C
′
, e

′
1

ρ � C, e1 ∪ e2 → C
′
, e

′
1 ∪ e2

(Append2)

ρ � C, e2 → C
′
, e

′
2

ρ � C, (x){V a1} ∪ e2 → C
′
, (x){V a1} ∪ e

′
2

(Append3)

z fresh

ρ � C, (x){V a1} ∪ (y){V a2} → C, (z){V a1{z/x}, V a2{z/y}}
(VaApp1)

ρ � C, e1 → C
′
, e

′
1

ρ � C, #(e1, e2) → C
′
,#( e

′
1, e2)

(VaApp2)

ρ � C, e2 → C
′
, e

′
2

ρ � C, #((x){V a}, e2) → C
′
,#((x){V a}, e

′
2)

(VaApp3)

dsp(C, V a) = (e, {− →c /− →y })
ρ � C, #((x){V a}, v) → C, e{v/x, − →c /− →y }

(Res1)

ρ � C, ei → C
′
, e

′
i

ρ � C, f(v1, . . . , ei, . . . , en) → C
′
, f(v1, . . . , e

′
i, . . . , en)

(Res2)

v = syscall(f, r, v2, . . . , vn)

ρ � C, f(r, v2, . . . , vn) → C
′
, v

Fig. 2. The reduction rules for the constructs peculiar of MLCoDa

example shows the reduction of a tell construct, where we apply the function
foo = λx. if e1 then F2 else F3 to unit, assuming that e1 reduces to false without
changing the context:

ρ 	C, tell(foo ()) →∗ C, tell(F3) → C ∪ {F3}, ()

The rules (Dlet1) and (Dlet2) for the construct dlet, and the rule (Par) for
parameters implement our context-dependent binding. To simplify the technical
development we assume here that e1 contains no parameters. The rule (Dlet1)

extends the environment ρ by appending G.e1 in front of the existent binding
for x̃. Then, e2 is evaluated under the updated environment. Notice that the dlet
does not evaluate e1 but only records it in the environment. The rule (Dlet2)

is standard: the whole dlet yields the value which eventually e2 reduces to.
The (Par) rule looks for the variation V a bound to x̃ in ρ. Then the dis-

patching mechanism selects the expression to which x̃ reduces by the following
partial function:
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dsp(C, (G.e, V a)) =

{
(e, θ) if C � Gwith θ

dsp(C, V a) otherwise

A variation is inspected from left to right to find the first goal G satisfied by
the context C (C |= G), under a substitution θ. If this search succeeds, the
dispatching returns the corresponding expression e and θ. Then x̃ reduces to
e θ. Instead, if the dispatching fails because no goal holds, the computation gets
stuck since the program cannot adapt to the current context.

As an example of context-dependent binding consider the expression tell(x̃),
in an environment ρ that binds the parameter x̃ to e′ = G1.F5, G2. foo () (foo is
defined above) and in a context C that satisfies the goal G2 but not G1:

ρ 	 C, tell(x̃) → C, tell(foo ()) →∗ C, tell(F3) → C ∪ {F3}, ()

In the first step, we retrieve the binding for ~x (recall it is e′), where dsp(C, e′) =
dsp(C, G1.F5, G2. foo ()) = (foo (), θ), for a suitable substitution θ.

The rules for e1∪e2 sequentially evaluate e1 and e2 until they reduce to behav-
ioural variations. Then, they are concatenated (bound variables are renamed to
avoid name captures, see rule (Append3)). As an example of concatenation, let T
be the goal always true, and consider the function doo = λx.λy. x ∪ (w){T.y}. It
takes as arguments a behavioural variation x and a value y, and it extends
x by adding a default case which is always selected when no other case
applies. In the following computation we apply doo to the behavioural varia-
tion bv = (x){G1.c1, G2.x} and to c2 (c1, c2 constants):

ρ 	 C, doo p c2 → C, (x){G1.c1, G2.x}∪(w){T.c2} → C, (z){G1.c1, G2.z, T.c2}
The behavioural variation application #(e1, e2) evaluates the subexpressions

until e1 reduces to (x){V a} and e2 to a value v. Then the rule (VaApp3) invokes
the dispatching mechanism to select the relevant expression e from which the
computation proceeds after v replaced x. Also in this case the computation gets
stuck if the dispatching mechanism fails. As an example, consider the above
behavioural variation bv and apply it to the constant c in a context C that
satisfies the goal G2 but not G1. Since dsp(C, bv) = dsp(C, (x){G1.c1, G2.x}) =
(x, θ) for some substitution θ, we get

ρ 	 C, #((x){G1.c1, G2.x}, c) → C, c

The rules for API invocation first evaluate the arguments, and then run the
code of f through the meta function syscall, possibly affecting the context. For
simplicity, we assume that a single resource handle occurs in an API invocation,
as its first argument.

4 Types

4.1 History Expressions

History Expressions [3] are a basic process algebra used to soundly abstract the
set of execution histories that a program may generate. Here, history expres-
sions approximate the sequence of actions that a program may perform over the
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C, ε · H → C, H C, μh.H → C, H[μh.H/h]

C, H1 → C′, H ′
1

C, H1 + H2 → C′, H ′
i

C, H2 → C′, H ′
2

C, H1 + H2 → C′, H ′
2

C, H1 → C′, H ′
1

C, H1 · H2 → C′, H ′
1 · H2 C, tell F → C ∪ {F}, ε

C, retract F → C\{F}, ε

C, H → C′, H ′

C, f(k)〈H〉 → C′, f(k)〈H ′〉 C, f(k)〈ε〉 → C, ε

C � G

C, ask G.H ⊗ Δ → C, H

C � G

C, ask G.H ⊗ Δ → C, Δ

Fig. 3. Semantics of History Expressions

context at runtime, i.e. asserting/retracting facts and asking if a goal holds, as
well as how behavioural variations will be “resolved”. In addition, we record a
call to an API function, together with its abstract behaviour, represented as a
history expression.

The syntax of history expressions is the following

H ::= ε | h | μh.H | H1 + H2 | H1 · H2 | tell F | retract F | f(k)〈H〉 | Δ

Δ ::= ask G.H ⊗ Δ | fail

The empty history expression ε abstracts programs which do not interact with
the context; μh.H represents possibly recursive functions, where h is the recur-
sion variable; the non-deterministic sum H1 + H2 stands for the conditional
expression if -then-else; the concatenation H1 · H2 is for sequences of actions
that arise, e.g. while evaluating applications; the “atomic” history expressions
tell F and retract F are for the analogous expressions of MLCoDa; the history
expression for an API invocation is rendered by f(k)〈H〉, where f acts on a
resource of type k, and H is the history expression declared in the API; Δ is
an abstract variation, defined as a list of history expressions, each element Hi of
which is guarded by an ask Gi, so to mimic our dispatching mechanism. For an
example of abstract variation, see the history expression H in Sect. 2.

Given a context C, the behaviour of a closed history expression H (i.e. with
no free variables) is formalised by the transition system inductively defined in
Fig. 3. A transition C,H → C ′,H ′ means that H reduces to H ′ in the context
C and yields the context C ′. Most rules are similar to the ones in [3], and below
we briefly comment on them.

The recursion μh.H reduces to its body H substituting μh.H for the recur-
sion variable h. The sum H1 + H2 non-deterministically reduces to the history
expression obtained by reducing either H1 or H2. The sequence H1 · H2 reduces
to H2, provided that H1 step-wise becomes ε. An action tell F reduces to ε and
yields a context C ′ where the fact F has just been added; similarly for retract F .
The rules for an API invocation evaluate the body H until termination.
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The rules for Δ scan the abstract variation and look for the first goal G satis-
fied in the current context; if this search succeeds, the overall history expression
reduces to the history expression H guarded by G; otherwise the search contin-
ues on the rest of Δ. If no satisfiable goal exists, the stuck configuration C, fail
is reached, representing that the dispatching mechanism fails.

4.2 Types and Effects

We extend in Figs. 5 and 4 the logical presentation of a type and effect system
for MLCoDa of [9] by introducing a family of types res(k) for every kind k of
resource. As done there, we assume a Datalog typing function γ that given a
goal G returns a list of pairs (x, type-of-x), for all the variables x of G (γ is used
e.g. in the rule Tvariation in Fig. 5).
The syntax of types is

τb ::=τc | res(k) τc ∈ {int, bool, unit, . . .} k ∈ ResFamily

τ ::=τb | τ1
K|H−−−→ τ2 | τ1

K|Δ
===⇒ τ2 | factφ φ ∈ ℘(Fact)

We have types for constants (int, bool, unit, . . . ), resource types, functional
types, behavioural variations types, and facts. Some types are annotated to sup-
port our static analysis. In the type factφ the set φ soundly contains the facts
that an expression can be reduced to at runtime (see the rules of the semantics

(Tell2) and (Retract2)). In the type τ1
K|H−−−→ τ2 associated with a function

f , the environment K is a precondition needed to apply f . The environment
K maps a parameter x̃ to a pair consisting of a type and an abstract variation
Δ, used to resolve the binding for x̃ at runtime, formally K ::= ∅ | K, (x̃, τ,Δ).
As an annotation, K stores the types and the abstract variations of parameters
occurring inside the body of f . The history expression H is the latent effect of
f , i.e. the sequence of actions that may be performed over the context during

the function evaluation. Analogously, in the type τ1
K|Δ

===⇒ τ2 associated with
the behavioural variation bv = (x){V a}, K is a precondition for applying bv
and Δ is an abstract variation representing the information that the dispatching
mechanism uses at runtime to apply bv.

We now introduce the orderings �H ,�Δ,�K on H, Δ and K, respectively
(often omitting the indexes when unambiguous). We define H1 � H2 iff ∃H3

such that H2 = H1 + H3; Δ1 � Δ2 iff ∃Δ3 such that Δ2 = Δ1 ⊗ Δ3, (note
that we assume fail ⊗ Δ = Δ, so Δ has a single trailing term fail); K1 � K2 iff
( (x̃, τ1, Δ1) ∈ K1 implies (x̃, τ2, Δ2) ∈ K2 ∧ τ1 ≤ τ2 ∧ Δ1 � Δ2 ).

Typing judgements Γ ; K 	 e : τ � H mean that in the standard type envi-
ronment Γ and in the parameter environment K, the expression e has type τ
and effect H. Furthermore, we assume that the type of every API function f is
stored in the typing environment Γ , i.e. Γ (f) = res(k) × τ2 × · · · × τn

ε;H−−→ τb,
where, by abuse of notation, we use a tuple type for the domain of f (see the
rule (Tres) below).
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(Stconst)

τb ≤ τb

(Sfact)

φ ⊆ φ′

factφ ≤ factφ′

(Sfun)

τ ′
1 ≤ τ1 K 
 K′

τ2 ≤ τ ′
2 H 
 H ′

τ1
K|H−−−→ τ2 ≤ τ ′

1
K′|H′
−−−−→ τ ′

2

(Sva)

τ ′
1 ≤ τ1 K 
 K′

τ2 ≤ τ ′
2 Δ 
 Δ′

τ1
K|Δ

===⇒ τ2 ≤ τ ′
1

K′|Δ′
====⇒ τ ′

2

Fig. 4. The subtyping relation

We now briefly comment on the most interesting rules; more comments and
examples can be found in [9]. As expected the rules for subtyping and subef-
fecting (Fig. 4) say that the subtyping relation is reflexive (rule (Srefl)); that
a type factφ is a subtype of a type factφ′ whenever φ ⊆ φ′ (rule (Sfact)); that
functional types are contra-variant in the types of arguments and covariant in
the type of the result and in the annotations (rule (Sfun)); analogously for the
types of behavioural variations (rule (Sva)).

The rule (Tsub) allows us to freely enlarge types and effects by apply-
ing the subtyping and subeffecting rules. The rule (Tfact) says that a fact
F has type fact annotated with the singleton {F} and empty effect. The rule
(Ttell)/(Tretract) asserts that the expression tell(e)/retract(e) has type unit,
provided that the type of e is factφ. The overall effect is obtained by concate-
nating the effect of e with the non-deterministic summation of tell F/retract F
where F is any of the facts in the type of e. Rule (Tpar) looks for the type
and the effect of the parameter x̃ in the environment K. In the rule (Tvaria-

tion) we guess an environment K ′ and the type τ1 for the bound variable x. We
determine the type for each subexpression ei under K ′ and the environment Γ
extended by the type of x and of the variables −→yi occurring in the goal Gi (recall
that the Datalog typing function γ returns a list of pairs (z, type-of-z) for all
variable z of Gi). Note that all subexpressions ei have the same type τ2. We also
require that the abstract variation Δ results from concatenating ask Gi with
the effect computed for ei. The type of the behavioural variation is annotated
by K ′ and Δ. The rule (Tvapp) type-checks behavioural variation applications
and reveals the role of preconditions. As expected, e1 is a behavioural variation
with parameter of type τ1 and e2 has type τ1. We get a type if the environment
K ′, which acts as a precondition, is included in K according to �. The type of
the behavioural variation application is τ2, i.e. the type of the result of e1, and
the effect is obtained by concatenating the ones of e1 and e2 with the history
expression Δ, occurring in the annotation of the type of e1. The rule (Tappend)

asserts that two expressions e1,e2 with the same type τ , except for the abstract
variations Δ1,Δ2 in their annotations, and effects H1 and H2, are combined into
e1 ∪ e2 with type τ , and concatenated annotations and effects. More precisely,
the resulting annotation has the same precondition of e1 and e2 and abstract
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(Tsub)

Γ ; K � e : τ
′
� H

′
τ

′ ≤ τ H
′ 	 H

Γ ; K � e : τ � H

(Tconst)

Γ ; K � c : τc � ε

(Tfact)

Γ ; K � F : fact{F } � ε

(Tvar)

Γ (x) = τ

Γ ; K � x : τ � ε

(Tif)

Γ ; K � e1 : bool � H1 Γ ; K � e2 : τ � H2 Γ ; K � e3 : τ � H3

Γ ; K � if e1 then e2 else e3 : τ � H1 · (H2 + H3)

(Tlet)

Γ ; K � e1 : τ1 � H1 Γ ; x : τ1, K � e2 : τ2 � H2

Γ ; K � let x = e1 in e2 : τ2 � H1 · H2

(Ttell)

Γ ; K � e : factφ � H

Γ ; K � tell(e) : unit � H ·
⎛
⎝ ∑

F ∈φ

tell F

⎞
⎠

(Tretract)

Γ ; K � e : factφ � H

Γ ; K � retract(e) : unit � H ·
⎛
⎝ ∑

F ∈φ

retract F

⎞
⎠

(Tabs)

Γ, x : τ1, f : τ1
K′|H−−−−→ τ2;K

′ � e : τ2 � H

Γ ; K � λf x.e : τ1
K′|H−−−−→ τ2 � ε

(Tvariation)

∀i ∈ {1, . . . , n} γ(Gi) = − →yi : − →τi

Γ, x : τ1, − →yi : − →τi ;K
′ � ei : τ2 � Hi Δ = ask G1.H1 ⊗ · · · ⊗ ask Gn.Hn ⊗ fail

Γ ; K � (x){G1.e1, . . . , Gn.en} : τ1
K′|Δ

====⇒ τ2 � ε

(Tappend)

Γ ; K � e1 : τ1
K′|Δ1=====⇒ τ2 � H1 Γ ; K � e2 : τ1

K′|Δ2=====⇒ τ2 � H2

Γ ; K � e1 ∪ e2 : τ1
K′|Δ1⊗Δ2=========⇒ τ2 � H1 · H2

(Tvapp)

Γ ; K � e1 : τ1
K′|Δ

====⇒ τ2 � H1 Γ ; K � e2 : τ1 � H2 K
′ 	 K

Γ ; K � #(e1, e2) : τ2 � H1 · H2 · Δ

(Tapp)

Γ ; K � e1 : τ1
K′|H3−−−−−→ τ2 � H1 Γ ; K � e2 : τ1 � H2 K

′ 	 K

Γ ; K � e1 e2 : τ2 � H1 · H2 · H3

(Tpar)

K(x̃) = (τ, Δ)

Γ ; K � x̃ : τ � Δ

(Tdlet)

Γ, − →y :
− →
τ̃ ; K � e1 : τ1 � H1 Γ ; K, (x̃, τ1, Δ

′
) � e2 : τ2 � H2

Γ ; K � dlet x̃ = e1 when G in e2 : τ2 � H2

where γ(G) = − →y :
− →
τ̃

Δ′ =

{
(G.H1 ⊗ Δ) if K(x̃) = (τ1, Δ)
(G.H1 ⊗ fail) if x̃ /∈ K

(Tres)

Γ (f) : res(k) × τ2 × · · · × τn
∅;H−−−→ τb Γ ;K � ei : τi � Hi

f(e1, . . . , en) : τb � H1 · . . . · Hn · f(k)〈H〉 where τ1 = res(k)

Fig. 5. Type and effect system

variation Δ1⊗Δ2, and effect H1 ·H2. The rule (Tdlet) requires that e1 has type
τ1 in the environment Γ extended with the types for the variables −→y of the goal
G. Also, e2 has to type-check in an environment K extended with information on
the parameter x̃. The type and the effect for the overall dlet expression are those
of e2. Finally, the rule (Tres) retrieves the type of f from Γ and type-checks its
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arguments. The resulting type is the retrieved one for f and the overall effect is
the concatenation of the effects of the arguments and f(k)〈H〉, where k denotes
the kind of the resource affected and H is the latent effect of f . For simplicity
we assume that f manipulates a single resource occurring in first position and
that f can always be applied so its type has no preconditions.

As an example, consider the behavioural variation bv1 = (x){G1.f(e1),
G2.e2}. Let Γ ′ be the environment Γ, x : int, f : res(k1) → τ (goals have no vari-
ables) and K ′ be the parameter environment. Then assume that under these envi-
ronments e1 has type res(k1) and effect Hr, and that the two cases of this behav-
ioural variation have type τ and effects H1 = f(k1)〈Hr〉 and H2, respectively.

Hence, the type of bv1 will be int
K′|Δ

===⇒ τ with Δ = ask G1.H1⊗ask G2.H2⊗fail ,
while the effect will be empty.

Our type and effect system is sound with respect to the operational seman-
tics of MLCoDa. To concisely state soundness, it is convenient to introduce the
following technical definition and to exploit the following results.

Definition 1 (Type of dynamic environment). Given the type and para-
meter environments Γ and K, we say that the dynamic environment ρ has type
K under Γ (in symbols Γ 	 ρ : K) iff dom(ρ) ⊆ dom(K) and ∀x̃ ∈ dom(ρ)
such that ρ(x̃) = G1.e1, . . . , Gn.en and K(x̃) = (τ, Δ), ∀i ∈ [1, n] the following
hold:
(a) γ(Gi) = −→yi : −→τi and (b) Γ,−→yi : −→τi ;K 	 ei : τ ′ � Hi and (c) τ ′ ≤ τ and
(d)

⊗
i∈[1,n] Gi.Hi � Δ.

Theorem 1 (Preservation). Let es be a closed expression; and let ρ be a
dynamic environment such that dom(ρ) includes the set of parameters of es and
such that Γ 	 ρ : K. If Γ ; K 	 es : τ � Hs and ρ 	 C, es → C ′, e′

s then
Γ ; K 	 e′

s : τ � H ′
s and C,Hs →∗ C ′, H for some H � H ′

s.

This theorem is quite standard: types are preserved under computations and
the effect statically determined includes the one reached by the considered com-
putation. However, the Progress Theorem assumes that the effect H does not
reach fail , i.e. that the dispatching mechanism succeeds at runtime. We take care
of ensuring this property in Sect. 5 (below ρ 	 C, e � means that there exist no
C ′ and e′ such that ρ 	 C, e → C ′, e′). The following corollary ensures that the
history expression obtained as an effect of e over-approximates the actions that
may be performed over the context during the evaluation of e.

Theorem 2 (Progress). Let es be a closed expression s.t. Γ ;K 	 es : τ � Hs;
and let ρ be a dynamic environment s.t. dom(ρ) includes the set of parameters
of es, and Γ 	 ρ : K. If ρ 	 C, es � ∧ C, Hs �

+ C ′, fail then es is a value.

Corollary 1 (Over-approximation). Let es be a closed expression. If Γ ;K 	
es : τ � Hs ∧ ρ 	 C, es →∗ C ′, e′, for some ρ such that Γ 	 ρ : K, then
Γ ;K 	 e′ : τ � H ′

s and there exists a sequence of transitions C, Hs →∗ C ′, H ′

for some H ′ � H ′
s.
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The following theorem ensures the correctness of our approach.

Theorem 3 (Correctness). Let es be a closed expression such that Γ ;K 	
es : τ � Hs; let ρ be a dynamic environment such that dom(ρ) includes the set
of parameters of es, and that Γ 	 ρ : K; finally let C be a context such that
C,Hs �

+ C ′, fail . Then either the computation of es terminates yielding a value
(ρ 	 C, es →∗ C ′′, v) or it diverges, but it never gets stuck.

5 Loading Time Analysis

As anticipated in Sect. 1, the MLCoDa compiler produces a triple (Cp, ep, Hp)
made of the application context Cp, the object code ep, and an effect Hp over-
approximating the behaviour of the application. Using it, the virtual machine
of MLCoDa performs a linking and a verification phase at loading time. Dur-
ing the linking phase, system variables are resolved and the initial context C
is constructed, combining Cp and the system context, provided that the result
is consistent. Still, the application is “open” with respect to its parameters.
This calls for the last mile verification phase: we check whether the application
adapts to all the evolutions of C that may occur at runtime, i.e., that all dis-
patching invocations will always succeed. And then we check that resources are
used in accordance with the rules established by the system loading the pro-
gram. Only programs which pass this verification phase will be run. To do that
conveniently and efficiently, we build a graph G describing all the possible evo-
lutions of the initial context, exploiting the history expression Hp. Technically,
we compute G through a static analysis of history expressions with a notion
of validity; intuitively, a history expression is valid for an initial context if the
dispatching mechanism always succeeds. Our static analysis is specified in terms
of Flow Logic [14,16], a declarative approach borrowing from and integrating
many classical static techniques. Flow Logic has been applied to a wide vari-
ety of programming languages and calculi of computation including calculi with
functional, imperative, object-oriented, concurrent, distributed, and mobile fea-
tures, among many see [4,6,10,12,15].

To support the formal development, we assume that history expressions
are mechanically labelled from a given set Lab = LabH

⊎
LabS , with typical

element l. The elements of LabH label the abstract counterparts of MLCoDa

constructs, while those of LabS occur in the declared latent effects of the API
functions (sometimes, with l̂ as typical element). Formally:

H ::= � | εl | hl | (μh.H)l | tell F l | retract F l | f(k)l〈H l̂〉 |
(H1 + H2)l | (H1 · H2)l | Δ

Δ ::= (ask G.H ⊗ Δ)l | fail l

For technical reasons, we introduce a new empty history expression � which
is unlabelled. This is because our analysis is syntax-driven, and we need to dis-
tinguish when the empty history expression comes from the syntax (εl) and
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when it is instead obtained by reduction in the semantics (�). The semantics
of history expressions is accordingly modified, by always allowing the transition
C, εl → C, �. Furthermore, w.l.o.g. we assume that all the bound variables occur-
ring in a history expression are distinct. To keep track of a bound variable hl

introduced in (μh.H l1
1 )l2 , we shall use a suitable function K.

The static approximation is represented by an estimate (Σ◦, Σ•), given by the
pair of functions Σ◦, Σ• : Lab → ℘(Context∪{�}), where � is the distinguished
“failure” context representing a dispatching failure. For each label l, the pre-
set Σ◦(l) and the post-set Σ•(l) over-approximate the set of contexts possibly
arising before and after the evaluation of H l, respectively.

We inductively specify our analysis in Fig. 6 by defining the validity relation

� ⊆ AE × H

where AE = (Lab → ℘(Context ∪ {�}))2 is the domain of the results of the
analysis and H the set of history expressions. We write (Σ◦, Σ•) � H l, when the
pair (Σ◦, Σ•) is an acceptable analysis estimate for the history expression H l.
The notion of acceptability will then be used in Definition 3 to check whether
H, hence the expression e it is an abstraction of, will never fail in a given initial
context C. Below, we briefly comment on the inference rules, where E = (Σ◦, Σ•)
and immaterial labels are omitted.

The rule (Anil) says that every pair of functions is an acceptable estimate
for the semantic empty history expression �. The estimate E is acceptable for
the syntactic εl if the pre-set is included in the post-set (rule (Aeps)). By the
rule (Atell), E is acceptable if for all contexts C in the pre-set, the context
C ∪ {F} is in the post-set. The rule (Aretract) is similar. The rules (Aseq1)

and (Aseq2) handle the sequential composition of history expressions. The rule
(Aseq1) states that (Σ◦, Σ•) is acceptable for H = (H l1

1 · H l2
2 )l if it is valid for

both H1 and H2. Moreover, the pre-set of H1 must include that of H and the
pre-set of H2 includes the post-set of H1; finally, the post-set of H includes that
of H2. The rule (Aseq2) states that E is acceptable for H = (� ·H l2

1 )l if it is
acceptable for H1 and the pre-set of H1 includes that of H, while the post-set of
H includes that of H1. By the rule (Asum), E is acceptable for H = (H l1

1 +H l2
2 )l

if it is valid for H1 and H2; the pre-set of H is included in the pre-sets of H1 and
H2; and the post-set of H includes both those of H1 and H2. The rules (Aask1)

and (Aask2) handle the abstract dispatching mechanism. The first states that
the estimate E is acceptable for H = (askG.H l1

1 ⊗Δl2)l, provided that, for all C
in the pre-set of H, if the goal G succeeds in C then the pre-set of H1 includes
that of H and the post-set of H includes that of H1. Otherwise, the pre-set of
Δl2 must include the one of H and the post-set of Δl2 is included in that of H.
The rule (Aask2) requires � to be in the post-set of fail. By the rule (Arec) E
is acceptable for H = (μh.H l1

1 )l if it is acceptable for H l1
1 and the pre-set of H1

includes that of H and the post-set of H includes that of H1. The rule (Avar)

says that a pair (Σ◦, Σ•) is an acceptable estimate for a variable hl if the pre-set
of the history expression introducing h, namely K(h), is included in that of hl,
and the post-set of hl includes that of K(h). Finally, the rule (Ares) handles
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Fig. 6. Specification of the analysis for History Expressions

the abstraction f(k)l〈H l̂〉 of an API function. It requires that (Σ◦, Σ•) is an
acceptable estimate for H l̂ and that the pre-set of l̂ includes that of l, while the
inverse relation holds for the post-sets.
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We are now ready to introduce when an estimate for a history expression is
valid for an initial context.

Definition 2 (Valid analysis estimate). Given H l and an initial context
C, we say that a pair (Σ◦, Σ•) is a valid analysis estimate for H and C iff
C ∈ Σ◦(lp) and (Σ◦, Σ•) � H l.

The set of estimates can be partially ordered in the standard way, and shown
to form a Moore family. Therefore, there always exists a minimal valid analysis
estimate [16] (see [9] Th. 4). The correctness of our analysis follows from subject
reduction.

Theorem 4 (Subject Reduction). Let H l be a closed history expression such
that (Σ◦, Σ•) � H l. If for all C ∈ Σ◦(l) such that C,H l → C ′,H ′l′ then
(Σ◦, Σ•) � H ′l′ and Σ◦(l) ⊆ Σ◦(l′) and Σ•(l′) ⊆ Σ•(l).

Now we can define when a history expression Hp is viable for an initial
context C, i.e. when it passes the verification phase. In the following definition,
let lfail(H) be the set of labels of the fail sub-terms in H:

Definition 3 (Viability). Let Hp be a history expression and C be an initial
context. We say that Hp is viable for C if there exists the minimal valid analysis
estimate (Σ◦, Σ•) such that ∀l ∈ dom(Σ•)\lfail(Hp), � /∈ Σ•(l).

Table 1. An estimate for the history expression Ha in the context C = {F2, F5}.

Σ1
◦ Σ1

•
1 {{F2, F5}} {{F1, F2, F5}}
2 {{F1, F2, F5}} {{F1, F5}}
3 {{F1, F5}} {{F1}}
4 {{F1, F5}} {{F1}}
5 {{F1, F2, F5}} {{F1}}
6 {{F2, F5}} {{F1}}
7 {{F2, F5}} {{F1, F5}}
8 {{F2, F5}} {{F2, F5, F8}}
9 {{F2, F5, F8}} {{F1, F2, F5, F8}}
10 {{F2, F5}} {{F1, F2, F5, F8}}
11 ∅ ∅
12 ∅ ∅
13 ∅ ∅
14 {{F2, F5}} {{F1, F2, F5, F8}}
15 {{F2, F5}} {{F1}, {F1, F2, F5, F8}}
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As an example of viability checking, consider the context C = {F2, F5},
consisting of facts only, and the following history expression Ha:

Ha = ((tell F 1
1 · (retract F 2

2 · f(k1)3〈retract F 4
5 〉)5)6 +

g(k2)7〈(ask F5.(tell F 8
8 · tell F 9

1 )10 ⊗ (ask F3.retract F 11
4 ⊗ fail12)13)14〉)15

For each label l occurring in Ha, Table 1 shows the corresponding values of Σ1
◦(l)

and Σ1
•(l), respectively.

Now we exploit the result of the above analysis to build the evolution graph G,
that describes how the initial context C evolves at runtime. The virtual machine
can use G to predict how the application interacts with and affects the context
and the resources.

In the following let Fact∗ and Lab∗ = Lab∗
H

⊎
Lab∗

S be the set of facts and
the set of labels occurring in Hp, the history expression under verification. Intu-
itively, G is a direct graph, the nodes of which are the set of contexts reachable
from an initial context C, while running Hp. There is a labelled arc between
two nodes C1 and C2 if C2 is obtained from C1 either through telling or remov-
ing a fact F , or through telling a set of facts and removing another set, when
executing an API f . In the definition below the function μ : Lab∗

H → H recov-
ers a construct in a given history expression H ∈ H from its label. Also let
A = {tell F l, retract F l, f(k)l〈H l̂〉 | F ∈ Fact∗ ∧ l, l̂ ∈ Lab∗}.

Definition 4 (Evolution Graph). Let Hp be a history expression, C be a
context, and (Σ◦, Σ•) be a valid analysis estimate. The evolution graph of C is
G = (N,E,L), where

N =
⋃

l∈Lab∗
H

(Σ◦(l) ∪ Σ•(l))
E = {(C1, C2) | ∃l ∈ Lab∗

H s.t. μ(l) ∈ A ∧ C1 ∈ Σ◦(l) ∧ (C2 ∈ Σ•(l) ∨ C2 = �)}
L : E → P(A) is such that μ(l) ∈ L(t) iff t = (C1, C2) ∈ E ∧ C1 ∈ Σ◦(l)

We can use the evolution graph G to verify that there are no functional or
non-functional failures. The first case verifies viability, and simply consists in
checking that the failure context � is not reachable from the initial one. The
non-functional properties, a sort of CTL* formulae [1], constrain the usage of
resources and predicate over nodes, i.e. contexts, and paths in the evolution
graph. We can naturally check this kind of properties by visiting the graph.

Figure 7 depicts the evolution graph of the context C and the history expres-
sions Ha introduced above. It is immediate checking that the node � is not
reachable, thus showing in another way that Ha is viable for C. As an example
of non-functional property, assume that the system requires that the program
is not allowed to invoke the API function f on a resource of kind k1 when the
fact F5 holds in the context. Verifying this property requires to visit the graph
and to check that there is no arc labelled f(k1) from every node in which F5

is true. We can easily detect that the node {F1, F5} double circled (blue in the
pdf) violates the requirement. One can also require a property on the context
target of an API function. For instance, if the constraint is “after f the fact F2

must hold” the target of f would be marked as a non-functional failure.
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{F2, F5}

{F1, F2, F5} {F1, F2, F5, F8}

{F1, F5}

{F1}

tell F1 g(k2)

retract F2

f(k1)

Fig. 7. The evolution graph for the context C = {F2, F5} and the history expression
Ha (only the nodes reachable from C are shown). (Color figure online)

6 Conclusions

We considered the problem of managing resources in adaptive systems. In these
systems the context, i.e. the working environment, contains different kinds of
resources and makes them available to applications, typically through specific
handles. The actual capabilities of the available resources, their permitted usage
and their number depend on the hosting system and are only known at runtime.
To address these issues, we extended MLCoDa, a two-component language for
programming adaptive systems, with a notion of API providing programmers
with a set of functions that allow them to manipulate resources.

When entering in a context an application can fail for two reasons: either
because it is unable to adapt to the context or because it misuses a resource. To
prevent this kind of non-functional failures to occur, we extended the type and
effect system and the control flow analysis of [9]. Since parts of the context are
unknown at compile time, the control flow analysis can only be carried out (on
the effect) at loading time after the linking step. Indeed, full information about
resources is only available when in the current context.

As future work we will study how to express the constraints over the usage
of resources, e.g. in the form of CTL* formulas. A natural candidate approach
for verifying that resources are correctly handled, would then be model-checking
the evolution graph built at loading time.
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Abstract. Attacks on systems and organisations increasingly exploit
human actors, for example through social engineering. This non-technical
aspect of attacks complicates their formal treatment and automatic iden-
tification. Formalisation of human behaviour is difficult at best, and
attacks on socio-technical systems are still mostly identified through
brainstorming of experts. In this work we discuss several approaches to
formalising socio-technical systems and their analysis. Starting from a
flow logic-based analysis of the insider threat, we discuss how to include
the socio aspects explicitly, and show a formalisation that proves prop-
erties of this formalisation. On the formal side, our work closes the gap
between formal and informal approaches to socio-technical systems. On
the informal side, we show how to steal a birthday cake from a bakery
by social engineering.

1 Introduction

Applying formal methods [1] to an informal world is difficult. It often requires
to loosen the precision of analysis results, or to overly restrict the aspects that
can be modelled. This dilemma causes many approaches that try to understand
events in the real world to abstract away its difficult parts. In this paper we
present an application of formal methods to organisations to analyse socio-
technical systems, and illustrate how aspects of the informal world can be han-
dled in formal analyses.

Socio-technical systems, as the name implies, are a mix of social and techni-
cal aspects. Organisations are a good example for socio-technical systems, since
they combine technical infrastructure and policies with human actors, who oper-
ate (in) this infrastructure and interact with it. An increasing number of attacks
against organisations exploit this mix and involve attack steps on the “socio”
part, for example, through social engineering. Security in socio-technical systems
should therefor not only consider both individual parts, but also their interactions.

c© Springer International Publishing Switzerland 2016
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The recent attack on a German steel mill [2] was a combination of both targeted
phishing emails and social engineering attacks. The phishing helped the hackers
extract information they used to gain access to the plant’s office network and
then its production systems. As a result, the technical infrastructure of the
mill suffered severe damage. Traditional and well-established risk assessment
methods often identify potential threats against socio-technical systems, but
often abstract away the internal structure of an organisation and ignore human
factors.

Actually, only few, if any, approaches to systematic risk assessment take such
“human factor”-based attacks into consideration. Probably the strongest threat
against socio-technical systems is the insider threat [3,4]. Insiders have access
to parts of the organisation’s infrastructure and assets, and they are trusted to
perform certain operations on these. Starting from a flow logic [5] based analysis
of the insider threat, we discuss how to include the socio aspects explicitly, and
show a formalisation that proves properties of this formalisation.

On the formal side, our work closes the gap between formal and informal
approaches to socio-technical systems. On the informal side, we show how to
steal a birthday cake from a bakery by social engineering.

Our work thereby closes the gap by developing models and analytic processes
that support assessing both the socio and the technical side of organisations as
socio-technical systems, thus combining human factors and physical infrastruc-
ture. Our approach simplifies the identification of possible attacks and provides
qualified assessment and ranking of attacks based on the expected impact.

The rest of this chapter is structured as follows. After introducing the bakery
example as our socio-technical system, Sect. 3 presents a formalisation of such
systems followed by a flow logic-based analysis in Sect. 4. A discussion of the
limitations of this formal approach when facing human actions leads to a more
general identification of possible attacks in Sect. 5, followed by an attempt to
formalise human behaviour in Sect. 6. After discussing related work Sect. 7, we
conclude the paper with an outlook on future developments.

2 The Drama of the Birthday Cake in Three Pictures

In this section, we provide a case study of a very recent insider attack where
a baker’s wife socially engineered her husband the baker with the malicious
intention to steal Hanne and Flemming’s birthday cake. What is worse, is that
she succeeded—due to the lack of formal analysis in this bakery. In the rest of
this paper we will illustrate the attack and then show different formalisations
to identify this attack. Figures 1, 2, and 3 illustrate the sequence of events that
lead to the devastating outcome. The part of the bakery that is not illustrated
is presented in the next section.
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Fig. 1. The baker bakes a cake for Hanne and Flemming’s birthday and protects it by
putting it in the cake locker—but his wife sees it all.

Fig. 2. The baker’s wife uses a social engineering attack on the baker to get his cre-
dentials: the key to the cake locker.

Fig. 3. Disaster: Hanne and Flemming’s birthday cake vanished from cake locker!



Formal Modelling and Analysis of Socio-Technical Systems 57

3 Modelling Socio-Technical Systems

Our model represents the infrastructure of organisations, in this case the bakery,
as nodes in a directed graph [6], representing rooms, access control points, and
similar locations. Actors are represented by nodes and can possess assets, which
model data and items that are relevant in the modelled scenario. Assets can be
annotated with a value and a metric, e.g., the likelihood of being lost. Nodes rep-
resenting assets can be attached to locations or actors; assets attached to actors
move around with that actor. Actors perform actions on locations, including
physical locations or other actors. These actions are restricted by policies that
represent both access control and the behaviour as expected by an organisation
from its employees. Policies consist of required credentials and enabled actions,
representing what an actor needs to provide in order to enable the actions in a
policy, and what actions are enabled if an actor provides the required credentials,
respectively.

Our modelling approach is based on Klaim [7]. In contrast to Klaim, we
attach processes and actors to special nodes that move around with the process.
This makes the modelling of actors and items carried by actors more intuitive
and natural, but can easily be mapped back to original Klaim. The metrics
mentioned above can represent any quantitative knowledge about components,
for example, likelihood, time, price, impact, or probability distributions. The
latter could describe behaviour of actors or timing distributions.

3.1 Semantics of Socio-Technical Models

In the following we briefly summarise the formal semantics of our socio-technical
models. The calculus follows previous presentations closely and we will there-
fore not go deep into details here, merely refer to [8]. As already mentioned,
the semantics is based on a variant of the Klaim calculus [7], called bacKlaim,
which in turn is based on acKlaim [6,8]. The Klaim calculus uses the tuple space
paradigm, in which systems are composed of a set of distributed nodes that
communicate and interact by reading and writing tuples in shared tuples spaces.
The following presentation of bacKlaim is an adaptation and simplification of
the calculus presented in [8].

In keeping with tradition, the semantics of the bacKlaim calculus is split
into three layers: nets, processes, and actions. Nets define the overall, distributed
structure of the system by specifying where individual nodes and tuple spaces
are located. Processes and actions define the actual behaviour of the nodes.
The syntax of nets, processes, and actions is shown in Fig. 4. In the bacKlaim
calculus there are two actions for reading a tuple in a remote tuple space: in
for destructive read and read for non-destructive read. Both these input actions
allow for template specifications of the tuple(s) to be read, facilitating a simple
form of pattern matching with variable binding. The syntax for templates is
shown in Fig. 5 and the corresponding semantics is shown in Fig. 7.

One of the key differences between classic Klaim and bacKlaim is the explicit
support for access control policies in the latter, through a reference monitor
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Fig. 4. Syntax of nets, processes, and actions.

Fig. 5. Syntax for tuples and templates.

embedded in the semantics. Before going further into the semantics of bacKlaim,
we first need to define these access control policies. In the bacKlaim calculus,
the kind of access that is relevant to control, is whether or not a process at a
given location is allowed to perform a specific action at a remote location. Thus
we can formalise access control policies as follows:

π ⊆ AccMode = {i, r,o, e,n,m}
δ ∈ Policy = (Loc ∪ {�}) → P (AccMode)

where the access modes correspond to the actions that can be taken in the
semantics: i for (destructively) reading a tuple, r for (non-destructively) reading
a tuple, o for outputting (writing) a tuple, e for remote evaluation of a process,
and n for the capability to create new locations. The special ‘�’ location is used
to denote default policies, i.e., access modes that are allowed from all locations
not specifically mentioned.

We can now continue with the semantics for bacKlaim, by defining the reduc-
tion relation for processes and actions, shown in Fig. 6. In general, a process is
composed of sequences of actions, (sub-)processes that execute in parallel, or a
recursive invocation through a place-holder variable. The actions a process can
perform are: out, that writes a tuple to the specified tuple space; in, that reads
a tuple (at the specified tuple space) matching the template and then removes
the tuple in question; read that also reads a tuple (at the specified tuple space)
matching the given template but does not remove the tuple; eval that evaluates
the given process at the specified (remote) location. Finally, the move action
relocates the node representing the actor or process. However, we only wish to
allow certain moves between nodes, e.g., a node representing a (physical) actor
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Fig. 6. Reduction semantics for bacKlaim.

Fig. 7. Semantics for template matching.

should only be able to move between nodes representing physical localities. We
formalise this in the form of the so-called infrastructure of the underlying nets:

I ∈ Infrastructure = P (Locality × Locality)

Essentially, the infrastructure is a graph, relating the pairs of nodes between
which moves are allowed (still subject to access control rules).

In addition to the reduction relation, the semantics also incorporates a struc-
tural congruence, simplifying (re-)presentation of, computation with, and rea-
soning about processes and nets. The congruence is shown in Fig. 8.

Fig. 8. Structural congruence on nets and processes.
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Fig. 9. Graphical representation of the crime scene, the bakery. The rectangles repre-
sent actors, locations, assets, and processes. The baker is (still) in possession of the key
and the password for the computer.

3.2 The Bakery Model

The bakery example introduced in Sect. 2 is based on the baker and his wife,
and of course the cake. The assets in this example are the key to the cake locker,
the cake itself, and, to add to the excitement, a computer with the recipe for the
cake. The recipe is input to a process on the computer that outputs a cake in
the bakery.1 We assume the baker to have an (internalised) policy that forbids
the cake to leave the bakery prematurely. Figure 9 shows the formalisation of the
bakery, consisting of the baker shop, the office, the cake locker, and the outside
world. The baker has the key and the Password to his computer. The policies
in the model require, e.g., the key to enter the cake locker and the password
to log into the computer. Actor nodes also represent processes running on the
corresponding locations. The process at the computer represents the “creation”
of a cake, that is output at the bakery.

4 Flow Logic-Based Analysis of Processes

The first analysis for catching the thief is a flow logic analysis similar to [8]. This
analysis takes a sequence of actions and performs a static control flow analysis
to compute and assess its effect by a conservative approximation of the possible
flow between actors, processes, and tuple spaces. Following the Flow Logic frame-
work [9], we specify a judgements for nets, processes, and actions that determine
whether or not an analysis estimate correctly describes all configurations that
are reachable from the initial state. The definitions are shown in Fig. 10.

The tuple spaces and variable values are collected in T̂ and σ̂. For space
reasons we do not consider the newloc action that dynamically creates new
locations. Similar to [8] we could use canonical names. For the pattern matching
we reuse the Flow Logic specification, shown in Fig. 11 from [8].
1 To simplify treatment we assume the bakery to be high-tech. A different approach

would have been to model the baking process at the baker or the bakery, requiring
the recipe as input.
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Fig. 10. Flow logic specification for control flow analysis of bacKlaim.

Fig. 11. Flow logic specification for pattern match analysis [8].

Having specified the analysis it remains to be shown that the information
computed by the analysis is correct. In the Flow Logic framework this is usually
done by establishing a subject reduction property for the analysis:

Theorem 1 (Subject Reduction). If (T̂ , σ̂, Î) |= N N and L � N �−→I L′ �
N ′ then (T̂ , σ̂, Î) |= N N ′.

Proof. (Sketch) By induction on the structure of L � N �−→I L′ � N ′ and
using auxiliary results for the other judgements.

4.1 Analysing the Bakery Example

Before we conclude this section, we quickly want to see whether the flow logic
analysis can help the baker in protecting the cake. We consider the two processes
shown in Fig. 12; the first process represents the baker going to the office and
starts the “bake” process on the workstation. As a result, the cake appears in
the bakery, the baker goes there and picks up, goes to the Locker and puts it
down, and then returns to the bakery. The wife meets the baker somewhere, in



62 C.W. Probst et al.

Pbaker := move (office) .eval (Pbake)@WS .move (bakery) .in (cake)@bakery .
move (Locker) .out (cake)@Locker .move (bakery)

Pwife := move (bakery) .in (key)@baker .
move (Locker) .in (cake)@Locker .move (bakery)

Fig. 12. The two processes for the Flow logic analysis. The baker bakes the cake and
brings it to the Locker, and his wife picks the key from him, goes also to the Locker,
and steals the cake.

our case in the bakery, picks the key from his pocket, goes to the Locker, gets
the cake, and returns to the bakery.

The result of the flow logic analysis of the two processes shown in Fig. 12 is
that the cake will be at the baker, the bakery, and the Locker. However, it will
also be at the wife, which is what the baker wanted to prevent, knowing her
sweet tooth. This means that from the flow logic analysis, the baker can learn
that his wife has stolen the cake.

5 Attack Generation

Unfortunately, there is a problem with the processes described in the previous
section. Processes are a suitable abstraction for programs, but we are in general
not able to obtain processes describing human behaviour. If the baker knew,
which actions his wife had performed, he also would know that she stole cake—
without any analysis or tool support.

If we cannot obtain processes to identify attacks, we need a different method
to do so. In this section we present a recent development to attack genera-
tion based on the negation of policies [10,11]. The policies we consider describe
global system states that should be fulfilled at all times; our approach identifies
sequences of actions that results in a policy violation.

In the bakery example, the baker could have the global policy that only the
birthday children or he should get the cake, or more concretely, that his wife
should not have the cake. Since she is determined to obtain the cake, she would
violate this global policy by obtaining it.

We choose attack trees as a succinct way of representing attacks. In attack
trees [12,13], the root represents a goal, and the children represent sub-attacks.
Sub-attacks can be alternatives for reaching the goal (disjunctive node) or they
must all be completed to reach the goal (conjunctive node). We assume an
implicit, left to right order for children of conjunctive nodes. For example, an
attacker first needs to move to a location before being able to perform an action.
Leaf nodes represent the basic actions in an attack. The operators ⊕∨ and ⊕∧
combine attack trees by adding a disjunctive or conjunctive root, respectively.

In the remainder of this section we present the rules for generating attack
trees from models. The rules take as arguments the infrastructure I and an actor
component A, which stores reached locations, obtained data, and acquired iden-
tities for the attacker. The rules either succeed and return an (possibly empty)
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attack tree, or they block if no valid result can be computed. Our approach for
invalidating a policy consists of four basic steps:

Identify Attackers: Choose the policy to invalidate, and identify the possible
actors who could invalidate it.

Target Locations: Identify a set of locations where the prohibited actions can
be performed.

Goto Target Location: Generate attacks for reaching target locations. This
will identify and obtain required assets to perform any of these actions, and
obtain all assets required to reach the target location.

Move to Target Location and Perform Action: Finally, move to the loca-
tion identified in the second step and perform the action.

In the first step we identify possible attackers and locations where the action
violating the global policy can be applied (see Fig. 13). These are the goals for
the attacker, and are the basis for generating attack trees (Fig. 14). For each goal
we generate a tree for moving to the location and another one for performing
the action. While moving to the location new credentials may be required, which
recursively invoke the attack generation again. The resulting new knowledge is
added to the actor component A.

The rules in Figs. 15 and 16 generate attack trees for moving around, per-
forming actions, and obtaining credentials, resulting in attack trees for every
single action of the attacker. The function missingCredentials uses the unifica-
tion described above to match policies with the assets available in the model.
The attack generation then generates one attack for each of these assets and
combines the resulting trees with a disjunctive node.

Fig. 13. Attack generation starts from the global policy not(actor , credentials,
enabled). Attack trees are generated for all possible policy violations. As every attack
tree represents a violation of the policy, the resulting attack trees are combined by an
or node.

Fig. 14. For each identified goal (consisting of a location and an action) an attacker
moves to the location and performs the action. The rules result in an attack tree and
a new state of the attacker, which includes the obtained keys and reached locations.
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Fig. 15. Going to a location and performing an action results in two attack trees. The
function getAllPaths returns all paths from the current locations of the actor to the
goal location l, and the resulting attack trees are alternatives for reaching this location.

Fig. 16. Depending on the missing credential, different attacks are generated. If the
actor lacks an identity, an attack node representing an abstract social engineering
attack is generated, for example, social engineering or impersonating. If the missing
credential is an asset, the function availableAt returns a set of pairs of locations from
which this asset is available, and the according in actions. If the missing credential is
a predicate, a combination of credentials fulfilling the predicate must be obtained.

Attack generation also considers triggering processes to obtain assets. We do
not present this interaction between actors and processes for space reasons, as
it follows the rules presented above.

5.1 Post-Processing Attack Trees

The generated attack trees only represent the factual attack steps for reach-
ing the final goal. The trees do not contain any annotation or metrics about
the likelihood of success of actions such as social engineering, or the potential
impact of actions. Also the likelihood of a given attacker to succeed or fail is not
considered.

Computing qualitative and quantitative measures [14,15] on attack trees is
orthogonal to our approach and beyond the scope of this work. The generated
attack trees also often contain duplicated sub-trees, due to similar scenarios
being encountered in several locations, for example, the social engineering of the
same actor, or the requirement for the same credentials. This is not an inherent
limitation, but may clutter attack trees. Similar to [16], a post-processing of
attack trees can simplify the result.
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5.2 Attack Tree for the Bakery Example

Figure 17 shows part of the attack tree generated for the bakery example. The
first attack is the one described in the previous section and shown in Fig. 12: the
wife steals the key from the baker and gets the cake from the Locker after it has
been baked. A variant of this attack is that she breaks the Locker door open.
In the second attack, she social engineers the baker to bake the cake, and then
picks up the cake in the bakery before the baker does so. In the third attack,
she gets the password to the work station from the baker, and then starts Pbake
herself. Finally, she can social engineer the baker to give her the cake, maybe
promising him to share it. All attacks, where assets are stolen also occur in a
variant where actors with access to the asset are social engineered to obtain the
asset and give it to the attacker.

Fig. 17. Attack tree generated for the bakery example. The double-lined borders indi-
cate disjunctive nodes.

6 Analysis of Socio-Technical Attacks in Isabelle

We now consider a third approach to modelling socio-technical systems using
the interactive theorem prover Isabelle. We first illustrate the attack and then
we discuss how the socio-technical model can be transfered to the modeling
and verification of insider threats using our Isabelle framework [17]. Finally, we
extend the Isabelle technique here further to Isabelle Attack Trees.
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6.1 Social Explanation for Insider Threats in Isabelle

In earlier work [17], we have used the process of sociological explanation based
on Max Weber’s Grundmodell and its logical interpretation to explain insider
threats by moving between societal level (macro) and individual actor level
(micro). The interpretation into a logic of explanation is formalized in Isabelle’s
Higher Order Logic thereby providing a tool to prove global security properties
with machine assistance [17]. Isabelle/HOL is an interactive proof assistant based
on Higher Order Logic (HOL). It enables specification of so-called object-logics
for an application. Object-logics comprise new types, constants and definitions
and reside in theory files, e.g., the file Insider.thy contains the object-logic we
define for social explanation of insider threats below. We construct our theory
as a conservative extension of HOL guaranteeing consistency. I.e., we do not
introduce new axioms that could lead to inconsistencies.

We first provide here only the elements of this Insider theory necessary as
a basis for attack trees and for modeling the bakery application. For a more
complete view, please refer to [17] and the related online Isabelle resources [18].

In the Isabelle/HOL theory for Insiders, we express policies over actions get,
move, eval, and put.

datatype action = get | move | eval | put

We abstract here from concrete data – actions have no parameters. Policies
describe prerequisites for actions to be granted to actors given by pairs of pred-
icates (conditions) and sets of (enabled) actions.

type_synonym policy = ((actor ⇒ bool) × action set)

We integrate policies with a graph into the infrastructure providing an organ-
isational model where policies reside at locations and actors are adorned with
additional predicates to specify their ‘credentials’.

datatype infrastructure = Infrastructure

"node graph" "location ⇒ policy set" "actor ⇒ bool"

These local policies serve to provide a specification of the ‘normal’ behaviour of
actors but are also the starting point for possible attacks on the organisation’s
assets. The enables predicate specifies that an actor a can perform an action
a’∈ e at location l in the infrastructure I if a’s credentials (stored in the tuple
space tspace I a) imply the location policy’s (stored in delta I l) condition
p for a.

enables I l a a’ ≡
∃ (p,e) ∈ delta I l. a’ ∈ e ∧ (tspace I a −→ p(a))

For the application to the bakery senario, we only model two identities, Baker
and Wife representing the baker and his wife. We define the set of bakery actors
as a local definition in the locale scenarioBakerNN. We show here in a first
instance the full Isabelle/HOL syntax but in all subsequent definitions we omit
the fixes and defines keywords and also drop the types for clarity of the
exposition. The double quotes ‘‘s’’ create a string in Isabelle/HOL.



Formal Modelling and Analysis of Socio-Technical Systems 67

fixes bakery_actors :: identity set

defines bakery_actors_def: bakery_actors ≡ {‘‘Baker’’}

The graph representing the infrastructure of the bakery case study contains only
the minimal structure: (1) Kitchen, (2) Cake locker, (3) Home.

bakery_locations ≡ {Location 1, Location 2, Location 3}

The global policy is ‘no one except bakery employees can get anything from the
cake locker’.

global_policy I a ≡ a /∈ bakery actors −→
¬(enables I (Location 2) (Actor a) get)

Next, we have to provide the definition of the infrastructure. We first define the
graph representing the organisation’s locations and the positions of its actors.
Locations are wrapped up with the datatype constructor NL and actors using
the corresponding constructor NA to enable joining them in the datatype node
and thus creating the following node graph as a set of pairs between locations
or actors.

ex_graph ≡ Graph {(NA (‘‘Baker’’), NL (Location 3)),

(NL (Location 3), NL(Location 1)),

(NL (Location 2), NL(Location 1)),

(NA (‘‘Wife’’), NL (Location 1))}

Policies are attached to locations in the organisation’s graph using a function
that maps each location to the set of the policies valid in this location. The
policies are again pairs. The first element of these pairs are credentials which
are defined as predicates over actors, i.e., boolean valued functions describing,
for example, whether an actor inhabits a role, or, whether an actor possesses
something, like an identity or a key. The second elements are sets of actions that
are authorised in this location for actors authenticated by the credentials.

local_policies ≡
(λ x. if x = Location 1 then

{(λ x. (ID x ‘‘Baker’’)∨(ID x ‘‘Wife’’), {get,put}), (λ x. True, {move})}

else (if x = Location 2 then

{((λ x. has (x, ‘‘key’’)), {get,put,move})}

else (if x = Location 3 then

{((λ x. True, {get,put,move}))}

else {})))

The final component of any infrastructure is the credentials contained in a
tspace. We define the assignment of the credentials to the actors similarly as a
predicate over actors that is true for actors that have the credentials.

ex_creds ≡ (λ if x = Actor ‘‘Baker’’ then has (x, ‘‘key’’) else False)

Finally, we can put the graph, the local policies, and the credential assignment
into an infrastructure.
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Bakery_scenario ≡ Infrastructure ex_graph local_policies ex_creds

Note, that all the above definitions have been implemented as local definitions
using the locale keywords fixes and defines. Thus they are accessible whenever
the locales scenarioBakerNN is invoked but are not axioms that could endanger
consistency. We now also make use of the possibility of locales to define local
assumptions. This is very suitable in this context since we want to emphasize
that the following formulas are not general facts or axiomatic rules but are
assumptions we make in order to explore the validity of the infrastructure’s
global policy. The first assumption provides that the precipitating event has
occurred which leads to the second assumption that provides that Charly can
act as an insider.

assumes Bakers_Wife_precipitating_event: tipping_point (astate ‘‘Wife’’)

assumes Insider_Wife : Insider ‘‘Charly_comp’’ {‘‘Charly_priv’’}

So far, we have specified the model. Based on these definitions and assumptions
we can now state theorems about the security of the model and interactively
prove them in our Isabelle/HOL framework. We can now first prove a sanity
check on the model by validating the infrastructure for the “normal” case. For
the baker as a bakery actor, everything is fine: the global policy does hold. The
following is an Isabelle/HOL theorem ex inv that can be proved automatically
followed by the proof script of its interactive proof. The proof is achieved by
locally unfolding the definitions of the scenario, e.g., Bakery scenario def and
applying the simplifier.

lemma ex inv:

global_policy Bakery_scenario (‘‘Baker’’)

by (simp add: Bakery scenario def global policy def bakery actors def)

However, since the baker’s Wife is at tipping point, she will ignore the global
policy. This insider threat can now be formalised as an invalidation of the global
company policy for ‘‘Wife’’ in the following “attack” theorem named ex inv1.

theorem ex_inv1:

¬ global_policy Bakery_scenario ‘‘Wife’’

The proof of this theorem consists of a few simple steps largely supported by
automated tactics. Thus Wife can get access to the cake leading to devastating
outcomes (see Fig. 3). The attack is proved above as an Isabelle/HOL theorem.
Applying logical analysis, we thus exhibit that under the given assumptions the
organisation’s model is vulnerable to an insider. This overall procedure corre-
sponds to the approach of invalidation of a global policy based on local policies
for a given application scenario [10].

However, to systematically derive the actual attack vector the present paper
provides a more constructive approach. We will next see how we can extend the
Isabelle Insider framework to this.
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6.2 Attack Trees in Isabelle

We now extend the theory Insider by Attack trees. The base attacks figure in an
attack sequence (see Sect. 5). We represent them in Isabelle/HOL as a datatype
and a list over this datatype.

datatype baseattack = None | Goto ‘‘location’’

| Perform ‘‘action’’| Credential ‘‘location’’

type_synonym attackseq = ‘‘baseattack list’’

The following definition of attack tree, really defines the nodes of an attack tree.
The simplest case is when a node in an attack tree is a base attack. Attacks
can also be combined as the “and” of other attacks as defined in Sect. 5. This
prescribes that the third element of type attree is a baseattack (usually a
Perform action) that represents this attack, while the first element is an attack
sequence and the second element is a label describing the attack (here a string).

datatype attree = BaseAttack ‘‘baseattack’’ (‘‘N (_)’’) |

AndAttack ‘‘attackseq’’ ‘‘string’’ ‘‘baseattack’’ (‘‘_ ⊕( )
∧ _’’)

As the corresponding projection functions for attree we define get attseq and
get attack returning the entire attack sequence or the final base attack, respec-
tively.

The following inductive predicate get then move shows how we represent
the static analysis rules for the derivation of attack sequences. It translates the
two rules of Fig. 15 and formalizes how the impossible base attack Goto l’ can
be achieved by first going to location l and getting the credential from there.
Logically, this is justified if an actor a can get to location l’ in the extended
infrastructure add credential I a s where he possesses the credential s – as
is expressed by the third enables proviso.

� enables I l a move; enables I l a get;

enables (add_credential I a s) l’ a get �
=⇒ get_then_move I s

(get_attackseq ([Goto l, Credential l, Goto l’] ⊕get−move
∧ Perform get))

(Goto l’)

An attack tree is constituted from the above defined nodes of type attree but
children nodes must be refinement of their parents. Refinement means that some
portion of the attack sequence has been extended according to rules like the
above get then move. We formalize this constructor relation of the attack trees
by the following refinement. The rules trans and refl make the refinement a
preorder; the rule get moveI shows how the get then move rule is integrated:
If we replace the attack a by the get then move sequence l we get refine the
attack sequence A into A’ (the auxiliary function sublist rep replaces a symbol
in list by a list).

inductive

refines_to :: ‘‘[attree, infrastructure, attree] ⇒ bool’’ (‘‘_ �( ) _’’)

where
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get_moveI: � get_then_move I s l a;

sublist_rep l a (get_attseq A) = (get_attseq A’);

get_attack A = get_attack A’ � =⇒ A �I A’ |

trans: � A �I A’; A’ �I A ‘‘ � =⇒ A �I A’’ |

refl : A �I A

The refinement of attack sequence allows the expansion of top level abstract
attacks into longer sequences. Ultimately, we need to have a notion of when
a sufficiently refined sequence of attacks is valid. This notion is provided by
the final inductive predicate is and attack tree. It integrates the base cases
where base attacks can be directly logically derived from corresponding enables
properties; it states that an attack sequence is valid if all its constituent attacks
are so and it allows to transfer validity to shorter attacks if a refinement exists.

inductive

is_and_attack_tree :: [infrastructure, actor, attree] ⇒ bool (‘‘_, _ � _’’)

where

att_act: enables I l a a’ =⇒ I , a � N(Perform(a’)) |

att_goto: enables I l a (move) =⇒ I, a � N(Goto l) |

att_cred: enables I l a (get) =⇒ I, a � N(Credential l) |

att_list: � ∀ a ∈ (set(as)). I, a’ � N(a) � =⇒ I, a’ � as ⊕s∧ a’’ |

att_ref: � A 	I A’; I, a � A’ � =⇒ I, a � A

The Isabelle/HOL theory library provides a lot of list functions. We can thus
simply define the “or” of attack trees by folding the above validity over a list of
attacks.

I, a 	G⊕∨ al ≡ fold (λ x y. (I, a 	 x) ∨ y) al False

To validate this formalisation of the attack trees, we now show how the bakery
scenario attack can be derived.

First, we prove the following get then move property.

lemma get_move_lem: get_then_move Bakery_scenario ‘‘key’’

(get_attseq ([Goto (Location 1), Credential (Location 1), Goto (Location 2)]

⊕get−move
∧ Perform get))

(Goto (Location 2))

After reducing with the defining rule of get then move above, proof requires
resolving three “enables” subgoals; the final one uses the add credential for
Wife. This lemma rather immediately implies the following refines property.

([Goto (Location 2)] ⊕get−cake
∧ Perform get)

�Bakery−scenario

([Goto (Location 1), Credential (Location 1), Goto (Location 2)]

⊕get−move
∧ Perform get)

We can show this refined attack as valid mainly showing that each step in it is
valid.

lemma final_attack: Bakery_scenario, Actor ‘‘Wife’’ 	
([Goto (Location 1), Credential (Location 1), Goto (Location 2)]

⊕get−move
∧ Perform get)
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The last lemma together with the refinement gives us finally that the top level
abstract attack is a valid attack.

theorem bakery_attack:

Bakery_scenario, Actor ‘‘Wife’’ � ([Goto (Location 2)] ⊕get−cake
∧ Perform get)

7 Related Work

System models such as ExASyM [6,8] and Portunes [19] also model infrastruc-
ture and data, and analyse the modelled organisation for possible threats. How-
ever, Portunes supports mobility of nodes, instead of processes, and represents
the social domain by low-level policies that describe the trust relation between
people to model social engineering. Pieters et al. consider policy alignment to
address different levels of abstraction of socio-technical systems [20], where poli-
cies are interpreted as first-order logical theories containing all sequences of
actions and expressing the policy as a “distinguished” prefix-closed predicate in
these theories. In contrast to their use of refinement for policies we use the secu-
rity refinement paradox, i.e., security is not generally preserved by refinement.

Attack trees [21] specify an attacker’s main goal as the root of a tree; this goal
is then disjunctively or conjunctively refined into sub-goals until the reached sub-
goals represent basic actions that correspond to atomic components. Disjunctive
refinements represent alternative ways of achieving a goal, whereas conjunctive
refinements depict different steps an attacker needs to take in order to achieve a
goal. Techniques for the automated generation of attack graphs mostly consider
computer networks only [22,23]. While these techniques usually require the spec-
ification of atomic attacks, in our approach the attack consists in invalidating a
policy, and the model just provides the infrastructure and methods for doing so.

8 Conclusion

Modelling socio-technical systems with formal methods is a difficult undertaking.
Due to the unpredictability of human behaviour, formal methods are often too
restrictive to capture essential aspects. This results in the human factor often
being ignored in these formalisations, since it cannot be represented in the model
used.

In this work we have presented different techniques for modelling and analysing
systems including human factors using recent advances in systemmodels.Our app-
roach supports all kinds of human factors that can be instantiated once an attack
has been identified.The presented techniques address different aspects of analysing
socio-technical systems. The flow-logic based approach (Sect. 4) supports analysis
of observedactions; this canbe compared toanaposteriori analysis to identifywhat
has happened, or in combination with logged information, what might have hap-
pened. The attack generation (Sect. 5) identifies all possible attacks with respect
to the model; this constitutes an a priori analysis of the modelled system. Finally,
the formalisation with Isabelle (Sect. 6) provides a different view on system models
and attacks, and a proof that the contributes the soundness of attack generation.
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The attacks generated by the last two techniques include all relevant steps
from detecting the required assets, obtaining them as well as any credentials
needed to do so, and finally performing actions that are prohibited in the system.
The generated attacks are precise enough to illustrate the threat, and they are
general enough to hide the details of individual steps. The generated attacks are
also complete with respect to the model; whenever an attack is possible in the
model, it will be found.
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from the European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 318003 (TRESPASS). This publication reflects only the authors’
views and the Union is not liable for any use that may be made of the information
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Abstract. Abstract interpretation is successfully used for determining
execution-time bounds of real-time programs. The particular problem
it solves is the determination of invariants at all program points that
describe the set of all execution states that are possible at these pro-
gram points. These invariants are then used to exclude some of the pos-
sible costly executions of instructions, thereby reducing the execution-
time bounds. This article considers the properties of this application of
abstract interpretation that differ from those in the standard applica-
tions of abstract interpretation in compilation and in verification. It also
shows how some particular designs of the underlying abstract domains
made efficient timing analysis possible.

1 Introduction

1.1 Timing Analysis

Timing analysis of embedded real-time programs attempts to determine tight
upper, and sometimes also lower bounds on the execution times of the pro-
grams. Ideally, one would find out the worst-case and best-case execution times.
This is possible in principle since real-time programs are programmed in a way
that termination is guaranteed, and since the execution platform has only finite
resources. However, the complete exploration of the associated state space would
take far too long to be practically feasible.

It was therefore clear that abstraction would need to be applied to arrive at
sound execution-time bounds in acceptable times. Our entry into the timing-
analysis area started with the (quite successful) attempt to predict the cache
behavior by abstract interpretation [3,10]. Abstract interpretation had not been
applied to the timing-analysis problem. The existing approaches were rather ad
hoc and of doubtful correctness. It turned out that using abstract interpretation
was the recipe for success.

1.2 What is Different?

The standard textbook on static programanalysis, authored byFlemmingNielson,
Hanne Riis Nielson, and Chris Hankin, covers most needs of a designer of abstract
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interpretations. At least this was what we thought when we started out to design
static analyses of the cache behavior of real-time programs. However, it turned
out that timing analysis offers a number of challenges that were not foreseen by
the existing theory or not used in previous practice. Here is a list, some items more
absent from the Nielson/Nielson/Hankin book than others, some that could be
covered by adaptations of the theory. Some concern cache analysis, others more
general timing analysis.

– All traditional static program analyses we found in the literature were, in the
best case, based on a semantics of the programming language that abstracted
from the underlying execution platform. However, any timing analysis needs
to talk about architectural behavior. Hence, the behavior of the execution plat-
form must be an integral part of the semantics of the programming language,
on which the static analysis is based.

– Any timing analysis is composed of many component analyses, one for each
architectural component contributing to the timing behavior of programs.
These component analyses interact in possibly complex ways, essentially orig-
inating from the dependencies of the architectural components on each other.
Worst are cyclic dependencies since they render separate analyses of compo-
nent behavior more or less impossible [18]. An adequate design of the indi-
vidual analyses and of the composition is needed to arrive at overall timing
analyses that are both precise and efficient.

This composition of timing analysis of many component analyses is in contrast
with the application of static program analysis in compilation, where typically
one static analysis checks the applicability of one program transformation [26].
It is also different from the composition of abstract domains as in [5] used to
increase precision of one static analysis by using information from another
one.

– Timing analyses need to analyze programs on the executable level since the
source level does not contain the information on memory allocation of instruc-
tions and data, indispensable for cache analyses, nor the information on when
memory is accessed, needed for the analysis of bus-access conflicts.

– The replacement strategy of a cache architecture always needs some book-
keeping mechanism about past memory accesses. The state representation of
this mechanism is optimized for the speed and the size of the update logic.
Cache analysis, however, is interested in the state itself, not its representation.
The design of cache analyses therefore starts with a lossless abstraction of the
HW implementation of the cache.

This is somewhat comparable to the situation in shape analysis [24], which
is based on a storeless semantics abstracting from actual heap addresses, but
keeping connectivity information.
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– The cache semantics shows many indirect effects of state changes of one object
on another independent object, e.g. memory block a is loaded into the cache,
thereby replacing memory block b.

These indirect effects are different from the ones caused by manipulations
through pointers: These may also have side-effects, however, only on aliases,
i.e. pointer expressions reaching the same object. So, these indirect effects
result from program execution.
In contrast, cache loads have indirect effects on objects related by the execu-
tion platform, i.e., by the cache-set mapping.

– A particularly hard problem is the static analysis of write-back caches. Here
a modification of the contents of a memory block a residing in the cache
leads to a temporary inconsistency in the value of a in the memory hierarchy.
This inconsistency is repaired by a write back, possibly much later, when
a is evicted by loading some other memory block b. These delayed cause-
effect chains are quite unusual in the semantics of programming languages
and therefore also in traditional static program analyses.

– The invariant at a program point, computed by some static analysis, may
have different expressivity (precision), depending on whether the invariant
is to hold for all executions reaching this program point or only for a sub-
set corresponding to a particular context and/or a particular control flow.
Traditional static program analyses may therefore be context- and/or flow
sensitive or insensitive depending on the desired precision of the results and
the required effort. The notion of context is defined by some abstraction of
the set of call strings.

Timing analyses must be flow-sensitive in order to obtain any precision at all.
In addition, timing analyses need and use a generalized notion of context to
be precise. Different iterations of a loop may have vastly different execution
times. Hence, they have to be considered as contexts for the instructions
in the body. This is an instance of trace partitioning, invented before trace
partitioning was proposed in the literature [21].

– Static analyses of concurrent systems focus on the interaction of the concur-
rently executed tasks on global variables. In contrast to this, cache analysis,
and more general timing analysis, has to determine safe approximations of
the resource-occupancy interaction [1]. An additional complication, compared
to the static analysis of concurrent systems, is the non-transparency of which
objects compete with which other objects for resources.

– Cache analysis, and more general timing analysis, determines invariants about
execution states at program points and derives safety properties from these
invariants, i.e., certain timing accidents like a cache miss will never happen
at a program point. The proof of such safety properties allows reducing the
execution-time bound by the timing penalty corresponding to the excluded
timing accident. This use is different from that in traditional static program
analyses used in verification, where such a safety property typically proves the
absence of a run-time error.
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– The profitability of code optimizations involving static analyses as check for
their applicability is seldom clear. In contrast, excluding a timing accident by
a strong invariant computed by a timing analysis is often associated with the
elimination of a very clear penalty.

2 From Microarchitectures to Abstractions for Timing
Analysis

When developing a timing analysis, the first task is to obtain a faithful model of
the microarchitecture that the analysis is targeted at. This can be very challeng-
ing because documentation at the required level of detail is seldom available. One
promising approach is to start from cycle-accurate models in hardware descrip-
tion languages like VHDL or Verilog if those are made available by the hardware
manufacturer [25]. If such models are not provided by the manufacturer, they
have to be constructed manually based on processor manuals and extensive mea-
surements on evaluation boards. For some microarchitectural features, such as
caches the modeling process can be partially automated [2]. In the remainder of
this section, we assume that a cycle-accurate model of the microarchitecture has
already been obtained by one of the ways described above.

Mathematically, a cycle-accurate model is a transition relation R ⊆ S × S
that captures the behavior of the processor in a single execution cycle. Programs
and their input data are part of the states S of the processor. So the initial states
of a program P under all possible inputs are a subset IP of S. The goal of timing
analysis is then to determine a bound on the number of cycles from any possible
state in IP to the program’s termination, i.e., until it reaches one of its final
states FP . Brute-force exploration of all possible reachable states from the set
of initial states is practically infeasible due to its large number. Therefore, a
number of abstractions have been introduced to arrive at safe approximations
of the worst-case execution time. In the following, we will discuss the two most
important such abstractions.

2.1 Analysis Framework

Microarchitectures implement instruction set architectures (ISA). The semantics
of binary programs in terms of the computed values in registers and memory are
governed by the instruction set architecture. In particular, they are independent
of its microarchitectural implementation.

As a consequence, analysis at the ISA level can be separated from analy-
ses specific to a microarchitecture. This separation has led to the high-level
structure of WCET analysis tools depicted in Fig. 1. For a given instruction
set, in a preprocessing step, a value analysis [4] determines the possible values
of registers and memory locations, usually based on interval and congruence
abstractions. The control-flow graph of the program under analysis is annotated
with the results of value analysis for use in the subsequent analysis steps. They
are required for precise data-cache analysis within microarchitectural analysis,
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Fig. 1. Main components of a timing-analysis framework and their interaction.

as well as in control-flow analysis. Control-flow analysis [7,9,19,27] determines
loop bounds and other characterizations of the set of semantically-feasible paths
through the control-flow graph.

The task of microarchitectural analysis [6,8,11,12,29], which we will illu-
minate further in the following section, is to determine bounds on the exe-
cution times of small program fragments such as basic blocks. These bounds,
together with the results of the control-flow analysis are then used in path analy-
sis [20,28] to determine an upper bound on the execution time of the program
as a whole. Path analysis is usually performed using integer linear programming
formulations.

2.2 Separation into Value and Microarchitectural Analysis

Microarchitectural analysis first computes an overapproximation of the set of all
reachable microarchitectural states. From this approximation and the transitions
between the different reachable states, execution time bounds for basic blocks
can be determined.

A relatively simple microarchitecture may consist of the following compo-
nents: pipeline control, pipeline datapath, register file, branch predictor, cache,
and main memory. The microarchitecture’s space can be modeled as the carte-
sian product of the state spaces of its components:

S = PipelineControl × PipelineDatapath × RegisterFile

× BranchPredictor × Cache × Memory

The set of reachable states of program P is the least fixed point of the next
operator containing the initial states IP of program P :

Col(P ) = IP ∪ next(IP ) ∪ next2(IP ) ∪ . . . ,

where next captures the effect of one execution cycle:

next(M) = {s′ | (s, s′) ∈ R}
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The first abstraction, discussed informally in the previous section, is to per-
form value analysis separately, prior to microarchitectural analysis. Value analy-
sis can be formalized as abstracting values in the register file and the memory.

Let Value be the abstract domain used in value analysis. A concretization
function γVA : Value → P(RegisterFile×Memory) provides the meaning
of a result of value analysis. Such analyses are flow- or even context-sensitive
so that information about registers and memory is available for each program
location separately. Formally,

Value = (Loc × Context) → (Register × Memory ),

where Loc and Context are sets of program locations and contexts, and
Register and Memory are abstractions of the register file and memory,
respectively. For reasons of brevity we cannot further elaborate on these abstrac-
tions. A correct abstract nextVA : Value → Value operator guarantees
global correctness of the value analysis.

Given value analysis results, microarchitectural analysis can thus focus on
the remaining parts of the microarchitecture, pipeline control, as well as the
state of the branch predictor and the cache. The state of the pipeline datapath
can be inferred from the state of the pipeline control and the values of registers
and memory, and is thus not explicitly represented by either value analysis or
by microarchitectural analysis.

