
Chapter 5
Rapid Screening of Big Data Against
Inadvertent Leaks

Xiaokui Shu, Fang Liu, and Danfeng (Daphne) Yao

Abstract Keeping sensitive data from unauthorized parties in the highly connected
world is challenging. Statistics from security firms, research institutions, and
government organizations show that the number of data-leak instances has grown
rapidly in the last years. Deliberately planned attacks, inadvertent leaks, and human
mistakes constitute the majority of the incidents. In this chapter, we first introduce
the threat of data leak and overview traditional solutions in detecting and preventing
sensitive data from leaking. Then we point out new challenges in the era of big
data and present the state-of-the-art data-leak detection designs and algorithms.
These solutions leverage big data theories and platforms—data mining, MapReduce,
GPGPU, etc.—to harden the privacy control for big data. We also discuss the open
research problems in data-leak detection and prevention.

5.1 Introduction: Data Leaks in the Era of Big Data

The exposure of sensitive data has become a severe threat to organizational and
personal security. For a period of 5 years from 2010 to 2014, RiskBasedSecurity, a
cyber security firm, reported a ten times growth of leaked records. These leaked
records include credit card numbers, medical records, classified documents, etc.
The total number of leaked records in 2014 reached a record high of 1.1 billion
through 3014 incidents [53]. Kaspersky Lab estimated the average damage cost by
an incident to be $720,000 [35], and FBI warned retailers about the increasing threat
of data leaks in 2014 [20].

To understand data leaks and find defenses against the threat, we classify data-
leak incidents into two categories by their causes:

• Intentional leaks include both external and internal threats such as network
intrusion, phishing, espionage, virus, etc.

• Inadvertent leaks include accidental data sharing by employees, transmitting
confidential data without proper encryption, etc.

X. Shu (�) • F. Liu • D. (Daphne) Yao
Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA
e-mail: subx@cs.vt.edu; fbeyond@cs.vt.edu; danfeng@cs.vt.edu

© Springer International Publishing Switzerland 2016
S. Yu, S. Guo (eds.), Big Data Concepts, Theories, and Applications,
DOI 10.1007/978-3-319-27763-9_5

193

mailto:subx@cs.vt.edu
mailto:fbeyond@cs.vt.edu
mailto:danfeng@cs.vt.edu

194 X. Shu et al.

Recent intentional data-leak incidents include SONY Picture, Home Depot,
Target, Neiman Marcus, P.F. Chang, and Michaels and Aaron Brother. They hit the
headlines of newspapers and Internet media for their data breaches during the last
2 years (2013–2014). For instance, the Target Corporation’s network was breached
between November 27 and December 18, 2013. 40 million credit and debit card
numbers and 70 million records of personal information were stolen in this single
incident. Months later, this number was surpassed by the Home Depot breach and
the SONY Picture breach.

Many inadvertent leaks, e.g., forwarding a confidential email outside the com-
pany, are widely seen in companies and organizations. Such incidents can be found
in 29 % of all 4438 data leaks reported by Kaspersky Lab during a 12-month
period from 2013 to 2014 [35]. Although inadvertent leaks do not result in explicit
economic loss of a company, they can be further exploited to launch effective attacks
through these implicit leaking channels.

Encrypting data in the storage is one of the most basic methods preventing
sensitive data from leaking, and it is effective against external leaks if used properly.
It nullifies data leaks by preserving data in encrypted forms even when the data is
stolen. However, encryption does not prevent sensitive data from leaking when the
data is decrypted and consumed by processes in memory. In this case, software
vulnerabilities and other internal threats can still cause data leaks even they are
properly encrypted.

Besides general security mechanisms that enforce organizational security and
privacy to prevent data leaks, specific solutions countering data leaks can be
deployed to detect data-leak events and perform countermeasures against the events.
Data-leak detection (DLD) is a solution that reveals data-leak events in a single
device or among a network of devices. The detection usually combines a multitude
of techniques that target different causes of data leaks.

Traditional virus detection, firewalls, and intrusion detection are basic elements
to detect and prevent intentional leaks. A proper combination of these basic systems
provides a comprehensive detection against sophisticated attack vectors, such as
advanced persistent threats (APT), which are responsible for many significant data
breach incidents.

Data tracking [15, 26, 44, 69] is an approach against both intentional and
inadvertent data leaks. The basic idea is to track the flow of sensitive data within a
single device or a network so that unauthorized data flows are prohibited or stopped.
The detection tracks every segment of memory that the sensitive data is stored. Data
tracking approach may incur heavy overhead at runtime. In addition, it may require
a network-wide memory tracking solution across distributed systems/devices.

Content screening is an approach to detect data leaks at critical sites in a device
(e.g., a network interface) or in a network (e.g., a gateway), but not to track the
flow of sensitive data anywhere, anytime. It inspects data flows at critical sites
(e.g., data flow boundaries) and recognizes sensitive data in the content if any. It
is practical that detection-related computations are only performed at specific sites
in a device or a network. Several commercial data-leak detection solutions are based
on the content screening approach [23, 24, 28, 62]. The key of content screening for

5 Rapid Screening of Big Data Against Inadvertent Leaks 195

detection is the recognition of sensitive data. The detection system is deployed at
critical data flow boundaries. It extracts the content from intercepted data flows and
seeks the trace of sensitive data in the content. Although this strategy is practical
and costs less than sensitive data tracking, it does not detect stealthy intentional data
leaks that could be privately encrypted by an attacker. Therefore, this technique is
mostly used for detecting inadvertent data leaks.

A basic technique to recognize sensitive data from data flow content is to
compute the set intersection rate between the set of n-grams from the content and the
set of n-grams from the sensitive data. The use of n-grams preserves local features
of sensitive data and reduces false positives. The set-intersection-based detection is
versatile, capable of analyzing both text and some binary-encoded context (e.g.,
Word or pdf files). The method has been used to detect similar documents on
the web [8], shared malicious traffic patterns [10], malware [30], as well as email
spam [40]. Set intersection based detection is simple to implement, and can be found
in several commercial products for data-leak detection [23, 24, 28, 62].

However, the era of big data brings new challenges for data-leak detection.

• Scalability Challenge A naive implementation of the set intersection procedure
requires O.nm/ complexity, where n and m are sizes of the two sets A and B,
respectively. If the sets are relatively small, then a faster implementation is to use
a hashtable to store set A and then testing whether items in B exist in the hashtable
or not, giving O.n C m/ complexity. However, if A and B are both very large,
a naive hashtable may have hash collisions that slow down the computation.
Increasing the size of the hashtable may not be practical due to memory limitation
and thrashing.

• Accuracy Challenges As the size of sensitive data increases, the accuracy of the
detection is heavily affected by two accuracy challenges.

– Transformed Data Leaks. The exposed data in the content may be unpre-
dictably transformed or modified by users or applications, and it may no
longer be identical to the original sensitive data, e.g., insertions of metadata or
formatting tags, substitutions of characters for formatting purposes. It reduces
the accuracy of set-intersection-based approaches.

– Partial Data Leaks. The exposed data in the content may be a consecutive
segment of sensitive documents instead of entire pieces of sensitive data. It
is an extreme case of deletion (one kind of transformation in general) where
most of sensitive data is removed. It is listed as a separate challenge since it
completely nullifies set-intersection-based approaches.

• Privacy Challenge Cloud computing is one of the key infrastructures in the
era of big data, which enables the storage and processing of large volumes of
data. However, conventional set intersection operations require the possession
of the sensitive data. The requirement makes it improper to outsource data-leak
detection procedures to a third party, i.e., the DLD provider. Simply hashing
sensitive n-grams does not solve the problem, because the DLD provider can
learn the sensitive data from data flows that contain data leaks.

196 X. Shu et al.

In this chapter, we describe two detection solutions in details that are specifically
designed to address the big data challenges for data-leak detection.

5.1.1 MR-DLD: Privacy-Preserving Data-Leak Detection
Through MapReduce Collection Intersection

MR-DLD leverages MapReduce [17], a programming model for distributed data-
intensive applications, to realize collection intersection operations in parallel and
perform data-leak detection. The detection is distributed and parallel, capable of
screening massive amount of content for exposed information.

The advantage of MR-DLD is its scalability and privacy-preserving features.
Because of the intrinsic hkey; valuei organization of items in MapReduce, the worst-
case complexity of MR-DLD is correlated with the size of the leak (specifically a
� 2 Œ0; 1� factor denoting the size of the intersection between the content collection
and the sensitive data collection). This complexity reduction brought by the � factor
is significant because the value is extremely low for normal content without a
leak. In MR-DLD, items not in the intersection (non-sensitive content) are quickly
dropped without further processing. Therefore, the MapReduce-based algorithms
have a lower computational complexity compared to the single-host collection-
intersection implementation.

The data privacy protection is realized using fast one-way transformation. This
transformation requires the pre- and post-processing by the data owner for hiding
and precisely identifying the matched items, respectively. Both the sensitive data
and the content need to be transformed and protected by the data owner before
it is given to the MapReduce nodes for the detection. In the meantime, such a
transformation has to support the equality comparison required by the collection
intersection. In addition, the one-way transformation is updated with new key for
each detection session. The periodical updates prevent an adversary from learning
frequency information from content digests and performing frequency analysis. This
technique provides strong privacy guarantee for the data owner, in terms of the low
probability for a MapReduce node to recover the sensitive data.

5.1.2 AlignDLD: Data-Leak Detection Through Alignment

AlignDLD solves the challenge of transformed and partial data-leak detection
through a specially designed sequence alignment algorithm. The alignment is
between the sampled sensitive data sequence and the sampled content being
inspected. The alignment produces scores indicating the amount of sensitive data
contained in the content.

5 Rapid Screening of Big Data Against Inadvertent Leaks 197

The advantage of AlignDLD is its accuracy and scalability. AlignDLD measures
the order of n-grams. It also handles arbitrary variations of patterns without an
explicit specification of all possible variation patterns. Experiments show that
AlignDLD substantially outperforms the collection-intersection-based methods in
terms of detection accuracy in a multitude of transformed data-leak scenarios.

The scalability issue is solved in AlignDLD by sampling both the sensitive
data and content sequences before aligning them. This procedure is enabled by a
comparable sampling algorithm and a sampling-oblivious alignment algorithm in
a pair. The comparable sampling algorithm yields constant samples of a sequence
wherever the sampling starts and ends. The sampling-oblivious alignment algorithm
infers the similarity between the original unsampled sequences with sophisticated
traceback techniques through dynamic programming. The algorithm infers the
lost information (i.e., sampled-out elements) based on the matching results of
their neighboring elements. Evaluation results show that AlignDLD boosts the
performance, yet only incurs a very small amount of mismatches.

The rest of the chapter is organized as follows. We first formalize the basic set
intersection model for conventional data-leak detection in Sect. 5.2. In the next two
sections, we detail the two data-leak detection solutions solving big data challenges
in Sects. 5.3 and 5.4, respectively. Then we give the literature review on data-leak
detection and related techniques in Sect. 5.5. We discuss the open problems in the
field and conclude the chapter in Sects. 5.6 and 5.7.

5.2 Model and Background

In a typical content-screening data-leak detection model, two types of sequences,
i.e., sensitive data sequence and content sequence, are analyzed.

• Content sequence is the sequence to be examined for leaks. The content may be
extracted from file systems on personal computers, workstations and servers, or
from payloads extracted from network traffic.