Let μArch be the abstract domain used in microarchitectural analysis, and
let γµA : μArch → P(PipelineControl×BranchPredictor×Cache) be
its concretization function. While value analysis does not depend on microarchi-
tectural analysis, the converse is not true. In particular, nextµA depends on the
results of value analysis: nextµA : μArch × Value → μArch . For exam-
ple, upon a memory access, microarchitectural analysis will query the results of
value analysis, which have been annotated to the program’s control-flow graph,
to determine which memory block is being accessed to be able to classify the
access as a cache hit or a cache miss.

For a correctness argument, the abstract operators nextVA and nextµA can
be combined to obtain the abstract next operator as follows:

Given correctness of nextVA and nextµA, it can be shown that next ’s least fixed
point,

overapproximates the set of reachable states Col(P ), with the combined con-
cretization function

γ(v ,m ) := {(pc, pd, rf, bd, c,m) ∈ S |
(rf,m) ∈ γVA(v ) ∧ (pc, bd, c) ∈ γµA(m ), }

given that γ(iv , im) ⊇ IP .
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From the formalization it is apparent that value analysis can be performed in
a preprocessing step, as it does not depend upon the results of microarchitectural
analysis. This preprocessing step produces a control-flow graph annotated with
the results of value analysis, which is then used by microarchitectural analysis.
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Fig. 2. Transitions from two different initial states of a simple processor consisting of
an in-order pipeline, a 2-way fully-associative cache, and a 1-bit branch predictor.

2.3 Microarchitectural Analysis

Now let us turn to the internal structure of μArch . Can the pipeline control,
the branch predictor, and the cache be analyzed independently of each other?
Unfortunately, this is not the case due to the mutual dependencies of the three
components. This is best explained with the help of Fig. 2. At the top, we see two
microarchitectural states of a simple processor, consisting of an in-order pipeline
containing an instruction fetch buffer, two integer units, one floating-point unit,
a cache, and a 1-bit branch predictor. The two processor states initially only
differ in their cache states. The pipeline is about to dispatch the add instruction
from the instruction fetch buffer to integer unit 1. Assume this add instruction
adds the contents of a memory address to the contents of a register. Then, the
instruction can be dispatched as soon as the memory operand is available. In
the state on the left, the operand a is in the cache, and so add is dispatched
immediately. On the other hand, in the state on the right, operand a needs to be
fetched from memory, as it is not in the cache, and the add instruction cannot
be dispatched yet. So the cache state has an influence on the pipeline state.
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Now consider the successor states. On the left, the next instruction from the
instruction fetch buffer to execute is a branch equal zero instruction. As the con-
dition upon which the branch depends has not yet been evaluated, the pipeline
queries the branch predictor to decide in which direction to speculate. The predic-
tion influences which instruction to fetch next, which in turn will affect the cache
contents. So the future cache state depends on the current state of the pipeline and
the branch predictor. Due to this tight coupling of the three components, they need
to be analyzed relationally to obtain reasonably precise results.

The example also demonstrates that pipeline states cannot easily be ordered
in terms of “progress”: Intuitively, the successor state on the left has progressed
further than the state on the right, as the add instruction has already been
dispatched in this case. However, if speculative execution proceeds in the wrong
direction, the pipeline state on the left may result in a longer execution time
than the state on the right, which has no potential to speculate. Due to this lack
of a natural ordering, which are usually the basis of abstractions1, no efficient
and precise abstractions are known so far for sets of pipeline states. In Sect. 3,
we speculate about the design of abstractable pipelines and its abstraction.

The analysis essentially operates on the power-set domain of sets of concrete
pipeline states, where only the datapath is abstracted away, as discussed earlier.
For the cache, however, precise and efficient abstractions have been found.

2.4 Two Abstractions for Caches

The abstraction described in the following applies to caches with least-recently-
used (LRU) replacement and was originally proposed by Ferdinand and
Wilhelm [12]. For simplicity we assume a fully-associative cache, i.e., the cache
consists of a single cache set, as the example cache in Fig. 2. The extension to
set-associative caches is straightforward, as set-associative caches can be seen
as cartesian products of multiple independent fully-associative caches, each of
which can be abstracted independently of the others.

A Lossless Logical Abstraction. The first abstraction to perform in the
analysis of caches is a cache’s physical implementation to a formal, logical model
of its behavior. In physical implementations, caches consists of multiple memories
containing data, tags, and status bits. In particular, each cache line is associated
with a tag to keep track of which memory block is cached in the respective line.
In addition, a number of status bits are maintained in each cache set to record
the “logical” state of the replacement policy.

For instance, an implementation of least-recently-used replacement needs sta-
tus bits to remember in which order the cache lines of each set have been used.
Abstracting from the data stored in the cache, a model of a fully-associative
cache with LRU replacement fairly close to the physical implementation might
thus consist of two functions: (1) a function cl : {1, . . . , k} → B that captures
1 In interval analysis for example a set of values is abstracted by its least and their

greatest element.
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which memory block is stored in each of the k cache lines, and (2) a function
agecl : {1, . . . , k} → {0, . . . , k − 1} that maintains the “age” of each cache line,
i.e., the number of distinct cache lines that have been accessed since the last
access to the given cache line.

For cache analysis it is irrelevant in which physical cache line a memory block
is stored; only the relative ages of different cached memory blocks are required to
predict the future cache hit behavior. Thus, a lossless abstraction can be applied
that captures the age of each memory block age : Cache = B → {0, . . . , k−1, k},
where uncached blocks assume age k. One can relate the two models by an
abstraction function α defined as follows:

α(cl, agecl) := λb ∈ B :

{
agecl(i) : if cl(i) = b

k : if cl(i) 	= b∀i ∈ {1, . . . , k}
Upon a load of memory block b, the ages are updated as follows:

up(age, b) := λb′ ∈ B :

⎧
⎪⎨

⎪⎩

0 : if b′ = b

age(b′) : if age(b) ≤ age(b′)
age(b′) + 1 : if age(b) > age(b′)

An Interval Abstraction. Cache analysis needs to represent sets of cache
states. In particular, at program start no knowledge about the cache state may
be available, and so cache analysis needs to represent all possible cache states.
Obviously, explicit representations are practically infeasible in such cases. A
further abstraction is required to compactly represent large sets of cache states
with little precision loss.

Fortunately, such abstractions are possible in the case of LRU. This is because
LRU exhibits a form of monotonicity. Intuitively, the “younger” a memory block,
i.e., the lower its age, the better. Thus, it is sufficient to maintain upper and
lower bounds on the age of each memory block independently of the ages of the
other memory blocks. This yields the following abstract domain

̂CacheInterval = {(l, u) | l, u ∈ B → {0, . . . , k − 1, k}
∧ ∀b ∈ B : l(b) ≤ u(b)}

storing a lower and an upper bound on the age of each memory block.
In the literature, the two analyses have been proposed separately, where

lower bounds are maintained in what is called may analysis and upper bounds
are maintained in must analysis. Lower bounds can be used to reason about
which memory blocks may be cached, whereas upper bounds can be used to
reason about which memory blocks must be cached.

̂CacheInterval forms a join semi-lattice with the following order:

(âmay, âmust) � (â′
may, â

′
must) :⇔ âmay �may â′

may ∧ âmust �must â′
must

âmay �may â′
may :⇔ ∀b ∈ B : âmay(b) ≥ â′

may(b)

âmust �must â′
must :⇔ ∀b ∈ B : âmust(b) ≤ â′

must(b)
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Fig. 3. Must and may cache abstractions.

Abstract cache states are related to sets of concrete cache states by a Galois
connection via the following abstraction and concretization functions:

α(C) := (αmay(C), αmust(C)),with
αmay(C) := λb ∈ B : min

age∈C
age(b)

αmust(C) := λb ∈ B : max
age∈C

age(b)

and

γ(âgemay, âgemust) := γmay(âgemay) ∩ γmust(âgemust),with

γmay(âge) := {age | ∀b ∈ B : âge(b) ≤ age(b)}
γmust(âge) := {age | ∀b ∈ B : age(b) ≤ âge(b)}

In Fig. 3, the two abstractions are illustrated at the example of the set of cache
states found in the two initial states of Fig. 2. In the concrete cache states the
ith row contains the memory block with age i. In the abstract cache states the
ith row contains all memory blocks with age bound i.

The abstract update functions for the lower and upper bounds closely resem-
ble the concrete update function and can be proven correct rather easily:

upmay(âge, b) := λb′ ∈ B :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 : if b′ = b

age(b′) : if âge(b) < âge(b′)
age(b′) + 1 : if âge(b) ≥ âge(b′) 	= k

k : if âge(b′) = k

upmust(âge, b) := λb′ ∈ B :

⎧
⎪⎨

⎪⎩

0 : if b′ = b

age(b′) : if âge(b) ≤ âge(b′)
age(b′) + 1 : if âge(b) > âge(b′)

Integration of Cache Analysis Within Microarchitectural Analysis. As
discussed earlier, no good abstractions for sets of pipeline control states are
known, and so they are analyzed using a power-set domain. How can the analysis
of the pipeline be integrated with the analysis of the cache behavior? Due to their
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mutual dependencies they need to be analyzed in a relational manner. The idea
is to associate with each possible pipeline state, one cache state:

̂μArchitecture := PipelineControl → ( ̂CacheInterval ∪ {⊥}),

where ⊥ is used to express that the respective pipeline state is not possible. For
simplicity, here, we omit branch predictors, which can be treated similarly to
caches.

Other Replacement Policies. We have seen a precise and efficient abstraction
for caches with LRU replacement. For other replacement policies, similarly effi-
cient abstractions have been developed [13–17,22]. However, they do not reach
the same level of precision as the replacement policies are less predictable [23].

3 An Abstractable Pipeline

We have seen in the previous section that pipelines in modern high-performance
microprocessors don’t provide for compact abstractions similar to abstract cache
states. This forced the pipeline analysis to work with a power-set domain [29].
We now speculate about an abstractable instruction pipeline, i.e. an instruction
pipeline that has a compact abstract domain, simple update and join functions,
and thereby admits efficient and precise pipeline analysis. The goal is to have
an abstract instruction pipeline which looks much like a concrete instruction
pipeline. The concrete state of an instruction pipeline contains a set of instruc-
tions of a given program, each in one particular pipeline stage. In addition, the
pipeline is connected to a set of queues, buffers, and functional units holding
instructions to be fetched next, stores to still be executed, or operations under
execution.

The progress in executing a given program, as given by a particular concrete
pipeline state, consists in

– which instructions of the program have already retired from the pipeline,
– how far other instructions of the program have progressed in the pipeline,
– how many instructions to be executed next have been prefetched into prefetch

queues,
– how far operations dispatched by instructions currently in the pipeline have

progressed in the pipelined functional units,
– how many outstanding stores are still in the store buffer.

An abstract state of an instruction pipeline, as we envision it, should look much
like a concrete pipeline state. However, the interpretation (concretization) is
different:

– Any progress of an instruction in the abstract pipeline state is a guaranteed
progress of the instruction.

– the contents of the abstract prefetch queue is a sequence of instructions, guar-
anteed to have been prefetched,
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– the progress of dispatched operations in the functional units is guaranteed
progress, and

– the stores removed from the store buffer have definitely been performed, the
ones still in the store buffer may be still outstanding.

This notion of progress is the basis for defining a partial order of the abstract
pipeline domain.

Let us discuss the implication for the pipeline architecture. It means that
the pipelines should be an in-order pipeline, i.e., without reordering of instruc-
tions. An out-of-order pipeline admits several dynamically selected schedules of
a given sequence of instructions. The join function would be applied to the dif-
ferent schedules resulting in an abstract pipeline state where each instruction
is recorded with its slowest possible progress. Thus the effect of out-of-order
execution would be completely lost in the pipeline analysis.

A first step towards abstractable pipelines has been done in [18]. We proposed
a strictly in-order pipeline, i.e., one where no phase of a later instruction can
block execution of a phase of an earlier instruction. This restriction excludes
timing anomalies, which were still possible in in-order pipelines, against common
beliefs. The simple pipeline design admits a compact abstract domain based on
the maximally guaranteeable progress.

Pipeline analysis is typically performed on basic blocks. For each predecessor
block of a basic block to be analyzed it has produced a final abstract state. These
final states need to be combined to an initial state by applying the join function of
the abstract domain. Different predecessor basic blocks will consist of different
instruction sequences, such that their final abstract states will have different
subsequences of instructions in the pipeline. Joining the set of abstract final
states would roughly correspond to flushing the pipeline, a costly approach if the
pipeline is deep. The efficiency gain of overlapping execution across basic-block
boundaries would always get lost. A way out of this dilemma could consist in
delaying the join at the beginning of basic blocks until the remaining instructions
of the predecessor blocks have retired.

4 Conclusions

We have shown how the architectural basis of static timing analysis influences
the character of static timing analysis, which includes a particular instance
of abstract interpretation as its most important component. In particular, we
have described how two important transformations of the underlying complex
cartesian-product domain were needed and successfully used to arrive at efficient
analyses.
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Mads Christian Olesen, René Rydhof Hansen(B), and Kim Guldstrand Larsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{mchro,rrh,kgl}@cs.aau.dk

Abstract. Trace partitioning is a technique for retaining precision in
abstract interpretation, by partitioning all traces into a number of classes
and computing an invariant for each class. In this work we present an
automata-based approach to trace partitioning, by augmenting the finite
automaton given by the control-flow graph with abstract transformers
over a lattice. The result is a lattice automaton, for which efficient model-
checking tools exist. By adding additional predicates to the automaton,
different classes of traces can be distinguished.

This shows a very practical connection between abstract interpreta-
tion and model checking: a formalism encompassing problems from both
domains, and accompanying machinery that can be used to solve prob-
lems from both domains efficiently.

This practical connection has the advantage that improvements from
one domain can very easily be transferred to the other. We exemplify
this with the use of multi-core processors for a scalable computation.
Furthermore, the use of a modelling formalism as intermediary format
allows the program analyst to simulate, combine and alter models to
perform ad-hoc experiments.

1 Introduction

The formal connection between model checking and static analysis is well known
and was first explored by Schmidt and Steffen, showing how data flow analysis
can be reformulated as a model checking problem [33–35], and more recently
by Nielson and Nielson, showing how certain model checking problems can be
reformulated as static analyses [30].

In this paper we exploit and further explore this deep connection between
static analysis and model checking, and show that it is not only of theoretical
interest, but also useful in practice. In particular, we develop an automata-based
approach to trace partitioning, a technique used to improve precision of analyses
based on abstract interpretation. In our approach the control flow graph of the
program under analysis is transformed into an equivalent lattice automaton, that
captures the control flow of a program and combines it with information drawn
from a lattice. The lattice automaton can then be model checked efficiently [11]
and thereby yield program analysis information. An overview of our method can
be seen in Fig. 1.
c© Springer International Publishing Switzerland 2016
C.W. Probst et al. (Eds.): Nielsons’ Festschrift, LNCS 9560, pp. 88–110, 2016.
DOI: 10.1007/978-3-319-27810-0 5
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Fig. 1. Overview of the proposed method.

Our approach opens a direct route for implementing static analyses based on
abstract interpretation and trace partitioning through the use of state-of-the-
art model checking engines. This allows not only for efficient implementations,
but it also enables analyses to automatically take advantage of any performance
improvements in the underlying model checking engine(s). In the following, we
illustrate this point by taking advantage of recent advances in model checking
on multi-core platforms [12] to obtain an efficient multi-core implementation of
abstract interpretation through trace partitioning.

In addition to providing efficient implementations, our approach also sim-
plifies the often difficult and underestimated task of using, adapting, and fine-
tuning trace partitioning in abstract interpretation. This is due to the use of
automata not only for representing control flow graphs, but also for specifying
the particulars of a given trace partitioning. These automata have an intuitive
and well-known graphical representation facilitating easy, interactive specifica-
tion and modification using a graphical editor.

Finally, a further advantage of our approach is that programs, or rather their
control flow graphs, are represented as expressive high-level models, namely lat-
tice automata. This is an often overlooked or unappreciated feature that is useful
in a wide range of scenarios, e.g., for running simulations of the program; mod-
elling the environment in which the program will run; modelling other systems,
devices, or services that the program will interact with. These additional mod-
els can be as concrete or abstract as needed, e.g., using abstract specifications
to model services that have not yet been implemented. As a concrete example,
consider whether this program fragment is buggy or not:

1 char str [40];
2 gets(str);
3 printf("%s", str);

The answer is of course: it depends. Since the ‘gets()’ function does not con-
strain the size of the input it copies to the ‘str’ buffer, a correct and conservative
answer would be that the fragment contains a potential buffer overrun, if nothing
is known about the environment in which the fragment will be run. However, it
may be the case that this fragment is only ever run in an environment that can
only input strings with strictly fewer than 40 characters. Such a restriction in
the environment is trivial to model using our approach.
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2 Related Work

In essence, the work in this paper is concerned with the mathematical structure
A × L, where A is a finite set and L is a partially ordered, possibly infinite set.
This structure is well-known and also occurs in:

– model checking of infinite state systems, e.g., timed automata [12], where A
comprises the states of a finite automaton, enhanced with a symbolic part L
where each element represents an infinite set of clock valuations;

– static analysis using abstract interpretation [6], where L is a lattice repre-
senting a program invariant over a set of traces, and A is used to divide the
set of all traces into partitions (most commonly partitioning on the end-state
of the trace) [26].

Furthermore, by equipping L with a least upper-bound operator, the classic pre-
sentation of abstract interpretation can be realised [6]; interestingly this struc-
ture also captures the convex hull abstraction used in model checking of timed
automata [13]. Because the structure is so commonly occurring, it is infeasible
to list all related work; consequently we focus mainly on related work in the area
of program analysis.

The formalism we propose in this paper has been derived from the formalism
used for model checking networks of timed automata in the uppaal [3] model
checker, but it could equally well have been based on the notion of well-structured
transition systems [14]. The addition of a least upper-bound operator, or join
operator, on the state space sets our definition apart from both, but the definition
of abstraction operators has previously been done, e.g., for timed automata [13]
with the convex-hull abstraction for zones, or for finite lattices in finite automata
in αSPIN [25]. In this work we address cases where the lattice has no infinite
ascending chains, or where widening is applied to eliminate such chains.

In the classic presentation of abstract interpretation, abstract transformers
are derived from the concrete semantics of a program relative to a lattice defin-
ing the abstraction [6]. This abstraction lattice is typically defined in terms of a
Galois connection or by using widening and narrowing where the latter is con-
sidered more powerful [9]. In this work we follow the approach taken in [33] and
focus on using Galois connections, with an implicit application of widening in
place of joining to eliminate infinite ascending chains.

Much work within abstract interpretation has centered on finding abstract
domains that are powerful enough to prove invariants of interest in real pro-
grams, while still being computationally affordable [7]. One technique for gaining
precision without changing domain or sacrificing performance is trace partition-
ing [17,19,26,32], or the related technique of property-oriented expansion [36].
In later sections we show how trace partitioning corresponds directly to instru-
menting a finite automaton with additional predicates. Other work in this areas
includes [4] which describes a series of program analyses, configurable in pre-
cision by a partial join operator, mimicking aspects of trace partitioning, and
implemented on top of a model checking engine.
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As mentioned in the introduction, the formal connection between abstract
interpretation and model checking has been explored by Schmidt and Steffen [33],
where it was shown how data-flow queries for a given program can be answered
using a parameterised variant of computation tree logic (CTL) model checked
over an abstract interpretation of the program, following the work of [34,35],
which was implemented in [37]. In order for this to work, the abstract model must
be finite. The work in this paper was heavily inspired by the work of Schmidt and
Steffen but focus on showing that the formal machinery developed by Schmidt
and Steffen can solve both model checking problems and static analysis problems,
also for models where joining or widening is required for termination. In [10] it
was shown how abstract interpretation can be used to reduce the state space
needing to be searched by a model checker.

Model checking was initially only available for small finite state automata [2].
The state-space explosion problem meant that abstractions were needed to
reduce the state space to practical size [5]. The case of finite domains allows
the methods for finite state automata to be applied to these abstract models
directly [1,5]. In general, infinite domains are avoided because termination is
not guaranteed.

In model checking software the counter-example guided abstraction refine-
ment (CEGAR) approach allows model checking of increasingly more detailed
abstractions of the program, starting from the control flow graph [18]. Based on
found error traces additional boolean predicates are added to the lattice domain.
CEGAR works very well in practice, but termination is not guaranteed.

Very efficient implementations of model checking algorithms for models with
lattices exist, mostly in the area of timed automata model checking [12,24]. In
particular model checkers such as LTSmin [23] exploit the multiple processing
cores of modern shared-memory processors to do the work in parallel. The multi-
core backend of LTSmin has recently been extended to the timed automata
setting [12], and has been shown to scale up to 48 cores. The static analyser
Astrée also has a parallel version [28], for which timings on a distributed cluster
architecture (non-shared memory) are reported scaling up to 3–4 machines.

The work on lattice automata in [21] is unrelated to our definition of lattice
automata, in that we allow arbitrary transitions as long as the transitions are
monotonically enabled with regards to the lattice ordering, and [21] only allows
transitions to affect the “value of a run” using the meet operator, which does
not allow abstract transformers such as those of assignments.

3 Abstract Interpretation and Trace Partitioning

In this section we briefly review and define concepts and terminology related to
trace partitioning in abstract interpretation, following Mauborgne and Rival [26].

A program is taken to be a transition system (S,A,→, s0) where S is the set
of states, A is the set of actions (representing statements), →⊆ S × A × S is
the transition relation, and s0 is the initial state. Following convention, we write
s

a−→ s′ for the transition (s, a, s′) ∈→.



92 M.C. Olesen et al.

A finite trace over a program is a finite sequence of states: σ = s0 . . . sn, such
that for 0 ≤ i ≤ n, si ∈ S and si

ai−→ si+1 for some ai ∈ A. We denote the final
state of a trace σ as σ�. The set of all (finite) traces of a program P is denoted
�P � = {σ ∈ S∗ | σ is a finite trace of P} where S∗ is the set of all sequences of
states in S.

In “classic” abstract interpretation safety properties for a given program
can be verified using approximations of the set of states that are reachable by
the program. In later sections we shall need a generalisation of this approach,
using approximations of sets of traces. The approximation of the set of traces
for a given program P = (S,A,→, s0) is represented by an abstract domain,
(L,�L), with a concomitant (concretisation) function γ : L → 2S∗

that maps an
abstract representation of a trace, � ∈ L, to the set of corresponding concrete
program traces. This gives rise to a Galois connection, comprising α and γ such
that α(X) �L � ⇐⇒ X �2S∗ γ(�). This Galois connection can be used to
induce an abstract model of the program P by defining for each concrete action,
a ∈ A, a corresponding abstract action, fa : L → L, that safely approximates
the concrete semantics by requiring that for all s, s′ ∈ S it holds that if s

a−→ s′,
s1s2 · · · s ∈ X and α(X) = � then fa(�) = �′ and s1s2 · · · ss′ ∈ γ(�′) [33]. For any
program, P , we denote this abstract model of (all the actions of) a program:
MP = {fa | a ∈ A}.

In the above approach to abstract interpretation, all traces (corresponding
to a given abstract value) are treated in the same way, since it is not possible
to discern where the different traces originate from, e.g., whether or not a given
trace corresponds to a ‘then’ branch of a conditional or to the ‘else’ branch. This
may lead to an increased number of false positives when attempting to verify
safety properties.

As shown in [26], it is possible to extract more information from the traces by
partitioning the set of traces and thereby increase the precision of the analysis
by treating each partition separately. Partitioning is performed through the use
of a partitioning function:

Definition 1 (Partitioning Function [26]). A function δ : L → 2S∗
is called

a partitioning function if and only if it is covering:
⋃

l∈L

δ(l) = 2S∗

and it is a partitioning of 2S∗
:

∀l, l′ ∈ L : l 
= l′ =⇒ δ(l) ∩ δ(l′) = ∅

In [26] it is proven that using trace partitioning leads to more precise analyses.
An example of a trace partitioning is the final control state partition that

partitions traces based on their final state. This partitioning is commonly built
into the abstract semantics in “standard” abstract interpretation. Following [26],
we define a state to be a pair consisting of a control location, and a memory
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Algorithm 1 . The worklist algorithm for computing the MFPP [29, p. 75],
given abstract model MP = {fa|a ∈ A}, and initial lattice element �0. In the
algorithm s, t ∈ S and a ∈ A.

1: procedure Worklist
2: W := {(s, a, t)|(s, a, t) ∈→}
3: Analysis(·) := ⊥, Analysis(s0) := �0
4: while W �= ∅ do
5: Remove some (s, a, t) from W
6: if fa(Analysis(s)) �� Analysis(t) then
7: Analysis(t) := Analysis(t) � fa(Analysis(s))

8: for all a′, t′ where t
a′−→ t′ do

9: W := W ∪ {(t, a′, t′)}
10: MFP := Analysis

state: S = LOC × MEM . The final control state partitioning function is then
δLOC : LOC → 2S∗

, such that:

δLOC (l) = {σ ∈ S∗|σ� = (l,m) for some m ∈ MEM }
We can now define the result of a static analysis using abstract interpretation

under a trace partitioning. Note that we follow the approach and terminology
of [29] and call this the maximal fixed point solution, although this name is
mainly used for historic reasons:

Definition 2 (MaximalFixedPointSolution [29]). LetP = (S,A,→, s0) be
a program,MP an abstract model ofP over the latticeL = (L,�), and δ : E → 2S∗

a partitioning function. The maximal fixed point solution (MFP) for the set of
monotone framework equations for P is then a mapping MFPP : E → L, such that
for any element in the partitioning, e ∈ E, the mapping, MFPP (e) ∈ L, represents
the least solution to the monotone framework equations for the given partition.

The MFP is typically calculated using a worklist algorithm; for the final control
state partitioning the instantiation is as shown in Algorithm1.

More specialised partitioning functions can be defined, resulting in a more
precise MFP . In [26] a number of partitioning functions are defined and dis-
cussed, partitioning on control flow and values, these will be treated in Sect. 5.
A distinction should be made between static partitioning (where the trace parti-
tioning is decided before the analysis, and does not change during the analysis)
and dynamic partitioning (where the trace partitioning can change during the
analysis). In Sect. 5 we will see how static partitioning allows for a more efficient
encoding into an abstract model.

4 Lattice Automata

In the following we introduce the concept of lattice automata and define the
corresponding notion of model checking for lattice automata. Model checking
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is a well-known technique for verification purposes: it takes as input a model
of the intended target system, e.g., a representation of a program, typically in
the form of an automaton, and then computes the unfolded transition system
of the automaton on-the-fly while checking all encountered states against the
properties to be verified (usually formulated in a special logic). In this paper
we will focus on model checking reachability properties, namely whether a state
with a certain property can be reached.

We start by defining lattice transition systems, a formalism that subsumes
many other types of transition systems traditionally used in model checking,
such as finite automata and timed automata.

Definition 3 (Lattice Transition System). A lattice transition system is a
triple T = (S,L,−→) where S is a finite set of states, L = (L,�,) is a lattice
and −→⊆ S × L × S × L is a transition relation which has the monotonicity
property: for all s1, s2 ∈ S and �1, �2, �

′
1 ∈ L:

if (s1, �1) −→ (s2, �2) and �1 � �′
1

then ∃�′
2 ∈ L : (s1, �′

1) −→ (s2, �′
2) with �2 � �′

2

Transitions are usually written as (s, �) −→ (s′, �′) whenever (s, �, s′, �′) ∈−→.
Configurations are pairs of the form (s, �) where s ∈ S and � ∈ L.

Definition 4 (Path). A finite path in a lattice transition system T is a finite
sequence σ = (s0, �0)(s1, �1) · · · (sn, �n) such that (si, �i) −→ (si+1, �i+1) for all
i, 0 ≤ i ≤ n − 1.

We extend the � ordering to configurations such that (s, �) � (t, �′) ⇐⇒ s =
t∧� � �′. Given a set of configurations X and a configuration (s, �) we shall write
(s, �) � X to mean ∃(s, �′) ∈ X : � � �′, and (s, �) 
� X to mean ¬((s, �) � X).

To describe a lattice transition system in a concise way we will use networks
of extended lattice automata (analogous to networks of timed automata as in
uppaal [3]). An extended lattice automaton is a finite automaton extended with
a finite set of integer variables defined over a finite domain. In uppaal, and our
implementation in opaal, a restricted subset of the C programming language can
be used to describe the conditions guarding a transition, and how a transition
updates the integer variables. For a network of n automata with state sets Si

(for i = 0, . . . , n), and m integer variables over the finite domain {0, . . . , N}, the
set of states S of the network product is given by the crossproduct S0 × · · · ×
Sn × {0, . . . , N}m, which is equivalent to a (large) finite automaton. For the full
semantics see [31].

Denoting lattice elements by �, �′, transitions can also be guarded by expres-
sions over the lattice, e.g., � � �′ 
= ⊥, as long as the monotonicity property
is satisfied. Note that the monotonicity property does not apply to guards or
updates of the discrete variables. We will describe how a transition updates the
lattice element from � to �′ by an assignment of a expression using � to �′, e.g.
�′ = � � �′′. To describe an abstract transformation of an action a of the lat-
tice element � we will use the notation ��a�, equivalent to applying the abstract
transformer fa(�).
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In a network of automata, different automata can synchronise over channels,
such that one automaton initiates a synchronisation over channel ch using the
syntax ch!, while another receives on the same channel: ch?. Synchronisations
can either be one-to-one (handshake), or one-to-many (broadcast). Handshake
synchronisation is blocking, and chooses a receiver non-deterministically among
the enabled receivers. Unless otherwise noted all synchronisations are handshake.
An example of a network of extended lattice automata is shown in Fig. 2.

Fig. 2. An example of a network of two lattice automata, with integer variable i, initial
states s0 and s′

0, and two channels call foo and return foo.

With the basic notions in place, we now turn to (reachability) model check-
ing: model checking of lattice automata asks whether a model, M, satisfies a
formula φ, expressed in some appropriate logic, written M |= φ if and only if
some reachable state (s, �) |= φ. The result of solving a model checking problem
instance [2] is either a negative answer and a counter-example path, σ, or a posi-
tive answer and a set of configurations {(s0, �0), . . .} such that for any reachable
state (s, �) there exists some (si, �i) such that (s, �) � (si, �i).

The requirement that a positive answer is accompanied by a set of config-
urations that cover all reachable configurations can be viewed as providing a
certificate. It typically comprises the set of configurations examined during the
model checking, the so-called passed set of all explored configurations. We call
the set of configurations returned a covering set. Traditionally, the covering set
is not presented to the user, because its size may be exponential in the size
of the input model. The covering set is related to the coverability problem of
well-structured transition systems [15]. In the following we are only interested
in using model checking to find a covering set, and thus assume the formula
φ = false, which is never satisfied.

We will now give two algorithms for solving the model checking problem for
a lattice transition system.
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Algorithm 2. Algorithm to compute a covering set or a counter-example, given
a model in the form of a lattice transition system M = (S,L,→), initial con-
figuration (s0, �0) and formula φ, if the set of reachable configurations of M is
finite.

1: procedure MC-cover(M, (s0, �0), φ)
2: W := {(s0, �0)}, P := ∅
3: while W �= ∅ do
4: Remove some (s, �) from W
5: if (s, �) �|= φ then return counterexample
6: if (s, �) �� P then
7: for all (t, �′) s.t. (s, �) → (t, �′) do
8: W := (W \ {(t, �′′)|�′′ � �′}) ∪ {(t, �′)}
9: P := (P \ {(s, �′)|�′ � �}) ∪ {(s, �)}

10: return Covering set P

Algorithm 2 is the algorithm typically used for model checking reachability
for timed automata, where the lattice L is the set of all zones (convex sets of
clock valuations, efficiently representable as difference-bounded matrices), and
� is the inclusion abstraction of [13]. If the set of reachable configurations in the
model M is finite (typically because the lattice domain L is finite), Algorithm 2
will terminate.

Lemma 1. Given a lattice transition system M = (S,L,→) and initial config-
uration (s0, �0): if Algorithm2 returns a covering set P , then the covering set
is exact, i.e. some (s, �) is covered by a reachable configuration if and only if
(s, �) � P .

(s0, �0) →∗ (s, �′) : (s, �) � (s, �′) ⇐⇒ (s, �) � P

Proof (Sketch). For the if direction assume that some (s, �) is covered by a reach-
able configuration. The algorithm will eventually visit some state (s, �′) with
� � �′ because of the monotonicity of →, and add this to P , so eventually
(s, �) � P . To see that this holds invariantly afterwards notice that the only
configurations removed from P in line 9, are covered by the newly added state
thus preserving the invariant.

For the only if direction assume (s, �) � P . Since the algorithm only adds
a configuration (s, �) to P if it is reachable and not already covered by P , the
lemma holds.

Algorithm 2 is only useful for finite state spaces, but provides exact answers.
If a sound but over-approximated answer is sufficient, Algorithm3 can be used.
Algorithm 3 is the algorithm used for over-approximate reachability checking of
timed automata using the convex-hull abstraction [13]. If the lattice L has no infi-
nite ascending chains Algorithm 3 will terminate. If L has infinite ascending chains
(occasional) widening will have to be used instead of joining, as suggested by [33].

Lemma 2. If Algorithm3 returns a covering set it is sound, i.e. if some (s, �)
is covered by a reachable configuration then (s, �) � P .
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Algorithm 3. Algorithm to compute a covering set or a counter-example, given
a model in the form of a lattice transition system M = (S,L,→), initial config-
uration (s0, �0) and formula φ, and using lattice join as abstraction.

1: procedure MC-join(M, (s0, �0), φ)
2: W := {(s0, �0)}, P := ∅
3: while W �= ∅ do
4: Remove some (s, �) from W
5: if (s, �) �|= φ then return counterexample
6: if (s, �) �� P then
7: for all (t, �′) s.t. (s, �) → (t, �′) do
8: �joined := �′⊔{�′′′|(t, �′′′) ∈ W ∪ P}
9: W := (W \ {(t, �′′′)|�′′′ � �joined}) ∪ {(t, �joined)}

10: P := (P \ {(s, �′)|�′ � �}) ∪ {(s, �)}
11: return Covering set P

Proof (Sketch). Assume (s, �) is covered by a reachable configuration. Then at
some point an (s, �′) with � � �′ has been removed from W at line 4, because of
the monotonicity of →. At line 10 the invariant (s, �′) � P (implying (s, �) � P )
will be established. Future modifications to P at line 10 preserves this invariant.

Algorithm 2 was implemented in the multi-core backend of LTSmin with the
purpose of model checking timed automata [12], using a scheme of lockless data
structures, state compression and swarm-like workers with work stealing, for
details see [22]. The performance and scalability of this algorithm was shown to
scale almost linearly up to 48 processors, primarily limited by the size/structure
of the model [12].

For the implementation of Algorithm 2 the disjunctive completion [8] of the
lattice L generally needs to be stored; for details see [31, Chap. 2]. In the imple-
mentation [12] this is done by storing states (s) in a shared passed-waiting hash
table, and for each state storing a linked list of lattice elements (�, �′, . . .) forming
configurations ((s, �), (s, �′), . . .), and a number of bits for each lattice element
marking whether it is waiting or passed. For models where there are many reach-
able configurations compared to the number of reachable states, this results in
sub-linear scaling of the model checking.

In this work we have extended the implementation to also include a join
operator, providing a multi-core implementation of Algorithm3. Because the
implementation actually works on the disjunctive completion we can allow the
join operator  to be selective: it can select to keep two elements separate if so
desired. This will be important for implementing dynamic partitioning. Note how
Lemma 2 still holds in this case; on lines 9 and 10 only configurations actually
covered by the joined lattice element are discarded.

5 Abstract Interpretation as Lattice Model Checking

In this section we describe how to concretely transform the problem of computing
an MFP given a program P = (S,A,→, s0), an abstract model of the program
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MP over a domain L, and a trace partitioning function δ, into a problem of com-
puting a covering set for a lattice automaton. The presentation below is divided
into four parts, depending on the nature of the trace partitioning function. Even
though the most general way to perform trace partitioning, namely dynamic par-
titioning, naturally covers simpler cases, the simpler trace partitioning functions
are crucial for obtaining good performance of the model checking.

5.1 Final Control Location Partitioning

The most abstract partitioning function we consider in this paper is the final
control state partitioning with δLOC as defined in Sect. 3. Recall that it partitions
traces, based on the control location of the last state of the trace. Given a trace,
it is thus sufficient to keep track of which control location the trace ends in,
to know which trace partition the current memory state should be put in. Also
recall that we assume program states are pairs in LOC × MEM .

A finite automaton that accepts valid traces of the program P and at the
same time keeps track of the current control location is trivially obtained from
the control flow graph of the program, given by the set of locations LOC and the
set of edges E ⊆ LOC × LOC such that (s, s′) ∈ E iff ∃a ∈ A such that s

a−→ s′.
Consider the program in Fig. 3a, for which the control flow graph is shown in
Fig. 3b.

Given the abstract semantics for the program P , MP over some lattice L =
(L,�, ), we construct a lattice automaton T = (S,L,⇒) based on the control
flow graph:

– S is the set of control locations LOC
– L is the abstract domain as given by the lattice L
– ⇒ is the transition relation such that for a pair of configurations (s, �) and

(s′, �′) it holds that (s, �) ⇒ (s′, �′) if and only if ∃a ∈ A such that s
a−→ s′ and

fa(�) = �′.

The lattice automaton for the program in Fig. 3a is shown in Fig. 3c, with the
abstract transformers written on the edges as transformations of a lattice element
� into another �′. Using Algorithm 3 a covering set can be computed for this
lattice automaton.

The soundness of this construction can now be formulated:

Theorem 1. Given a program P = (S,A,→, s0) and abstract semantics MP

over a domain L and the final control trace partitioning function δLOC , the
MFP as computed by Algorithm1 is the same as the covering set P computed
by Algorithm3 on the lattice automaton T = (S,L,⇒) constructed as described
above.

Proof (Sketch). For simplicity we assume the case of  being a total function.
The cardinality of the covering set, and MFP are then the same: one lattice
element in LOC . We can therefore view P as a mapping P : LOC → L, where
P (s) = ⊥ if there is no (s, �) ∈ P . Similarly, we can consider the waiting list W
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Fig. 3. (a) Program, (b) Control flow graph of the program, and (c) constructed lattice
automaton.

as a function W : LOC → L, because at any point in the algorithm there will
be only one (s, �) ∈ W .

We show the proof in two parts: first we show that each iteration of
Algorithm 3 can be simulated by a finite number of iterations in Algorithm1.
From [29, Sect. 2.4] we have that Analysis � MFP after each iteration of
Algorithm 1. In the second part we show that at termination P (s) is a fixed-point.

First part : each update of P (s) in Algorithm 3 can be simulated by a finite
number of updates of Analysis(s) in Algorithm 1. Note that line 10 can be written
as P (s) := P (s)�, where (s, �) was removed from W . Also, line 9 can be written
as W (s) := W (s)  P (s)  fa(�) for some abstract transformer fa.

We proceed by induction on the number of iterations in Algorithm3. For the
base case we have that the first update of P at line 10 must be of s0, and because
P (s0) = ⊥ we have that

P (s0) := ⊥  �0 = �0

This is simulated by the initial value of Analysis(s0) in Algorithm 1. In the first
iteration, the configurations added to W in line 9 of Algorithm 3 are equivalent
to adding the transitions to W in Algorithm 1.
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In the inductive step we have that P (s) := P (s)  � at line 10 must have
produced � as follows, on line 9 of some previous iteration:

� = W ′(s)  P ′(s)  fb(�′) (1)

for some previous values of W ′(s) and P ′(s). By the induction hypothesis we
have that P ′(s) is equal to Analysis(s) for some iteration for some execution of
Algorithm 1.

The value of W ′(s) is the result of the join of a number of lattice elements
�′ found as successors in line 7, which is calculated as �′ = fa(W ′(s′)) for some
transition (s′,W ′(s′)) ⇒ (s, �′). Thus the general form of W ′(s) is:

W ′(s) = fa(W ′(s′))  W ′(s)  P ′(s)

for which W ′(s′) can again be similarly decomposed as being calculated in some
previous iteration. Because the number of iterations is finite, at some point it
will be the case that W ′(s) = ⊥. Then we have that:

W ′(s) = fa(W ′(s′))  ⊥  P ′(s) = fa(W ′(s′))  P ′(s)

in which fa(W ′(s′)) can be similarly decomposed to a case where fa(W ′(s′)) =
fa(P ′′(s′)), giving us

W ′(s) = fa(P ′′(s′))  P ′(s)

which substituted back into Eq. (1) gives (because of the monotonicity of P ′′(s) �
P ′(s) � P (s)):

� = fa(P ′′(s′))  P ′(s)  P ′(s)  fb(�′′) (2)
P (s) := P (s)  fa(P ′′(s′))  P ′(s)  P ′(s)  fb(�′′) (3)
P (s) := P (s)  fa(P ′′(s′))  fb(�′′) (4)

This last equation is equivalent to two iterations of Algorithm1 updating P (s)
given two different transitions, concluding the proof of this part.

Second part: At termination P (s) is a fixed-point. Assume, towards a con-
tradiction, that for some transition s

a−→ t it is the case that fa(P (s)) 
� P (t).
P (s) was last updated in line 10, but before P (s) was updated the abstract
successor corresponding to the transition s

a−→ t was considered and a config-
uration (t, fa(�)  W ′(t)  P ′(t)) was put on the waiting list W . Any update
of W (t) afterwards is monotonically increasing, until at some point later the
configuration was removed from W , and either was already covered by P (t) or
P (t) := P (t)  fa(�) . . . at line 10. Thus we have a contradiction.

Combining the two parts we have that after each iteration P � MFP , and
eventually P reaches a fixed-point: as MFP is the least fixed-point, P = MFP . �

Modelling of Functions. Having shown how partitioning on control location
can be handled, we will briefly mention how function calls can be modelled
mono- or poly-variantly. Functions are naturally modelled using one automaton
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Fig. 4. The general pattern for poly-variant modelling of function calls.
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Fig. 5. The general pattern for mono-variant modelling of function calls.

per function, in a poly-variant [29] way using channel synchronisation between
the automata to model the actual function call and concomitant return from the
function call. The general pattern is shown in Fig. 4, where foo calls bar over
the channel call bar. When bar is done, it returns by synchronising back over
the channel return bar. This approach is limited to only modelling bounded
recursion, as the discrete state will contain an entry for the call-site location, as
well as the location within the function, effectively analysing the function call in
the context of the current call-site.

In Fig. 5 the pattern for mono-variant modelling of functions is shown. When
a function is invoked, the caller returns to it’s initial state. From the initial state
of all callers of a function bar there are transitions to the return-sites for such
function calls synchronising on return bar. When bar is returning, the caller
to return to is picked non-deterministically.

If unbounded recursion is encountered these modelling patterns will cause the
execution trace to deadlock, causing an overall unsound result. This condition
can be detected and flagged, if desired.
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5.2 Control Flow Based Partitioning

Another class of trace partitioning functions put forth is trace partitioning based
on control flow [17,26]. In general, control flow partitioning partitions traces
based on their history of control flow choices, possibly merging the partitions at
a later point during execution.

Lattice automata elegantly allow the recording of a limited amount of control
flow history, by using discrete finitely valued integer variables. For each control
flow partitioning point a discrete variable i is added, such that each branch of
the control flow point sets i to a unique value. If the partitions should later be
merged [26] the variable is simply reset to one value. Consider the example lattice
automata in Fig. 6a, where traces are partitioned depending on the control flow
at s1, and merged at s7.

Fig. 6. Control flow partitioning of the program in Fig. 3a

Similarly loops can be unrolled any finite number of times by adding a loop
counter variable that is reset on entry to the loop, and incremented on backedges
until a certain limit is reached. As an example unrolling the (s5, s6) loop at most
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Fig. 7. Loop unrolling of order four, for the program in Fig. 3a

four times is exemplified in Fig. 7. The first four iterations are treated separately
as i ∈ {0, 1, 2, 3}, while the subsequent iterations are joined together as i = 4.
At the loop exit, the partitions are merged, as i is set to 0.

In fact, any iteration pattern that can be described by a finite automaton
can be partitioned in this manner, e.g., partitioning the loop into whether the
iteration count is even or odd: add variable i and annotate the backedge with
i = i + 1 modulo 2.

An advantage of using an intermediate format, such as lattice automata used
here, is that the program analyst can easily experiment with different control
flow partitionings by manually adding discrete variables and setting their value
at different locations in a model editor. As long as no guards depend on the
introduced variables, the soundness of properties is preserved, as no trace is
excluded.

5.3 Value Based Partitioning

Another class of trace partitioning is based on partitioning different values into
different partitions, akin to property-oriented expansion [36]. This can be handled
similarly to the control flow partitioning case, by splitting control flow into a
finite set of value classes (covering the entire range of the variable) using the
general pattern shown in Fig. 8. For partitioning into v0, . . . , vn different values
a discrete variable i with range [0, n] is added. At each partitioning point n
transitions are added, each following the pattern in Fig. 8. Each transition has a
guard of the form ���x = v1� 
= ⊥ meaning that the transition can only be taken
if at s the invariant x = v1 is possible; there is no reason to explore a partition
if it is already proven that no execution can have this value. If the transition is
taken the partition is recorded in the discrete variable i, and the value vi of the
partition is assigned using the abstract transformer. If merging is desired at a
later point, i is simply set to a constant value.

As the additional edges cover the entire range for the value partitioned vari-
able no trace is excluded, and thus soundness is preserved while precision is
increased.
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Fig. 8. The general pattern of value based partitioning on a variable x into a finite
number of partitions of values v0, . . . , vn.

5.4 Dynamic Partitioning

The most general class of trace partitioning functions is allowing for the par-
titioning to be changed during computation [32]. In our setting this is realised
using a joining strategy [11], namely allowing the  function to be selective in
which elements to join.

Definition 5 (Joining Strategy). A joining strategy is a function

δ : (S × L) × (S × L) → {true, false}
detailing whether two states in a lattice transition system are allowed to be joined,
or should be kept separate.

In our work we assume that states of different locations are never joined, i.e.
s 
= t ⇒ δ((s, �), (t, �′))) = false, which is always the case in our typical use
cases. However, with a slight modification of Algorithm 3, it is possible to lift
also this assumption. A joining strategy can then be used to define a partial join
operator as follows

Definition 6 (Partial Join Operator). A joining strategy δ implies a partial
join operator for a lattice transition system:

δ(s)(�, �′)

{
(s, �  �′) if δ((s, �), (s′, �′)) = true

(s, �) otherwise

As mentioned in Sect. 4, Algorithm 3 is already designed for this; it does the
joining and removing of covered configurations in two separate steps, and only
joins to the left, so a simple modification of line 8 to be:

8: �joined := �′ ⊔
δ(t){�′′′|(t, �′′′) ∈ W ∪ P}

is enough to incorporate a partial join operator of a joining strategy.
During the analysis the joining strategy can be changed. One direction is

to make the analysis coarser, based on the current analysis result or on extra-
analysis information such as runtime and memory usage. A joining strategy δ1
is (possibly) coarser than another δ2 iff:

∀s, �, s′, �′ : δ2((s, �), (s′, �′)) = true =⇒ δ1((s, �), (s′, �′)) = true
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This is analogous to the ordering defined in [32], however it does suggest that
the basis is a “completely partitioned system” and partitions are then merged to
ensure termination. Note that changing the joining strategy to a coarser strategy
does not affect soundness.

A dynamically calculated joining strategy is however only limited by the
answers it has already given and can be thought of as a sort of oracle. It can
dynamically give answers that in turn create partitions, as long as no partitions
overlap. This allows a joining strategy to exactly mimic the mechanisms put
forth in [32]. It should be noted that static partitioning provides better per-
formance than dynamic partitioning, because of the data structures used: more
configurations stored per location affects the performance negatively [12].

6 Experiments

To evaluate the feasibility and performance of the described approach, we have
implemented a prototype for a small subset of C. The prototype is written in
Python using the pycparser library, and generates models compatible with the
opaal model checking framework [11]. One of the tools in opaal exports models to
the multi-core model checker in the LTSmin toolset [23], previously developed
for timed automata in [12]. The models can be edited in the uppaal [24] GUI,
to introduce static partitionings.

We have furthermore implemented support for using the octagon domain [27]
from the APRON library [20] (using the standard widening) in opaal models, and
made the required changes to implement Algorithm 3 in the multi-core model
checker LTSmin; the change to the core algorithm implementation is 6 lines
of code.

1 void main() {

2 unsigned int a1, a2, a3,

3 a4, a5, a6; int r;

4 while (a1 < 20) {

5 a1++; }

6 while (a2 < 20) {

7 a2++; }

8 while (a3 < 20) {

9 a3++; }

10 while (a4 < 20) {

11 a4++; }

12 while (a5 < 20) {

13 a5++; }

14 }

Fig. 9. The explode.c program from [7]; with full control flow trace partitioning there
is an exponential (in the size of the model) number of traces to explore.
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In order to test and experiment with our prototype implementation, we took
a “tricky” example program snippet (shown in Fig. 9) from [7] that was reported
by the Astrée developers to lead to a state space explosion with an exponential
number of traces to explore. One can observe that given no initial constraints
for the program variables, the variables a1 through a5 can in succession be
incremented by any value between 0 and 20. Tracking the relationship (as the
octagon domain does) between all variables leads to one partition per possible
value assignment, thus giving the state explosion. One can choose to partition
on a number of the loops only, leading to a more coarse but faster analysis.

Applying our prototype implementation to this program snippet1 and calcu-
lating the fix-point with increasingly more precise control flow trace partitioning
results in the runtimes shown in Fig. 10.

Fig. 10. Benchmark timings (mean and standard deviation) for the explode.c program
with full trace partitioning on the first 0, 3, 4 or 5 loops, run on 1, 2, 4 and 8 cores.

The LTSmin model checker was invoked with the following command line:
‘opaal2lts-mc --state=table -s 25 --threads=N -o bfs -u3 -prr’ directing
LTSmin to use a hashtable for passed-waiting list of size 225, run with N threads,
use a breadth-first search order, do joining and choose a local successor state at
random. Each experiment has been repeated four times and the mean is plotted,
to account for the inherent non-determinism of the search order between multiple
threads. As noted in [12] the search order can have a large effect on the runtime,
because one worker can find a “large” (according to the � ordering) state quickly,
enabling another worker to skip part of the state space.
1 Experiments were performed on a 8-core Intel Xeon X5570 machine, with 74Gb of

RAM.
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Table 1. Mean benchmark runtimes in seconds for the explode.c program with
control-flow trace partitioning of the first 0, 3, 4 or 5 loops, run on 1, 2, 4 or 8 cores.
(Relative speedups are in parentheses)

Time1 Time2 Time4 Time8

explode tp0 0.02 s (1.00) 0.06 s (0.39) 0.10 s (0.25) 0.09 s (0.26)

explode tp3 6.34 s (1.00) 3.41 s (1.86) 3.01 s (2.11) 2.18 s (2.91)

explode tp4 122.99 s (1.00) 87.62 s (1.40) 49.68 s (2.48) 34.93 s (3.52)

explode tp5 1301.92 s (1.00) 1038.70 s (1.25) 645.40 s (2.02) 379.44 s (3.43)

As can be seen in Fig. 10 and Table 1 the use of more cores improves the
runtime, in all cases except for no trace partitioning where the analysis time is so
low that the thread initialisation is more expensive than the computation itself.
Note that our runtimes cannot be compared to those in [7], as the domain in
Astrée is more advanced than ours. The speedup is sub-linear, yielding speedups
up to 3.5 using 8 cores. In [12], where the abstract domain was quite similar
to the octagon domain namely Difference-Bound Matrices using uppaal’s DBM
library, the speedup was shown to be up to 40 using 48 cores. The difference
in scalability can be attributed to two factors: implementation details affecting
the multi-core performance2 and the structure of the models allowing for less
parallelism – as can be seen by the smaller speedup of models with little trace
partitioning.

The main sources of theoretically exploitable parallelism is (i) multiple exe-
cution paths due to non-determinism in the control-flow, and (ii) multiple trace
partitionings that result in separate execution paths. There is an inherent risk
of redundant work being performed, as the workers do not wait for all relevant
joins to have been performed before proceeding. Theoretically the amount of
work increases exponentially with the number of orthogonal partitionings, while
parallelism only provides a linear speedup.

7 Conclusion

We have shown the connection between abstract interpretation and model check-
ing at a very practical level: by defining a formalism of lattice automata encom-
passing both domains, showing how this formalism can be used to compute a
fix-point of an abstract semantics defined by a Galois connection, and showing
how trace partitioning is modelled very simply in this formalism. A common
formalism as an intermediate format has the advantage that the intermediate
format can be edited, debugged and simulated by a program analyst, e.g., to
add components modelling the environment external to the program.
2 E.g. increased usage of the dynamic memory allocator: APRON uses dynamic resizing

of some data structures, whereas the uppaal DBM library does not. In general
dynamic memory allocation is more expensive in a multi-core shared-memory setting,
because it potentially requires synchronisation.
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A common formalism allows using the same machinery for solving problems
from both domains. This approach has the advantage that improvements from
one domain can immediately be transfered to the other, exemplified by using
a multi-core model checker. This yields significant speedups, reducing analysis
times by up to a factor 3.5 on a 8-core machine.

We plan to implement support for a much more complete subset of C, in order
to perform more complete experiments. In addition we plan to implement sup-
port for more input programming languages; an especially exciting perspective is
the ability to combine models extracted from different programming languages
and model the interaction of e.g. Python code with C-code, or C-code with assem-
bly, as outlined in [31].

Since the search order has a large impact on the speed-up, another interesting
topic for future work is to see how techniques from model checking, or from static
analysis [16] can influence the performance — especially also in a multi-core
setting, where different workers can employ different strategies.

Finally, with programs represented as models, it would also be of interest
to investigate if it is possible to use the underlying model checker directly to
check properties of programs. For example checking whether an error state or an
assert is reachable or possibly even more elaborate properties such as (bounded)
liveness. However, the corresponding queries would likely yield very large formula
to be model checked, again stressing the need for good multi-core scalability.

Acknowledgments. We would like to thank the LTSmin and APRON developers for
making their excellent code available to others in the research community.
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Abstract. In order to perform probabilistic program analysis we need to
consider probabilistic languages or languages with a probabilistic seman-
tics, as well as a corresponding framework for the analysis which is
able to accommodate probabilistic properties and properties of proba-
bilistic computations. To this purpose we investigate the relationship
between three different types of probabilistic semantics for a core imper-
ative language, namely Kozen’s Fixpoint Semantics, our Linear Oper-
ator Semantics and probabilistic versions of Maximal Trace Semantics.
We also discuss the relationship between Probabilistic Abstract Inter-
pretation (PAI) and statistical or linear regression analysis. While classi-
cal Abstract Interpretation, based on Galois connection, allows only for
worst-case analyses, the use of the Moore-Penrose pseudo inverse in PAI
opens the possibility of exploiting statistical and noisy observations in
order to analyse and identify various system properties.

1 Introduction

In this contribution we will address a topic which we believe is dear to the hearts
of Hanne and Flemming, namely Abstract Interpretation based techniques in
program analysis [1–4]. We will concentrate on the treatment of the probabilistic
setting where either the program or its semantics or both contain an element
of chance that can be used to refine the possible nondeterminism associated
with their models. As program analysis is essentially based on the semantics of
programs, we will first describe three different probabilistic semantics that could
be used as a basis for probabilistic analysis by clarifying the differences and
relationship between them, and discussing their potential for the construction of
precise program analyses. As a result of this comparison it will be clear that the
Probabilistic Abstract Interpretation framework originally introduced in [5,6] is
not an instance of a probabilistic application of classical Abstract Interpretation
as recently suggested in [7] in order to analyse probabilistic programs.

The use of linear operators on vector spaces – more concretely on Hilbert
spaces – for the definition of a probabilistic semantics is an important feature
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of the Probabilistic Abstract Interpretation framework for several reasons: (i) it
provides a well-defined notion of generalised inverse that enjoys properties similar
to the concretisation/abstraction functions in the Galois connection framework;
(ii) it allows us to exploit a well-defined metric (the Euclidean distance) in order
to achieve quantitative results for our static analyses; (iii) it is an appropriate
setting where statistical models can be used to enhance the power of static
analysis techniques with information gathered via observations.

While we have variously addressed the first two points in our previous work,
the potentiality of Probabilistic Abstract Interpretation for performing a kind
of statistical program analysis was never completely explored before. As another
result we will show in this paper that, contrary to the typical computer scientist
approach that constructs observations from models, it is sometimes useful to
define a model starting from observations, as typically done in statistics. To this
end, the particular notion of generalised inverse defining Probabilistic Abstract
Interpretation – namely the Moore-Penrose pseudo-inverse [8–10] – makes it
very natural to use statistical techniques such as linear regression [10,11] for
constructing abstractions that are as close as possible to the actual system with
respect to the observed behaviour.

2 Probabilistic Semantics

There exist a number of proposals for probabilistic languages. These can be
based on procedural languages, e.g. [12–14], functional ones, e.g. [15–17], but
also declarative ones, like [5,18]. Besides this there is also a substantial work in
probabilistic process algebras [19,20]. It would be impossible to discuss or even
to mention all these approaches here in detail, so we will only concentrate on a
small (core) procedural language, which will call pWhile and which is essentially
the same as the one in [12].

Similarly, a number of approaches have been proposed for defining a seman-
tics for probabilistic programs, not least in order to allow for some form of static
program analysis. Usually, it is straightforward to define an operational seman-
tics for a probabilistic extension of a deterministic language; this can be achieved
for example by replacing the original (unlabelled) transition relation of an SOS
semantics with a weighted version, where the weights represent the probabili-
ties associated with random choices or assignments. Some arguably more useful
kinds of semantics are, for example, Kozen’s Fixed-Point Semantics (KFS) [12],
the Linear Operator Semantics (LOS) introduced by the authors in [21], and the
probabilistic Maximal Trace Semantics (MTS) of [7]. We will concentrate in the
following on these three models but again stress that many other approaches
exist, which are based e.g. on domain theory [22–24], weakest preconditions
[25,26], and the monadic approach in [16,27].

2.1 A Probabilistic Language

The syntax of the language we consider is a straightforward extension of an
imperative language with a probabilistic assignment “x ?= ρ” where ρ repre-
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sents a probability distribution on the set Value of possible values of x which
associates to every vi ∈ Value a probability pi. As usual we require for distri-
butions that 0 ≤ pi ≤ 1 and

∑
i pi = 1; these probabilities are all constant, i.e.

we do not consider here dynamical changes of distributions. For so-called sub-
probability distributions we require 0 ≤ pi ≤ 1 but only

∑
i pi ≤ 1. We denote

(sub-)probability distributions by sets of pairs {〈vi, pi〉}i which express the fact
that a constant value vi has probabilities pi (pairs with probability pi = 0 can
be omitted).

The syntax of statements is given below. We also provide a labelled version
of this syntax (cf. [4]) in order to be able to refer to certain program points in a
program analysis context. For details on (arithmetic) expressions f(x1, . . . , xn)
(sometimes denoted simply by e or a) and (Boolean) expressions or tests b, etc.
we refer to e.g. [4,14].

S ::= skip
| x := f(x1, . . . , xn)
| x ?= ρ
| S1; S2

| if b then S1 else S2 fi
| while b do S od

S ::= [skip]�

| [x := f(x1, . . . , xn)]�

| [x ?= ρ]�

| S1; S2

| if [b]� then S1 else S2 fi
| while [b]� do S od

It would also be possible to allow for a probabilistic choice construct of the
form “choose p1 : S1 or p2 : S2 ro”, but in order to keep things simple we
omit it in our treatment. This statement can be implemented, for example, as
c ?= ρ; if c == 0 then S1 else S2 fi with ρ = {〈0, p1〉, 〈1, p2〉}. Further details
on the (intuitive and operational) semantics of this language can be found for
example in [14,21,28].

Though we only deal with constant probabilities in the following we will
implicitly always normalise probabilities in a distribution (we cannot assume
that a programmer provides the correct probabilities), and we will only allow
for rational values (non-rational real values for pi raise issues of computability
we will avoid). This means that we can also require that the pi are integers
indicating the probability ratio between different alternatives.

Example 1. We will consider the following pWhile program as a running exam-
ple throughout the paper (its labelled version can be found below in Example 5):

while true do
if (x == 1)

then x ?= {〈0, p〉, 〈1, 1 − p〉}
else x ?= {〈0, 1 − q〉, 〈1, q〉}

fi
od

This program may be thought of implementing a scheduler in some protocol
where x �→ 0 and x �→ 1 determines which of two processes has, for example,
control over a communication channel.
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Clearly the execution of this program never terminates: a random switching
between the state x �→ 0 and x �→ 1 is performed indefinitely according to the
probabilities p and q.

In the following we will assume that the state space (and thus the set of
configurations) is finite. This makes the treatment substantially simpler as we
can avoid topological and measure theoretic details (for which we refer to [28])
and work with just linear algebraic notions instead of functional analytical or
operator algebraic ones, cf. [29,30] etc. This finiteness condition is fulfilled by the
example above. It should be noted that the finiteness of the state space however
still allows for infinite executions.

2.2 Kozen’s Fixed-Point Semantics (KFS)

A well-known denotational semantics for probabilistic programs was introduced
by Kozen in the 1980s [12] based on bounded Banach space operators. This is a
fixed-point I/O semantics that describes how an input probability distribution
(or in general a measure) is transformed into an output sub-probability dis-
tribution/measure. It only records contributions of terminating processes. The
probabilities of non-terminating, i.e. infinite, computations “gets lost” so the
final outcome is no longer normalised or a full probability distribution/measure.
As a consequence the semantics of all non-terminating processes is the same (cf.
also [28]).

In Kozen’s language in [12] the element of chance is introduced via random
assignments. In the semantical interpretation of this language, all the actual exe-
cutions of a program are however deterministic, as all possible choices are made
beforehand [12, Section 3.2.2,p336]. More precisely, before the execution of a pro-
gram commences, all later probabilistic choices have already been resolved by
picking an ω ∈ Ω with (Ω, E , μ) an appropriate measure space (E the σ-algebra
of measurable events and μ a probability measure). The semantics of a program
is then parametric in this event or scenario ω which determines the probability
that the otherwise deterministic execution of a program may effectively happen.

Example 2. Consider the following simple program:

x ?= {〈0,
1
3
〉, 〈1,

2
3
〉}; x ?= {〈0,

1
2
〉, 〈1,

1
2
〉}.

The minimal event space we need for defining a semantics for this program is
Ω = {0, 1}×{0, 1} and, because this is a finite set, we can take the whole power-
set E = P(Ω) as the σ-algebra of measurable sets. The probability measure of
the elements in Ω is then: μ({(0, 0)}) = 1

6 , μ({(0, 1)}) = 1
6 , μ({(1, 0)}) = 1

3 , and
μ({(1, 1)}) = 1

3 .
After a scenario ω has been picked, the program behaves exactly as one of

the following deterministic programs:

for ω = (0, 0) we execute ”x := 0; x := 0” with probability 1
6 ,

for ω = (0, 1) we execute ”x := 0; x := 1” with probability 1
6 ,

for ω = (1, 0) we execute ”x := 1; x := 0” with probability 1
3 ,

for ω = (1, 1) we execute ”x := 1; x := 1” with probability 1
3 .
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In the Kozen semantics we can identify a state with a distribution on Valuen,
where n is the number of variables and Value is the set of possible values of a
variable which we assume here – as said before – to be finite. Thus, a probabilistic
state (as a distribution σ ∈ D(Valuen)) can be seen as a normalised element (in
the sense of the 1-norm) in the vector space V(Valuen). The space V(X), which
allows for the representation of distributions as well as sub-distributions on X,
is defined as the set of linear combinations of elements in X, i.e.

V(X) =

{
∑

i

λixi | xi ∈ X ∧ λi ∈ R

}

.

This space is isomorphic to R
|X| with |X| the cardinality of X. Vector addi-

tion and scalar product are defined pointwise. We can identify xi ∈ X with the
base vectors of V(X) and any element in V(X) with its coordinates, i.e. the
tuple (λi)i. This space is equipped with an inner product 〈(λi)i|(νi)i〉 =

∑
i λiνi

and one of various norms, e.g. ‖(λi)i‖1 =
∑

i |λi| and ‖(λi)i‖2 =
√∑

i |λi|2 =
√〈(λi)i|(λi)i〉. The choice of one norm or another is nevertheless largely irrel-
evant in the finite dimensional case where all norms are equivalent. In fact,
the topology on finite dimensional vector spaces is uniquely determined by the
algebraic structure, cf. e.g. [31, 1.22].

The Kozen semantics of a program P is then given by the linear operator
[[P ]]KFS ∈ L(V(Valuen)) where L(X) is the set of linear maps T on X, i.e.
T(x + y) = T(x) + T(y) and T(λx) = λT(x):

[[P ]]KFS : V(Valuen) → V(Valuen),

which is the solution to the following set of equations:

[[skip]]KFS = I
[[x := f(x1, . . . , xn)]]KFS = U(x ← f(x1, . . . , xn))

[[x ?= ρ]]KFS =
∑

v ρ(v)U(x ← v)
[[S1;S2]]KFS = ([[S1]]KFS [[S2]]KFS)

[[if b then S1 else S2 fi]]KFS = (P(b)[[S1]]KFS + P(¬b)[[S2]])
[[while b do S od]]KFS = (P(b)[[S]]KFS [[while b do S od]]KFS+P(¬b)).

The operator I is the identity on V(Valuen) represented by a matrix with (I)vv =
1 and 0 otherwise for v = (v1, . . . , vn) ∈ Valuen. The matrix representation of
the test or projection operators P is given by a diagonal matrix with (P(b))vv = 1
if b(v) holds for v ∈ Valuen and 0 otherwise. Note that P(true) = I and that
P(¬b) = I−P(b). The assignment or update operator U is given by a matrix with
entries (U(xi ← f(x1, . . . , xn)))v,F (v) = 1 for all v ∈ Valuen and 0 otherwise,
where F : Valuen → Valuen is defined as

F (v1, . . . , vi−1, vi, vi+1, . . . , vn) = (v1, . . . , vi−1, f(v1, . . . , vn), vi+1, . . . , vn).

This definition is equivalent to that given in [12, p339]).
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The existence of a solution to these equations is guaranteed in general (i.e.
also for infinite state spaces) by the Brouwer-Schauders fixed-point theorem (see
e.g. [30,32]). The least fixed-point can be constructed iteratively via a “super-
operator” τ : L(V(Valuen)) → L(V(Valuen)) which encodes the above equa-
tions and by exploiting the lifted point-wise order on distributions/measures.

Example 3. Consider again the program P in Example 1. As no executions of
this program will ever terminate, there is no proper (sub-)probability distribu-
tion describing the final state. Thus Kozen’s semantics, which describes the I/O
behaviour, is trivial:

[[P ]]KFS =
(

0 0
0 0

)

= O

i.e. the zero operator [[P ]]KFS : V({x �→ 0, x �→ 1}) → V({x �→ 0, x �→ 1}).
This is also justified by the fixed-point construction described in [12, p 341].

The semantics of the statement S given by

if (x == 1) then x ?= {〈0, p〉, 〈1, 1 − p〉} else x ?= {〈0, 1 − q〉, 〈1, q〉} fi

forming the body of the loop is easily computed as:

[[S]]KFS =
(

p 1 − p
1 − q q

)

,

but whatever the semantics [[S]]KFS of the body of loop is, the Kozen semantics
of the whole program P is the (appropriate) supremum of a sequence of matrices
τn(O) with n = 1, 2, 3, . . . (starting with the zero matrix O):

τn(O) =
n−1∑

k=0

(P(true)[[S]]KFS)kP(false) =
n−1∑

k=0

(I[[S]]KFS)kO = O.

That is, for all n = 1, 2, 3, . . . we have τn(O) = O and thus [[P ]]KFS = O.

We also represent (sub-)probability distributions as row vectors; the applica-
tion of an operator or linear map T(x) is thus expressed by post-multiplication
x · T rather than pre-multiplication as it can be found elsewhere (e.g. [12]).

Example 3 describes the situation of a program that never terminates on all
inputs. More interestingly, Kozen’s semantics also allows us to model programs
that terminate with probability 0 < p < 1, as shown in the following example.

Example 4. Consider the programs Q, Q′ and Q′′ which incorporate the program
P in Example 3:

if (x == 1)
then x := 0
else P

fi

x := 1;
if (x == 1)

then x := 0
else P

fi

x ?= {〈0, 1
2 〉, 〈1, 1

2 〉;
if (x == 1)

then x := 0
else P

fi
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The operator [[Q]]KFS of the first program can be easily computed (based on
[[P ]]KFS in Example 3). We have the Kozen semantics of the two branches of the
if statements:

[[x := 0]]KFS =
(

1 0
1 0

)

[[P ]]KFS =
(

0 0
0 0

)

as well as for the tests guarding the if statement:

[[x = 0]]KFS =
(

1 0
0 0

)

[[x = 1]]KFS =
(

1 0
0 0

)

= I − [[x = 0]]KFS

Thus by the fifth equation in the definition of the KFS (or section (3.3.4) in [12,
p 340]) we get:

[[Q]]KFS = [[x = 1]]KFS [[x := 0]]KFS + [[x = 0]]KFS [[P ]]KFS =
(

1 0
0 0

)

This means that if we have an initial state σ = (p, 1 − p)t which describes the
fact that the initial value of x is zero with probability p, and one with probability
1 − p, then σ[[Q]]KFS = (p, 0)t (where .t denotes vector transposition). This is
in general (unless p = 1) only a sub-probability distribution expressing the fact
that this program will terminate with probability p with a zero value for x and
that with probability 1 − p we have non-termination.

If we consider instead the second program Q′ then we have

[[x := 1]]KFS =
(

0 1
0 1

)

and thus [[Q′]]KFS = [[x := 1]]KFS [[Q′]]KFS =
(

1 0
1 0

)

That means that independently of the initial value of x we always get (i.e. with
probability one) a termination and a zero value for x.

Finally, if we consider the program Q′′ we get

[[Q′′]]KFS =
(

1
2
[[x := 0]]KFS +

1
2
[[x := 1]]KFS

)

[[Q]]KFS =
(

1
2 0
1
2 0

)

Here we terminate (again with the resulting x being zero) with a half probability,
independently from the initial value of x.

2.3 Linear Operator Semantics (LOS)

The Linear Operator Semantics in [21,28] constructs the generator of a Discrete
Time Markov Chain (DTMC) in a syntax directed fashion. Like Kozen’s seman-
tics we can represent the LOS as an operator on the vector space of probabilistic
states. However, differently from Kozen’s semantics, the definition of this oper-
ator is based on the syntax rather than on a denotational domain. Moreover, in
order to provide a suitable base for static analysis, we do not construct the LOS
of a program by simply translating the SOS transition relation into a DTMC
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generator. Instead, we define it in a structured way by composing the operators
associated with each syntactic elementary components of the program by means
of the tensor (or Kronecker) product operation “⊗” on vector spaces (cf. e.g.
[33,34] or [21]).

The state space is constructed starting from the classical states, i.e. states
that associate concrete values in vi ∈ Value to variables xi ∈ Var = {x1, . . . ,
xn}. The classical state space can therefore be defined as State = Var → Value
or equivalently State = Value1 × . . . × Valuen = Valuen.

In order to describe the probabilistic state of a computation we consider
(probability) distributions over (classical) states again – as in Kozen’s con-
struction – as elements in V(Valuen). However, we can use the tensor prod-
uct operation “⊗” to decompose this probabilistic state space, i.e. V(X × Y ) =
V(X)⊗V(Y ) and represent probabilistic states thus as elements in V(Valuen) =
V(Value1) ⊗ V(Value2) ⊗ . . . ⊗ V(Valuen) = V(Value)⊗n.

The LOS is based on the labelled version of the syntax of pWhile. This
allows us to record not only the values of all variables but also the current point
in the program we are executing, i.e. the “program counter”. Thus, the state
space of the corresponding DTMC is a space of configurations which also contain
information about the current label. This is defined as the space Conf = State×
Label of distributions in D(Conf) ⊆ V(Conf) = V(State) ⊗ V(Label) =
V(Value)⊗n ⊗ V(Label).

The LOS [[P ]]LOS of a program P is then an operator in L(V(Conf)) or,
more precisely

[[P ]]LOS : V(Valuen) ⊗ V(Label) → V(Valuen) ⊗ V(Label).

It is constructed by means of a set {{P}}LOS of linear operators describing local
changes (at individual labels) as follows:

[[P ]]LOS =
∑

{{P}}LOS =
∑

{G | G ∈ {{P}}LOS}.

The {{S}}LOS associated to a statement S is given by a set of global and
local operators, i.e. {{.}}LOS : Stmt → P(Γ ∪ Λ). Global operators are linear
operators on V(Conf) i.e. Γ = L(V(Valuen) ⊗ V(Label)) = L(V(Conf)), and
local operators are pairs of operators on V(State) and labels � ∈ Label, i.e.
Λ = L(V(Valuen)) × Label.

Global operators provide information about how the computational state
changes at a label as well as the control flow; in other words, they define the
label of the next statement to be executed. Local operators represent statements
for which a “continuation” is not yet known. In order to transform local operators
into global ones, we define a continuation operation 〈F, �〉 � �′ = F ⊗ E(�, �′)
which we extend in the obvious way to sets of operators by {〈Fi, �i〉} � �′ =
{Fi ⊗E(�i, �

′)} (for global operators, clearly, we have G� �′ = G). Here, E(i, j)
denotes the matrix unit with (E(i, j))ij = 1 and 0 otherwise.

The set {{S}}LOS of operators for a statement S is defined inductively on the
syntactic structure of S as follows:
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{{[skip]�}}LOS = {〈I, �〉}
{{[x := e]�}}LOS = {〈U(x ← e), �〉}
{{[x ?= ρ]�}}LOS = {〈

∑

〈v,p〉∈ρ

p · U(x ← v), �〉}

{{S1; S2}}LOS = ([[S1]] � init(S2)) ∪ [[S2]]

{{if [b]� then S1 else S2 fi}}LOS = {〈P(b), �〉} � init(S1)} ∪ {{S1}}LOS ∪
{〈P(b)⊥, �〉} � init(S2)} ∪ {{S2}}LOS

{{while [b]� do S od}}LOS = {〈P(b), �〉} � init(S)} ∪ {{S}}LOS ∪ {〈P(b)⊥, �〉}

We use elementary update and test operators U and P (and its complement
P⊥ = I − P) as in Kozen’s semantics. However, the tensor product structure
allows us to define these operators in a different (although equivalent) way.

For a single variable the assignment to a constant value v ∈ Value is repre-
sented by the operator on V(Value) given by U(v) = 1 if v = i and 0 otherwise.
Testing if a single variable satisfies a Boolean test b is achieved by a projection
operator on V(Value) with (P(b))ii = 1 if b(i) holds and 0 otherwise.

We extend these to the multivariable case, i.e. for |Var| = n > 1 by defining
the following operators on V(Value)⊗n:

P(s) =
n⊗

i=1

P(xi = s(xi)) P(e = v) =
∑

E(e)s=v

P(s),

where P(s) is for testing if we are in a classical state s ∈ Valuen while P(e = v)
checks if an expression e evaluates to a constant v (assuming an appropriate
evaluation function E : Expr → State → Value).