• Sensitive data sequence contains the information (e.g., customers’ records,
proprietary documents) that needs to be protected and cannot be exposed to
unauthorized parties. The sensitive data sequence should not be known to the
analysis system if it is not secure and trustworthy (e.g., detection is performed by
cloud or DLD provider).

5.2.1 Security Model

We classify data leaks into two categories according to their causes:

• Case I Inadvertent data leak: The sensitive data is accidentally leaked in the
outbound traffic by a legitimate user. This chapter focuses on detecting this

198 X. Shu et al.

type of accidental data leaks over supervised network channels. Inadvertent
data leak may be due to human errors such as forgetting to use encryption,
carelessly forwarding an internal email and attachments to outsiders, or due to
application flaws (such as described in [33]). A supervised network channel could
be an unencrypted channel or an encrypted channel where the content in it can
be extracted and checked by an authority. Such a channel is widely used for
advanced NIDS where MITM (man-in-the-middle) SSL sessions are established
instead of normal SSL sessions [31].

• Case II Intentional data leak: A rogue insider or a piece of stealthy software may
steal sensitive personal or organizational data from a host. Because the malicious
adversary can use strong private encryption, steganography or covert channels to
disable content-based traffic inspection, this type of leaks is out of the scope of
the network-based solution. Host-based defenses (such as detecting the infection
onset [67]) need to be deployed instead.

In this chapter, we describe data-leak detection solutions against Case I, the
inadvertent data leaks over supervised network channels. In other words, the
detection techniques in this chapter aim to discover sensitive data appearance in
network traffic over supervised network channels. We assume that: (1) plaintext data
in supervised network channels can be extracted for inspection; (2) the data owner
is aware of legitimate data transfers; and (3) whenever sensitive data is found in
network traffic, the data owner can decide whether or not it is a data leak. Network-
based security approaches are ineffective against data leaks caused by malware
or rogue insiders as in Case II, because the intruder may use strong encryption
when transmitting the data, and both the encryption algorithm and the key could
be unknown to the detection system.

5.2.2 Basic Solution

The basic approach for detecting data leak is based on computing the similarity
between content sequences and sensitive data sequences, specifically the intersec-
tion of two collections of shingles. A shingle (q-gram) is a fixed-size sequence of
contiguous bytes. For example, the 3-gram shingle set of string abcdefgh consists
of six elements {abc, bcd, cde, def, efg, fgh}. Local feature preservation is
accomplished through the use of shingles. Therefore, the basic approach can tolerate
sensitive data modification to some extent, e.g., inserted tags, a small amount of
character substitution, and lightly reformatted data. The use of shingles for finding
duplicate web documents first appeared in [7, 8].

One collection consists of shingles obtained from the content sequence and
the other collection consists of shingles from the sensitive sequence. Collection
intersection differs from set intersection, in that it also records duplicated items
in the intersection, which is illustrated in Fig. 5.1. Recording the frequencies of

5 Rapid Screening of Big Data Against Inadvertent Leaks 199

I: abcdabcdabcda
II: bcdadcdabcda

I: {abc, bcd, cda, dab, abc bcd, cda, dab, abc, bcd, cda}
II: {bcd, cda, dad, adc, dcd, cda, dab, abc, bcd, cda}

Collection intersection: {abc, dab,bcd, bcd, cda, cda, cda }Set intersection: {abc, dab, bcd, cda}

Strings: N-gram collections:

Set intersection rate: 4/10=0.4

Collection size:
11
10

Collection intersection rate: 7/10=0.7

Fig. 5.1 An example illustrating the difference between set intersection and collection intersection
in handling duplicates for 3-grams

intersected items achieves more fine-grained detection. Thus, collection intersection
is preferred for data-leak analysis than set intersection.

Formally, given a content collection Cc and a sensitive data collection Cs, the
detection algorithms aim to compute the intersection rate Irate 2 Œ0; 1� defined
in (5.1), where Inum is the occurrence frequency of an item i in the intersection
Cs\ Cc. The sum of frequencies of all items appeared in the collection intersection is
normalized by the size of the sensitive data collection (assuming jCsj < jCcj), which
yields the intersection rate Irate. The rate represents the percentage of sensitive data
that appears in the content. Irate is also referred to as the sensitivity score of a
content collection.

Irate D

P

i2fCs\ Ccg
Inumi

jCsj (5.1)

Existing commercial products for data-leak detection/prevention are likely based
on the basic solution introduced above in Sect. 5.2.2. These products include
Symantec DLP [62], IdentityFinder [28], GlobalVelocity [23], and GoCloud-
DLP [24]. Data-leak detection techniques used in the literature include keyword
searching [36], data tracking [26, 44, 69], watermarking [2, 46], etc.

The most severe problem with these techniques in big data era is that they are not
able to process massive content data in time. In addition, none of them address the
privacy challenges, meaning that the person or company who performs detection is
possible to learn about the sensitive data.

MapReduce has been used to address the scalability challenge in data min-
ing [78], machine learning [45], database [4, 64], and bioinformatics [43]. It is
also recently used in security areas such as log analysis [22, 68], spam filter-
ing [12, 13] and malware detection [21, 49, 79]. Privacy-preserving techniques
are also widely invented for secure multi-party computation [70]. Shingle with
Rabin fingerprint [50] is also used for collaborative spam filtering [40], worm
containment [10], virus scan [25], and fragment detection [52].

These techniques laid the foundation for the two new approaches below on
detecting data leak in massive content.

200 X. Shu et al.

5.3 MR-DLD: MapReduce-Based Data-Leak Detection

To address the scalability challenges, we present a data-leak detection system in
MapReduce (MR-DLD) [41]. MapReduce [17] is a programming framework for
distributed data-intensive applications. It has been used to solve big data security
problems such as spam filtering [12, 13], Internet traffic analysis [39] and log
analysis [4, 42, 68]. MapReduce algorithms can be deployed on nodes in the cloud
or in local computer clusters.

The detection also provides privacy enhancement to preserve the confidentiality
of sensitive data during the outsourced detection. Because of this privacy enhance-
ment, the MapReduce algorithms can be deployed in distributed environments
where the operating nodes are owned by third-party service providers. Applications
of the MR-DLD system include data-leak detection in the cloud and outsourced
data-leak detection.

5.3.1 Threat Model

In this model, two parties participate in the large-scale data-leak detection system:
data owner and data-leak detection (DLD) provider.

• Data owner owns the sensitive data and wants to know whether the sensitive data
is leaked. It has the full access to both the content and the sensitive data. However,
it only has limited computation and storage capability and needs to authorize the
DLD provider to help inspect the content for the inadvertent data leak.

• DLD provider provides detection service and has unlimited computation and
storage power when compared with data owner. It can perform offline inspections
on big data without real-time delay. However, the DLD provider is honest-but-
curious (aka semi-honest). That is, it follows the prescribed protocol but may
attempt to gain knowledge of sensitive data. The DLD provider is not given the
access to the plaintext content. It can perform dictionary attacks on the signature
of sensitive data records.

The goal of MR-DLD is to offer DLD provider the solution to scan massive
content for sensitive data exposure and minimize the possibility that the DLD
provider learns about the sensitive information.

5.3.2 Confidentiality of Sensitive Data

Naive collection-intersection solutions performing on shingles provide no pro-
tection for the sensitive data. The reason is that MapReduce nodes can easily
reconstruct sensitive data from the shingles. MR-DLD utilizes several methods for

5 Rapid Screening of Big Data Against Inadvertent Leaks 201

the data owner to transform shingles before they are released to the MapReduce
nodes. These transformations, including specialized hash function, provide strong-
yet-efficient confidentiality protection for the sensitive information. In exchange for
these privacy guarantees, the data owner needs to perform additional data pre- and
post-processing operations.

In addition to protecting the confidentiality of sensitive data, the pre-processing
operations also need to satisfy the following requirements:

• Equality-preserving: the transformation operation should be deterministic so that
two identical shingles within one session are always mapped to the same item for
comparison.

• One-wayness: the function should be easy to compute given any shingle and hard
to invert given the output of a sensitive shingle.

• Efficiency: the operation should be efficient and reliable so that the data owner is
able to process very large content.

The collection intersection (in Sect. 5.3.4) is computed on one-way hash values
of n-grams, specifically Rabin fingerprints. Rabin fingerprint is a fast one-way hash
function, which is computational expensive to invert. In addition, Rabin fingerprints
can be computed in linear time [7]. The computation can be implemented with fast
XOR, shift and table lookup operations.

Specifically, Rabin fingerprint of a n-bit shingle is based on the coefficients of
the remainder of the polynomial modular operation with an irreducible polynomial
p.x/ as the modulo as shown in (5.2), where cn�iC1 is the i-th bit in the shingle C.

f .C/ D c1xn�1 C c2xn�2 C : : : C cn�1x C cn mod p.x/ (5.2)

To meet the privacy requirements, the MR-DLD approach expands the Rabin
fingerprint and presents a new “keyed-hash” operation as shown in (5.3), where K
is data owner selected secret session key and S is the input shingle.

f .K; p.x/; S/ D K ˚ .s1xn�1 C s2xn�2 C : : : C sn�1x C sn mod p.x// (5.3)

The difference between the expanded operation and Rabin fingerprint is that
p.x/ and K change periodically as parameters. Different from a regular keyed-hash
method, the “key” in the MR-DLD operation is used to keep updating the fingerprint
method. In this chapter, we refer to the expanded operation as Rabin fingerprint.
Section 5.3.5 presents the security analysis of the MR-DLD approach especially on
the confidentiality of sensitive data.

5.3.3 Technical Requirements and Design Overview

In this section, we introduce MapReduce and the specific challenges when per-
forming data-leak detection with MapReduce. We further present the workflow of
the MR-DLD detection framework and the overview of the collection intersection
algorithm used in the framework.

202 X. Shu et al.

5.3.3.1 MapReduce-Based Design and Challenges

MapReduce is a programming model for processing large-scale data sets on clusters.
With an associated implementation (e.g., Hadoop), MapReduce frees programmers
from handling program’s execution across a set of machines. It takes care of tasks
scheduling, machine failures and inter-machine communication. A MapReduce
algorithm has two phases: map that supports the distribution and partition of inputs
to nodes, and reduce that groups and integrates the nodes’ outputs. MapReduce
data needs to be in the format of hkey, valuei pair, where key serves as an index and
the value represents the properties corresponding to the key/data item. Programmer
usually only needs to specify the map and reduce function to process the hkey,
valuei pairs. Figure 5.2 illustrate the process of a MapReduce program execution.

The input big data in distributed file system is split and pre-processed by
RECORDREADER. The output of RECORDREADER is a set of hkey, valuei pairs,
which are sent to map. Each programmer specified map processes a hkey, valuei
pair and generates a list of new hkey, valuei pairs. In Fig. 5.2, the first map generates
three hkey, valuei pairs. The output hkey, valuei pairs are redistributed with the keys
as indexes. All the pairs with key K1 in Fig. 5.2 is processed by the first reduce.
Reduce analyzes the group of values with the same key and writes the result back
to distributed file system.

A significant of real world problems are able to be expressed by this model.
A complex problem may require several rounds of map and reduce operations,
requiring redefining and redistributing hkey, valuei pairs between rounds. New large-
scale processing models are also proposed. For example, Google’s Percolator [48]
focuses on incrementally processing updates to a large data set. Muppet [38]
provides a MapReduce-style model for streaming data. The collection intersection
problem cannot be represented by the Percolator model. Although Muppet is able to
perform collection intersection with streaming content, it cannot be used here due
to its memory-heavy feature.