Operators for updating a variable xk in the context of other variables to a
constant v or to the value of an expression e are defined on V(Value)⊗n by:

U(xk ← v) =
k−1⊗

i=1

I⊗U(v)⊗
n⊗

i=k+1

I U(xk ← e) =
∑

v

P(e = v)U(xk ← v)

As we model the semantics of a program as a DTMC, we need to add a
final loop �∗ (for �∗ a fresh label not appearing already in P ) when we consider
a complete program. This is because a DTMC never terminates and thus we
have to simulate termination by an infinite repetition of the final state. We will
therefore use ({{P}}LOS � �∗) ∪ {I ⊗ E(�∗, �∗)} for the construction of [[P ]]LOS .
In this way we also resolve all open or dangling control flow steps, i.e. we deal
ultimately with a set containing only global operators.
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Example 5. Consider the labelled version of the program in Example 1

while [true]1 do
if [(x == 1)]2

then [x ?= {〈0, p〉, 〈1, 1 − p〉}]3

else [x ?= {〈0, 1 − q〉, 〈1, q〉}]4

fi
od

In order to define the LOS of this program we construct the state space as
V({x �→ 0, x �→ 1}) = R

2 (since we have only one variable we do not need
the tensor product for this). The space of configurations is V({x �→ 0, x �→
1}) ⊗ V({1, 2, 3, 4, 5}), where label 5 is the label of the additional final loop. We
will omit the final label (which in this program we actually never reach) in order
to deal with smaller matrices. The set {{P}}LOS of P will contain the following
operators:

{{P}}LOS = {P(true) ⊗ E(1, 2),P(x = 1) ⊗ E(2, 3),P(x = 1)⊥ ⊗ E(2, 4),
(p · U(x ← 0) + (1 − p) · U(x ← 1) ⊗ E(3, 1)),
((1 − q) · U(x ← 0) + q · U(x ← 1) ⊗ E(4, 1))}

The concrete matrices representing the operators on V({x �→ 0, x �→ 1}) ⊗
V({1, 2, 3, 4}) are of the form

{{P}}LOS =

{(
1 0
0 1

)
⊗ E(1, 2),

(
0 0
0 1

)
⊗ E(2, 3),

(
1 0
0 0

)
⊗ E(2, 4),

((
p 0
p 0

)
+

(
0 (1 − p)
0 (1 − p)

))
⊗ E(3, 1),

((
(1 − q) 0
(1 − q) 0

)
+

(
0 q
0 q

))
⊗ E(4, 1)

}

or, explicitly

{{P}}LOS =

⎧
⎪⎪⎨

⎪⎪⎩

(
1 0
0 1

)

⊗

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

(
0 0
0 1

)

⊗

⎛

⎜
⎜
⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

(
1 0
0 0

)

⊗

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

(
p (1 − p)
p (1 − p)

)

⊗

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

(
(1 − q) q
(1 − q) q

)

⊗

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

The sum of these 8 × 8 matrices gives the operator [[P ]]LOS , i.e. the generator of
the corresponding DTMC. By including also the final label �∗ = 5, we obtain a
10 × 10 matrix, which we depict in the following for the case p = q = 1

2 :
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[[P ]]LOS =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1
2 0 0 0 0 1

2 0 0 0 0
1
2 0 0 0 0 1

2 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
1
2 0 0 0 0 1

2 0 0 0 0
1
2 0 0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. . . x �→ 0, � = 1

. . . x �→ 0, � = 2

. . . x �→ 0, � = 3

. . . x �→ 0, � = 4

. . . x �→ 0, � = 5

. . . x �→ 1, � = 1

. . . x �→ 1, � = 2

. . . x �→ 1, � = 3

. . . x �→ 1, � = 4

. . . x �→ 1, � = 5

The entries of this matrix represent the probability of the configuration (i.e.
value of x and current label �) each row and column corresponds to. It is perhaps
worth noting that this – as one would expect for a DTMC – is indeed a stochastic
matrix (i.e. all row sums are one) representing the SOS transition relation.

There is a close relationship between the KFS and the LOS. For basic
blocks B – i.e. (random) assignments, tests and skips – the LOS operator is
the same as the KFS operator except for an additional control flow step. That
means that {{. . . [B]i . . .}}LOS = {. . . , 〈[[B]]KFS , i〉, . . .} or {{. . . [B]i . . .}}LOS =
{. . . , [[B]]KFS ⊗ E(i, j), . . .} for some label j.

Example 6. For the programs in Example 4 with the following labelling

if [(x == 1)]1

then [x := 0]2

then P
fi

[x := 1]0;
if [(x == 1)]1

then [x := 0]2

then P
fi

[x ?= {〈0, 1
2 〉, 〈1, 1

2 〉]0;
if [x == 1]1

then [x := 0]2

then P
fi

(the labels of P are as in the previous example shifted by an offset of 2), we can
describe the LOS using the KFS operators as follows:

{{Q}}LOS = {[[x = 1]]KFS ⊗ E(1, 2), [[x = 0]]KFS ⊗ E(1, 3),
〈[[x := 0]]KFS , 2〉, 〈[[false]]KFS , 3〉} ∪ {{P}}LOS

{{Q′}}LOS = {[[x := 1]]KFS ⊗ E(0, 1)} ∪ {{Q}}LOS

{{Q′′}}LOS = {(
1
2
[[x := 1]]KFS +

1
2
[[x := 1]]KFS) ⊗ E(0, 1), } ∪ {{Q}}LOS

where we can re-use the LOS semantics of program P (with shifted labelling):

{{P}}LOS = {[[true]]KFS ⊗ E(3, 4), [[x = 1]]KFS ⊗ E(4, 5), [[x = 0]]KFS ⊗ E(4, 6),
(p[[x := 0]]KFS + (p − 1)[[x := 1]]KFS) ⊗ E(5, 3),
((q − 1)[[x := 0]]KFS + q[[x := 1]]KFS) ⊗ E(6, 3)}
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Note that the LOS of the three small programs contain not just global but also
local operators, namely 〈[[x := 0]]KFS , 2〉 and 〈[[false]]KFS , 3〉. This is because
we still have to add a terminal label �∗ = 7 for the construction of the complete
DTMC generators [[Q]]LOS , [[Q′]]LOS and [[Q′′]]LOS . The terminal label can be
reached from both branches of the if statement labelled 2 and 3. However,
as [[false]]KFS is O this operator (which would correspond to a terminating
program P ) does not actually contribute to the DTMC generator.

2.4 Maximal Trace Semantics (MTS)

Maximal Trace Semantics for non-probabilistic programs has been discussed in
[35,36] and shown to be the most concrete semantics in a hierarchy of various
semantics for (non-)deterministic programs. In [7] the MTS is extended to the
probabilistic case.

Similar to the Kozen semantics, the conceptual idea is to ban any probabilistic
steps from the actual execution of the program and resolve all probabilistic choices
(coin flips, rolling of dices) beforehand. The actual execution of a program is there-
fore purely (non-)deterministic but parameterised by the results of the “pre-run”
choices (cf. [7, p 171]). These outcomes represent the events or scenarios of a prob-
ability space Ω, which the execution traces depend on.

Given a set of states Σ, a trace σ = s1s2 . . . is a finite or infinite sequence
of elements si ∈ Σ. Concatenation of traces is juxtaposition, i.e. for s ∈ Σ we
have sσ = ss1s2 . . . and for σ1 = s11 . . . s1n and σ2 = s21 . . . we have σ1σ2 =
s11 . . . s1ns21 . . .. We denote by Σ+ the set of finite traces, by Σ∗ the set Σ+∪{ε},
where ε is the empty trace of length 0, by Σ∞ the infinite traces, by Σ+∞ the
set Σ+ ∪ Σ∞ and by Σ∗∞ the set Σ∗ ∪ Σ∞. For sets of traces X,Y, . . . in Σ∗∞,
we can define the following operations: X∞ = X ∩ Σ∞, X+ = X ∩ Σ+, X|Y =
{sσX ∈ X | ∃σ : σs ∈ Y +}, and X;Y = X∞∪{σXsσY | σXs ∈ X+ ∧ sσY ∈ Y }.

The MTS is defined as a function [[S]]MTS : Stmt → Ω → P(Σ+∞) where
Σ = State. In order to combine non-determinism with probabilities each sce-
nario ω ∈ Ω is associated to a whole set of possible traces. Thus [[S]]MTS is
defined by

[[skip]]MTS(ω) = {ss | s ∈ Σ}
[[x := e]]MTS(ω) = {ss[x �→ [[e]](ω)s] | s ∈ Σ}
[[S1;S2]]MTS(ω) = [[S1]]MTS(ω); [[S2]]MTS(ω)

[[b]]MTS(ω) = {s | [[b]](ω)s}
[[if b then S1 else S2 fi]]MTS(ω) = [[b]]MTS(ω); [[S1]]MTS(ω) ∪ [[¬b]]MTS(ω); [[S2]]MTS(ω)

[[while b do S od]]MTS(ω) = lfpλX.[[b]]MTS(ω) ∪ [[¬b]]MTS(ω); [[S]]MTS(ω);X

According to the definition in [7, Example 4] the evaluation [[e]] of an expression
e depends on the scenario ω, i.e. [[e]] : Ω → (Σ → Σ). The language considered in
[7] does actually not have either random assignments or a choice construct; the
former is instead implemented via a kind of “system call”, i.e. x := random(ρ).

We can reformulate the MTS in the case of the pWhile language where no
non-determinism is present: Once a scenario ω is fixed there is only one trace
for every initial state or configuration which is actually executed. We are not
interested in the scenarios ω ∈ Ω themselves but only in their probabilities μ(ω),
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i.e. the probability that a certain trace gets executed. Thus, for a fixed initial
state or configuration s the MTS of a program in pWhile can be seen as a
distribution over traces. The probability for each trace σ is inherited from the
scenario ω it depends on. We will use in the following the notation {〈σ, μ(ω)〉}
to express that a trace σ is executed with probability μ(ω).

We can define the map [[.]]MTS : Stmt → V(Σ+∞) implicitly, i.e. as solution
to the following equations:

[[skip]]MTS = {〈ss, 1〉 | s ∈ Σ}
[[x := e]]MTS = {〈ss[x �→ [[e]]s], 1〉 | s ∈ Σ}
[[x ?= ρ]]MTS = {〈ss[x �→ v], ρ(v)〉 | s ∈ Σ ∧ ρ(v) 
= 0}
[[S1;S2]]MTS = [[S1]]MTS ; [[S2]]MTS

[[if b then S1 else S2 fi]]MTS = {〈s, 1〉 | for [[b]](s) = true}; [[S1]]MTS
∪ {〈s, 1〉 | for [[b]](s) = false}; [[S2]]MTS

[[while b do S od]]MTS = {〈s, 1〉 | for [[b]](s) = true}; [[S; while b do S od]]MTS
∪ {〈s, 1〉 | for [[b]](s) = false};

Clearly, the evaluation of deterministic functions or expressions is indepen-
dent of the scenario ω. For random assignments we produce a set of weighted
traces, one trace for each v ∈ Value with non-vanishing probability according
to the distribution ρ. We extend the concatenation operation for traces to prob-
abilistic ones in the obvious way: 〈X, pX〉; 〈Y, pY 〉 = 〈X;Y, pXpY 〉 in order to
define the semantics of sequential statements. The operation “;” also extends
pointwise to sets of weighted traces in V(Σ+∞). The union construction ∪ of
sets of weighted tuples corresponds to a sum if we take them as elements in the
vector space V(Σ+∞).

It should be noted that this formulation of the MTS for a purely probabilistic
language eliminates the dependency on the scenarios ω ∈ Ω but not on the
initial state s ∈ Σ. This means that for a statement S the weighted set of traces
[[S]]MTS ∈ V(Σ+∞) does in general itself not represent a distribution (on traces)
but just a (positive) vector in V(Σ+∞). However, if we collect all those traces
which start with the same state s then we obtain a distribution over traces, i.e.∑{p | 〈σ, p〉 with σ = s . . .} = 1.

It would be possible to formulate the MTS also as a map which expresses
the dependency on the initial state explicitly and returns directly distributions
over traces, i.e. [[.]]MTS : Stmt → Σ → D(Σ+∞) ⊆ V(Σ+∞), in which case
[[S]]MTS(s) would simply represent a distribution over traces. However, our aim
is to stay as close as possible to the formulation in [7], which is based on the
typing [[.]]MTS : Stmt → Ω → P(Σ+∞) rather than, for example, [[.]]MTS :
Stmt → Ω → Σ → P(Σ+∞).

Example 7. In order to illustrate the basic construction of the MTS we consider
the following program in both its unlabelled and labelled version, with x, y ∈
{0, 1}:
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if (y < 1)
then x ?= {〈0, p〉, 〈1, 1 − p〉}
else x := 0

fi;
if (x < 1)
then y ?= {〈0, q〉, 〈1, 1 − q〉}
else y := 0

fi

if [(y < 1)]1

then [x ?= {〈0, p〉, 〈1, 1 − p〉}]2

else [x := 0]3

fi;
if [(x < 1)]4

then [y ?= {〈0, q〉, 〈1, 1 − q〉}]5

else [y := 0]6

fi

In this example we have no loops or recursions, so we know that we will need
(at most) two “coin flips”. Thus, the space of scenarios Ω is defined via the two
choices, one for x and one for y, i.e. as Σ = {x �→ 0, x �→ 1} × {y �→ 0, y �→ 1},
which we will denote by Σ = {[00], [01], [10], [11]} with [00] the state x �→ 0,
y �→ 0, etc. Following the reformulation of the MTS we have:

[[x := 0]]MTS =
= {〈[00][00], 1〉, 〈[01][01], 1〉, 〈[10][00], 1〉, 〈[11][01], 1〉}
[[y := 0]]MTS =
= {〈[00][00], 1〉, 〈[01][00], 1〉, 〈[10][10], 1〉, 〈[11][10], 1〉}
[[x ?= {〈0, p〉, 〈1, 1 − p〉}]]MTS =
= {〈[00][00], p〉, 〈[01][01], p〉, 〈[10][00], p〉, 〈[11][01], p〉,

〈[00][10], 1 − p〉, 〈[01][11], 1 − p〉, 〈[10][10], 1 − p〉, 〈[11][11], 1 − p〉}
[[y ?= {〈0, q〉, 〈1, 1 − q〉}]]MTS =
= {〈[00][00], q〉, 〈[01][00], q〉, 〈[10][10], q〉, 〈[11][10], q〉,

〈[00][01], 1 − q〉, 〈[01][01], 1 − q〉, 〈[10][11], 1 − q〉, 〈[11][11], 1 − q〉}

With these sets of weighted traces we can now construct the MTS for the
two if statements:

[[if (y < 1) then x ?= {〈0, p〉, 〈1, 1 − p〉} else x := 0 fi]]MTS =
= {〈[00][00][00], p〉, 〈[10][10][00], p〉, 〈[00][00][10], 1 − p〉,

〈[10][10][10], 1 − p〉, 〈[01][01][01], 1〉, 〈[11][11][01], 1〉}
[[if (x < 1) then y ?= {〈0, q〉, 〈1, 1 − q〉} else y := 0 fi]]MTS =
= {〈[00][00][00], q〉, 〈[01][01][00], q〉, 〈[00][00][01], 1 − q〉,

〈[01][01][01], 1 − q〉, 〈[10][10][10], 1〉, 〈[11][11][10], 1〉}

Note that some traces which we constructed for the branches disappear
because when we apply the operator “;” the last state of the first (one step)
trace (representing the test) and the first state of the continuation (in one of the
two branches) do not match.
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The traces for the whole program are then given by:

[[P ]]MTS = {〈[00][00][00], p〉; 〈[00][00][00], q〉, 〈[00][00][00], p〉; 〈[00][00][01], 1 − q〉,
〈[10][10][00], p〉; 〈[00][00][00], q〉, 〈[10][10][00], p〉; 〈[00][00][01], 1 − q〉,
〈[00][00][10], 1 − p〉; 〈[10][10][10], 1〉, 〈[10][10][10], 1 − p〉; 〈[10][10][10], 1〉,
〈[01][01][01], 1〉; 〈[01][01][00], q〉, 〈[01][01][01], 1〉; 〈[01][01][01], 1 − q〉,
〈[11][11][01], 1〉; 〈[01][01][00], q〉, 〈[11][11][01], 1〉; 〈[01][01][01], 1 − q〉},

where again the matching condition eliminates a number of possible traces.
Finally we get:

[[P ]]MTS = {〈[00][00][00][00][00], pq〉, 〈[00][00][00][00][01], p(1 − q)〉,
〈[10][10][00][00][00], pq〉, 〈[10][10][00][00][01], p(1 − q)〉,
〈[00][00][10][10][10], 1 − p〉, 〈[10][10][10][10][10], 1 − p〉,
〈[01][01][01][01][00], q〉, 〈[01][01][01][01][01], 1 − q〉,
〈[11][11][01][01][00], q〉, 〈[11][11][01][01][01], 1 − q〉}.

Here we have three possible traces starting with the initial state s = [00] or
s = [10] but only two for s = [01] and [11]. We also observe that the probabilities
associated to the traces starting with each of the four initial states sum up to
one, e.g. for s = [00] we have the probabilities (pq) + (p − pq) + (1 − p) = 1.

In this presentation of the MTS the states only record the values of the
variables but not the current label (or program counter). This makes it possible
to obtain the same trace for completely different executions of the program. To
keep track of the control flow through the program, its labelled version allows to
record in the labels the information about the configurations executed and not
just the states. For the labelled version of the program we would then replace
a trace like [00][00][00][00][00] by 〈[00], 1〉〈[00], 2〉〈[00], 4〉〈[00], 5〉〈[00], �∗〉 with �∗

the final label indicating termination.

3 Probabilistic Vs Classical Abstract Interpretation

Abstract Interpretation (AI) is a well known mathematical theory at the base of
a number of static analysis techniques [4]. Because of the need to consider com-
putable domains for performing the analysis of program properties, abstraction
and approximation are essential features of any static analysis technique. The
theory of AI establishes when the approximation is such that an analysis can be
safely performed on an abstract rather than the concrete domain of computation.
More precisely, the correctness of an abstract semantics is guaranteed by ensuring
that a pair of functions α and γ can be defined which form a Galois connection
between two lattices C and D representing concrete and abstract properties.
This classical theory originally introduced for (non-)deterministic programs can
be extended so as to include the treatment of probabilistic programs by consid-
ering the appropriate (abstract and concrete) domains as recently shown in [7]
(see also [37]).
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Though the approximations allowed by the AI theory will always be safe,
they might also be quite unrealistic, addressing a worst case scenario rather
than the average case [38]. This latter is typically the aim of a probabilistic
analysis which is therefore hardly correct in the classical sense of the AI theory.
However, although such an average case analysis is not guaranteed to ‘err on
the safe side’, we can still define it so as to reduce the error margin. In order to
provide a mathematical framework for probabilistic analysis, we have previously
introduced in [5,6], a theory of linear operators on Hilbert spaces (i.e. here just
finite dimensional spaces as discussed before) where the notion of approximation
is characterised in terms of least square approximation, which we have called
Probabilistic Abstract Interpretation (PAI).

The PAI approach is based, as in the classical case, on a concrete and abstract
domain C and D – except that C and D are now vector spaces instead of lattices.
We assume that the pair of abstraction and concretisation function A : C → D
and G : D → C are again structure preserving, i.e. in our setting they are
(bounded) linear maps represented by matrices A and G. Finally, we replace
the notion of a Galois connection by the notion of Moore-Penrose pseudo-inverse
[8,10].

Definition 1. Let C and D be two finite dimensional vector spaces, and let
A : C → D be a linear map between them. The linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff

A ◦ G = PA and G ◦ A = PG

where PA and PG denote orthogonal projections (i.e. P∗
A = PA = P2

A and
P∗

G = PG = P2
G where .∗ denotes the adjoint [33, Ch 10]) onto the ranges of A

and G.

Alternatively, if A is Moore-Penrose invertible (and all finite dimensional
operators or matrices are), its Moore-Penrose pseudo-inverse, A† satisfies the
following:

(i) AA†A = A,
(ii) A†AA† = A†,
(iii) (AA†)∗ = AA†,
(iv) (A†A)∗ = A†A.

It is instructive to compare these equations with the classical setting. For exam-
ple, a Galois connection (α, γ) satisfies the properties α◦γ◦α = α and γ◦α◦γ = γ
which are similar to conditions (i) and (ii) in Definition 1. Moreover, we also
have in a similar way as in the AI setting that A and A† determine each other
uniquely, i.e. (A†)† = A (cf. e.g. [10]).

The Moore-Penrose pseudo-inverse allows us to construct the closest (i.e.
least square) approximation T : D → D of a concrete semantics T : C → C as:

T = G · T · A = A† · T · A = A ◦ T ◦ G.
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In [5] we show how we can transform a Probabilistic Abstract Interpreta-
tion into a classical Abstract Interpretation by forgetting the concrete values of
probabilities and only considering the support set of a distribution as the set
of “possibilities”. One can also lift (in a non-unique way) a classical Abstract
Interpretation to a Probabilistic Abstract Interpretation (e.g. by using uniform
distributions). This method is conceptually equivalent to the probabilistic ver-
sion of Abstract Interpretation presented in [7], although the result does not
refer explicitly to the Maximal Trace Semantics. However, AI and PAI are not
equivalent in terms of the analyses that they support. Besides the relaxation of
the safety constraint for the analysis results, PAI is also a suitable mathematical
framework for testing, as we will show in Sect. 5.

4 Comparison of Probabilistic Semantics

For the language pWhile, the Kozen semantics describes the I/O behaviour of
programs, the LOS semantics gives the generator for a step-wise execution of
the program (as a DTMC), and the MTS determines the possible traces and
their corresponding probabilities (inherited from the scenarios of the probability
space). In this section we will discuss in some detail the relationship between
them with the aim of clarifying their different role in the static analysis of pro-
grams.

Kozen’s Semantics and LOS. One important difference between the LOS and
Kozen’s semantics (Semantics 2 in [12]) is the use of labels (as a kind of program
counter) to model the computational steps.

As already mentioned, in Kozen’s semantics all non-terminating executions
are treated equally, i.e. have a trivial or zero semantics. Another difference is
that Kozen’s semantics is based on a state space V(Valuen) as opposed to the
LOS state space V(Value)⊗n which allows for an independent treatment of
each variable. In general, the tensor construction of the LOS allows for a kind
of ‘compositional’ program analysis where the various syntactic components of
a program can be analysed individually, which is not possible with Kozen’s
semantics.

In [28] we have shown that Kozen’s operator [[P ]]KFS is an abstraction of
a limit of iterations of the LOS semantics [[P ]]LOS . This abstraction is defined
by the PAI operator which “forgets” about the computational state at all labels
except �:

A� = I ⊗ . . . ⊗ I ⊗ e�,

where e� is a unit or base vector in V(Label) corresponding to label � ∈ Label,
i.e. e� = (0, 0, . . . , 0, 1, 0 . . . , 0) with only one non-zero entry for the coordinate �.
This can also be seen as 1 × |Label| matrix. This operation keeps all the infor-
mation about the state, i.e. values of the variables, but only when the execution
is in label �. If we take � = �∗, i.e. the terminal looping state in the semantics of
a program, then this gives the probabilities of the values of all variables for those
computations which have already reached the end. So for any initial (classical)
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state s0 and initial label � = 0 we can obtain the computational state in the final
label �∗ by iteration. The following propositions hold (cf. [28]):

Proposition 1. Given a pWhile program P and initial state s0 in
V(Value)⊗n, then (s0 ⊗ e0)[[P ]]tLOSA�∗ corresponds to the distributions over all
states on which P terminates in t or fewer computational steps.

This covers all finite computations of t steps or fewer. In order to get the I/O
behaviour for all terminating computations, i.e. the Kozen semantics, we need
just to consider the limit of all computations of any length:

Proposition 2. Given a pWhile program P and initial state s0 in V(Value)⊗n,
let [[P ]]KFS be Kozen’s semantics of P and [[P ]]LOS the DTMC generator for P .
Then

(s0 ⊗ e0)( lim
t→∞ [[P ]]tLOS)A�∗ = s0[[P ]]KFS .

Maximal Trace Semantics and LOS. The probabilistic semantics in [7] is a clas-
sical abstraction of the probabilistic MTS corresponding to a “strongest post-
condition semantics”. This is in effect an operator semantics which maps input
distributions into some output distributions (cf. formula (2) in [7, 7.4]). A com-
mon interpretation of the claims made in Sect. 7.3 of [7] is that the LOS is just
an abstraction of the probabilistic MTS. We show here that this interpretation
is incorrect.

In order to investigate the relationship between LOS and MTS in more detail
we will look at a concrete construction of probabilistic traces by means of the
LOS. It is somewhat unclear if the MTS in [7] should be based on Σ = State
or Σ = Conf . In the first case it is straightforward to see that the LOS actually
contains more information than an MTS based only on state information. We
will thus consider the MTS based on Σ = Conf , i.e. the reformulation of the
probabilistic MTS as an element in V(Conf+∞), which associates with every
possible trace a probability that this is indeed the trace which will be executed
during the program run. We will then relate this set of ‘weighted’ traces to the
LOS as an operator on V(Conf) where we also provide the initial distribution
so ⊗ e0 = ρ0 ∈ V(Conf).

The LOS allows for the construction of a sequence of distributions over states
(fronts): Given an initial state we can calculate for every t the probabilities of
reaching any state after t steps by applying the LOS operator t times to the
initial state. The MTS does not construct fronts but rather a distribution over
sequences (traces): given an initial state we can calculate the probabilities of all
the execution traces starting from that initial state. The two notions are thus
somewhat orthogonal. However, they turn out to be equivalent for languages
that, like pWhile, can be modelled via a DTMC. This is because DTMC’s
abstract from the history of a computation as only the current configuration
determines the probabilities of the successor configurations. Transition proba-
bilities are exactly what is specified in the generator matrix of the DTMC and is
all one needs to reconstruct both the fronts and the computational traces with
their probabilities.
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Instantiated for purely probabilistic languages the classical abstraction given
by formula (2) in [7, 7.4] is an operator from distributions over traces to distri-
bution transformers (for a fixed initial configuration s), i.e.

αs : V(Conf+∞) → L(V(Conf))

rather than (Ω → P(Conf+∞)) → (V(Conf) → V(Conf)) as in [7, 7.4]. In this
purely probabilistic case, the abstraction map becomes:

((αs({〈p,X〉})(δ))(s′)) =
∑

s∈Σ

{δ(s) · p | for sσs′ ∈ X+}.

In other words, we associate to every distribution over traces {〈p,X〉} a linear
operator (αs({〈p,X〉})) ∈ L(V(Conf)). To see how this operator transforms
a distribution δ ∈ V(Conf) into another distribution αs({〈p,X〉})(δ) = δ′ ∈
V(Conf) we describe the probability of every configuration s′ ∈ Conf in the
new distribution δ′. This is the sum of all products of the probabilities associated
with all the traces which, starting from any s, reach s′ in finitely many steps
and the probability δ(s) that we start indeed with s. The probability δ′(s′) is
the probability that we terminate with s′. Therefore this abstraction gives the
Kozen I/O semantics. However, it does not give the LOS which instead would
require a classical abstraction of the form

((ᾱs({〈p,X〉})(δ))(s′)) =
∑

s∈Σ

{δ(s) · p | if ss′ . . . ∈ X}

i.e. an operator that collects the probabilities that we reach s′ in one step rather
than eventually. Note that this abstraction does not require that s′ is a termi-
nating state. The question is now whether ᾱs is indeed an abstraction or not. If
we consider the dimension of the spaces involved, the answer is positive as there
is obviously a loss of information when considering the space L(V(Conf)) of
n×n matrices (for Conf with n states) with dimension n2 in place of the space
of distributions V(Conf)⊗t (on traces of finite length t) whose dimension is nt.
However, due to the memory-less property of DTMC, we only need to consider
traces of length 2 (i.e. transition steps) and thus a space V(Conf) ⊗ V(Conf)
whose dimension is n2. Thus, no information is lost and the abstraction is not
really an abstraction but only a recasting of the MTS. If the MTS is the most
concrete semantics (in the sense of [36]) then so is the LOS. In fact, we can show
the following proposition.

Proposition 3. Given a pWhile program P , then the LOS [[P ]]LOS and the
MTS [[P ]]MTS are equivalent, i.e. it is possible to construct either semantics
from the other one.

It is straightforward to construct the LOS operator out of the MTS by consid-
ering for all initial configurations (i.e. point-distributions) the single step traces
(or single step trace-prefixes) starting from each initial configuration. In fact,
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the probability associated to these traces is exactly the transition probabil-
ity recorded in the DTMC generator, i.e. the LOS – this is indeed what the
map ᾱs above achieves. On the other hand, the probability associated with
a trace si1si2si3 . . . is the product of the transition probabilities ([[P ]]LOS)i1i2 ,
([[P ]]LOS)i2i3 etc. – i.e.

∏
j([[P ]]LOS)ijij+1 – times the probabilities given by the

initial distribution δ(si1).
As already mentioned, these constructions require that the semantics of

pWhile is modelled by a homogeneous DTMC, i.e. that the transition prob-
abilities from one configuration to another one do not change over time. This
and the memory-less property of DTMC’s seems to be a reasonable requirement
for a programming language.

5 Statistical Analysis of Probabilistic Programs via PAI

Probabilistic semantics provides the basis for the static analysis of probabilistic
programs. While both the AI and the PAI framework allow us to use traces as a
basis for constructing more abstract semantics, there is an important difference
between the two frameworks. In the AI setting these traces are assumed to be
ideal traces, i.e. traces that are actually obtained when a program is executed.
In the PAI setting – similar to the situation in statistical analysis, learning etc. –
we can attempt to utilise not just ideal traces but also experimentally observed,
maybe corrupted, i.e. distorted by noise, traces in order to reconstruct the most
plausible underlying abstract semantics.

In this section we show an approach where the probabilistic information
about the program executions is inferred by observing some sample runs. This
establishes a link between static program analysis and testing and demonstrates
the use of PAI to calculate best estimates for program’s properties in a way
similar to the so-called linear statistical model or linear regression method.

The approach we are going to present is based on the idea of identifying obser-
vations with a linear combination of a set of random variables xi, whose weights
are chosen with the method of least squares so as to minimise the distance from
the observations and the actual model expressing the program behaviour. Thus
the framework of Probabilistic Abstract Interpretation is particularly appropri-
ate as a base of this approach.

5.1 The Linear Statistical Model

In several contexts it is often useful to predict or estimate a variable β (or a
vector of variables), given that we have the opportunity to observe variables
y1, y2, . . . , yn that somehow (statistically) depend on β. This is a very important
statistical problem which is typically faced by using so-called linear regression
analysis, also known as linear statistical model (cf e.g. [11], [10, Section 8.3] or [8,
Section 6.4]). This widely used statistical technique applies to situations such as
the one mentioned above, where a random vector y depends linearly on a vector
of parameters β, i.e. (using post-multiplication)

y = βX + ε, (1)
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where y represents some measurement results, the parameters β are unknown,
the matrix X is the design matrix, and ε is a random vector representing the
errors of observing y. This error is conventionally assumed to have expected
value equal to zero and some further statistical conditions regarding its variance
and co-variance are typically imposed. These requirements mean that there is
no underlying or systematic reason for the distortions ε and this is only due to
random noise.

The role of least square approximations and the Moore-Penrose pseudo-
inverse in this context is of particular relevance for the well-known Gauss-Markov
theorem (cf. [10, Section 8.3,Thm. 1]).

Theorem 1 (Gauss-Markov). Consider the linear model y = βX+ ε with X
of full column rank and ε fulfilling the conditions in [10, Section 8.3]. Then the
Best Linear Unbiased Estimator (BLUE) is given by

β̂ = yX†.

In its simplest version, the Gauss-Markov theorem thus asserts that the best
estimate β̂ of the unknown parameters β can be obtained from some experimen-
tally observed y by calculating yX† , i.e. via the Moore-Penrose pseudo-inverse
of the design matrix X, cf. [10, Section 8.3, eqn (35)].

5.2 Application to Security Analysis

We discuss the relevance of the reconstruction of unknown parameters or prop-
erties of a system in the field of computer security by presenting a simplified
version of the well-known Kocher’s attack on crypto-protocols [39].

Modular exponentiation is a basic operation for computing the private key in
crypto-systems using the Diffie-Hellman or the RSA protocols. In [39], it is shown
that by carefully measuring the time required to perform such an operation, an
attacker may be able to find the Diffie-Hellman exponents or factor the RSA
keys and break the crypto-systems.

The crucial point is the estimation of a single bit b in the secret key k. Since
modular exponentiation takes very different execution times depending on the
value of a certain bit b being 0 or 1, what the attacker needs are good estimate
of these execution times in order to deduce the value of each bit of the key.
Thus, linear statistical models play a crucial role in the analysis of security. We
show how the problem of the timing attacks can be described as a statistical
analysis problem, by using as an example a simplified implementation of the
RSA exponentiation algorithm. This will also highlight the relationship between
PAI and linear regression.

Suppose that t0 is the time it takes to perform multiplication in the modular
exponentiation procedure if a single bit b of the cryptographic key k is b = 0
and t1 if b = 1. We thus need to consider two possible DTMC models, one for
the case b = 0 and one for b = 1. In realistic situations we also need to take
into account the noise due for example to the fact that the physical device we
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observe is also involved in other tasks/threads such as network communication.
The aim is to guess correctly which of the two models is actually being executed,
i.e. the value of b, by observing the (possibly distorted) running time. We can
also set the vector β to represent the strength/weights/probabilities that in a
given model we have b = 0 or b = 1, respectively. More concretely, we can set
the vector β0 = (1, 0) to represent the models of the system where the bit b of
the key is b = 0 and β1 = (0, 1) to the key with b = 1. We can now define a
linear statistical model by constructing a design matrix X (in the PAI sense a
concretisation operator), which maps a model (element in the abstract domain)
onto its timing behaviour (element in the concrete domain). As an example, we
can consider the situation where we can observe ten possible execution times ti
that we enumerate and use as column indices for X. Suppose that t0 corresponds
to the 3rd and t1 to the 7th column in this enumeration. In this case we obtain
a design matrix of the form:

X =
(

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

)

,

and we can calculate

β0X = (1, 0) · X = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

which tells us that for b = 0 the chances of observing any other time signature
than t0 is zero, and that t0 will definitively be observed. A similar calculation
can be done for β1 = (0, 1).

If we begin instead by observing the time behaviour, i.e. if we test the program
and obtain, for example, an (undistorted) observation vector of the form

y = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

then, by calculating yX† = (1, 0) we will get that b is definitely 0. If we now add
a (Gaussian) error to our experiment then the observed times, corresponding to
an estimate y would perhaps be something like (cf. Figures 1 and 2 in [39]):

ŷ = (0.1, 0.2, 0.7, 0.2, 0.1, 0, 0, 0, 0, 0),

because, for example, in 10 measurements we have observed once the first pos-
sible time, twice the second, etc. The estimation based on these observations
leads to a guess of the weights of the parameters in β that we calculate as
ŷX† = (0.7, 0). This result reflects the fact that it is very likely that the value
of bit b is 0 as we have observed, although with some errors, a time behaviour
where the times cluster around the value t0.

5.3 Abstraction and Linear Regression

Statistics can be used in static analysis in all those cases where we have some
observations at hand and we want to use them in order to improve the precision
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of the analysis. To this purpose the theory of linear regression provides us with
a useful means to determine a best estimate of the model underlying those
observations, e.g. the DTMC generator that with highest probability produces
the traces that we observe.

Note that classical abstract interpretation cannot be used in this scenario
even in its probabilistic re-formulation as given e.g. in [7]; this is because the
safety constraint at the base of the framework does not permit the consideration
of expectation values in the analysis result, as these would not guarantee the
correctness of the analysis (cf. Section 3).

In the setting of linear statistical models, the concretisation operator G of the
PAI framework corresponds to a mapping from an abstract domain consisting of
all possible DTMC models for the observed program to all possible observable
traces corresponding to the different runnings of the program. Thus, G plays
the role of the design matrix of the statistical model. If y is a vector defining the
probabilities of certain traces according to some observations and β represents
a parameterised DTMC model, then we can use the linear statistical Eq. (1) in
its simplest instance, i.e. with ε = 0, y ∈ R

n,X ∈ R
n×p and β ∈ R

p, in order to
obtain the best estimate of the concrete DTMC model by β̂ = yX†.

Example 8. Consider the following simple examples of DTMC’s:

0 1
1

1 0 11
2

1
2

1

0 1

1

1
2

1
2 0 1

1
2

1
2

1
2

1
2

with generator matrices

T0,1 =
(

0 1
0 1

)

T 1
2 ,1 =

(
1
2

1
2

0 1

)

T0, 12
=

(
0 1
1
2

1
2

)

T 1
2 , 12

=
(

1
2

1
2

1
2

1
2

)

.

Clearly with T 1
2 , 12

we can generate all infinite 0/1 sequences. Note that since
these are uncountably many, the probability structure on the maximal trace
space will require a measure theoretical treatment. By restricting ourselves to
traces of finite length we can however stay withing a finite-dimensional setting.

These DTMC’s are in essence the processes which, for different values of p
and q, describe the core (loop body) of Example 1 in the LOS or Kozen semantics
(cf. also [[S]]KFS in Example 3).

The processes above depend on the parameters p and q in the real interval
[0, 1] which we can see as the probability to remain in state 0 and state 1,
respectively. They are represented by the parametric DTMC
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0 1p

1 − p

1 − q

q

with generator

Tpq =
(

p 1 − p
1 − q q

)

Any property of a program whose behaviour can be described as above will
depend on the parameters p and q. Moreover, observing the property may be
influenced by some distorted execution of Tpq. Applying the statistical linear
model to find best estimates for the parameters p and q corresponds to perform-
ing a statistical analysis based on PAI, as shown in the the following example.

Example 9. Consider the DTMC in Example 8 with generator

Tpq =
(

p 1 − p
1 − q q

)

.

This system is completely specified when both the values of p and q and the
initial state s are specified. Thus we can identify the abstract semantic domain
with the set of all pairs of initial states s ∈ {0, 1} and matrices Tpq, i.e.

M = {〈s,Tpq〉} =
{

〈s,
(

p 1 − p
1 − q q

)

〉
}

or equivalently with the set of triples M = {〈s, p, q〉 | s ∈ {0, 1}, p, q ∈ [0, 1]}.
Note that this parametric DTMC generator encodes the same information

as the set of all parametric traces starting from any initial state (cf. Section 4).
In order to apply PAI we consider the distributions over M, i.e. the space D =
V(M) of all normalised, positive elements in the vector space over M.

The concrete computational space consists of the set of all sequences of 0 and
1 in T = {0, 1}+∞, representing the execution traces resulting from fixing actual
values of the parameters p and q and the input state. The concrete domain of
PAI is therefore the space of distributions on traces C = V(T ).

Numerical Experiments. Even for the simple example given above, the sets
involved are uncountably infinite. In order to be able to compute an analysis
of the system in Example 8 we will consider here the simple case where transi-
tion probabilities can only assume values in a finite set, i.e. p, q ∈ {p0, . . . , pn}
and where traces can only be of length t, for a given t. We report below some of
the results we obtained from numerical experiments performed using the Octave
system [40]. In these experiments we considered p, q ∈ {0, 1

2 , 1}, thus obtaining 9
possible semantics, with possible initial states either 0 or 1. This corresponds to
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an abstract domain D = V({0, 1})⊗V({0, 1
2 , 1})⊗V({0, 1

2 , 1}) = R
2 ⊗R

3 ⊗R
3 =

R
18.

For different models – i.e. different values of p and q – as well as different
noise levels we simulated 10000 executions of the system and observed traces of
length t = 10. In this setting, concrete domain is therefore C = V({0, 1}10) =
V({0, 1})⊗10 = (R2)⊗10 = R

1024, i.e. there are about one thousand possible
traces that can be observed.

The concretisation/design matrix G : D → C associates to each of the 18
instance models and initial inputs one of the distributions over the 1024 traces,
namely the one representing those traces that are obtained in that model. As
it is impossible to reproduce here the actual 18 × 1024 matrix G (due to its
size) we give in Fig. 1 the matrix G for the restricted case of 8 possible traces
of 3 steps, with rows representing the possible instance models and columns the
possible traces. The entries of this matrix specify the probabilities that a given
model (row) generates a certain trace (column). For example, the entry G33 = 1

2
means that with the third model in the enumeration given above, i.e. for initial
state s = 0, p = 1

2 and p = 0, we get the third trace, i.e. 010, with probability 1
2 .

In order to calculate the best estimators of the parameters p and q, we com-
puted the Moore-Penrose pseudo-inverse G† of G, which is also reported in
Fig. 1 for the restricted case. Intuitively, G† gives us the probabilities that when
a certain trace is observed this comes from a certain model.

In our experiments we considered systems without distortion, i.e. no error,
as well as the cases where a noise of “strength” ε was applied according to a
normal distribution (cf. randn() in Octave 3.8.0 [40, p391]).

The observations were aggregated to a distribution over all 210 possible
traces. The probability associated to each trace σi is the ratio between the num-
ber of times σi was actually observed and the number of experiments we ran (i.e.
10000 in our case). For the undistorted case we denote this distribution vector
by y, for ε = 0.01 by y′, for ε = 0.1 by y′′, and for ε = 0.25 by y′′′. The initial
state was always chosen with probability 1

2 as state 0 or state 1.

Model p = 0 = q: The vectors we obtained in the case when the true model is
given by p = 0 = q are for the different noise levels:

yG† =
(
0.50 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)

y′G† =
(
0.47 0.49 0.02 0.01 0 0 0.01 0.03 −0.02 −0.02 0 0 0 0 0 0 0 0

)

y′′G† =
(
0.33 0.34 0.17 0.11 0 0 0.11 0.18 −0.12 −0.12 0 0 0 0 0 0 0 0

)

y′′′G† =
(
0.18 0.17 0.28 0.18 0 0 0.18 0.26 −0.13 −0.12 0 0 0 0 0 0 0 0

)

Model p = 1
2 = q: The same observations for the case that p = 1

2 = q gave us:

yG† =
(
0 0 0 0 0 0 0 0 0.51 0.50 0 0 0 0 0 0 0 0

)

y′G† =
(
0 0 0 0 0 0 0 0 0.51 0.49 0 0 0 0 0 0 0 0

)

y′′G† =
(
0 0 0 0 0 0 0 0 0.51 0.49 0 0 0 0 0 0 0 0

)

y′′′G† =
(
0 0 0 0 0 0 0 0 0.50 0.50 0 0 0 0 0 0 0 0

)
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Fig. 1. Relating models (s, p, q) and traces of length 3

Model p = 0, q = 1
2 : Finally, for the case of an underlying model with p = 0 and

q = 1
2 we obtained:

yG† =
(
0 0 0 0 0 0 0.50 0.49 0 0.01 0 0 0 0 0 0 0 0

)

y′G† =
(
0 0 0 0 0 0 0.49 0.50 0.01 0 0 0 0 0 0 0 0 0

)

y′′G† =
(
0 0 0 0 0 0 0.43 0.43 0.07 0.06 0 0 0 0 0 0 0 0

)

y′′′G† =
(
0 0 0.01 0 0 0 0.33 0.35 0.16 0.16 0 0 0 0 0 0 0 0

)

These results demonstrate that if we observe the undisturbed DTMC in order
to obtain experimentally the probabilities y for all possible 210 traces then we can
identify the underlying model more or less uniquely. The abstract distribution
β̂ = yG† (i.e. when ε = 0) gives an estimate which corresponds precisely to the
true parameters p and q and the probability 1

2 for the initial states 0 and 1 (cf.
the enumeration of models in Fig. 1).

For ε = 0.01 we can also identify the unknown system with high probability.
However, there are coordinates of y′G† which are non-zero although they do not
correspond to the actual system. These stem from the fact that y′ has non-zero
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probability for traces which actually should not be realised but due to the noise
distortion are nevertheless observed.

If we increase the error term in the simulation, i.e. for the distortion ε = 0.1
or ε = 0.25, the possibility of a wrong identification of the actual model(s) is (as
expected) higher: The weights associated to the actual system tends to decrease
further, while other possible models get stronger. If we further increase ε the
estimate β̂ will still be the optimal one (BLUE) but ultimately it will not allow
any meaningful identification of the actual system – we will get only (white)
noise. We obtained similar results also for other choices of p and q.

6 Conclusions

We have presented a comparison of three different probabilistic semantics: (i)
Kozen’s I/O Fixed-Point Semantics, (ii) the Linear Operator Semantics previ-
ously introduced by the authors, and (iii) a probabilistic version of the Max-
imal Trace Semantics. We have argued that Kozen’s semantics can be recov-
ered as an abstract limit from the LOS (cf. [28]) and that the abstraction αs

in [7, Section 7.4] in fact gives Kozen’s semantics (by collecting the informa-
tion/probability along finite traces in the MTS). We also demonstrated that
LOS contains more information than MTS, namely information about the con-
trol flow, but that otherwise LOS and MTS are equivalent.

The second part of this paper relates the Probabilistic Abstract Interpreta-
tion framework introduced in [5] with the most widely used statistical technique,
namely Linear Regression. As already shown in [5], classical Abstract Interpreta-
tions can be recovered from a Probabilistic Abstract Interpretation by means of a
forgetful functor that restricts probabilistic domains to their support sets. In this
paper we have extended the (re)construction of the LOS from the MTS alluded
to in [7] – though this involves the “abstraction” ᾱs rather than αs – to deal
also with distorted observations of traces. This provides a bridge between sta-
tistics (testing) and static program analysis. Intended application areas include
problems in computer security like covert channels and non-interference notions
reinterpreted as process equivalence.

Our presentation was restricted to finite state spaces. However a full treat-
ment of the different semantical models is possible though slightly more complex
as it involves a deeper study of the underlying measure-theoretic notion (e.g.
the σ-algebras generated by trace pre-fixes) as well as topological notions (e.g.
Hilbert vs Banach spaces and their operators, weak limits etc., cf. [28]).

Finally, it might be worth pointing out the rich literature on filtering, system
identification, Hidden Markov Models (e.g. [41–43]), and related topics which
we did not discuss but are clearly related. Our approach to Linear Regression
could be considered to be very simple and basic. However, we think it is worth
highlighting the relationship between PAI and statistics. Given the role that least
square methods – i.e. the Moore-Penrose pseudo-inverse – play in control theory
etc. – for example, for the well-known and celebrated technique of Kalman filters
[11] – we aim to further explore this field.



138 A. Di Pierro and H. Wiklicky

References

1. Jones, N.D., Nielson, F.: Abstract interpretation: a semantics-based tool for pro-
gram analysis. In: Handbook of Logic in Computer Science, pp. 527–636. Clarendon
Press, Oxford (1985)

2. Nielson, F.: Strictness analysis and denotational abstract interpretation. Inf. Com-
put. 76(1), 29–92 (1988)

3. Nielson, F., Nielson, H.R.: Infinitary control flow analysis: a collecting semantics
for closure analysis. In: Proceedings of POPL 1997, pp. 332–345 (1997)

4. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

5. Di Pierro, A., Wiklicky, H.: Concurrent constraint programming: towards proba-
bilistic abstract interpretation. In: Proceedings of PPDP 2000, pp. 127–138 (2000)

6. Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations.
In: Lau, K.-K. (ed.) LOPSTR 2000. LNCS, vol. 2042, pp. 147–164. Springer, Hei-
delberg (2001)

7. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.)
Programming Languages and Systems. LNCS, vol. 7211, pp. 169–193. Springer,
Heidelberg (2012)

8. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. Pit-
man - Dover, London (1979)

9. Deutsch, F.: Best Approximation in Inner-Product Spaces. Springer, New York
(2001)

10. Ben-Israel, A., Greville, T.N.E.: Gereralized Inverses - Theory and Applications.
CMS Books in Mathematics, 2nd edn. Springer, New York (2003)

11. Albert, A.: Regression and the Moore-Penrose Pseudoinverse. Mathematics in Sci-
ence and Engineering. Elsevier, New York (1972)

12. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

13. Di Pierro, A., Sotin, P., Wiklicky, H.: Relational analysis and precision via prob-
abilistic abstract interpretation. In: Proceedings of QAPL 2008. vol. 220(3) of
ENTCS, pp. 23–42. Elsevier (2008)

14. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic semantics and program analy-
sis. Formal Methods for Quantitative Aspects of Programming Languages. LNCS,
vol. 6154, pp. 1–42. Springer, Heidelberg (2010)

15. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic lambda calculus and quanti-
tative program analysis. J. Logic Comput. 15(2), 159–179 (2005)

16. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. ACM SIGPLAN Notices 37(1), 154–165 (2002)

17. Pfeffer, A.: Practical Probabilistic Programming. Manning, Shelter Island (2015)
18. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic linda-based coordination

languages. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2004. LNCS, vol. 3657, pp. 120–140. Springer, Heidelberg (2005)

19. Priami, C.: Stochastic π-calculus. Comput. J. 38(7), 578–589 (1995)
20. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge

University Press, Cambridge (1996)
21. Di Pierro, A., Hankin, C., Wiklicky, H.: A systematic approach to probabilistic

pointer analysis. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 335–350.
Springer, Heidelberg (2007)



Probabilistic Abstract Interpretation: From Trace Semantics 139

22. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: Proceed-
ings of LICS 1989, pp. 186–195. IEEE (1989)

23. Jones, C.: Probabilistic non-determinism. Ph.D. thesis, University of Edinburgh
(1989)

24. Jung, A., Tix, R.: The troublesome probabilistic powerdomain. ENTCS 13, 70–91
(1998)

25. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996)

26. Gretz, F., Katoen, J.P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

27. Park, S., Pfenning, F., Thrun, S.: A probabilistic language based upon sampling
functions. In: Proceedings of POPL 2005, 171–182 (2005)

28. Di Pierro, A., Wiklicky, H.: Semantics of probabilistic programs: a weak limit
approach. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 241–256. Springer,
Heidelberg (2013)

29. Lax, P.D.: Functional Analysis. Pure and Applied Mathematics. Wiley, New York
(2002)

30. Kubrusly, C.S.: The Elements of Operator Theory, 2nd edn. Birkhäuser, Boston
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Abstract. This paper relates the fluid-flow semantics of the stochastic
process algebra PEPA (Performance Evaluation Process Algebra) to the
static analysis technique of abstract interpretation. The explanation in
the paper is illustrated through the example of a distributed denial of
service (DDoS) attack which is being launched against a server. DDoS
attacks are mounted by a large population of attackers, who are coor-
dinating and working together in attacking a specific server. The scale
of the attack is crucial to its success, but the resulting large number of
states in the system makes it difficult to model and analyse using the
conventional discrete-state interpretation of PEPA.

1 Introduction

Discrete-state modelling of computer systems is the bedrock of our attempts
to gain intellectual control of informatic systems by building precise models of
their behaviour and reasoning about these models. For some types of reasoning,
such as identifying contention problems or finding deadlocks, it can be sufficient
to work with a model with a small number of components, and show that the
problem arises there. Resource-constrained networks [1] are an example of this,
where several processes compete for resources from a limited pool, as are the
so-called feature interaction problems which arise in telephony networks.

For other types of problems, such as distributed denial of service attacks
(DDoS), it is not possible to scale down the analysis: the problem only arises
when large-scale systems are involved. The case in point here is whether a service
endpoint providing a service can continue to maintain the robustness of that
service if larger and larger numbers of attackers threaten to overwhelm the server.
This sentiment has been expressed very well in [2] where the authors write: “We
believe that with quantitative information on the robustness, it will be possible
to better determine whether or not the software continues to deal appropriately
with risks and threats as their application environment changes.” To analyse
these problems in large-scale systems we need to use scalable modelling methods.

Concurrency in informatic systems effectively thwarts our attempts to reason
about large-scale systems using a concrete interpretation of our models because
the asynchronous interleaving of concurrent processes gives rise to state spaces
which are too large to be represented. With the scalable, virtualised services
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which are in use today components are replicated to provide resilience and appli-
cation scalability to serve growing numbers of clients using the service. In order
to reason about systems with replicated components it is essential to move away
from discrete-state models and use representations which provide efficient rep-
resentations of populations of components [3].

The PEPA stochastic process algebra [4] supports such reasoning about large-
scale systems by providing a formal language which allows system behaviour to
be captured as a discrete-state model, and verification methods which scale to
allow the analysis of models which are composed of replicated components. This
is achieved through an abstract interpretation of PEPA models via a represen-
tation in terms of ordinary differential equations over a continuous-state space.
This is an over-approximation of the true discrete state-space, and this relaxation
of the strict small-step interleaving semantics of PEPA allows efficient analysis
of models which could not be contemplated by other means.

Structure of this paper: Our goal here is to describe a formal dynamic analysis
approach which is based on a continuous-space abstraction of discrete-space
systems. We illustrate the use of this analysis method in practice by developing
a PEPA model of a server system which is trying to withstand a distributed
denial of service attack. We use our continuous approximation of the model to
investigate effective ways to defend against such attacks. The rest of the paper is
organised as follows. In Sect. 2 we relate the subject matter of the present paper
to other research and give pointers to important work in this area. In Sect. 3 we
present the relevant technical background for this paper, with an introduction
to the PEPA stochastic process algebra and its concrete small-step operational
semantics. Section 4 explains the abstract interpretation of PEPA models with
reference to the scalable differential semantics of PEPA. Section 5 presents the
case study of the paper, involving a PEPA model of a DDoS attack. Finally,
Sect. 6 concludes the paper.

2 Related Work

Static analysis of PEPA models has first been presented in 2007, in [5], where the
author developed an approach based on data flow analysis. A transfer function
is defined and then the classical worklist algorithm is used to construct a finite
automaton capturing all possible interactions between components, on which
deadlock detection can be based. Here we take an alternative approach based
on abstract interpretation rather than data flow analysis [6]. The interpretation
of PEPA models as a set of ordinary differential equations was initiated in [7].
Similar work has been done for the Kappa modelling language [8].

Three recent papers are very directly relevant to our presentation here because
they also use process algebra and quantitative methods to model denial-of-service
attacks. They are [9–11], as discussed next. Each builds on the Quality Calcu-
lus [12], a process algebra in the family of CCS and the π-calculus, intended to
study the behaviour of software components in distributed systems when the com-
munication has vulnerabilities; similar to the type of system considered at the end
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of this paper. In particular, one motivation for the Quality Calculus is seeking to
ensure that messages are correctly received, and denial of service attacks are a
major challenge in this context. In [9], the authors introduce the Applied Qual-
ity Calculus which extends the Quality Calculus. The Applied Quality Calculus is
used in modelling secure systems which must operate in the context of low compu-
tational power devices which communicate by broadcast communication in a chal-
lenging computational context where communication failures cannot be ignored.
The Applied Quality Calculus has an executable semantics which is implemented
in the Maude term-rewriting system, resulting in a simulation engine which can
be used both directly for prototyping and for solving bounded reachability prob-
lems. Here, the notion of denial of service centres on the distinction between data
and optional data introduced by the Quality Calculus. A rewrite rule-based mech-
anism is used to implement both an input selection mechanism and cryptographic
reasoning in addition to designing quality guards which are more expressive than
traditional predicates which are used in propositions.

In [10], the authors extend the Hybrid CSP language of He Jifeng with the
notion of binders from the Quality Calculus. The modelling domain of interest
here is hybrid systems which bring together discrete-state computational con-
trollers and continuous-time physical systems into a dynamic assembly. A small-
step transition semantics is presented for the language, in a timed, discrete-event
context. The purpose of the modelling is to show that error configurations are
not reachable and that the (continuous) velocities of the moving objects in the
hybrid system cannot be degraded out of the safe range of operation. In [11],
the same authors place greater emphasis on the safety aspects of the problem.

In [13], Zeng et al. extend the Quality Calculus with quantitative informa-
tion capturing explicit timing and probability of actions. Unlike PEPA, where
the probability distributions governing the delays associated with actions are
restricted to follow an exponential distribution, the Stochastic Quality Calcu-
lus supports generally distributed delays but with the associated cost that the
semantics gives rise to a Generalised Semi-Markov Decision Process in general,
and a Generalised Semi-Markov Process when non-determinism can be elimi-
nated. Both these mathematical structures are very difficult to analyse.

PEPA has previously been used to analyse security in [14], but in that paper
the focus was on securing systems against timing attacks, where an attacker
gains information about the activity on secure channels through eavesdropping
on the timing characteristics of message exchanges. In the model developed in
this paper we are specifically considering the case of a denial of service attack,
where the strategy of the attacker is much more brute force, relying on scalability
vulnerabilities of the service under attack.

3 Background

3.1 PEPA

PEPA is a compact formal modelling language which provides the appropri-
ate abstract language constructs to represent many dynamic systems. It has
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stochastically-timed activities which can be used to encode activities which take
time to complete, such as data processing and a probabilistic choice operator to
express the likelihood of different outcomes, for example in the presence of commu-
nication failures. Different patterns of behaviour are encoded in recursive process
definitions. Features such as these are found in many modelling formalisms [15]
but a distinctive strength of the PEPA language is that populations of compo-
nents, encoded as arrays of process instances, are both convenient to express in
the language and efficiently supported by the dynamic analysis which reveals the
collective behaviourwhich emerges from the interactions of the populations of com-
ponents. The PEPA language has found application in many modelling problems
such as scalable and quantitative analysis of web-services [16–18], software perfor-
mance engineering with UML-based models [19,20], secure key distribution [21],
internet worms [22], and peer-to-peer systems [23].

As a process calculus, PEPA has CSP-style multiway communication, and
actions in PEPA have durations. A PEPA model consists of a collection of com-
ponents (also known as processes) which undertake actions [4]. A component
may perform an action autonomously, independent actions, or in synchronisa-
tion with other components, shared actions. PEPA models are generated by the
following two-level grammar:

S :: = (α, r).S | S + S | AS ,AS
def= S

C :: = S | C ��
L

C | C/L | AC ,AC
def= C

The first production defines sequential components, i.e., processes which only
exhibit sequential or branching behaviour (by means of prefix, “.”, or choice,
“+”, respectively). The second production defines model components, in which
the interactions between the sequential components are expressed through the
cooperation (“ ��

L
”) and hiding (“/”) operators. Within a cooperation, the set

L specifies which action types must be shared; components can proceed inde-
pendently and concurrently on other action types. A system equation specifies
all the components within a system and how they must interact.

Typically, each sequential component corresponds to a component of the sys-
tem and the performance of the system is constrained by the interactions between
components as imposed by the cooperations. For example for a client-server sys-
tem, some number of clients may compete for access to a limited number of
servers. This may be written as the system equation

System def= Client [Nc] ��
{request}Server [Ns]

where Client [Nc] is shorthand for Client ��
∅ · · · ��

∅ Client for a population of
Nc clients, and similarly for Server [Ns].

3.2 Concrete Semantics

Stochastic process algebras, such as PEPA, are typically given a semantics in
terms of a labelled transition system, derived from small-step operational seman-
tics. In other words, a set of semantic rules, shown in Fig. 1, detail the possible
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evolutions of a term in the language based on the syntactical construction of the
term. The transitions which are derived are labelled by the activities and thus
contain information about the dynamic behaviour in terms of the expected rate
of the transition in addition to the type of activity performed. This inclusion of
information about the rates within the labelled transition system means that a
multi-transition system must be used in order to correctly reflect the dynam-
ics of the system, i.e., if there are multiple instances of the same transition the
resulting action will occur at a faster rate than if there is only a single instance,
because each instance contributes to the apparent rate of the action.

The rules in Fig. 1 correspond to the operators of the language introduced in
the previous section. Most of the rules are straightforward, and presented here
without comment. Rule C2 is the fundamental inference for the characterisation
of the dynamic behaviour of a shared action. It implements the semantics of
bounded capacity : informally, the overall rate of execution of a shared activity is
the minimum between the rates of the synchronising components. The rule relies

Prefix

S0 :
(α, r).E

(α,r)−−−→ E

Choice

S1 :
E

(α,r)−−−→ E ′

E + F
(α,r)−−−→ E ′ + F

S2 :
F

(α,r)−−−→ F ′

E + F
(α,r)−−−→ E + F ′

Cooperation

C0 :
E

(α,r)−−−→ E ′

E ��
L

F
(α,r)−−−→ E ′ ��

L
F

, α �∈ L C1 :
F

(α,r)−−−→ F ′

E ��
L

F
(α,r)−−−→ E ��

L
F ′

, α �∈ L

C2 :
E

(α,r1)−−−−→ E ′ F
(α,r2)−−−−→ F ′

E ��
L

F
(α,R)−−−→ E ′ ��

L
F ′

, α ∈ L

R =
r1

rα(E)

r2
rα(F )

min (rα(E), rα(F ))

Hiding

H0 :
E

(α,r)−−−→ E ′

E/L
(α,r)−−−→ E ′/L

, α �∈ L H1 :
E

(α,r)−−−→ E ′

E/L
(τ,r)−−−→ E ′/L

, α ∈ L

Constant

A0 :
E

(α,r)−−−→ E ′

A
(α,r)−−−→ E ′

, A
def
= E

Fig. 1. Markovian semantics of PEPA.
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on the notion of apparent rate to compute the total capacity of a cooperating
component, according to the following definition.

The apparent rate of action α in process E , denoted by rα (E ), indicates
the overall rate at which α can be performed by E . It is recursively defined as
follows:

rα ((β, r) .E ) =
{

r if β = α
0 if β �= α

rα (E + F ) = rα (E ) + rα (F )

rα

(
E ��

L
F

)
=

{
min (rα (E ) , rα (F )) if α ∈ L
rα (E ) + rα (F ) if α �∈ L

rα (E/L) =
{

rα (E ) if α �∈ L
0 if α ∈ L

According to this definition, for the array of sequential components
Client [NC ], where Client def= (comm, rd).Client ′, the apparent rate of comm is

rcomm (Client [NC ]) = NC rcomm (Client) = NC × rd. (1)

Similarly, for Server def= (comm, ru).Server ′,

rcomm (Server [NS ]) = NS rcomm (Server) = NS × ru. (2)

Once the labelled transition system, or derivation graph, corresponding to
a PEPA model has been constructed then it can be interpreted as the state
transition diagram of a continuous time Markov chain (CTMC). In this CTMC
each state corresponds to a distinct syntactic form of the PEPA expression,
as the model evolves according to the semantics. The CTMC is stored as an
infinitesimal generator matrix, a matrix which captures the rates of transitions
between states. From this the probability distribution over the states of the
model at any given time, or at steady state, can be readily derived using standard
linear algebra algorithms.

4 Abstract Interpretation of PEPA Models

4.1 Overview

As we saw in the previous section the concrete semantics of a PEPA model gives
rise to a mathematical object, a continuous time Markov chain (CTMC). For
model analysis the CTMC is encoded as an infinitesimal generator matrix, Q.
If the model has N distinct states in the derivation graph, Q will be an N × N
matrix, with each entry q(i, j) storing the rate of the exponential distribution
governing transitions from state si to state sj . The behaviour of the CTMC
is captured in terms of its probability distribution, typically denoted π(t), the
N -dimensional vector in which the i-th entry denotes the probability to be in
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state i at time t. For steady state properties of a system we are interested in
π(∞), usually denoted simply as π, which can be found by linear algebra as the
solution to the equations

πQ = 0
∑

i

πi = 1

where the equation on the left represents the global balance equations, ensuring
that at equilibrium the probability distribution is stable, and the equation on
the right represents the normalisation condition, capturing that π is indeed a
probability distribution.

Considering the operation of the modelled system, each possible behaviour
can be regarded as a possible trajectory through the state space. In contrast to
solving the CTMC, as described above, to find the probability distribution over
states, simulating the CTMC generates a single trajectory. Thus the CTMC itself
encodes all possible trajectories, and the state probability distribution gives the
relative likelihood of each one. This is a complete encapsulation of all possible
behaviours of the model of the system, and thus the concrete semantics can be
regarded as being exhaustive with respect to the possible executions. However,
this exhaustive view relies on being able to construct and manipulate the whole
CTMC, i.e., its infinitesimal generator matrix, something that is not possible
when the size of N grows too large (say > 108 states). The alternative, based on
simulation amounts to sampling trajectories/behaviours. This is computation-
ally costly especially as many repeated samples are needed in order to derive
statistically sound results.

A continuous space alternative has been proposed which makes an abstract
interpretation of the CTMC underlying a PEPA model [24]. Instead of a prob-
ability distribution over a set of possible trajectories, the model gives rise to
a single system of ordinary differential equations (ODEs). These ODEs can
be regarded as representing the expectation over the probability distribution
over possible trajectories, or as the single trajectory that captures the average
behaviour of the system. The seminal theorem by Kurtz [25], establishes that if
we consider a sequence of CTMCs, with increasing populations of components
interacting in the same proportions, then as the population increases, behav-
iour of the CTMCs converges to this single ODE trajectory. This corresponds
to a functional form of the law of large numbers. Instead of a sequence of ran-
dom variables, i.e., the sample mean, converging to a deterministic value, i.e.,
the true mean, here we have a sequence of CTMCs or trajectories for increasing
population size which converge to a deterministic trajectory, given by the ODEs.
Thus the ODE semantics provide an abstract semantics for PEPA, which can be
regarded as an over-approximation since it summarises all possible behaviours
obtained via the concrete semantics. Details of the abstract semantics are given
in the following subsection.
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4.2 Scalable Differential Semantics

In [26] the authors explain how the ODEs of the abstract semantics can be
inferred statically from the PEPA model. This is done via a more abstract rep-
resentation of the underlying CTMC in terms of generating functions, which are
then approximated from discrete functions, to functions over continuous vari-
ables, the ODEs. This approach allows the consistency between the concrete
semantics, now encoded in generating functions, and the abstract semantics, to
be readily proved. Moreover it is shown that the ODEs generated are indeed those
consistent with Kurtz’s theorem, implying correctness of the abstract semantics
as explained above. Furthermore in a subsequent paper it is shown how the
abstract semantics may be used to derive performance measures from PEPA
models, in addition to the evolution of population counts, giving the expecta-
tions of measures over trajectories rather than simply the expectation of the
trajectories themselves [27].

Construction of the abstraction semantics proceeds in three steps:

1. Context reduction: identifying the component types in operation in the
model and the local state space of each type, resulting in a reduced state
representation based on a counting abstraction;

2. Identify the jump multiset: characterising the effect of each type of action
in terms of a symbolic update on the reduced state representation;

3. Define generating functions: expressing the rate of transitions in the state
space as a function of the state.

Context reduction: The aim of context reduction is to statically reduce the state
representation of the PEPA model to its most compact form. Previous work [28],
Gilmore et al., showed how a static analysis could find lumpable partitions in the
underlying state space of a PEPA model and find a reduced state space based
on a canonical form of the PEPA model expressions. In [26] the syntax of the
PEPA expression is discarded in the state representation and a numerical vector
is used to capture the state of the model. The objective of the context reduc-
tion is to identify the entries which are needed for the representation. Roughly
speaking, two components are considered to have the same type if they have
the same derivation graph and they are subject to the same cooperation sets in
the expression of the model. For each component type there is one entry in the
numerical vector for each of the states in its derivation graph. For the definition
of the semantics the entries of the numerical vector are represented symbolically
ξ = (ξ1, . . . , ξn). Note that this is a list of the local states of each of the compo-
nent types considered in isolation, and consequently much smaller than a list of
all the possible global states that could be encountered through their interleaving.
This is an important distinction. A system of ODEs, the Chapman-Kolmogorov
equations, describing the evolution of the system based on the concrete interpre-
tation of the CTMC can also be constructed. In these equations the variables are
the probability mass associated with each global state, i.e., there is one equation
corresponding to every global state of the system. This system equation becomes
unmanageable for models of any reasonable size.
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The reduced context of a PEPA component P , denoted by red(P), is recur-
sively defined as follows:

red ((α, r) .P) = (α, r) .P
red (P + Q) = P + Q
red(A def= P) = red(P)

red(P ��
L

P ′) =

⎧
⎨

⎩

red(P), if L = ∅ ∧ P = P ′

∧P ,P ′ are sequential components
red(P) ��

L
red(P ′), otherwise

red(P/L) = red(P)/L

The jump multiset: Once we have the symbolic representation of a prototypical
state of the system we can consider the transitions induced on this state rep-
resentation by the actions in the PEPA model. For each action type, from the
model specification, we can identify the impact that completing the action will
have on the counts of component types involved in the action: if a component
enables an action, then completing the action will decrease the corresponding
count by 1; conversely if a component is a one-step derivative of the action, then
its corresponding count will be increased by one. Thus for each action type in the
model we can build an update vector which will make the appropriate change to
the symbolic state vector whenever the action is completed. For example if the
update vector or jump associated with an action α is uα, and a state ξ completes
an action α, then the resulting state will be ξ + uα.

Generating functions: Finally, in order to capture the dynamics of the process
we need to know the rate at which actions will be completed. In general this will
depend on the state of the system since, as remarked earlier, when an action
is enabled multiple times its apparent rate increases. However, the (symbolic)
state representation gives us the information needed to deduce the multiplicities
of actions enabled in any state and consequently the rates of actions can be
expressed symbolically too. For example, if (α, r) is an individual action of the
component Pj whose count is captured by the variable ξj , then the rate of α in
an arbitrary state will be ξj×r. The generating function would then be expressed
as fα(ξ,uα) = ξj × r.

These functions are parametrised by action types to keep track of the addi-
tional information about which action type is associated with a transition. Let
uα ∈ Z

d be the transition jump. The generating functions are denoted by
fα(ξ,uα) : Rd → R and give the transition rate for a jump uα and an activity
of type α ∈ A. Thus, the entry in the generator matrix corresponding to the
transition from ξ to ξ + u, denoted by qξ,ξ+u, can be written as

qξ,ξ+u =
∑

α∈A
fα(ξ,uα).

The summation across A captures the fact that distinct action types may
contribute to a transition to the same target state, e.g., (α, r).P + (β, s).P .
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These transitions are kept distinct in the labelled transition system of PEPA,
because it records the action type as well as the transition rate, but they collapse
onto the same entry in the underlying generator matrix. We use the notation

f(ξ,u) ≡
∑

α∈A
fα(ξ,uα)

to indicate the overall contribution to the transition. The extraction of the gen-
erating functions from the PEPA model usually presents very little computa-
tional challenge because the environment collected via the inference rules in our
operational semantics abstracts away from the (potentially very large) actual
population levels of the system under study.

As stated above, when the generating functions are instantiated with a state
representation based on integer counts and updates of the component types,
they may be used to derive the state space of a CTMC corresponding to a
PEPA model instantiated with that many copies of each component type. This
is a template for all possible trajectories over the reduced state space. But when
the functions are treated as continuous functions (we replace ξ by a vector of
real values x, and allow them to evolve continuously) they give rise to a vector
field which defines the evolution of the expectation over the trajectories. Thus
from f(ξ,u) it is possible to construct a vector field F : Rd → R

d defined as

F (x) =
∑

u∈Zd

uf(x,u) (3)

and an associated ODE
dx(t)

dt
= F (x(t)). (4)

5 Modelling a Distributed Denial of Service Attack

In this section, we turn to the case study of the paper: a Distributed Denial of Ser-
vice (DDoS) attack. Such attacks on server-based systems are particularly chal-
lenging because they are fundamentally different in nature from attacks which
exploit logical weaknesses in the design of communication protocols. Protocol
breaking-attacks are fundamentally qualitative in nature. In contrast, DDoS
attacks are fundamentally quantitative in nature. A Dolev-Yao attack requires
ingenuity and cunning; a DDoS attack simply requires a large enough pool of
attackers to take down the server by brute force.

We present the model in three instances, each of which builds on the model
which came before. In every model, components are replicated to form popula-
tions of components. There are multiple clients, multiple servers, multiple attack-
ers, and so forth. Populations are numerous. There are hundreds of instances
of each component, not just five or ten. The three versions of the model are
explained below.
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– In the first version of our DDoS model we present only the servers and the
clients. There are no attackers in the first model: the purpose of this first
model is only to show idealised optimal service, and thereby to serve as a
basis against which to compare sub-optimal service. We are mostly interested
in how connections are made and held, so we focus on the Servers on the
server side, and the process of connecting and disconnecting.

– In the second version of our model we add the attackers, showing how they
impede the use of the server, making it much more difficult for genuine clients
to get any service at all. Creating this form of unproductive interference is
the essence of a distributed denial of service attack.

– In the third version of our model we introduce new components: the defenders
try to impede the attackers, by monitoring each socket. As we will see, the
defenders are not able to restore the optimal level of service which was enjoyed
in the absence of the attackers but they lessen the effectiveness of the DDoS
attack by impeding the attackers. This is done by introducing a delay which
monitors the connection to the server and ejects a connection if it appears to
be taking too long. Unfortunately this means that genuine clients may also
be ejected sometimes but as we will see, although the attackers continue to
frequently connect to the server, the number of clients trying unsuccessfully
to connect is significantly reduced.

We encoded our model in PEPA and analysed it with the PEPA Eclipse Plug-
in [29], a modelling tool developed in the European project SENSORIA (Software
Engineering for Service-Oriented Overlay Computers) and subsequently used in
teaching and research internationally. It incorporates a custom editor for PEPA
models, model visualisation and static analysis tools, a model debugger, Markov
chain analysis tools, stochastic simulation and discrete analysis tools, a model
compiler which delivers a continuous representation of the system, efficient ODE-
based solvers, and plotting functions for analysis results.

5.1 Model Parameters, for All Models

PEPA models have both continuous variables and discrete variables. The contin-
uous variables are rate parameters which are used to model the exponentially-
distributed rate at which actions (more properly, activities) occur. The discrete
variables are population counts which count the number of copies of each PEPA
component in the model. Multiplicities are important in all models, but they
are important in DDoS models in particular. A DDoS attack which has been
launched by 10 hostile bots somewhere on the Internet is not anywhere near as
troubling as a DDoS attack which is being launched by 10,000,000 hostile bots.

5.2 First Model: Server and Clients only

The basic model is formed as the cooperation of a population of servers with a
population of clients on some work to be done. There is a protocol of interaction
observed by both servers and clients, as shown in Figs. 3 and 4.
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Model Rate Rate Variable Used by PEPA

number variable value description component(s)

1,2,3 rz 0.02 the client’s think rate Client

1,2,3 rc 1.0 the connect rate Client , Server

1,2,3 rh 10 handshake rate (if innocent) Client , Server

1,2,3 ra 0.001 handshake rate (if attackers) Client , Attacker

1,2,3 rs 0.1 the server’s serve rate Server

1,2,3 rd 5 the disconnect rate Client , Server

1,2,3 rt 0.01 a general timeout rate Client , Server

3 only rd 0.5 delay rate Defender

3 only ry 10 eject rate when under attack Defender

Fig. 2. Parameters of the model

Server free
def
= (connect , rc).Serverclaimed

Serverclaimed
def
= (handshake, rh).Server ready

Server ready
def
= (serve, rs).Server idle + (timeout , rt).Server free

Server idle
def
= (disconnect , rd).Server free

Fig. 3. The Server component of the PEPA model

Figure 3 is the Server process, which, if viewed from an automata-theoretic
perspective, would accept all and only the sentences of the formal language
(connect , handshake, (serve, disconnect) | timeout)∗ and that of course means
that the Server component can give rise to only two possible traces, which are

– (connect ; handshake; serve; disconnect); or
– (connect ; handshake; timeout).

Figure 4 shows the Client process, which, if viewed from an automata-
theoretic perspective, would accept all and only the sentences of the formal
language (think , connect , handshake, (serve, disconnect) | timeout)∗ and that of
course means that the Server component can give rise to only two possible
traces, which are

– (think ; connect ; handshake; serve; disconnect); or
– (think ; connect ; handshake; timeout).

In a normal interaction there is a two-stage connection, with the client first
connecting to the server, and the server then confirming the connection with a
handshake, before providing the required service. At the end of service the client
disconnects, freeing the server. Between service interactions the client operates
independently, indicated by the think action, appearing idle from the server’s
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Client idle
def
= (think , rz).Cliententer

Cliententer
def
= (connect , rc).Clientconnected

Clientconnected
def
= (handshake, rh).Clientwaiting

Clientwaiting
def
= (disconnect , rd).Client idle

+ (timeout , rt).Cliententer

Fig. 4. The Client component of the PEPA model

perspective. To guard against dropped connections and other communication
difficulties there is also the possibility for the server to timeout a connection
which seems inactive. The components are combined as:

System0
def= Server free [200] ��L Client idle [1000]

where L = { connect , handshake, disconnect , timeout }.

The use of array notation syntax in PEPA (say, for example, P [2]) indicates
a PEPA component array, which is syntactic sugar for P ‖ P , which is itself
syntactic sugar for P ��

L
P when L, the cooperation set, is ∅ (meaning the empty

set, as usual).
The behaviour of System0, with the rate parameters given in Fig. 2, is shown

in Fig. 5.

Fig. 5. The evolution of System0 with the rate parameters given in Fig. 2
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Attacker idle
def
= (connect , rc).Attackerconnected

Attackerconnected
def
= (handshake, ra).Attackerhold

Attackerhold
def
= (timeout , rt).Attacker idle + (disconnect , rd).Attacker idle

Fig. 6. The Attacker component of the PEPA model

Fig. 7. The evolution of System1 incorporating 250 attackers with the rate parameters
given in Fig. 2

5.3 Second Model: Adding the Attackers

The objective of the attackers is to occupy the server for as long as possible so
that it is unable to undertake any genuine service interactions. We might say
that the attackers are ‘tricking’ the server. In any case, the semantics are very
clear: the attacker initiates the protocol for requesting server-side computation
masquerading as a genuine client. Only the initial part of the protocol is exe-
cuted by the attacker: specifically, the sequential composition of actions which
is (connect ; handshake). The attacker has no intention of executing the second
part of the protocol which performs the server-side computation cleanly (serve;
disconnect). Moreover, in contrast to the brisk handshake of the genuine client,
the attacker uses a slow handshake at a slower rate, ra. Note that, any addi-
tional delay is of interest to the attacker because it impedes the progress of the
genuine clients, and that is the attacker’s priority. The behaviour of the attacker
is shown in Fig. 6. The revised system becomes:
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Server free
def
= (connect , rc).Serverclaimed

Serverclaimed
def
= (handshake, rh).Server ready

Server ready
def
= (serve, rs).Server idle

+ (timeout , rt).Server free

+ (eject , re).Server free

Server idle
def
= (disconnect , rd).Server free

+ (eject , re).Server free

Defender
def
= (connect , rc).Defender1

Defender1
def
= (delay , ry).Defender2
+ (disconnect , rd).Defender

+ (timeout , rt).Defender

Defender2
def
= (eject , re).Defender

Client idle
def
= (think , rz).Cliententer

Cliententer
def
= (connect , rc).Clientconnected

Clientconnected
def
= (handshake, rh).Clientwaiting

Clientwaiting
def
= (disconnect , rd).Client idle

+ (timeout , rt).Cliententer

+ (eject , re).Client idle

Attacker idle
def
= (connect , rc).Attackerconnected

Attackerconnected
def
= (handshake, ra).Attackerhold

Attackerhold
def
= (timeout , rt).Attacker idle

+ (disconnect , rd).Attacker idle

+ (eject , re).Attacker idle

System2

def
= (Server free [200] ��L1

Defender [200])

��
L2

(Client idle [1000] ‖ Attacker idle)

where L1 = { connect , disconnect , timeout , eject }
and L2 = { connect , handshake, disconnect , timeout , eject }.

Fig. 8. Modified model containing the DDoS defence
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Fig. 9. The evolution of System2 incorporating defence mechanisms with the rate para-
meters given in Fig. 2

System1
def= Server free [200] ��L Client idle [1000]

where L = { connect , handshake, disconnect , timeout }.

The behaviour of System1, with the attackers incorporated and with the rate
parameters given in Fig. 2, is shown in Fig. 7. In contrast to the behaviour seen
in Fig. 5, we can see that the system does not reach a steady state behaviour, as
a growing number of clients are in the state waiting for connection to the server.
It can be seen that very quickly after the start of the attack, most of the sockets
are held by an attacker, leaving almost no capacity for the genuine clients.

5.4 Third Model: Adding the Defenders

In order to defend against the DDoS attack we introduce a Defender which
monitors each socket. When a connection appears to be consuming too much
time it ejects the connection, allowing a fresh competition for connection between
attackers and clients. The new model is shown in Fig. 8. Note that the delay in
the Defender is raced against the on-going socket connection and aborts the
interaction if the delay completes before either a disconnect or a timeout .

The results of analysis of the model are shown in Fig. 9 with all parameters
values as shown in Fig. 2, i.e., the characteristics of the servers, users and attack-
ers are unchanged except for the addition of the rapid eject action. We can see
that the attackers are still successful in gaining access to the server, but there is
much more turnover meaning that clients are also able to gain connections. This
is evident because the number of clients in the Cliententer state, waiting to form
a connection, is significantly reduced compared to the growing value in Fig. 7.
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6 Discussion and Conclusions

The phenomena studied and models presented here are intimately related to
the scale of the system. It simply would not be possible to study the model
with a numerical analysis of the CTMC derived from the discrete-state concrete
semantics of the PEPA models because the state spaces generated by these mod-
els are prohibitively large. In contrast, stochastic simulation would be possible
but much more computationally expensive. For example, running a simulation
of System2 (1000 replications) takes several minutes whereas the ODE-based
analysis completes in a fraction of a second. This speed of solution makes the
ODE-approach very suitable for exploring parameter space, for example to find
the best value for the rate of the delay action in the Defender .

The abstract interpretation of PEPA models also makes it feasible to address
the problem of model synthesis. In [30] the authors present an extension to
the PEPA Eclipse Plug-in tool, which allows the user to specify a perfor-
mance requirement for a model, currently expressed in terms of response time
or throughput. From this specification the tool automatically searches parame-
ter space to find the “smallest” model which is able to satisfy the performance
requirement. Here “smallest” is essentially taken to mean the smallest number of
components, but a user-defined cost function allows the modeller to weight dif-
ferent types of components differently (see [30] for details). The particle swarm
optimisation (PSO) meta-heuristic [31] is used to efficiently explore parameter
space. Nevertheless this approach would not be tractable if based on the discrete-
state space representation of the PEPA models except for very small models.
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1. Yüksel, E., Nielson, H.R., Nielson, F.: Key update assistant for resource-
constrained networks. In: 2012 IEEE Symposium on Computers and Communi-
cations, ISCC 2012, Cappadocia, 1–4 July 2012, pp. 75–81. IEEE (2012)

2. Nielson, F., Nielson, H.R., Zeng, K.: Stochastic model checking of the stochastic
quality calculus. In: De Nicola, R., Hennicker, R. (eds.) Wirsing Festschrift. LNCS,
vol. 8950, pp. 522–537. Springer, Heidelberg (2015)

3. Hillston, J.: The benefits of sometimes not being discrete. In: Baldan, P., Gorla,
D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 7–22. Springer, Heidelberg (2014)

4. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, New York (1996)

5. Yang, F.: Static Analysis of Stochastic Process Algebras. MSc dissertation (2007)
6. Cousot, P.: Abstract interpretation based formal methods and future challenges.

In: Wilhelm, R. (ed.) Informatics: 10 Years Back, 10 Years Ahead. LNCS, vol.
2000, p. 138. Springer, Heidelberg (2001)

7. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the
Second International Conference on the Quantitative Evaluation of Systems, pp.
33–43. IEEE Computer Society Press, Torino, September 2005



Abstract Interpretation of PEPA Models 157

8. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular
signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008.
LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008)

9. Vigo, R., Nielson, F., Nielson, H.R.: Broadcast, denial-of-service, and secure com-
munication. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
412–427. Springer, Heidelberg (2013)

10. Wang, S., Nielson, F., Nielson, H.R.: A framework for hybrid systems with denial-
of-service security attack. CoRR, abs/1403.6367 (2014)

11. Wang, S., Nielson, F., Nielson, H.R.: Denial-of-service security attack in the
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Abstract. It is well understood that solving parity games is equivalent,
up to polynomial time, to model checking of the modal mu-calculus. It
is a long-standing open problem whether solving parity games (or model
checking modal mu-calculus formulas) can be done in polynomial time.
A recent approach to studying this problem has been the design of partial
solvers, algorithms that run in polynomial time and that may only solve
parts of a parity game. Although it was shown that such partial solvers
can completely solve many practical benchmarks, the design of such par-
tial solvers was somewhat ad hoc, limiting a deeper understanding of
the potential of that approach. We here mean to provide such robust
foundations for deeper analysis through a new form of game, alternating
reachability under parity. We prove the determinacy of these games and
use this determinacy to define, for each player, a monotone fixed point
over an ordered domain of height linear in the size of the parity game
such that all nodes in its greatest fixed point are won by said player in
the parity game. We show, through theoretical and experimental work,
that such greatest fixed points and their computation leads to partial
solvers that run in polynomial time. These partial solvers are based on
established principles of static analysis and are more effective than par-
tial solvers studied in extant work.

1 Introduction

Model checking [9,24] is an approach to formal methods in which a system is
represented as a model M , system behavior of interest is represented as a formula
φ of a suitable temporal logic, and the question of whether the model satisfies
that property (written M |= φ) is decided using an algorithm parametric in M
and φ. For infinite models, this question often is undecidable and may therefore
require the abstraction of models to finite ones [2].

Program analyses (see e.g. [23]) consider programs P and aim to answer
questions such as “Are there portions of code in P that can never be reached
during execution?”. Since exact answers may be undecidable, abstraction is often
used to under-approximate or over-approximate such answers, for example, the
set of program points that can never be reached. Many program analyses can be
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computed by a static analysis that computes a least fixed point of a monotone
function over a complete lattice; see for example Chapter 6 in [23] for more details
on this approach based on worklist algorithms.

These two approaches, model checking and static analysis, appear to be quite
different even though they share the need for abstraction. For example, it is not
immediately clear whether each program analysis might correspond to a property
φ of some suitable logic. But there is a body of research that points out a close
relationship and connections between these approaches. For example, in [26] it
is shown how data-flow analyses can be seen as instances of model checking: if
programs are represented as models of a modal logic, one can capture a data-flow
analysis as a formula in that modal logic, and then partially evaluate the model
checker for that logic to thus implement the data-flow analyzer. This insight led
to an actual methodology: in [25] one converts a program into a transition system
as program model – using its operational semantics, then applies abstraction [3,4]
to eliminate details of that model that are irrelevant to the analysis/formula in
question, and finally one can do model checking on the abstract model using
formulas that capture the analysis in question.

These contributions furthered the understanding of how program analysis can
be seen within the framework of model checking. Conversely, it turns out that
the central question of model checking, whether M |= φ holds, can be computed
with techniques from static analysis. In [22], an alternation-free fixed-point logic
was defined and it was shown how static analysis over the resulting flow logic can
decide model-checking instances for modal logics such as computation tree logic
(CTL) [9]. The flow logic in [22] was also demonstrated to have applications in
data-flow analysis and constraint solving [11]. In later work [28], this alternation-
free least fixed-point logic was extended so that one could capture model checking
of the modal mu-calculus [18] (not just of CTL) in this manner, and a Moore
family result was proved for this logic; Moore families are the set of closed sets
of a closure operator.

The temporal logic CTL and the linear-time temporal logic LTL can be seen
as subsets of the temporal logic CTL* (see e.g. [15]). The logic CTL* can in
turn be embedded into the modal mu-calculus [5], although at an exponential
cost [19]. LTL and CTL capture many practically important property patterns
[7] and are therefore very useful. But some have argued that these logics are
mathematically somewhat ad hoc. The modal mu-calculus, on the other hand, is
more canonical since it does not limit the manner in which fixed-point patterns
can be composed (apart from syntactic restrictions that ensure monotonicity
of meaning). It is therefore apt to understand the connections between static
analysis and model checking over the modal mu-calculus as well, and the work
reported in [28] shows how static analysis in the form of flow logics can capture
model checking of the modal mu-calculus.

There is another important aspect to the study of such connections though.
It is well understood [8,10,27] that model checking of the modal mu-calculus is
equivalent (within polynomial time) to the solving of parity games. These are
directed graphs whose nodes are owned by one of two players and colored by a
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natural number. In this chapter, we assume that such graphs are finite. Plays
between these players generate infinite paths in these graphs whose winners are
decided by minimal colors of cycles generated by these paths. A player wins
a node if she can play such that all plays beginning in that node are won by
her in this manner. A central result for parity games states that these games
are determined [8,21,29]: each node is won by exactly one of the two players.
Deciding which player wins which nodes, and how they can achieve these wins
is what one means by solving parity games.

Using the aforementioned results in [8,10,27], we can therefore understand
how to use static analysis for model checking by understanding how static analy-
ses may solve parity games. Known approaches of solving parity games in this
manner, for example the ones based on small progress measures [17], all suffer
from the fact that the height of the ordered domain derived from the parity game
may be exponentially larger than that game – leading to exponential worst-case
running times of least fixed-point computations in the resulting worklist algo-
rithm that implements a static analysis. In fact, the decision problem of whether
a given node in a parity game is won by a given player is in UP∩ coUP [16], and
its exact complexity has been an open problem for over twenty years now.

The work that we report here means to combine static analysis with abstrac-
tion. The analyses we design below run in polynomial time by construction. But
this efficiency is gained by possibly under-approximating the solution of a parity
game: the used static analysis may not decide the winners of all (or indeed some)
nodes although they often solve games completely. Furthermore, in local modal
checking (see e.g. [27]) it suffices to know whether one or several designated
states satisfy a property. In the setting of parity games, this means that it may
suffice to statically decide the winner of one or several nodes – which the static
analyses we present here may often achieve.

Outline of Chapter: In Sect. 2, we recall background on parity games. Our
new type of alternating reachability game is defined and studied in Sect. 3. In
Sect. 4, we show how this game induces monotone functions for each player of
a parity game, and that we can use these functions to build static analyses of
parity games that repeatedly compute greatest fixed points of such functions
on (residual) games. We discuss, in Sect. 5, how this approach generalizes our
earlier work on fatal attractors in [13]. Our experimental results are reported in
Sect. 6, related work not discussed above already is presented in Sect. 7, and the
chapter concludes in Sect. 8.

2 Background

In this section, we define key concepts of parity games, and fix technical notation
used in this chapter. We write N for the set {0, 1, . . . } of natural numbers.
A parity game G is a tuple (V, V0, V1, E, c), where V is a set of nodes partitioned
into possibly empty node sets V0 and V1, with an edge relation E ⊆ V × V
(where for all v in V there is a w in V with (v, w) in E), and a coloring function
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c : V → N. In figures, c(v) is written within nodes v, nodes in V0 are depicted
as circles and nodes in V1 as squares. For v in V , we write v.E for node set
{w ∈ V | (v, w) ∈ E} of successors of v. Below we write C(G) for the set of
colors in game G, i.e. C(G) = {c(v) | v ∈ V }, and C(G)⊥ for set C(G) ∪ {⊥}.

Throughout, we write p (or sometimes p′) for one of 0 or 1 and 1 − p for the
other player. In a parity game, player p owns the nodes in Vp. A play from some
node v0 results in an infinite play π = v0v1 . . . in (V,E) where the player who
owns vi chooses the successor vi+1 such that (vi, vi+1) is in E. Let Inf(π) be the
set of colors that occur in π infinitely often:

Inf(π) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k = c(vi)}

Player 0 wins play π iff min Inf(π) is even; otherwise player 1 wins play r.
A strategy for player p is a total function σp : V ∗ · Vp → V where the pair

(v, σp(w · v)) is in E for all v in Vp and w in V ∗. A play π conforms with σp

if for every finite prefix v0 . . . vi of π with vi in Vp we have vi+1 = σp(v0 . . . vi).
A strategy σp is memoryless if for all w,w′ in V ∗ and v in Vp we have σp(w ·v) =
σp(w′ · v) and such a σp can be seen to have type Vp → V .

It is well known that each parity game is determined [8,21,29]: (i) node set
V is the disjoint union of two, possibly empty, sets W0 and W1, the winning
regions of players 0 and 1 (respectively); and (ii) there are memoryless strategies
σ0 and σ1 such that all plays beginning in W0 and conforming with σ0 are won
by player 0, and all plays beginning in W1 and conforming with σ1 are won by
player 1. Solving a parity game means computing such data (W0,W1, σ0, σ1).

Throughout this chapter, we write G for a parity game (V, V0, V1, E, c), denote
by p one of its players, and let X be a non-empty set of nodes of G. We write
x%2 for x modulo 2 for an integer x, and Attrp[G,X] to denote the attractor of
node set X for player p, which computes the standard alternating reachability
of X for that player in the game graph of G (see e.g. Definition 1 in [13]).

Example 1. In the parity game G depicted in Fig. 1, the winning regions are
W1 = {} and W0 = V . The memoryless strategy σ0, defined by σ0(v1) = v2, is
a winning strategy for player 0 on W0.

Fig. 1. A parity game: circles denote nodes in V0, squares denote nodes in V1.
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3 Alternating Reachability Under Parity

In this section, we generalize alternating reachability in parity game graphs, so
that this reachability is aware of minimal colors encountered en route:

Definition 1. Given parity game G, player p, and non-empty node set X, let
π = v0v1 . . . be an infinite play in G.

1. Player p wins play π in the reachability game for (X, p) under parity iff there
is some j > 0 such that vj is in X and min({c(vi) | 0 ≤ i ≤ j}%2 = p.
Dually, player 1 − p wins play π in that reachability game iff she detracts
from (X, p) under parity, that is to say iff for all j > 0 we have that vj in X
implies that min({c(vi) | 0 ≤ i ≤ j}%2 = 1 − p.

2. A strategy for player p′ in this game is defined like a strategy for that player in
the parity game G. Also, the definition of when plays conform with strategies
in this game is the same as for parity game G.

3. Player p′ wins a node v for reachability of (X, p) under parity iff she has
a strategy σp′ such that all plays starting from v and conforming to σp′ are
winning for player p′ in the reachability game for (X, p) under parity.

4. We write Wp
r(G,X) for the set of nodes that player p wins in this manner

(we won’t need notation for the set of nodes won by player 1 − p).

This acceptance condition binds p to X: it is player p who wants to reach
(X, p) under parity. Also, starting from X in a play does not yet mean that X
has been reached. In particular, player 1−p wins all plays that don’t visit X after
the initial node. An immediate question is whether such games are determined
and how complex it is to solve them. We answer these questions next.

Lemma 1. For all parity games G, players p, and non-empty node sets X, the
derived game in G of reaching (X, p) under parity is determined.

Proof. For a color i in C(G) and node set S ⊆ V let Si = {v ∈ S | c(v) = i}
and S≥i = {v ∈ S | c(v) ≥ i}. Also, let C = {c ∈ C(G) | c%2 = p}. The set of
winning plays for player p in the reachability game for (X, p) under parity is the
union of (V ∗

≥i · Vi · V ∗
≥i · X≥i · V ω) ∪ (V +

≥i · Xi · V ω) over all i in C. Note that, for
each such i, both expressions in this union capture the non-deterministic choice
of reaching X in Definition 1. The difference in these expressions is merely that
the minimal color i may be witnessed before that non-deterministic choice of
reaching X. The set of winning plays for player p is thus a Borel definable set of
paths. From the Borel determinacy of turn-based games [20] it therefore follows
that the game is determined. �

Next, we derive from parity game G and node set X a game graph that
reduces reachability of (X, p) under parity to (the usual alternating) reachability
in the derived game graph. This derived game has nodes of form (v, l) where l
records the history of the minimal color encountered so far. In particular, we use
l = ⊥ to model that a play is just beginning.
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Definition 2. For parity game G = (V, V0, V1, E, c), player p, and non-empty
node set X, game graph Gp

X = (V × C(G)⊥, E′) is defined as follows: For c in
C(G)⊥, player 0 owns all nodes (v, c) with v ∈ V0. Player 1 owns all nodes (v, c)
with v ∈ V1. And the edge relation E′ ⊆ (V × C(G)⊥) × (V × C(G)⊥) is defined
as

E′ = {((v,⊥), (v′,min(c(v), c(v′)))) | (v, v′) ∈ E} ∪ (1)
{((v, c), (v′,min(c, c(v′)))) | (v, v′) ∈ E, c ∈ C(G), (v �∈ X or c%2 �= p)}

Fig. 2. Game graph Gp
X for G from Fig. 1 and X being {v0}; only nodes and edges

reachable (in non-alternating sense) from X × {⊥} in Gp
X are shown, as this is all

that is needed for deciding which nodes in X are contained in Wp
r(G,X). The winning

strategy for player 0 requires her to make different choices from the same nodes of G
when they are combined with different colors: player 0 needs to move from (v1, 3) to
(v2, 2) and from (v1, 2) to (v0, 2) in Gp

X

Note that relation E′ is even contained in (V × C(G)⊥) × (V × C(G)) and
contains dead ends (nodes that don’t have outgoing edges in the game graph).
The latter is not an issue since all dead ends in Gp

X are target nodes for the
alternating reachability in Gp

X . Figures 2 and 3 show examples of this construc-
tion.

The intuition of game graph Gp
X is that player p can win node v in G for

reaching (X, p) under parity iff player p can win the (alternating) reachability
game in Gp

X for target set X × {c ∈ C(G) | c%2 = p}. We state this formally:

Theorem 1. For G and Gp
X as above, let Z be X × {c ∈ C(G), c%2 = p} and

W be {v ∈ V | (v,⊥) ∈ Attrp(G
p
X , Z)}. Then W is the winning region of player

p in G for reachability of (X, p) under parity.

Proof. First, let Wp = Wp
r(G,X) be the winning region of player p in G for

reachability of (X, p) under parity. Since this game has a Borel defined winning
condition, there exists a strategy τ : V ∗ ×Vp → V such that all plays conforming
with τ and starting in Wp are won by player p for reachability of (X, p) under
parity.

We write τ ′ for the same strategy but applied to Gp
X whilst ignoring the

second component of nodes in Gp
X . (We note that E′ updates the second com-

ponent of nodes in Gp
X deterministically.) Consider a play π in Gp

X that starts in
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Fig. 3. Game graph Gp
X for G from Fig. 1 and X being {v0, v2}. As in Fig. 2, only

nodes and edges reachable (in non-alternating sense) from X × {⊥} in Gp
X are shown.

The winning strategy for player 0 allows her to make choices that do not depend on
the color annotating the states. She can move from (v1, c) to (v2, 2) regardless of the
value of c.

Wp × {⊥} and conforms with τ ′. The projection of π onto the first components
of its nodes is a play in G that starts in Wp and conforms with τ . Therefore,
that play is won by player p in G, and so it is also won by player p in Gp

X .
Second, it remains to show that {v | (v,⊥) ∈ Attrp(G

p
X , Z)} is contained in

Wp. Let δ′ be a winning (attractor) strategy for player p in Gp
X for the attractor

Attrp(G
p
X , Z). As an attractor strategy, δ′ is memoryless. That is, for every node

(v, c) ∈ Vp×C(G)⊥ we can write δ′(v, c) and this is in V ×C(G). For a sequence of
nodes π = v0, . . . , vn, let c(π) denote min{c(vi) | 0 ≤ i ≤ n}. Let δ : V ∗ · Vp → V
be the strategy obtained from δ′ by setting δ(π · v) = δ′(v, c(π · v)). Then δ is a
strategy in G. Every play that begins in W = {v | (v,⊥) ∈ Attrp(G

p
X , Z)} and

conforms with δ in G can be extended to a play in Gp
X that begins in Attrp(G

p
X , Z)

and conforms with δ′ by adding the deterministic second components. Therefore,
this play is winning for player p in Gp

X . It follows from the construction of E′

that player p reaches X from W = {v | (v,⊥) ∈ Attrp(G
p
X , Z)} such that the

minimal color encountered on the way in G has parity p. �
This theorem also gives us an upper bound on the complexity of solving

games for reachability of (X, p) under parity, noting that alternating reachability
is linear in the number of edges of the game graph, and that Gp

X has at most
|E | · |C(G) | many edges.

Corollary 1. For G, p, and X as above, the reachability game in G for (X, p)
under parity can be solved in time O(|E | · |C(G) |).

We later consider the issue of whether memoryless strategies suffice for win-
ning in G for reachability of (X, p) under parity (they do not). However, from
the proof of Theorem 1 it follows that the size of memory required is bounded
by the number of colors in the game (plus 1).

4 Monotone Functions for a Partial Solver

Let player p win node v for reaching (X, p) under parity in G. Then player p can
make sure that X is reached from v, and that X can be reached from v such
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that the minimal color encountered so far has color parity p. If all nodes in X
are won by player p, node set X is then won by player p in the parity game G:

Lemma 2. For all G, X, and p such that X is contained in Wp
r(G,X), player

p wins all nodes from X in parity game G.

Proof. For each v in X, player p has a strategy σv with finite memory such that
all plays beginning at node v and conforming with σv will reach again some node
in X such that the minimal color of that finite play has parity p. Because X is
contained in Wp

r(G,X), player p can compose all these strategies to a strategy
σp with finite memory as follows:

From v0 in X, she plays conform with σv0 until a finite play v0 . . . vk is
generated such that vk is in X and min{c(vj) | 0 ≤ j ≤ k} has color parity p. We
know that such a finite subplay will be generated by σv0 as it is a winning strategy
for player p witnessing that v is in Wp

r(G,X). At node vk, player p now continues
to play conform with strategy σvk

. She can continue this composition pattern to
generate an infinite play π = v0 · · · vk · · · that is partitioned into infinitely many
finite sub-plays (πi)i≥0 that begin and end in X (and may contain other nodes
in X) and that each have some minimal color ci with parity p.

Since G has only finitely many nodes, this means that all colors that occur
infinitely often in π are greater than or equal to some color that occurs as
minimal color in infinitely many sub-plays πi (and so has parity p and also
occurs infinitely often in π). Therefore, player p wins π in the parity game G
and so the described strategy is also winning for player p on node set X in parity
game G. �

We now put this lemma to use by characterizing such winning node sets as
fixed points of a monotone function. For that, let V p be the (possibly empty) set
of nodes of G that have color parity p, that is V p equals {v ∈ V | c(v)%2 = p}.
Let us consider the function F p

G, defined by

F p
G : P(V p) → P(V p), F p

G(X) = X ∩ Wp
r(G,X) (2)

Lemma 2 then says, in particular, that all non-empty fixed points of F p
G are node

sets won by player p in parity game G. That function is monotone:

Lemma 3. For all G and p, function F p
G defined in (2) is monotone.

Proof. Let X and Y be subsets of V p such that X is contained in Y . We need to
show that F p

G(X) is contained in F p
G(Y ) as well. By definition of F p

G, monotonic-
ity follows if X or Y is empty. So let X and Y be non-empty. Since X ⊆ Y and
since intersection is monotone, it suffices to show that Wp

r(G,X) is contained in
Wp

r(G,Y ). So let v be in Wp
r(G,X). Then player p has a winning strategy that

ensures that all plays from node v reach X such that the minimal color encoun-
tered thus far has parity p. Since X is contained in Y , this means that all such
plays will also reach Y with minimal color encountered en route. Therefore, the
winning strategy for v ∈ Wp

r(G,X) is also a winning strategy for v ∈ Wp
r(G,Y ),

and so v is in Wp
r(G,Y ) as claimed. �
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Fig. 4. Function F 0
G is no longer always monotone when Wp

r(G,X) has acceptance
condition that looks at the minimal color of the prefix for the first reached element of
X instead of a non-deterministally chosen first or future element of X. For G above
and X = {v3, v5} and Y = V 0, we would then have X ⊆ Y but F 0

G(X) = {v3, v5}
would not be contained in F 0

G(Y ) = {v0, v1} under that modified acceptance condition

Neither the monotonicity of F p
G nor the result of Lemma 2 depend on the fact

that all nodes in X have color parity p, nor that anything is known about colors
in X; for Lemma 2, it only matters that all nodes in X are also in Wp

r(G,X).
It is of interest to note that function F p

G would not be monotone if we were to
change the acceptance condition for reaching (X, p) under parity to mean that
player p has to get minimal color parity p at the first time she reaches X after
the first node in the play. Formally, player p would win a play π iff there were
some j > 0 with πj in X such that min{c(πi) | 0 ≤ i ≤ j}%2 equals p and
there were no k with 0 < k < j such that πk would be in X. The resulting
non-monotonicity of this modified acceptance condition is illustrated in Fig. 4.

Monotonicity of F p
G means that either all its fixed points are empty or its

greatest fixed point is non-empty. This suggests an algorithm that recursively
computes such greatest fixed points for each player p, and removes non-empty
ones as being recognized winning regions for player p from parity game G until
either G is solved completely or both F 0

G and F 1
G have only empty fixed points.

The pseudo-code for this algorithm psolC is shown in Fig. 5.
When a greatest fixed point is discovered for player p, the partial solver

removes the p attractor of that fixed point in parity game G from G, not just
the fixed point. This is sound since winning node sets for players in parity games
are closed under attractors for those players. The pseudo-code does not show the
accumulation of the removed node sets into winning regions, as these are routine
administrative matters that only detract from the essence of this partial solver.

We show soundness and upper bounds on the complexity of psolC:
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Fig. 5. Partial solver psolC: in Gp
X , only X ∩Wp

r(G,X) needs to be computed. So this
is implemented by only constructing nodes and edges in Gp

X that are reachable from
X × {⊥} in the non-alternating sense

Theorem 2. Let G be a parity game as above. Then psolC(G) runs in time
O(|E | · |C(G) | · |V |2), space O(|E | · (1+ |C(G) |)), and all node sets Attrp[G,X]
it removes from (residual instances of) G are won by player p in the parity
game G.

Proof. Since Wp
r(G,X) can be computed in O(|E | · |C(G) |), each fixed-point

computation in psolC(G) runs in O(|E | · |C(G) | · |V |) as it can have at most
|V | iterations. But there can also be at most 2 · |V | many such fixed-point
computations in total as each subsequent such computation requires that at
least one node has been removed from G beforehand.

The upper bound on the space complexity follows since the size of Gp
X is the

dominating factor for space requirements of psolC – larger than the size of G,
since there are at most |E | · (1 + |C(G) |)) many edges in Gp

X , and since there is
no need to keep copies of Gp

X once X ∩Wp
r(G,X) has been computed in psolC.

The remaining soundness claim for partial solver psolC directly follows from
Lemma 2 and from the aforementioned fact that winning regions of players in
parity games are closed under attractors of those players. The latter also ensures
that winning regions of recursive instances of G are winning regions of G. �
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It turns out that reachability of (X, p) under parity cannot be solved with
memoryless strategies in general, in contrast to the solving of parity games:

Theorem 3. Solving alternating reachability under parity requires finite mem-
ory in general.

Proof. It suffices to give an example where this is the case. Recall the simple par-
ity game G from Fig. 1. Let p be 0 and X be {v0}. Then W0

r(G,X) equals V and
so player 0 wins all nodes for reachability of (X, 0) under parity. But she cannot
realize this with a memoryless strategy σ0, for either σ0(v1) would equal v2 (and
then player 1 can detract from X by moving from v2 back to v1) or σ0(v1) would
have to equal v0 (in which case player 1 can move from v0 to v1 to generate an
infinite play in which all prefixes that reach X have odd color 3). Let the strategy
σ′
0 : V ∗ · {v1} → V be defined, for all w in V ∗, by σ′

0(w · v1) = v0 if v2 is in w;
and σ′

0(w · v1) = v2 otherwise. Strategy σ′
0 has finite memory and is winning on

all nodes for reachability of (X, 0) under parity: σ′
0 ensures that v0 is reached, and

that v0 is reached only after v2 has been reached. This means that the minimal
color encountered until X is reached equals 2, a win for player 0. �

The implication of Theorem 3 is that even though psolC identifies winning
regions in the parity game the strategies that it allows us to construct, in gen-
eral, require memory. At the same time, we know that there exist memoryless
strategies for both players from their respective winning regions in the parity
game.

Although finite memory is required in general, we note that Y = V 0 is the
greatest fixed point of FG

0 for G from Fig. 1, and that the memoryless strategy
σ0 above is winning for W0

r(G,Y ) = V . This raises the question of whether non-
empty greatest fixed points of F p

G ever require corresponding winning strategies
with finite memory or whether they always can be memoryless. This is also
apparent in the derived games G0

X and X0
Y depicted in Figs. 2 and 3, respectively.

We formulate this problem as a research question:

Question 1. Is there a parity game G and player p where the greatest fixed
point X of F p

G is non-empty and player p does not have memoryless strategies
for witnessing that X is contained in Wp

r(G,X)?

If no finite memory is needed for greatest fixed points of F p
G, then psolC

might be able to compute memoryless winning strategies for parity game G. Let
us next give an example of how psolC may solve games completely:

Example 2. Let us consider the execution of psolC(G) for parity game G in
Fig. 4 (for the acceptance condition as in Definition 1). Initially, p = 0 and
X = {v0, v1, v3, v5} = G0. Then psolC detects in fixedPoint that X is the
greatest fixed point of F 0

G and removes its 0 attractor in G (which is all of V )
from G. Thus psolC completely solves G and recognizes that all nodes are won
by player 0. Note that X is a fixed point of F 0

G since W0
r(G,X) equals V : (i)

player 0 wins node v0 as player 1 can only move to v3 or v5 from there and so
reach X with minimal color 0; (ii) player 0 wins node v1 since player 1 can only
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Fig. 6. Parity game G, owned by player 1, won by player 0, and where psolC cannot
solve even a single node

move to v0 from there and so reach X with minimal color 0; (iii) player 0 wins
node v2 since player 1 can only generate the prefix v2v1v0 from there and so get
minimal color 0 for this second reach of X; (iv) player 0 wins v3 since player 1
can either move from there to v2 and so generate a prefix v3v2v1v0 with minimal
color 0 for his second reach of X or player 1 can move to v4 from where she can
only move to X with minimal color 2 for the first reach of X; (v) player 0 wins
v5 for symmetric reasons; and (vi) player 0 wins v4 because player 1 can only
reach X from here with minimal color 2 on the first reach of X.

Solver psolC is partial in that it may not solve even a single node in a parity
game. We illustrate this with an example:

Example 3. Figure 6 shows a parity game G for which psolC solves no nodes
at all. For p = 0, set X is initially V \ {v1}. (i) Node v0 is lost by player 0
since player 1 can move from there into the cycle (v2v6)ω with minimal color
1. Player 0 wins all other nodes in X. Therefore, the next value of X equals
{v2, v3, v4, v5, v6}. (ii) Now, nodes v4 and v5 are lost by player 0, as player 1 can
move from them to node v0 (which is no longer in X) and then play as for the
initial X to get minimal color 1. Player 0 wins all other nodes in X. Therefore,
the next value of X equals {v2, v3, v6}. (iii) Next, node v3 is lost by player 0, as
player 1 can move from there directly to node v4 (which is no longer in X) and
then enter the cycle (v0v5)ω and so avoid X altogether. Player 0 wins nodes v2
and v6 though. Therefore, the next value of X equals {v2, v6}. (iv) Now, player
0 loses v2 as player 1 can avoid reaching that node again from v2. Player 0 still
wins node v6. Thus, the next value of X equals {v6}. (v) Finally, player 1 can
avoid reaching X again from node v6 and so wins v6, making X empty.

Clearly, F 1
G computes an empty fixed point as all nodes in parity game G are

won by player 0. The inability of psolC to solve even a single node in G seems to
stem from the fact that the acceptance condition for W0

r(G,X) captures a weak
parity acceptance condition [1] and not a parity acceptance condition.

We could extend the types of F p
G to be P(V ) → P(V ). The proofs for

monotonicity and for fixed points being won by player p in the parity game
G would still carry through then. It may be of interest to compare a variant of
psolC based on greatest fixed points for this extended type of F p

G to psolC: that
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variant may run slower in practice but may solve more nodes in G. However,
it will still be a partial solver as can be seen from Example 3: for the version
of psolC based on this extended type, both v0 and v1 would be removed from
initial X = V in the first iteration and so this still would compute empty fixed
points only.

5 Fatal Attractors

Our work in [13] defined and studied monotone attractors and built partial solvers
out of them. Let X be a non-empty node set of G where all nodes in X have color
c, and set p to be c%2. Monotone attractors MA(X) were defined in [13]. For X as
above, and subsets A of V this definition is as follows:

mprep(A,X, c) = {v ∈ Vp | c(v) ≥ c ∧ v.E ∩ (A ∪ X) �= ∅} ∪
{v ∈ V1−p | c(v) ≥ c ∧ v.E ⊆ A ∪ X}

MA(X) = μZ.mprep(Z,X, c) (3)

where μZ.f(Z) denotes the least fixed point of a monotone function f : P(V ) →
P(V ). It follows that MA(X) is the set of nodes in G from which player p can
attract to X whilst avoiding nodes of color less than c. In [13], we called such
an X fatal if all of X is in that attractor (i.e. when X ⊆ MA(X)). In Theorem 2
in [13], we showed that all such fatal attractors are won by player p.

To relate this to our work in this chapter, an infinite play π would be won in
this monotone attractor game by player p iff there is some j > 0 with πj in X
and c(πi) ≥ c for all i with 0 ≤ i < j; so X can be reached on π with minimal
color c at πj . This implies that all such fatal attractors X with node color c are
fixed points of F p

G and are therefore contained in the greatest fixed point of F p
G.

We can use this to prove that psolC is more effective than the partial solver
psolB defined in [13]:

Theorem 4. Let psolB be the partial solver defined in Fig. 7 and let G be a
parity game. The call psolC(G) decides the winner of all nodes for which call
psolB(G) decides a winner.

Proof. For all players p, the acceptance condition for monotone attractors as
discussed above implies that all fatal attractors for that player in G (node sets
X of some color c with parity p such that X ⊆ MA(X)) are contained in the
greatest fixed point Z of F p

G. By Theorem 5 in [13], the order of fatal attractor
detection does not affect the output of partial solver psolB. Therefore, we can
assume that all fatal attractors X for player p are contained in the greatest fixed
point Z of F p

G. But by monotonicity, their p-attractors Attrp[G,X] are then also
contained in the p-attractor Attrp[G,Z] of Z. Thus, it follows that all nodes that
are decided by psolB(G) are also decided by psolC(G). �

In [13], we also studied a more precise but more complex partial solver psolQ.
Although the design of psolQ has superficial similarities to that of psolC, the
latter is more precise: at noted in [13], psolQ does not solve even a single node
for the parity game in Fig. 8. But psolC solves this game completely.
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Fig. 7. Partial solver psolB from [13] (figure is a reproduction of Fig. 3 in [13])

Fig. 8. A 1-player parity game that psolC solves completely (as {v0, v4, v7} is greatest
fixed point of F 0

G) but for which psolQ in [13] solves no nodes (figure is Fig. 5 in [13])

6 Experimental Results

By Theorem 4, we know that psolC will solve completely all games that psolB
solves completely. From [13], we know that psolB completely solves many struc-
tured benchmarks. Therefore, there is little value in running psolC over these
structured benchmarks again. This is why we focused our experimental effort
here an random parity games.

We now report our experiments we did on randomly generated games. The
aims of these experiments are

1. to experimentally confirm that psolC solves all nodes that psolB solves, as
proved in Theorem 4

2. to compare running times of psolC and psolB over a large set of random
games

3. to determine game configurations for which psolC does not really solve more
than psolB does.

All our experiments were conducted on a test server that has two Intel R©

E5 CPUs, with 6-core each running at 2.5 GHz and 48 G of RAM. Experiments
were grouped into game configurations, where we generated 100,000 games for
each such configuration and ran psolB and psolC against these games. We also
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used Zielonka’s solver [29] for regression tests to ensure that psolB and psolC
correctly under-approximate winning regions, all of these tests passed.

The game configurations used are shown in the “Game Mode” column of
Fig. 9. Each such mode is denoted by xx-yy-aa-bb. The xx is the number of nodes
in a game, and the owners (player 0 or 1) of the nodes are chosen independently at
random. The color of each node is also uniformly chosen from set {0, 1, . . . , yy},
and has between aa and bb out-going edges to randomly selected successors in
the game.

We now summarize key facts that we can observe from the experimental
results shown in Fig. 9:

– psolB has never solved more nodes than psolC, experimentally confirming
Theorem 4 (column #10).

– For games with low edge density (i.e., when aa-bb equals 1-5), psolC solves
more than psolB for around 10 % of games (#9).

– For games with higher edge density (i.e., when aa-bb is different from 1-5),
psolC doesn’t appear to have an effect over psolB (#9).

– psolC takes significantly more time to execute than psolB for high edge den-
sity games (#2).

– Our experimental results suggest that the psolC lapse time increases as the
color cap increases, whereas we don’t observe a similar increase for psolB (#2
and #3).

Fig. 9. Our experimental results for the partial solver psolC. The legend for the 10
data columns above is given in Table 1.

We note that these experiments took quite some time to complete. For exam-
ple, the total running time of psolC for these 800,000 random games was more
than 28 days (if converted to calendar time). The experimental data we collected
suggest that the comparison between psolB and psolC is bimodal on random
games: either psolC is no more effective than psolB on a given game mode, or
it appears to be more effective on about 10% of games for a given game mode.

The partial solver psolC may therefore have more theoretical than practical
value. However, a staging of psolB and psolC may work reasonably well in
practice: on input game G, first run psolB to obtain residual game G′; and then
run psolC only on G′ and only when G′ is not empty.
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Table 1. Legend for experimental data shown in Fig. 9: G’B represents the number of
games not completely solved by psolB. Similarly, G’C represents the number of games
not completely solved by psolC.

7 Other Related Work

Some easy static analyses for parity games have become part of the folklore of
how to preprocess parity games. For example, the tool PGSolver can eliminate
self-loops (nodes v with (v, v) in E) and dead ends (nodes v for which there is
no w with (v, w) in E) [12]. The latter can be seen as justification for defining
parity games not to have dead ends, as we have done in this chapter.

In [17], progress measures are defined and recognized as representations of win-
ning strategies. A monotone function over a complete lattice is then defined such
that pre-fixed points of that function capture progress measures. A least fixed-
point computation therefore can compute the winning region and a winning strat-
egy for a chosen player. This algorithm has exponential running time, since the
complete lattice may be exponentially larger than the parity game. However, the
algorithm runs on polynomial space, unlike some other known algorithms for solv-
ing parity games.

Our work relates to research on the descriptive complexity of parity games.
In [6], it is investigated whether the winning regions of players in parity games
can be defined in suitable logics. We mention two results from this paper: it
is shown that this is indeed possible for guarded second-order logic (even for
infinite game graphs with an unbounded number of colors); and for an arbitrary
finite game graph G (the setting of our chapter), it is proved that least fixed-
point logic can define the winning regions of G iff these winning regions are
computable in polynomial time.

In [14], a transformation is studied that can map a partial solver ρ for parity
games to another partial solver lift(ρ) that first applies ρ until it has no effect on
the residual game. Then, lift(ρ) searches for some node v in Vp with more than one
outgoing edge such that the commitment to one such edge (i.e. the removal of all
other edges outgoing from v) would make partial solver ρ discover that node v is
won by player 1 − p in that modified game. If so, it is sound to remove edge (v, w)
from G and then try lift(ρ) again until no such effect can be observed for both p.
It was proved in [14] that lift(ρ) is sound if ρ is sound, idempotent, and satisfies a
locality principle; and it was shown that psolB satisfies these properties.
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8 Conclusions

In this chapter, we studied how one may define static analyses of parity games
that run in polynomial time and space and compute parts of the games’ winning
regions. In particular, the quality of such a static analysis could then be measured
by how often it computes winning regions completely, or by what percentage
of the winning region it computes across a range of random and structured
benchmarks. We developed firm foundations for designing such static analyses,
using a novel kind of game derived from parity games: reachability under parity.
The intuition of such a game is that player p can reach a node set X whilst
ensuring that the minimal color encountered en route has parity p.

We showed that such new reachability games are determined, demonstrated
how one can implement their solution efficiently, and used this notion of game
to define monotone functions over parity games – one for each player of the
parity game. The greatest fixed-points of these functions were proved to be con-
tained in the winning region of the corresponding player in the parity game.
This insight led us to design a partial solver psolC and its experimental evalua-
tion demonstrated that it is a powerful static analysis of parity games that can
solve completely many types of random and structured benchmarks. Theoretical
analysis also showed that these monotone functions generalize, in a more canon-
ical and less ad hoc manner, work on fatal attractors that we had conducted
previously [13]. In particular, we proved that psolC is more effective that the
partial solver psolB in [13] that performed best in practice.

The decision problem for parity games, whether a given node is won by a
given player, is in UP∩ coUP [16] and so contained in NP∩ coNP. It is therefore
perhaps no great surprise that all known algorithms that completely compute
such winning regions run in worst-case exponential or sub-exponential time in
the size of these games. One may therefore think of our chapter as taking a com-
plementary approach to attempting to answer the longstanding open problem of
the exact complexity of said decision problem for parity games: how to design
static analyses that run in polynomial time (relatively easy to do) and that are
provably computing the exact winning regions of all parity games (likely very
hard to do under these constraints of efficient static analysis). We hope that the
reader may find this approach to be of genuine interest so that he or she may
pursue it further.
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Abstract. Post-Stuxnet, the last couple of years has seen an increasing
awareness of cyber threats to industrial control systems (ICS). We will
review why these threats have become more prominent. We will explore
the differences between Enterprise IT security and cyber security of ICS.
Game Theory has been used to provide decision support in cyber security
for a number of years. Recently, we have developed a hybrid approach
using game theory and classical optimisation to produce decision support
tools to help system administrators optimise their investment in cyber
defence. We will describe how our game theoretic work might be used to
provide novel approaches to protecting ICS against cyber attacks.

1 Introduction

Originally isolated, Industrial Control Systems (ICS) have become increasingly
connected to organisational IT functions and networks, particularly as the tech-
nology necessary to deliver both has converged and proliferated. ICS-CERT pro-
vide a regular review of the growing threat1 which shows an increase from 9
reported incidents in 2005 to 257 in 2013 and 245 in 2014. About 70 % of the
reported incidents occured in the energy or critical manufacturing sectors.

Sometimes the term Operational Technology (OT) is used to refer to the
ICS component of an organisation’s infrastructure. Whilst offering efficiencies
in terms of ‘business as usual’ costs, the trend towards increasing integration
has exposed ICS to a greater range of vulnerabilities with potentially wider
scale and inter-organisational impacts. Since major aspects of national critical
infrastructure rely on the industrial exploitation of ICS, governments have taken
active steps in improving this security landscape in recent years, with initiatives
being represented by [3,7] and a more recent UK-focussed approach by [1].

Generally, an ICS instance may be described as a set of supervisory devices
(including a single device in some cases), that control the actions and reactions
of field devices through the acquisition of data and the issuing of commands;
where the field devices are responsible for execution of a given industrial process
or set of processes. An abstract representation of an ICS is shown in Fig. 1. At
the heart of the system is a feedback loop which includes the physical process
that is being controlled, sensors and actuators and a controller. The control room

1 https://ics-cert.us-cert.gov/ICS-CERT-Year-Review-2013.
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interface through a Human Machine Interface (HMI) is also an important aspect
of any ICS. Increasingly, there is also the possibility of remote maintenance
and diagnostics. Every one of these components and the communication links
between them can be vulnerable to cyber attack. A typical ICS may contain
multiple control loops of this kind and they may be cascaded. A key component
which is not shown explicitly in this schematic diagram is the Data Historian
which is a centralised database that logs process information from the ICS; this
can be a key point of contact between the ICS and the Enterprise IT system
because the data can have tremendous business value as well as being necessary
for controlling the processes.

ICS can take on a range of configurations, involving diverse mixtures of hard-
ware, software, human processess and actions, network topologies and communi-
cation protocols. Today, ICS can be found operating in organisations of all types,
ranging from large multinationals to regionally focussed SMEs. Across this scale,
important differences in how ICS are implemented exist and require attention,
as previously isolated implementations are becoming intra-organisationlly and
inter-organisationlly connected, motivated by a mixture of actual and perceived
business benefits.

In large scale industrial processes, such as utilities, ICS are manifest as Super-
visory Control and Data Acquisition (SCADA) systems. SCADA systems are
characterised by geographically dispersed control targets requiring centralised
management over typically disparate communication networks, implementing
differing protocols and modalities, with varying reliability and latency. At more
regional organisational scales, such as may be found in manufacturing plants,
access to high reliability networks enables ICS specification to be freed of such
SCADA implementation constraints, giving rise to ICS referred to as Distributed
Control Systems (DCS). At the smallest scales, specialised computers known
as Programmable Logic Controllers (PLC) provide control of limited numbers
of devices. In recent decades, PLC have evolved from functionally rudimen-
tary devices to highly capable independent computing systems, representing the
increased sophistication of ICS systems at their edge. It follows from the above
discussion that SCADA systems are often comprised of numerous DCS and PLC
subsystems and components.

Cyber security of Enterprise IT systems often uses the acronym CIA which
stands for Confidentiality, Integrity and Availability. Confidentiality is about pre-
venting unauthorised access to data, Integrity is about the accuracy of data, and
Availability is about ensuring that authorised access to data is always possible.
Given national and international legislation on data protection, Confidentiality
is often seen as the most important of these, so CIA does reflect this emphasis
(apart from being a good security acronym!). Whilst ICS are repositories of valu-
able operational data, cyber attacks on ICS are often aiming to achieve sabotage
rather than espionage goals – physical damage rather than exfiltration or corrup-
tion of data per se. Given this shift in emphasis, some authors have called for a
reordering of the priorities to Availability (as the most important), Integrity and
Confidentiality. Some go still further to suggest that Reliability, Maintainability
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Fig. 1. An abstract representation of an ICS

and Availability should be the key criteria. Emerging standards are also beginning
to recognise that Safety and Security have important interactions – can a system
be safe if it is not secure against cyber attack?

Whilst ICS implementations are increasingly adopting IT solutions, there
are some critical differences which must be considered when developing an ICS
security programme:

– Responses from an ICS typically have to be in real-time or fixed time windows,
so there is an emphasis on that rather than high data throughput which may
be a goal in IT systems.

– Many industrial processes or control processes require continuous operation;
if outages can be tolerated, they often have to be scheduled far in advance
and any changes to the system have to be extensively tested off-line before
being deployed.

– Whilst cyber security programmes for IT systems might spend a dispropor-
tionate effort on protecting the central computing facilities (servers, etc...),
in ICS there is an increased importance of edge clients, such as Remote
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Terminal Units (RTUs). These are likely to be easier targets for an attacker
but a successful attack can have far greater impact than in a typical IT system.

– The purpose of an ICS is to control complex interactions with physical
processes; a cyber attack directed at an ICS is likely to manifest itself as
physical damage.

– Whilst edge clients have become more powerful, many will still be constrained
by resources such as power and storage. There may also be legal constraints
from the vendors which govern what solutions are deployable.

– The refresh cycle for ICS is much longer than typical IT systems. This gives
rise to legacy issues: an ICS deployed today may have to be good for 15–20+
years of operation. Some of today’s ICS will still be running early operat-
ing systems (DOS, Windows 9x and legacy proprietary systems). Many more
recently installed sytems will be running Windows XP and be expected to be
functional for many years to come.

– In a typical IT system, the device will be located in an office environment and
easy to access; in contrast access to ICS components can be difficult because
they may be geographically dispersed in remote, and sometimes hostile, envi-
ronments.

In addition to all of these constraints, the ICS operator is likely to have a
restricted budget and needs to make decisions about how to use that to best
protect the system against expected attacks. In our work on cyber security
of Enterprise IT systems, we have developed decision support tools based on
Game Theory to address this resource allocation problem. In the next section
we describe typical vulnerabilities in ICS. Section 3 reviews the types of security
controls that have been proposed for ICS. Section 4 reviews the game-theoretic
work and the hybrid approach to decision support that we have developed. We
conclude in Sect. 5.

2 Vulnerabilities

As observed by ICS-CERT2, a successful attacker would need to:

– gain access to the control system local area network
– gain understanding of the process
– gain control of the process

Most advice on protection of ICS suggests the use of firewalls and
De-Militarised Zones (DMZ) to protect the control system from the outside
world. As tools such as Shodan3 show, there are still many systems that are
exposed. One common attack route is via direct dial modems that are attached
to field equipment – this provides back-up communications if the primary, high-
speed lines fail; since many remote terminal units require no authentication or
have default, out-of-the-box, passwords this provides the attacker a route to
2 https://ics-cert.us-cert.gov/content/overview-cyber-vulnerabilities.
3 http://www.shodanhq.com.

https://ics-cert.us-cert.gov/content/overview-cyber-vulnerabilities
http://www.shodanhq.com
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control part of the system. The report from ICS-CERT lists a number of other
vulnerabilities which allow the attacker to gain access to the control system;
these range from piggybacking on the vendor support or field service process, as
reportedly used in the first version of Stuxnet [8], to SQL injection attacks via
the Data Historian database.

Having gained access to a control system, the attacker must then gain an
understanding of the process in order to disrupt it. The names or IP addresses of
the various components in the control system are a valuable part of this discovery
process. The Dragonfly group [13], also known as Energetic Bear in some circles,
appear to have been collecting this kind of information from companies in the
energy sector. This information is often gathered using some form of Remote
Access Trojan (RAT) – the Dragonfly group use the Havex RAT for this purpose.
In addition to configuration data, the second valuable target for attackers is the
operator HMI; successful compromise of the HMI can be exploited in the third
component described below.

The final component of the successful attack is to take control of the process.
This could entail:

– Sending commands directly to the field devices. This is facilitated by the fact
that power and processing restrictions, mean that the field devices perform
very little authentication and are likely to act on any well-formed command.

– Exporting the Human Machine Interface console back to the attacker to allow
them to behave as the current operator.

– Change the database which may result in actions in the control system for
some vendors’ systems.

– A man-in-the-middle attack to spoof protocol messages that may impact on
HMI displays and the behavipur of the field devices such as sensors and actu-
ators. A sophisticated attack such as Stuxnet [4,8] is likely to attack both
edge devices and spoof information appearing on the control consoles.

3 Controls

The SANS Institute coordinated the maintenance of a list of the Top 20 Cyber
Security Controls until 2013. The responsibility for stewardship and sustain-
ment has now passed to the Council on Cybersecurity [2]. Their list prioritises
the security functions which are effective against the latest advanced targeted
threats. For each control they give advice on how to implement the control and
they identify different levels of implementation which range from quick wins
through to advanced implementations. For example a quick win in producing an
inventory of authorised and un-authorised devices might be to deploy an auto-
mated asset discovery tool; a more advanced implementation might be to employ
client certificates to authenticate devices before they are allowed to connect to
the private network.

The Council identifies five tenets that underpin the security controls:

1. Offense informs defense – select controls which have been shown to be effective
against real-world attacks.
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2. Prioritisation – invest first in those controls that provide the greatest risk
reduction; this is an area where our game theoretic approach may support
the decision of where to invest.

3. Metrics – should be identified to communicate the effectiveness across the
organisation and to support rapid adjustment as required.

4. Continuous diagnostics and mitigation – which helps drive the priority of the
next steps.

5. Automation – where possible.

These basic tenets hold good for both Enterprise IT and ICS. The Council also
highlight a “first five quick wins” which are sub-controls that have the most
immediate impact:

– application whitelisting.
– use of standard, secure system configurations.
– patch application software within 48 h.
– patch system software within 48 h.
– reduce number of users with administrative privileges.

Whilst the first, second and fifth sub-controls are very effective, patching is not
always possible in the ICS, as discussed earlier. More needs to be done to identify
the best quick wins for ICS, but the patching sub-controls could lose out to others
such as:

– Ensure that only ports, protocols, and services with valid business needs are
running on each system.

– Conduct regular internal and external penetration tests.

In [2], the Council for Cybersecurity enumerate a number of attack types
that have informed the development of the list of security controls. For example,
one of the attacks that they describe is where the attackers scan for remotely
accessible service on target systems that are unneeded for business purposes
but provide an avenue for attack and compromise. They propose the following
controls: malware defences (CSC 5); secure configuration for network devices
such as firewalls, routers and switches (CSC 10); and limitation and control of
network ports, protocols and services (CSC 11). The quick wins in this case
include:

CSC 5: continuous monitoring; running of anti-malware software, if possi-
ble; configuring systems to prevent auto-running of content from removable
media and external devices; scan and block e-mail attachments.

CSC 10: compare firewall, router and switch configurations against standard,
secure configurations and record and deal with any deviations.

CSC 11: ensure that only ports, protocols and services with a validated business
need are running on each system; apply host-based firewalls or port filtering
on end systems that drop unauthorised traffic; keep all services up to date
and uninstall and remove any unnecessary components.
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Whilst the controls that we have discussed so far have been mainly technical,
there is also the need for operational and management controls. The operational
controls are protective measures that are usually implemented by humans rather
than machines. They include controls such as personnel security and physical and
environmental security. They also include user awareness, training and educa-
tion. The management controls concern policy issues and risk management. They
include supply chain security and security assessment and risk management. One
of the management controls is to develop a Defence in Depth architecture.

The NIST report on ICS Security [12] includes recommendations for Defence
in Depth for ICS. These range from organisational aspects to detailed techni-
cal guidance. From the former perspective, the guidance suggests the need for
detailed ICS security policies and training, adopting heightened security posture
as the threat level increases, providing physical access control and suitable inci-
dent reporting mechanisms. The technical measures range from a multi-layered
network topology with firewalls and De-Militarised Zones to the use of mod-
ern authentication systems for identifying users and the application of standard
security controls.

The SANS Institute [9] describe defence in depth as the concept of protect-
ing a computer network with a series of defensive mechanisms such that if one
mechanism fails, another will already be in place to thwart an attack.

The adversarial threat to ICS potentially comes from many different sources
ranging from lone attackers, through criminal gangs and industrial spies to state-
sponsored groups; it is also important not to neglect the insider threat. The script
kiddie, a skilled attacker and authorised insider have some methods in common,
but each presents unique problems to a secure network. For instance, a firewall
does not provide any protection from an insider but should be a significant
hurdle for an attacker from the outside. Likewise, policies and procedures do not
mean anything to an attacker from the outside but should be part of the plan
to protect a network from insiders.

The ultimate objective of implementing a strategy of defence in depth is to
defeat or discourage all kinds of attackers. Firewalls, intrusion detection systems,
well trained users, policies and procedures, switched networks, strong password
and good physical security are examples of some of the things that go into an
effective security plan. For reasons explained above, none of these mechanisms by
themselves provides sufficient protection but when implemented together become
much more valuable as part of an overall security plan.

In addition to understanding the different adversarial threats, defence in
depth for an ICS requires a thorough understanding of the likely attack vectors:

– Backdoors and holes in the network perimeter.
– Vulnerabilities in common protocols.
– Attacks on field devices.
– Database attacks.
– Communications hijacking and man-in-the-middle attacks.

It is interesting to note that, whilst from a safety perspective defence in
depth is an inside-out concept (first line defence is closest to the asset being
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protected), from a cyber security perspective defence in depth is an outside-in
concept (successive layers of perimeter defence).

4 Game Theory and Cyber Security

We have been developing an approach to cyber defence based on game theory
[5,10]. To date we have concentrated on two player, zero sum games. The two
players represent a generic attacker and a system administrator. We consider
any system to have a number of targets that could be vulnerable to attack.
The system administrator has a budget to purchase and maintain a set of secu-
rity controls. We have also concentrated on commodity style attacks – known
attack patterns that target known vulnerabilities and that can be relatively eas-
ily purchased. Some vulnerabilities will require multiple security controls and
some controls will address multiple vulnerabilities. The outcome of our decision
support tool is advice on how to optimally use the available budget to protect
against the expected attacks.

Our earlier work concerns Enterprise IT systems. We consider a typical multi-
level architecture where levels are separated by firewalls or other protective
mechanisms such as data diodes. The more sensitive assets are protected by
being situated at deeper levels in the architecture. Advice in the ICS domain
also propose multi-level architectures [12]; a schematic of such an architecture
is shown in Fig. 2. The red lines from the Internet into the DMZ and the OT
zones are the kind of flows that we would seek to prevent but may be enabled
to allow remote maintenance and diagnostics.

Our approach involves identifying a number of targets that could be vul-
nerable to attack. Typical vulnerabilities are listed by organisations such as the

Fig. 2. An ICS architecture (Color figure online)
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SANS Institute4 and are assigned a CVE number. The SANS Institute also
describes typical exploitations of these vulnerabilities which we refer to as the
attack method. As an abstraction, we consider targets to be a pair of a vulnera-
bility and the depth within the architecture at which it exists; consequently all
assets at the same depth within the system which share a common vunerability
are considered to be a single target.

Controls are procedures or tools that can be used to prevent the exploitation
of vulnerabilities and to promote good cyber hygiene within an organisation.
Controls may be implemented in a more or less effective way. For example,
patching could be implemented when notified by vendor, on a regular and fre-
quent basis (e.g. once a day), on a regular but infrequent basis, ad hoc or never.
There is evidence that hackers are quick to exploit vulnerabilities as soon as they
are announced – see the statistics on ShellShock exploits for example5. Unfor-
tunately patching potentially conflicts with the safety requirements for ICS, so
may be infrequently, if ever, performed. In general, we model the level at which
each control is implemented. Of course, the purpose of implementing a control
is to prevent damage and we refer to the amount of damage prevented by the
control as the mitigation. The direct cost of a control is the cost to implement
and maintain it. There are also indirect costs associated with any control. In the
context of Enterprise IT systems, we have considered effects on system perfor-
mance, re-training costs and the effects on staff morale as examples of indirect
costs. In the context of ICS, system perfomance overheads or disruption, retrain-
ing and the costs of organisational change, such as increased physical security
are examples.

The model that we developed in [10] includes an Organisational Profile para-
meter. In that work we considered a profile which included information about
the organisation’s risk appetite, the priorities assigned to the different types of
indirect cost and the organisation attitude to the threat landscape – whether
the organisation is more concerned about current threats or potential threats.
In that work risks include the risk of data loss, business disruption and repu-
tational risk. In the ICS arena, we would expect to include the organisation’s
attitude to safety incidents as part of the risk profile. We use the profile as a
component in calculating the utility of a control.

We could create a large game to represent a system. In such a game the sys-
tem administrator strategies would involve schedules of controls, each applied at
a suitable level. In detail, if we have n controls, a schedule could be a n-tuple of
integers representing the level at which each control is applied. Attacker strate-
gies would involve the selection of targets to attack. Solving the game involves
finding a Nash Equilibrium (NE): in the simplest setting, the NE involves a
pure strategy – choice of a single schedule for the system administrator and a
single target for the attacker – for each of the two players such that neither can
improve their own payoff by unilaterally changing. In more complex situations,
the NE will involve probabilistic mixtures of strategies. In our application it is

4 www.sans.org.
5 www.hackmageddon.com.

www.sans.org
www.hackmageddon.com
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sometimes difficult to understand how to interpret mixed strategies as sensible
investment plans. In [6] we provide a detailed comparison of the pure game the-
oretic approach with traditional optimisation and a hybrid approach; we give
more detailed arguments for why the hybrid approach may be preferable. We
will sketch the hybrid approach below.

4.1 A Hybrid Approach

Rather than defining a single game, we develop a set of games for each con-
trol. The individual games are referred to as control sub-games. Each sub-game
includes strategies that apply that control up to a certain level. For example the
third sub-game would include the following strategies: don’t apply the control;
apply the control to level 1 – e.g. patching on an ad hoc basis; apply the control
to level 2 – e.g. patching on a regular but infrequent basis.

Since we are considering zero sum games, we just consider the utilities for one
player, the defender – the attacker utility will be the negative of the defender
utility. The utility for control c applied at level l for target t is defined as a
combination of the damage to the target and the indirect costs. In more detail,
the utility is defined as follows:

UD(cl, t) :=
IMPACT × THREAT × (1 − MITIGATION) − IND COSTS

The first summand represents the damage to the target. The IMPACT is derived
from the organisational profile. The THREAT is derived from information such
as the prevalence of the particular type of attack and the likelihood that the
attacker is aware that the system has an exploitable vulnerability; the SANS
Institute provide estimates of these values. Finally, (1−MITIGATION) deter-
mines the residual chance of loss when the control is implemented at the indicated
level.

The IND COSTS are the indirect costs associated with the control when
implemented at the selected level. It is worth noting that the indirect costs are
important in preventing the higher level applications of a control dominating the
lower levels – whilst the first summand may be less at higher levels, the indirect
costs may well be significantly more.

The Nash cybersecurity plan for the Defender is computed using a maximin
approach. In the control sub-game the plan will be a (mixed) strategy which
selects a level at which the control should be applied.

D∗
cl = argmax

Dcl

min
Acl

UD(Dcl, Acl)

so for the third control sub-game for control c, this might give 〈0, 0.7, 0.3〉: this
could be interpreted as patch on a regular basis for 30% of the most important
systems and patch the other 70% on an ad hoc basis.
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Similarly, we can compute the equilibrium for the Attacker:

A∗
cl = argmax

Acl

min
Dcl

UA(Dcl, Acl)

The Control Games focus on each control in isolation, the optimisation aims
to show the result of combining controls to produce the best overall cyberse-
curity plan for an organisation. We use an approach based on the Knapsack
algorithm [11]. The Knapsack algorithm is a classical optimisation algorithm
which determines the optimal allocation of resources within a given budget.

The particular form of Knapsack algorithm that we have used is a 0–1, Mul-
tiple Choice, Multi-Objective Knapsack. The reasons for this choice are:

0–1: A single control sub-game must either be chosen (1) in its entirety or
completely omitted (0).

Multiple Choice: For each control only a single control sub-game may be
selected.

Multi-Objective: Each target will be affected differently, so we define each as
an objective to be optimised.

The Knapsack optimises against a budget B. The direct costs of a control
consume some of the budget. We consider the following direct costs: Capital
Cost the cost of purchasing and implementing the control; and Labour Cost the
cost of maintaining the control.

The solution to the Knapsack specifies the level at which each control should
be implemented – including level 0 which means that the control is not imple-
mented. We denote the solution:

Ψ = {C1l1 , . . . , Cmlm}
indicating that control Ci should be implemented at level li.

The specification of the Knapsack is given as follows:

max
Ψ

min
ti

D∗(Ψ, ti)

s.t.
m∑

j=1

n∑

l=0

Γ (Cjl)zjl ≤ B

n∑

l=0

zjl = 1, zjl ∈ {0, 1},∀j = 1, . . . , m

where

– D∗(Ψ, ti) =
m∑

j=1

n∑

l=0

D∗(Cjl, ti)zjl.

– zjl is the 0–1 choice.
– Γ (Cjl) is the direct cost associated with control j at level l.

The solution effectively selects a set of control sub-games that give the best
defence within the specified budget. Notice that the solution of a sub-game may
be either a pure strategy or a mixed strategy. A pure strategy for a selected
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control will specify the level at which that control should be applied. Mixed
strategies give advice about the probabilistic mix of levels at which the selected
control should be applied (see above). We are currently developing a proof-of-
concept web-based decision support tool based on this approach.

5 Conclusions

There are a number of critical challenges that need to be addressed when con-
sidering the security of industrial control sytems; these include:

– What physical harm arises from the cyber threats? We have written about
this above but is it possible to develop a systematic framework for assessing
this?

– How can we express cyber threats as business risk? Whilst increasing numbers
of business leaders understand the need to protect their information assets,
largely thanks to data protection legislation, the need to protect industrial
control systems is less well understood. Can we develop both qualitative and
quantitative methods for conveying business risk in this area?

– What novel interventions can be devised to protect ICS?

This paper addresses the third of these in suggesting a new approach to deci-
sion support for systems administrators who are defending ICS against attack.
The framework described above assumes a known set of attacks. To cope with
previously unseen attacks we would need to develop a more sophisticated frame-
work possibly using Bayesian Games. This remains work for future study.

Future work will also involve considering non-zero sum games; in some of
our earlier work we have considered the situation where one player’s utility is an
affine transformation of the others. That is, for a two-player normal form game:

Aij = bDij + c

for attacker and defender utilities Aij and Dij and constants b and c. This does
capture some realistic situations – for example, where the attacker is only able
to realise a small part of the value of a compromised asset – whilst still admiting
efficient solutions.
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Abstract. In this paper, we discuss partition refinement as an algorith-
mic pattern for explicating semantic properties of a system directly in the
corresponding model structure in a co-inductive fashion. In particular,
we review a landscape of analysis and verification approaches under this
unifying perspective, which enables us to highlight their mutual profiles,
while it at the same time establishes a basis for their combination: The
common pattern establishes comparability, which reveals complementar-
ity, and indicates where and under which circumstances the considered
approaches may profit from one another. It can thus be regarded as a
guideline for systematically exploring the benefits of the corresponding
methods and their combinations.

1 Introduction and Motivation

Modern program analysis and automatic verification hinge on the interplay
between three entities: (1) the considered (software) system, (2) the property to
be verified/analyzed, and, last but not least, (3) a model, serving as a “mediator”
in the verification process. Its very nature is what defines the actual frame condi-
tions, like peculiarities of the system representation and the considered property,
as well as the way the fact is treated that most problems are, in full, undecidable.
In fact, the imposed triangle shown in Fig. 1 is an ideal structure to characterize
and classify today’s analysis and verification techniques, e.g., by highlighting
where manual effort is needed or at which point correctness/completeness might
be violated.

Traditional program analysis [18,29,40] can be characterized by, from today’s
perspective, simplistic algorithms that directly work on the source code (or its
imposed flow graph). It was their prime role to provide program locations with
information that allows for efficient code generation. Most popular are bit-vector
analyses that, e.g., reveal properties like liveness of variables and availability of
expressions in a syntactical fashion which can be proved to be correct: detected
properties hold, but not all of them are revealed. These algorithms are typi-
cally fast enough to be integrated in compilers without impairing the compila-
tion performance too much. Examples are dead code elimination [31], strength
reduction [12,30], and partial redundancy elimination [29].

Conceptually dual is traditional program verification [14,20]. It also works
on the source code, but it seeks completeness at the price of highly interactive
proofs, leading to the slogan, “one verified program, one Ph.D.”. In the following,
c© Springer International Publishing Switzerland 2016
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Fig. 1. High-level view of the analysis components and their dynamics

we will focus on automatic verification. Thus complex logical reasoning will only
be considered as much as it can be “encapsulated” by involving SAT or SMT
solvers [13].

In the eighties, model checking arose as a technique for verifying dedicated
decidable system scenarios, like finite automaton models of reactive systems, or
later also quite explicit models of hardware. Characteristic here were the prop-
erty languages, typically temporal logics. The main precondition for applying this
technology was the availability of an adequate abstract model. Indeed, the nineties
were characterized by the attempt to fight the so-called state explosion problem,
which is typically due to explicit modeling of data or concurrency. This fight still
goes on, but the means seem to change. Approaches like statistical model check-
ing [32], which are neither correct nor complete gain practical relevance. An early
success story, where small and appropriate models can automatically be gener-
ated is the data-flow analysis via model checking approach [46]. In this approach,
which nicely covers also the inter-procedural setting, models are essentially the
flow graphs. To obtain more expressive models, elaborations like property-oriented
expansion (POE) [47] can be used to improve the analysis results and consequently
the potential for subsequent optimizing program transformations.

The idea of expanding the model according to the property to be verified was
taken to its extreme in the predicate abstraction approach [15]. Characterizing
the state of a model solely via properties frees one from immediate state explosion
due to concurrency and explicit data modeling. In particular, combined with the
CEGAR (counterexample-guided abstraction refinement) approach [9], it allows
one to refine the model just by need. Of course, in extreme cases, many location
predicates may be required, essentially reflecting the whole flow of control, but
in particular in the case of distributed system verification it often leads to quite
concise models.

The rules of the game change dramatically in the case of black-box systems,
which can only be approached via their API or, even worse, their GUI. In this
case, automata learning technology [49] proved to be adequate. Essentially, this
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Fig. 2. Landscape of approaches based on partition refinement

leads to a test-based modeling approach, which – like statistical model checking,
which also has a test character – is doomed to be neither correct nor complete,
but in many cases surprisingly powerful.

2 Contribution

In this paper, we will review the described landscape of approaches (see also
Fig. 2) from the very intuitive, unifying perspective of partition refinement. Look-
ing at three quite different application scenarios, we will illustrate that partition
refinement, seen as a method to explicate semantic properties directly in the
model structure, is a powerful recurring theme of program analysis and verifica-
tion. More concretely, we will sketch:

– A new technique called lazy Property-Oriented Expansion, which combines
appropriate abstract collecting semantics [39] with a demand-driven (model)
node-splitting algorithm for tailoring the expressive power of the underlying
model structure for certain program analyses and optimizing transformations.
This technique is particularly well-suited for enhancing bit vector analyses like
partial redundancy elimination or partially-dead code elimination, whose very
syntactic nature prohibits that it can be derived as an abstraction from the
standard semantics in terms of state transformations. We will illustrate this
approach by looking at partial redundancy elimination. Characteristic for this
approach is that it directly works on the “what”-level, i.e., the refinement is
directly driven by which property is computed rather than how.
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– Two well-known variants of Counterexample-Guided Abstraction Refine-
ment [9], which are state of the art in today’s software verification, in par-
ticular, when effects like state explosion pose a problem. There refinement
mechanisms directly hinge on the standard semantics. We will illustrate these
approaches by considering a simple sequential program verification prob-
lem. Characteristic for these approaches is that their refinement takes places
entirely on the “how”-level.

– A completely programming language-agnostic automata learning-based app-
roach [49] to infer behavioral models via testing as a means of specification
mining [3], foundation for regression testing [17], black box checking [42], or
monitoring [6]. We will illustrate the approach by inferring the model of a sim-
ple registration protocol. This approach directly reflects the user perspective,
making it a “what”-level/API-level approach.

We will see that the first two techniques refine initial models in terms of control-
flow graphs, which means that they have the complete location information at
their disposal. In contrast, the latter two techniques start with (more or less) the
trivial one-state model, and automatically infer required location information via
their refinement steps. However, even though the considered four scenarios are
quite different in nature, they all follow the same pattern of refining partitions
of the state space on the basis of splitters, i.e., evidence of errors in the model
which need to be resolved. In the example for the first approach these are occur-
rences of program expressions which cannot be classified as redundant or fresh
in the current model. In the examples for the second and third approach, these
are so-called false positives or spurious counterexamples, i.e., paths of the model
which are unfeasible according to the standard semantics in the real system. In
the final example for the black-box approach, splitters are derived from coun-
terexample traces, i.e., traces that are either allowed by the model but not in
the real system or vice versa. While false positives and counterexample traces
sound similar, it should be noted that the former treats splitters at the “how”-
level (i.e., comprising facts about program variables and locations), whereas the
latter addresses splitters at the “what”-level, and therefore only comprise knowl-
edge about user-level observations. This has a direct impact on the refinement
technology: in the first case, this generally requires an SMT-based analysis for
revealing conditions that render the unfeasible path impossible also in the model,
while in the other case an automata-theoretic approach is required to take care
of the counterexample, either by adding or removing it from the model.

Besides these technical details, there is also a more fundamental difference
between the first three (white-box) approaches and the final black-box approach.
By their nature, and in contrast to most program analysis methods which are
provably correct, black-box approaches are deemed to be neither correct nor
complete. Nevertheless, automata learning-based techniques have proved to be
very powerful in practice, and they are currently the only choice for black-box
scenarios.

In the following, we will briefly sketch what we consider to be the “essence” of
partition refinement in Sect. 3, before we present the three application scenarios
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in Sects. 4–6. Section 7 concludes the paper with a discussion of the profile of each
of the presented methods from a practitioner’s view, exploiting the established
uniform perspective.