Input <key, value> M1
<K1, V1>
<K2, V3>
<K3, V4>

<K4, V2>
<K3, V1>
<K3, V4>

<K2, V1>
<K1, V5>
<K4, V6>

<K1, V6>
<K1, V2>
<K2, V4>

<K2, V3>
<K2, V1>
<K2, V4>

<K3, V4>

<K3, V1>
<K3, V4>

<K4, V2>
<K4, V6>

<K1, V1>
<K1, V5>

<K1, V6>
<K1, V2>

R2

R4

R3

Output <key, value>

D
F
S

D
F
S

M2

M3

M4

Input <key, value>

Input <key, value>

Input <key, value>

R1

Output <key, value>

Output <key, value>

Output <key, value>

Fig. 5.2 Overview of MapReduce execution process. map takes each hkey, valuei pair as input
and generates new hkey, valuei pairs. The output hkey, valuei pairs are redistributed according to
the key. Each reduce processes the list of values with the same key and writes results back to
DFS

5 Rapid Screening of Big Data Against Inadvertent Leaks 203

There exist several MapReduce-specific challenges when realizing collection-
intersection based data-leak detection.

1. Complex data fields Collection intersection with duplicates is more complex
than set intersection. This requires the design of complex data fields for hkey,
valuei pairs and a series of map and reduce operations.

2. Memory and I/O efficiency The use of multiple data fields (e.g., collection
size and ID, shingle frequency) in hkey, valuei pairs may cause frequent garbage
collection and heavy network and disk I/O when processing big data.

3. Optimal segmentation of data streams While larger segment size allows the
full utilization of CPU, it may cause insufficient memory problem and reduced
detection sensitivity.

The MR-DLD data-leak detection algorithms in MapReduce addresses these
technical challenges in MapReduce framework and achieves the security and
privacy goals. The MR-DLD approach has well designed structured-yet-compact
representations for data fields of intermediate values, which significantly improves
the efficiency of the detection algorithms. The prototype also realizes an additional
post-processing partitioning and analysis, which allows one to pinpoint the leak
occurrences in large content segments. The MR-DLD approach is experimentally
evaluated to test the impact of segment sizes on the detection throughput and
identify the optimal segment size for performance.

5.3.3.2 Workload Distribution and Detection Workflow

The details of how the workload is distributed between data owner and DLD
provider is as follows and shown in Fig. 5.3:

1. Data owner has m sensitive sequences fS1; S2; � � � ; Smg with average size S 0 and
n content segments fC1; C2; � � � ; Cng with average size C 0. It obtains shingles
from the content and sensitive data respectively. Then it chooses the parameters
.n; p.x/; K; L/, where n is the length of a shingle, p.x/ is the irreducible

Pre-processing:
Rabin fingerprints generation

Detection:
MapReduce-based set intersection and
suspicous content segements selection

Post-processing:
identify true data leaks with plaintext

Data Owner DLD Provider

1

3

2

Fig. 5.3 Workload distribution for DLD provider and data owner

204 X. Shu et al.

polynomial and L is the fingerprint length. The data owner computes Rabin
fingerprints with (5.2) and releases the sensitive collections fCS1; CS2; � � � ; CSmg
and content fingerprint collections fCC1; CC2; � � � ; CCng to the DLD provider.

2. DLD provider receives both the sensitive fingerprint collections and content
fingerprint collections. It deploys MapReduce framework and compares the n
content collections with the m sensitive collections using two-phase MapReduce
algorithms. By computing the intersection rate of each content and sensitive
collections pair, it outputs whether the sensitive data was leaked and reports all
the data-leak alerts to data owner.

3. Data owner receives the data-leak alerts with a set of tuples f.CCi; CSj/; .CCk; CSl/;

� � � g. The data owner maps them to suspicious content segments and the plain
sensitive sequences tuples f.Ci; Sj/; .Ck; Sl/; � � � g. The data owner consults
plaintext content to confirm that true leaks (as opposed to accidental matches)
occur in these content segments and further pinpoint the leak occurrences.

To compute the intersection rate of two fingerprint collections Irate, the MR-
DLD approach has two MapReduce algorithms, DIVIDER and REASSEMBLER,
each of which has a map and a reduce operation. Map and reduce operations are
connected through a redistribution process. During the redistribution, outputs from
map (in the form of hkey, valuei pairs) are sent to reducer nodes, as the inputs to the
reduce algorithm. The key value of a record decides to which reducer node the it is
forwarded. Records with the same key are sent to the same reducer.

Notations used in the algorithms introduced below are shown in Table 5.1,
including collection identifier CID, size CSize (in terms of the number of items),
occurrence frequency Snum of an item in one collection, occurrence frequency Inum
of an item in an intersection, and intersection rate Irate of a content collection with
respect to some sensitive data.

Table 5.1 Notations used in the MapReduce algorithms

Syntax Definition

CID An identifier of a collection (content or sensitive data)

CSize Size of a collection

Snum Occurrence frequency of an item

Inum Occurrence frequency of an item in an intersection

CSid A pair of CIDs hCID1; CID2i, where CID1 is for a content collection and CID2 is for
a sensitive data collection

Irate Intersection rate between a content collection and a sensitive data collection as defined
in (5.1). Also referred to as the sensitivity score of the content.

ISN A 3-item tuple of a collection hidentifier CID, size CSize, and the number of items in
the collectioni

CSS An identifier for a collection intersection, consisting of an ID pair CSid of two
collections and the size of the sensitive data collection CSize

5 Rapid Screening of Big Data Against Inadvertent Leaks 205

1. DIVIDER takes the following as inputs: fingerprints of both content and sensitive
data, and the information about the collections containing these fingerprints. Its
purpose is to count the number of a fingerprint’s occurrences in a collection
intersection (i.e., Inum in (5.1)) for all fingerprints in all intersections.

In map operation, it re-organizes the fingerprints to identify all the occurrences
of a fingerprint across multiple content or sensitive data collections. Each
map instance processes one collection. This reorganization traverses the list of
fingerprints. Using the fingerprint as the key, it then emits (i.e., redistributes) the
records with the same key to the same node.

In reduce, for each fingerprint in an intersection the algorithm computes the
Inum value, which is its number of occurrences in the intersection. Each reduce
instance processes one fingerprint. The algorithm outputs the tuple hCSS, Inumi,
where CSS is the identifier of the intersection (consisting of IDs of the two
collections and the size of the sensitive data collection.1) Outputs are written to
MapReduce file system.

2. REASSEMBLER takes as inputs hCSS, Inumi (outputs from Algorithm DIVIDER).
The purpose of this algorithm is to compute the intersection rates (i.e., Irate
in (5.1)) of all collection intersections {Cci \ Csj } between a content collection
Cci and a sensitive data collection Csj .

In map, the inputs are read from the file system and redistributed to reducer
nodes according to the identifier of an intersection CSS (key). A reducer has
as inputs the Inum values for all the fingerprints appearing in a collection
intersection whose identifier is CSS. At reduce, it computes the intersection
rate of CSS based on (5.1).

In the next section, we present the algorithms for realizing the collection
intersection workflow with one-way Rabin fingerprints. Section 5.3.5 explains why
the privacy-preserving technique is able to protect the sensitive data against semi-
honest MapReduce nodes.

5.3.4 Collection Intersection in MapReduce

We present the collection-intersection algorithm in the MapReduce framework to
screening large content data. The algorithm computes the intersection rate of two
collections as defined in (5.1). Each collection consists of Rabin fingerprints of n-
grams generated from a sequence (sensitive data or content).

RECORDREADER is a (standard) MapReduce class. It is customized to read
initial inputs into the detection system and transform them into the hkey, valuei
format required by the map function. The initial inputs of RECORDREADER are
content fingerprints segments and sensitive fingerprints sequences. For the DIVIDER

1The sensitive data collection is typically much smaller than the content collection.

206 X. Shu et al.

Algorithm 1 DIVIDER: To count the number of a fingerprint’s occurrences in a
collection intersection for all fingerprints in all intersections
Input: Output of RECORDREADER in a format of hCSize, Fingerprinti as hkey, valuei pair.
Output: hCSS, Inumi as hkey, valuei pair, where CSS contains content collection ID, sensitive
data collection ID and the size of the sensitive data collection. Inum is occurrence frequency of a
fingerprint in the collection intersection.

1: function DIVIDER::MAPPER(CSize, Fingerprint)
2: F Record necessary information for the collection.
3: ISN CID, CSize and Snum
4: EmithFingerprint, ISNi
5: end function
1: function DIVIDER::REDUCER(Fingerprint, ISNlistŒc1; : : : ; cn�)
2: j D 0; k D 0

3: F Divide the list into a sensitive list and a content list
4: for all ci in ISNlist do
5: if ci belongs to sensitive collections then
6: SensList[++j] ci

7: else
8: ContentListŒCC k� ci

9: end if
10: end for
11: F Record the fingerprint occurrence in the intersection
12: for all sens in SensList do
13: for all content in ContentList do
14: Size sens.CSize
15: Inum Min(sens.Snum, content.Snum)
16: CSS hcontent.CID, sens.CID, Sizei
17: Emit hCSS, Inumi
18: end for
19: end for
20: end function

algorithm, the RECORDREADER has two tasks: (1) to read in each map split (e.g.,
content segment) as a whole and (2) to generate hCSize, fingerprinti pairs required
by the map operation of DIVIDER algorithm.

5.3.4.1 DIVIDER Algorithm

DIVIDER is the most important and computational intensive algorithm in the system.
Pseudocode of DIVIDER is given in Algorithm 1. In order to count the number of a
fingerprint’s occurrences in a collection intersection, the map operation in DIVIDER

goes through the input hCSize, fingerprinti pairs, and reorganizes them to be indexed
by fingerprint values. For each fingerprint in a collection, map records its origin
information (e.g., CID, CSize of the collection) and Snum (fingerprint’s frequency
of occurrence in the collection). These values are useful for later intersection-rate

5 Rapid Screening of Big Data Against Inadvertent Leaks 207

computation. The advantage of using the fingerprint as the index (key) in the map’s
outputs is that it allows the reducer to quickly identify non-intersected items.

After redistribution, entries having the same fingerprint are sent to the same
reducer node as inputs to the reduce algorithm.

Reduce algorithm is more complex than map. It partitions the occurrences of
a fingerprint into two lists, one list (ContentList) for the occurrences in content
collections and the other for sensitive data (SensList). It then uses a double for-loop
to identify the fingerprints that appear in intersections. Non-intersected fingerprints
are not analyzed, significantly reducing the computational overhead. This reduction
is reflected in the computational complexity analysis in Table 5.2, specifically the
� 2 Œ0; 1� reduction factor representing the size of the intersection.

The for-loops also compute the occurrence frequency Inum of the fingerprint in
an intersection. The output of the algorithm is the hCSS, Inumi pairs, indicating
that a fingerprint occurs Inum number of times in a collection intersection whose
identifier is CSS.