3 The Essence of Partition Refinement: The What
Perspective

From the pure “what” perspective (which contrasts the original “how”-oriented
description), partition refinement can be regarded as a systematic technique for
classifying members of (potentially very large or infinite) domains according to
some critical criteria in a co-inductive fashion. Its first occurrence [21] concerned
the domain of finite words Σ∗ over a finite alphabet Σ and the considered critical
criterion was “different future behaviors” in terms of residual languages of a
given language L: two words u and u′ of Σ∗ should be distinguishable if there is
a continuation v revealing their difference (a separating future), i.e.:

uv ∈ L ⇔ u′v /∈ L.

In essence, Hopcroft’s co-inductive algorithm stepwisely refines the initial two-
class partition {L,Σ∗\L}, which distinguishes the classes of accepted words from
rejected words. It does so by refining a class C whenever it finds a symbol a
and a class C ′ such that ∅ � {w ∈ C | wa ∈ C ′} � C. The result of this
refinement (splitting, according to the splitter (a,C ′)) of C are the two classes
C1 = {w ∈ C | wa ∈ C ′} and its (by definition non-trivial) complement in C,
C2 = C\C1. Based on Nerode’s Theorem [37], it can be shown that for regular
languages this procedure terminates after exhausting all potential splitters with
the smallest deterministic acceptor for this language. In fact, this is simply the
(unique) maximal fixpoint of the splitter functional, or, in other words, the
approach delivers the coarsest refinement of a given initial partition which is
stable under splitting.

Of course, there are some details one should be aware of:

– to be effective, one needs an adequate finite representation of all arising (inter-
mediate) partitions, and

– the split of a class according to a given splitter needs to be effectively com-
putable.

In Hopcroft’s case, this representation problem was solved by having some finite
deterministic acceptor to start with, which can be regarded as a finite upper
bound of any chain of successive splitter-based refinements, which guarantees the
termination of the well-know minimization algorithm for deterministic automata.

The power of this approach was later applied to show that exactly the same
partition refinement procedure provides a minimization algorithm for bisimula-
tion [36], just by dropping the determinism requirement for the initial accep-
tor [28].

Stepping back a bit, the “what” pattern of partition refinement can be char-
acterized by the following requirements:
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– A representation that allows to finitely represent each of the potentially arising
intermediate partitions of the typically infinite domain.

– A notion of a splitter, which allows to effectively refine any intermediate par-
tition (and thereby eliminate the previously revealed critical situation).

– An oracle that provides splitters until exhaustion. In the standard case we
assume that only finitely many splits are possible, leading to a terminating
algorithm that eliminates all critical situations (e.g., no word is classified
incorrectly). Otherwise the process of refinement can continue indefinitely, as
it would in general be the case when dealing with a non-regular scenario.

After termination (we assume that the process terminates), it results in a parti-
tion of the universe where all critical criteria are satisfied.

Rather than fully formalizing this pattern, we will formulate its ingredients
and illustrate its impact for the three application scenario described above:

– Lazy Property-Oriented Expansion: The initial partition is given by the
control-flow graph, the refinements by graphs arise through node splitting via
successively separating the cases of availability/redundancy of an expression
backwards along the transitions. The splitters are statement/location pairs,
where the redundancy property of the statement cannot be determined for the
location (cf. Sect. 4). The result is a model where all partial redundancies are
resolved, i.e., where an expression at a location is either definitely available
or definitely unavailable. Please note the underlying domain in this case: it
is essentially the set of all paths through the control-flow graph leading from
the initial location to some internal location.

– Counterexample-Guided Abstraction Refinement: The initial partition is given
either by the control-flow graph (first case) or by a one-state abstraction.
The refinements arise through node splitting via the introduction of separat-
ing predicates at the program variable/location level. Splitters are predicates
deduced via SMT solving from revealed false positives (cf. Sect. 5). The result
is a model where all false positives are eliminated. In this case the underlying
domain is the set of all potential states, i.e., location/store pairs.

– Automata Learning: The initial partition is given by a one state abstraction.
Refinements arise through node splitting on the basis of distinguishing futures,
which take the role of splitters. These distinguishing futures are extracted from
counterexample traces (cf. Sect. 6). Analogously to the setting of Hopcroft’s
original algorithm, the domain here is simply the set of all finite words over
the interaction alphabet.
After exhaustion of all splitters, the result is a minimal model of the behavioral
language1.

Thus, in fact, in all three cases an infinite domain is partitioned, however (typ-
ically) in a finitary manner. This cannot be guaranteed in general, but needs

1 Note that in practice the correctness of the model cannot be guaranteed, as a perfect
splitter oracle cannot be implemented but instead needs to be approximated through
testing.
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to be imposed by the considered scenario. Otherwise, the partition refinement
process will not terminate, as it would be the case if, e.g., Hopcroft’s algorithm
would be applied to a context-free scenario (cf. Sect. 7).

4 Property-Oriented Expansion

Property-oriented expansion (POE) [47] is a program transformation technique
based on unrolling (or expanding) the CFG. The expansion is driven by certain
properties to be analyzed. An example of such a transformation is the elimina-
tion of all partial redundancies in a program: an expression e is called partially
redundant at a certain point in the program if it has been computed on some,
but not all program paths leading to this point. In [47] it was shown that POE is
more powerful than traditional, motion-based approaches in eliminating partial
redundancies.

POE can be regarded as the application of a non-standard structural opera-
tional semantics (SOS) [44]. An SOS is given as a set of inference rules describing
the transformation of a configuration 〈S, σ〉 (consisting of a statement S and a
valuation σ) to either a successor configuration 〈S′, σ′〉, or a final valuation σ′.
In the standard case, the valuation σ assigns a value to each variable in the pro-
gram. However, this can be generalized to arbitrary analysis properties, which
– in contrast to an abstract interpretation – need not correspond to sets of con-
crete valuations in any way, and in particular need not be elements of a lattice.
An example of such a non-standard SOS is shown in Fig. 3. Here, σ corresponds
to the set of available expressions. The sequential composition rule (Fig. 3a) is
the same as in the standard case. The assignment rule (Fig. 3b) specifies how an
assignment x := e changes the set of available expressions: all expressions which
contain x become unavailable, and the expression e becomes available if it does
not contain x.

In traditional POE, starting with an initial property σ0 at the initial location,
the CFG is expanded by inserting a new location in the transformed CFG for
each reachable pair of a location l and property σ. However, this can lead to a
blow-up of the original program, which might even be unnecessary as it occurs
independently of whether it is required for the analysis.

Lazy POE. To alleviate this, we propose the following, new approach (called
lazy POE ), where the CFG is expanded on demand only. Based on the (non-
standard) SOS, we can define the abstract collecting semantics, which allow us
to capture all possible sets of available expressions for each program location. If
the property domain is finite, this abstract collecting semantics can be computed
in finite time for the whole CFG using a fixpoint algorithm. For each location
l annotated with σcoll(l), we have σ ∈ σcoll(l) if there exists a path ending in l
with final property σ.

It may be desirable to ensure that at certain locations l, σcoll(l) does not
contain properties σ, σ′ which differ according to a certain predicate. That is, for
some predicate P on properties, we want to ensure that either ∀σ ∈ σcoll(l) : P (σ)
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Fig. 3. Sample SOS-style rules. (a) Standard sequential composition rule; (b) Non-
standard assignment rule for available expressions.

or ∀σ ∈ σcoll(l) : ¬P (σ). For example, it is useful to know that an expression e
is either definitely available or definitely unavailable at some location.

As noted above, the CFG partitions the set of all possible program paths. If
there exists a location l with “mixed” properties in σcoll(l) according to a pred-
icate P , we refine this partition by splitting l into two: one location annotated
with {σ ∈ σcoll(l) | P (σ)} and the other annotated with {σ ∈ σcoll(l) | ¬P (σ)}.
This might introduce non-determinism, which can be resolved by – in a fashion
very similar to Hopcroft’s algorithm – iteratively propagating the split to the
immediate predecessors, until again a coarsest stable partition is obtained.

Example. Consider the program with the control-flow graph depicted in Fig. 4a.
This program nondeterministically2 executes either the action x := a + y or
y := b + x in a loop, or it exits. Executing this program with the abstract
collecting semantics for available expressions until stabilization yields the shown
available expression sets.

Assume we want to ensure definite (un-)availability of the expression b+x at
the exit location, for example because this expression determines the exit value,
and we do not want to unnecessarily recompute it. As a first step, we therefore
split the exit node such that b+x is in either all or none of the possible available
expression sets at this location (Fig. 4b).

However, the central location of the program is still annotated with the pos-
sible available expression sets ∅, {a + y}, and {b + x}. This information is too
coarse to allow the definiteness of the (un-)availability of b+x at the exit locations
to be derived. Thus, this location needs to be split as well (i.e., the split of the
exit location propagates to the central location). The set {∅, {a + y} , {b + x}}
is partitioned into {∅, {a + y}} (b + x is definitely unavailable at the respective
exit location) and {{b + x}} (b + x is definitely available at the respective exit
location). The result of this second split is shown in Fig. 5, and the resulting
transformed program no longer contains any uncertainties about the availability
of b + x at the exit node, allowing to perform the desired optimization (e.g.,
replacing return b + x with return y).

2 We assume that the non-determinism is due to presentation only: the conditions
guarding the respective transitions are not displayed, since they do not matter for
our example.
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Fig. 4. (a): Initial annotated control-flow graph; (b) Annotated control-flow graph after
splitting exit node

Fig. 5. Final control-flow graph after propagating split

5 CEGAR: Automated Partition Refinement

In the context of eliminating partial redundancies (cf. Sect. 4), the critical sit-
uation requiring a node split is identical throughout the coarse model. When
analyzing other characteristics of a program such as whether or not a certain
temporal property holds, the critical splitting criteria might vary locally. In this
setting, it becomes difficult to manually describe a non-standard SOS in order
to sufficiently refine the model using POE while keeping the size of the refined
model small.

Counterexample-Guided Abstraction Refinement (CEGAR). In order
to infer how and where to split a node in the coarse model, CEGAR [9] utilizes
spurious counterexamples retrieved from model checking the desired property.
This approach refines a model iteratively. Within a refinement step, the analysis
increases the precision of the model by excluding the most recently retrieved spu-
rious counterexample. The three important steps within a CEGAR approach are
the initial abstraction, the counterexample analysis and the applied refinement.

Figure 6 gives a conceptual overview of CEGAR. The process starts with
an initial abstract model that over-approximates the behavior of the analyzed
system. A sequence of model checking attempts and refinement steps continues
until the analyzed property can either be verified or falsified.

For a property that holds on the analyzed program, the final model resulting
from the CEGAR loop is illustrated as its set of reachable states Sf in the Venn
diagram of Fig. 7. The set S describes the reachable states in the original system
under analysis. S is a subset of the overall state space represented by the trivial
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Fig. 6. Conceptual overview of a CEGAR approach

Fig. 7. Model refinement based on sets of reachable program states

one-state abstraction St. The CEGAR loop refines the initial over-approximating
model Si by excluding the set of error states E.

The CEGAR approaches illustrated in the following sections use a model con-
sisting of abstract states that partition the program’s state space. A transition
between abstract states is introduced whenever a transition between representa-
tives of the corresponding partitions exists in the analyzed system. This method
is known by the name of existential abstraction [9,10]. It guarantees an over-
approximation of the analyzed program’s behavior because the set of successor
states of an abstract state is the union of its representatives’ successor states.
As for a single refinement step, the abstract state right before the first spurious
transition occurs is subdivided into two partitions.
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Example. Consider the program with the control flow graph depicted in Fig. 8
that calculates the factorial of an integer value n. The assume statement results
in an error whenever variable n is initialized to an integer less than 2.

Fig. 8. Control flow graph of the exemplary factorial program

As an exemplary analysis of this factorial program, we want to prove the
following property:

Analyzed property φ. V ariable m is even when the program terminates.
A CFG can be seen as an over-approximating model of a program in which

the state of its variables is not explicitly represented. Within this control-flow
model, each node is an abstract state representing all explicit states that feature
the same program location. An attempt to verify property φ on this control-
flow model itself yields no success. The program terminates at location 3 which
is reachable in the control-flow model, but the abstract state corresponding to
location 3 does not specify any details of variable m’s value. Section 5.1 illustrates
a refinement of this coarse control-flow model using CEGAR, whereas Sect. 5.2
applies CEGAR to a further abstracted initial model.

5.1 CFG-Based CEGAR

The locations of the control-flow model do not include information about the
data, instead they partition all possible states according to the value of the
program counter. The locations therefore each represent a partition on the set
of all possible valuations.

The model will be iteratively refined according to predicates that constrain
the values of variables n and m. Each refinement step will introduce a distin-
guishing predicate that subdivides an existing partition. We will denote the
negation of a predicate x by x̄. The states are initially numbered according to
the locations of the control flow graph. An additional digit is appended if a state
is split due to a refinement step, meaning that, e.g., state 2.1 is split into states
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Fig. 9. CFG-based CEGAR example (part 1) (Color figure online)

2.1.1 and 2.1.2. A first model checking attempt on the initial model returns the
counterexample path highlighted in red in Fig. 9a.

Analyzing this counterexample, it becomes apparent that its first spurious
behavior is present at location 1 (red circle). Because variable n is initially greater
than 1, all feasible execution paths lead from location 1 to location 2 initially.
The refinement step partitions location 1 according to the predicate n>1 which
states that the value of variable n is greater than 1. This refinement therefore
separates states at location 1 that are initially reachable (n>1 is true) from those
with a successor state at location 3 (n>1 holds).

The result of this first refinement step is shown in Fig. 9b. For each in-
and outgoing edge of location 1 that existed previously, a transition to one
or both of the partitioned states is introduced based on existential abstraction.
For example, in the case of state 1.2, the initial transition is not reconnected to
state 1.2 because the initialization of n to an integer greater than 1 contradicts
the predicate n>1. However, state 1.2 is reconnected to state 2: the valuation
〈n = −3,m = 1〉 could be a representative of the partition class described by
both state 1.2 and 2. Because the precise program semantics dictate that n = −3
at location 1 leads to location 2 in the next step, a transition is introduced here.
No execution of the program can ever reach a state where variable n is less than
0, but this fact is not represented by the model yet.

While the original counterexample is no longer valid in Fig. 9b, the refined
system still admits another (spurious) counterexample, again displayed as a red
path. This second counterexample again reaches location 3, which until now does
not specify any constraints for the value of variable m. This time, the first spuri-
ous behavior is to be found at the state representing location 3 itself. If variable
n is initially set to 2, the program execution follows the marked counterexam-
ple path. This is, however, the only real path that meets the counterexample
criterion, and it ends in a state where m is even. The second refinement step
therefore splits the state representing location 3 based on whether or not m is
even (predicate me). Because state 1.2 does not specify any information about
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Fig. 10. CFG-based CEGAR example (part 2)

the value of m, it is reconnected to both 3.1 and 3.2. The next model checking
attempt finds a different counterexample and the refinement continues.
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This loop comprising model checking, counterexample analysis and local
refinement then continues for five more iterations (Fig. 10a–e). A refinement
step of particular interest takes place after the sixth counterexample, illustrated
in Fig. 10d. State 1.2.2 has a transition to state 2.2 even though no negative
values of n can ever be encountered. An SMT solver can infer that n has to be 1
after the transition from state 2.1 to state 1.2.2, taking into consideration that n
is decremented by 1 at the respective control-flow edge. State 1.2.2 is therefore
refined according to the additional predicate n1 meaning that n has the value 1.

After all seven refinement steps, the resulting model is precise enough to
reveal that variable m is even in every reachable state at location 3 (Fig. 10f),
demonstrating that the property in question holds.

5.2 Predicate-Based CEGAR

In the previous section, we have illustrated the CEGAR approach as a means of
refining an initial control-flow graph by performing partition refinement on the
valuation space associated with each program location. However, treating the
CFG specially is not strictly necessary, as the program counter can be regarded
as a (more or less) normal variable. While a single CFG is typically of a size that
can easily be handled by a computer, this changes dramatically when analyzing
concurrently interacting systems, where at a given time each component can be
in an arbitrary location of its CFG, unleashing the full force of the state explo-
sion (or, more adequately, “location explosion”) problem. In such a situation,
abstracting from the precise CFG and lazily refining the control abstraction on
demand becomes a necessity.

The partition refinement then takes place at a global level, refining the overall
state space of the system (where a state comprises a location and a valuation).
Location predicates of form pci = lj (indicating that the i-th component is
in location j) can be used to split classes according to their location, directly
impacting the set of enabled statements that can transform a state.

In our example, we start with an initial abstraction based on the predicates
me (signaling that variable m has an even value) and l3 (indicating that the
current location is 3, the program exit point). Transitions between these ini-
tial abstract state partitions are introduced based on the concept of existential
abstraction. The resulting initial abstract model is illustrated in Fig. 11a.

Figure 11a also shows the counterexample retrieved after checking property
φ on the initial abstract model. The first spurious behavior is present at the first
state on this path: no real execution trace leads to location 3 directly after the
initial step. In order to further partition the class causing the spurious behavior,
we add the predicate n>1 stating that n is greater than 1.

After applying existential abstraction locally, we retrieve a refined model
that excludes the spurious counterexample (Fig. 11b). The initial state is not
connected to the top-right state because any change from n>1 to n>1 would
imply that n held the value 2 right before the transition. In this case however,
m would contain an even value afterwards. Again, this can be derived by SMT
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Fig. 11. Predicate-based CEGAR using data and location predicates

solvers. As a result, the state violating the property becomes unreachable and
the verification is successful.

6 Automata Learning, or Black-Box Partition Refinement

The last technique we want to take a look at is (active) automata learning [4,49].
Originating from the grammatical inference community [19], active automata
learning is a method of learning an unknown regular language by asking two
kinds of questions to a “teacher”: a membership query corresponds to the ques-
tion “is the word w in the target language L?”, and with an equivalence query, a
learner asks “is my hypothesis H [represented as a DFA] a correct model, recog-
nizing exactly the target language?” If the answer to the latter kind of query is
negative, the teacher is expected to supply the learner with a counterexample,
i.e., a word w ∈ Σ∗ such that λL(w) �= λH(w).3 The learner then refines the
hypothesis (possibly by asking further membership queries), and eventually sub-
mits the new hypothesis to another equivalence query. This process is iterated
until an equivalence query is met with a positive answer, or until some defined
termination criterion (e.g., exhaustion of resources) is triggered.

Technical Sketch. The “theoretical backbone” of a large class of automata
learning algorithms is the Nerode congruence [37]. It is a binary relation on words
over Σ, and defined as follows (for a language L ⊆ Σ∗ and words u, u′ ∈ Σ∗):

u ≡L u′ :⇔ ∀v ∈ Σ∗ : λL(u · v) = λL(u′ · v).

The famous Myhill-Nerode theorem states that ≡L has finitely many equiva-
lence classes if and only if L is regular. Furthermore, ≡L serves as a basis for

3 Here and in the following, λL and λH denote the labeling function of L and L(H),
respectively: λL(w) = 1 if w ∈ L, and 0 otherwise.
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constructing the minimal, canonical DFA recognizing L, and each state of this
DFA corresponds to an equivalence class of ≡L (and vice versa).

The idea pursued by most active learning algorithms is to approximate the
Nerode congruence by replacing the universal quantification over Σ∗ with con-
sidering a finite number of distinguishing suffixes (or futures) D ⊂ Σ∗ only. The
corresponding equivalence relation ≡D and its induced partition on Σ∗ are a
coarsening of Nerode equivalence. Equivalence classes of ≡D are further finitely
identified by representatives (short prefixes) from the finite, prefix-closed set
Sp ⊂ Σ∗. For example, the equivalence class corresponding to the initial state is
represented by ε.

However, determining the equivalence class with respect to ≡D of an arbitrary
word u ∈ Σ∗ requires to pose membership queries (for evaluating λL(u · v) for
v ∈ D). To obtain a “closed-form solution”, for each representative u ∈ Sp and
input symbol a ∈ Σ, the equivalence class wrt. ≡D of ua is determined. This
equivalence class (rather: its corresponding state in the hypothesis automaton)
forms the a-successor of the state represented by u. This step of obtaining a
closed-form hypothesis H, inducing a partition on Σ∗, from a finite sample of
the equivalence relation ≡D by extrapolation gives rise to the synonym “regular
extrapolation” for automata learning [16].

When the learner is presented with a counterexample w ∈ Σ∗, it eventually
refines the equivalence relation ≡D by augmenting the set D of distinguishing
suffixes. The new distinguishing suffix can usually be extracted from the coun-
terexample w directly. Augmenting D (and thus refining ≡D) leads to the set Sp
being augmented as well, and thus an increase in hypothesis size. Note, however,
that the partition on Σ∗ induced by the updated hypothesis is not necessarily a
refinement of the previous partition, due to possible extrapolation errors.

6.1 Black-Box Checking

Peled et al. [43] have proposed black-box checking as a way to model check sys-
tems for which no model is available, i.e., which present themselves as black
boxes. In this scenario, automata learning is used to infer a model of the tar-
get system. Once a stable hypothesis has been learned, this hypothesis is then
checked against a specification, possibly yielding a counterexample.

Similar to CEGAR, the “nature” of the counterexample needs to be exam-
ined. If the trace, when executed on the black-box system, yields the same output
as predicted by the hypothesis, it is a real counterexample that shows that the
system violates the specification. Otherwise, if the hypothesis predicts an incor-
rect output, it is spurious and can be fed to the learner which, in turn, comes up
with a refined hypothesis, leading to another iteration of the sketched process.4

The overall approach of black-box checking is very similar to CEGAR: here,
the abstraction is imposed by substituting the Nerode congruence ≡L with the

4 It should be noted that this approach can only be applied to specifications that
admit finite counterexample traces (e.g., safety LTL formulae), as an infinite-length
counterexample cannot be tested on the system.
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coarser relation ≡D for constructing a finite-state model. A counterexample
might either show a property violation, or refine our abstraction by splitting
equivalence classes of ≡D, thus reducing the gap towards ≡L. While this notion
of abstraction is somewhat different from the prevalent one in the context of
CEGAR (where abstraction is employed to deal with the otherwise too large or
even infinite state space), automata learning has been extended to simultane-
ously infer and refine abstractions in several dimensions, e.g., for dealing with
large or infinite alphabets [24,25], or with data values ranging over unbounded
domains [1,26].

One should, however, keep in mind an important difference (and deficiency):
while the abstraction in the classical CEGAR remains sound throughout all
refinement steps, the same does not hold true for automata learning. A model
inferred by a learning algorithm is in general neither an over- nor an under-
abstraction, and the evolution of the languages corresponding to subsequent
hypotheses may be highly non-monotonic. Therefore, a positive model check-
ing result during black-box checking does not guarantee that the whole system
conforms to the specification. This is a direct consequence of the testing-based
nature of automata learning, which is fundamentally incapable of making any
kind of statements about parts of the system which have not been exercised
during testing.

Nevertheless, automata learning and the black-box checking approach are
a valuable asset when dealing with systems (or components) for which sound
models cannot be generated using traditional techniques, such as binaries or
web services. Important applications are regression testing [17], specification
mining [3], e.g., as a way to establish runtime monitors [6], and the quality
assurance of evolving system [38]. In particular in the latter case, knowledge
about the systems is not established in a dedicated phase. Rather it is cumu-
lated in a continuous learning process, which may involve the monitoring of
customer site installations to continuously increase reliability. In addition, con-
formance testing techniques [5] may be applied for approximating equivalence
queries using membership queries, in a way that guarantees correctness up to
certain assumptions (e.g., assuming a concrete bound on the number of states
of the target system).

Example. We want to conclude our explanation on automata learning and
black-box checking with a small example, highlighting the overall approach and
illustrating some key characteristics. Let us consider a simple on-line service,
that allows registration of users (reg, assuming a fixed user name). Registering
twice is impossible. Once registered, a user can log in (login ) to the service, and
eventually log out (logout ). A desirable property that we would like to verify
on the system might be given by the statement “once logged in, a user cannot
log in again before logging out”, which can be encoded into the LTL property
φ = G(login ⇒ X(login WU logout )).

Learning usually starts with a one-state initial hypothesis H0, depicted in
Fig. 12a. In the initial state, registering is the only possible action. However,
in the absence of any splitters, the consequences of registering are not further
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Fig. 12. Sequence of hypotheses inferred through learning

examined, hence the target state is assumed to be the same as the initial one.
Here, it already becomes apparent that the model is neither an over- nor an
under-approximation: it contains paths which are not admissible by the actual
system (e.g., reg reg: registering twice), and vice versa (e.g., reg login ). Conse-
quently, the fact that φ holds for the initial model is of little practical value.

As noted above, a counterexample that disproves the hypothesis is reg reg.
From this counterexample, a learning algorithm would derive the splitter reg,
and thus recognize that the initial state is different from the state reached via
reg (as registering is possible in one state but not in the other). It will further
discover that the latter state admits the action login . For the same reasons as
above, however, it will not proceed to examine the impact of performing this
action. The resulting hypothesis H1 is depicted in Fig. 12b.

This hypothesis now indeed violates the specification φ. Model checking “φ �
H1?” would yield the counterexample reg login login . A counterexample analysis
would then yield that the splitter login needs to be applied to the state reached
by reg. This shows that login again moves to another state, in which logging
in again is not possible (but the logout action is enabled). The resulting (final)
hypothesis H2 (which also satisfies φ) is shown in Fig. 12c.

7 Discussion of the Profiles and Perspectives

Partition refinement is a technology and art for deriving tailored finite quotients
of potentially infinitary systems that expose just as much detail as required for
a certain analysis, verification or transformation task. This has been illustrated
above along three example categories of quite different nature, which all come
with specific challenges.

– For (lazy) POE everything is quite easy, as long as the domain for abstracting
the store is finite, like in the case of any bit vector analysis. In this case scal-
ability is the main concern: how can one succeed while avoiding the potential
exponential state explosion? This means that at the generic level, on-demand
techniques, like the lazy POE presented here, need to be developed, whereas
the concrete application requires the identification of an adequate abstract
domain (at the “what”-level), a precondition for many analysis and verifica-
tion approaches.
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POE has been successfully used, first as a means to spread out the control-
flow graph in a fashion that optimally supports program transformations, like
the elimination of all partial redundancies. A second application is the valida-
tion of the mutual consistency between the models of a heterogeneous system
specification [48] by constructing a “unifying” operational model that obeys
all the operational constraints of all sub-specifications. This is the conceptual
basis underlying the One-Thing-Approach [34,45] and its corresponding tool
product line [50].

– The CEGAR approaches also rely on a “what”-level specification, which needs
to be provided manually and which can then be automatically model checked
to provide the false positives driving the corresponding partition refinement.
However, in contrast to lazy POE, where splitter identification is straightfor-
ward, this is the key problem for CEGAR for two reasons. First, it consists of
(in general undecidable) “how”-level reasoning to eliminate the found unfea-
sible counterexample path typically with the aid of SMT solvers. Second, the
derived splitters (predicates over the set of program variables and locations)
should be powerful enough to guarantee that the iterative partition refine-
ment process will eventually terminate. In fact, in contrast to the other two
approaches considered here, resulting partitionings are by no means unique,
and even if there exists an adequate finite partitioning, the refinement process
may easily bypass it and continue forever. It should be noted, however, that,
in general, we are essentially dealing with a problem here as complex as the
automatic derivation of program invariants. Thus it is not too surprising that
the original paper [9] considered a very special finitary scenario with the main
concern to increase efficiency via this impressive SMT-based heuristic. We
believe that the future research potential for CEGAR for system verification
is enormous, and its success will definitely grow with the increasing power of
future SMT solvers.

– The world of black-box partition refinement in terms of active automata learn-
ing looks simpler, as it, by it nature, avoids all the “how”-level problems. In
essence, the user only needs to specify the interaction potential, in terms of
a so-called learning alphabet,5 and the rest is automatic. Obviously, the “is
automatic” leaves a lot of room for algorithmic progress in order to be able to
address problems of practical relevance [27,33], but even if we totally ignore
this aspect for a moment, varying the notion of interaction potential alone
is currently a hot research topic. The original setting based on determinis-
tic finite automata soon turned out to be impractical and was replaced by
the more expressive Mealy machines [41] and I/O-automata [2]. Whereas this
step can be seen as a kind of optimization, the subsequent generalization to
so-called register automata [22,23,26], which explicitly represent data flow,
lifts automata learning technology to an entirely new level in which program

5 Even this is not really necessary. Our also partition refinement-based automated
alphabet abstraction technology [24,25] may be used to automatically derive an
adequate level of observation. Of course, for learning realistic system it is important
to provide a functioning test harness for triggering the system behavior [35,52].
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behaviors are not modeled via formal languages, but via parameterized, flow
graph-like models which may even be executed [26]. This approach has even
been further developed involving SMT-solving with all its caveats [8] (see the
discussion of CEGAR above).

However, independent of these developments, black-box partition refine-
ment is deemed to be neither correct nor complete, which truly distinguishes it
from the other two approaches which maintain a notion of over-approximation
in order to guarantee correctness.

That the three considered very different approaches can all be regarded as
instances of a sufficiently generalized notion of partition refinement, i.e., a special
co-inductive technique realizable via maximal fixpoint computation, is not just
an interesting observation. Rather it is the conceptual backbone for their mutual
integration. Essentially it should allow one to smoothly combine their (chaotic)
iteration processes into a common heterogeneous maximal fixpoint computa-
tion, in order to obtain a technology exploiting their mutual strength and to
overcome their inherent weaknesses. An early example for enhancing verifica-
tion with learning technology is the black-box checking approach [42], while
the assume-guarantee approach [11] indicates a way to overcome the black box
systems’ inherent lack of correctness in dedicated scenarios. We hope that our
discussion helps paving the way to more systematic studies in this direction.
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Abstract. Several formalisms for concurrent computation have been
proposed in recent years that incorporate means to express stochastic
continuous-time dynamics and non-determinism. In this setting, some
obscure phenomena are known to exist, related to the fact that sched-
ulers may yield too pessimistic verification results, since current non-
determinism can surprisingly be resolved based on prophesying the tim-
ing of future random events. This paper provides a thorough investigation
of the problem, and it presents a solution: Based on a novel semantics of
stochastic automata, we identify the class of schedulers strictly unable to
prophesy, and show a path towards verification algorithms with respect
to that class. The latter uses an encoding into the model of stochastic
timed automata under arbitrary schedulers, for which model checking
tool support has recently become available.

1 Introduction

The modelling of concurrent systems operating in continuous time is at the heart
of several branches of computing sciences. In the systems world, discrete event
simulation tools like OMNeT [23], NS-2 or NS-3 [1,2], or GlomoSim [30]
are routinely used to gain insight into phenomena that are difficult to study
“in the wild”. However, the validity of results obtained in this manner is often
questionable, and comes with notorious suspicions about hidden assumptions
that affect the simulation studies [3,9,19,26]. The predominant mathematical
objects that such simulators operate on are classes of stochastic processes, in
particular generalised semi-Markov processes [13,21] (GSMP). Stochasticity is
used to conveniently reflect variations in behaviour due to mass effects.

Over the past decades, concurrent systems operating in stochastic continuous
time have also received attention from a foundational perspective, especially in
the formal methods community. Process calculi for stochastic timed systems
have been proposed, starting with the work of Harrison and Strulo [15,27].
D’Argenio proposed stochastic automata (SA) [10] as a compositional formalism
akin to timed automata. Bravetti proposed the IGSMP calculus [8] for interact-
ing GSMP. A comparative reflection of the two latter approaches can be found
in [7]. The work of D’Argenio inspired the Modest language, which operates
with stochastic timed automata (STA) [6] and is supported by the Modest
Toolset [16]. Lately, Zeng, Nielson and Nielson proposed the stochastic qual-
ity calculus SQC [22] as an intriguing formalism to reason about distributed
systems with broadcast communication.
c© Springer International Publishing Switzerland 2016
C.W. Probst et al. (Eds.): Nielsons’ Festschrift, LNCS 9560, pp. 214–235, 2016.
DOI: 10.1007/978-3-319-27810-0 11
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All the approaches discussed above use semantic objects that extend the
model of GSMP in a particular dimension: nondeterminism. Albeit with dif-
ferent flavors, the nondeterminism is essentially intertwined with the concept
of an interleaving semantics, which assumes that no specific temporal ordering
can be assumed for events that may happen in independent components—unless
the ordering is specified in some way. In fact, it might not be far fetched to
claim that in the systems community much of the above mentioned criticism
which has accumulated with respect to GSMP simulation results is rooted in
well-hidden assumptions determining certain event orderings, yet thereby dis-
criminating against behaviour well possible “in the wild”. For instance, Opnet
is known to use a default round-robin schedule between enabled processes if no
other information is at hand, and so does GlomoSim.

The correct treatment of stochastic processes with nondeterminism can best
be explained in the simplistic setting of Markov chains and their nondetermin-
istic extension, Markov decision processes [24]. A Markov decision process turns
into a Markov chain by fixing a resolution of nondeterminism. A scheduler is a
mathematical object for this task, and the correct analysis of a Markov decision
process is based on the principle of considering any Markov chain induced by any
realistic scheduler. A verification task then gives rise to an entire range of quan-
titative results, such as an interval of reachability probabilities. Interestingly, if
the class of schedulers at hand contains schedulers that can be considered unre-
alistic, then the analysis, albeit being correct, may become overly pessimistic in
the sense that the interval returned is larger than realistically needed [12].

So, which family of schedulers is to be used for nondeterministic extensions
of GSMP? This is the main question we aim at answering with this paper.

To shed some light on this, we discuss the problem in the context of stochas-
tic automata. Roughly speaking, a stochastic automaton is a timed automaton
where each clock, whenever reset, expires after a random amount of time. The
randomness is specified by a probability measure associated to each clock. An
edge is guarded by a (possibly empty) set of clocks and can be taken only when
all clocks from this set are expired. When location �1 is entered in the model in
Fig. 1 on the left, a clock x is reset to 0. At this moment, the (random) time until
its expiration, say distributed uniformly between 0 and 1, starts. Any outgoing
edge can be taken only after clock x expires. Once this happens, there are multi-
ple concurrently enabled edges, and one of them is chosen nondeterministically.
Assume we want to reach the desired state �. The probabilities of this to happen
now depends on the scheduler we consider. In the worst case, the probability is
0, because a scheduler can just decide to take the left edge in �1. Note that a
random resolution of the non-determinism (or a kind of round-robin schedule)
would result in a higher probability of reaching state �.

The formal semantics of stochastic automata is defined by uncountable timed
probabilistic transition systems (TPTS) where each state consists of the current
location and the current valuation. As for timed automata, a valuation is used to
store for each clock the amount of time elapsed since its last reset. In addition,
it also stores the (randomly chosen) clock expiration times. Non-determinism in



216 A. Hartmanns et al.

Fig. 1. Examples of stochastic automata.

the TPTS is resolved by schedulers that can base their decisions on all values in
the current valuation including the clock expiration times, i.e. the information
when in the future each individual clock expires. Therefore, in the model in
Fig. 1 on the right, a scheduler can always choose in location �2 the appropriate
edge so that the desired state � is never reached (based on the fact whether
y occurs before z). However, no realistic scheduler not knowing the timing of
future random events can make the probability smaller than 1/2.

The semantics indicated above is known as residual lifetimes semantics [7],
and is the one (at least conceptually) used in Modest, in SQC, in the works of
D’Argenio, and in those of Strulo. Bravetti’s IGSMP use a different and at first
sight more adequate approach, based on continuous resampling. This prevents
schedulers from exploiting stored sampled values, and is called spent lifetimes
semantics [7]. However we will argue that this semantics is in fact even more
pessimistic and unrealistic.

We overcome this problem by introducing a new semantics based on sepa-
rating the flow of time from non-deterministic choices. The set of all schedulers
of the new semantics forms a strict subset of schedulers of the standard residual
lifetimes semantics. As this new subclass excludes exactly those schedulers that
observe the timing of future random events, we call them non-prophetic sched-
ulers. We are then interested in worst-case and best-case guarantees with respect
to non-prophetic schedulers.

We show that verification problems for non-prophetic schedulers can be trans-
lated to verification problems with respect to all schedulers on an induced model
from the more expressive class of stochastic timed automata. Stochastic timed
automata come from the same theoretical background and are thus also based
on residual lifetimes semantics. Their higher expressiveness nevertheless allows
us to emulate the behaviour of the SA while obfuscating the knowledge of the
future timing. Using this translation, the verification of probabilistic reachabil-
ity and expected-reward properties for stochastic automata under non-prophetic
schedulers based on extensions of STA model checking techniques [14] is on the
horizon.
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2 Preliminaries

For a given set S, its power set is P(S). We denote by R, R
+, and R

+
0 the set of

real numbers, positive real numbers and non-negative real numbers, respectively.

2.1 Probability Theory

A (discrete) probability distribution over a countable sample space Ω is a function
μ ∈ Ω → [0, 1] s.t.

∑
ω∈Ω μ(ω) = 1. The support of μ is support(μ) def= {ω ∈

Ω | μ(ω) > 0 }. We denote by Dist(Ω) the set of all probability distributions
over Ω. Furthermore, we write D(ω) for the Dirac distribution for ω, defined by
D(ω)(x) def= 1 if x = ω and D(ω)(x) def= 0 otherwise.

We say that a set Ω is a measurable space if it is endowed with a σ-algebra
Σ(Ω), a collection of measurable subsets of Ω. A (continuous) probability measure
over Ω is a function μ ∈ Σ(Ω) → [0, 1] such that μ(∪i∈I Bi) =

∑
i∈I μ(Bi)

for any countable index set I and pairwise disjoint measurable sets Bi. Each
probability distribution μ induces a probability measure and we thus also use
D(s) for the corresponding Dirac measure. We denote by Prob(Ω) the set of
probability measures over Ω.

Given a a pair of probability measures μ1, μ2 we denote by μ1 ⊗ μ2 the
product measure which is the unique probability measure such that

(μ1 ⊗ μ2)(B1 × B2) = μ1(B1) · μ2(B2) for all measurableB1, B2.

For a collection of measures (μi)i∈I , we analogously denote the product measure
by

⊗
i∈I μi. We lift the same notation to a collection of sets of probability

measures (Mi)i∈I by
⊗

i∈I Mi
def= {⊗

i∈I μi | μi ∈ Mi for all i ∈ I }. For a
probability measure F over R

+
0 and any c ∈ R

+
0 such that F ([c,∞)) > 0, we

denote by Fc the measure F conditioned by ≥ c, defined for any interval [a, b]
by F|c([a, b]) def= F ([a, b] ∩ [c,∞))/F ([c,∞)).

2.2 Stochastic Automata

Definition 1. A stochastic automaton (SA) is a 6-tuple

〈Loc, C, A = Ad 
 Au, E, F, �init 〉

where

– Loc is a countable set of locations;
– C is a finite set of clock variables;
– A is the automaton’s finite action alphabet partitioned into a set Ad of

delayable and a set Au of urgent actions;
– E ∈ Loc → P(P(C) × A × Dist(P(C) × Loc)) is the edge function, which maps

each location to a finite set of edges, which in turn consist of a guard set, a label
and a probability distribution over sets of clocks to reset and target locations;
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– F ∈ C → Prob(R+
0 ) is the delay measure function that maps each clock to an

absolutely continuous probability measure1; and
– �init ∈ Loc is the initial location.

We also write � C,a−−→E μ for 〈C, a, μ〉 ∈ E(�), and for two edge functions E1 and
E2, we define

E1 < E2 ⇔ ∀ � ∈ Loc : E1(�) ⊆ E2(�) ∧ ∃ � ∈ Loc : E1(�) � E2(�),

i.e. an edge function is “smaller” if it maps to “smaller” sets of edges.
Intuitively, a stochastic automaton starts its execution in the initial location

with all clocks expired. Any edge � C,a−−→E μ may be taken only if all clocks in its
guard set C are expired. If it is taken, the action associated to the edge is a, and
the distribution μ encodes the discrete branching of this edge: when a branch
〈R, �′〉 is taken (which happens with probability μ(R, �′)), all clocks from the set
R get (re)started, other expired clocks remain expired, and the process moves
into the successor location �′. Here, another edge may be taken immediately or
the automaton may need to wait until some further clocks expire and so on.

If a clock c gets started, it expires again after an amount of time chosen
randomly according to the probability measure F (c). Implementing the abstract
notions of clock start and clock expiration is the crucial step in defining a formal
semantics. In this paper, we focus on what power such an implementation gives
to schedulers—objects that choose which edge to take when several of them may
be taken at the same point in time.

Defining the semantics of stochastic automata formally is the core topic of this
paper. We discuss various approaches in Sects. 3 and 4. In the rest of this section,
we lay the foundations for defining the semantics. First, we define probabilistic
timed transition system with uncountable state and action spaces. This is needed
since we need to store the current valuation of real-valued clocks and variables in
each state. Second, we introduce assignments and clock expressions to simplify
manipulation with these valuations.

2.3 Uncountable Transition Systems

The semantics of (non-Markovian) continuous-time stochastic models with non-
determinism can be defined using the following formalism [6,7,29].

Definition 2. A timed probabilistic transition system (TPTS) is a 4-tuple

〈S,A, T, sinit 〉

where
1 In this paper we restrict all F (c) to absolutely continuous measures as it simplifies
the overall notation and the technical treatment. Recall that a measure is absolutely
continuous if it assigns 0 to any set with Lebesgue measure 0.
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– S is a (usually uncountable) measurable space of states;
– A = R

+ 
 A′ is the system’s (uncountable) alphabet that can be partitioned
into delays in R

+ and normal actions in A′;
– T ∈ S → P(A × Prob(S)) is the transition function, which is explicitly allowed

to map a state to an uncountable set of transitions; and
– sinit ∈ S is the initial state.

We also write s a−→T μ for 〈a, μ〉 ∈ T (s), and the < relation can be defined for
transition functions analogously to its definition for edge functions.

A behavior of a TPTS is a run, an infinite alternating sequence s0a0s1a1. . . of
states and actions. The system starts in the initial state s0 = sinit . Assuming the
current state is si, the next transition si

a1−→T μ is chosen non-deterministically
by a scheduler based on the whole history s0a0 . . . ai−1si up to this point. The
successor state si+1 is then chosen randomly according to the probability mea-
sure μ.

Formally, a scheduler is a measurable function σ that maps every s0a0 . . . si ∈
(S × A)∗ × S to a measure over transitions from T (si) (i.e. the scheduler may
randomize over available transitions). Every scheduler σ defines a probability
measure P

σ over the set of all runs. For a full formal definition, see e.g. [29].
Following the standard approach, we restrict to non-Zeno schedulers that allow
time to diverge with probability one. More precisely, we require that P

σ(D) = 1
where D is the set of runs where the sum of all actions from R

+ along the run
is ∞.

Inspired by [25], we define the timed trace distribution Tr(T, σ) of a TPTS
T induced by a scheduler σ as follows. First, a timed trace is a finite or infinite
sequence of actions, obtained as the natural projection (denoted ttrace) mapping
each run s0a0s1a1 · · · to a timed trace obtained from a0a1 · · · by merging every
maximal sequence of real numbers into its sum (a potential infinite sequence at
the end of a run is simply removed, resulting in a finite trace). With this, the
timed trace distribution Tr(T, σ) is a distribution over the measurable space of
timed traces such that every measurable set of timed traces A has probability
P

σ(ttrace−1(A)). We denote by Tr(T ) the set of timed trace distributions of T
ranging over all schedulers of T . Finally, we say that two TPTS T1, T2 are timed
trace distribution equivalent if Tr(T1) = Tr(T2).

Remark 1. The example discussed in Fig. 1 works with state-based properties,
in particular considering state reachability probabilities. We can encode such
properties in a trace-based setting by, for example, adding a loop � ∅,a−−→ � to the
state whose reachability probability we intend to compute, where a is a unique
urgent action. We can then ask for the probability of the set of timed traces
that include a instead. In this sense, timed trace distribution equivalence can be
ensured to preserve timed reachability probabilities.

2.4 Variables and Expressions

In this subsection, we introduce a unified way to deal with the evaluation and
modification of valuations over a set of variables. For a finite set of (real-valued)
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variables Var , we let Val def= Var → R denote the set of valuations. By 0 ∈ Val , we
denote the valuation that assigns value 0 to all variables. We now first introduce
an abstract notion of expressions which we use for two operations: updates to
modify a valuation, and (timed automata-like) clock constraints to evaluate a
valuation. Similarly to timed automata, we also define how the flow of time
modifies a valuation.

Expressions. By Exp(C) we denote the set of expressions over the set of vari-
ables C ⊆ Var . We simply write Exp for the set of expressions over the whole
set Var . We treat expressions in an abstract manner: We assume a standard
expression syntax (as in e.g. ML or C) with extensions for nondeterministic
and randomly sampled values. We formally work only with the semantics �e� of
expressions e, which are functions that take a valuation over Var and return the
value of e depending on the expression class:

– Bxp: Boolean expressions e have �e� ∈ Val → { true, false }. Bxp include e.g.

i = 1, tt , x ≥ 2.5.

– Axp: Arithmetic expressions e have �e� ∈ Val → R. Axp include e.g.

2.5 + x, 3 + (if i = 1 then x + 1 else x − 1).

– Sxp: Sampling expressions e have �e� ∈ Val → P(Prob(R)). These are con-
ceptually arithmetic expression featuring two additional constructs: nondeter-
ministic choice and random sampling. Sxp include, e.g.,

x + sample(F ) + any(I), 3 + sample(Exp(x)), x ∗ y ∗ any([x, y))

where sample(F ) denotes the random selection of a value according to the
probability measure F and any(I) the nondeterministic selection of a value out
of the interval I. In the example, Exp(x) denotes the exponential distribution
with rate given by the current value of variable x.

The semantics of a sampling expression maps to a set (representing the nonde-
terministic choice) of probability measures (representing the random sampling).
For example, the semantics �3+x+sample(Exp(1))+any((0, 1))� applied to valu-
ation 0 returns the set {μi | i ∈ (3, 4) } where each measure μi is the exponential
distribution “shifted” by i. For a sampling expression e without nondeterminism,
we denote by �e�1 ∈ Val → Prob(R) the function that maps a valuation v to the
single probability measure in �e�(v).

Updates. An assignment , written as x := e, is a pair 〈x, e〉 ∈ Var × Sxp. Two
assignments 〈x1, e1〉 and 〈x2, e2〉 are consistent if x1 �= x2 or �e1�(v) = �e2�(v)
for all valuations v. The set of all assignment is denoted by Asgn. A finite set of
pairwise consistent assignments is called an (atomic) update, and two updates
are consistent if their union is an update. The set of all updates is denoted Upd .
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Similar to sampling expressions, the semantics of an update U ∈ Upd is
a function �U� ∈ Val → P(Prob(Val)). Due to consistency, we can treat
every update U = { 〈x1, e1〉, . . . , 〈xn, en〉 } consisting of n ∈ N assignments
as a function U ∈ Var → Sxp (even though we may have xi = xj for some
i �= j). Assuming some fixed total order on the variables, we can identify val-
uations with tuples of values. This then allows us to define straightforwardly
�U�(v) def=

⊗
x∈Var �U(x)�(v).

Clocks and Clock Constraints. Later, (similarly to timed automata) we
restrict operations that can be applied to clock variables. Let us fix a set C ⊆ Var
of clock variables. Clock constraints over C are expressions constructed according
to the following grammar:

CC :: = b | CC ∧ CC | CC ∨ CC | c ∼ e | c1 − c2 ∼ e

where ∼ ∈ {>,≥, <,≤,=, �= }, c, c1, c2 ∈ C, and b and e are Boolean and arith-
metic expressions over Var \ C, respectively. The semantics of a clock constraint
g is again a function �e� ∈ Val → { true, false }. Similarly, an update is called
clock update if all its assignments to clocks c ∈ C are of the form c := 0. The set
of all clock updates is denoted by CUpd . Finally, we define for any valuation v
and any delay t ∈ R

+ a valuation v + t by

(v + t)(c) def=

{
v(c) + t for c ∈ C, and
v(c) for c ∈ Var \ C.

3 Prophetic and Divine Scheduling

In this section we review two existing semantics for stochastic automata. Both
map SA to TPTS with uncountable state spaces. A scheduler for an SA is then
defined as a scheduler in the underlying TPTS.

In the first subsection, we introduce the more common residual lifetimes
semantics that however allows a scheduler to be prophetic. Then, we address the
spent lifetimes semantics that at first sight appears to solve this problem. We
show that (a) it still allows a scheduler to be prophetic (though in a limited way)
and more importantly (b) it allows a scheduler to act divine in the sense of being
able to manipulate the future in unexpected and unintuitive ways.

We fix for the rest of the paper an SA M = 〈Loc, C, A = Ad 
Au, E, F, �init 〉.
The presentation of the two semantics is closely inspired by their comparison
in [7] which in turn slightly deviates from the respective original definitions [8,10]
without affecting core properties.

3.1 Residual Lifetimes [10]

In the residual lifetimes semantics, the states of the TPTS are pairs 〈�, v〉 of the
current location � and a valuation v over the set of variables

Var def= C ∪ { dc | c ∈ C }.
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For each clock c, the (non-clock) variable dc stores the value sampled for c when
c was reset most recently. For a set R of clocks, both reset and sampling can be
done by the update

Sample(R) def= { c := 0, dc := sample(F (c)) | c ∈ R }.

The value of each clock then increases with the flow of time; a clock c is called
expired when its value reaches the value of the sampled variable dc. An edge
� C,a−−→E μ may be taken only if all clocks from the guard set C are expired,
captured by the clock constraint

Expired(C) def=
∧

c∈C

c ≥ dc.

Let us now define the induced TPTS precisely:

Transition System. The residual lifetimes semantics of an SA M is the TPTS

�M�r = 〈Loc × Val , R+ 
 A, TM , 〈�init ,0〉〉
where TM is the smallest (according to relation <) transition function satisfying
the following two inference rules:

�
C,a−−→E μ �Expired(C)�(v)

〈�, v〉 a−→TM

∑
〈R,�′〉∈P(C)×Loc μ(〈R, �′〉) · (D(�′) ⊗ �Sample(R)�1(v))

(jumpr)

t ∈ R
+ ∀ t′ ∈ [0, t) : �¬Urgentr(�)�(v + t′)

〈�, v〉 t−→TM
D(〈�, v + t〉)

(delayr)

where the first rule formalizes the preconditions and effects of taking an edge
and the second rule states that time may flow in a location � only if there is no
edge to be taken urgently where

Urgentr(�)
def=

∨

a∈Au,〈C,a,μ〉∈E(�)

Expired(C).

Recall that when an edge � C,a−−→E μ is taken, a successor location �′ and a set R of
clocks is randomly picked according to the distribution μ. For a fixed pair 〈R, �′〉,
the term D(�′) ⊗ �Sample(R)�1(v) appearing in the first rule is a distribution
over states, say αR,�′ . The sum

∑
R,�′ μ(〈R, �′〉) ·αR,�′ then represents the overall

distribution obtained by weighting the α··· by μ.

Prophetic Schedulers. In light of the TPTS as defined above, we consider the
SA model on the right below, which is a notationally more formal variation of the
one from Fig. 1. The TPTS starts in the initial state 〈�init ,0〉. Since the outgoing
edge from �init has an empty guard set and we assume action a to be urgent,
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no delay is possible in 〈�init ,0〉 and the only outgoing transition is with action
a to a probability measure over states of the form 〈�1, v〉 where v(x) = v(y) =
v(z) = 0 and the values v(dx), v(dy) and v(dz) are sampled randomly according
to the continuous uniform distributions Uni([0, 1]), Uni([2, 3]) and Uni([2, 3]),
respectively.

�init

�1

�2 �3

�×

x ∼ ([0, 1])
y ∼ ([2, 3])
z ∼ ([2, 3])

x := 0
y := 0
z := 0

∅, a

{ x }, b { x }, c

{ y }, d{ z }, d { y }, d { z }, d

From any such location, there are
uncountably many outgoing transitions cor-
responding to all possible delays 0 < t ≤
v(dx). If a scheduler chooses some action
t0 < v(dx), then the remaining time to
delay decreases by t0 and in the next state,
the choice options are reduced to actions
0 < t ≤ v(dx) − t0 and so on. In the end,
all (non-Zeno) delay sequences t0, t1, . . . end
up in some state 〈�1, v〉 where v(x) = v(dx)
where a scheduler needs to choose between
b and c.

In such a state 〈�1, v〉, one possible scheduler σ can decide to choose action
b only if dz < dy and action c otherwise (and to choose always maximal delay
whenever delaying is possible): One can then easily argue that the probability
induced by scheduler σ to reach a state with location � is 0, while our intuition
says that less than 0.5 is not achievable. However, that scheduler can be consid-
ered prophetic, since its decisions are effectively based on the timing of events
that will occur in the future.

3.2 Spent Lifetimes [8]

The spent lifetimes semantic TPTS is defined over the same state space, but
in order to avoid prophetic decisions, each transition comes with a complete
resampling of the variables dc that represent the residual time for each clock c.
Thereby, the current value of dc (on which the scheduler may base its decisions)
becomes irrelevant right with the execution of the decision of the scheduler, i.e.
whenever taking a transition.

In order to keep the delay between resetting c and its expiration distributed
according to F (c), the resampling needs to take into account the time already
spent which is captured by the value of the clock c. This is achieved by condi-
tioning the delay measure F (c) on the time spent. As an example, consider a
clock c with F (c) being uniform on [1, 2]. The clock is initially sampled to, say,
1.3. After taking a delay transition of 1.1 time units, we need to resample it
according to the distribution F (c)|1.1, which is distributed uniformly on [1.1, 2].
If instead the resampling were to occur already after 0.5 time units, we actually
would have F (c)|0.5 = F (c) (as knowing that the event does not occur before 0.5
does not change the chances of when it will occur in the future). Resampling of
a set C ⊆ C can be expressed by the update

Resample(C) def= { dc := if c < dc then sample(F (c)|c) else dc | c ∈ C }
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where F (c) should be interpreted as one literal giving a distribution that is then
within the expression conditioned by the current elapsed time of c. Observe that
the update resamples only values for clocks that are not expired.

Transition System. The spent lifetimes semantics of an SA M is the TPTS

�M�s = 〈Loc × Val , R+ 
 A, TM , 〈�init ,0〉〉

where TM is the smallest transition function satisfying the following two inference
rules:

�
C,a−−→E μ �Expired(C)�(v)

〈�, v〉 a−→TM

∑
R,�′ μ(〈R, �′〉) · (D(�′) ⊗ �Sample(R) ∪ Resample(C \ R)�1(v))

(jumps)

t ∈ R
+ ∀ t′ ∈ (0, t) : �¬Urgents(�)�(v + t′)

〈�, v〉 t−→TM
D(�) ⊗ �Resample(C)�1(v + t)

(delays)

where the first rule again describes that an edge is taken and the second rule
again describes the flow of time. The clock constraint Urgents is defined by

Urgents(�)
def= Urgentr(�) ∨

∨

c∈C
Expiring(c)

where Expiring(c) def= (c = dc). It differs from Urgentr used in the residual
lifetimes semantics by forcing each delay not to exceed the moment when the
next clock is expiring. This condition means that whenever some clock expires,
all other active clocks get resampled. The rule delays requires v + t′ to satisfy
¬Urgents(�) only for positive time points t′ because Expiring(c) is violated by v
if the clock c has just expired.

Fig. 2. Examples of prophetic and divine scheduling.
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Prophetic Scheduling. We now discuss that the spent lifetimes semantics,
despite its intention, is not free of prophetic power. In the SA in Fig. 2 on the
left, after some delay t ∈ [0, 1], clock x expires and clocks y and z get resampled
both independently according to U [2, 3]|t = U [2, 3]. In other words, a state 〈�1, v〉
is reached where v(x) = v(y) = v(z) = v(dx) = t and v(dy), v(dz) ∈ [2, 3]. We
can distinguish two cases:

1. If v(dz) < v(dy), the scheduler σ may choose the maximal enabled delay
v(dz) − t by which z becomes expired (in one step, i.e. z does not get resam-
pled) and the location × is reached.

2. Otherwise, the scheduler σ repeatedly takes the enabled self-loop edge reset-
ting y and z until a state 〈�1, v〉 with v(dz) < v(dy) is reached. In this state
the scheduler behaves as described in point 1 above.

By this scheduler σ, a state with location � is again reached with probability
0. In other words, the crucial property of the spent lifetimes semantics is that
the scheduler observes what is the first clock to expire and when will it happen.
If the scheduler prefers this observed plan, it may let it happen by one delay
transition. Otherwise, it may block this from happening by taking some other
(non-urgent) edge.

Divine Scheduling. Actually, the self-loop edge in the example above is not
needed for a scheduler to guarantee that � is reached with probability 0. Consider
the SA in Fig. 2 on the right. Remarkably, another way how a scheduler may
influence the sampled timing in this SA is to take ever shorter delay transition.
Each of them induces a resampling of all running clocks. Thus, such a scheduler
also gets arbitrarily many chances to resample the clocks by delaying, say for
1/2, then for 1/4, 1/8, 1/16, and so on.2 In this way, a scheduler can arguably
effectuate divine power by forcing a particular ordering of events through the
way in which it lets time progress.

In general, this means that a scheduler can force one of the active clocks c
in some location to expire first (unless the lower bound of the support of its
associated probability measure disallows that). But the power of schedulers does
not stop here: A scheduler can also use the same technique to force a clock to
expire in an arbitrarily small subinterval I of its support (with F (c)(I) > 0);
so in the example above, it could achieve probability 1 for reaching location ×
before 2.1 time units have elapsed.

Furthermore, a scheduler in the spent lifetimes
semantics can prevent urgent actions from ever tak-
ing place, even when no alternative action is available,
and without letting time converge. Consider the small
example on the right, where we assume both actions
a and d to be urgent. �1 must thus be reached within

2 Note that this is not Zeno behaviour: An edge will eventually be taken after a finite
number of steps with probability 1.
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zero time units, and we would expect location � to be reached after a further
delay according to the exponential distribution with rate 1, i.e. after on aver-
age a further 1 time unit. However, a scheduler in the spent lifetimes semantics
for this model can prevent � from being reached at all: When in state 〈�1, v1〉
with v1(dx) = t1 > 0, it can choose to delay by t1 − ε (ε > 0) time units. The
value for dx is then resampled, and we again end up in a state 〈�1, v2〉 with
v2(dx) = t2 > 0. Due to the unbounded support and the memoryless property of
the exponential distribution (i.e. Exp|t(1) = Exp(1) for all t ∈ R

+
0 ), this process

can be repeated ad infinitum, and
∑

i ti = ∞ with probability 1.
These anomalies are clearly not intended conceptually, but overarch the exist-

ing solutions. It thus appears that the concepts currently at hand for stochastic
automata and related models are not adequate. We therefore aim at settling a
semantics that makes sure that the schedulers are neither prophetic nor divine.
We define such a semantics, that we call non-prophetic, in the next section.

4 Non-prophetic Semantics

This section introduces a novel semantics for stochastic automata where sched-
ulers can neither act divine nor prophetic. It is a spent lifetimes semantics in the
sense that the residual times (variables dc for clocks c) are resampled whenever
delays are to be performed. However, the choice of the actual time to delay and
this resampling are performed in one atomic step. In this way, the scheduler
cannot know the residual times at the point where it has to choose the delay.
After the choice and resampling, the amount of time that passes is at least the
minimum of the sampled residual times and the chosen delay. Only when this
amount of time has passed can a jump be performed or a new delay be chosen
(including another resampling of the residual times).

4.1 Definition

Technically, to achieve this kind of behaviour, we split the evolution of the system
into two alternating phases, denoted as ◦ and •. In the ◦-phase, the scheduler
may only take jump transitions, or it may decide to switch to the •-phase. On
this switch, it chooses the next delay, and the residual times for the clocks are
resampled. Then, in the •-phase, the scheduler can only let time pass via delay
transitions or switch back to the ◦-phase. However, the switch back is only
enabled at the exact points in time where either a clock has just expired, or the
amount of time that has passed is the delay previously chosen by the scheduler.
As usual, if an edge with an urgent action has become enabled, no more time
can pass and the switch back to ◦ must occur immediately.

Definition 3. The non-prophetic semantics of an SA M is the TPTS

�M�n = 〈Loc × {◦, • } × Val), R+ 
 A 
 {τ}, TM , 〈�init , ◦,0〉〉
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where Val are valuations over the set of variables Var = C′ 
{ dc | c ∈ C′ } where
C′ def= C 
 {w } are the clock variables and TM is the smallest transition function
such that the following inference rules are satisfied:

�
C,a−−→E μ �Expired(C)�(v)

〈�, ◦, v〉 a−→TM

∑
R,�′ μ(〈R, �′〉) · D(〈�′, ◦〉) ⊗ �Sample(R)�1(v)

(jumpn)

d ∈ R
+ �¬Urgentr(�)�(v)

〈�, ◦, v〉 τ−→TM
D(〈�, •〉) ⊗ �Resample(C) ∪ Setn(d)�1(v)

(choicen)

t ∈ R
+ ∀ t′ ∈ [0, t) : �¬Urgentn(�)�(v + t′)

〈�, •, v〉 t−→TM
D(〈�, •, v + t〉)

(delayn)

c ∈ C′ �Expiring(c)�(v)

〈�, •, v〉 τ−→TM
D(〈�, ◦〉) ⊗ �{ dc := 0 }�

(expiringn)

where Setn(d) def= {w := 0, dw := d } and

Urgentn(�)
def= Urgentr(�) ∨

∨

c∈C′
Expiring(c).

The rules choicen and expiringn take care of switching between the phases
whereas the rules jumpn and delayn echo the rules of the residual lifetimes seman-
tics. The precondition of delayn uses the predicate Urgentn, which prevents the
rule from being applied not only when the clock for an urgent action has expired
(as in Urgentr), but also when the new clock w or the clock of a delayable action
is just expiring. The update dc := 0 on expiringn makes sure that the clock can
expire only once at a given moment of time.

4.2 Absence of Prophetic and Divine Behaviour

In light of the shortcomings of earlier approaches discussed in Sect. 3, the ques-
tion arises in what sense this new semantics is any good. We argue in the sequel
that the non-prophetic semantics meets its design goals. Formally, we consider
a restricted class of schedulers on this new semantics �M�n such that the sched-
ulers in this class clearly only enable non-prophetic scheduling. This is because
their decisions are only based on spent lifetimes. We then show that this sched-
uler class is no less powerful than the class of all imaginable schedulers on �M�n
w.r.t. timed trace distribution equivalence. Notably, the same does not hold for
�M�r and �M�s, as shown by our earlier examples.

Procrastination. First, we define and show one technical property that simpli-
fies the proofs later and reveals additional structure of scheduling: we will require
that after waiting for the delay previously chosen by the scheduler without being
interrupted by the expiration of any clock, the scheduler cannot choose to wait
further, i.e. it needs to choose some edge. We say that a scheduler σ in �M�n is
procrastination-free if for all histories h = s0a0 · · · an−1sn we have the following
two properties:



228 A. Hartmanns et al.

1. if an−1 = τ and sn = 〈�, ◦, v〉 with v(w) = v(dw), then the scheduler σ chooses
in h any τ transition with probability zero;

2. if sn = 〈�, •, v〉, the scheduler σ chooses in h the delay transition with maxi-
mum possible label value (i.e. maximum delay) with probability one.

Next, we show that we can restrict to procrastination-free schedulers.

Lemma 1. For any scheduler σ in �M�n, there is a procrastination-free sched-
uler σ′ in �M�n such that the stochastic processes induced by σ and σ′ have the
same timed trace distribution.

Proof (Sketch). We define the scheduler σ′ for a given history h as follows. We
observe the measure over sequences of several delay steps that end by choosing
some non-waiting action from A. The scheduler then takes the delay according
to this measure in one step. In the next step (if not interrupted by expiration
of some clocks earlier), the non-waiting action is also taken according to this
measure (conditioned by the chosen waiting).

Non-prophetic schedulers in �M�n We say that a scheduler σ in �M�n is
non-prophetic if σ(h) = σ(h′) for all histories h = s0a0 · · · an−1sn and h′ =
s′
0a

′
0 · · · a′

n−1s
′
n such that

– for all 0 ≤ i < n we have ai = a′
i and

– for all 0 ≤ i ≤ n the valuations in si agree on values of C.

Lemma 2. For any procrastination-free scheduler σ′ in �M�n, there is a
procrastination-free non-prophetic scheduler σ′′ in �M�n such that the stochastic
processes induced by σ′ and σ′′ are timed trace distribution equivalent.

Proof. We define each choice of the scheduler σ′′ by randomization over choices
of σ′ over all sampled values of variables that a non-prophetic scheduler cannot
observe. This can be easily defined locally as the variables are resampled in every
step and the scheduler σ is procrastination-free.

Non-prophetic schedulers in �M�r. Next, we observe that every scheduler
in a non-prophetic semantics can be mimicked by a scheduler in the standard
residual lifetimes semantics. The following theorem bridges the two semantics.

Theorem 1. For any scheduler σ in �M�n, there is a scheduler σ̄ in �M�r such
that the stochastic processes induced by σ and σ̄ have the same timed trace dis-
tribution.

Proof (Sketch). Owed to the preceding lemmata, we can assume σ to be
procrastination-free and non-prophetic, since otherwise we could switch to
another scheduler satisfying these assumptions with the same timed trace dis-
tribution.

We define the scheduler σ̄ in �M�r with the same timed trace distribution as
follows. It always takes the decision only based on the spent lifetimes of every
clock (which are stored in the state space of �M�r). When a decision (say to wait
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for t time units) is taken, it sticks to this decision: even if some clock expires
earlier (say after t′ < t time units), the decision is not changed up to the point
where the expiration happens (so there is indeed waiting for t′ time units). At
this point, the observations of σ̄ do change, and it may thus take another decision
according to σ.

Finally, we say that a scheduler σ̄ in �M�r is non-prophetic if there is a scheduler
σ in �M�n such that the stochastic processes induced by σ̄ and σ are timed trace
distribution equivalent. In the next section, we address the problem of analysing
SA w.r.t. the non-prophetic semantics, or equivalently w.r.t. the class of non-
prophetic schedulers in the standard residual lifetimes semantics.

5 Towards Non-Prophetic Model Checking

In this section, we discuss how the non-prophetic semantics of stochastic
automata can equivalently be encoded into the more expressive formalism of
stochastic timed automata. This is possible despite the fact that STA use the
residual lifetimes approach for expressing stochastic delays. We will finally dis-
cuss ways to perform model checking of non-prophetic SA based on this encoding.

We first define the formalism of STA and its semantics using TPTS. We then
explain the translation from SA to STA, before we turn to the model checking
discussion.

5.1 Stochastic Timed Automata [6]

The STA formalism is somewhat similar to SA, with the main difference being
that the sampling from probability measures is now made explicit in the model:
In addition to clock variables as in SA, an STA can also have real-valued non-
clock variables. These do not change over time, but when an edge is taken, they
can be set to values sampled according to probability measures. Edges in STA are
decorated with a guard and a deadline. Both of these are clock constraints, and
in particular, can contain comparisons between clocks and non-clock variables. In
this way, the residual lifetimes semantics can be encoded explicitly in an STA,
but at the same time, also nondeterministic timing is possible by simply not
making use of the possibility of sampling and instead comparing a clock with
constant values in guards and deadlines.

Definition 4. A stochastic timed automaton (STA) is a 5-tuple

〈Loc,Var , A,E, �init 〉

where

– Loc is a countable set of locations;
– Var ⊇ C is a finite set of variables with a subset C of clock variables;
– A is the automaton’s countable action alphabet;
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– E ∈ Loc → P(CC × CC × A × Dist(CUpd × Loc)) is the edge function, which
maps each location to a set of edges, which in turn consist of a guard, a dead-
line, a label and a probability distribution over updates and target locations;
and

– �init ∈ Loc is the initial location.

We also write � g,d,a−−−→E μ for 〈g, d, a, μ〉 ∈ E(�).
Intuitively, an STA M evolves as follows: It starts in the initial location �init

with all variables having value 0. When time passes, values of all clock variables
synchronously increase. An outgoing edge � g,d,a−−−→E μ may be taken only when
its guard g is satisfied by the current values of the variables. If the deadline d of
any outgoing edge is satisfied, then some outgoing edge must be taken before
time can pass again. Whenever an edge as above is taken, a clock update and a
successor location is chosen randomly according to μ. The update is applied on
the current values of variables and the process moves to the successor location.

On the right, we illustrate how an STA
can be used to express stochastic delays.
The edges (all of which lead to Dirac
distributions here, i.e. they have a sin-
gle successor location each) are annotated
by their guard (in green) and their dead-
line (in red), their action, and the updates
of their single target (if non-empty). The
edge from the initial location, sampling
the delay for clock c, needs to be taken
immediately because its deadline is true. In location �1, we need to wait at least
until “c expires”. Note that the waiting can be longer (depending on nondeter-
ministic choice) as the deadline occurs only 1 time unit after that.

Formally, the semantics of STA [6] is defined using TPTS:

Definition 5. The semantics of an STA M is the TPTS

�M� = 〈Loc × Val , R+
0 
 A, TM , 〈�init ,0Var 〉〉

where TM is the smallest function satisfying the following two inference rules:

�
g,d,a−−−→E μ �g�(v)

〈�, v〉 a−→TM

∑
〈U,�′〉∈support(μ) μ(〈U, �′〉) · ({D(�′) } ⊗ �U�(v))

(jumpsta)

t ∈ R
+ ∀ t′ ∈ [0, t) : �¬Urgentsta(�)�(v + t′)

〈�, v〉 t−→TM
D(〈�, v + t〉)

(delaysta)

where Urgentsta(�)
def=

∨
〈g,d,a,μ〉∈E(�) d.

Both rules above are not surprising, since they closely resemble the residual
lifetimes semantics of SA.
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5.2 Residual-Lifetimes Embedding of SA

Before addressing our ultimate target, the non-prophetic semantics, we start by
showing that stochastic automata (with respect to the residual lifetimes seman-
tics) are a subclass of stochastic timed automata by the following simple embed-
ding: An SA

M = 〈Loc, C, A = Ad 
 Au, E, F, �init 〉
is mapped to an STA with the same set of locations,

M r = 〈Loc, C ∪ { dc | c ∈ C }, A, Ē, �init 〉.
For each clock c, we again have one variable dc with the sampled value. For each
edge in the SA, there is one edge in the STA as given by the inference rule

�
C,a−−→E μ

�
Expired(C),Deadline(a,C),a−−−−−−−−−−−−−−−−−−→Ē

∑
R,�′ μ(R, �′) · D(〈Sample(R), �′〉)

(jumpr̄)

where Expired(C) is the guard of the edge and Deadline(a,C) is its deadline.
The deadline coincides with the guard if the action is urgent, i.e.

Deadline(a,C) def=

{
Expired(C) if a ∈ Au,

ff if a ∈ Ad.

5.3 Embedding of SA with Non-prophetic Semantics

We move on to the crucial translation, namely the one that embeds the non-
prophetic SA semantics into STA. The embedding proceeds similar to the embed-
ding from the previous subsection, but makes sure that nothing but spent life-
times are considered.

Definition 6. The STA translation of an SA M as above is the STA

M = 〈Loc × {◦, • }, C′ ∪ { dc | c ∈ C′ }, A 
 { τ }, Ē, 〈�init , ◦〉〉
where C′ def= C ∪ {w } are the clock variables and Ē is the smallest edge function
such that the following inference rules are satisfied:

�
C,a−−→E μ

〈�, ◦〉 Expired(C),Deadline(a,C),a−−−−−−−−−−−−−−−−−−→Ē

∑
R,�′ μ(R, �′) · D(〈Sample(R), 〈�′, ◦〉〉)

(jumpn̄)

〈�, ◦〉 ¬Urgentsta(�),tt,τ−−−−−−−−−−−→Ē D(〈Resample(C) ∪ Setn̄, 〈�, •〉〉)
(choicen̄)

c ∈ C′

〈�, •〉 Expiring(c),Expiring(c),τ−−−−−−−−−−−−−−−−→Ē D(〈{ dc := 0 }, 〈�, ◦〉〉)
(expiringn̄)

where Setn̄ = {w := 0, dw := any((0,∞)) }.
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The update Setn̄ resets the newly introduced clock w and allows the nonde-
terministic selection of a value in R

+ for dw. It thus corresponds to the non-
deterministic choice of “scheduler delay” of rule choicen in the non-prophetic
semantics of SA.

Notably, this embedding is linear in the size of the original SA. The inference
rules of Definitions 5 and 6 together build the very same TPTS as the rules
for the non-prophetic semantics in Definition 3, as expressed by the following
theorem:

Theorem 2. We have �M� = �M�.

Remark 2. For decidability reasons, definitions of timed automata concepts usu-
ally avoid the possibility to read clock values in update assignments. We instead
do read clock values, but, in fact, this is done only to simplify the exposition.
Actually, as all delays are stored into (non-clock) variables before each waiting,
we can determine the current value of any clock on expiration by accessing non-
clock variables only. When adapting the STA model in such a way, the resulting
TPTS would however not be identical but only bisimilar to the non-prophetic
semantics of TPTS.

5.4 Analysis of STA

The above semantic translation maps on STA models, for which, in turn, two dif-
ferent analysis techniques are available: Simulation (also called statistical model
checking), as for example implemented in the modes [5] tool, and model checking
using an abstraction of the continuous measures as implemented in the mcsta
tool [14]. Both are part of the Modest Toolset [16].

The simulation approach is inherently restricted to models that do not con-
tain nondeterministic choices, neither in terms of the discrete jumps nor when
it comes to delays. It is thus of limited use for the cases we consider in this
paper where schedulers, and thus nondeterministic choices, play an important
role. Some techniques based on partial order and confluence reduction are avail-
able to simulate restricted classes of nondeterministic models [4,17] in a sound
manner, however they focus thus far on the untimed model of Markov decision
processes, and are limited to cases where the scheduler choices are guaranteed
to not influence the analysis results. The confluence-based approach has been
lifted to the Markov automata [28] model, which is semantically very close to
stochastic automata [18]. If properly lifted to STA, it would then be applica-
ble to SA models where scheduling power does not matter with respect to the
non-prophetic semantics.

On the other hand, the model-checking technique implemented in mcsta is
generally applicable across STA. It can deliver upper and lower bounds on max-
imum or minimum reachability probabilities and expected cumulative reward
values. Technically, it proceeds by replacing the sampling from continuous prob-
ability measures by sampling from a discrete probability distribution over a
number of intervals that cover the measure’s support, followed by a continuous
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nondeterministic choice over the concrete values from the chosen time interval.
This turns an STA into an overapproximating probabilistic timed automaton
(PTA), for which existing model checking techniques such as the digital clocks
approach [20] can be used to compute the values in question. That PTA analysis
relies on the inability to read the exact values of clock variables, as mentioned
above. It therefore makes it necessary to resort to the notationally more com-
plex workaround discussed in Remark 2. When connecting this with the mcsta
approach, a technical obstacle remains in the abstraction of continuous sampling
by discrete sampling plus nondeterministic choices over time intervals: The res-
olution of the latter is in fact delegated to the PTA analysis, but the concrete
values picked inside the time intervals need to be taken into account for resam-
pling, which so far is not supported. One viable way to overcome this lifts the
digital clocks semantics to STA by restricting to integer clock valuations prior
to moving to PTA. This appears not to affect the soundness of the abstraction.
We consider this approach as an interesting technical challenge, for which we
have presented the foundations along with this paper.

6 Discussion and Conclusion

This paper has discussed to what extent formalisms for concurrent systems oper-
ating in stochastic continuous time can be equipped with a meaningful seman-
tics, especially in the sense that schedulers are not supposed to be prophets. The
results presented do enable us to encode the SQC calculus of Zeng, Nielson and
Nielson into STA, and pave the way for non-prophetic model checking provided
via the Modest Toolset.

Relative to the survey paper by Bravetti and D’Argenio [7] we did, for sim-
plicity, not consider priorities of actions. However, we see no obstacle in including
this feature in our setting, since the concept is orthogonal to the other SA ingre-
dients.

Unlike D’Argenio [10] and Bravetti [8], we only focussed on closed systems,
i.e. systems which are not subject to composition with other systems. This is
rooted in the observation that the semantics we propose is not compositional.
Let us illustrate this on a simple example of two components that need to get
synchronised by a delayable action a: component A needs to finish some task
(modelled by the expiration of a clock c) before the synchronization, whereas
component B is ready to synchronize from the start. In the SA A‖B obtained
by parallel composition [11] of A and B, one naturally obtains a transition with
the delayable action a that can be taken at any time after the clock c expires.

The (natural) parallel compositions of the TPTS induced by the residual
lifetimes semantics or the spent lifetimes semantics, i.e. �A�r‖�B�r or �A�s‖�B�s,
coincide with the semantics of the composed SA, i.e. �A‖B�r or �A‖B�s: They
include the possibility of action a being scheduled at any time after clock c
expires. However, as we pointed out in this paper, these semantics enable unde-
sired prophetic or divine scheduling.

Unfortunately, the parallel composition �A�n‖�B�n of the TPTS induced by
our non-prophetic semantics allows different behaviour than the semantics of
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the composed SA, �A‖B�n. The former does not allow the a-labelled transition
to be freely scheduled at any time after c expires. In particular, the scheduler
can take the transition at the moment when c expires only with probability 0.
This is because the scheduler needs to choose a delay d first (for B); then the
composed system needs to wait for d time units; and only then, action a can be
taken (by A), provided clock c has expired in the meantime. If it has not expired
yet, the scheduler needs to choose another delay d′ and so on. This does not
allow the scheduler to react immediately to the fact that c has just expired. On
the other hand the latter approach, �A‖B�n, which applies our non-prophetic
semantics to the composed SA avoids any such problems and captures exactly
the desired behaviour.

We leave a compositional and non-prophetic semantics as an open problem
and conjecture that it is not possible, unless striving for a different parallel
composition operator that would circumvent the problem sketched above.
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TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014)

17. Hartmanns, A., Timmer, M.: Sound statistical model checking for MDP using
partial order and confluence reduction. STTT 17(4), 429–456 (2015)
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Marina Andrić1, Rocco De Nicola1(B), and Alberto Lluch Lafuente2

1 IMT Institute for Advanced Studies Lucca, Lucca, Italy
rocco.denicola@imtlucca.it

2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract. Linguistic primitives for replica-aware coordination offer
suitable solutions to the challenging problems of data distribution and
locality in large-scale high-performance computing. The data replica-
tion mechanisms that had previously been designed to extend Klaim
with replicated tuples are now used to experiment with X10, a parallel
programming language primarily targeting clusters of multi-core proces-
sors linked in a large-scale system via high-performance networks. Our
approach aims at allowing the programmer to specify and coordinate
the replication of shared data items by taking into account the desired
consistency properties. The programmer can hence exploit such flexible
mechanisms to adapt data distribution and locality to the needs of the
application, in order to improve performance in terms of concurrency
and data access. We investigate issues related to replica consistency and
provide a performance analysis, which includes scenarios where replica-
based specifications and relaxed consistency provide significant perfor-
mance gains.

1 Introduction

Parallel and distributed computing systems are more and more frequently used
to solve complex computational problems. Now, when more computing power is
needed, one does not buy a faster uniprocessor but another processor or another
million processors, and connects them with a high-speed communication net-
work. Or, perhaps, one rents them instead, by resorting to cloud computing
services. This gives one whatever number of computer cycles he can desire but
poses the problem of how to use those computer cycles effectively by dividing
the available work into chunks that can be executed simultaneously without
introducing undesirable indeterminacy or waiting for conditions that may never
materialize.

One of the key issues in parallel and distributed computing is the partitioning
and exchange of data between computational entities. Better performances are
achieved with increased data locality and minimized data communication.

Increasing data locality can be achieved by replicating data, but this comes
at a high price in terms of synchronization in case replicated data need to be kept
consistent. As a matter of fact the trade-off between consistency and performance
is one of the big dilemmas in distributed and parallel computing and is one of the
main topics of research of the High-Performance Computing (HPC) community.
c© Springer International Publishing Switzerland 2016
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The recent years have seen the advent of technologies that provide software
engineers and programmers with flexible mechanisms to conveniently specify
data locality, communication and consistency to the benefit of their applications.

A pragmatical example for large-scale distributed services is the Google
Cloud Storage [10] service, that allows users to geographically specify data
locality (to reduce cost and speed up access) and provides different consistency
levels (e.g. strong and eventual consistency) for different operations (e.g. single
data and list operations). Indeed, many modern distributed systems are based
on optimistic data replication techniques for achieving high availability and per-
formance (see e.g. the discussion in [2]). In such systems it is vital for the pro-
grammer to know when consistency can be sacrificed for the sake of performance
without compromising the application’s expected functionality. One guidance for
common weak memory models in distributed computing can be found in [7].

One response to this problem has been to move to a fragmented memory
model. Multiple processors are programmed largely as if they were uniprocessors,
but are meant to interact via message-passing middlewares such as MPI [16].
One disadvantage is that programmers must explicitly manage the interaction
between multiple processes and coordinate their data exchange; large data-
structures that are conceptually unitary must be thought of as fragmented across
different nodes. The Partitioned Global Address Space (PGAS) model has then
been proposed, see. e.g. Titanium [18], to permit the programmer to think of a
single computation running across multiple processors, sharing a global address
space and relying on zone-based memory management. All data resides at some
processor, which is said to have affinity to the data. Each processor may operate
directly on the data it contains but must use some indirect mechanism to access
or update data at other processors. Some kind of global barriers are used to
ensure that processors remain synchronized. More recently a new language, X10,
has been proposed that can be considered as one of the first members of the sec-
ond generation of PGAS languages. It extends the PGAS model with asynchrony
(yielding the APGAS programming model) by introducing the notion of places
as an abstraction for a computational context with a locally synchronous view
of shared memory. An X10 computation runs over a large collection of places.
Each place hosts some data and runs one or more activities. Activities can be
dynamically created. Activities are lightweight threads of execution. An activity
may synchronously (and atomically) use one or more memory locations in the
place in which it resides.

This programming model facilitates the development of distributed applica-
tions having a body of data which is shared between a few or all components.
Such data can range from simple variables to large arrays, structured types or
multimedia objects. To reduce the number of accesses to a single point in the sys-
tem, programmers often do decompose such large objects into sub-parts, which
are then distributed and processed in parallel, or move a copy of the shared data
to the sites that use it, thus forming local replicas at each site.

Data locality and data consistency are indeed two key aspects in the design of
distributed and parallel systems and software. A proper design of those aspects
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can bring significant performance advantages, e.g. in terms of minimization of
communication between computational entities. In our view, data locality and
data consistency issues cannot be fully hidden to the programmer of the high-
performance applications of the future. Programmers should be equipped with
suitable primitives to deal with those aspects in a natural and flexible way.
Early works presented in [6] and [9] pointed to the importance of this aspect
and developed a theory of sharing which captures the behavior of programs
with respect to shared data into the framework of process algebra. The core
theory can describe programs performing read and write access to unitary pieces
of shared data. Extensions allow shared data to be decomposed and atomic
copies to be made, reflecting the common operations of parallel programs. The
authors tackled the problem of decomposition strategies of shared data, from
the performance perspective, and replication of commonly-read state.

Our contribution to this approach, applied to the distributed tuple space
coordination paradigm, was recently presented in [1]. We introduced RepliKlaim,
a tuple-based coordination language which enriches the Klaim language [5] with
primitives for replica-aware coordination, in order to offer suitable solutions to
the challenging problems of data distribution and locality in large-scale high per-
formance computing. In particular, RepliKlaim allows the programmer to spec-
ify and coordinate replication of shared data items and the desired consistency
properties. The programmer can hence exploit such flexible mechanisms to adapt
data distribution and locality to the needs of the application, in order to improve
performance in terms of concurrency and data access. We provided also a perfor-
mance analysis, which includes scenarios where replica-based specifications and
relaxed consistency provide significant performance gains.

In this work we describe our initial attempt at exporting our approach to
X10, a general purpose object-oriented, scale-out programming language. The
main motivation for turning our attention to X10 are its similarities with Klaim.
Indeed, both languages consider localities as a first-class citizen and offer prim-
itives for asynchronous parallel computations and code mobility.

We hope that the results of our preliminary work are sufficiently interesting
to stimulate research on X10 aiming at adding to the language specific primitives
or libraries would enable programmers to easily manipulate replicated data while
choosing the appropriate level of consistency.

Structure of thePaper. The rest of the paper is organised as follows. Section 2 intro-
duces X10, by providing an overview of the underlying programming model and
by presenting the basic features of the language through small examples. Section 3
reports on a number of performance experiments by making different assumptions
on the size of the data and on the number of available processing units. In Sect. 4
we draw conclusions and sketch possible directions for future work.

2 X10 in a Nutshell

X10 is a programming language primarily targeting clusters of multi-core proces-
sors linked in a large-scale system via a high-performance network, consequently
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concurrency and distribution are the main focus of the language design. The design
philosophy of X10 is based on a belief that future server systems will consist of
multi-core SMP nodes with non-uniform memory hierarchies interconnected in
scalable clusters referred to asNon-UniformCluster Computing (NUCC) systems.
The goal of the designers of X10 was to create a language that would combine ease
of programming of object-oriented languages and efficiency of high-performance
languages. Using the words of the designers, their goal was “to increase program-
mer productivity for NUCC without compromising performance”.

The programming model of X10 is called (asynchronous) partitioned global
address space, i.e. (A)PGAS. The PGAS model combines data locality (partition-
ing) of a distributed memory model and global address space of a shared mem-
ory model. In PGAS each processor has private memory for local data and shared
memory for globally shared data.APGAS enriches thePGASmodelwith two addi-
tional concepts: places, which provide an explicit mechanism for data and code
locality, and asynchronous invocation, which allows forking a task, possibly at
a remote place. These two notions are reminiscent of the locality/node concept
and of the eval operation in Klaim [5], where the command eval(S)@l is used
to spawn a new process at locality l to remotely execute S. The Klaim command
eval(S)@self is instead used to execute S locally. As a matter of fact, these simi-
larities betweenX10 andKlaim have inspired our interest in investigating the trans-
fer of ideas from our work on replica-aware programming [1] to X10.

The X10 code snippet below (Listing 1.1) presents a slight simplification and
adaptation of the case study used in our experimental evaluation. We shall use
this simplified version of our case study in the rest of the section to introduce
some key ingredients of X10, necessary to understand our work.

Listing 1.1. GlobalRef usage

1 va l a :A = new A( ) ;
2 va l y = GlobalRef [A] ( a ) ;
3 va l p l a c e s = Place . p l a c e s ( ) ;
4
5 at ( p l a c e s ( 0 ) ) async {
6 atomic y ( ) . update ( ) ;
7 }
8
9 at ( p l a c e s ( 1 ) ) async {

10 va l temp = at (y . home) y ( ) . getData ( ) ;
11 }
12
13 at ( p l a c e s ( 2 ) ) async {
14 at ( y . home) atomic y ( ) . update ( ) ;
15 }
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A variable a, actually an object of class A, is going to be created in a place (0)
and shared with two other places (1 and 2), through a global reference y. Parallel
computations at the three places perform different operations on a (through the
reference y): an (atomic) update (local in place 0 and remote in place 2) and a
remote read (in place 1).

As one can observe in the example, data items in X10 can be mutable (var,
e.g. a) or immutable (val, e.g. the reference y). The set of places is fixed before
program execution. Places cannot be dynamically created in the current version
of X10. To set the number of places, one needs to set a value to X10 NPLACES pro-
gram environment variable prior to the program execution. The program starts
executing in Place.places()(0), other places can be addressed in a similar
fashion by their integer ranks. Each X10 place is indented to map to a hardware
data-coherent unit, such as an SMP node in a multi-core machine. Functions are
first-class data and as such they can be stored, passed between activities and
so on. X10 provides several primitives for coordinating access to shared mutable
data. Among the others we would like to mention atomic blocks. Specifically,
atomic S is used to guarantee execution of a statement S, following certain
restrictions, as if it was a single step, with respect to other concurrently execut-
ing atomic blocks in the same place. It is used for the update in the example
above to avoid race situations.

The main X10 construct for concurrency within a place is the async con-
struct. The main form of async is async S that starts a new activity to execute
a statement S in the same place of the executing process. Remote execution is
achieved by means of the at construct. For example, the activity that executes
at(P) S is place-shifted, meaning that its execution is suspended in the current
place and shifted to place P where S will be executed. After completion of S
control comes back to the current place, with the result of S. One needs to be
careful when using the at construct as it can potentially lead to high costs as the
objects used in S (and depending objects) are copied to place P. This behavior
can be altered by using global references (GlobalRefs) as we do in our example,
which we will explain further below.

Parallelism across places can be achieved by combining async and at to
spawn a new activity at a remote place, e.g. at(P) async S creates a new activ-
ity at place P to execute statement S. This is used in our example to spawn the
parallel remote activities on places 1 and 2. To synchronize activities one of the
mechanisms offered by X10 is a finish S construct. An activity that executes
finish S will execute S and then wait for all the activities spawned by S to
terminate.

It is worth mentioning that the activities running in a place may access (read,
modify) data items located at that place with the efficiency of on-chip access.
Accesses to remote places can be significantly longer, sometimes even orders of
magnitude longer, as we will see in Sect. 3.

As we have already mentioned, careless use of at can result in copying and
transmitting very large data structures. In order to avoid this copying, one has
to create and use global value references GlobalRefs. In particular, val ref =
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GlobalRef[T](v) creates a reference to a value v of type T and stores it in ref.
Retrieval of a value is done by operation ref(). In such a way, manipulating
data with references across different places will not involve copying, however
operating on referenced values requires a place-shift to the home place of the
reference, that is obtained with ref.home.

To illustrate this important programming concepts, we present in the code
snippet below (Listing 1.2) a “wrong” variant of our previous example (i.e. the
one on Listing 1.1):

Listing 1.2. Value copying

1 va l a :A = new A( ) ; va l p l a c e s = Place . p l a c e s ( ) ;

2

3 at ( p l a c e s ( 0 ) ) async {
4 atomic a . update ( ) ;

5 }
6

7 at ( p l a c e s ( 1 ) ) async {
8 va l temp = a . getData ( ) ;

9 }
10

11 at ( p l a c e s ( 2 ) ) async {
12 atomic a . update ( ) ;

13 }

Contrary to the previous example, no global reference is used to operate on
variable a. The effect is that all places will operate on local copies of a, possibly
introducing unwanted inconsistencies. This is due to the already explained data
copying that the at construct entails.

As a final example, consider the following sketch of a X10 specification, which
permits implementing, in a programmed manner, the kind of data replication
we promote in our work:

Listing 1.3. Program replicas

1 val p l a c e s = Place . p l a c e s ( ) ;
2
3 va l lock = new Lock ( ) ;
4 va l lockRef = GlobalRef [ Lock ] ( lock ) ;
5
6 va l r eg ion = Dist . makeUnique ( p l a c e s ) ;
7 va l r e p l i c a s : DistArray [A] = DistArray .make [A] ( region , ( Point)=> new A( ) ) ;
8
9 f o r (q in p la c e s ) at (q ) async {

10 dataAccess ( ) ;
11 }

To replicate an object of class A we use X10’s built-in distributed array class,
DistArray, that represents a generic multidimensional array distributed over
multiple places. There are various strategies available for initializing such array.
In this case we choose the unique distribution, which stores one data element
(Point) per place in a designated region (i.e. a set of places). In order to replicate
an instance of class A across all the available places we initialized each Point to
an instance of class A and region to the set of all available places in the execution
(lines 6-7).

All places perform the same kind of access to the data in parallel, specified
by function dataAccess:
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Listing 1.4. Data access function

1 f o r ( var i : Long = 0 ; i < NUMAC; i++) async {
2 with p r obab i l i t y p { // update

3 at ( l ock . home) lock ( ) . take ( ) ;

4 f o r ( r in p l a c e s ) at ( r ) async {
5 r e p l i c a s ( r . id ( ) ) . update ( ) ;

6 }
7 at ( l ock . home) lock ( ) . r e l e a s e ( ) ;

8 }
9 with p r obab i l i t y 1−p { // read

10 va l temp = r e p l i c a s ( q . id ( ) ) . getData ( ) ;

11 }
12 }

In this model, each actual access to data is done by a separate activity, that
is spawned in a loop (line 1). The number of concurrently running activities
can be up to some pre-defined NUM AC number. Furthermore, each activity can
perform either an update or a read access, with a pre-defined probability p.
Update access is performed in a way that all replicas are updated to ensure
consistency (lines 4-6). Of course, such an update of all replicas can follow
different strategies. For instance, one can aim at strong consistency or weak
consistency with the use of appropriate locks (as shown above) or, else, one can
execute the updates in sequential order or as parallel activities (as we do above).
A lock variable is used to synchronize data accesses. The read access is simply
performed against a local replica (line 10).

As we will show in Sect. 3, we tune parameters p and NUM AC to compare
program performances with respect to different ratios of read/update access,
levels of concurrency, as well as size of accessed data. The example above is
instrumental to convey our main idea: if updates are infrequent with respect
to reads, then replicating data in X10 specifications yields more performant
applications.

Due to the limited space, we have focused here on the main X10 constructs
and concepts that are relevant to understanding the experiments we performed.
X10 is still under development at IBM in collaboration with academia. There
are two runtime frameworks available, Native X10 and Managed X10 that are
respectively based on C++ and Java backends. The semantics of the language
has been formalized in [17] along with a resilient version [4]. A core calculus
with X10’s main constructs for parallelism async and finish is presented in [15].
Cogumbreiro et al. developed Armus [3], a verification tool that detects bar-
rier deadlocks for Java and X10 programs. Gligoric et al. attempted to develop
a model checking tool [8] for X10 based on the Java Path Finder tool for
model checking Java programs. A line of work focuses on compiling and porting
programs to X10, specifically, [14] reports on compiling Matlab to X10 for high-
performance computing. The work in [11] presents a kernel benchmark suite
implementing distributed algorithms in X10. A complete list of X10 related pub-
lications can be found online at the official website [12].
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Fig. 1. (Ratio): The two strategies with shared data of size ≈0.4 MB

3 Experiments

In this section we describe the practical experiments that we have performed
in X10 in order to support the claim that explicit use of replicas can provide
significant performance improvements. We present a number of examples, discuss
the implemented replica consistency protocol, and conclude by analyzing the
obtained results.

Hypothesis. As we have already stated in the Introduction (Sect. 1) the main
motivation behind our experiments is to show that better data locality and min-
imized communication can be achieved by replicating data in X10. In a classical,
non-replicated scenario, local read access is granted only to activities residing at
the same place of the data. Remote read access to data involves network data
transfer cost, which is not negligible, and increases with the size of accessed data,
as we will experimentally confirm. Data replication can be seen as an optimiza-
tion that can remedy this problem. However, replications calls for consistency
protocols, that introduce the costs of performing the same update access on each
replica. We have performed a set of experiments that provide indications about
the situations when such optimization is beneficial and the level of impact it
can have on performance. Our experimental results show how the ratio between
frequencies of updates and reads, the degree of concurrent data accesses and the
size of data affects the performance of two different versions of a program: a
standard one that does not use replicas and the one with replicas.
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Fig. 2. (Access number): The two strategies with shared data of size ≈0.4 MB

For evaluating our test examples, we used the X10 compiler targeting the
Java backend (a.k.a. the Managed X10), version X10-2.5.0-linux/x86 64 on OS
Ubuntu 14.4. All results are obtained on hardware with 2 processors Intel(R)
Xeon(R) CPU E5620 @ 2.40 GHz, each one with 4 cores and 2 threads per core,
with 40 GB of RAM. The full implementation of our case studies is available
for download at http://sysma.imtlucca.it/wp-content/uploads/2015/05/Source
X10 example.rar.

Experiments: Configuration of the Scenario. The main idea of the scenario we
have tested is that concurrent activities running across multiple places are oper-
ating (performing read and update accesses) on the same piece of data, which is
considered to be shared data between a number of places. We compare perfor-
mances of two variants which we refer to as no-replicas and replicas. The essence
of the program with replicas has been already introduced through examples
Listings 1.3 and 1.4. In contrast to the replicated variant, the non-replicated
one excludes creation of replicas, hence every access is directed towards a single
centralized data variable, as promoted in example Listing 1.1.

As we have already mentioned, to give more elaborate results we tune three
parameters in our implementations:

• The ratio of update/read rates;
• The number of shared data accesses per place NUM AC; and
• The size of shared data.

http://sysma.imtlucca.it/wp-content/uploads/2015/05/Source_X10_example.rar
http://sysma.imtlucca.it/wp-content/uploads/2015/05/Source_X10_example.rar
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Fig. 3. (Ratio): The two strategies with shared data of size ≈4 MB

Update and read rates are used to compute the probability p with which
update can happen inside our dataAccess function, and it is calculated by the
formula:

p = update rate/(update rate + read rate)

For calculating p we use the following pairs of update and read rates: {(1, 100),
(1, 10), (1, 5), (1, 4)}. The number NUM AC is a number of data accesses/concur-
rently spawned activities per place and takes values 200, 300, 400 and 500. As an
example, if the update/read ratio is 1/5 and NUM AC is 400, it means that there
are approximately 80 update and 320 read accesses to shared data per place.
Finally, the size of shared data in one case of our experiments is ≈0.4 MB and
≈4 MB in the other.

The two strategies (programs no-replicas and replicas) that we compare are
described as follows.

Program no-replicas: the implementations of these programs are based on the
standard approach that does not involve replication of shared data. The basic
idea is that shared data is stored at a single place, with no replicas. Local access
to the shared data is granted only to activities running at that place, while other
accesses are done remotely, via place-shifting.

Program replicas: In this variant, the shared data is replicated at each place.
Presence of replicas calls for the use of consistency protocols. In these implemen-
tations the level of consistency for replicated data is weak. This means that the
interleaving of actions is allowed as update of replicas does not happen instanta-
neously across all the places. Particularly, when one replica is updated at a certain
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Fig. 4. (Access number): The two strategies with shared data of size ≈4 MB

place, multiple activities update in parallel remaining replicas in non-atomic way.
During this process, local reads can occur at remote places, before all replicas have
the same values. Interleaving of two or more update operations is not allowed, as
this would lead to undesirable and unpredictable results. We forbid such behavior
by means of a synchronization lock, that is acquired before performing the update
operations, and released at the end (see Listings 1.3 and 1.4).

Experiments: Data and Interpretation. The results of our experiments are given
in terms of dependencies between the ratio of updates and reads performed by all
activities (Figs. 1, 3) or the number of accesses NUM AC (Figs. 2, 4), represented
on x axis, and time taken by activities to complete their computations, on y axis.
Time is expressed in seconds and it is obtained as the average of 10 executions.
Figures 1 and 2 correspond to results obtained for size of shared data of ≈0.4 MB,
while Figs. 3 and 4 correspond to results obtained for the size of ≈4 MB.

Here we present initial results obtained for a 4 and 8 places scenario, we plan
to extend the experiments in the future to 16 and larger number of places.

From the presented results we can conclude that the performance benefit
of replication tends to grow with the increasing number of total accesses and
decreasing update/read ratio. Furthermore, the greater the size of shared data,
the more desirable it is to replicate it.

The results obtained for 8 places can be found in the Appendix. As it can be
seen from the figures, preserving consistency across many replicas can be expen-
sive. However, replication still brings good pays off when the size of data is either
large enough (Fig. 5(c)) or the update/read ration is small enough (Fig. 5(a)).
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We have to add that our initial attempts to scale the experiments to 16 places
failed at runtime with a “Place(0): TOO MANY THREADS” error. We found that
a similar issue with X10 was reported in [13]. By reconsidering our experiments,
we came to the conclusion that the problem was mainly due to a centralized lock
variable and to the large number (more than a thousand) of activities competing
simultaneously for it. This should have created congestion at home place of the
lock, i.e. at place 0. Initially, we did aim for high parallelism and implemented
each access to shared data as a separate activity, by using the async feature (see
Listing 1.4 line 1). Alternatively, one could dedicate a smaller number of activi-
ties to handle those accesses. Indeed, update accesses are atomic and hence could
be sequentialized rather than parallelized. Conversely, read accesses can be inter-
leaved and therefore should be parallelized in order to achieve high-performance.
To reach this goal, one has to take into account certain limitations posed on the
maximum number of activities and the amount of memory dedicated to the
program.

In this work we presented a model that is based on intensive parallel data
accesses. However, in the future our model will be adjusted to handle mentioned
limitations in a way that would allow us to carry out experiments for 16 and
more places.

4 Conclusions

Performance-vs-consistency is an inherent and classical dilemma in distributed
and parallel computing, from local highly parallel systems (e.g. a multi-core
machine) to widely distributed concurrent systems (e.g. a world-spread data cen-
ter). The resolution of such a dilemma is often delegated to run-time frameworks
and middlewares and is hidden to programmers. For some applications, however,
programmers would benefit from having some control on such design decisions
which significantly define the user-perception on the application’s Quality-of-
Service.

We are investigating programming abstractions for dealing with a key instru-
ment in the performance-vs-consistency dilemma, namely replication of data. In
a first stage of our investigation [1], we focused on a language mainly targeted
at largely distributed systems, and we proposed RepliKlaim, an extension of the
Klaim language [5], with the notion of replicated tuples and with specific com-
munication operations for dealing with them.

In this paper we have tried to apply the lessons we learned when consid-
ering Klaim to highly parallel systems. In particular, we have focused on X10,
a language for high-performance computing that shares with Klaim a couple of
important features such as importance assigned to explicit localities and to code
mobility. Like Klaim, the language X10 follows the APGAS programming model
which allows for remote operation on shared data, possibly involving transfer
and local replication of data. We have performed experiments similar in spirit to
those we presented in [1], comparing different strategies for operating on shared
data. The results we have obtained show the benefit of replicating data in specific
scenarios, especially when the size of shared data is very large.
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Our main goal with these investigations is to identify suitable programming
abstractions for dealing with replicated data in high-performance applications.
In [1], for example, we proposed a primitive outα(t)@P, to specify an operation
that places replicas of a tuple t in all places P using the consistency level α
(either weak or strong). Similarly, one could conceive convenient X10 constructs
like e.g. share X with P to specify that the data item X is meant to be shared
with the set of places P, and additional features to specify the level of consistency
(e.g. weak, strong) desired when invoking methods on X. We do not necessarily
advocate that programming languages like X10 should be equipped with first-
class primitives supporting those abstractions. In many cases, suitable macros
or libraries can be sufficient to provide programmers with mechanisms to specify
and control data replication in a natural and disciplined manner.

As future work, we plan to introduce scalability tests, by extending the cur-
rent framework to consider a larger number of places and of CPU cores, such
as present in state of the art HPC infrastructures. We shall consider both situ-
ations where more than one place is hosted on each CPU core and the issues of
lock variables on shared data that prevented us from carrying out the planned
experiments for 16 cores and beyond. Along a parallel line of work we plan
to focus on the implementation of case studies that show when the considered
language primitives are advantageous in parallel programming. Good candidate
case studies are the parallelisation of algorithms to compute functions on graphs,
like maximum degree or shortest distances, and distributed algorithms run by
concurrent agents connected in graph-shaped network topologies.

We are particularly interested in considering different (i.e. weaker) consis-
tency models and implementations for obtaining such models. As we stated in
the Introduction (Sect. 1) one of the most popular consistency models used in
practical applications is eventual consistency. It is argued that this model is
the weakest that can be accepted. In the present model, we restrict concurrent
updates to replicas by means of a lock, while this is not the case when looking
only for eventual consistency, which could be obtained by means of optimistic
data replication such as those studied in [2].
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A Results for Eight-Places Scenario
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(a) (Ratio): The two strategies with shared data of size ≈ 0.4MB
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Fig. 5. Scenario with 8 places
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(c) (Ratio): The two strategies with shared data of size ≈ 4MB
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Fig. 5. (continued)
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Guards, Failure, and Partiality:
Dijkstra’s Guarded-Command Language

Formulated Topologically
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Abstract. Existing treatments of Dijkstra’s guarded-command lan-
guage treat divergence and failure as equivalent, even though Dijkstra
clearly states they are not. We reexamine Dijkstra’s language, redefining
its denotational semantics with powerdomains formulated in topologi-
cal terms. The results refine existing work, give a sound semantics of
guards, failure, and divergence for non-flat storage domains, and reveal
the important role that general topology plays in program correctness.

1 Review: The Guarded-Command Language

Dijkstra’s Guarded-Command Language (GCL) [6,7] introduced nondetermin-
istic conditional choice — and the resultant semantical complications — to the
programming world. Dijsktra intended GCL and its weakest-precondition calcu-
lus to be a notation for stating succinctly and elegantly specifications, programs,
and correctness proofs.

Here are two GCL-coded programs and their postconditions: the first selects
the larger of two integers, X and Y , and the second codes Euclid’s greatest-
common-divisor algorithm:

if (X ≥ Y ? z:=X)
(Y ≥ X? z:=Y )

fi
// postcondition :
z ≥ X ∧ z ≥ Y
∧(z = X ∨ z = Y )

if ((X > 0 ∧ Y > 0)?
x:=X; y:=Y ;
do (x > y? x:= x − y)

(y > x? y:= y − x)
od)

fi
// postcondition :

Xmod x = 0 ∧ Y mod x = 0
∧(∀d > 0, (Xmod d = 0 ∧ Y mod d = 0) ⊃ (x ≥ d))

The first program nondeterministically chooses either X or Y as the answer
when the two integers are equal, and the second repeatedly reduces variables x
or y until they hold equal values.
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For postcondition, φ, and program, C, one calculates wp(C)φ, the weakest
precondition: the property of the initial store that ensures (i) C terminates and
(ii) φ holds true for the store updated by C. Dijkstra proposed these laws (among
others) [7] to reason about GCL:

wp(skip)φ = φ
wp(abort)φ = false
wp(v:=E)φ = [E/v]φ
wp(C1;C2)φ = wp(C1)(wp(C2)φ)
wp(if (G1?C1) · · · (Gn?Cn) fi)φ

= (G1 ∨ · · · ∨ Gn) ∧ (G1 ⊃ wp(C1)φ) ∧ · · · ∧ (Gn ⊃ wp(Cn)φ)

The law for repetition, do · od, is usually expressed with an intermediate, invari-
ant assertion and is postponed till later. We can readily calculate the weakest
precondition of the first program: Let φ0 = z ≥ X ∧ z ≥ Y ∧ (z = X ∨ z = Y )
and P0 = if(X ≥ Y ? z:=X)(Y ≥ X? z:=Y )fi. Then,

wp(z:=X)φ0 = X ≥ X ∧ X ≥ Y ∧ (X = X ∨ X = Y ) = X ≥ Y
wp(z:=Y )φ0 = Y ≥ X ∧ Y ≥ Y ∧ (Y = X ∨ Y = Y ) = Y ≥ X
wp(P0)φ0 = (X ≥ Y ∨ Y ≥ X) ∧ (X ≥ Y ⊃ X ≥ Y ) ∧ (Y ≥ X ⊃ Y ≥ X)

= true

The second example requires a loop invariant; see Dijkstra [7] or Gries [9] for
the calculation, which produces the weakest precondition, X > 0 ∧ Y > 0.

In addition to its impact on program specification, refinement, and validation,
GCL and its weakest-precondition calculus play key roles in implementations
of boolean model checking [2,17] and counterexample-based-refinement model
checking [4,28].

1.1 GCL’s Model Theory

Dijkstra masterfully hid GCL’s semantical complications behind his weakest-
precondition calculus and the tacit assumption that primary storage was “flat”
— unstructured.1

GCL’s weakest-precondition calculus is a proof theory that deserves a model,
and Plotkin’s and Smyth’s research on powerdomains [24,26,34] led Plotkin to
define a denotational semantics for GCL based on Smyth’s upper powerdomain
applied to a flat domain of storage [25]. Subsequently [35], Smyth explained why
the storage domain need not be flat, and in his thesis [3], Bonsangue defined
denotational semantics of a GCL-variant for all of the lower, upper, and convex
powerdomains (but his semantics definitions again used flat storage).

These developments were insightful and important but unfinished in that

1. the semantics of failure of the conditional and divergence of its guards were
never completely developed; and

2. the semantics of GCL for non-flat domains was never completely specified.

1 Not all difficulties were hidden, however, as witnessed by Chap. 9 of Dijkstra’s text
[7], which presented a Scott-continuity law for commands.



254 D.A. Schmidt

Fig. 1. Two non-flat storage domains and sample elements

The two omissions should be remedied because Dijkstra’s description of fail-
ure is central to the semantics of the nondeterministic conditional (see Harel’s
thoughtful explanation in [13], Chapters 5–7), and the natural definition of stor-
age might well be a non-flat domain that contains partial values — see Fig. 1.

1.2 What This Paper Accomplishes

This paper aims to fill these gaps and summarize existing results in a systematic
manner. The unifying methodology is general topology [39], whose concepts of
open set and continuous function not only provided Scott with notions he needed
to solve the D = D → D problem [32,36] but also gave Smyth and others the
tools needed to understand computation theory [1,3,8,15,24,26,27,29–35,38].
This paper accomplishes the following:

– It reveals the role topology plays in the construction of powerdomains and
in the definition of the box and diamond modalities that define predicate
transformers for GCL.

– It gives a sound denotational semantics of GCL and its wp-calculus for non-
flat domains that is faithful to Dijkstra’s description of guards, failure, and
divergence.

Scott-domain theory and its topology are used to accomplish these results, as
they were originally used to define many of the concepts. The results can also be
obtained within more recent formulations, say, Kleisli morphisms and Dijkstra
monads [14,18,19], but that is for another time and place.

2 Technical Background

2.1 Domains

For our purposes, a domain (D,�D) is an algebraic, directed-complete, partially
ordered set [8,26]. When discussing (D,�D), we normally state just D and leave
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Fig. 2. Scott-open set (P is up-closed and closed under tails of directed sets) and
continuous function (when f(a) maps in open set, Q, then f [P ] ⊆ Q for some open P )

�D implicit. Standard domain constructions (product, sum, function-space, lift)
and their associated functions can be found in any text on denotational semantics
[5,11,21–23,26,29,36,40].

A function f from domain D to domain E is Scott continuous iff for
all directed S ⊆ D, f(
S) = 
{f(d) | d ∈ S}. (Recall that nonempty set S is
directed, if for all d, d′ ∈ S, there is some e ∈ S such that d � e and d′ � e.)

These subsets are useful: for domain D and S ⊆ D,

up closure: ↑S = {d ∈ D | ∃e ∈ S, e � d}
down closure: ↓S = {d ∈ D | ∃e ∈ S, d � e}
Scott closure: cl(S) = ↓{ 
 T | T is directed and T ⊆ S}
convex closure: conv(S) = cl(S) ∩ ↑S

2.2 Scott Topology

Topology is the study of properties (open sets) and functions that behave well
(are continuous) regarding the properties. For example, the real line, IR, has as
open sets the open intervals, (a, b). A number r ∈ IR has property (a, b) when
r ∈ (a, b), e.g., π ∈ (3, 4). A function f : IR → IR is topologically continuous when
it maps arguments “close together” (sharing many open sets) to answers “close
together” (sharing equally many open sets), e.g., area(r) = πr2 is continuous
with respect to intervals. The continuous functions on the real line are exactly
the topologically continuous functions.

Topology applies to Scott-domain theory [8,27,31]: For domain D, Scott
defined D’s open sets to be those subsets of D that are (i) upwards closed
and (ii) closed under tails of directed sets.2 See Fig. 2. Scott proved that the
functions that are topologically continuous for his Scott topology of D are exactly
the Scott-continuous functions on D. Further, to solve the domain equation,

2 That is, for every directed set, S, when �S ∈ O, for open set O ⊆ D, then there
exists some d ∈ S such that d ∈ O also. This means S’s “tail,” from d upwards, is
in O. A Scott-open set is like a half-open interval, (r, ∞], r ∈ IR.
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D = D → D, Scott restricted D → D to the continuous functions, limiting
domain D’s cardinality to the continuum.3

Here are some open sets (“properties”) from the domains in Fig. 1:

– O1 = {σ ∈ MStore | σ(1) = 3} (“σ’s cell 1 holds 3”)
– O2 = {σ ∈ MStore | ∃k > 0,∀0 ≤ i < k, σ(i) ∈ IN} (“σ has a defined finite

prefix”)

– O3 = {(a, b) ∈ LStore} (“the store has length ≥ 1”)
– O4 = {(a, (3, b)) ∈ LStore} (“the store’s second element is 3”)
– O5={(a0, (a1,· · · (ak,nil) · · · )) ∈ LStore | k≥ 0} (“the store has finite length”)

Note that (λn.3) belongs to O1 and O2, as does (λn.n ≤ 1 → 3;⊥) — a “partial”
store can belong to a “property set.” Similarly, (2, (3,⊥)) belongs to O3 and O4,
as does the infinite sequence, (3, (3, · · · (3, · · · ) · · · )). But neither belongs to O5.

This variant of O5 is not Scott-open: {(a0, (a1, · · · (ai, · · · ) · · · )) ∈ LStore}
(“the store has infinite length”), nor is this variant of O2: {σ ∈ MStore | ∀i ∈
IN, σ(i) ∈ IN} (“σ is total”) — Scott-open sets must be closed under tails of
directed sets, that is, the property defined by an open set must be decided
“finitely.”

For domain IN⊥, any subset of IN is Scott-open — open sets are not neces-
sarily recursively enumerable. For this reason among others,4 Plotkin required
finitely-generable sets to define the elements of his powerdomain [24].

2.3 General Topology

Here are some basic concepts; Willard [39] is a good reference. For a set, X,
a topology ΩX ⊆ P(X) is a family of sets, called the open sets, that (i) are
closed under arbitrary union (for all S ⊆ ΩX,

⋃
S ∈ ΩX), (ii) are closed under

finite intersection (for all finite S ⊆ ΩX,
⋂

S ∈ ΩX). (iii) includes X itself —
X ∈ ΩX. Note that ∅ ∈ ΩX, due to (i).

The complement, ∼O = X − O, of an open set O ∈ ΩX is a closed set; define
�X = {∼O | O ∈ ΩX}. Note that �X is closed under arbitrary intersection and
finite union.

For topology ΩX, a base is a subset, BX ⊆ ΩX, such that every O ∈ ΩX
is the union of some members of BX ; the members of BX are called basic-open
sets. The topology on the real line uses open intervals, (a, b), for a, b ∈ IR, as its
base. A subbase is some SBX ⊆ ΩX such that all finite intersections of sets in
SBX form a base.

Given topologies for sets X and Y , there are standard definitions for the
coarsest topologies for X × Y , X → Y , etc. [39].

3 By Cantor’s Theorem, the set of all functions from D to D has a cardinality larger
than that of set D, so Scott’s construction is essential to defining D as a model of
the untyped lambda-calculus [32,36].

4 Finitely generable sets ensure that Plotkin’s powerdomain, PC(D), is algebraic when
D is algebraic.
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Fig. 3. Propositional logic: [[ · ]] : Proposition → ΩD

A function, f : X → Y , is (topologically) continuous iff for all x ∈ X and
O′ ∈ ΩY , if f(x) ∈ O′, then there exists some O ∈ ΩX such that x ∈ O and
f [O] ⊆ O′ (where f [O] = {f(x) | x ∈ O}). See Fig. 2. A crucial result is that
f is continuous iff its inverse-image function maps open sets to open sets: for
all O′ ∈ ΩY , f−1(O′) ∈ ΩX, where f−1(O′) = {x ∈ X | f(x) ∈ O′}. When f is
continuous, then f−1 maps closed sets to closed sets as well.

A nonempty family of open sets, F ⊆ ΩX, is directed if for all O1, O2 ∈ F there
is some O3 ∈ F such that O1 ⊆ O3 and O2 ⊆ O3. A set, S ⊆ X, is compact if for
every directed family of open sets, F , S ⊆ ⋃

F implies S ⊆ O for some O ∈ F .5

The intuition is that a compact set is “small enough” to be covered by some “finite
sized” open set. Plotkin’s finitely generable sets are compact [24,26].

Open sets can be understood as logical properties, and there is a natural intu-
itionistic propositional logic, defined in Fig. 3 [37]. The disjunction can be infini-
tary. As usual, define ¬ψ as ψ ⊃ false so that [[¬ψ]] =

⋃{O ∈ ΩX | O ∩ [[ψ]] ⊆ ∅}.
That is, ¬ψ denotes the largest open set disjoint from ψ. In the Scott topology,
[[¬O]] = ∼(↓O) for O ∈ ΩD. Thus, for every open O �= D, ⊥D �∈ O, that is, ⊥D

satisfies no nontrivial property.

2.4 Powerdomains

Because domain D is partially ordered, the naive set-of-all subsets construction,
P(D), does not possess standard functions that are Scott-continuous. In this
paper, we generate powerdomains as equivalence classes of sets [24,29,34].

For domain D and PD ⊆ P(D), let (�M ) ⊆ PD × PD be a preorder and ≡M

be its derived equivalence relation. Define equivalence classes, [S]M ∈ PD/M ,
for S ∈ PD, as usual, and define [S]M �M [T ]M iff S �M T .

Definition 1. PM (D) = (PD/M,�M ) is a powerdomain if the following oper-
ations are well-defined (congruences with respect to ≡M ) and are Scott-
continuous:

5 Equivalently, S is compact iff whenever it is covered by the union of any collection of
open sets, it is covered by a finite subset of that collection.
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{| · |} : D → PD/M is defined
{|d|} = [{d}]M

� : PD/M × PD/M → PD/M is defined
[S]M � [T ]M = [S ∪ T ]M

For any Scott-continuous f : D → PD/M, f† : PD/M → PD/M is defined
f†[S]M = [

⋃
d∈S Fd]M , where f(d) = [Fd]M

Plotkin and Smyth [24,26,34] showed that there are (initial) solutions to the
above constraints where

1. [S]M �M [S]M � [T ]M and [T ]M �M [S]M � [T ]M : The solution, called the
lower powerdomain, is PL(D) = (PD/L,�L), where PD are all nonempty
subsets of D and S �L T iff for all O ∈ ΩD, S ∩ O �= ∅ implies T ∩ O �= ∅.

2. [S]M � [T ]M �M [S]M and [S]M � [T ]M �M [T ]M : The solution, called the
upper powerdomain, is PU (D) = (PD/U,�U ), where PD are all nonempty
compact subsets of D and S �U T iff for all O ∈ ΩD,S ⊆ O implies T ⊆ O.

3. No orderings are required between [S]M , [T ]M , and [S]M �[T ]M : The solution,
called the convex powerdomain, is PC(D) = (PD/C,�C), where PD are all
nonempty compact subsets of D and �C=�L ∩ �U .

D’s topology identifies which sets possess equal information content. The initial
solutions have well-known canonical representations [15,16,26,35]:

lower powerdomain: (CL(D),�CL), where CL(D) = {S ⊆ D | S =
cl(S) �= ∅} and S �CL T iff for every d ∈ S there is some e ∈ T such
that d �D e. (Indeed, �CL is ⊆.) Define {|d|} = ↓{d}, S � T = S ∪ T , and
f†(S) = cl(∪{f(d) | d ∈ S}).

upper powerdomain: (UC(D),�UC), where UC(D) = {S ⊆ D | S
is compact, S = ↑S �= ∅} and S �UC T iff for every e ∈ T there is some d ∈ S

such that d �D e. (Indeed, �UC is ⊇.) Define {|d|} = ↑{d}, S � T = S ∪ T ,
and f†(S) = ∪{f(d) | d ∈ S}.

convex powerdomain: (CONV (D),�CL ∩ �UC), where CONV (D) =
{S ⊆ D | S is compact, S = conv(S) �= ∅}. Define {|d|} = {d},
S � T = conv(S ∪ T ), and f†(S) = conv(∪{f(d) | d ∈ S}).

Note that f† is well defined for PU (D) and PC(D) because f† is binary additive
and the domains’ elements are compact sets [20].

When working with these representations, care should be taken when per-
forming set-theoretic reasoning. For example, in PL(IN⊥), {|2|} is the equiv-
alence class, [{2}]L, whose canonical representation is the Scott-closed set,
↓{2} = {2,⊥}. It is tempting to conclude that ⊥∈ {|2|}, but this is not the case
for all sets in the equivalence class, [{2}]L.6

6 For this reason, among others, Smyth claimed that the elements of a (power)domain
are “bundles of properties” — completely prime filters in a Sober space [35]. Or, one
can construct the elements of a (power)domain as ideal completions of directed sets
of finite elements [11,12,26].
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An operation, f : P(D) → E, is an M-congruence with respect to
(�M ) ⊆ PD × PD, for PD ⊆ P(D), if for all S, T ∈ PD, S ≡M T implies
f(S) = f(T ); we define f : PD/M → E as f [S]M = f(S).

For domain D, PD ⊆ P(D), (�M ) ⊆ PD × PD,

– If (�M ) ⊆ (�L), then the property, “ ∩ O �= ∅,” for O ∈ ΩD, is an
M -congruence. For [S]M ∈ PD/M , we write “[S]M meetsO” to denote
S ∩ O �= ∅.

– If (�M ) ⊆ (�U ), then the property, “ ⊆ O,” for O ∈ ΩD, is an M -
congruence. For [S]M ∈ PD/M , we write “O covers [S]M” to denote S ⊆ U .

2.5 Powerspace Topologies and Multifunctions

Smyth [35] developed useful characterizations of topologies on powersets, and
they apply to powerdomains, too. For set X, let ΩX be its topology. Then, for
PX ⊆ P(X),

1. PX’s upper powerspace, ΩUPX, is the topology generated from a base con-
sisting of sets of form (i) {S ∈ PX | S ⊆ O} for each O ∈ ΩX.

2. PX’s lower powerspace, ΩLPX, is the topology generated from a subbase
consisting of sets of form (ii) {S ∈ PX | S ∩ O �= ∅} for each O ∈ ΩX.

3. PX’s convex powerspace, ΩCPX, is the topology generated from a subbase
consisting of sets of form (i) and (ii) above.

A (pre)ordering underlying a powerspace’s elements is defined as follows: for
s, t ∈ PX, s � t iff for all O ∈ ΩPX, s ∈ O implies t ∈ O.

Smyth proved that the Scott topologies for the three canonical powerdomains
coincide with the powerspaces on domain D:

1. ΩPU (D), the Scott topology of PU (D), is topologically isomorphic (homeo-
morphic) to ΩUUC(D), the upper powerspace of UC(D).

2. ΩPL(D) is homeomorphic to ΩLCL(D).
3. ΩPC(D) is homeomorphic to ΩCCONV (D).

Further, the underlying orderings for each of the three powerspaces are order-
isomorphic to the orderings on the powerdomains. For this reason, from here on
we always understand ΩD to mean the Scott-topology on domain D.

Smyth also studied set-valued functions. Again, for set Y , let PY ⊆ P(Y ).
Smyth called function f : X → PY a “multifunction”7 [35]. There are two
inverses of f :

upper: [f ] : PY → P(X), defined [f ]S = {x ∈ X | f(x) ⊆ S}
lower: 〈f〉 : PY → P(X), defined 〈f〉S = {x ∈ X | f(x) ∩ S �= ∅}

Say that sets X and Y have topologies ΩX and ΩY . Smyth proved these
crucial results for multifunctions, f : X → PY :

7 a.k.a. “Kleisli morphism” [18].
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1. [f ] has functionality ΩY → ΩX (that is, it maps open sets to open sets) iff f
is a topologically continuous function of functionality f : X → ΩUPY iff 〈f〉
has functionality �Y → �X (that is, it maps closed sets to closed sets).

2. 〈f〉 has functionality ΩY → ΩX iff f is a topologically continuous function
of functionality f : X → ΩLPY iff [f ] has functionality �Y → �X.

3. Both [f ] and 〈f〉 have functionality ΩY → ΩX iff f is a topologically continu-
ous function of functionality f : X → ΩCPY iff 〈f〉 and [f ] have functionality
�Y → �X.

3 Properties of [ · ] and 〈 · 〉
In this section, let D be a domain, PD ⊆ P(D), and preordering M ⊆ PD × PD
generate the powerdomain, PM (D) = (PD/M,�M ).

Proposition 2. For f : D → PM (D) and (�M ) ⊆ (�U ),

1.
⋂

i∈I [f ]Oi = [f ]
⋂

i∈I Oi, for (Oi)i∈I ⊆ ΩD
2. [f ]O ∪ [f ]O′ ⊆ [f ](O ∪ O′), for O,O′′ ∈ ΩD

Proof. (1):
⋂

i∈I [f ]Oi =
⋂

i∈I{d ∈ D | Oi covers f(d)} = {d ∈ D | for all i ∈ I,
Oi covers f(d)} = {d ∈ D | ⋂

i∈I Oi covers f(d)}.
(2): The proof for ⊆ looks like (1)’s. But ⊇ fails: Let D = IN⊥,

O = {0}, O′ = {1}, f0(n) = [{0, 1}]M , for all n ∈ D. Then, [f0]{0, 1} = D, but
[f0]{0} = [f0]{1} = ∅. QED

These useful facts are proved in the Appendix:

– If (�M ) ⊆ (�U ), then {E ∈ PM (D) | O coversE} is Scott-open in ΩPM (D),
for every O ∈ ΩD.

– If (�M ) ⊆ (�L), then {E ∈ PM (D) | E meetsO}, is Scott-open in ΩPM (D),
for every O ∈ ΩD.

Proposition 3. If all sets in PM (D) are compact with respect to ΩD, and
(�M ) ⊆ (�U ), then [f ]O is continuous in both its arguments, f : D → PM (D)
and O ∈ ΩD.

Proof. For the first argument, f , we show monotonicity as follows: say
that f �D→PM (D) g. Then f(d) �M g(d)) implies f(d) �L g(d)), and then
O covers f(d), and then O covers g(d).

To show continuity, let (fi)i∈I be a directed family of functions. We show
that [ 
i∈I fi]O ⊆ ⋃

i∈I [fi]O. First, [ 
i∈I fi]O = {d | O covers (
i∈Ifi)(d)} =
{d | O covers
i∈I(fi(d))}.

When O covers
i∈I(fi(d)) holds true, then 
i∈I(fi(d)) belongs to the open
set, {E ∈ PM (D) | O coversE}. The family, fi(d), i ∈ I, is directed in PM (D),
so there is some fk(d) in that same open set, that is, O covers fk(d) holds.

For the second argument, O, monotonicity is immediate. To prove conti-
nuity, first [f ](

⋃
i∈I Oi) = {d | ⋃

i∈I Oi covers f(d)}. When
⋃

i∈I Oi covers f(d)
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holds, it means F ⊆ ⋃
i∈I Oi holds, for f(d) = [F ]M , F ∈ PD. Since set F is

compact and is covered by the union of the directed family of open sets, (Oi)i∈I ,
it is covered by some Ok, that is, F ⊆ Ok, implying Ok covers [F ]M . Hence,
d ∈ ⋃

i∈I{d | Oi covers f(d)}. QED

We have the dual results (and proofs) for 〈 · 〉:
Proposition 4. For f : D → PM (D) and (�M ) ⊆ (�L),

1.
⋃

i∈I 〈f〉Oi = 〈f〉 ⋃
i∈I Oi, for (Oi)i∈I ⊆ ΩD

2. 〈f〉(O ∩ O′) ⊆ 〈f〉O ∩ 〈f〉O′, for O,O′ ∈ ΩD.

Proposition 5. If (�M ) ⊆ (�L), then 〈f〉O is continuous in both its arguments,
f : D → PM (D) and O ∈ ΩD.

In his thesis [3], Bonsangue uses [ · ] and 〈 · 〉 as isomorphism maps between
programs (Scott-continuous functions) and predicate transformers: For domains
X and Y ,

1. X → PL(Y ) is order isomorphic to the domain of completely additive func-
tions, ΩY → ΩX, where the isomorphism takes program f to [f ].

2. X → PU (Y ) is order isomorphic to the domain of binary-multiplicative func-
tions, ΩY → ΩX, where the isomorphism takes program f to 〈f〉.

3. A pair of Scott-continuous functions, (bx, di), both of functionality
ΩY → ΩX, is jointly multiplicative if (i) bx is multiplicative, (ii)
di is completely additive, and for all open sets O,O′ ∈ ΩY , (iii)
bx(O ∪ O′) ⊆ bx(O) ∪ di(O′) and (iv) bx(O) ⊆ di(O). The collection of jointly
multiplicative pairs forms a domain that is order isomorphic to X → PC(Y ),
where the isomorphism takes program f to ([f ], 〈f〉).8

Bonsangue’s work augments Plotkin’s and Smyth’s characterizations of
X → PU (X⊥) (Result 2, above) by Results 1 and 3.

4 Predicate Transformers

The preceding developments suggest that we define correctness properties/pred-
icates as open sets and use [ · ] and 〈 · 〉 as predicate transformers.

But we approach the situation from first principles: Program/functionf ’s
weakest-precondition map is its inverse-image map. This is readily apparent for
a deterministic program/function f : Store → Store⊥, where a correctness prop-
erty is a set, ψ ⊆ Store, and wp(f)ψ = f−1[ψ] = {s ∈ Store | f(s) ∈ ψ}.

This principle should also apply when D is a non-flat domain and
f : D → P(D) denotes a nondeterministic program. But D’s ordering compli-
cates matters — correctness properties can no longer be mere sets, and f ’s
range is a set-of-sets so that f−1ψ, for ψ ⊆ D, is no longer well defined. Smyth
[35] made these two assertions:
8 The definition of “jointly multiplicative pair” given here applies when Y ’s topology

is a coherent space [3,8].
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1. A correctness property/predicate is an open set, U ∈ ΩD, in the Scott topol-
ogy for non-flat domain D.

2. A nondeterministic program is a multifunction, more precisely, a Scott-
continuous function of functionality f : D → PU (D),9 and its inverse image
is restricted to wp(f) = [f ] : ΩD → ΩD.

Smyth’s choices are eminently sensible for D → PU (D). Do Bonsangue’s results,
stated above, suggest that 〈f〉 is “wp” for f : D → PL(D)? And what about
D → PC(D)?

4.1 Predicate Transformers are Inverse-Image Maps

For non-flat domain D, PD ⊆ P(D), and nondeterministic program
f : D → PD, we can define wp(f) = f−1 : ΩPM (D) → ΩPM (D) for each of the
three canonical powerdomains (that is, when M ∈ {U,L,C}). The topologies
show us how:

Theorem 6. For (non-flat) domain D and open set O′ ∈ ΩPU (D), function
f : D → PU (D)’s inverse can be defined as f−1[O′] =

∨
i∈I [f ]Oi, for some fam-

ily, (Oi)i∈I , of open sets in ΩD.

Proof. Recall that the base of the Scott topology on PU (D) are those sets
of form BO = {S ∈ PU (D) | S ⊆ O}, O ∈ ΩD. Thus, each open O′ =⋃

i∈I BOi
, for some family of open sets, (Oi)i∈I . So, f−1[O′] = f−1(

⋃
i∈I BOi

) =
{d ∈ D | f(d) ∈ ⋃

i∈I BOi
} = {d | f(d) ∈ BOk

, for some k ∈ I} =
{d | Ok covers f(d), for some k ∈ I} =

⋃
i∈I{d | Oi covers f(d)} =

∨
i∈I [f ]Oi,

using the definitions of
∨

and [f ]. QED

Theorem 7. For (non-flat) domain D and open set O′ ∈ ΩPL(D), function
f : D → PL(D)’s inverse can be defined as f−1[O′] =

∨
i∈I

∧
j∈J 〈f〉Oij, for

some family, (Oij)i∈I,j∈J , of open sets in ΩD, where J must have finite range.

Proof. Recall that the subbase of the Scott topology on PL(D) are
those sets of form SO = {S ∈ PL(D) | S ∩ O �= ∅}, O ∈ ΩD. Thus, open set
O′ =

⋃
i∈I

⋂
j∈J SOij

, for some family of open sets, (Oij)i∈I,j∈J , where J has
finite range. The proof proceeds like the one above. QED

Theorem 8. For (non-flat) domain D and open set O′ ∈ ΩPC(D), function
f : D → PC(D)]’s inverse can be defined as f−1[O′] =

∨
i∈I

∧
j∈J((f))Oij, where

((f)) may be either of [f ] or 〈f〉, and (Oij)i∈I,j∈J is a family of open sets in
ΩD, where J has finite range.

Proof. The subbase of the Scott topology on PC(D) are those sets of form
BO = {S ∈ PC(D) | S ∩ O �= ∅} and SO = {S ∈ PC(D) | S ∩ O �= ∅}, O ∈ ΩD.
The proof proceeds like the ones above. QED

9 or f : D → PU (D⊥).
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These results assert that the propositional logic of open sets along with [ · ]
and 〈 · 〉 express all preconditions (inverse images) on open sets.

When program/function f has codomain PM (D⊥), and O ∈ ΩPM (D), then
f−1[O] remains defined as above for f : D → PM (D⊥) — the Scott topology on
PM (D) is exactly the relative topology [39] taken from PM (D⊥).

4.2 Predicate Transformers for the Powerdomains

The previous theorems justify why Plotkin and Smyth [25,35] can use
[f ] : ΩD → ΩD as the weakest-precondition transformer for f : D → PU (D).

It is less evident that 〈f〉 : ΩD → ΩD defines a total or partial-correctness
transformer for f : D → PL(D). Indeed, 〈f〉φ ∧ 〈f〉¬φ is satisfiable for program
f and predicate (open set), φ. But 〈f〉’s dual defines partial correctness: For
f : D → PL(D), O ∈ ΩD, [f ] ∼O = ∼〈f〉O. Thus, the partial correctness
(weakest liberal precondition) of f with respect to φ, wlp(f)φ, is defined as
[f ] ∼(¬φ), which is the well-defined closed set, ∼〈f〉¬φ.

That is, f is partially correct with respect to φ if there is no execution whose
output satisfies property ¬φ, where ¬ is intuitionistic negation. Since ⊥�∈ [[¬φ]]
for all [[φ]] ∈ ΩD, a diverging answer is partially correct.

Recall that 〈f〉 : ΩD → ΩD implies [f ] : �D → �D, so we can define a
closed-set logic that uses [f ] with finite disjunction and arbitrary conjunc-
tion to form partial-correctness propositions. And since the convex powerdo-
main, PC(D), possesses both [f ] and 〈f〉, for f : D → PC(D), we can perform
both total and partial correctness reasoning. Dijkstra’s claim [7], Page 21, that
wp(f)φ ≡ wlp(f)φ ∧ wp(f)True is expressed as follows:

Proposition 9. [f ]φ = ∼〈f〉¬φ ∧ [f ](φ ∨ ¬φ).

Proof. First, ∼ 〈f〉¬φ =∼ {σ | f(σ)meets¬φ} = {σ | not(f(σ)meets¬φ)} =
{σ | ↓φ covers f(σ)}.

This means that {σ | ↓φ covers f(σ)} ∩ [f ](φ ∨ ¬φ) = {σ |
(↓φ ∩ (φ ∪ ¬φ)) covers f(σ)} = {σ | φ covers f(σ)}. QED

This result is lifted to nonflat domains — the second conjunct asserts that the
(partially defined) answer is sufficient for deciding φ.

5 Execution Semantics of GCL

Dijkstra’s Guarded-Command Language (GCL) is distinguished by its condi-
tional statement, which admits nondeterministic choice. The syntax of GCL
goes as follows:

C : Command P : PrimitiveCommand G : Guard

C ::= P | skip | abort | C1;C2 | if (Gi?Ci)i∈I fi

Primitive comands, P , include assignment. Guards, G, name open sets and rep-
resent boolean-valued test expressions. The conditional’s syntax means to say,
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Fig. 4. Semantics of guarded-command language

if(G1?C1)(G2?C2) · · · (Gn?Cn)fi, for n ≥ 0. We add the looping construction,
do · od, momentarily.

In Chap. 4 [7], Dijkstra explains that a program’s execution is nondetermin-
istic and can terminate (with a store) or fail or diverge. Here is a semantics that
matches Dijkstra’s narrative: As before, we use PM (D) to denote the powerdo-
main generated from preordering M ⊆ PD × PD, for PD ⊆ P(D).

A program has functionality, Store → PM (Storefail,⊥), where set-or-domain
Store represents “proper” outcomes, and fail and ⊥ denote failure and diver-
gence, respectively. The ordering within Storefail,⊥ is ⊥� fail � σ, for all
σ ∈ Store (in addition to the ordering internal to Store).

Figure 4 gives the semantics of GCL. The semantics of the guarded-if con-
struction, if(Gi?Ci)i∈I fi, expresses that the outcome may be any Ck such that
Gk is decided true. If all guards, Gi, are decided false, then the construction fails.
If any guard can diverge, so can the if-construction.

We treat the iteration construction, do ·od, as this recursively defined if · fi
construction, interpreting it with the usual least-fixed-point semantics [10]:

do (Gi?Ci)i∈I od ≡ w, where w ≡ if (Gi?Ci;w)i∈I ((
∧

i∈I ¬Gi)?skip) fi

Note that the last guarded command, ((
∧

i∈I ¬Gi)?skip), of the conditional
forces termination when no proper guard holds true.

The Scott-continuity of the above denotational semantics is immediate,
except for the if · fi construction:

Proposition 10. [[if (Gi?Ci)i∈I fi]] is well defined, that is, it has functionality
Store → PM (Storefail,⊥), and it is Scott-continuous.

Proof. First, a cases analysis on the possible outcomes of [[Gi]]σ, for all i ∈ I,
shows that the empty set is never an outcome, so the construction is well defined.

Next, monotonicity is verified by checking the possible outcomes of [[Gi]]σj ,
for j ∈ {0, 1}, σ0 �Store σ1. (Note that {| ⊥ |} is the least element.)
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For continuity, consider the outcomes of [[if (Gi?Ci)i∈I fi]](
S), for directed
set, S ⊆ Store: (i) If the outcome is {|fail|}, then it is the same for

σ∈S [[if (Gi?Ci)i∈I fi]]σ, because

⋂
i∈I [[¬Gi]] is a Scott-open set (and {| ⊥ |} is

least). (ii) If the outcome includes {| ⊥ |}, then so must 
σ∈S [[if (Gi?Ci)i∈I fi]]σ,
because {| ⊥ |} is least. (iii) Finally, when [[Ci]](
S) is included in the outcome,
so must be 
σ∈S′ [[Ci]]σ, for some “tail”, S′, of S. By the continuity of [[Ci]],
[[Ci]](
S) = 
σ∈S′ [[Ci]]σ. QED

The semantics in Fig. 4 can be used with each of the three canonical power-
domains. Consider these example programs, where [[True]] = Store:

1. [[if (True?skip) (True?abort) fi]]σ = {|σ|} � {|fail|}
2. [[if True?skip fi]]σ = {|σ|}
3. [[if True?abort fi]]σ = {|fail|}
For the powerdomains,

– PL(Storefail,⊥)’s elements denote “what may be achievable.” Examples 1 and
2 above have the same denotation, that is, [{σ, fail}]L = [{σ}]L. Any ordering
(�M ) ⊆ (�L) uses 〈 · 〉 to define partial-correctness behavior.

– PU (Storefail,⊥)’s elements denote “what must be achievable.” Examples 1 and
3 above have the same denotation, that is, [{σ, fail}]U = [{fail}]U . Any order-
ing (�M ) ⊆ (�U ) uses [ · ] to define total-correctness behavior.

– PC(Storefail,⊥)’s elements denote both “may” and “must” achievability. The
three Examples have distinct denotations — [{σ, fail}]C , [{σ}]C , and [{fail}]C ,
respectively — and an ordering (�M ) ⊆ (�C) uses both 〈 · 〉 and [ · ].

It is tempting to define if (G0?C0) (G1?C1) · · · fi as (G0;C0) | (G1;C1) | · · ·
and use these nondeterministic-choice and guard-as-command constructions:

[[C1 | C2]]σ = [[C1]]σ � [[C2]]σ [[G]]σ =

⎧
⎨

⎩

{|σ|}, if σ ∈ [[G]]
{|fail|}, if σ ∈ [[¬G]]
{| ⊥ |}, otherwise

An alternative semantics of [[G]]σ is that it equals {| ⊥ |} (or even ∅, if allowed)
when σ ∈ [[¬G]]. In any case, [[if (Gi?Ci)i∈I fi]] does not equal [[|i∈I(Gi;Ci)]],
because of Dijkstra’s description of failure.10 The next section develops the con-
sequences.

5.1 Failure and Divergence

In Chap. 4 [7], Dijkstra states that failure is the outcome of an if · fi construc-
tion when all guards are decided false. What’s more, an empty if · fi has failure
as its outcome and is semantically identical to the abort command. Further,
evaluation of a guard can diverge and in doing so forces the if · fi construc-
tion to diverge. Dijkstra does not state that guards themselves can fail — only
commands are indicated to have failure as a behavior.
10 Indeed, on Page 33 of [7], Dijkstra states that a guard is not a command.
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There are multiple treatments of failure in the literature: For set, Store,
Plotkin [25] gives a structured-operational semantics of GCL, where failure is a
blocked (“stuck”) configuration that cannot be written futher. Plotkin ignores
failure in his denotational semantics of GCL, equating it with divergence.

Harel [13] maps a program to a computation tree whose paths represent
executions. Failure can appear as a leaf in the computation tree, and divergence
appears as an infinite path. Individual guards can fail, and if · fi fails when all
its guards fail. Like Plotkin, Harel assumes that a guard never diverges. Harel’s
modelling of failure prevents him from characterizing wlp(f)φ as [f ]φ ∩ 〈f〉True,
as he had hoped [13], Chap. 5.

Bonsangue’s denotational semantics [3] also uses a set Store and total guards.
A guard’s failure is “no output,” denoted by the empty set. (His powerdomains
include ∅.) In principle, this should make the semantics of if (Gi?Ci)i∈I fi into
a union of the semantics of the Gi;Ci pairs, but Bonsangue makes the condi-
tional construction diverge when all of its guards fail [3], Sect. 3.3. This is done
because ∅ is the least value in the lower powerdomain (denoting both failure and
divergence); the topmost value in the upper powerdomain (meaning it belongs to
all open sets of the powerdomain — possessing all possible properties — which
is unacceptable for failure); and an isolated element in the convex powerdomain
(meaning that logical negation in the powerdomain is neither set complement
nor intuitionistic negation).

If failure, fail, is a “stuck configuration” that “aborts” [7], Page 34, then
we have the ordering, ⊥� fail � σ, for all σ ∈ Store, which we use for the
domain Storefail,⊥. Thus, fail never interferes with any Scott-open set (predi-
cate) in ΩStore and never interferes with the characterizations of inverse image in
Theorems 6–8. This also explains why Plotkin conveniently “merged” fail with
⊥ in his denotational semantics of GCL.

6 Correctness of Dijkstra’s Laws

Here are Dijkstra’s five properties for wp [7], Chaps. 4,5,9, stated and proved in
terms of [ · ] and 〈 · 〉. For domain Store, predicates φ, ψ ∈ ΩStore, and program
f : Store → PM (Storefail,⊥):

Proposition 11. When (�M ) ⊆ (�U ):

1. [f ]∅ = ∅.
2. (φ ⊃ ψ) = Store implies ([f ]φ ⊃ [f ]ψ) = Store
3. [f ](φ ∧ ψ) = [f ]φ ∧ [f ]ψ
4. [f ]φ ∨ [f ]ψ ⊆ [f ](φ ∨ ψ);
5. For all directed families S ⊆ ΩStore, [f ](

∨
S) =

∨
O∈S([f ]O)

When (�M ) ⊆ (�L):

1. 〈f〉∅ = ∅
2. (φ ⊃ ψ) = Store implies (〈f〉φ ⊃ 〈f〉ψ) = Store.
3. 〈f〉(φ ∨ ψ) = 〈f〉φ ∨ 〈f〉ψ
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4. 〈f〉(φ ∧ ψ) ⊆ 〈f〉φ ∧ 〈f〉ψ
5. For all directed families S ⊆ ΩStore, 〈f〉(∨ S) =

∨
O∈S(〈f〉O)

Proof. We state the proofs for [ · ]; the ones for 〈 · 〉 are similar.
(1) is immediate, since f(σ) is a nonempty set.
(2) When φ ⊃ ψ = Store, this implies φ ⊆ ψ, because φ ⊃ ψ =

⋃{O ∈
ΩStore | O ∩ φ ⊆ ψ}. This equals Store, which is an open set, so Store ∩ φ ⊆ ψ,
implying φ ⊆ ψ. By monotonicity of [f ], [f ]φ ⊆ [f ]ψ. Next, we must prove for
all σ ∈ Store, σ ∈ ⋃{O ∈ ΩStore | O ∩ [f ]φ ⊆ [f ]ψ}, that is, we must find some
Oσ ∈ ΩStoreS so that Oσ ∩ [f ]φ ⊆ [f ]ψ. Choose Oσ = Store, and this yields the
result.

(3)–(5) have been proved earlier, as Propositions 2 and 3. QED

Dijkstra’s laws for GCL are expressed and proved as follows:

Theorem 12. For domain Store, property φ ∈ ΩStore, and program f : Store →
PM (Storefail,⊥): When (�M ) ⊆ (�U ):

1. [skip]φ = φ
2. [abort]φ = ∅
3. [C1;C2]φ = [C1]([C2]φ)
4. [if (Gi?Ci)i∈I fi]φ = (

∧
i∈I(Gi ∨ ¬Gi)) ∧ (

∨
i∈I Gi) ∧ (

∧
i∈I(Gi ⊃ [Ci]φ))

When (�M ) ⊆ (�L):

1. 〈skip〉φ = φ
2. 〈abort〉φ = ∅
3. 〈C1;C2〉φ = 〈C1〉(〈C2〉φ)
4. 〈if (Gi?Ci)i∈I fi〉φ =

∨
i∈I(Gi ∧ 〈Ci〉φ)

Proof. Proofs are given for [ · ]; the ones for 〈 · 〉 are similar.
(1)[skip]φ = {σ | φ covers [[skip]]σ} = {σ | φ covers {|σ|}} ⊇ φ. If σ′ �∈ φ, then it
is not the case that φ covers {|σ′|}.
(2) [abort]φ = {σ | φ covers [[abort]]σ} = {σ | φ covers {|fail|}} = ∅.
(3) The cases when ⊥ and fail arise are straightforward. Now consider [C1;C2]φ =
{σ | φ covers [[C2]]

†([[C1]]σ)} = {σ | φ covers [
⋃

σ′∈[[C1 ]]σ
([[C2]]σ′)]M} = {σ | ∀σ′ ∈

[[C1]]σ, φ covers [[C2]]σ′}. But then, [C1]([C2]φ) = [C1]{σ′ | φ covers [[C2]]σ′} =
{σ | {σ′ | φ covers [[C2]]σ′} covers [[C1]]σ} = {σ | ∀σ′ ∈ [[C1]]σ, φ covers [[C2]]σ′}.
(4) (outline):

∧
i∈I(Gi ∨ ¬Gi) ensures that all guards are decidable so that ⊥ is

not an outcome. (
∨

i∈I Gi) ensures that fail is not an outcome. For all σ ∈ Store,
when σ ∈ [[Gi]], then σ ∈ [Ci]φ must hold, which is (Gi ⊃ [Ci]φ). QED

The weakest-liberal-precondition transformer for the conditional is

Corollary 13. ∼〈if(Gi?Ci)i∈I fi〉¬φ =
∧

i∈I(∼Gi∨ ∼〈Ci〉¬φ) =
∧

i∈I(∼Gi∨
[Ci] ∼(¬φ)).
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Here is the semantics of do · od, simplified to use one clause in its body:

do G?C od ≡ w, where w ≡ if (G?C;w)(¬G?skip) fi

[[w]] =
⊔

j≥0 fj , where

f0σ =⊥

fj+1σ =

⎧
⎨

⎩

f†
j ([[C ]]σ), if σ ∈ [[G]]

{|σ|}, if σ ∈ [[¬G]]
{| ⊥ |}, otherwise

Therefore, when (�M ) ⊆ (�U ):

[w]φ =
⋃

j≥0 [fj]φ, where
[f0]φ = ∅
[fj+1]φ = (G ∨ ¬G) ∧ (G ⊃ [C; fj]φ) ∧ (¬G ⊃ φ)

When (�M ) ⊆ (�L):

〈w〉φ =
⋃

j≥0 〈fj〉φ, where
〈f0〉φ = ∅
〈fj+1〉φ = (G ∧ 〈C; fj〉φ) ∨ (¬G ∧ φ)

The weakest-liberal-precondition transformer for the loop is

∼〈w〉¬φ =
⋂

j≥0 ∼〈fj〉¬φ =
⋂

j≥0 [fj] ∼(¬φ)

7 Conclusion

Dijkstra prefered proof theory, specifically equational algebra, to reason about
programs, and GCL is an especially elegant and useful theory. But model the-
ory cannot be avoided, as Reynolds demonstrated in Chap. 9 of Dijkstra’s text.
Reynolds’s observation was merely the “tip” of the semantical “iceberg,” and
this paper has meant to expose the model theory that underlies GCL.
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Appendix

Assume D is a domain, ΩD its Scott topology, and PD ⊆ P(D). Recall that
[S]U �U [T ]U iff for all O ∈ ΩD,S ⊆ O implies T ⊆ O. The following is an
unproved exercise in [26] that is useful here:

Lemma 14. [S]U �U [T ]U iff for every t ∈ T , there exists s ∈ S such that
s �D t.
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Proof. Only if: assume S ⊆ O implies T ⊆ O but also that there is some t0 ∈ T
for which no s ∈ S satisfies s �D t0. Since ↓{t0} is a closed set, then ∼(↓{t0}) is
open and covers S. But T is not covered by this open set, which is a contradiction.
If: Assume S ⊆ O. Since O is up-closed, it is immediate that T ⊆ O as well. QED

Let (�M ) ⊆ PD × PD generate the powerdomain, PM (D) = (PD/M,⊆M ),
where PD consists of compact sets.

Lemma 15. If (�M ) ⊆ (�U ), then {E ∈ PM (D) | O coversE}, for O ∈ ΩD, is
an open set in the Scott topology, ΩPM (D).

Proof. The set is up-closed because, when [S]M �M [T ]M and S ⊆ O, then for
every t ∈ T there is some s ∈ S ∩ O such that s �D t. Since O is up-closed,
T ⊆ U .

The set is closed under“directed tails”: Assume O covers
⊔

i∈I [Si]M . Assume
that no O covers [Si]M holds, for all i ∈ I. This causes a contradiction:
First, for every Si, there is an element, si ∈ Si, such that si �∈ O. Since
(�M ) ⊆ (�U ), for every [Sj ]M �M [Si]M , there is some sj ∈ Sj such that
sj �D si, where sj �∈ O. By the Axiom of Choice, one can construct a directed
set, NO = {si ∈ Si | si �∈ O}, and we have 
NO �∈ O.

We now show that (
⊔

i∈I [Si]M ) � {|NO|} is an upper bound of the ([Si]M )i∈I :
First, the underlying set is compact, because adding NO preserves compactness.
Next, for each [Sk]M , [Sk]M = [Sk ∪ {sk}]M = [Sk]M � [{sk}]M . This implies
[Sk]M �M (

⊔
i∈I [Si]M ) � {|NO|} by the monotonicity of � and {| · |}.