5.3.4.2 REASSEMBLER Algorithm

The purpose of REASSEMBLER is to compute the intersection rates Irate of all
collection-and-sensitive-data intersections. Pseudocode of REASSEMBLER is in
Algorithm 2. The map operation in REASSEMBLER emits (i.e., redistributes) inputs

Algorithm 2 REASSEMBLER: To compute the intersection rates Irate of all
collection intersections {Cci \ Csj } between a content collection Cci and a sensitive
data collection Csj

Input: Output of DIVIDER in a format of hCSS, Inumi as hkey, valuei pairs.
Output: hCSid, Iratei pairs where CSid represents a pair of a content collection ID and a sensitive
collection ID, while Irate represents the intersection rate between them

1: function REASSEMBLER::MAPPER(CSS, Inum)
2: EmithCSS, Inumi
3: end function

1: function REASSEMBLER::REDUCER(CSS, InumŒn1; : : : ; nn�)
2: intersection 0

3: F Add up all the elements in Inum[]
4: for all ni in Inum[] do
5: intersection intersection + ni

6: end for
7: CSid CSS.CSid
8: F Compute intersection rate

9: Irate jintersectionj

CSS.CSize
10: Emit hCSid, Iratei
11: end function

208 X. Shu et al.

hCSS, Inumi pairs according to their key CSS values to different reducers. The
reducer can then compute the intersection rate Irate for the content and sensitive
data collection pair. I.e., this redistribution sends all the intersected items between a
content collection Cci and a sensitive data collection Csj to the same reducer.

5.3.4.3 Example of the Algorithms

Steps of the MapReduce algorithms are illustrated with an example (on four
MapReduce nodes) in Fig. 5.4. The example has two content collections C1 and C2,
and two sensitive data collections S1 and S2. The four data collections are generated
by the data owner and sent to DLD provider. The sizes of the corresponding
collections are 3, 4, 3 and 3, respectively. Each element (e.g., a) in the collections
represents a fingerprint. The items after the steps indicate how the operations
compute.

Step 1 Before the algorithms, the customized RECORDREADER reads the
collections and sends hkey, valuei pairs to maps. In node 1, RECORDREADER parses
collection C1 by generating a hkey, valuei whenever it encounters an element. The
key is the collection size 3 for C1 and the value is the element it encounters.

• Node1: fa; b; cg) fh3; ai; h3; bi; h3; cig
• Node2: fa; h; c; hg) fh4; ai; h4; hi; h4; ci; h4; hig
• Node3: fa; b; dg) fh3; ai; h3; bi; h3; dig
• Node4: fd; h; hg) fh3; di; h3; hi; h3; hig

Step 2 For the element a in node 1, map in DIVIDER outputs the pair
ha; .C1; 3; 1/i, indicating that fingerprint (key) a is from content collection C1

of size 3 and occurs once in C1. The outputs are redistributed according the key
values. All occurrences of fingerprint a are sent to node 1, including two occurrences

<CSize, Fingerprint> <Fingerprint, ISN> <Fingerprint, ISN> <CSS, Inum> <CSS, Inum>

<CSid, I_rate>

Divider Reassembler

<(C1,S1), 3/3>
<(C2,S1), 1/3>
<(C1,S2), 1/3>
<(C2,S2), 2/3>

<(C2,S2,3), 2>

<(C1,S1,3), 1>
<(C2,S1,3), 1>

<(C1,S1,3), 1>

<(C1,S1,3), 1>
<(C1,S2,3), 1>

<(C2,S2,3), 2>

<a, (C1,3,1)>
<a, (C2,4,1)>
<a, (S1,3,1)>

<b, (C1,3,1)>
<b, (S1,3,1)>

<d, (C1,3,1)>
<d, (S1,3,1)>
<d, (S2,3,1)>

<c, (C2,4,1)>
<h, (C2,4,2)>
<h, (S2,3,2)>

<a, (C1,3,1)>
<b, (C1,3,1)>
<d, (C1,3,1)>

<a, (C2,4,1)>
<c, (C2,4,1)>
<h, (C2,4,2)>

<a, (S1,3,1)>
<b, (S1,3,1)>
<d, (S1,3,1)>

<d, (S2,3,1)>
<h, (S2,3,2)>

<3, a>
<3, b>
<3, d>

<4, a>
<4, h>
<4, c>
<4, h>

<3, a>
<3, b>
<3, d>

<3, d>
<3, h>
<3, h>

MRNode1:
{a, b, d}
Collection ID (CID): C1
Collection size (CSize): 3

<(C1,S1,3), 1>
<(C1,S1,3), 1>
<(C1,S1,3), 1>

<(C2,S1,3), 1>

<(C1,S2,3), 1>

MRNode2:
{a, h, c, h}
Collection ID (CID): C2
Collection size (CSize): 4
MRNode3:
{a, b, d}
Collection ID (CID): S1
Collection size (CSize): 3
MRNode4:
{d, h, h}
Collection ID (CID): S2
Collection size (CSize): 3

M

M

M

M

R

R

R

R

M&Redi

R

Redi

Fig. 5.4 An example illustrating DIVIDER and REASSEMBLER algorithms, with four MapReduce
nodes, two content collections C1 and C2, and two sensitive data collections S1 and S2. M, R, Redi
stand for map, reduce, and redistribution, respectively. hkey, valuei of each operation is shown at
the top

5 Rapid Screening of Big Data Against Inadvertent Leaks 209

from content collections C1 and C2, one occurrence from sensitive data collection
S1. Similar process applies to all the other fingerprints. The items below shows how
a is manipulated in different nodes.

• a in node1: h3; ai) ha; .C1; 3; 1/i
• a in node2: h4; ai) hb; .C2; 4; 1/i
• a in node3: h3; ai) hc; .S1; 3; 1/i

Step 3 Reduce in DIVIDER computes the intersection of content and sensitive
collections for each fingerprint. In node 1, given the list of collections that
fingerprint a exists, reduce algorithm uses a double for-loop and identifies that a
appears in intersection C1 \ S1 and intersection C2 \ S1. The intersections are set
as keys. The occurrence frequencies of fingerprint a are set as values. In node 1, a
appears once in C1 \ S1 and once in C2 \ S1.

• Node1: ha; f.C1; 3; 1/; .C2; 4; 1/; .S1; 3; 1/gi) fh.C1; S1; 3/; 1i; h.C2; S1; 3/; 1ig
• Node2: hb; f.C1; 3; 1/; .S1; 3; 1/gi) fh.C1; S1; 3/; 1ig
• Node3: hd; f.C1; 3; 1/; .S1; 4; 1/; .S2; 3; 1/gg) fh.C1; S1; 3/; 1i; h.C1; S2; 3/; 1ig
• Node4: hc; f.C2; 4; 1/gi) NULL; hh; f.C2; 4; 2/; .S2; 3; 2/gi) fh.C2; S2; 3/; 2ig

Step 4 In REASSEMBLER, the outputs of DIVIDER are redistributed. All the pairs
with the same intersection are sent to the same node. In node 1, all the occurrence
frequencies of fingerprints in intersection C1 \ S1 are collected. The total number of
fingerprints shared by C1 and S1 is 3. The intersection rate is 1.

• Node1: h.C1; S1; 3/; f1; 1; 1gi) h.C1; S1/; 3=3i
• Node2: h.C2; S1; 3/; f1gi) h.C2; S1/; 1=3i
• Node3: h.C1; S2; 3/; f1gi) h.C1; S2/; 1=3i
• Node4: h.C2; S2; 3/; f2gi) h.C2; S2/; 2=3i

With the outputs of all the nodes, we can get the intersection rates of all the
intersections. The intersection rates are used to determine which content collections
are suspicious.

5.3.4.4 Complexity Analysis

The computational and communication complexities of various operations of the
algorithm are shown in Table 5.2. The average size of a sensitive data collection
is denoted by S , the average size of a content collection by C , the number of
sensitive data collections by m, the number of content collections by n, and the
average intersection rate by � 2 Œ0; 1�. In real world detection, the size of Cm
could be very large. Without loss of generality, it is assumed that jS j < jC j and
jS mj < jC nj. Post-processing is not included in complexity analysis.

210 X. Shu et al.

Table 5.2 Computation and communication complexity of each phase in the MR-DLD MapRe-
duce algorithm and that of the conventional hashtable-based approach

Algorithm Computation Communication

Pre-processing of MR-DLD O.C nCSm/ O.C nCSm/

Divider of MR-DLD::Mapper O.C nCSm/ O.C nCSm/

Divider of MR-DLD::Reducer O.C nCSmn�/ O.S mn�/

Reassembler of MR-DLD::Mapper O.Smn�/ O.S mn�/

Reassembler of MR-DLD::Reducer O.Smn�/ O.mn/

Total of MR-DLD O.C nCSmn�/ O.C nCSmn�/

Hashtable O.C nCSmn/ N/A

The average size of a sensitive data collection is denoted by S , the average size of a content
collection by C , the number of sensitive data collections by m, the number of content collections
by n, and the average intersection rate by � 2 Œ0; 1�

The total communication complexity O.C n C S mn�/ covers the number of
records (hkey, valuei pairs) that all operations output. For a hashtable-based (non-
MapReduce) approach, where each content collection is stored in a hashtable (total
n hashtables of size C each) and each sensitive data item (total S m items) is
compared against all n hashtables, the computational complexity is O.C n CSmn/.

5.3.5 Security Analysis and Discussion

MapReduce nodes that perform the data-leak detection may be controlled by
honest-but-curious providers (aka semi-honest), who follow the protocol, but may
attempt to gain knowledge of the sensitive data information (e.g., by logging the
intermediate results and making inferences). The security and privacy guarantees
provided by the MR-DLD data-leak detection system is analyzed in this subsection.
We also point out the limitations associated with the collection intersection based
DLD approach.

5.3.5.1 Privacy Guarantee

The privacy goal of the MR-DLD system is to prevent the sensitive data from being
exposed to DLD provider or untrusted nodes. Let fs be the Rabin fingerprint of
sensitive data shingle s. Using the algorithms in Sect. 5.3.4, a MapReduce node
knows fingerprint fs but not shingle s of the sensitive data. Attackers are assumed to
be not able to infer s in polynomial time from fs. This assumption is guaranteed by
the one-way Rabin fingerprinting function [51].

In addition, to prevent DLD provider from performing frequency analysis, the
data owner chooses a different irreducible polynomial p.x/ for each session. To be
specific, the data owner needs to:

5 Rapid Screening of Big Data Against Inadvertent Leaks 211

1. Divide the content into multiple blocks. Each block is assigned to a session.
2. Select a new irreducible polynomial p.x/ for each session.
3. Divide each session (block) into several subsessions. Select a new secret session

key K for each subsession. We assume that the data in each subsession is small
enough, without providing useful frequency information.

4. For each subsession, pre-process the content block and a copy of sensitive data
with the polynomial p.x/. XOR all the fingerprints of the subsession with session
key K and send the result to DLD provider.

This above transformation preserves the equality comparison (as required in
Sect. 5.3.2). It ensures that the same shingles are mapped to the same fingerprint
within a session).

Following the above steps, the same shingle is mapped to different fingerprints
in multiple sessions. The advantage of this design is the increased randomization in
the fingerprint computation, making it more challenging for the DLD provider to
correlate values and infer preimage. DLD provider cannot have enough frequency
information to infer sensitive information. This randomization also increases the
difficulty of dictionary attacks.

In MR-DLD system, the irreducible polynomials need to be only known to the
data owner. As Rabin fingerprint is not designed to be a keyed hash, DLD provider
may still be able to infer the polynomial from fingerprints. However, the privacy of
sensitive data is still guaranteed even if p.x/ is known to DLD provider. Let f1 be
the Rabin fingerprint of shingle c1 in block B1 and f2 be the Rabin fingerprint of
shingle c2 in block B2. B1 uses irreducible polynomial p.x/1 and B2 uses irreducible
polynomial p.x/2. DLD provider can merge the frequency information of block B1

and block B2 only if it knows whether f1 and f2 are generated from the same shingle.
However, this is computational impossible because DLD provider does not know
the session keys for the two blocks, thus needs to resort to brute-force guessing,
which is expensive.

To perform successful frequency analysis, the DLD provider needs to have a
large content block, which is transformed with one key K and one p.x/. The
transformation breaks large content into smaller ones, with each encoded with
different key K and p.x/. As the DLD provider cannot merge frequency information
of multiple blocks, the combination usage of XOR and p.x/ can help increases the
difficulty of successful frequency analysis.

5.3.5.2 Detection Accuracy

We discuss the sources of possible false negatives—data-leak cases being over-
looked and false positives—legitimate content misclassified as data leak in the
detection.

Collisions Collisions may be due to where the legitimate content happens to
contain the partial sensitive-data fingerprints by coincidence. The collisions may
increase with shorter shingles, or smaller numbers of partial fingerprints, and may

212 X. Shu et al.

decrease if additional features such as the order of fingerprints are used for detection.
A previous large-scale information-retrieval study empirically demonstrated the low
rate of this type of collisions in Rabin fingerprint [8], which is a desirable property
suggesting low unwanted false alarms in our DLD setting. Using 6 shingles of 8
bytes each on 200 million documents, researchers found that the probability for two
documents that share more than a certain number of shingles to significantly differ
from each other is quite low [8]. For example, the probability that two documents
having resemblance greater than 97.5 % do not share at least two features is less
than 0.01; and the probability that two documents with less than 77 % resemblance
do share two or more shingles is less than 0.01 [8]. Collisions due to two distinct
shingles generating the same fingerprint are proved to be low [7] and are negligible.

Modified data leak The underlying shingle scheme of the basic approach has
limited power to capture heavily modified data leaks. False negatives (i.e., failure
to detect data leak) may occur due to the data modification (e.g., reformatting).
The new shingles/fingerprints may not resemble the original ones, and cannot be
detected. As a result, a packet may evade the detection. The modified data-leak
detection problem is a general problem for all comparison-based data-leak detection
solutions. More advanced content comparison techniques than shingles/fingerprints
are needed to fully address the issue.

Selective fragments leak The partial disclosure scheme may result in false
negatives, i.e., the leaked data may evade the detection because it is not covered
by the released fingerprints. This issue illustrates the tradeoff among detection
accuracy, privacy guarantee and detection efficiency.

5.3.6 Evaluation

The algorithms are implemented with Java in Hadoop, which is an open-source
software system implementing MapReduce. The length of fingerprint and shingle
is set to 8 bytes (64 bits). This length was previously reported as optimal for
robust similarity test [8], as it is long enough to preserve some local context
and short enough to resist certain transformations. The prototype also implements
an additional IP-based post-processing analysis and partition focusing on the
suspicious content. It allows the data owner to pinpoint the IPs of hosts where leaks
occur. The outputs are the suspicious content segments and corresponding hosts.

Several technical measures are made to reduce disk and network I/O. Sequence-
File (structured) format is used as the intermediate data format. The size of hkey,
valuei pairs is also minimized. E.g., the size of value after map in DIVIDER is
6 bytes on average. COMBINATION classes are also implemented to significantly
reduce the amount of intermediate results written to the distributed file systems
(DFS). This reduction in size is achieved by aggregating same hkey, valuei pairs.
This method reduces the data volume by half. Hadoop compression is also enabled,
giving as high as 20-fold size reduction.

5 Rapid Screening of Big Data Against Inadvertent Leaks 213

The algorithms are deployed in two different 24-node Hadoop systems, a local
cluster and Amazon Elastic Compute Cloud (EC2). For both environments, one
node is set as the master node and the rest as slave nodes.

• Amazon EC2: 24 nodes each having a c3.2xlarge instance with eight CPUs and
15 GB RAM.

• Local cluster: 24 nodes each having two quad-core 2.8 GHz Xeon processors and
8 GB RAM.

Enron Email Corpus, including both email header and body, are used to perform
the performance experiments. The entire dataset is used as content and a small
subset of it is used as the sensitive data.

The experiments aim to answer the following questions.

1. How does the size of content segment affect the analysis throughput?
(Sect. 5.3.6.1)

2. What is the throughput of the detection on Amazon EC2 and the local clusters?
(Sect. 5.3.6.2)

3. How does the size of sensitive data affect the detection performance?
(Sect. 5.3.6.3)

5.3.6.1 Optimal Size of Content Segment

Content volume is usually overwhelmingly larger than sensitive data, as new content
is generated continuously in storage and in transmission. Thus, the throughput of
different sizes and numbers of content segments is evaluated in order to find the
optimal segment size for scalability on DLD provider’s side. A content segment
with size OC is the original sequence that is used to generate the n-gram content
collection. A sensitive sequence with size OS is the original sequence that is used to
generate the n-gram sensitive collection.

Fig. 5.5 DLD provider’s
throughput with different
sizes of content segments. For
each setup (line), the size of
the content analyzed is 37 GB

0 10 20 30 40 50 60 70 80
Content Segment Size (MB)

80

100

120

140

160

180

200

220

T
hr

ou
gh

pu
t (

M
bp

s)

Sensitive data size
0.5MB
0.9MB

1.4MB
1.9MB

214 X. Shu et al.

Fig. 5.6 Data owner’s
pre-processing overhead on a
workstation with different
sizes of content segments.
The total size of content
analyzed is 37 GB

0 10 20 30 40 50 60 70 80
Content Segment Size (MB)

200

400

600

800

1000

C
P

U
 ti

m
e

(S
ec

on
d)

Total content
being processed:
37 GB.

The total size of content analyzed is 37 GB, which consists of multiple copies of
Enron data. Detection performance under different content segment sizes (from 2

to 80 MB) is measured. The size of sensitive data is varied from 0.5 to 2 MB. The
results are shown in Fig. 5.5.

We can observe that when OC < 37 MB, the throughput of the analysis increases
with the size OC of content segment. When OC becomes larger than 37 MB, the
throughput begins to decrease. The reason for this decrease is that more computation
resources are spent on garbage collection with larger OC. There are over 16 processes
running at one node at the same time. Each process is assigned 400 MB to process
37 � 8 MB shingles.

Data owner’s overhead of generating fingerprints is also evaluated with the same
datasets. The experiment is performed on a quad-core 3.00 GHz Xeon processor
and 8 GB RAM machine running Ubuntu 14.04.1. The results are shown in Fig. 5.6.
We observe that the CPU time of generating fingerprints falls off quickly with the
content segment size increasing. When OC > 20 MB, the CPU time is less than
100 s, meaning that the throughput is more than 3000 Mbps. The total time of pre-
processing is over 40 min due to the speed limit of I/O. However, pre-processing
can be easily parallelized. The time of generating fingerprints is linearly decreased
with multiple machines processing the content at the same time. This fact indicates
that the data owner can handle the fingerprint generation process without significant
overhead incurred.

Thus, the size of content segments is set to 37 MB for the rest of the experiments.
This size also allows the full utilization of the Hadoop file system (HDFS) I/O
capacity without causing out-of-memory problems.

5.3.6.2 Scalability

For scalability evaluation, 37 GB content is processed with different numbers of
nodes, 4, 8, 12, 16, 20, and 24. The experiments were deployed both on the local

5 Rapid Screening of Big Data Against Inadvertent Leaks 215

Fig. 5.7 Throughput with
different number of nodes on
a local cluster or Amazon
EC2

0 5 10 15 20 25
Number of Nodes

0

50

100

150

200

250

T
hr

ou
gh

pu
t(

M
bp

s)

Our Cluster
EC2

Fig. 5.8 Throughput with
different amount of content
workload. Each content
segment is 37 MB

0 500 1000 1500 2000
Number of Content Segments

100

120

140

160

180

200

220

240

T
hr

ou
gh

pu
t (

M
bp

s)

Sensitive data size
0.5MB
0.9MB

1.4MB
1.9MB

0 10 20 30 40 50 60 70
Total Content Size (GB)

cluster and on Amazon EC2. The results are shown in Fig. 5.7. The system scales
well, as the throughput linearly increases with the number of nodes. The peak
throughput observed is 215 Mbps on the local cluster and 225 Mbps on Amazon
EC2. EC2 cluster gives 3–11 % performance improvement. This improvement is
partly due to the larger memory. The standard error bars of EC2 nodes are shown
in Fig. 5.7 (from three runs). Variances of throughputs on the local cluster are
negligible.

The throughput is also evaluated under a varying number of content segments n,
i.e., workload. The results are shown in Fig. 5.8, where the total size of content
analyzed is shown at the top X-axis (up to 74 GB). Throughput increases as
workload increases as expected.

In the experiments above, the size of sensitive data is small enough to fit in one
collection. The larger size of sensitive data increases the computation overhead,
which explains the slight decrease in throughput in Figs. 5.5 and 5.8.

216 X. Shu et al.

Fig. 5.9 Runtime of
DIVIDER and REASSEMBLER

algorithms. The DIVIDER

operation takes 85–98 % of
the total runtime. The Y-axis
is in 10 based log scale

0 500 1000 1500 2000
Number of Content Segments

101

102

103

104

T
im

e
(S

ec
on

ds
, l

og
 s

ca
le

) Divider
Reassembler

0 10 20 30 40 50 60 70
Total Content Size (GB)

The total overhead are broken down based on the DIVIDER and REASSEMBLER

operations. The results are shown in Fig. 5.9 with the runtime (Y-axis) in a log scale.
DIVIDER algorithm is much more expensive than REASSEMBLER, accounting for
85–98 % of the total runtime. With increasing content workload, DIVIDER’s runtime
increases, more significantly than that of REASSEMBLER.

These observations are expected, as DIVIDER algorithm is more complex.
Specifically, both map and reduce in DIVIDER need to touch all content items.
Because of the large content volume, these operations are expensive. In comparison,
REASSEMBLER algorithm only touches the intersected items, which is substantially
smaller for normal content without leaks. These experimental results are consistent
with the complexity analysis in Table 5.2.

5.3.6.3 Performance Impact of Sensitive Data

The performance results in Fig. 5.5 are reorganized so that the sizes of sensitive
data are shown at the X-axis. The new figure is Fig. 5.10, where each setup (line)
processes 37 GB data and differs in their size for content segment. There are
a few observations. First, smaller content segment size incurs higher computa-
tional overhead, e.g., for keeping tracking the collection information (discussed in
Sect. 5.3.6.1).

The second observation is that the runtime increases as the size of sensitive data
increases, which is expected. Experiments with the largest content segment (bottom
line in Fig. 5.10) have the smallest increase, i.e., the least affected by the increasing
volume of sensitive data.

This difference in intercept is explained next. The total computation complexity
is O.C n C S mn�/ (Table 5.2). In O.C n C S mn�/, n� serves as the coefficient
(i.e., intercept), as the total size S m of sensitive data increases, where n is the
number of content segments. When 37 GB content is broken into small segments,

5 Rapid Screening of Big Data Against Inadvertent Leaks 217

Fig. 5.10 Runtime with a
varying size of sensitive data.
The content volume is
37.5 GB for each setup. Each
setup (line) has a different
size for content segments

0.5 1.0 1.5 2.0
Sensitive Data Size (MB)

1500

2000

2500

3000

3500

T
im

e
(s

ec
on

d)

Content segment size
36MB
18MB

9MB
4MB

2MB

n is large. A larger coefficient magnifies the increase in sensitive data, resulting
in more substantial overhead increase. Therefore, the line at the bottom of Fig. 5.10
represents the recommended configuration with a large 37 MB content segment size.