But
⊔

i∈I [Si]M � �M (
⊔

i∈I [Si]M ) � {|NO|}, because there is no t ∈ D in any
set represented by equivalence class

⊔
i∈I [Si]M such that t �D NO. This con-

tradicts the existence of the least upper bound. QED

Let (�M ) ⊆ PD × PD generate the powerdomain, PM (D) = (PD/M,⊆M ).

Lemma 16. If (�M ) ⊆ (�L), then {E ∈ PM (D) | E meetsO}, for O ∈ ΩD, is
an open set in the Scott topology, ΩPM (D).

Proof. The set is up-closed because (�M ) ⊆ (�L). The set is proved closed under
“directed tails” as follows: Let (Ei)i∈I be a directed subset of PM (D). Assume⊔

i∈I Ei meetsO and assume that no Ei meetsO holds, for all i ∈ I. We generate
a contradiction by constructing a discontinuous function using the powerdomain
operations (which are all continuous). First, we observe that for any nontriv-
ial domain D, any nontrivial PM (D) must possess at least two distinct ele-
ments, A0 and A1, such that A0 �M A1 implying that A0 �M A1 �M A0 � A1

(because (�M ) ⊆ (�L)). We use these two elements to define this continuous

function, f : D → PM (D): f(d) =
{

A1, if d ∈ O
A0, if d �∈ O

. By the definition of pow-

erdomain, there is a continuous function, f† : PM (D) → PM (D), defined as
f†[S]M = [

⋃
d∈S Fd]M , where f(d) = [Fd]M .

Because
⊔

i∈I Ei meetsO holds, it must be that f†(
⊔

i∈I Ei) �M A1. But
we assumed that no Ei meetsO holds, for all i ∈ I, so it must be that⊔

i∈I f†(Ei) =
⊔

i∈I{A0} = A0. Since A0 �= A1, this contradicts the continuity
of f†. QED
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Abstract. We present an enhancement of the generic fixpoint algo-
rithm TD which can deal with widening and narrowing even for
non-monotonic systems of equations. In contrast to corresponding
enhancements proposed for other standard fixpoint algorithms, no extra
priorities on variables are required. Still, a mechanism can be devised so
that occurrences of the widening/narrowing operator are inserted as well
as removed dynamically.

1 Introduction

Many analysis problems can be formalized as (post)-solutions to systems of equa-
tions x = fx, x ∈ V , where V is a set of unknowns each denoting and fx is a
function specifying how x depends on the values of other unknowns in V . In
the simplest setting of context-insensitive analysis of sequential imperative pro-
grams, the set of unknowns is given by the set of program points, for which the
equation system provides a specification of valid invariants. In the more elabo-
rate case of context-sensitive analysis, though, the unknowns are no longer plain
program points but also incorporate information about the calling contexts of
the respective functions.

A solver of systems of equations is an algorithm which determines such post-
solutions. It is local if it is started with a query to the value of some unknown and
then tries to explore the system only as much as is necessary to determine the
answer to the query. Local solving has attracted attention in particular for inter-
procedural analysis of recursive programs [3,9,15,21,23,24] where the potential
number of abstract calling contexts can be extremely high, if not infinite, while
the number of those contexts which are really required for describing all occur-
ring contexts for each function may be quite small. Local solvers are also the
method of choice to realize incremental program analysis, e.g., when updating
the analysis result after an incremental modification of the source program in
question [14,22]. Particularly useful, from a software engineering perspective,
are generic local solvers [12,13,16,19,21] which make only minimal assumptions
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about the domain of values to compute with, e.g., that it has an ordering relation
� as well as an upper bound operation �, while right-hand sides of equations
are taken as black boxes. This means that the right-hand side fx of a variable x
is not considered as some kind of syntactical expression which can be inspected
beforehand and must be interpreted by the solver. Instead, the right-hand side
is considered as a function implemented in some programming language which
can be called for another function σ representing the current information about
the unknowns and returns a contribution to the left-hand side x of the equa-
tion. Interestingly, quite competitive generic solvers have been proposed. Among
these, the top-down solver TD [19] or the solver from Goblint [16]. Since they
are completely ignorant of the concrete analysis problem in question, they con-
veniently allow the analysis designer to separate the algorithmic concerns of
solving from the design of a suitable domain of abstract values (corresponding
to potential invariants) and the realization of the abstract semantics by means
of equations. Accordingly, they are at the heart of modern analysis frameworks
such as the Ciao system [15] or Goblint [4,24].

One key problem for solving systems of equations is that many interesting
analysis problems require lattices with infinite strictly ascending chains. This
is already the case for interval analysis [7] which tries to determine for each
numerical program variable and program point a suitably small interval superset
of all runtime values, but also the case for more elaborate numerical properties
such as octagons [20] or polyhedra [11]. One general technique to deal with such
problems is the widening and narrowing approach as proposed by Cousot and
Cousot [7]. The idea is to accelerate the Kleene-type fixpoint iteration for the
system of equations by rapidly increasing the values of the unknowns through
a widening operator. In this way, a guarantee of termination is traded against
a severe loss in precision—some of which may later be recovered by means of a
subsequent narrowing iteration. Technically, a widening produces a larger value
than the ordinary least upper bound operator. Thus it may reach a post-solution
more quickly (and hopefully in finitely many steps), whereas narrowing when
applied to a post-solution (perhaps produced by over-enthusiastic widening) may
return a better post-solution.

While local solvers such as the top-down solver TD or the solver from
Goblint can easily be extended to work with widening, it has been observed
in [5], that they do not go well with narrowing. There are two reasons for this
behavior. First, during the narrowing phase, further unknowns may be encoun-
tered which may not yet been considered so far. More severely, however, is that
the application of context-sensitive analysis may result in non-monotonic sys-
tems of equations, while narrowing in the original sense can only be applied when
all right-hand sides are monotonic. As a remedy, therefore, Apinis et al. intro-
duce a new operator � which combines a widening operator ∇ with a narrowing
operator Δ into one [5]. By means of this operator, variants of several standard
solvers are derived and sufficient conditions are provided for which these algo-
rithms are guaranteed to terminate. In particular, variants of the generic local
solvers underlying the Goblint system are presented. The key idea for enforcing
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termination is to maintain an ordering on the names of the unknowns which is
respected during fixpoint iteration.

In this paper, we present a variant of the solver TD which also supports
widening and narrowing. It turns out that TD iterates according to an ordering
on unknowns as provided by the iteration strategy. This means that it suffices to
insert the operator � into the base algorithm for combining old values with newly
computed values and additionally always trigger reevaluation of an unknown,
whenever its value has changed. Already for this minimalistic enhancement, ter-
mination can be guaranteed—at least for equation systems where all right-hand
sides are monotonic, and only finitely many unknowns are encountered. Beyond
that, we enhance the algorithm so that the operator � is not applied for each
equation when its right-hand side is evaluated, but only for a small subset of
these. This subset is dynamically established by means of the set of unknowns
under evaluation by the solver, which is explicitly maintained by TD anyway.

2 Equation System

Assume that D is a set of values. Usually, we assume that D is a complete lattice,
but weaker assumptions would do as well. The minimal requirements are that
D is equipped with a partial ordering �, that there is a designated least element
⊥ with ⊥ � d for all d ∈ D, and that there is a binary upper bound operation �,
i.e., a � a � b and b � a � b. Let V denote a set of variables or unknowns. Then
a system C of equations over the values D with variables from V is a collection
of equations:

x = fx , x ∈ V

where the right-hand side fx of an unknown x specifies how the value of x
depends on the values of all other unknowns in the system. Thus, fx can be
understood as a function fx : (V → D) → D, which for every assignment
σ : V → D of values to unknowns, returns a value in D for the left-hand side x.
A mapping σ : V → D is a post-solution to S if the values of σ for the left-hand
sides are upper bounds to the values returned by their respective right-hand
sides for σ, i.e., if σ x � fx σ for all x ∈ V .

Example 1. As a running example, consider the following equation system with
two equations

x = (x < 232 ? y : 232)
y = x + 1

where the set D of values is given by D = N ∪ {∞}, equipped with the natural
ordering and extended with ∞. The right-hand side of x returns the value of y,
if x is less than 232, otherwise it returns 232. The right-hand side of y, however,
always returns the value of x + 1. Then the mappings {x �→ 232, y �→ 232 + 1}
and {x �→ ∞, y �→ ∞} are post-solutions for the given equation system. �
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In static program analysis, equation systems are used for specifying data
flow [18] or the abstract semantics of a programs [3,11]. The value domains in
such cases typically are (complete) lattices where the right-hand side functions
are monotonic.

In the practical application within a program analyzer, the function fx is
not given as a mathematical object, but as a piece of code realizing the mathe-
matical function. This code can be implemented in any language. We only make
the assumption that the realized function is terminating and pure in the sense
of [17]. This means that operationally, every evaluation of fx σ consists of a finite
sequence of steps which eventually returns a value, where each step consists of
a look-up of the value of an unknown, followed by some computation solely
depending on the sequence of values read so far.

For some analysis problems, the set of potential unknowns and thus the result-
ing systems of equations may be very large, or even infinite. In order to deal with
such a situation, the system of equations is more conveniently assumed to be rep-
resented implicitly by means of a single function f ∈ V → (V → D) → D so that
f x returns the right-hand side fx for each unknown x. Using this representation,
the mapping σ ∈ V → D is a post-solution if σx � f x σ for all x ∈ V .

A solver for a class of equation systems is an algorithm that for each system
C of equations in that class, upon termination, returns a post-solution. Vari-
ous solvers have been proposed for equation systems where the set of unknowns
is finite and the partial ordering D is Noetherian, i.e., has no infinite strictly
increasing chains. One example of such a solver is Round Robin iteration with
accumulation. For other solvers, such as the worklist iterator, further informa-
tion about the right-hand side functions is required—namely the set of unknowns
whose values are queried during their evaluations. In some cases, though, the sys-
tem of equations is queried for the values of a few interesting unknowns only.
Consider, e.g., inter-procedural analysis in the style of [9], e.g., for C. In this
application, the unknowns are pairs of program points and abstract calling con-
texts in which these points are analyzed. The equation system then is queried for
the value of the end point of the call to the main function for the initial abstract
calling context. From the remaining unknowns only those must be inspected
which directly or indirectly contribute to the result of the initial query. A local
solver is an algorithm meant to deal with such queries. When started with the
initial query to an unknown x, it returns a partial solution σ. The mapping σ
is a partial solution if it provides values for a subset V ′ ⊆ V of unknowns such
that the following holds:

– x ∈ V ′;
– For every unknown y ∈ V ′, fy when evaluated on σ, only queries the values

of unknowns in V ′;
– σx � fxσ for all x ∈ V ′.

Note that the equation system in Example 1, when started with a query of x,
has a partial solution of only σ = {x �→ 232}. This is because the short-circuit
evaluation of the ternary operator :? does not require to inspect the value of y
to determine the value of the right-hand side of x for σ.
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In this paper we are concerned with the Top-Down local solver TD from Le
Charlier and Van Hentenryck [19] as depicted in Fig. 1. The solver TD operates
on a partial assignment σ of unknowns to values which initially is empty. Each
unknown for which σ does not provide a value, implicitly is assumed to be
mapped to the least value ⊥. The solver TD consists of two functions: solve,
and destabilize. The main function of TD is the function solve—which when
called with an unknown x, is meant to compute a partial solution σ that provides
a value for x. Furthermore, TD maintains a subset called of unknowns which
consists of all unknowns for which the evaluation of the right-hand side has
been started but is not yet completed. It also maintains a set stable receiving
the unknown x as soon as solving for x has started, where x is only removed
when some unknown onto which x recursively depends has changed its value.
Initially, both called and stable are empty. A call to solve for the unknown

Fig. 1. The original solver TD.
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x first checks if x is contained in stable or called. If this is the case, solve
immediately returns. Otherwise, x is inserted into stable and called to indicate
that solving of x has now started. Then the right-hand side fx for the unknown
x is evaluated for the local function eval (instead of σ directly).

When within a call solve x, the argument function eval is queried for the
value of an unknown y, it ultimately returns the value of y. Before that, however,
the solver tries to compute the best possible value for y by calling the function
solve for y. Furthermore, eval y keeps track of detected influences between
unknowns. All currently known dependences are maintained by TD in a mapping
infl which, initially, is empty. The function eval records the fact that the
variable y was required for computing the value for x, by adding the unknown
x in the mapping infl to the value for y. Only then is the value of y (as stored
in σ) returned.

In the next step, the function solve joins the old value of σ for x with the
new value returned by f x eval. Since now the evaluation of the right-hand
side is finished, x is removed from the set called, and the joined new value is
compared to the old value for x as provided by σ. If these two values are equal,
no increase of x has occurred and solve returns. Otherwise, the value of x in
σ is updated to the new value. Since the value of x has changed, all unknowns
which directly or indirectly may be influenced by x, can no longer be considered
as stable and therefore are marked for potential reevaluation. This is the task
of the function destabilize.

The function destabilize when called for an unknown x, iterates through
all unknowns in the set infl x. Each of the unknowns y which are found to be in
stable are removed from stable and then recursively destabilized. Moreover,
the value of infl for x is updated to the empty set. In particular this means
that before every call of solve, all infl sets of unstable unknowns, i.e., unknown
not stable, are empty. Once destabilization has terminated, function solve re-
evaluates x by calling itself tail-recursively.

Assume that initially, σ is the empty map, all sets stable, called and infl
x for all x ∈ V are empty. Then we consider the following invariant I:

1. Whenever y ∈ stable ∪ called, then infl y = ∅;
2. Whenever y ∈ stable\called, then σ y � fy σ, and for every unknown z whose

value is queried during the evaluation of fy w.r.t. the current σ, z ∈ stable ∪
called and y ∈ infl z.

Then we have the following properties:

Lemma 1. 1. The invariant I holds in the beginning and is re-established by
each call to solve or eval. Likewise, the set called is preserved and only
increased intermediately.

2. After each call of eval y inside a call of solve x, x ∈ infl y, y ∈ stable∪called
and the current value of σ y is returned.

3. After each call of solve x, the variable x is in the set stable. Moreover, if
σ x has been updated, then x does not recursively influence any unknown
in stable ∩ called. �
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By Lemma 1, the program TD when started with a call solve x, returns a partial
post-solution σ for some set V ′ of unknowns which contains x — whenever it
terminates. That set V ′ then is given by all unknowns x which are accessed when
recursively re-evaluating the right-hand side of x starting from σ. Technically,
this re-evaluation can be triggered by re-setting the set stable to the empty set
and again calling solve x.

Lemma 1 also implies that the call solve x is guaranteed to terminate when-
ever the domain is Noetherian and only finitely many distinct unknowns are
encountered during the evaluation.

We remark that one important step in proving Lemma1 is to prove that
conceptually, the evaluation of fx σ of the right-hand side of x in a call to solve
x for the present mapping σ can be considered as if it happened atomically after
evaluation of the unknowns whose values are queried during the evaluation of fx.
For that, it suffices to convince ourselves that every direct query to an unknown
y ∈ called, during this evaluation, will add y and all unknowns by which it
is influenced and that are not in called, into the stable set— ensuring that a
second query of y or any unknowns by which y is influenced will return exactly
the same result. Note that the unknowns in called are not changed during the
evaluation of fx σ.

Solving the equation system of Example 1 with TD produces the following
sequence of updates:

y x y x · · · x

x 0 0 1 1 2 · · · 232

y 0 1 1 2 2 · · · 232 + 1

We notice that the solving process, although it theoretically terminates after
233 updates, is not efficient. Such inefficiency is typical for equation systems
where the value domain contains long increasing chains.

3 Widening and Narrowing

Solving systems of equations usually is based on some form of Kleene iteration,
meaning that it consists of a sequence of evaluations of right-hand sides, fol-
lowed by updates of the unknowns on the corresponding left-hand sides—until
all equations in question are satisfied. In case when the partial ordering D of
values is not Noetherian, termination of the iteration, though, can no longer be
guaranteed. For such cases, Cousot and Cousot [7] propose to first accelerate the
iteration by introducing another upper bound operator ∇ : D → D → D (the
widening) to accumulate intermediate values. Conceptually, the idea can be seen
as replacing the accumulating version:

x = x � fx
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of each equation with the equation:

x = x∇ fx

where ∇ is an upper bound operator which guarantees that every (post) solution
of the new system is also a post-solution of the original system. Beyond that,
the widening operator must ensure that values only be increased finitely often.
Accordingly, if the set of unknowns which is encountered is finite, TD equipped
with ∇ (instead of �) will be guaranteed to terminate.

Solving the equation system in Example 1 with TD where widening is
defined as

x∇ y =

{
∞ if y > x

x otherwise

produces the following sequence of updates:

y x

x 0 0 ∞
y 0 ∞ ∞

Accordingly, the solving process terminates already after two updates, the
resulting values for x and y, though, seem unnecessarily large.

In general, many heuristics have been proposed for various domains widening
operators which guarantee termination, while at the same time retain enough
precision to return useful results. Still, in many cases the results obtained by
widening alone, are unsatisfactory. Therefore, Cousot and Cousot propose to
perform a second iteration on the system of equation which subsequently may
improve a given post-solution [8,10]. The second iteration starts at a post-
solution of the system. Given that all right-hand sides represent monotonic func-
tions, the second iteration will result in a decreasing sequence of assignments to
unknowns—each of which now forms a post-solution. In order to enforce ter-
mination of this second iteration, a narrowing operator Δ ∈ D → D → D is
introduced. Again, the first argument of this operator is meant to be the former
value of an unknown, while the second argument corresponds to the value newly
provided by evaluating the corresponding right-hand side. Then the following
property should hold:

b � a =⇒ b � aΔ b � a

As before, the narrowing operator should enforce that all possibly resulting
decreasing chains are finite.
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For our running example, we use the following narrowing operator:

xΔ y =

{
y if x = ∞
x otherwise

Starting with the post-solution {x �→ ∞, y �→ ∞}, downward iteration produces
the following sequence of updates:

x y

x ∞ 232 232

y ∞ ∞ 232+1

Thus, the solving process terminates already after two updates.
In general, narrowing operators can only be applied if the evaluation of a

right-hand side returns less or equal value than currently provided by the left-
hand side. If right-hand sides are not monotonic, this is not necessarily the case.
Non-monotonic right-hand sides, however, inevitably occur in the systems of
equations for inter-procedural analysis in the style of Cousot and Cousot in [9].

Example 2. Consider the equation for a call to a procedure g at an edge in the
control-flow graph of the calling procedure f from program point u to program
point v. For simplicity, assume that all procedures operate on a global state
(full treatment of this kind of constraint system together with a discussion of
variations, e.g., for partial contexts is discussed in [3]). For every abstract calling
context α of f , we then obtain the equation:

〈v, α〉 = 〈g, 〈u, α〉〉
where 〈u, α〉, 〈v, α〉 are unknowns representing the abstract values attained at
program point u, v when analyzing f for context α, and 〈g, β〉 is the abstract
state attained at the exit of the procedure g when called in the abstract context β.
Note that in this equation, the context β for which 〈g, β〉 provides the value for
the left-hand side 〈v, α〉, equals the current abstract value for 〈u, α〉. This means
that in a first evaluation of 〈u, α〉 could return a value β1, while a later evaluation
might return another value β2, and there is no reason why the values of the two
distinct unknowns 〈g, β1〉 and 〈g, β2〉 should always be related.

Likewise, as elaborated by Apinis et al. in [5], local solving and the two-
phase approach to widening/narrowing does not go well together. As a remedy,
Apinis et al. propose to combine the two operators into one update operator
� : D → D → D:

a � b =

{
aΔ b if b � a

a∇ b otherwise

Let us call this new operator a warrowing. Plugging the warrowing operator into
a local solver results in a fixpoint iteration which not necessarily performs a single
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widening iteration followed by a single narrowing iteration. Instead, widening
and narrowing is applied in an intertwined manner—with the additional benefit
of increasing precision.

We recall from Apinis et al. [5] that every variable assignment σ such that

σ x = σ x � fx σ (x ∈ V )

is also a post-solution of the original system. In general, though, when plugging
the combined operator into an arbitrary solver, termination can no longer be
guaranteed—even if the original system of equations has monotonic right-hand
sides only.

The following sequence of updates that may be exhibited by some solver (not
TD) for the equation system in Example 1, when the warrowing operator � is
applied for every right-hand side.

y y x x y y . . . y

x 0 0 0 ∞ 1 1 1 . . . 232

y 0 ∞ 1 1 1 ∞ 2 . . . 232 + 1

Although the iteration terminates, the solving process turns out to be even less
efficient than if no widening/narrowing were used. In general, even termination
of the iteration can no longer be guaranteed. Therefore, Apinis et al. [4,5] pro-
vide a modifications to several standard solvers so that termination guarantees
are retained. The key idea for these modifications is to introduce some kind of
ordering on the unknowns which is obeyed during fixpoint iteration. In the fol-
lowing, we show that the enhancement of the top-down solver TD by means
of the warrowing operator � is possible — without resorting to such artificial
change in the iteration ordering.

4 Enhancing TD

Intuitively, adding an extra ordering on the unknowns for TD can be omit-
ted as top-down iteration already imposes an ordering by which unknowns are
re-evaluated: no unknown, once called, will be reevaluated before each of the
unknowns onto which it depends are stabilized. Surprisingly, this already suf-
fices to ensure termination for equation systems with monotonic right-hand sides,
given that the least upper bound operator in TD is replaced with the warrowing
operator �.

Consider again the equation system in Example 1. When x is solved with the
enhanced TD, we obtain:

Now, the solving process terminates after a few steps. Note that TD does
not update the value for y as the value of y is not required for verifying the
answer to the initial query of x.
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y y x y x

x 0 0 0 ∞ ∞ 232

y 0 ∞ 1 1 ∞ ∞

Practical evidence shows, however, that performing widening (and narrow-
ing) for every program point throws away too much information [6]. Therefore,
the set of unknowns in whose right-hand sides � is applied, should be cho-
sen to be as small as possible. Figure 2 shows the proposed modified top-down
solver where the additions are highlighted. The first point to note is that accu-
mulation with � is now replaced with accumulation by means of the warrowing
operator �. Also, once � is involved for computing the next value for an unknown
x, the unknown x is also added to the set infl x in order to trigger reevalua-
tion of x once x changes its value. The second point to note is that, by default,
the new values provided by the respective right-hand sides are directly used to
update the value of the unknown on the right-hand side. The warrowing oper-
ator � is used to combine old values of unknowns with the new values only for
dedicated unknowns, namely, those from the set wpoint.

The insight is that in order to enforce termination, widening (and likewise also
narrowing) need not be applied everywhere in the system but only for at least one
unknown within each cyclic influences of unknowns [6]. For systems of equations
originating from control-flow graphs of programs (without recursive procedures),
a reasonable choice is to use loop heads as widening points only. In our setting,
though, the solver is unaware of the application where the system of equations
originates from. Moreover, preprocessing of influences between unknowns is not
possible—also due to potential changes of influences between unknowns during
the iteration of the solver. This means that a dynamic method must be provided
which detects a sufficiently large set of widening points.

In our modification of TD, detection of widening points happens inside of
the local function eval. Assume that eval is called for unknown y inside a call
of solve for an unknown x. Then the variable y is added to wpoint whenever
y is found to be already in called. As TD is a demand-driven local solver, we
have, therefore, dynamically detected a cycle in the dependency graph for the
unknowns of the equation system.

As a second improvement, the variable y is removed again from wpoint as
soon as the iteration on y has stabilized. Such dynamic shrinking of the set
wpoint not only accounts for dynamic changes of influences between unknowns,
but also may significantly increase precision. Consider, e.g., the unknowns cor-
responding to a loop in a control-flow graph. Assume that the loop head has
been removed from stable, but is no longer contained in wpoint. Then the
prior iteration on the loop must have stabilized. Thus, the destabilization of x
must have been triggered from outside the loop—implying that applying � in
the right-hand side of x is not necessary [1,2].
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Fig. 2. The enhanced solver TD�.

Theorem 1. Consider TD� for a system C of equations with set V of
unknowns. Assume that initially, both stable and called are empty, and solve

x has been called for some unknown x ∈ V . Then the following holds:

1. Upon termination, a partial solution for C is obtained for some subset V ′ ⊆ V
with x ∈ V ′.

2. The call is guaranteed terminate if only finitely many unknowns are encoun-
tered and one of the following assumptions are met:
(a) aΔ b = a, i.e., narrowing is effectively switched off, or
(b) all right-hand sides are monotonic.
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Clearly, Theorem 1 is unsatisfactory, as it does not provide a termination guar-
antee for the case where right-hand sides are not monotonic. With contrived
non-monotonic systems, virtually every solver using � as is, can be forced into
non-termination. In that sense, the second assertion for monotonic right-hand
sides cannot easily be improved. It gives an indication, though, that practically
termination can be hoped for. At the price of giving up some opportunities for
further narrowing steps, we can always enforce termination. We could, e.g., mod-
ify the warrowing operator � so that the number of switches from widening to
narrowing is bounded at each occurrence of � in the equation system.

For the proof of Theorem1, we remark that the properties stated in Lemma 1
for solver TD also hold true for the program TD�. From that, the statement 1
of Theorem 1 immediately follows. Therefore here we concentrate on the proof
of termination.

5 Proof of Termination

We perform an induction on the number n of unknowns queried during the
evaluation of the unknown x and which are either equal to x or not contained in
the set called. For n = 0, the evaluation immediately terminates. Now assume
that n > 0. To establish a contradiction, assume that the call solve x does not
terminate. Since by inductive hypothesis, each recursive call to eval terminates,
the tail-recursive call to solve x is executed infinitely often. This means that
the value of x must be updated infinitely often, and thus its right-hand side also
be re-evaluated infinitely often.

We claim that then during each evaluation of the right-hand side of x, x is
added to the set wpoint—implying that each new value is obtained by applica-
tion of the operator �. Assume for a contradiction that this were not the case.
Let Vi denote the set of unknowns which are not in called which are queried
during the ith evaluation of the right-hand side of x. If before the (i + 1)th
evaluation, x is not contained in wpoint, then for none of the unknowns y ∈ Si,
the evaluation of their right-hand sides may have queried the value of x. After
the ith evaluation of the right-hand side of x, each unknown y ∈ Si is stable and
none of them is contained in the set infl(x). Therefore, none of them is removed
from the set stable when the value of x in σ is updated. Therefore, the next as
well as any subsequent evaluation of the right-hand side will query always the
same set of unknowns, i.e., Sj = Si for all j � i, and all the unknowns in there
will be stable. But then the (i+2)th value returned for x will equal the (i+1)th
value for x—in contradiction to our assumption.

Let d1 = d2 = . . . be the sequence of values for x after the ith update.
In particular, between any two updates, x must have been destabilized (other-
wise, solve x would have terminated immediately), implying that x recursively
has been found to influence itself. To establish this influence, x will have been
inserted into the set wpoint, the latest during the first evaluation of its right-
hand side and will stay there until its value has stabilized. Therefore, for each
i � 1 it holds that di+1 = di � bi for suitable values bi.
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First assume that narrowing returns its first argument, i.e., is effectively
switched off. Then di+1 = di ∇ bi (for all i � 1). Since the operator ∇ is a
widening, the sequence di must eventually be stable—contradicting the assertion
that di = di+1 for all i.

Therefore, now consider the second sufficient condition for termination as
stated in the theorem, namely, that all right-hand sides are monotonic. Let m
denote the maximal index such that for all i < m, di+1 = di ∇ bi. Since ∇ is a
widening, such an m exists. For that m, we claim:

Claim. For all j � m, dj � dj+1.

Given that the claim holds, dj+1 = dj Δ bj for all j � m. Now since Δ is a
narrowing operation, the sequence dj , j � m must become ultimately stable—
again contradicting the assertion that di = di+1 for all i.

It remains to prove the claim. In order to do so, we introduce a few extra
notions. For a set V and a lattice (D,�), let g be a function (V → D) → D.
Given a mapping σ ∈ V → D, the function g depends on the set V ′ ⊆ V of
unknowns (relative to σ) if for all σ′ ∈ V → D such that V ′ is the smallest
subset such that σ|V ′ = σ′|V ′ implies that g σ = g σ′. We say that g references
unknowns from R(g, σ) ⊆ V w.r.t. the mapping σ if the evaluation of the strategy
tree [17] for g for the mapping σ queries exactly the unknowns R(g, σ). It can be
shown that referencing is an over-approximation of dependency, i.e., all mappings
σ′ such that σ|R(g,σ) = σ′|R(g,σ) implies g σ = g σ′. We have:

Lemma 2. If g is monotonic then for all σ, σ′ : V → D,

∀x ∈ R(g, σ). σ′ x � σ x

then
g σ′ � g σ .

Proof. Assume for a contradiction that there are mappings σ, σ′ such that ∀x ∈
R(g, σ). σ′ x � σ x, but g σ′ � g σ. We construct

σ′′ x =

{
σ x if x ∈ R(g, σ)
σ′ x otherwise.

We have
∀x ∈ V. σ′ x � σ′′ x

and therefore, by monotonicity of g,

g σ′ � g σ′′ .

Because reference is an over-approximation of dependence we also have that
g σ′′ = g σ. Thus, we conclude that g σ′ � g σ holds—in contradiction to our
assumption. �

Now we are ready to prove our claim:
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Lemma 3. During a call to solve (x), for some unknown x, once the sequence
of values uj provided by evaluating the right-hand side for the unknown x starts
to descend, it will stabilize or keep descending, i.e., dj � dj+1 for all j � m.

Proof. Evaluation of the right-hand side of the unknown x, when solving x gen-
erates a sequence (z1, σ1), . . . , (zr, σr), where the first components zi are the
unknowns that are re-evaluated and the second components σi are the respec-
tive mappings at the time when the evaluation of the right-hand side of zi has
been completed, and the ordering is the ordering in which the new values for
the unknowns are determined. In particular, the last unknown in this sequence
zr equals x. Let us call this the trace of the evaluation of x.

Assume that the evaluation of the right-hand side of the unknown x returned
a smaller value u than the value currently stored in σ. At that point in time, all
referenced unknowns R(f zi, σ) that are not in the set called are stable. Assume
that σ xΔ u � σ x. After evaluation of x has been completed, destabilize
is called for x, as we assume that the value for x continuously changes. The
function destabilize will remove all unknowns from stable that might need
to be updated, as they are (transitively) influenced by x. Subsequently, solve
is again called for the unknown x.

As before, evaluation of the right-hand side of x will generate a trace
(q1, σ′

1), . . . , (qn, σ′
n). Recall that the last unknown to be updated again will

be x. Now we show that those unknowns qi that have already occurred in the
sequence z1, . . . , zr will receive a smaller value or stay the same. For the proof,
we perform induction over the prefixes of the trace (q1, σ′

1), . . . , (qn, σ′
n).

Base Trivial.
Step Assume that the values of q1, . . . , qi−1 that occurred already in the sequence
z1, . . . , zr stayed the same or decreased—according to the induction hypothesis.
As for the update to qi, we only need to consider the case that qi has already
occurred, i.e., that qi = zj for some index j.
As TD solves all unknowns occurring in the right-hand side of qi beforehand,
except when they are in called or in stable, only unknowns which did not
occur among the z1, . . . , zr may receive a larger or incomparable value. This
means that the last evaluation of zj did not depend on these unknowns. By
Lemma 2, however, the value returned for the right-hand side of qi = zj then
will be smaller or stay the same. This concludes the proof of the claim and hence
of Theorem 1. �

6 Conclusion

We have presented a moderate improvement of the generic local solver TD
which enables the solver to use widening and narrowing in a convenient way.
Upon termination, the resulting algorithm always returns a partial solution from
which a partial post-solution can be extracted. Moreover, termination can be
guaranteed whenever only finitely many unknowns are encountered and either no
narrowing is used or right-hand sides are all monotonic. During fixpoint iteration,
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it dynamically not only detects dependences between unknowns but also those
unknowns which require widening/narrowing. Compared to the solvers presented
in [2,4,5], the solver TD� is simpler as no explicit priorities of unknowns need to
be maintained. The latter solvers, however, can be enhanced to deal with side-
effects inside systems of equations. Side-effects allow to generate contributions
to unknowns different from the left-hand side. This mechanism is convenient,
e.g., for combining flow-insensitive analysis with inter-procedural analysis [3]. It
is still open whether the solver TD� can be enhanced to deal with such systems
as well. Also, in the application of TD inside the Ciao system, extra measures
are taken to limit the number of unknowns to be considered [14]. It would be
interesting to see how the plain version considered here works together with such
extra methods.
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Ma�luszyński, J. (eds.) PLILP 1990. LNCS, vol. 456. Springer, Heidelberg (1990)

7. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Robinet, B. (ed.) 2nd International Symposium on Programming, Paris, pp.
106–130. Dunod (1976)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th Annual
ACM Symposium on Principles of Programming Languages (POPL), pp. 238–252.
ACM Press (1977)

9. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: IFIP Conference on Formal Description of Programming Concepts,
pp. 237–277. North-Holland (1977)

http://arxiv.org/abs/1503.0088


288 K. Apinis et al.

10. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho,
A.V., Zilles, S.N., Rosen, B.K. (eds.) 6th Annual ACM Symposium on Principles
of Programming Languages (POPL), pp. 269–282 (1979)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: 5th Annual ACM Symposium on Principles of Programming
Languages (POPL), pp. 84–96. ACM Press (1978)

12. Fecht, C., Seidl, H.: Propagating differences: an efficient new fixpoint algorithm for
distributive constraint systems. Nord. J. Comput. 5(4), 304–329 (1998)

13. Fecht, C., Seidl, H.: A faster solver for general systems of equations. Sci. Comput.
Program. 35(2), 137–161 (1999)

14. Hermenegildo, M., Puebla, G., Marriott, K., Stuckey, P.: Incremental analysis of
constraint logic programs. ACM Trans. Program. Lang. Syst. (TOPLAS) 22(2),
187–223 (2000)

15. Hermenegildo, M.V., Puebla, G., Bueno, F., López-Garćıa, P.: Integrated program
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Abstract. A typed λ-calculus, λ∩� , is introduced, combining intersec-
tion types and modal types. We develop the metatheory of λ∩� , with
particular emphasis on the theory of subtyping and distributivity of the
modal and intersection type operators. We describe how a stratification
of λ∩� leads to a multi-linguistic framework for staged program syn-
thesis, where metaprograms are automatically synthesized which, when
executed, generate code in a target language. We survey the basic theory
of staged synthesis and illustrate by example how a two-level language
theory specialized from λ∩� can be used to understand the process of
staged synthesis.

1 Introduction

Two-level languages have been proposed for capturing a number of different,
often related, properties of metaprogramming systems, including staged compu-
tation by Jones [1] and binding-time properties by Nielson and Nielson [2]. In
this paper we introduce a two-level framework, λ∩�, for the intersection typed
λ-calculus [3]. In λ∩� we extend System λ→�

e of Davies and Pfenning [4] for
simple types to intersection types. The calculus λ→�

e of Davies and Pfenning
can be seen as a logical formalization of Jones’ ideas [1] of expressing staging at
the type level, essentially by giving a modal interpretation of the act of reifying
(indeed, quoting) code at a metalevel of computation. It is a remarkable fact
discovered by Davies and Pfenning, that staged computation thereby endows
an intuitionistic fragment of Gödel’s provability logic, S4, with a Curry-Howard
interpretation1.

Our motivation for studying λ∩� arises in the context of introducing staging
into the area of program synthesis. A basic idea in staged composition synthe-
sis [6] comes from the observation that, instead of directly synthesizing pro-
grams in some target language, L1, we may consider synthesizing metaprograms
1 The literature on various fragments and interpretations of modal logic is enormous,

and we can not attempt here to do any justice to that broader context of related
work. For the immediate context of staged computation the reader is referred to [4],
and for comparison with other interpretations related to staging we refer to [5].
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in a metalanguage, L2, which when executed generate programs in L1, leading
to a number of advantages we illustrate in the paper. Another central idea in
staged composition synthesis is the insight that type theoretical foundations for
component-oriented synthesis [7] can fruitfully be developed based on combi-
natory logic [8] with intersection types [3], which are used to specify semantic
properties of components.

We focus on the basic theory of λ∩� and its use in staged composition syn-
thesis. The main new theoretical issue considered is the status of distributivity
properties of the modal and intersection type operators, which turn out to be of
fundamental interest in our applications to synthesis.

The paper is organized as follows. The λ∩�-calculus is introduced in Sect. 2
including basic metatheoretic properties, most of which can be transferred from
or are analogous to corresponding properties of the λ→�

e -calculus. In Sect. 3 we
introduce a theory of intersection type subtyping, by extending standard inter-
section type theory [3] to encompass the modal operator, and we analyze the
status of distributivity in that setting. In Sect. 4 we stratify the λ∩�-calculus
into two distinct language levels, L1 and L2, thereby integrating possibly quite
different languages (an object language, L1, and a metalanguage, L2) into a sin-
gle formal framework suitable as a foundation for staged composition synthesis.
In Sect. 5 we introduce the main ideas in staged composition synthesis and illus-
trate how the two-level approach may support the method of staged composition
synthesis.

2 Modal λ-calculus with Intersection Types

We introduce a modal extension of the standard intersection type system [3] fol-
lowing the design of the λ→�

e -calculus of Davies and Pfenning [4], which extends
simple types [9] with a modal operator, �.

2.1 System λ∩�

The set T of types of λ∩� are defined as follows.

T � τ, σ, ρ: := α | τ → σ | τ ∩ σ | �τ

where α ranges over a set of type variables. We assume that ∩ binds stronger
than →, and � binds stronger than ∩. Terms of λ∩�, ranged over by M,N,P,Q,
are the same as the terms of the λ→�

e -calculus [4](the only difference being that
we consider here an implicitly typed system, whereas in [4] bound variables carry
type annotations):

M : := box M | let box u = M in N | x | u | λx.M | (MN)

The terms of λ∩� are assigned types by the inference system in Fig. 1. This
type system extends the λ→�

e -rules of Davies and Pfenning [4] with the intro-
duction and elimination rules for ∩ in the intersection type calculus [3].
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Fig. 1. Type inference rules for λ∩�

Following [4] the type system shown in Fig. 1 uses two type environments,
Δ and Γ , distinguishing between bindings of type assumptions to modal and
ordinary term variables, ranged over by u and x, respectively, where Γ is the
ordinary λ-calculus environment, and Δ is the modal environment.

We briefly explain the modal rules of the system, referring the reader to [4] for
more details. The introduction rule (�I) corresponds to (indeed, it implements)
the modal logical rule of necessitation, by which we can introduce the modal
proposition �τ , intuitively understood as the statement that the proposition
τ is provable. We can do so provided that, indeed, we have a proof M of τ
(possibly under the condition that other propositions are provable). Notice that
the premise of the rule requires the ordinary environment Γ to be empty, thereby
implementing the requirement that there exist a proof of τ , a proof being a closed
term with respect to the ordinary environment. The proof term M may contain
free modal variables, intuitively because such will ever only be bound to other
proof terms, as implemented in the elimination rule (�E). From a programming
perspective, we can understand the type �τ as meaning “code of type τ”, and
the distinction between modal and ordinary environments as exploited in the
rules (�I) and (�E) ensures that substitution of code for modal variables u is
guaranteed to be hygienic (it cannot lead to the capture of free ordinary program
variables), under any computation starting from a well typed program. In the
applications considered later in this paper, it is useful to think of a term M with
free modal variables as code templates which can be used to generate new pieces
of code by substituting different pieces of code into the template.

The operational semantics of λ∩� is the reduction relation �−→ of λ→�
e , the

smallest relation containing
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(λx.M)N �−→ M [x := N ] (β)
let box u = box M in N �−→ N [u := M ] (�β)

and closed under all contexts except box [] [4, p. 565].
Because �−→ is not a congruence with respect to box-expressions (reduction

does not “go under” the box), the type system ensures that computation is
staged. We refer the reader to Davies and Pfenning [4] for full details of the
semantics of λ→�

e .
The following (Substitution, Subject Reduction, Eliminability, Strong Nor-

malization) are analogues in λ∩� of properties shown for λ→�
e in [4].

Lemma 1 (Substitution).

1. If Δ;Γ � M : τ and Δ; (Γ, x : τ) � N : σ, then Δ;Γ � N [x := M ] : σ.
2. If Δ; ∅ � M : τ and (Δ,u : τ);Γ � N : σ, then Δ;Γ � N [u := M ] : σ.

Theorem 1 (Subject Reduction). If Δ;Γ � M : τ and M �−→ N , then
Δ;Γ � N : τ .

The type system imposes a strict phase distinction, in that only terms that
are not nested inside a box -constructor can be reduced under �−→. Subterm
occurrences in the scope of a box -constructor are, in the parlance of Davies
and Pfenning [4], persistent, in that they cannot be reduced under the relation
�−→. Term occurrences other than persistent term occurrences are called elim-
inable. By Subject Reduction, expressions cannot “go wrong” under reduction,
for example by applying a boxed term, or by unboxing an unboxed term.

Theorem 2 (Eliminability). If ∅; ∅ � M : �τ and M �−→∗ N and N is
irreducible, then N contains no eliminable term occurrences.

Strong normalization can be shown by an embedding into the intersection typed
λ-calculus [3], just as strong normalization can be shown for λ�→

e by embedding
into simply typed λ-calculus [4].

Theorem 3 (Strong Normalization). If Δ;Γ � M : τ then M is strongly
normalizing under �−→.

Notice that we have in particular the consequence:

Corollary 1. If ∅; ∅ � M : �τ , then M �−→ box N for some N such that
∅; ∅ � N : τ .

Proof. Apply Theorem 3 to obtain a normal M ′ from M , then apply Theorem 2
to conclude that M ′ ≡ box N , and inversion of the rule (�I) allows us to
conclude that ∅; ∅ � N : τ .
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As in λ→�
e we have in λ∩� the following combinator types2 characteristic

(reading types as propositions under the Curry-Howard isomorphism) of the
modal logic S4; see, e.g., Boolos [10]:

λf : �(α → β).λx : �α.
let box u = f in let box v = x in box (uv) : �(α → β) → �α → �β

λx : �α. let box u = x in box box u : �α → ��α

λx : �α. let box u = x in u : �α → α

In addition, we have in λ∩�:

λx : �(α ∩ β). let box u = x in box u : �(α ∩ β) → �α ∩ �β

This typing judgement is derived as follows, where we take Δ = [u : α ∩ β] and
Γ = [x : �(α ∩ β)]. First, we have the subderivation D1:

Δ; ∅ � u : α ∩ β
(mvar)

Δ; ∅ � u : α
(∩E)

Δ;Γ � box u : �α
(�I) ∅;Γ � x : �(α ∩ β)

(ovar)

∅;Γ � let box u = x in box u : �α
(�E)

Similarly, we have the subderivation D2:

Δ; ∅ � u : α ∩ β
(mvar)

Δ; ∅ � u : β
(∩E)

Δ;Γ � box u : �β
(�I) ∅;Γ � x : �(α ∩ β)

(ovar)

∅;Γ � let box u = x in box u : �β
(�E)

Putting these together we get

D1

∅;Γ � let box u = x in box u : �α

D2

∅;Γ � let box u = x in box u : �β

∅;Γ � let box u = x in box u : �α ∩ �β

∅; ∅ � λx. let box u = x in box u : �(α ∩ β) → �α ∩ �β

where we use (∩I) followed by (→I) in the last two steps.
In contrast, there is no closed term in λ∩� of type

�α ∩ �β → �(α ∩ β)

To see this, consider that the existence of such a term would imply (by nor-
malization and subject reduction) the existence of a normal form N of type
�α ∩ �β → �(α ∩ β). This term must (by generation of its typing) be of the
2 In the following we will sometimes write explicit type annotations in terms in order

to indicate particular typings.
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form λx.box N ′ where x occurs free in N ′, which is impossible by the typing
rules: the subterm box N ′ does not type, since N ′ is not closed with respect to
the λ-calculus environment, so rule (�I) is not applicable.

The fact that such a term does not exist is closely connected with the special
property of intersection which requires the same term to have both types of
an intersection. Compare with a standard extension of our calculus to include
product types σ×τ . Writing 〈M,N〉 for the pairing constructor with component
terms M and N and πi (i = 1, 2) for the projections, and assuming that we add
standard rules for the product type, we certainly have:

λx : �α × �β. let box u1 = π1x in let box u2 = π2x in box 〈u1, u2〉
of type

�α × �β → �(α × β)

as well as

λx : �(α × β). let box u = x in 〈box (π1u),box (π2u)〉
of type

�(α × β) → �α × �β

3 Subtyping and Distributivity

We introduce modal intersection type subtyping (Sect. 3.1), an extension to the
standard theory [3] of subtyping for intersection types which encompasses modal
types. In particular, our extended theory of subtyping postulates distributivity
of � over ∩. We then discuss the status of distributivity and various η-principles
in Sect. 3.2.

3.1 Modal Intersection Type Subtyping

We now extend the standard theory of intersection type subtyping [3] with modal
types3. In following definition of subtyping axioms S1–S5 are standard for inter-
section types [3]; they will be referred to as the standard axioms. Axioms S6 and
S7 are added to accomodate modal types. These axioms will also be referred to
as the modal axioms of subtyping.

Definition 1. Subtyping ≤ is the least preorder (reflexive and transitive rela-
tion) on types closed under the following axioms and rules:

(S1) τ ∩ σ ≤ τ
(S2) τ ∩ σ ≤ σ
(S3) (τ → σ) ∩ (τ → ρ) ≤ τ → σ ∩ ρ
(S4) τ ≤ τ ′ ∧ σ ≤ σ′ =⇒ τ ′ → σ ≤ τ → σ′

3 In some variants of the intersection type theory there is a special type ω which we
leave out here.
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(S5) τ ≤ τ ′ ∧ σ ≤ σ′ =⇒ τ ∩ σ ≤ τ ′ ∩ σ′

(S6) τ ≤ σ =⇒ �τ ≤ �σ
(S7) �τ ∩ �σ ≤ �(τ ∩ σ)

Intersection types are tacitly considered modulo commutativity, associativity and
idempotence of the intersection type operator ∩. We say that τ and σ are equal,
written τ = σ, if τ ≤ σ and σ ≤ τ . We write τ ≡ σ, if τ and σ are syntactically
identical.

We add the rule of subtyping to λ∩� and denote the resulting derivability
relation as �∗.

Δ;Γ �∗ M : τ τ ≤ σ

Δ;Γ �∗ M : σ
(≤)

We have the greatest-lower-bound property

τ ≤ σ ∧ τ ≤ ρ ⇒ τ ≤ σ ∩ ρ

by Axiom S5, monotonicity of ∩, since τ ≤ σ ∧ τ ≤ ρ and therebye τ ∩ τ ≤ σ ∩ ρ
and τ ≤ σ ∩ ρ by idempotence of ∩.

The following distributivity properties are consequences of the standard
axioms of subtyping for intersection types:

(τ → σ) ∩ (τ → ρ) = τ → σ ∩ ρ

(τ → σ) ∩ (τ ′ → σ′) ≤ (τ ∩ τ ′) → (σ ∩ σ′)

Distributivity of � over ∩

�(τ ∩ σ) = �τ ∩ �σ (1)

follows from the axioms of modal intersection type subtyping. To wit, consider
each distributive subtyping relationship contained in (1) separately:

�(τ ∩ σ) ≤ �τ ∩ �σ (2)
�τ ∩ �σ ≤ �(τ ∩ σ) (3)

We can see that (3) is postulated by Axiom S7, and (2) follows by the greatest-
lower-bound property: Assuming τ ∩ σ ≤ τ and τ ∩ σ ≤ σ, monotonicity of �
(Axiom S6) gives �(τ ∩ σ) ≤ �τ and �(τ ∩ σ) ≤ �σ, hence by greatest lower
bound, �(τ ∩ σ) ≤ �τ ∩ �σ.

In contrast to the situation mentioned at the end of Sect. 2.1, as a consequence
of postulating the subtyping relation (3) we now have

∅; ∅ �∗ λx.x : �τ ∩ �σ → �(τ ∩ σ)

for all σ, τ .
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Every type σ can be written in a (not necessarily unique) standard form as

σ =
⋂

i∈I(τi → τ ′
i) ∩ ⋂

j∈J �ρj ∩ ⋂
k∈K αk

where at least one of the index sets I, J,K is nonempty and an empty index set
denotes a missing conjunct. The following lemma is a generalization, to include
modal types, of a standard lemma [3] for intersection type subtyping (sometimes
referred to as “β-soundness”).

Lemma 2. Let σ be given in a standard form as

σ ≡ ⋂
i∈I(τi → τ ′

i) ∩ ⋂
j∈J �ρj ∩ ⋂

k∈K αk

Then the following conditions hold for all τ, τ ′, α:

1. σ ≤ τ → τ ′ if and only if the set {i ∈ I | τ ≤ τi} is nonempty and⋂{τ ′
i | τ ≤ τi} ≤ τ ′.

2. σ ≤ �τ if and only if J �= ∅ and
⋂

j∈J ρj ≤ τ .
3. σ ≤ α if and only if α ≡ αk for some k ∈ K.

Proof. The implications from left to right are proven by induction on the deriva-
tion of the subtyping relations. The implications from right to left follow easily
by the axioms of subtyping.

3.2 Subtyping and η-principles

It is well known (see, e.g., [3]) that the standard intersection type system allows
its standard notion of subtyping to become representable by a derived rule, if we
add rules to the system that ensure the preservation of types under η-reduction,
and, conversely, subtyping ensures subject reduction under η-reduction. As
we will show now, the situation is more complicated for modal intersection
type subtyping, and this is mainly caused by the principle of distributivity
shown as (3).

Let ≤◦ denote the relation generated by the axioms (S1) through (S6) from
Definition 1. Let �◦ denote the restriction of �∗ arising by restricting the sub-
typing relation ≤ to be ≤◦ in the rule (≤) and call the resulting rule (≤◦).

Let �η1 denote the system arising from adding the rules (η) and (η�1) shown
in Fig. 2 to those of λ∩� shown in Fig. 1. Let �η2 denote the extension of �η1 by
adding the rule (η�2). Let us define the notions of η-reduction

λx.Mx �→η M, provided x �∈ FV(M)
let box u = M in box u �→η1 M
box (let box u = M in u) �→η2 M, provided FV(M) = ∅

Notice that �→η1 is considered in the context of λ→�
e in [4]. Let �βη1 denote the

reflexive, transitive reduction relation generated from the union of →β , �→β�,
→η and �→η1 and let �βη2 be generated by adding �→η2.
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Fig. 2. η-rules

Theorem 4. 1. If Δ;Γ �η1 M : τ and M �βη1 N , then Δ;Γ �η1 N : τ .
2. If Δ;Γ �η2 M : τ and M �βη2 N , then Δ;Γ �η2 N : τ .

We will now show that subtyping can to some degree be “internalized” into
the type system via η-rules, such that subtyping becomes (to some degree) a
derived rule when the η-rules are added. The most problematic case is the deriv-
ability of axiom (S7) for subtyping. Before we consider the full system of sub-
typing including (S7), we consider its restriction ≤◦, for which we can show full
internalization of subtyping as a derived rule under the η-principle (η�1).

Proposition 1. σ ≤◦ τ implies, for all Δ,Γ,M :

Δ;Γ �η1 M : σ ⇒ Δ;Γ �η1 M : τ

Proof. By induction on the derivation of σ ≤◦ τ . We consider two cases and
leave the rest to the reader.

In case we have σ ≡ σ1 ∩σ2, τ ≡ τ1 ∩ τ2 with σ ≤◦ τ by (S5), where σi ≤◦ τi

(i = 1, 2), assume Δ;Γ �η1 M : σ1 ∩ σ2. By (∩E) we get Δ;Γ �η1 M : σ1

and Δ;Γ �η1 M : σ2. Applying the induction hypothesis to the former of these
judgements, we get Δ;Γ �η1 M : τ1, and applying it to the latter yields Δ;Γ �η1

M : τ2. The claim follows by an application of (∩I).
In the case where we have σ ≡ �σ′ and τ ≡ �τ ′ with σ′ ≤◦ τ ′ by (S6),

assume Δ;Γ �η1 M : �σ′. We have (for u fresh) that (Δ,u : σ′); ∅ �η1 u : σ′.
Hence, by induction hypothesis, (Δ,u : σ′); ∅ �η1 u : τ ′, and so by (�I), (Δ,u :
σ′);Γ �η1 box u : �τ ′. By (�E), we have Δ;Γ �η1 let box u = M in box u :
�τ ′. Therefore, by (�η1) we get Δ;Γ �η1 M : �τ ′.

Notice that the corresponding property for simple typed λ-calculus can be
obtained there as a corollary of the following property (where we momentarily
let ≤ and � denote the system of simple types): if σ ≤ τ , then there exists a term
M such that � M : σ → τ and M �βη λx.x. The term M can be constructed by
induction on the derivation of σ ≤ τ . This property cannot be proven for �η1,
because the induction cannot be carried out in the case of (S5).

With regard to the relationship between full modal subtyping ≤ as given
by Definition 1 and the system �η2, we have the further restriction that the η-
principle (η�2) only applies to closed terms, because the premise of the rule
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requires a term M which type correctly appears in the scope of box. Conse-
quently, we cannot internalize the relation ≤ fully in the system �η2 of λ∩�.
But we can show that the distributive property (3) can be internalized into λ∩�

itself on closed terms, in the sense of Theorem 5.
The following lemma is an extension to λ∩� of a property which is true of

the standard intersection type system (see [11] for an exposition of this).

Lemma 3. Let M �−→ N by contracting the redex occurrence R, with R ≡
(λx.P )Q or R ≡ let box u = box Q in P , in M . If Δ;Γ � M : σ and Q is
typable in the context of Δ and Γ , then Δ;Γ � N : σ.

Theorem 5. ∅; ∅ � M : �τ ∩ �σ if and only if ∅; ∅ � M : �(τ ∩ σ).

Proof. If ∅; ∅ � M : �τ ∩ �σ, then (Theorems 1 and 3) we have M �−→∗ N with
N a normal form (irreducible) and ∅; ∅ � N : �τ ∩ �σ. Therefore, by (∩E),
we have ∅; ∅ � N : �τ and ∅; ∅ � N : �σ. Since N is irreducible, it follows by
Theorem 2 that N is persistent, and by inversion applied to both judgements,
we obtain N ≡ box P for some P with ∅; ∅ � P : τ and ∅; ∅ � P : σ. By (∩I)
it follows that ∅; ∅ � P : τ ∩ σ. Then, using (�I) applied to this judgement
we obtain ∅; ∅ � N : �(τ ∩ σ). Finally, an induction in the reduction length of
M �−→∗ N using Lemma 3 yields ∅; ∅ � M : �(τ ∩ σ).

On the other hand, if ∅; ∅ � M : �(τ ∩σ), we find a normal form N ≡ box P
with ∅; ∅ � N : �(τ ∩ σ) such that ∅; ∅ � P : τ ∩ σ, hence by (1) we have
∅; ∅ � P : τ and ∅; ∅ � P : σ, so by (�I), ∅; ∅ � N : �τ and ∅; ∅ � N : �σ,
hence by (∩I) ∅; ∅ � N : �τ ∩ �σ. Finally, an induction in the reduction length
of M �−→∗ N using Lemma 3 yields ∅; ∅ � M : �τ ∩ �σ.

Proposition 2. Δ; ∅ �η2 M : �σ ∩ �τ ⇒ Δ; ∅ �η2 M : �(σ ∩ τ)

Proof. Assume Δ; ∅ �η2 M : �σ ∩ �τ . By (∩E), we get Δ; ∅ �η2 M : �σ and
Δ; ∅ �η2 M : �τ . Then, by (�E), we have Δ; ∅ �η2 let box u = M in u :
σ and Δ; ∅ �η2 let box u = M in u : τ . Hence, by (∩I), we have Δ; ∅ �η2

let box u = M in u : σ ∩ τ . By (�I) we then get

Δ; ∅ �η2 box (let box u = M in u) : �(σ ∩ τ)

By (η�2) we have Δ; ∅ �η2 M : �(σ ∩ τ).

As a variation on the system �η2, we could also introduce the restricted com-
muting conversion:

box (let box u = M in u) =
let box u = M in box u, provided FV(M) = ∅

Incorporating this principle into the system �η1 would evidently lead to rule
(η�2) being derivable.

Notice carefully that the equivalent of the property in Proposition 1 can not
be shown for �η2 and (≤). An attempt to extend the induction from the proof
of that proposition to �η2 and (≤) will fail in the case where σ ≤ τ is derived
by (S4), because one is forced there to consider open terms.



Modal Intersection Types, Two-Level Languages, and Staged Synthesis 299

4 Two-Level Language

We introduce our two-level metalanguage, L2, which is suitable for computing
over expressions of a given object language, denoted L1 (strictly speaking, L1 will
be a mild extension of the object language, see below). In our formal develop-
ment we wish to keep the language L1 fairly abstract, since L1 is to a large extent
interchangeable. For the present purposes we will assume that both L1 and L2
are suitably typed in a standard intersection type system [3], to accomodate for
semantic types as used in the type-theoretic approach to synthesis [6,12]. In this
usage of intersection types we do not assume that intersection types are defined
in the language L1 itself, but rather that they are superimposed onto L1-types
as specifications that are used to direct synthesis. Thus, L1 could be a standard
programming language such as Java or ML, and intersection types may be used
only to expose type interfaces of components (understood as combinators in [6])
to synthesis. We will feel free to use concrete L1-expressions in examples, rely-
ing on them to be readily understood by familiarity with typical programming
language constructs and their typing rules.

As in the approach to staged composition synthesis [6], the metalevel lan-
guage L2 and the object level language L1 will be combined into a single type sys-
tem. We will do so by stratifying λ∩� into a two-level system in which L1 plays,
roughly speaking, the rôle of the λ-calculus fragment (non-modal level), and L2
is the intersection typed modal calculus of λ∩�. We will sometimes refer to the
resulting system as L2/L1 (pronounced “L2 over L1”). Although the approach
can in principle be used to stratify an arbitrary number of levels of modalities
and metalevels, we only consider the case of two levels here.

4.1 Object Language L1

We assume a language called L1, which denotes the object language under con-
sideration extended with template variables. Expressions of L1 will be ranged
over by e, e′ etc. Template variables, ranged over by u, are metalanguage vari-
ables that act as placeholders for expressions of L1. Note that template variables
are distinct from program variables of L1, ranged over by v. For example, we
may consider an expression such as

e ≡ if (u) then 0 else 1

assuming that conditional statements (as shown) can be formed in L1, where
the template variable u stands (in this case) for a suitable expression that could
appear in the test of a conditional. We shall sometimes refer to expressions of L1
possibly containing template variables as template expressions or code templates.
Informally, template variables u will be used to perform abstraction, in the meta-
language, over code templates in the object language in such a way that other
code templates can be hygiencially substituted into template variables, that is,
without problems of variable capture with respect to L1-program variables. As
already mentioned in Sect. 2.1, the hygienic discipline is enforced by the modal
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type system of λ∩�. As in the λ→�
e -calculus, this is achieved by treating tem-

plate variables as modal variables which, according to the modal type discipline,
can only be bound to expressions that do not contain any free L1-program vari-
ables. The rule of modal necessitation (�I)together with the elimination rule
(�E) ensure that code substitution results in expressions that are closed with
respect to ordinary program variables. Under the Curry-Howard isomorphism,
such expressions denote proofs in the corresponding logic.

Let A,B, . . . range over a set of type expressions of L1, denoted T1, given by

T1 � A,B ::= b | α | A → B | A ∩ B

where b ranges over type constants and α ranges over type variables. We assume
that L1 has a type system formalized by judgements of the form

Δ;Σ �L1 e : A

where Δ is a type environment containing type assumptions on template vari-
ables of the form (u : A), and Σ is a type environment containing type assump-
tions on program variables of L1 of the form (v : A). So, for instance, we would
expect the following judgement to be derivable in the type system of L1:

{u : bool}; {v : int} �L1 if (u) then 0 else v : int

4.2 Metalanguage L2/L1

The metalanguage L2 is the λ∩�-calculus with the addition that L1-template
expressions can be injected into the metalanguage via the modal rule of neces-
sitation (�I). We obtain this discipline by stratifying the type language of λ∩�

into two levels, corresponding to L1 and L2, as follows. Let the set T2 denote
metalanguage types of L2, ranged over by τ, σ, defined by:

T2 � τ, σ ::= �A | τ → σ | τ ∩ σ

where A ∈ T1. Notice that L2-types are generated from “boxed” types (appearing
under the � constructor) of L1. We can think of the modal type constructor
as injecting types of the object language into the metalanguage, and we can
intuitively understand an L2-type �A (A ∈ T1) as meaning “the type of a
metaprogram in L2 which produces L1-code with L1-type A”.

The type system of the metalanguage L2 is shown in Fig. 3. The rule (�I)
together with the environment Δ provide the interface between L1 and L2.
According to this rule, template expressions that are well typed in L1 can be
injected into L2 by being placed in the scope of the box-operator. Importantly,
the rule requires that we only inject object language expressions e with no free
program variables of L1 (but possibly with free template variables) into L2. As
we have seen in Sect. 2.1, this discipline ensures that we can soundly substi-
tute L1-expressions into L1-expressions under L2-computations, provided that
the corresponding Substitution Lemma and Subject Reduction property holds
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Fig. 3. Metalanguage L2/L1

for L1. In practical applications, one will need to discipline the use of template
variables in such a way that these properties are ensured. The dual rule (�E)
discharges assumptions in Δ using the letbox construct. As detailed in Sect. 2.1,
this construct performs substitution of L1-expressions for template variables in
L1-expressions under L2-computation.

As a consequence of the properties Subject Reduction and Eliminability,
which must be ensured in applications to particular languages L1 in practice,
typability in system L2 implies that computation can be staged into metalevel
computation followed by object-level computation, by first reducing, in L2, an
expression of type �A to normal form resulting in a well typed L1-expression
in the scope of a box-operator. It is guaranteed for a well-typed closed L2-term
of type �A that metalanguage reduction to normal form in L2 computes all
L2-term occurrences away and leaves only a well typed boxed L1-expression as a
result. That L1-expression can then be executed at the next stage (object-level
runtime).

In comparison with other multi-level systems, a distinguishing feature of our
construction of L2/L1 lies in the fact that it uses modal logic to construct a
staged, multi-linguistic system. A key observation here is that the rule of neces-
sitation (�I) together with the injection of metalevel template variables (modal
variables u) into L1 provides a very simple interface between the language- and
type-systems of L1 and L2, in which the nature of L1 is as close to being a “black
box” to the metalevel as one could possibly imagine. This feature is not only the-
oretically pleasing, but it is also of great utility in practical applications where
the internal complexity of L1 can be challenging in itself. All that is needed for
the construction of L2/L1, in principle, is a type-safe discipline for abstracting
templates out of L1-code (the application specific details of which are not dealt
with here). Some example expressions can be found in Sect. 5, where applications
to synthesis are considered.

4.3 Logical Considerations

A special case of the construction of L2/L1 is the case where L1 is the intersection
typed λ-calculus [3]. This case is obtained by stratifying the type system of λ∩�
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into the intersection type system [3] as the nonmodal object-level subsystem
L1 and the modal intersection typed calculus at the metalevel L2, according to
the method of construction of T1 and T2 introduced above together with the
stratified rules of Fig. 3. The resulting system is a restriction of λ∩� in which
the modal axioms

�A → ��A

and
�A → A

are no longer valid (the types are not inhabited). The former axiom is not valid,
because the rule (�I) in the system L2/L1 injects the type A into the L2-level
where this rule is not available, since the premise of the rule requires a judgement
derivable in L1. The latter axiom is not valid, because L1-types A are disjoint
from L2-types (all of which have boxed L1-types at the leaves) and are not in
the range of the types σ in the rule of modal elimination (�E). The resulting
logic is characterized, in the simple typed fragment, by the modal axiom

�(A → B) → �A → �B

which is known to the modal logician as the axiom of normal modal logic K
(see, e.g., [10]).

As already mentioned, it is not difficult to see that we can generalize the con-
struction of L2/L1 to arbitrary numbers of levels n (each of them distinguished by
modal types �nτ), where the rules (�I) and (�E) would enable passage up and
down between the levels. The case considered here, n = 2, is not only useful (due
to its relative simplicity) for illustrative purposes but is also paradigmatic for the
applications in the type-theoretic approach to component-oriented synthesis [6],
which motivated its construction.

5 Application to Staged Composition Synthesis

We give a brief introduction to the main ideas in staged composition synthesis and
illustrate the application of the two-level approach in that context with an exam-
ple. The reader interested in understanding the theory of staged composition syn-
thesis in detail would probably need to consult the references given below.

5.1 Staged Composition Synthesis

A basic idea in staged composition synthesis [6] comes from the observation that,
instead of directly synthesizing programs in some target language, L1, we may
consider synthesizing metaprograms in a metalanguage, L2, which when executed
generate programs in L1.

An advantage of this approach is that it allows metaprogramming technology
to be integrated into synthesis in a principled way. In particular, when the target
language L1 is low-level or otherwise unsuited for metaprogramming tasks, the



Modal Intersection Types, Two-Level Languages, and Staged Synthesis 303

introduction of a metalanguage L2 into synthesis is clearly helpful. In our devel-
opment here we focus on a paradigmatic case where L1 is a first-order imperative
monomorphic language and L2 is the modal λ-calculus. The modal λ-calculus
is suitable as (the theoretical kernel of) a metaprogramming language because,
among other things, it allows the construction and manipulation of code tem-
plates of the target language, as we have seen.

The advantages of the two-level approach becomes even clearer when we
consider the other main idea of staged composition synthesis, which is to consider
synthesis not “from scratch” but as a process of automatic composition from a
given collection (“repository”) of components. In component-oriented synthesis
(see [6] with further references there, and also [7]) it is a central concern to be able
to design component repositories containing flexibly reusable components as the
raw material for synthesis. In this setting, flexible code abstraction mechanisms
(such as templating) as well as other abstraction mechanisms, e.g., higher-order
functional abstraction and polymorphism, are valuable. More generally, our two-
level approach shows that synthesis can in principle be carried out in a functional
programming language at the metalevel, even though the target language is quite
different.

Composition synthesis is based on the theory of combinatory logic synthesis
[6,12], in which components are exposed to synthesis in the form of typed com-
binators [8], where each combinator symbol names a component, and its type
represents a semantically enriched decoration, using intersection types, of the
type of the component. The basic idea here is that the theory of combinatory
logic in arbitrary combinatory theories is a natural foundation for component-
oriented synthesis. Synthesis is reduced to solving problems of relativized type
inhabitation in fragments of combinatory logic with intersection types [13]. The
problem of relativized inhabitation in a combinatory logic is the decision prob-
lem which takes as input a collection C of typed combinators and a goal type τ
and asks whether there exists a combinatory term e, an applicative combination
of combinators from C , such that C � e : τ holds in the theory of combinatory
logic with intersection types. Such a term e is called an inhabitant in the type
τ . Formally, the inhabitation problem is the decision problem, given C and τ ,
to decide

∃e. C � e : τ

where � is defined by the rules of combinatory logic (see [8,12,13]). We sometimes
abbreviate an instance of the relativized inhabitation problem as

C �? : τ

The relativized inhabitation problem is a generalization, to an arbitrary col-
lection of typed combinators, from the standard case of a fixed set of combina-
tors S, K and I. The standard, fixed case of SKI-calculus corresponds to the
λ-calculus (see [8]) and its inhabitation problem is Pspace-complete in simple
types by Statman’s theorem [14]. It should be emphasized here that the rela-
tivized inhabitation problem – inhabitation relative to an arbitrary, given set of
combinators, or, equivalently, provability in arbitrary propositional theories – is
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undecidable, even in simple types. This follows from classical results of Linial
and Post. A discussion of this important fact can be found in [12], see also [13].

An algorithm (or semi-algorithm) for computing inhabitants from C and
τ can be used to synthesize the program e. The framework of combinatory
logic synthesis and the staged approach has been implemented in a tool, (CL)S
(Combinatory Logic Synthesizer) [15]. At the core of the framework is an algo-
rithm that solves bounded fragments of the relativized inhabitation problem with
intersection types [13]. The framework and its application is still very much an
active research area, but it has already been used in a number of experiments
[15–17]. Among ongoing research directions are the application of the frame-
work to object-oriented code repositories [18,19] and applications to product
line synthesis [20].

In combinatory logic synthesis, intersection types are used as semantic types
[12,21,22], to specify semantic properties of combinators understood as inter-
face types of components, as will be illustrated by the example below. In prac-
tical applications of composition synthesis, in broad lines following the overall
approach of [21,22], types are not necessarily mechanically checked against the
implementations of combinators (although this might be done for suitable frag-
ments or explicit versions of intersection type systems). This is regarded as an
issue orthogonal to composition synthesis.

Still, the framework of λ∩� may serve as a useful foundational reference
point for an idealized relation between combinator implementations in L2/L1,
semantic interface types, and metalevel code generation. By studying λ∩�, we
distilled mathematically sound principles which can provide guidance in prac-
tical applications, even though they might have to be adjusted or restricted in
practice. An important aspect of this is provided by the distributivity proper-
ties in Sect. 3. The moment we combine two different languages L1 and L2 into
a framework L2/L1, distributivity becomes a mediating principle between dif-
ferent type systems. The defining equation should really be written (at least,
understood) as

�(A ∩1 B) = (�A) ∩2 (�B)

where ∩1 and ∩2 are operators in two different type systems, that of L1 and that
of L2. Moreover, the modal axiom K would more precisely be written as

�(A ⇒ B) → �A → �B

where we use ⇒ to denote the type of functions in L1 and → denotes the type of
functions in L2. Using the explicit notation, we clearly see that the principles of
distribution amount to assumptions of the existence of certain homomorphic (or,
categorically, functorial) relations between type operators in different languages.
This viewpoint may give a mathematical handle on certain issues of integrating
languages L1 and L2 into a framework L2/L1. For example, if L1 is an imperative
language, we know that subtyping and polymorphism present special challenges
for type soundness, sometimes leading to the need for restrictions. An interesting
observation [23] is that type soundness of intersection types in the presence of
references may be achieved by restricting the axiom of functional distributivity
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(axiom S3 from Sect. 3), although various other approaches are also possible
[24,25]. Finally, recalling that distributivity is an important component in the
standard notion of intersection type subtyping, let us note that subtyping may
affect expressiveness at finer levels of granularity. Thus, it is known that inter-
section type subtyping may be surprisingly expressive in restricted settings as
witnessed by the result shown in [26] that, in the absence of the intersection intro-
duction rule, inhabitation in λ-calculus is Expspace-complete with subtyping
but Pspace-complete without subtyping. As an example (taken from [26]) sug-
gesting the specific impact of distributivity, consider the λ-calculus inhabitation
question

{x : α ∩ β, y : (α → γ) ∩ (β → δ)} �? : γ ∩ δ

In the absence of intersection introduction, this problem has the solution inhab-
itant (yx), provided we have access to distributivity (applied to the type of y).
We can see that, in the restricted setting, distributivity allows to recover some
of the expressiveness of intersection introduction. A more general understand-
ing of the specific impact of distributivity both in theory and in practice is an
interesting question for future work which could be pursued based on λ∩�.

5.2 Example

To illustrate the approach, we consider an example. The example is a further
development of a similar but simpler example from [12], where staging had not
yet been introduced into synthesis. The reader may want to consult the exam-
ples in [12] to see how the theory of subtyping supports interesting features in
combinatory synthesis which we cannot, for space reasons, describe here.

Consider the L1-implementation of Quicksort written in a first-order
monomorphic Java-like language shown in Fig. 4. We use the form

def B foo(A1 x1,..., An xn) { ... }

for locally scoped definitions, as in def . . . { . . . } in e. Such a definition is given
the type

(A1, . . . , An) → B

In Fig. 5 we have the type declaration (shown as Q : τQ where τQ is the type

shown) and implementation (shown as Q Δ= M) of an L2-combinator named Q
which abstracts a code template out of the L1-implementation shown in Fig. 4.
The type of the combinator Q is followed by its implementation in L2/L1. The
combinator abstracts the L1-implementation in two respects. Firstly, it parame-
terizes over the order relation, using higher-order abstraction in L2. The abstract
order relation must satisfy the parametric semantic type

�(((α, α) → bool) ∩ TotalOrder ∩ id(ε))

The component id(ε) is used to track a functional relationship between the first
and the second argument to the implementation M of Q, requiring the latter
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Fig. 4. L1-implementation of Quicksort

argument to be the reversal of the order relation given in the former argument.
Secondly, consistent with the type of the order relation, it abstracts the element
type of the array to be sorted, into an arbitrary type α. This makes sense because
all we need to carry out quicksort is indeed an arbitrary total order (and its
reversal) on the elements to be sorted. Notice the use of the type variable α
in the template in addition to the template variables p and q. For function
definitions D we assume a metasyntactic L2-operation of the form

D.FUN

which extracts the function name defined in expression D,

(def B foo(A1 x1, . . . , An xn) { . . . }).FUN �−→ foo

and with type (A1, . . . , An) → B identical to that of D. We also assume a
metalevel operation

D.NID

which assigns a gloablly unique identifier to the definition D and applies the
renaming in the scope of D.
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Fig. 5. Combinator for Quicksort implemented in L2/L1

In Fig. 6 we show a few other L2-combinators, which wrap order relations on
integers and strings (Oint, resp. Ostr) by injecting L1-implementations into L2.
The combinator R implements reversal of a total order. Its semantic type

�(((α, α) → bool) ∩ TotalOrder ∩ id(ε)) →
�(((α, α) → bool) ∩ TotalOrder ∩ id(rev(ε)))
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Fig. 6. Other L2 combinators in the repository

expresses this functionality: it maps a total order to a total order, and the result
of reversing a relation ε satisfies the descriptor rev(ε).

We can now synthesize from the combined repository by collecting the type
declarations of the combinator symbols shown in Figs. 5 and 6 into a combinatory
type environment C , that is

C = {Q : τQ,Oint : τOint
,Ostr : τOstr

,R : τR}
To synthesize a sorting program on arrays of strings we execute the combinatory
logic synthesizer on the input inhabitation goal:

C �? : �((string[] → ()) ∩ SortingFunction)

The reader may like to verify that indeed we have

C � Q Ostr(R Ostr) : �((string[] → ()) ∩ SortingFunction)

Normalizing the inhabitant we get

Q Ostr(R Ostr) �−→∗ box N

for a well-typed L1-expression N , in accordance with the property of
Eliminability. Figure 7 shows the term box N resulting from the reduction.
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Fig. 7. Quicksort implementation synthesized from the repository

6 Conclusion and Further Work

We have introduced a calculus λ∩� combining intersection types and modal
types, and we developed basic properties in the metatheory of λ∩�. We presented
particular observations and results concerning the theory of subtyping and deriv-
ability of distributivity properties of the modal operator and the intersection type
operator. We then introduced a stratification of λ∩� to obtain a multi-linguistic
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framework for staged program synthesis. In this setting, metaprograms (of a
metalanguage L2) are automatically synthesized from components represented
as typed combinators. When metaprograms are executed they generate code in a
target language (L1) to be executed in a later stage. We explained and illustrated
by example how staged synthesis is supported by the combination, characteristic
of λ∩�, of intersection types – to specify semantic properties of components and
synthesis goals – and modal types – to enable type-theoretic control over staging
under synthesis. We briefly introduced background from combinatory logic syn-
thesis, where the relativized inhabitation problem in combinatory logic is used
as a foundation for component-oriented synthesis.