Summary The experimental findings are summarized as below.

1. The MR-DLD approach linearly scale on big data with the number of nodes. it
achieves 225 Mbps throughput on Amazon EC2 cluster and a similar throughput
on the local cluster. Divider algorithm accounts for 85–98 % of the total runtime.

2. Larger content segment size OC (up to 37 MB) gives higher performance. This
observation is due to the decreased amount of bookkeeping information for
keeping track of collections, which results in significantly reduced I/O overhead
associated with intermediate results. Data owner can also handle the fingerprint
generation process without significant overhead incurred.

3. When the content segment size OC is large (37 MB), the increase in the amount of
sensitive data has a relatively small impact on the runtime. Given the content
workload, larger OC means fewer number of content segments, resulting in a
smaller coefficient.

5.4 AlignDLD: Data-Leak Detection Through Alignment

To address the detection accuracy challenges, i.e., transformed data leaks and
partial data leaks, we present AlignDLD, a data-leak detection solution with
alignment techniques [58]. The key to the detection of transformed data leaks is
a specialized sequence alignment algorithm, which handles arbitrary variations of
patterns without an explicit specification of all possible variation patterns.

AlignDLD conducts an alignment between the sampled sensitive data sequence
and the sampled content being inspected. The alignment produces a score indicating
the amount of sensitive data contained in the content.

218 X. Shu et al.

Traditional alignment algorithms based on dynamic programming is slow and
cannot be directly applied to data-leak detection tasks on big data. In order
to address the scalability issue, AlignDLD consists of a comparable sampling
algorithm and a sampling oblivious alignment algorithm. The sampling algorithm
samples both content and sensitive data sequences. It satisfies the comparable
sampling property that the similarity of two sequences is preserved through
sampling, and the samples are meaningful to be aligned. AlignDLD aligns sam-
pled sequences to infer the similarity between the original sequences before
sampling.

Experiments show that AlignDLD achieves accurate detection with low false
positive and false negative rates. It substantially outperforms traditional collection-
intersection methods in terms of detection accuracy. It also meets the scalability
requirement for data-leak detection tasks on big data.

5.4.1 Models and Overview

Traditional collection-based data-leak detection models face two challenges toward
accurate data-leak detection.
High detection specificity: the ability to distinguish true leaks from coincidental
matches, which can cause false alarms. Existing collection-based detection is
orderless, where the order of matched patterns (n-grams) is ignored. Orderless
detection can result in false positives as shown below.

Sensitive data abcdefg
3-grams of the sensitive data abc, bcd, cde, def, efg
Content stream (false positive) ...efg...cde...abc...

Pervasive and localized modification. Sensitive data could be modified before it is
leaked out. The modification can occur throughout a sequence (pervasive modifica-
tion). The modification can also only affect a local region (local modification). We
describe some modification examples:

• Character replacement, e.g., WordPress replaces every space character with a
+ in HTTP POST requests.

• String insertion: HTML tags inserted throughout a document for formatting or
embedding objects.

• Data truncation or partial data leak, e.g., one page of a two-page sensitive
document is transmitted.

We present AlignDLD, a data-leak detection model using efficient sequence
comparison techniques to analyze a large amount of content. A diagram illustrating
the security model of AlignDLD is shown in Fig. 5.11.

5 Rapid Screening of Big Data Against Inadvertent Leaks 219

Original
sensitive data

Content
containing D’

Transformed
sensitive data

D’

D

CD’

D modified by a
user or program

Unencrypted CD’ in
storage or
transmission

Sample Align

CD’

D

Sensitivity
score

Alignment on
sampled sequences

Data Leak Screening

Fig. 5.11 A schematic drawing showing the two types of sequences in transformed data-leak
detection model, their relations, and the workflow of the detection

AlignDLD consists of a special sampling algorithm and a corresponding
alignment algorithm working on preprocessed n-grams of sequences. The pair
of algorithms computes a quantitative similarity score between sensitive data and
content. Local alignment, as opposed to global alignment, is used to identify similar
sequence segments, enabling the detection of partial data leaks.

The workflow includes EXTRACTION, PREPROCESSING, SAMPLING, ALIGN-
MENT, and DECISION operations.

EXTRACTION collects the content sequences.
PREPROCESSING prepares the sequences of n-grams for content/sensitive data.
SAMPLING generates samples from the preprocessed content/sensitive sequences.
ALIGNMENT performs local alignment between the two sampled sequences.
DECISION confirms and reports leaks according to the sensitive data sharing

policy.

5.4.2 Comparable Sampling

We formally define the new sampling requirement needed in data-leak detection and
present the comparable sampling algorithm used in AlignDLD.

5.4.2.1 Definitions

One great challenge in aligning sampled sequences is that the sensitive data segment
can be exposed at an arbitrary position in a network traffic stream or a file system.
The sampled sequence should be deterministic despite the starting and ending points
of the sequence to be sampled. Moreover, the leaked sensitive data could be inexact
but similar to the original string due to unpredictable transformations. We define the
capability of giving comparable results from similar strings in Definition 1.

220 X. Shu et al.

Definition 1. (Comparable sampling) if string x is similar to a substring of string
y according to a similarity measure M, then x0 (the sampled subsequences2 of x) is
similar to a substring of y0 (the sampled subsequence of y) according to M.

If we restrict the similarity measure M in Definition 1 to identical relation, we
get a specific instance of comparable sampling in Definition 2.

Definition 2. (Subsequence-preserving sampling) if string x is a substring of string
y, then x0 is also a substring of y0, where x0 is a sampled subsequence of x, and y0 is
a sampled subsequence of y.

Because a subsequence-preserving sampling procedure is a restricted comparable
sampling, so the subsequence-preserving sampling is deterministic, i.e., the same
input always yields the same output. The vice versa may not be true.

5.4.2.2 Comparable Sampling Algorithm

We present a comparable sampling algorithm, the advantage of which is its context-
aware selection, i.e., the selection decision of an item depends on how it compares
with its surrounding items according to a selection function. As a result, the
sampling algorithm is deterministic and subsequence-preserving.

The comparable sampling algorithm takes in S , an input list of items (n-grams
of sensitive data or content), and outputs T , a sampled list of the same length; the
sampled list contains null values, which correspond to items that are not selected.
The null regions in T can be aggregated, and T can be turned into a compact
representation L . Each item in L contains the value of the sampled item and the
length of the null region between the current sampled item and the preceding one.

T is initialized as an empty list, i.e., a list of null items. The algorithm runs a
small sliding window w on S and utilizes a selection function to decide what items
in w should be selected for T . The selection decision is made based on not only the
value of that item, but also the values of its neighboring items in w. Therefore, unlike
a random sampling method where a selection decision is stochastic, Algorithm 3
satisfies the subsequence-preserving and comparable sampling requirements.

In Algorithm 3, without loss of generality, we describe the sampling method with
a specific selection function f D min.w; N/. f takes in an array w and returns the
N smallest items in w. f is deterministic. It selects items without bias when items
(n-grams) are preprocessed using Rabin’s fingerprint.3 f can be replaced by other
functions that have the same properties. The selection results at each sliding window
position determine what items are chosen for the sampled list. The parameters N
and jwj determine the sampling rate. The directional collection difference operation

2Subsequence (with gaps) is a generalization of substring and allows gaps between characters, e.g.,
lo-e is a subsequence of flower (- indicates a gap).
3Rabin’s fingerprint is min-wise independent.

5 Rapid Screening of Big Data Against Inadvertent Leaks 221

Algorithm 3 A subsequence-preserving sampling algorithm
Require: an array S of items, a size jwj for a sliding window w, a selection function f .w; N/ that

selects N smallest items from a window w, i.e., f D min.w; N/

Ensure: a sampled array T
1: initialize T as an empty array of size jS j
2: w read.S ; jwj/
3: let w:head and w:tail be indices in S corresponding to the higher-indexed end and lower-

indexed end of w, respectively
4: collection mc min.w; N/

5: while w is within the boundary of S do
6: mp mc

7: move w toward high index by 1
8: mc min.w; N/

9: if mc ¤ mp then
10: item en collectionDiff.mc; mp/

11: item eo collectionDiff.mp; mc/

12: if en < eo then
13: write value en to T at w:head’s position
14: else
15: write value eo to T at w:tail’s position
16: end if
17: end if
18: end while

collectionDiff in Algorithm 3 (lines 10 and 11) is similar to the set difference
operation, except that it does not eliminate duplicates, i.e., identical items are kept
in the results.

T output by Algorithm 3 takes the same space as S does. Null items can be
combined, and T is turned into a compact representation L , which is consumed
by the sampling-oblivious alignment algorithm in the next phase.

5.4.2.3 Sampling Algorithm Analysis

The complexity of Algorithm 3 using the min.w; N/ selection function is
O.n log jwj/, or O.n/ where n is the size of the input, jwj is the size of the window.
The factor O.log jwj/ comes from maintaining the smallest N items within the
window w.

The sampling rate ˛ 2 Œ N
jwj ; 1� approximates N

jwj for random inputs. For arbitrary
inputs, the actual sampling rate depends on the characteristics of the input space and
the selection function used.

A sufficient number of items need to be sampled from sequences to warrant an
accurate detection. The empirical result in Sect. 5.4.4 shows that sampling with ˛ D
0:25 can detect as short as 32-byte-long sensitive data segments.

222 X. Shu et al.

5.4.3 Sampling Oblivious Alignment

We present a specialized alignment algorithm that runs on compact sampled
sequences L a and L b to infer the similarity between the original sensitive
data sequence S a and the original content sequence S b. It needs to satisfy a
new requirement sampling oblivion, i.e., the result of an alignment on sampled
sequences L a and L b should be consistent with the alignment result on the original
S a and S b.

Regular local alignment without the sampling oblivion property may give
inaccurate alignment on sampled sequences. However, because values of unselected
items are unknown to the alignment, the decision of match or mismatch cannot
be made solely on them during the alignment. The described algorithm infers the
comparison outcomes between null regions based on (1) the comparison outcomes
between items surrounding null regions and (2) sizes of null regions, because leaked
data region is usually consecutive, e.g., spans at least dozens of bytes. For example,
given two sampled sequences a-b and A-B, if a == A and b == B, then the two
values in the positions of the null regions are likely to match.

5.4.3.1 Dynamic Programming Components

The presented sample-oblivious alignment algorithm is based on dynamic pro-
gramming. A string alignment problem is divided into three prefix alignment
subproblems: the current two items (from two sequences) are aligned with each
other, or one of them is aligned with a gap. In the algorithm, comparison outcomes
between null regions are inferred based on their non-null neighboring values and
their sizes/lengths. The comparison results include match, mismatch and gap, and
they are rewarded (match) or penalized (mismatch or gap) differently for sampled
items or null regions according to a weight function fw./.

We present the recurrence relation of the dynamic program alignment algorithm
in Algorithm 4. For the i-th item Li in a sampled sequence L (the compact form),
the field Li:value denotes the value of the item and a new field Li:span denotes
the size of null region between that item and the preceding non-null item. The
algorithm computes a non-negative score matrix H of size jL aj-by-jL bj for the
input sequence L a and L b and returns the maximum alignment score with respect
to a weight function. Each cell H.i; j/ has a score field H.i; j/:score and two extra
fields recording sizes of neighboring null regions, namely nullrow and nullcol. nullrow

and nullcol fields for all three cell candidates hup, hleft, hdia are initialized as 0.
The weight function fw./ takes three inputs: the two items being aligned (e.g.,

L a
i from sensitive data sequence and L b

j from content sequence) and a reference
cell c (one of the three visited adjacent cells H.i�1; j�1/; H.i; j�1/, or H.i�1; j/),
and outputs a score of an alignment configuration. One of L a

i and L b
j may be a gap

(�) in the alignment. The computation is based on the penalty given to mismatch
and gap conditions and reward given to match condition. fw./ in Algorithm 4 differs

5 Rapid Screening of Big Data Against Inadvertent Leaks 223

Algorithm 4 Recurrence relation in dynamic programming
Require: A weight function fw, visited cells in H matrix that are adjacent to H.i; j/: H.i � 1; j�

1/; H.i; j� 1/, and H.i � 1; j/, and the i-th and j-th items L a
i ;L b

j in two sampled sequences
L a and L b, respectively.

Ensure: H.i; j/
1: hup:score fw.L a

i , -, H.i� 1; j//
2: hleft:score fw.-;L b

j ; H.i; j� 1//

3: hdia:score fw.L a
i ;L b

j ; H.i� 1; j� 1//

4: hdia:nullrow
�

0; if L a
i D L b

j

H.i� 1; j/:nullrowCL a
i :spanC 1; else

5: hdia:nullcol
(

0; if L a
i D L b

j

H.i; j� 1/:nullcol CL b
j :spanC 1; else

6: H.i; j/ arg max
h:score

˚
hup; hleft; hdia

�

7: H.i; j/:score max f0; H.i; j/:scoreg

from the typical weight function in Smith-Waterman algorithm [59] in its ability to
infer comparison outcomes for null regions. This inference is done accordingly to
the values of their adjacent non-null neighboring items.

5.4.3.2 Alignment Algorithm Analysis

The complexity of the presented alignment algorithm is O.jL ajjL bj/, where jL aj
and jL bj are lengths of compact representations of the two sampled sequences. The
alignment complexity for a single piece of sensitive data of size l is the same as that
of a set of shorter pieces with a total size l, as the total amounts of matrix cells to
compute are the same.

In a real-world deployment, the overall sensitive data sequence S a is usually
close to a fixed length, and more attention is commonly paid to the length of the
content sequence S b. In this case, the complexity of the alignment is O.jL bj/
where L b is the sampled list of S b.

The alignment of two sampled sequences achieves a speedup in the order of
O.˛2/, where ˛ 2 .0; 1/ is the sampling rate. There is a constant damping factor
due to the overhead introduced by sampling. The expected value is 0.33 because
of the extra two fields, besides the score field, to maintain for each cell in H. The
damping factor is experimentally verified in Sect. 5.4.4.

5.4.4 Detection Accuracy Evaluation

We present the detection results of AlignDLD against transformed data leaks and
partial data leaks in this section. AlignDLD is compared with Coll-Inter, a standard

224 X. Shu et al.

collection-intersection method. Parallel versions of the prototype are discussed in
Sect. 5.4.5 to demonstrate the detection capability in processing big data.

• AlignDLD: the sample-and-align data-leak detection method with sampling
parameters N D 10, jwj D 100, 3-grams and 32-bit Rabin’s fingerprints.4

• Coll-Inter: a data-leak detection system based on collection intersection, which
is widely adopted by commercial tools such as GlobalVelocity and GoCloudDLP.
Standard 8-grams and 64-bit Rabin’s fingerprints are used.

5.4.4.1 Detecting Modified Leaks

Data-leak detection are performed via AlignDLD and Coll-Inter on three types of
data leaks listed below.

1. Content without any leak, i.e., the content does not contain any sensitive data.
2. Content with unmodified leak, i.e., genuine sensitive data appears in the content.
3. Content with modified leaks caused by WordPress, which substitutes every

space with “+” in the content.

The content and sensitive data in this experiment are selected emails from Enron
dataset, which consists of 517,424 real emails from 150 users [34]. The content
without leak consists of 950 randomly chosen Enron emails, and the sensitive data
consists of 50 randomly chosen ones. We compute the sensitivities of the content
according to (5.4).

S D �

r � min .jS aj; jS bj/ (5.4)

The results of the detection are presented in Fig. 5.12. The table to the right
of each figure summarizes the detection accuracy under the best threshold. Both
methods perform as expected in the scenarios of no-leak (dotted lines on the left)
and unmodified leak (dashed lines on the right).

The solid lines in Fig. 5.12 represent the detection results of leaks with
WordPress modifications. AlignDLD in Fig. 5.12a gives much higher sensitivity
scores to the transformed data leak than Coll-Inter. With a threshold of 0.2, all
the email messages with transformed leaks are detected, i.e., it achieves 100 %
recall. The false positive rate is low. In contrast, Coll-Inter in Fig. 5.12b yields a
significant overlap between messages with no leak and messages with transformed
leaks. Its best detection yields a 63.8 % recall and a ten times higher false positive
rate.

4Rabin’s fingerprint is used for unbiased sampling (Sect. 5.4.2).

5 Rapid Screening of Big Data Against Inadvertent Leaks 225

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
or

m
al

iz
ed

 F
re

qu
en

cy
N

or
m

al
iz

ed
 F

re
qu

en
cy

Sensitivity

Coll-Inter [leak w/o modification]
Coll-Inter [leak w/ WordPress]
Coll-Inter [content w/o leak]

a

AlignDLD

b

Coll-Inter

Best Threshold

0.2

Recall
Leak w/ WordPress

100%

False Positive
Content w/o leak

0.8%

Best Threshold

0.14

Recall
Leak w/ WordPress

63.8%

False Positive
Content w/o leak

8.9%

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00
Sensitivity

AlignDLD [leak w/o modification]
AlignDLD [leak w/ WordPress]
AlignDLD [content w/o leak]

Fig. 5.12 Detection comparison of the leak through WordPress using AlignDLD (a) and
collection intersection (b). Solid lines show the sensitivity distribution of the modified leaks via
WordPress

5.4.4.2 Partial Data Leaks

In data truncation or partial data-leak scenarios, consecutive portions of the sensitive
data are leaked. In this experiment, a content sequence contains a portion of sensitive
text. The total length of the sensitive text is 1 KB. The size of the leaked portion in
the content ranges from 32 bytes to 1 KB. Each content sequence is 1 KB long with
random padding.

We measure the unit sensitivity QS 2 Œ0; 1� on segments of content sequences. Unit
sensitivity QS is the normalized per-element sensitivity value for the aligned portion
of two sequences. It is defined in (5.5), where Q� is the maximum local alignment
score obtained between aligned segments QS a and QS b, which are sequence segments
of sensitive data D and content CD0 . The higher QS is, the better the detection is.
Threshold l is a predefined length describing the shortest segment to invoke the
measure. l D 16 in the experiments.

226 X. Shu et al.

0%

20%

40%

60%

80%

100%

<= 0.60 0.65 0.70 0.75 0.80

Re
ca

ll

Sensitivity Threshold

1000B
500B
250B
128B
64B
32B

Fig. 5.13 The detection success rate of AlignDLD in partial data leaks

QS D
Q�

r � min .j QS aj; j QS bj/ where min .j QS aj; j QS bj/ � l (5.5)

The detection results of AlignDLD are shown in Fig. 5.13. Content with longer
sensitive text is easier to detection as expected. Nevertheless, AlignDLD detects
content with short truncated leaks as small as 32 bytes with high accuracy. The
detection rate decreases with higher thresholds. We observe that high thresholds
(e.g., >0.6) are not necessary for detection when 8-byte shingles are used; false
positives caused by coincidental matches are low in this setup. These experiments
show that AlignDLD is resilient to partial data leaks or data truncation.

5.4.5 Parallelization and Evaluation

The capability of processing large amounts of content and sensitive data is demon-
strated with multithreading CPU and GPU prototypes of AlignDLD.5

In the multithreading CPU prototype, both SAMPLING and ALIGNMENT pro-
cedures are paralleled with pthread library. Long streams are split into multiple
substrings, which are sampled in parallel by different threads and then assembled for
output. ALIGNMENT is the most time-consuming procedure and is made parallel on
both CPU and GPU. A parallelized score matrix filling method is used to compute
a diagonal of cells at the same time. This method consumes linear space.

We evaluate the performance of the most time-consuming ALIGNMENT proce-
dure on the Tesla GPU. Times of speedup in detecting sensitive data of types txt,

5The GPU prototype is realized on one NVIDIA Tesla C2050 with 448 GPU cores.

5 Rapid Screening of Big Data Against Inadvertent Leaks 227

Table 5.3 Times of speedup
in AlignDLD’s alignment
operation. [P] represents a
parallel version

Traffic Enron MiscNet
data txt png pdf txt png pdf

CPU 1.00 1.00 1.00 1.00 1.00 1.00

CPU[P] 3.59 3.29 3.40 2.78 3.18 2.82

GPU[P] 44.36 47.93 47.98 34.60 42.51 41.59

Table 5.4 Throughput (in
Mbps) of the Alignment
operation on GPU

Sensitive data size (KB) 250 500 1000 2500

Sampling rate

0.03 426 218 110 44

0.12 23 11 5 2

png, or pdf against Enron or MiscNet (miscellaneous 500 MB network traffic),
respectively, are shown in Table 5.3. The GPU AlignDLD prototype achieves
over 40 times of speedup over the CPU version on large content datasets. The
prototype achieves a throughput of over 400 Mbps against 500 MB misc network
traffic (MiscNet) shown in Table 5.4. This throughput is comparable to that of a
moderate commercial firewall. More optimizations on data locality and memory
usage can be performed in real-world detection products.

5.5 Other Defenses Against Data Leaks

In this section, we present other data-leak detection and prevention techniques. Most
of them are not designed to analyze leaks in big data. In addition, we introduce the
state-of-the-art techniques that could be used in data-leak detection.

5.5.1 Other Data-Leak Detection Techniques

Existing commercial data-leak detection/prevention solutions include Symantec
DLP [62], IdentityFinder [28], GlobalVelocity [23], and GoCloudDLP [24]. All
solutions are likely based on n-gram set intersection. IdentityFinder searches file
systems for short patterns of numbers that may be sensitive (e.g., 16-digit numbers
that might be credit card numbers). Symantec DLP is based on n-grams and Bloom
filters. The advantage of Bloom filter is space saving. However, filter membership
testing is based on unordered n-grams, which generates coincidental matches and
false alarms. Most of these commercial detection solutions do not have the privacy-
preserving feature and cannot be outsourced. GoCloudDLP [24] is a little different,
which allows its customers to outsource the detection to a fully honest DLD
provider.

228 X. Shu et al.

Borders and Prakash [6] presented a network analysis based approach for
estimating information leak in the outbound traffic. The method identifies the
anomalous and drastic increase in the amount of information carried by the traffic.
The method was not designed to detect small-scale data leak. Croft and Caesar [16]
compared two logical copies of network traffic to control the movement of sensitive
data. The work by Papadimitriou and Garcia-Molina [46] aims at finding the
agents that leaked the sensitive data. Blanton et al. [5] proposed a solution for
fast outsourcing of sequence edit distance and secure path computation, while
preserving the confidentiality of the sequence.