Futurework includes several directions in the further development of the frame-
work (CL)S (Combinatory Logic Synthesizer) and applying staged synthesis to
problems of practical interest. But we also see interesting questions arising specifi-
cally from the development described in the present paper. We believe in particular
that it would be interesting to consider questions concerning the relation between
the type systems of L1 and L2. It is an interesting feature of the construction of
L2/L1 that we can have a higher-order functional language at L2 that computes
over a possibly very different language at L1, and we have emphasized that our
multi-level and multi-language framework and its foundational formalization in
λ∩� leads, via distributivity properties, to questions of homomorphic or functor-
ial mappings between the levels. Of both theoretical and practical interest is the
question: how much structure of the type system of L1 should be reflected at the
L2-level and in which form? Could we develop a more systematic understanding of
how to employ general algebraic or categorical structures at the L2-level in order to
control the composition of programs at the L1-level? A related set of questions con-
cern the logical expressiveness and the computational complexity of distributivity
properties in the context of inhabitation problems, as was discussed in Sect. 5.1.
We might hope to understand the impact of such phenomena on staged synthesis
more generally by considering λ∩�.
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Abstract. We present rule formats for structural operational seman-
tics that guarantee that the associated labelled transition system has
each of the three following finiteness properties: finite branching, initials
finiteness and image finiteness.
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1 Introduction

Structural operational semantics (SOS) [25,27] is a widely used formalism for
defining the formal semantics of computer programs and for proving properties
of the corresponding programming languages. In the SOS formalism a transition
system specification (TSS) [13], which consists of a signature together with a set
of inference rules, specifies a labelled transition system (LTS) [16] whose states
(i.e., processes) are closed terms over the signature and whose transitions are
those that can be proved using the inference rules.

Rule formats [2,21] are syntactically checkable restrictions on the inference
rules of a TSS that guarantee some useful property of the associated LTS. The
properties ensured by such rule formats vary from compositionality of behav-
ioural equivalences [7,13,14,30] to finiteness of the number of outgoing transi-
tions from a given state [6,9,32]. This paper focuses on the finiteness property,
which is referred to as bounded nondeterminism in [12]. Broadly, bounded non-
determinism is taken as a synonym of finite branching [9]. Finite branching
breaks down into the more elementary properties of initials finiteness and image
finiteness [1] (see Sect. 2 for formal definitions).

Vaandrager [32] introduced the notion of bounded TSS and proved that a
bounded TSS in de Simone format [30] induces an LTS that is finite branch-
ing. Bloom [6] used a notion of bounded TSS reminiscent of that of Vaandrager
and showed that a bounded TSS in his higher-order-GSOS format [6] induces an
LTS that is finite branching. Finally, Fokkink and Vu [9] used yet another notion
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of bounded TSS and introduced a less restrictive rule format that they called
‘bounded nondeterminism format’. They adapted the notion of strict stratifi-
cation from [14] and showed that a bounded TSS in bounded nondeterminism
format that has a strict stratification induces an LTS that is finite branching.

In this paper we take Fokkink and Vu’s programme further and present
rule formats for initials finiteness and for image finiteness. For initials finiteness
we relax the requirement that the η-types of [9] be finitely inhabited and we
introduce the initials finite format, which replaces the bounded nondeterminism
format of [9]. For image finiteness, we introduce the notion of θ-type. Unlike
the η-types of [9], which carry information about the sources of positive pre-
misses in rules, the θ-types also keep track of the actions that label positive
premisses. Moreover, we introduce a uniformity requirement on the targets of
positive premisses, which strengthens the requirement in [9] that the variables
in a rule have to be used uniformly. We introduce the accompanying notions of
initials-bounded TSS and image-bounded TSS and show the following results.

– An initials-bounded TSS in initials finite format that has a strict stratification
induces an LTS that is initials finite (Theorem 2).

– An image-bounded TSS in bounded nondeterminism format that has a strict
stratification induces an LTS that is image finite (Theorem 3).

The results and the techniques we employ in this paper touch upon some of the
main topics in the research of Flemming Nielson and Hanne Riis Nielson over the
years, namely operational semantics [23], static analysis [22] and type systems [3].
This study contributes to the development of a general theory of operational
semantics based on rule formats, which may be seen as providing some statically
checkable, largely syntactic, conditions guaranteeing that the specified languages
afford some semantic properties of interest. The various notions of ‘types’ that we
use in the definition of the rule formats discussed in this paper allow us to classify
the inference rules in a language specification. Informally, types contribute to
guaranteeing that composite processes have the finiteness property of interest,
if their components do so.

The rest of the paper is organised as follows. Section 2 revisits preliminaries
and basic notions from [9] and adapts some of its definitions. Definition 10 for-
malises the notion of uniform TSS and Proposition 2 shows that a closed term
p unifies only with finitely many rules in a uniform TSS. Section 3 provides an
alternative proof of Theorem 1 in [9] that removes the reductio ad absurdum
argument that is used there. Theorem 1 shows that a bounded TSS in bounded
nondeterminism format that has a strict stratification induces an LTS that is
finite branching. The proof of Theorem 1 here is direct and fully constructive.
Section 4 discusses the variable flow in a transition rule and Definition 18 intro-
duces the initials finite format, which requires that each variable in the source of
a positive premiss occur also in the source of the rule. Definition 20 introduces
the notion of initials-bounded TSS, which relaxes the η-types of [9] by requir-
ing that the actions of an η-type are finite, instead of requiring the η-type to
be finitely inhabited. Theorem 2 shows that an initials-bounded TSS in initials
finite format that has a strict stratification induces an LTS that is initials finite.
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Section 5 discusses the logical content of the η-types under the prism of intuition-
istic logic [19], and shows that the η-types realise the intuitionistic interpretation
of the property of initials finiteness. Definition 21 introduces the θ-types, which
are analogous to the η-types in that they realise the intuitionistic interpretation
of the property of image finiteness. Definition 22 introduces uniformity in the
targets of positive premisses, which prevents the θ-types to be infinitely many
as a result of using infinitely many different names for a variable occurring in
the target of some positive premiss, and Definition 23 introduces the notion of
image-bounded TSS. Theorem 3 shows that an image-bounded TSS in bounded
nondeterminism format that has a strict stratification induces an LTS that is
image finite. Section 6 discusses avenues for future work and concludes.

2 Preliminaries

We give an overview of the structural operational semantics formalism (SOS for
short). We follow the notation and the presentation in [9].

For a set S, we write P(S) for the collection of all the subsets of S, and
Pω(S) for the collection of all the finite subsets of S.

Definition 1 (Signature and Term). We assume a countably infinite set of
variables V , ranged over by x, y, z. A signature Σ is a set of function symbols,
disjoint from V , together with an arity map that assigns a natural number to
each function symbol. We use f to range over Σ. Function symbols of arity zero,
which may be ranged over by c, d, are called constants. Function symbols of arity
one and two are called unary and binary functions respectively.

The set T(Σ) of (open) terms over a signature Σ, ranged over by t, u, v, is
the least set such that:

1. each variable is a term, and
2. if f is a function symbol of arity n and t1, . . . , tn are terms, then f(t1, . . . , tn)

is a term.

The function var : T(Σ) → Pω(V ) delivers, for a term t, the set of variables
that occur in t. A term t is closed iff var(t) = ∅. The set of closed terms over Σ,
ranged over by p, q, is denoted by T (Σ).

Definition 2 (Formula). We consider a set of actions A, ranged over by a, b
(and c when no confusion arises with the constants). The set of positive formulae
over signature Σ and actions A is the set of triples (t, a, t′) ∈ T(Σ)×A×T(Σ).
We use the more suggestive notation t

a−→ t′ in lieu of (t, a, t′). The set of
negative formulae over signature Σ and actions A is the set of pairs (t, a) ∈
T(Σ) × A. We use the more suggestive notation t � b−→ in lieu of (t, b).

Definition 3 (Substitution). A substitution is a partial map σ : V → T(Σ).
The substitutions are ranged over by σ, τ . A substitution is closed if it maps
variables to closed terms. A substitution extends to a map from terms to terms
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in the usual way, i.e., the term σ(t) is obtained by replacing the occurrences in
t of each variable x in the domain of σ by σ(x). When applying substitutions
σ and τ successively, we may abbreviate τ(σ(t)) to τσ(t). We say term u is a
substitution instance of t iff there exists a substitution σ such that σ(t) = u.

In what follows, we shall sometimes use the notation {xi �→ ti | i ∈ I}, where
I is an an index set and the xi’s are pairwise distinct variables, to denote the
substitution that maps each xi to the term ti (i ∈ I).

A substitution σ extends to formulae t
a−→ t′ and u � b−→ in the usual way,

by applying the substitution to the term components of the formulae, i.e.,
σ(t) a−→ σ(t′) and σ(u) � b−→ respectively. The notion of substitution instance
extends similarly.

Definition 4 (Labelled transition system). Let Σ be a signature and A a
set of actions. A labelled transition system (LTS for short) is a pair (T (Σ),→)
where T (Σ) is the set of processes, i.e., closed terms, and −→⊆ T (Σ)×A×T (Σ)
is the set of transitions, i.e., closed positive formulae. We say that p

a−→ p′ is a
transition of the LTS iff (p, a, p′) ∈−→.

Labelled transition systems [16] are a fundamental model of computation and
are often used to describe the operational semantics of programming and speci-
fication languages—see, for instance, [20,26,27,29]. Transition system specifica-
tions, which we now proceed to define, describe the LTS giving the semantics of
a language by means of a signature (namely, the collection of term constructors
offered by the language) and a set of inference rules that can be used to prove
the valid transitions between terms in the language.

Definition 5 (Transition system specification). Let Σ be a signature and
A a set of actions. A transition rule (a rule, for short) ρ is of the form

H

t
a−→ t′

(abbreviated as H/t
a−→ t′) where H is a set of positive premisses of the form

u
b−→ u′ and negative premisses of the form v � c−→, and t

a−→ t′ is the conclusion
of the rule (with t, t′, u, u′, v ∈ T(Σ) and a, b, c ∈ A). We say t is the source, a
is the action, and t′ is the target of ρ. We say ρ is an axiom iff ρ has an empty
set of premisses, i.e., H = ∅.

A transition system specification (TSS for short) is a set of transition rules.

A substitution map extends to a rule ρ by applying the substitution to the
formulae in ρ. The notion of substitution instance extends similarly to rules.

Definition 6 (Unify with a rule). Let R be a TSS. We say that transition
p

a−→ p′ unifies with rule ρ ∈ R iff ρ has conclusion t
a−→ t′ and p

a−→ p′ is a
substitution instance of t

a−→ t′.
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Definition 7 (Proof tree). Let R be a TSS without negative premisses. A
proof tree in R of a transition p

a−→ p′ is an upwardly branching tree without
paths of infinite length whose nodes are labelled by transitions such that

1. the root is labelled by p
a−→ p′, and

2. if K is the set of labels of the nodes directly above a node with label q
b−→ q′,

then K/q
b−→ q′ is a substitution instance of some rule H/t

b−→ t′ ∈ R.

We say that p
a−→ p′ is provable in R iff p

a−→ p′ has a proof tree in R.

The set of provable transitions in R is the least set of transitions that satisfies
the rules in R. Notice that if p

a−→ p′ unifies with an axiom (i.e., a rule of the
form ∅/t

a−→ t′) then, trivially, p
a−→ p′ has a proof tree in R which consists of

a root node labelled by p
a−→ p′.

A TSS without negative premisses induces an LTS in a straightforward way.

Definition 8 (TSS induces LTS). Let R be a TSS without negative premisses
and T an LTS. R induces T (or T is associated with R) iff the set of transitions
of T is the set of provable transitions in R.

The phrases

1. p
a−→ p′ is provable in R,

2. p
a−→ p′ is a transition of T , and

3. p can perform an a-transition to p′ in T

are synonyms. For brevity, we may omit the R and/or the T when they are clear
from the context.

In [28], Przymusinsky introduced three-valued stable models, which can be
used to associate an LTS to a TSS with negative premisses. Each TSS has a
least three-valued stable model, which coincides with the well-founded semantics
from [11]. We consider the set of sentences that are certainly true in the least
three-valued stable model, which, for a TSS without negative premisses, coincides
with the set of provable transitions in Definition 8. As Fokkink and Vu noticed
in [9], if R is a TSS and R′ is obtained by removing all the negative premisses
from the rules in R, then the LTS associated with R is included in the LTS
associated with R′. In particular, if the LTS associated with R′ has any of the
finiteness properties considered in this paper, then the LTS associated with R
has the property too. We follow [9] and ignore the negative premisses in the
TSSs. None of the rule formats that we introduce here impose any restrictions
on negative premisses.

The notion of uniform TSS stems from [9]. We introduce the notion of struc-
ture of a term, and provide a formal definition of uniform TSS, to which we refer
as uniform TSS in the sources because the focus is on the sources of the rules.

Definition 9 (Structure of a term). Let R be a TSS. The terms t and u
have the same structure iff
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1. t = x and u = y, where x and y are variables, or
2. t = f(t1, . . . , tn) and u = f(u1, . . . , un), where f is a function symbol of arity

n ≥ 0, and the terms ti and ui have the same structure for each 1 ≤ i ≤ n.

Intuitively, two terms t and u have the same structure iff their syntax trees differ
only in the name of the variables. For example f(x, y) and f(x, x) have the same
structure. Two closed terms have the same structure iff they are the same term.

Definition 10 (Uniform in the sources). A TSS R is uniform in the sources
iff t = u holds whenever t and u have the same structure and are sources of any
two rules in R.

In Sect. 5 we will introduce the analogous notion of uniform TSS in the targets
of positive premisses, in which the focus is on the targets of positive premisses.
When no confusion arises, we may abbreviate and say ‘uniform TSS’ for ‘uniform
TSS in the sources’.

The rationale behind uniformity in [9] is to enforce that in a uniform TSS,
each closed term is a substitution instance of the sources of at most finitely
many transition rules. In order to show this property, we introduce the notion
of partial term and the less-defined-than relation.

Definition 11 (Partial term). The set T⊥(Σ) of partial terms over a signa-
ture Σ, ranged over by r, s, is the set of terms that results by extending Σ with
the constant symbol ⊥. The symbol ⊥, which stands for ‘undefined’, is different
from the other symbols in Σ.

Notice that T (Σ) ⊂ T(Σ) ⊂ T⊥(Σ). The notion of structure of a term from
Definition 9 is extended to partial terms in a straightforward way by considering
the symbol ⊥ as a variable. For instance, f(x, y) has the same structure as
f(⊥, z).

Definition 12 (Less-defined-than relation). The relation � (which we refer
to as the less-or-equally-defined-than relation) is the least binary relation over
partial terms such that

1. ⊥ � r for each partial term r,
2. x � x for each variable x, and
3. f(s1, . . . , sn) � f(r1, . . . , rn) where f is a function symbol of arity n ≥ 0 iff

si � ri for each 1 ≤ i ≤ n.

We say s is an approximant of r iff s � r.
The less-defined-than relation � is the binary relation over partial terms

defined thus: s � r iff s � r and s �= r.

It is easy to see that � induces a partial order and � induces a strict partial
order over partial terms.

Proposition 1. The less-defined-than relation, �, is a well-founded relation.
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Proof. We prove that there exists no infinite decreasing chain r1 � r2 � . . .. To
this end, we first define the size of a partial term r as follows:

1. the size of ⊥ is zero,
2. the size of a variable is one, and
3. the size of f(r1, . . . , rn) with f a function symbol of arity n ≥ 0 is one plus

the sum of the sizes of the ri’s with 1 ≤ i ≤ n.

Let r and s be partial terms. If s � r then s is obtained by replacing by ⊥ one
or more maximally disjoint subterms of r that are different from ⊥, and hence
the size of s is strictly smaller than that of r. Since the size of every partial term
is finite, each decreasing chain is also finite and we are done. �
Proposition 2. Let R be a uniform TSS. For each closed term p the set of pairs
(t, σ) with σ : var(t) → T (Σ) such that σ(t) = p and t is the source of some rule
in R is finite.

Proof. We prove the generalised proposition:

Let R be a uniform TSS. For each pair (p, r) where p is a closed term
and r is an approximant of p (i.e., r � p), the set of pairs (t, σ) with
σ : var(t) → T (Σ) such that there exists r′ an approximant of r (i.e.,
r′ � r) with the same structure as t, and σ(t) = p and t is the source of
some rule in R, is finite.

The original proposition follows from the generalised proposition by fixing r = p.
We construct the set S of pairs (t, σ) that meet the conditions of the generalised
proposition and show that S is finite. We proceed by well-founded induction on
the set of approximants of r ordered by the less-defined-than relation (�).

We first check that the generalised proposition holds for the �-minimal par-
tial terms in the set of approximants of r. The only such partial term is r0 = ⊥.
There exists only one r′

0 an approximant of r0 (i.e., r′
0 = ⊥ � ⊥ = r0) and

the only terms that have the same structure as r′
0 are the variables. Since R is

uniform, all the rules whose source is a variable (if there are any) have the same
variable x as source. If there exist no rules whose source is a variable, then the
set we are looking for is the empty set. Otherwise, the set we are looking for is
S = {(x, {x �→ p})}. Both sets are finite.

Now we check that the generalised proposition holds for an arbitrary partial
term ra �= ⊥ in the set of approximants of r. Notice that the partial term ra

is such that ra � r � p. By the induction hypothesis, for every rx such that
rx � ra, the set Sx of pairs (t, σ) such that there exists r′

x an approximant of rx

(i.e., r′
x � rx) with the same structure as t, and σ(t) = p and t is the source of

some rule in R, is finite. Since R is uniform, all the rules whose source has the
same structure as r′

x (if there are any) have the same source u. Since r′
x � ra,

then r′
x is obtained by replacing by ⊥ one or more maximally disjoint subterms

of ra that are different from ⊥. We let xj (with j ranging over some index set J)
be the variables that occur in u in the positions corresponding to the occurrences
of ⊥ in r′

x. (Notice that no other variables could occur in u, since u has the same
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structure as r′
x, and r′

x � p.) We let tj be the terms such that p results from
replacing respectively the xj by the tj in u. If there exist no rules with source
u, then the set we are looking for is S = Sx. Otherwise, the set we are looking
for is S = Sx ∪ {(u, {xj �→ tj | j ∈ J})}. Both sets are finite. �

The next example shows that Proposition 2 does not hold for TSSs that are
not uniform.

Example 1. Let Σ consist of a constant c and assume A = {a}. Let the xi with
i ∈ N be infinitely many distinct variables. Consider the TSS with rules

xi
a−→ c

, i ∈ N.

All the xi in the instantiations of the rule template above have the same struc-
ture, but xj �= xk for j, k ∈ N and j �= k. Therefore, the TSS is not uniform.
Notice that for c there exist infinitely many pairs (xi, σi) (with i ∈ N and
σi = {xi �→ c}) such that σi(xi) = c.

We focus on the properties of finite branching, initials finiteness, and image
finiteness [1], which we define next.

Definition 13 (Bounded nondeterminism). Let T be an LTS and p a closed
term in T . We say

1. p is finite branching iff the set {(a, p′) | p
a−→ p′} is finite,

2. p is initials finite iff the set {a | ∃p′ s.t. p
a−→ p′} is finite, and

3. p is image finite iff for every action a, the set {p′ | p
a−→ p′} is finite.

An LTS T is finite branching (resp. initials finite and image finite) iff every
closed term in T is finite branching (resp. initials finite and image finite).

We call {a | ∃p′ s.t. p
a−→ p′} the set of initials of p. We call {p′ | p

a−→ p′}
the set of images of p for action a.

3 Finite Branching

The rule format in [9], which restricts a TSS to be bounded, to be in bounded
nondeterminism format, and to have a strict stratification, ensures that the
associated LTS is finite branching. Intuitively, the restrictions such a format
places on the allowed rules ensure that, for each closed term p,

1. the rules in the TSS do not allow one to simulate ‘unguarded recursion’ for
p,

2. only finitely many rules can be employed to derive transitions from p, and
3. each rule can only be used to infer finitely many transitions from p.
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The third property is checkable for each rule in isolation and is embodied in
the requirement that the TSS be in bounded nondeterminism format (see Def-
inition 16 to follow). On the other hand, the first and the second properties
are ‘global’ and need to be checked for sets of rules. The existence of a strict
stratification (see Definition 17) enforces the first property, while the second
is guaranteed by the requirement that the TSS be bounded (see Definition 15
below). In order to define the notion of bounded TSS, Fokkink and Vu classify
the transition rules in a TSS according to their so-called η-types. Intuitively,
rules having the same η-type are those that could potentially be used to derive
transitions from a closed term p that unifies with the source of the rules. The
requirement that the TSS be uniform and that the η-types be finitely inhab-
ited ensures therefore that only finitely many rules can be employed to derive
transitions from p.

We now adapt the definition of η-types in [9], on which the notion of bounded
TSS is based, and recall the bounded nondeterminism format and the notion of
strict stratification in [9].

We let η : T(Σ) → P(T(Σ)) be the maps that parametrise the η-types of
Definition 14 to follow. The maps η deliver, for a given term t, a predefined set
of sources of positive premisses in rules that have source t. We say that η(t) is
the support of the sources for source t.1

Definition 14 (η-type). Let R be a TSS, ρ ∈ R a rule with source t and
positive premisses {ti

ai−→ t′i | i ∈ I}, and η a map with type T(Σ) → P(T(Σ)).
We define ψ : η(t) → P(A) as the map that delivers, for each term u in the
support of the sources for t, i.e., u ∈ η(t), the actions of the positive premisses
of ρ with source u. More formally,

ψ(u) = {ai | i ∈ I ∧ ti = u}.

The tuple 〈t, ψ〉 is said to be the η-type of rule ρ.

Differently from [9], our definition of η-type does not require that each set in the
codomain of ψ be finite. This requirement is not necessary for the rule format
to ensure finite branching, as we explain in Remark 1 to Theorem 1.

The η-types distinguish rules based on their source and on the set of actions
of their positive premisses whose source belongs to the predefined set specified
by the map η. For instance, all the rules without positive premisses that have
the same source belong to the same η-type, regardless of their action and target.

Intuitively, as mentioned above, rules that have the same η-type might all
be used to derive transitions from a closed instantiation of their source. As the
following example indicates, the presence of infinitely many rules with the same
η-type might yield infinite branching.

1 We beg the reader to bear with us in the repetition of ‘sources’ and ‘source’ in
sentences like the above. The ‘sources’ refers to the positive premisses and the ‘source’
to the conclusion of the rule.
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Example 2. Let A be an infinite set of actions and Σ = {c}. Consider the TSS

c
a−→ c

, a ∈ A.

All the infinitely many instantiations of the rule template above have η-type
〈c, ψ〉, where ψ maps each term in η(c) (if any) to the empty set. Note that c is
not finite branching.

Definition 15 (Bounded). A TSS R is bounded iff R is uniform and there
exists η with codomain Pω(T(Σ)) (i.e., the set η(t) is finite for each t) such that
for every rule ρ ∈ R with η-type 〈t, ψ〉, the η-type 〈t, ψ〉 is finitely inhabited.

The requirement that the function η have codomain Pω(T(Σ)) in Defini-
tion 15 means that in a bounded TSS only a finite support of the sources for a
source can be distinguished. Consider Example 5 on page 508 of [9], which we
reproduce next.

Example 3. Let A be an infinite set of actions and Σ consist of constants A∪{c}
where c �∈ A. Consider the TSS

a
a−→ a

, a ∈ A
a

a−→ y

c
a−→ y

, a ∈ A.

If we allowed η to have codomain P(T(Σ)), e.g., η(a) = ∅ (with a ∈ A) and
η(c) = A, then it would be possible to distinguish the infinite support of the
sources in the rule template on the right, and each η-type 〈c, ψa〉 (with a ∈ A),
where ψa(a) = {a} and ψa(b) = ∅ for b �= a, would correspond to exactly one
rule. If instead we require η to have codomain Pω(T(Σ)), e.g., η(a) = ∅ with
a ∈ A and η(c) = B for some B ∈ Pω(A), then an infinite number of sources
of premisses a ∈ A \ B will be excluded from the support for source c, i.e.,
η(c) ∩ (A \ B) = ∅. The sources a ∈ A \ B cannot be distinguished, and thus the
infinitely many instantiations of the rule template on the right with sources of
premisses a ∈ A \ B will have the same η-type 〈c, ψ〉 where ψ(t) = ∅ with t ∈ B.
Therefore, the TSS is not bounded. Notice that c is not finite branching.

Definition 16 (Bounded nondeterminism format). A rule

{ui
bi−→ u′

i | i ∈ I}
t

a−→ t′

is in bounded nondeterminism format iff

1. var(ui) ⊆ var(t) for each i ∈ I, that is, all the variables occurring in the
source of its positive premisses also occur in its source, and

2. var(t′) ⊆ var(t) ∪ ⋃{var(u′
i) | i ∈ I}, that is, all the variables occurring in

its target also occur in its source, or in the target of some of its positive
premisses.
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A TSS R is in bounded nondeterminism format iff every rule in R is in
bounded nondeterminism format.

The bounded nondeterminism format enforces that the target of a transition
ultimately comes from the source, i.e., the rules cannot introduce variables spu-
riously. The following example illustrates this fact.

Example 4. Let Σ consist of a constant c and a binary function symbol f , and
let A = {a}. Consider the TSS

c
a−→ c

x
a−→ z

f(x, y) a−→ f(z, y)
.

The TSS is in bounded nondeterminism format. Note that variable z in the
premiss of the rule on the right comes neither from the source of the premiss nor
from the source of the rule. However, in every application of that rule in proof
trees allowing one to derive transitions from closed terms of the form f(p, q), the
variable z will always be instantiated to some closed term p′ such that p

a−→ p′.
Therefore, the rule does not introduce variables spuriously.

On the other hand, consider the rule

f(x, y) a−→ z .

Such a rule is not in bounded nondeterminism format because the variable z
in the target of the rule does not appear in its source. The above rule can be
used to prove transitions of the form f(p, q) a−→ r for all closed terms p, q and
r, so the target r of a transition does not necessarily stand for a process that
can be reached from either p or q. Therefore, the rule introduces the variable z
spuriously.

Definition 17 (Strict stratification). Let R be a TSS. A strict stratification
of R consists of a map S from closed terms T (Σ) to ordinal numbers such that
for every transition rule H/t

a−→ t′ ∈ R and for every closed substitution σ,
S(σ(u)) < S(σ(t)) for every u

b−→ u′ ∈ H.

The conditions of Theorem 1 on page 509 of [9] define the rule format for
finite branching. We paraphrase Theorem 1 of [9] and its proof, and remove the
reductio ad absurdum argument that is used there, providing a direct and fully
constructive proof.

Theorem 1 (Theorem 1 of [9]). Let R be a bounded TSS in bounded non-
determinism format that has a strict stratification S. The LTS associated with
R is finite branching.

Proof. We prove that each closed term p in the LTS associated with R is finite
branching. Since R is uniform, for a given p there are only finitely many distinct
terms ti and substitutions σi : var(ti) → T (Σ) (i.e., the i ranges over a finite
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index set I) such that σi(ti) = p and the rules that unify with transitions from
p have some ti as source. We proceed by induction on S(p).

The initial case is when S(p) = 0. Since S(σi(ti)) = 0, the rules with source
ti are axioms of the form

ti
aj−→ t′j

, i ∈ I, j ∈ Ji

where the Ji are taken to be disjoint to avoid proliferation of indices. Since R is
bounded, there exists η such that for each i and for each j ∈ Ji the instantiation
of the rule template above has η-type 〈ti, ψj〉, and 〈ti, ψj〉 is finitely inhabited. By
Definition 14, all the ψj map each term in η(ti) (if any) to the empty set. Since
R is in bounded nondeterminism format, var(t′j) ⊆ var(ti), and thus the σi(t′j)

are closed. Since the rules above are axioms, the transitions σi(ti)
aj−→ σi(t′j) are

provable in R. Since all the ψj in the η-types 〈ti, ψj〉 with j ∈ Ji are equal, and
since the η-types are finitely inhabited, then the Ji are finite. Therefore, for each
i ∈ I the set

{(aj , σi(t′j)) | σi(ti)
aj−→ σi(t′j)}

is finite. By the finiteness of I it follows that the set {(a, p′) | p
a−→ p′} is finite

and we are done.
The general case is when S(p) > 0. The rules with source ti such that

σi(ti) = p are of the form

{uk
bk−→ u′

k | k ∈ Kj}
ti

aj−→ t′j
, i ∈ I, j ∈ Ji

where the Ji and the Kj are taken to be disjoint to avoid proliferation of indices.
Since R is bounded, there exists η such that for each i and for each j ∈ Ji, the
instantiation of the rule template above has η-type 〈ti, ψj〉, the set η(ti) is finite,
and 〈ti, ψj〉 is finitely inhabited.

For each i, we show that there are only finitely many distinct ψj with j ∈
Ji such that rules with η-type 〈ti, ψj〉 give rise to transitions from σi(ti). By
Definition 14, each rule of η-type 〈ti, ψj〉 contains a premiss of the form v

c−→ v′

for each v ∈ η(ti) and each c ∈ ψj(v). Since R is in bounded nondeterminism
format, var(v) ⊆ var(ti), and thus the σi(v) are closed. By Definitions 7 and 8,
for each transition in the node of a proof tree, if the transition unifies with a rule
of η-type 〈ti, ψj〉 then for each v ∈ η(ti) the process σi(v) can perform, at least,
a c-transition for each c ∈ ψj(v). The ψj giving rise to transitions from σi(ti) are
dependent functions of type Πv∈η(ti){c | σi(v) c−→ τσi(v′)} with substitutions
τ : (var(v′) \ var(v)) → T (Σ). For each i the refined type of the ψj with j ∈ Ji

is finitely inhabited, since the codomain of a dependent function depends on the
inputs of the function. Each image of ψj cannot be an arbitrary subset of A, but
only the one that is determined by the input v and by the associated LTS. That
is, the only elements in the codomain of ψj are the sets {c | σi(v) c−→ τσi(v′)}
where v ∈ η(ti). Since the η(ti) are finite sets, both the domain and the codomain
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of ψj are finite. Therefore, for each i there are only finitely many distinct ψj with
j ∈ Ji such that rules with η-type 〈ti, ψj〉 give rise to transitions from σi(ti).

Since R is in bounded nondeterminism format, var(uk) ⊆ var(ti) and there-
fore the σi(uk) are closed terms. As S is a strict stratification, S(σi(uk)) < S(p).
By the induction hypothesis the σi(uk) are finite branching, and therefore for
each i ∈ I the set

{(bk, τ�σi(u′
k)) | σi(uk) bk−→ τ�σi(u′

k)}
is finite, with τ� : ((

⋃
k∈Kj

var(u′
k))\var(ti)) → T (Σ) closed substitutions where


 ranges over some index sets Lj and where j ∈ Ji. Since R is in bounded
nondeterminism format, var(t′j) ⊆ (var(ti) ∪ (

⋃
k∈Kj

var(u′
k))) and therefore the

τ�σi(t′j) are closed terms. Since for each i there are only finitely many distinct
ψj with j ∈ Ji such that rules with η-type 〈ti, ψj〉 give rise to transitions from
σi(ti), and since the η-types 〈ti, ψj〉 are finitely inhabited, then the Lj are finite.
Therefore, for each i ∈ I the set

{(aj , τ�σi(t′j)) | σi(ti)
aj−→ τ�σi(t′j)} (j ∈ Ji, 
 ∈ Lj)

is finite. By the finiteness of I it follows that the set {(a, p′) | p
a−→ p′} is finite

and we are done. �
Remark 1. The requirement in [9] that each set in the codomain of ψ in an η-type
〈t, ψ〉 must be finite (i.e., the codomain of ψ must be Pω(A)) is superfluous. In a
TSS that induces a finite-branching LTS such that η witnesses that the TSS is
bounded, there could be rules with η-type 〈t, ψ〉 where each set in the codomain
of ψ is infinite, but since the LTS is finite branching, the transitions in the nodes
of a proof tree will never unify with these rules.

Remark 2. The proof above follows that of Theorem 1 in [9], with the most
notable difference being that [9] uses a reductio ad absurdum argument to show
that the distinct ψj for a given i are finitely many. The proof in [9] assumes that
there exists m ∈ I such that there are infinitely many ψn with n ∈ Jm such that
rules with η-type 〈tm, ψn〉 give rise to transitions from σm(tm), and then shows
that this assumption contradicts the induction hypothesis.

We believe a direct proof is preferable over a proof by contradiction. Our
proof not only establishes the desired conclusion above, but also the intermediate
conclusion that the ψj such that rules with η-type 〈ti, ψj〉 give rise to transitions
from σi(ti) are dependent functions of type Πv∈η(ti){c | σi(v) c−→ τσi(v′)} with
substitutions τ : (var(v′) \ var(v)) → T (Σ). This is an interesting observation in
its own right that could be used to draw further conclusions. Besides, our proof is
fully constructive, and thus it is better suited for the purpose of mechanising it.

Example 5. Let A consist of an action a. Consider a TSS whose signature con-
tains the constants ci, with i ≥ 1, and whose rules are

x
a−→ y y

a−→ z

x
a−→ z ci

a−→ ci+1

, i ≥ 1.
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This TSS is neither in bounded nondeterminism format nor strictly stratified,
and therefore does not satisfy the conditions of Theorem 1. It is easy to see
that every constant ci (i ≥ 1) has infinitely many outgoing transitions. Indeed,
ci

a−→ cj is provable for all j > i ≥ 1.

Several examples of applications of the rule format defined by the conditions of
Theorem 1 can be found in [9]. In the next section we adapt the conditions of
Theorem 1 to account for initials finiteness.

4 Initials Finiteness

As shown by Example 4 in Sect. 3, the bounded nondeterminism format enforces
that no variables are introduced spuriously, thus preventing infinite branching
coming from replacing the variables in the target of a rule by infinitely many
distinct terms. In a transition rule, there are three kinds of ‘variable flow’ that
it is worth considering:

1. variables from the source of the rule that flow to the sources of the positive
premisses,

2. variables from the source of the rule that flow to the target of the rule, and
3. variables from the targets of positive premisses that flow to the target of the

rule.

By the bounded nondeterminism format, all the variables in a rule (except for
the variables in the source of the rule and in the targets of positive premisses)
come from some of the variable flows described above. By induction on the proof
tree, it is easy to show that the ‘circulation’ of the variables is closed in the leaves
of the proof tree (i.e., by the second kind of variable flow above) and thus no
variables can be introduced spuriously. This requirement is too strong for initials
finiteness, which is only concerned with the actions of transitions that are prov-
able from a given process. For initials finiteness it is immaterial whether the rules
introduce variables in the target spuriously, and the bounded nondeterminism
format can be relaxed. However, as the following example shows, dropping all
the requirements on the variable flow does not ensure initials finiteness.

Example 6. Let A be an infinite set of actions and let Σ = A ∪ {c, f} with c a
constant, f a unary function symbol and f, c �∈ A. Consider the TSS

f(a) a−→ f(a)
, a ∈ A

f(x) a−→ y

c
a−→ y

, a ∈ A.

The TSS is uniform and has a strict stratification given by

S(c) = 1
S(f(p)) = 0.

We let η(f(a)) = ∅ (with a ∈ A) and η(c) = {f(x)}. For each a ∈ A, the instan-
tiation of the rule template on the left has η-type 〈f(a), ∅〉, and the instantiation
of the rule on the right has η-type 〈c, ψa〉 where ψa(f(x)) = {a}. However, the
associated LTS is not initials finite because the set of initials of c is A.



Rule Formats for Bounded Nondeterminism 327

Variable x in the rule template on the right does not come from the source of
the rule. Thus, there exist infinitely many substitutions τ : {x} → A such that
the transitions from τ(f(x)) unify with some instantiation of the rule template
on the left. For initials finiteness, it is enough to prevent spurious variables in
the sources of positive premisses.

We now introduce the initials finite format, which takes care of the first kind
of variable flow described above.

Definition 18 (Initials finite format). A rule

{ui
bi−→ u′

i | i ∈ I}
t

a−→ t′

is in initials finite format iff all the variables occurring in the sources of its
positive premisses also occur in its source, that is, var(ui) ⊆ var(t) for each
i ∈ I.

A TSS R is in initials finite format iff every rule in R is in initials finite
format.

The following example shows that the requirements on the variable flow,
except for the one enforced by the initials finite format, can be dropped.

Example 7. Let A = {a} and Σ consists of infinitely many constants {c, d, . . .}.
Consider the TSS with rule

c
a−→ x

.

The system is uniform and has a trivial strict stratification. The rule above has
η-type 〈c, ψ〉 where ψ maps each term in η(c) (if any) to the empty set, and thus
the TSS is bounded. Variable x comes neither from the target of any positive
premiss, since there are none, nor from the source of the rule, and hence the TSS
is not in bounded nondeterminism format. However, the TSS is in initials finite
format. Notice that the associated LTS is initials finite.

However, replacing the bounded nondeterminism format by the initials finite
format is not enough to cover all the TSSs in which we are interested. Some
initials-finite LTSs are induced by TSSs which are not bounded, despite being
in initials finite format. This is shown in the following example.

Example 8. Let A = {a} and let Σ consist of infinitely many constants {c, d, . . .}.
Let P = {pi | i ∈ I} (with the pi distinct and I an infinite index set) be a proper
subset of T (Σ), i.e., P ⊂ T (Σ). Consider the TSS with rules

c
a−→ pi

, i ∈ I.

All the rules above have η-type 〈c, ψ〉 where ψ maps each term in η(c) (if any)
to the empty set, and hence the η-type 〈c, ψ〉 is infinitely inhabited and the TSS
is not bounded. However, the associated LTS is initials finite.
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Example 8 implements bounded quantifiers by means of a rule template and
an ad hoc infinite index set I. The use of bounded quantifiers2 is different from
the implicit universal quantifiers for variables in the rules of a TSS, as illustrated
in Example 7. The TSS of Example 7 consists of a single rule whose target x
ranges over the set of closed terms T (Σ). On the contrary, the TSS of Exam-
ple 8 consists of a rule template such that the targets pi with i ∈ I range over an
infinite proper subset of the set of closed terms, i.e., {pi | i ∈ I} ⊂ T (Σ). Tech-
nically, the sentences ∀x. c

a−→ x and ∀x ∈ {pi | i ∈ I}. c
a−→ x are respectively

a Π1-sentence and a Π0-sentence in the Lévy hierarchy [18].
Bounded quantifiers are conventional and useful, and we wish our rule format

to allow for TSSs like the one of Example 8. To this end, we need a more refined
notion of bounded TSS, which disregards the cardinality of the set of inhabitants
of an η-type and takes into account the actions of rules.

We now define the actions of an η-type and introduce the notion of initials-
bounded TSS.

Definition 19 (Actions of an η-type). Let R be a TSS. We define χ :
η-type → P(A) as the map that delivers, for each η-type 〈t, ψ〉, the set of actions
of the rules that have η-type 〈t, ψ〉. More formally,

χ(t, ψ) = {a | ρ has η-type 〈t, ψ〉 and a is the action of ρ}.

The set χ(t, ψ) is said to be the actions of η-type 〈t, ψ〉.
Definition 20 (Initials bounded). A TSS R is initials bounded iff R is uni-
form and there exists η with codomain Pω(T(Σ)) (i.e., the set η(t) is finite for
each t) such that for every rule ρ ∈ R with η-type 〈t, ψ〉, the η-type 〈t, ψ〉 has
finitely many actions, i.e., χ(t, ψ) ∈ Pω(A).

In the TSS of Example 8, the η-type 〈c, ψ〉 is infinitely inhabited but it has
finitely many actions as χ(c, ψ) = {a}. Therefore, the TSS of Example 8 is
initials bounded.

Intuitively, since rules having the same η-type are those that could potentially
be used to derive transitions from a closed term p that unifies with the source
of the rules, requiring that η-types have finitely many actions can help one to
ensure that p be initials finite. However, as the following example shows, having
a strict stratification is also needed to ensure initials finiteness as it intuitively
disallows ‘unguarded recursion’.

Example 9. Let Σ consist of a constant c and a unary function symbol f , and
let A = {a1, a2, . . .} be an infinite set of actions. Consider the TSS with rules

f(x) a1−→ c

f(x) ai−→ y

f(x)
ai+1−→ y

, i ∈ N.

2 Notice that ‘bounded’ in ‘bounded quantifiers’ does not have the connotation of
‘finite’ that is present in ‘bounded nondeterminism’. The bounded quantifiers restrict
the range of the quantified variable, but this range could still be infinite. Examples 7
and 8 illustrate the difference between universal quantifiers and bounded quantifiers
with an infinite range.
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The TSS is uniform and in initials finite format. We let η(f(x)) = {f(x)}. The
rule on the left has η-type 〈f(x), ψ〉 where ψ(f(x)) = ∅, and for each i ∈ N,
the instantiation of the rule template on the right has η-type 〈f(x), ψi〉 where
ψi(f(x)) = {ai}. The set of actions of 〈f(x), ψ〉 is {a1}, and for each i ∈ N

the set of actions of 〈f(x), ψi〉 is {ai+1}. Therefore, the TSS is initials bounded.
However, the TSS does not have a strict stratification. Notice that the associated
LTS is not initials finite, since the set of initials of f(c) is A.

The conditions of the following theorem define the rule format for initials
finiteness.

Theorem 2. Let R be an initials-bounded TSS in initials finite format that has
a strict stratification S. The LTS associated with R is initials finite.

Proof. We prove that each closed term p in the LTS associated with R is initials
finite. Since R is uniform, for a given p there are only finitely many distinct
terms ti and substitutions σi : var(ti) → T (Σ) (i.e., the i ranges over a finite
index set I) such that σi(ti) = p and the rules that unify with transitions from
p have some ti as source. We proceed by induction on S(p).

The initial case is when S(p) = 0. Since S(σi(ti)) = 0, the rules with source
ti are axioms of the form

ti
aj−→ t′k

, i ∈ I, j ∈ Ji, k ∈ Kj

where the Ji and the Kj are taken to be disjoint to avoid proliferation of indices.
Since R is initials bounded, there exists η such that for each i, for each j ∈ Ji, and
for each k ∈ Kj , the instantiation of the rule template above has η-type 〈ti, ψk〉,
and 〈ti, ψk〉 has finitely many actions, i.e., χ(ti, ψk) ∈ Pω(A). By Definition 14,
all the ψk map each term in η(ti) (if any) to the empty set, so all the rules
above with source ti have the same η-type. Since the rules above are axioms,
the transitions σi(ti)

aj−→ τσi(t′k) are provable in R for each substitution τ :
(var(t′j) \ var(ti)) → T (Σ). Since all the ψk in the η-types are equal, and since
the η-types have finitely many actions, the sets Ji are finite. Therefore, for each
i ∈ I the set

{aj | ∃p′ s.t. σi(ti)
aj−→ p′} = χ(ti, ψk)

is finite. By the finiteness of I it follows that the set {a | ∃p′ s.t. p
a−→ p′} is

finite and we are done.
The general case is when S(p) > 0. The rules with source ti such that

σi(ti) = p are of the form

{u�
b�−→ u′

� | 
 ∈ Lk}
ti

aj−→ t′k
, i ∈ I, j ∈ Ji, k ∈ Kj

where the Ji, the Kj , and the Lk are taken to be disjoint to avoid proliferation
of indices. Since R is initials bounded, there exists η such that for each i, for
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each j ∈ Ji, and for each k ∈ Kj , the instantiation of the rule template above
has η-type 〈ti, ψk〉, the set η(ti) is finite, and 〈ti, ψk〉 has finitely many actions.

For each i, we show that there are only finitely many distinct ψk with k ∈ Kj

and j ∈ Ji such that rules with η-type 〈ti, ψk〉 give rise to transitions from
σi(ti). By Definition 14, each rule of η-type 〈ti, ψk〉 contains a premiss of the
form v

c−→ v′ for each v ∈ η(ti) and each c ∈ ψk(v). Since R is in initials finite
format, var(v) ⊆ var(ti), and thus the σi(v) are closed. By Definitions 7 and 8,
for each transition in the node of a proof tree, if the transition unifies with a
rule of η-type 〈ti, ψk〉, then for each v ∈ η(ti) the processes σi(v) can perform,
at least, a c-transition for each c ∈ ψk(v). The ψk giving rise to transitions
from σi(ti) are dependent functions of type Πv∈η(ti){c | σi(v) c−→ τσi(v′)} with
substitutions τ : (var(v′) \ var(v)) → T (Σ). For each i the refined type of the ψk

with k ∈ Kj and i ∈ Ji is finitely inhabited, since the codomain of a dependent
function depends on the inputs of the function. Each image of ψk cannot be an
arbitrary subset of A, but only the one determined by the input v and by the
associated LTS. That is, the only elements in the codomain of ψk are the sets
{c | σi(v) c−→ τσi(v′)} where v ∈ η(ti). Since the η(ti) are finite sets, both the
domain and the codomain of ψk are finite. Therefore for each i there are only
finitely many distinct ψk with k ∈ Kj and j ∈ Ji such that rules with η-type
〈ti, ψk〉 give rise to transitions from σi(ti).

Since for each i there are only finitely many distinct ψk with k ∈ Kj and
j ∈ Ji such that rules with η-type 〈ti, ψk〉 give rise to transitions from σi(ti),
and since the η-types 〈ti, ψk〉 have finitely many actions, then for each i ∈ I the
set

{aj | ∃p′ s.t. σi(ti)
aj−→ p′}

is finite. By the finiteness of I it follows that the set {a | ∃p′ s.t. p
a−→ p′} is

finite and we are done. �
Remark 3. In Theorem 2 the TSS R is not required to be in bounded nonde-
terminism format. The terms t′k may have variables which are neither in ti nor
in

⋃
�∈Lk

var(u′
�). Consider τm : (var(t′k) \ var(ti)) → T (Σ) closed substitutions

with m ranging over index sets Mk such that σi(ti)
aj−→ τmσi(t′k). For each σi(ti)

there may be infinitely many transitions σi(ti)
aj−→ τmσi(t′k) because the Mk may

be infinite. This is illustrated by Example 7.

Remark 4. In Theorem 2 the η-types are not required to be finitely inhabited.
For each η-type 〈ti, ψk〉 there could be infinitely many rules with conclusions
ti

aj−→ t′k, and the Kj need not be finite. The TSS R could be in bounded non-
determinism format, and then there would be τm : ((

⋃
�∈Lk

var(u′
�)) \ var(ti)) →

T (Σ) closed substitutions with m ∈ Mk and Mk are finite index sets such that
σi(ti)

aj−→ τmσi(t′k). But, although the Mk may be finite, for each σi(ti) there
may be infinitely many transitions σi(ti)

aj−→ τmσi(t′k), because the Kj may be
infinite. This is illustrated by Example 8.

We now present an example of application of the rule format defined by the
conditions of Theorem 2.
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Example 10. Let Σ contain constants c and 0 and the unary action prefixing
operation a. from Milner’s CCS [20]. Consider the TSS with rules

a.x
a−→ x︸ ︷︷ ︸

b

c
a−→ a. . . . .a.︸ ︷︷ ︸

i times

0
, i ≥ 0.

Intuitively, the constant c is akin to a random assignment [4]. The TSS is uniform
and has a trivial strict stratification. We let η(a.x) = ∅ and η(c) = ∅. The rule
on the left has η-type 〈a.x, ∅〉 and each instantiation of the rule template on
the right has η-type 〈c, ∅〉. The rule template on the right implements bounded
quantifiers as illustrated in Example 8. Although the η-type 〈c, ∅〉 is infinitely
inhabited, the set of its actions is {a}. The associated LTS is initials finite.

In the next section we develop a rule format for image finiteness.

5 Image Finiteness

Consider the properties of an LTS in Definition 13, which we paraphrase here in
mathematical notation:

Finite branching: ∀p. {(a, p′) | p
a−→ p′} ∈ Pω(A × T (Σ)).

Initials finiteness: ∀p. {a | ∃p′. p
a−→ p′} ∈ Pω(A).

Image finiteness: ∀p.∀a. {p′ | p
a−→ p′} ∈ Pω(T (Σ)).

We consider the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic
logic (BHK interpretation for short) [15]. According to the BHK interpretation,
the proof of any of the properties above consists of a function that takes one
argument for each of the universally quantified symbols and returns a proof of
the trailing proposition after the quantifiers,3 which asserts that some set is
finite. As a proof of each assertion, it is enough to exhibit the set in point. For
example, given a TSS R the proof that the LTS associated with R is initials
finite consists of a function that takes an element p ∈ T (Σ) and delivers the
finite set of actions a such that p

a−→ p′ (with p′ ∈ T (Σ)) is provable in R. The
BHK interpretation provides a profitable insight on the notion of η-types. In
essence, the η-types are a sort of syntactic fingerprint of the BHK interpretation
of initials finiteness. Recall from Definition 14 that in an η-type 〈t, ψ〉 the map
ψ takes a term and delivers a set of actions. This map represents the function
corresponding to the BHK interpretation. The disciplined focus on the positives
premisses (e.g., through the finite support of the sources defined by η and with
the variable flow enforced by the initials finite format) is only an instrument to
construct the intuitionistic proof from ψ, by induction on the strict stratification
of the TSS. This is exemplified by our proof of Theorem 2.

It may seem odd that the η-types, which correspond to the BHK interpre-
tation of initials finiteness, are also used in the rule format that ensures finite
3 Recall that in intuitionistic logic a universal quantifier ‘∀x.’ is akin to a big lambda

‘Λx.’, i.e., a binding operator at the level of types.
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branching. The map ψ delivers a set of actions b, instead of the set of pairs of
actions and terms (b, u′) that would be expected from the BHK interpretation of
finite branching. The reason lies in the fact that the additional requirements of
the rule format make keeping track of the targets u′ redundant. To see this, let
the positive premisses be of the shape u

b−→ u′. Since the TSS is required to be in
bounded nondeterminism format, then var(u) ⊆ var(t) and the σ(u) are closed.
Thus, for each u ∈ η(t) there are at most finitely many pairs (b, u′) such that
b ∈ ψ(u) and σ(u) b−→ τσ(u′) with substitutions τ : (var(u′) \ var(u)) → T (Σ).
Therefore, keeping track of the targets u′ of positive premisses is redundant
because the requirements of the rule format ensure that the associated LTS is
finite branching.

The different requirements for bounded TSS and for initials-bounded TSS
complete the picture, respectively for the BHK interpretation of finite branching
and of initials finiteness. In a bounded TSS, it is required that there exists an
η such that each η-type 〈t, ψ〉 is finitely inhabited. This enforces that if for each
term t and for each substitution σ such that σ(t) is closed there are only finitely
many ψ such that the rules that give rise to transitions from σ(t) have η-type
〈t, ψ〉, then the set of pairs (a, t′) such that σ(t) a−→ τσ(t′) with substitutions
τ : (var(t′) \ var(t)) → T (Σ) is finite. The bounded nondeterminism format
ensures that there are only finitely many substitutions τ , and then the set of
pairs (a, τσ(t′)) is also finite and the associated LTS is finite branching. In an
initials-bounded TSS, it is only required that there exists an η such that each
η-type 〈t, ψ〉 has finite actions. This enforces that if for each term t and for each
substitution σ such that σ(t) is closed there are only finitely many ψ such that
the rules that give rise to transitions from σ(t) have η-type 〈t, ψ〉, then the set
of actions a such that σ(t) a−→ τσ(t′) with substitutions τ : (var(t′) \ var(t)) →
T (Σ) is finite. The bounded nondeterminism format can be replaced by the
initials finite format because the number of substitutions τ is immaterial in
order to keep the number of actions a finite, and thus for the associated LTS to
be initials finite.

We now introduce the θ-types, which are gleaned from the BHK interpre-
tation of image finiteness. Unlike the η-types of [9], which carry information
about the sources of positive premisses in rules, the θ-types also keep track of
the actions that label positive premisses.

We let θ : (T(Σ) × A) → P(T(Σ) × A) be the maps that parametrise the
θ-types of Definition 21 to follow. The maps θ deliver, for a given term t and
action a, a predefined set of sources and actions of positive premisses in rules
that have source t and action a. We say that θ(t, a) is the support of the sources
and of the actions for source and action (t, a).4

Definition 21 (θ-type). Let R be a TSS, ρ ∈ R a rule with source t, action a,
and positive premisses {ti

ai−→ t′i | i ∈ I}, and θ a map with type (T(Σ) × A) →
4 We beg the reader to bear with us in the repetition of ‘sources’, ‘actions’, ‘source’,

and ‘action’ in sentences like the above. The ‘sources’ and ‘actions’ refer to the
positive premisses, and the ‘source’ and ‘action’ to the conclusion of the rule.
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P(T(Σ) × A). We define φ : θ(t, a) → P(T(Σ)) as the map that delivers, for
each term u and action b in the support of the sources and of the actions for
(t, a), i.e., (u, b) ∈ θ(t, a), the targets of the positive premisses of ρ with source
u and action b. More formally,

φ(u, b) = {t′i | i ∈ I ∧ ti = u ∧ ai = b}.

The triple 〈t, a, φ〉 is said to be the θ-type of rule ρ.

The θ-types distinguish rules based on their source, their action, and on the
set of targets of their positive premisses whose source and action belong to the
predefined set specified by the map θ. Let us illustrate this with an example.

Example 11. Let Σ consist of a constant c and a unary function symbol f and
let A be an infinite set of actions. Consider the TSS

c
a−→ c

, a ∈ A
x

a−→ y

f(x) a−→ y
, a ∈ A.

For each a ∈ A, we let θ(c, a) = ∅ and θ(f(x), a) = {(x, a)}. For each a ∈ A,
the θ-types of the instantiations of the rule templates on the left and on the
right are 〈c, a, ∅〉 and 〈f(x), a, φa〉 respectively, where φa(x, a) = {y}. Notice
that the associated LTS is image finite, because the target of every transition is
c. However, it is neither finite branching nor initials finite, since every process
can do an a-transition for each a ∈ A.

Intuitively, the θ-types play for image finiteness the role that the η-types
play for finite branching. Rules having the same θ-type 〈t, a, φ〉 are those that
could potentially be used to derive a-transitions from a closed term p that is
an instantiation of t. In order to ensure that the set of processes that are the
targets of a-transitions from a closed term p is finite, it is reasonable to require
that each θ-type be finitely inhabited. However, for image finiteness, the variables
occurring in the targets of positive premisses of rules have to be used uniformly.
The following example illustrates this fact.

Example 12. Let Σ consist of a constant c and a unary function symbol f , and
assume A = {a}. Let the yi with i ∈ N be infinitely many distinct variables.
Consider the TSS

c
a−→ c

x
a−→ yi

f(x) a−→ f i(x)
, i ∈ N

where f i stands for applying i times the function symbol f . The TSS is uniform
in the sources (recall Definition 10) and has a strict stratification given by

S(c) = 0
S(f(p)) = 1 + S(p).
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We let θ(c, a) = ∅ and θ(f(x), a) = {(x, a)}. The rule on the left has θ-type
〈c, a, ∅〉, and for each i ∈ N, the instantiation of the rule template on the right
has θ-type 〈f(x), a, φi〉, where φi(f(x), a) = {yi}. However, the associated LTS is
not image finite, because process f(c) can perform infinitely many a-transitions
to f i(c) (with i ∈ N).

In the TSS of Example 12 there are infinitely many different variables yi, and
thus there are infinitely many different θ-types that morally should be the same.
The inhabitants of each of these θ-types give rise, for a given source and action,
to transitions with different targets, and the associated LTS is not image finite.
To address this issue we introduce the notion of uniform TSS in the targets
of positive premisses. This notion extends that of uniform TSS in the sources,
which is the uniform TSS from [9] that we adapted in Definition 10.

Definition 22 (Uniform in the targets of positive premisses). A TSS R
is uniform in the targets of positive premisses iff t′ = t′′ holds whenever t′ and
t′′ have the same structure and t

a−→ t′ and t
a−→ t′′ are positive premisses of

any two (not necessarily different) rules.

The TSS of Example 12 is not uniform in the targets of positive premisses.
Indeed, x

a−→ y1 and x
a−→ y2 are positive premisses of rules and y1 and y2

have the same structure, but y1 �= y2. However, the LTS induced by the TSS of
Example 12 can be specified by a TSS that is uniform in the targets of positive
premisses as follows.

Example 13. Let Σ consist of a constant c and a unary function symbol f , and
assume A = {a}. Consider the TSS

c
a−→ c

x
a−→ y

f(x) a−→ f i(x)
, i ∈ N.

The TSS is uniform both in the sources of rules and in the targets of their
positive premisses and has a strict stratification given by

S(c) = 0
S(f(p)) = 1 + S(p).

We let θ(c, a) = ∅ and θ(f(x), a) = {(x, a)}. The rule on the left has θ-type
〈c, a, ∅〉, and for each i ∈ N the instantiation of the rule template on the right
has θ-type 〈f(x), a, φ〉 where φ(x, a) = {y}. Therefore, the θ-type 〈f(x), a, φ〉 is
infinitely inhabited. Notice that the associated LTS is equal to that in Exam-
ple 12, which is not image finite.

Next we prove a proposition that resembles Proposition 2 of Sect. 2, which
states that for a uniform TSS in the targets of positive premisses, each transition
is a substitution instance of at most finitely many positive premisses of the TSS.
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Proposition 3. Let R be a uniform TSS in the targets of positive premisses. For
each transition p

a−→ p′, and for each term t and substitution σ : var(t) → T (Σ)
such that σ(t) = p, the set of pairs (t′, τ) with τ : var(t′) \ var(t) → T (Σ) such
that σ(t) a−→ τσ(t′) = p

a−→ p′ and t
a−→ t′ is a positive premiss of some rule in

R is finite.

Proof. We prove the generalised proposition:

Let R be a uniform TSS in the targets of positive premisses. For each
pair (p a−→ p′, r) where p

a−→ p′ is a transition and r is an approximant
of p′ (i.e., r � p′) and for each term t and substitution σ : var(t) → T (Σ)
such that σ(t) = p, the set of pairs (t′, τ) with τ : var(t′) \ var(t) → T (Σ)
such that there exists r′ an approximant of r (i.e., r′ � r) with the same
structure as t′, and σ(t) a−→ τσ(t′) = p

a−→ p′ and t
a−→ t′ is a positive

premiss of some rule in R, is finite.

The original proposition follows from the generalised proposition by fixing r = p′.
We fix a t and a σ such that σ(t) = p and construct the set S of pairs (t′, τ) that
meet the conditions of the generalised proposition and show that S is finite. We
proceed by well-founded induction on the set of approximants of r ordered by
the less-defined-than relation (�).

We first check that the generalised proposition holds for the �-minimal par-
tial terms in the set of approximants of r. The only such partial term is r0 = ⊥.
There exists only one r′

0 an approximant of r (i.e., r′
0 = ⊥ � ⊥ = r0) and

the only terms that have the same structure as r′
0 are the variables. Since R

is uniform in the targets of positive premisses, all the positive premisses of R
with source t, action a, and whose target is a variable (if there is any) have
the same variable x as target. If there exist no positive premisses as described
before, then the set we are looking for is the empty set. If there exist positive
premisses as described before, we distinguish two cases. If x ∈ var(t), then the
set we are looking for is S = {(x, ∅)}. Otherwise, the set we are looking for is
S = {(x, {x �→ p′})}. All three sets are finite.

Now we check that the generalised proposition holds for an arbitrary partial
term ra �= ⊥ in the set of approximants of r. Notice that the partial term ra

is such that ra � r � p′. By the induction hypothesis, for every rx such that
rx � ra the set Sx of pairs (t′, τ) such that there exists r′

x an approximant of
rx (i.e., r′

x � rx) with the same structure as t′, and σ(t) a−→ τσ(t′) = p
a−→ p′

and t
a−→ t′ is a positive premiss of some rule in R is finite. Since R is uniform

in the targets of positive premisses, all the positive premisses with source t,
action a, and whose target has the same structure as r′

x (if there is any) have
the same target u. Since r′

x � ra, then r′
x is obtained by replacing by ⊥ one

or more maximally disjoint subterms of ra that are different form ⊥. We let
xj (with j ranging over some index set J) be the variables that occur in u in
the positions corresponding to the occurrences of ⊥ in r′

x. (Notice that no other
variables could occur in u, since u has the same structure as r′

x, and r′
x � p′.)

We let tj be the terms such that p′ results from replacing respectively the xj
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by the tj in u. If there exist no rules with a positive premiss whose target is u,
then the set we are looking for is Sx. Otherwise, the set we are looking for is
S = Sx ∪ {(u, {xj �→ tj | j ∈ J ∧ xj �∈ var(t)})}, which is finite. �

The notion of image-bounded TSS, which we introduce next, collects the
requirements that we have discussed so far.

Definition 23 (Image bounded). A TSS R is image bounded iff R is uniform
in the sources of rules and in the targets of their positive premisses, and there
exists θ with codomain Pω(T(Σ) × A) (i.e., for each pair (t, a) the set θ(t, a) is
finite) such that for every rule ρ ∈ R with θ-type 〈t, a, φ〉, the θ-type 〈t, a, φ〉 is
finitely inhabited.

For image finiteness, the restrictions on the variable flow have to be enforced
again, and the bounded nondeterminism format is needed. Example 7 in Sect. 4
shows that the variables in the target of a rule have to occur in either the source
of the rule, or in the targets of its positive premisses. The LTS induced by the
TSS in Example 7 is not image finite because c

a−→ d holds for each of the
infinitely many constants d. The following example is a variation on Example 6
in Sect. 4 that shows that for image finiteness, the variables in the sources of
positive premisses have to occur in the source of the rules.

Example 14. Let Σ consist of a constant c and a unary function symbol f , and
assume A = {a}. Consider the TSS

f(x) a−→ f(x)

f(x) a−→ y

c
a−→ y

.

The TSS is uniform both in the sources of rules and in the targets of their
positive premisses and has a strict stratification given by

S(f(p)) = 0
S(c) = 1.

We let θ(f(x), a) = ∅ and θ(c, a) = {(f(x), a)}. The rule on the left has θ-type
〈f(x), a, ∅〉, and the rule on the right has θ-type 〈c, a, φ〉 where φ(f(x), a) = {y},
and thus the TSS is image bounded. However c

a−→ f(p) for every p ∈ T (Σ) and
thus the associated LTS is not image finite.

In an image-bounded TSS, it is required that there exists a θ such that each
θ-type 〈t, a, φ〉 is finitely inhabited. This enforces that if for each term t, for each
action a, and for each substitution σ such that σ(t) is closed there are only finitely
many φ such that the rules that give rise to a-transitions from σ(t) have θ-type
〈t, a, φ〉, then the set of targets t′ such that σ(t) a−→ τσ(t′) with substitutions
τ : (var(t′) \ var(t)) → T (Σ) is finite. The bounded nondeterminism format
ensures that only finitely many τ exist, and thus the set of targets τσ(t′) is also
finite and the associated LTS is image finite.

The following example shows that having a strict stratification is needed to
ensure image finiteness.
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Example 15. Let A consist of an action a, and let Σ = A ∪ {f} with f a unary
function symbol f . Consider the TSS

f(x) a−→ a

f(x) a−→ y

f(x) a−→ f(y)
.

The TSS is uniform in both the sources of rules and the targets of their positive
premisses, and it is in bounded nondeterminism format. We let θ(f(x), a) =
{(f(x), a)}). The rule on the left has θ-type 〈f(x), a, φ1〉 with φ1(f(x), a) = ∅.
The rule on the right has θ-type 〈f(x), a, φ2〉 with φ2(f(x), a) = {y}. The TSS
is image bounded. However, the TSS does not have a strict stratification. Notice
that the associated LTS is not image finite since f(a) can perform an a-transition
to each of the terms f i(a).

The conditions of the following theorem define the rule format for image
finiteness.

Theorem 3. Let R be an image-bounded TSS that is in bounded nondetermin-
ism format and has a strict stratification S. The LTS associated with R is image
finite.

Proof. We prove that for each closed term p and for each action a in the LTS
associated with R the set {p′ | p

a−→ p′} is finite. Since R is uniform in the
sources, for a given p there are only finitely many distinct terms ti and substi-
tutions σi : var(ti) → T (Σ) (i.e., the i ranges over a finite index set I) such
that σi(ti) = p and the rules that unify with transitions from p have some ti as
source. We proceed by induction on S(p).

The initial case is when S(p) = 0. Since S(σi(ti)) = 0, the rules with source
ti and action a are axioms of the form

ti
a−→ t′j

, i ∈ I, j ∈ Ji

where the Ji are taken to be disjoint to avoid proliferation of indices. Since R
is image bounded, there exists θ such that for each i and for each j ∈ Ji, the
instantiation of the rule template above has θ-type 〈ti, a, φj〉, and 〈ti, a, φj〉 is
finitely inhabited. By Definition 21, all the φj map each pair in θ(ti, a) (if any) to
the empty set. Since R is in bounded nondeterminism format, var(t′j) ⊆ var(ti),
and thus the σi(t′j) are closed. Since the rules above are axioms, the transitions
σi(ti)

a−→ σi(t′j) are provable in R. Since all the φj are equal, and since the
θ-types are finitely inhabited, then the Ji are finite. Therefore, for each i ∈ I
the set

{σi(t′j) | σi(ti)
a−→ σi(t′j)}

is finite. By the finiteness of I it follows that the set {p′ | p
a−→ p′} is finite and

we are done.
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The general case is when S(p) > 0. The rules with action a and source ti
such that σi(ti) = p are of the form

{uk
bk−→ u′

k | k ∈ Kj}
ti

a−→ t′j
, i ∈ I, j ∈ Ji

where the Ji and the Kj are taken to be disjoint to avoid proliferation of indices.
Since R is image bounded, there exists θ such that for each i and for each j ∈ Ji,
the instantiation of the rule template above has θ-type 〈ti, a, φj〉, the set θ(ti, a)
is finite, and 〈ti, a, φj〉 is finitely inhabited.

For each i, we show that there are only finitely many distinct φj with j ∈ Ji

such that rules with θ-type 〈ti, a, φj〉 give rise to transitions from σi(ti). By Def-
inition 21, each rule of θ-type 〈ti, a, φj〉 contains a premiss of the form v

c−→ v′

for each (v, c) ∈ θ(ti, a) and each v′ ∈ φj(v, c). Since R is in bounded nondeter-
minism format, var(v) ⊆ var(ti) and thus the σi(v) are closed. By Definitions 7
and 8, for each transition in the node of a proof tree, if the transition unifies
with a rule of θ-type 〈ti, a, φj〉 then for each pair (v, c) ∈ θ(ti, a) and for each
v′ ∈ φj(v, c) the process σi(v) can perform, at least, a c-transition to τσi(v′) for
some substitution τ : (var(v′)\var(v)) → T (Σ). The φj giving rise to transitions
from σi(ti) are dependent functions of type Π(v,c)∈θ(ti,a){v′ | σi(v) c−→ τσi(v′)}
with substitutions τ : (var(v′) \ var(v)) → T (Σ). For each i the refined type
of the φj with j ∈ Ji is finitely inhabited, since the codomain of a dependent
function depends on the inputs of the function. Each image of φj cannot be an
arbitrary subset of T(Σ), but only the one determined by the input (v, c) and
by the associated LTS. That is, the only elements in the codomain of φj are the
sets {v′ | σi(v) c−→ τσi(v′)} where (v, c) ∈ θ(ti, a). Since the θ(ti, a) are finite
sets, both the domain and the codomain of φj are finite. Therefore, for each i,
there are only finitely many distinct φj with j ∈ Ji such that rules with θ-type
〈ti, a, φj〉 give rise to transitions from σi(ti).

Since R is in bounded nondeterminism format, var(uk) ⊆ var(ti) with k ∈
Kj and j ∈ Ji, and therefore the σi(uk) are closed terms. Since S is a strict
stratification, S(σi(uk)) < S(p). By the induction hypothesis the σi(uk) are
image finite, and for each i and for each bk the set

{τ�σi(u′
k) | σi(uk) bk−→ τ�σi(u′

k)}
is finite, with τ� : ((

⋃
k∈Kj

var(u′
k))\var(ti)) → T (Σ) closed substitutions where


 ranges over some index sets Lj . Since R is uniform in the targets of positive
premisses and by Proposition 3 the Lj are finite. Since R is in bounded nondeter-
minism format, var(t′j) ⊆ (var(ti) ∪ (

⋃
k∈Kj

var(u′
k))) and therefore the τ�σi(t′j)

are closed terms. Since for each i there are only finitely many distinct φj with
j ∈ Ji such that rules with θ-type 〈ti, a, φj〉 give rise to transitions from σi(ti),
and since the Lj are finite, then for each i ∈ I the set

{τ�σi(t′j) | σi(ti)
a−→ τ�σi(t′j)}
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is finite. By the finiteness of I it follows that the set {p′ | p
a−→ p′} is finite and

we are done. �
In Theorem 3 the rules of R are not required to have finitely inhabited η-

types. This is illustrated by Example 16 below.

Example 16. Let Σ consist of infinitely many constants c1, c2, . . . and assume
A = {a1, a2, . . .}. Consider the TSS

x
ai−→ ci

, i ∈ N.

The TSS is uniform in both the sources of rules and in their targets of premisses,
and it is in bounded nondeterminism format and has a strict stratification given
by S(ci) = 0, i ≥ 1. We let θ(x, ai) = ∅ with i ∈ N. For each i ∈ N, the
instantiation of the rule template above has θ-type 〈x, ai, ∅〉. The associated
LTS is image finite because for each process p and for each i ∈ N, p can only
perform an ai-action to ci. However, the LTS is neither finite branching nor
initials finite.

Example 5.3 from page 515 of [9] is an example of application of the rule
format defined by the conditions of Theorem 3. We reproduce it next.

Example 17 (Example 5.3 of [9]). Let r ∈ R>0. Consider the operator for dead-
lock in real-time Basic Process Algebra [17], which can be expressed by the rule

δ[r]
δ[s]−→ �

0 < s < r.

Process δ[r] is infinitely branching and has an uncountable set of initials. How-
ever, it is image finite as can be checked using our format. The TSS above is
uniform in both the sources of rules and in the targets of their positive premisses,
and is in bounded nondeterminism format and has a trivial strict stratification.
Take θ(δ[r], δ[s]) = ∅ for each r, s ∈ R>0. The θ-type of each instantiation of the
rule template above is 〈δ[r], δ[s], ∅〉. By Theorem 3, the associated LTS is image
finite.

6 Future Work

We say that the rule formats are adequate with respect to the corresponding
finiteness property, i.e., the syntactic conditions ensure that the associated LTS
has the property. However, the rule formats are not complete with respect to the
corresponding finiteness property, i.e., not all the LTSs that have the property
are induced by TSSs that satisfy the syntactic conditions. One direction for
future work is to generalise the rule formats to cover such TSSs. In the following
examples we collect some of the cases that we are aware are not covered by the
rule formats.
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Example 18. Consider the following TSS Rpc describing a fragment of an
instance of the algebra for process creation from [5]. The signature for that
TSS contains the following operations:

– constants a, ε and δ,
– the unary process-creation operation new, and
– the binary operations · and |�, which we write in infix style.

We set A = {a,�} and use α to range over it. The set of rules of Rpc, for whose
intuition we refer the reader to [5], are:

a
a−→ ε ε

�−→ δ

new(x) �−→ x · δ

x
a−→ x′

new(x) a−→ new(x′)

x
a−→ x′

x · y
a−→ x′ · y

x
�−→ x′, y

α−→ y′

x · y
α−→ x′ |� y′

x
�−→ x′, x′ a−→ x′′, y

a−→ y′

x · y
a−→ x′′ |� y′

x
a−→ x′

x |� y
a−→ x′ |� y

y
α−→ y′

x |� y
α−→ x |� y′

x
a−→ x′, y

a−→ y′

x |� y
a−→ x′ |� y′ .

Note that the third rule for the operator · is not in bounded nondeterminism
format because of the premise x′ a−→ x′′. Therefore the TSS Rpc does not meet
the requirements of Theorem 1. On the other hand, it is not too hard to show
that the LTS induced by Rpc is finite branching. (This is also a consequence of
the more general Elimination Theorem from [5, Theorem 4.9].)

Example 19. Let Σ consist of a constant c and a unary function symbol f , and
let A = {a}. Consider the TSS with rules

f(x) a−→ c

f(x) a−→ y

c
a−→ y

.

This TSS is uniform and has a strict stratification given by

S(f(p)) = 0
S(c) = 1.

We let θ(f(x), a) = ∅ and θ(c, a) = {(f(x), a)}. The rule on the left has θ-type
〈f(x), a, ∅〉, and the rule on the right has θ-type 〈c, a, φ〉 where φ(f(x), a) = {y}.
Variable x in the premiss of the rule on the right does not occur in the source of
the rule, and hence the TSS is not in bounded nondeterminism format and does
not meet the rule format for image finiteness. However, the set of images of any
process p for action a is {c}, and therefore the associated LTS is image finite.
Notice that the TSS does not meet the rule format for finite branching either,
but the associated LTS is finite branching.
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Example 20. Let A consist of infinitely many actions a1, a2, . . . and let Σ =
A ∪ {f, g} where f and g are unary function symbols. Consider the TSS with
rules

g(a1)
a1−→ a1

gi(x) ai−→ x

f(x) ai−→ x
, i ∈ N

where gi stands for applying the function symbol g to its argument i times. The
TSS is uniform, in bounded nondeterminism format, and has a strict stratifica-
tion given by

S(gi(p)) = 0
S(f(p)) = 1.

Notice that there exists no η such that the η-types are finitely inhabited. No
matter how one picks η, for every finite set η(f(x)) there would be an infinite
number of instances of the rule on the right that have the same η-type. Thus
the TSS is not bounded and the TSS does not meet the rule format for finite
branching. However, the associated LTS is finite branching because the only
possible transitions are g(a1)

a1−→ a1 and f(a1)
a1−→ a1.

Example 21. Let Σ consist of a constant c and a unary function symbol f , and
assume A = {a1, a2, . . .} with infinitely many actions. Consider the TSS

f(x) a1−→ f(x)

f(x) ai−→ y

f(x)
ai+1−→ y

, i ∈ N.

The TSS is uniform in both the sources of rules and the targets of their positive
premisses, and it is in bounded nondeterminism format. We let θ(f(x), a1) = ∅
and θ(f(x), ai+1) = {(f(x), ai)}) for each i ∈ N. The rule on the left has θ-type
〈f(x), a1, ∅〉. For each i ∈ N, the instantiation of the rule template on the right
has θ-type 〈f(x), ai+1, φi〉, where φi(f(x), ai) = {y}. The TSS is image bounded.
Notice that the TSS does not have a strict stratification and therefore it does
not meet the rule format for image finiteness. However, the associated LTS is
image finite, since c has no outgoing transitions and the image of each process
of the form f(p) for action ai (with i ∈ N) is f(p).

Another direction for future research is the study of algorithmic aspects of the
rule formats discussed in this paper. Indeed, whereas the conditions pertaining
to single rules, such as those imposed by the bounded nondeterminism format,
are purely syntactic and easy to check, those related to the various notions of
types have a global nature. It would be interesting to study ways to enforce those
global constraints and to develop algorithms for checking them over classes of
TSSs.

Nominal structural operational semantics (NoSOS) [8] enriches the SOS for-
malism by using some of the nominal techniques from [10,24,31] to deal with
names and binders within the SOS framework. We are currently investigating
how to adapt the results in this paper to NoSOS. The main challenges there
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are to treat transition labels that may contain variables and the effect that
the so-called freshness assertions may have on the finiteness properties of inter-
est. In NoSOS, it is conventional to consider special administrative transitions
for freshness conditions, for substitution, and for α-conversion [8]. The transi-
tions for freshness conditions in isolation induce an initials-finite LTS. There are
two kinds of substitution, atom-for-atom and term-for-atom substitution, which
taken in isolation induce image-finite LTSs. The transitions for α-conversion
taken in isolation induce an initials-finite LTS. One of the problems in extend-
ing our results to NoSOS is to abstract from these administrative transitions in
order to focus on the finiteness properties of the remaining transitions.

Acknowledgements. We thank two anonymous referees for their careful reading of
our paper and their constructive comments.
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