Examples of host-based approaches include Auto-FBI [80] and Aquifer [44].
Auto-FBI guarantees the secure access of sensitive data on the web. It achieves this
guarantee by automatically generating a new browser instance for sensitive content.
Aquifer is a policy framework and system. It helps prevent accidental information
disclosure in OS.

Another approach to the detection of sensitive data leak is to track the
data/metadata movement. Several tools are developed for securing sensitive
information on mobile platforms [26, 44, 69]. Nadkarni and Enck described an
approach to control the sharing of sensitive files among mobile applications [44].
File descriptors (not the content) are stored, tracked and managed. The access
control on files is enforced through policies. Yang et al. presented a method aiming
at detecting the transmission of sensitive data that is not intended by smartphone
users via symbolic execution analysis [69]. Hoyle et al. described a visualization
method for informing mobile users of information exposure [26]. The information
exposure may be caused by improper setting or configuration of access policies. The
visualization is through an avatar apparel approach. Croft and Caesar expand the
data tracking from a single host to a network and use shadow packets to distinguish
normal traffic from leaks [15]. The security goals and requirements in all these
studies are very different from ours, leading to different techniques developed and
used.

iLeak is a system for preventing inadvertent information leaks on a personal
computer [36]. It takes advantages of the keyword searching utility present in many
modern operating systems. iLeak monitors the file access activities of processes
and searches for system call inputs that involve sensitive data. Unlike the general
data-leak detection approach, iLeak is designed to secure personal data on a
single machine, and its detection capability is restricted by the underlying keyword
searching utility, which is not designed for detecting either transformed data leaks
or partial data leaks.

Bertino and Ghinita addressed the issue of data leaks in the database from
the perspective of anomaly detection [2]. Normal user behaviors are monitored
and modeled in DBMS, and anomalous activities are identified with respect to
potential data-leak activities. Bertino also discussed watermarking and provenance
techniques used in data-leak prevention and forensics [2], which is investigated in
details by Papadimitriou and Garcia-Molina in [46].

5 Rapid Screening of Big Data Against Inadvertent Leaks 229

5.5.2 Existing Privacy-Preserving Techniques

There have been several advances in understanding the privacy needs [37] or the
privacy requirement of security applications [66]. In this chapter, we identify the
privacy needs in an outsourced data-leak detection service and provide a systematic
solution to enable privacy-preserving DLD services.

Shingle with Rabin fingerprint [50] was used previously for identifying similar
spam messages in a collaborative setting [40], as well as collaborative worm
containment [10], virus scan [25], and fragment detection [52].

There are also other privacy-preserving techniques invented for specific pro-
cesses, e.g., DNA matching [63], or for general purpose use, e.g., secure multi-party
computation (SMC). Similar to string matching methods discussed above, [63]
uses anonymous automata to perform the comparison. Shu and Yao presented
privacy-preserving methods for protecting sensitive data in a non-MapReduce
based detection environment [57]. SMC [70] is a cryptographic mechanism, which
supports a wide range of fundamental arithmetic, set, and string operations as well
as complex functions such as knapsack computation [71], automated troubleshoot-
ing [27], network event statistics [9, 65], private information retrieval [74], genomic
computation [32], private database query [73], private join operations [11], and
distributed data mining [29]. The provable privacy guarantees offered by SMC
comes at a cost in terms of computational complexity and realization difficulty.

5.5.3 Applications and Improvements of MapReduce

MapReduce framework was used to solve problems in data mining [78], machine
learning [45], database [4, 64], and bioinformatics [43]. MapReduce algorithms for
computing document similarity (e.g., [1, 18, 76]) involve pairwise similarity com-
parison. Similarity measures may be Hamming distance, edit distance or Jaccard
distance. MapReduce was also used by security applications, such as log analy-
sis [22, 68], spam filtering [12, 13] and malware and botnet detection [21, 49, 79]
for scalability. The security solutions proposed by Bilge et al. [3], Yang et al. [68]
and Yen et al. [72] analyzed network traffic or logs with MapReduce, searching for
malware signatures or behavior patterns. None of the existing MapReduce solutions
addresses data-leak detection problem.

Several techniques have been proposed to improve the privacy protection of
MapReduce framework. Such solutions typically assume that the cloud provider is
trustworthy. For example, Pappas et al. [47] proposed a data-flow tracking method
in cloud applications. It audits the use of the sensitive data sent to the cloud. Roy
et al. [54] integrate mandatory access control with differential privacy in order to
manage the use of sensitive data in MapReduce computations. Yoon and Squiccia-
rini [75] detected malicious or cheating MapReduce nodes by correlating different

230 X. Shu et al.

nodes’ system and Hadoop logs. Squicciarini et al. [60] presented techniques that
prevent information leakage from the indexes of data in the cloud.

There exist MapReduce algorithms for computing the set intersection [4, 64].
They differ from the collection intersection algorithms, as explained in Sect. 5.2.2.
Collection intersection algorithm requires new intermediate data fields and process-
ing for counting and recording duplicates in the intersection. Several techniques
were developed for monitoring or improving MapReduce performance, e.g., to
identify nodes with slow tasks [14], GPU acceleration [19] and efficient data
transfer [42]. These advanced techniques can be applied to further speed up MR-
DLD.

5.6 Conclusions

In this chapter, we introduced the background of data-leak detection and presented
two techniques in detail, both of which are able to rapidly screen big content for
inadvertent data exposure.

MR-DLD is a MapReduce based system for detecting the occurrences of sensi-
tive data patterns in massive-scale content in data storage or network transmission. It
provides privacy enhancement to minimize the exposure of sensitive data during the
outsourced detection. MR-DLD was also deployed and evaluated with the Hadoop
platform on Amazon EC2 and a local cluster, and it achieved 225 Mbps analysis
throughput.

AlignDLD is based on aligning two sampled sequences for similarity compari-
son. The main feature of this solution is its ability to detect transformed or modified
leaks. This approach consists of a comparable sampling algorithm and a specialized
alignment algorithm for comparing two sampled sequences. The unique design of
the two algorithms enables its accuracy and scalability. The extensive experimental
evaluation with real-world data and leak scenarios confirms that this method has a
high specificity (i.e., low false alarm rate) and detects transformed data leaks much
more effectively than collection-intersection methods.

5.7 Future Work

The MR-DLD approach could be improved by being deployed on hybrid cloud
environments, which consist of private machines owned by the data owner and
public machines owned by the cloud provider. It is another general approach that
secures computation with mixed sensitive data. The MapReduce system in the
hybrid cloud is installed across public cloud and private cloud (e.g., [77]). It may
require much more computation capacity for data owner when compared with our
specific architecture. The use of hybrid cloud infrastructure will likely improve the
efficiency of the detection system.

5 Rapid Screening of Big Data Against Inadvertent Leaks 231

Alignment algorithm on MapReduce has been studied in bioinformatics for
DNA sequence read mapping (e.g., [55, 56]). The AlignDLD approach could
also be implemented on MapReduce, improving its privacy-preserving ability and
scalability. Each mapper and reducer could be sped up with the MapReduce on GPU
cluster framework (e.g., [61]). By combining the AlignDLD approach and the MR-
DLD approach with these latest techniques, future data-leak detection approaches
can achieve higher detection accuracy and scalability.

Acknowledgements This work has been supported by NSF S2ERC Center (an I/UCRC Center)
and ARO YIP grant W911NF-14-1-0535.

References

1. Baraglia R, Morales GDF, Lucchese C (2010) Document similarity self-join with MapReduce.
In: 2010 IEEE 10th international conference on data mining (ICDM). IEEE Computer Society,
Sydney, Australia, pp 731–736

2. Bertino E, Ghinita G (2011) Towards mechanisms for detection and prevention of data
exfiltration by insiders: keynote talk paper. In: Proceedings of the 6th ACM symposium on
information, computer and communications security, ASIACCS ’11, pp 10–19

3. Bilge L, Balzarotti D, Robertson W, Kirda E, Kruegel C (2012) Disclosure: detecting botnet
command and control servers through large-scale netflow analysis. In: Proceedings of the 28th
annual computer security applications conference, ACSAC ’12. ACM, New York, NY, pp 129–
138. doi:10.1145/2420950.2420969. http://doi.acm.org/10.1145/2420950.2420969

4. Blanas S, Patel JM, Ercegovac V, Rao J, Shekita EJ, Tian Y (2010) A comparison of join
algorithms for log processing in MapReduce. In: Proceedings of the 2010 ACM SIGMOD
international conference on management of data, SIGMOD ’10. ACM, New York, NY, pp 975–
986 doi:10.1145/1807167.1807273. http://doi.acm.org/10.1145/1807167.1807273

5. Blanton M, Atallah MJ, Frikken KB, Malluhi QM (2012) Secure and efficient outsourcing
of sequence comparisons. In: Computer security - ESORICS 2012 - 17th European sym-
posium on research in computer security, Proceedings, Pisa, 10–12 Sept 2012, pp 505–522.
doi:10.1007/978-3-642-33167-1_29. http://dx.doi.org/10.1007/978-3-642-33167-1_29

6. Borders K, Prakash A (2009) Quantifying information leaks in outbound web traffic. In: IEEE
symposium on security and privacy. IEEE Computer Society, San Jose, CA, USA, pp 129–140

7. Broder AZ (1993) Some applications of Rabin’s fingerprinting method. In: Capoc-
elli R, De Santis A, Vaccaro U (eds) Sequences II. Springer, New York, pp 143–152.
doi:10.1007/978-1-4613-9323-8_11. http://dx.doi.org/10.1007/978-1-4613-9323-8_11

8. Broder AZ (2000) Identifying and filtering near-duplicate documents. In: Proceedings of the
11th annual symposium on combinatorial pattern matching, pp 1–10

9. Burkhart M, Strasser M, Many D, Dimitropoulos X (2010) Sepia: privacy-preserving aggre-
gation of multi-domain network events and statistics. In: Proceedings of the 19th USENIX
Security Symposium, pp 15–15

10. Cai M, Hwang K, Kwok YK, Song S, Chen Y (2005) Collaborative Internet worm containment.
IEEE Secur Priv 3(3):25–33

11. Carbunar B, Sion R (2010) Joining privately on outsourced data. In: Secure data management.
Lecture notes in computer science, vol 6358. Springer, Berlin, pp 70–86

12. Caruana G, Li M, Qi, H (2010) SpamCloud: a MapReduce based anti-spam architecture. In:
Seventh international conference on fuzzy systems and knowledge discovery. IEEE, Yantai,
Shandong, China, pp 3003–3006

http://dx.doi.org/10.1145/2420950.2420969
http://doi.acm.org/10.1145/2420950.2420969
http://dx.doi.org/10.1145/1807167.1807273
http://doi.acm.org/10.1145/1807167.1807273
http://dx.doi.org/10.1007/978-3-642-33167-1_29
http://dx.doi.org/10.1007/978-3-642-33167-1_29
http://dx.doi.org/10.1007/978-1-4613-9323-8_11
http://dx.doi.org/10.1007/978-1-4613-9323-8_11

232 X. Shu et al.

13. Caruana G, Li M, Qi M (2011) A MapReduce based parallel SVM for large scale spam
filtering. In: Eighth international conference on fuzzy systems and knowledge discovery. IEEE,
Shanghai, China, pp 2659–2662

14. Chen Q, Liu C, Xiao Z (2014) Improving MapReduce performance using smart speculative
execution strategy. IEEE Trans Comput 63(4):954–967. doi:10.1109/TC.2013.15

15. Croft J, Caesar M (2011) Towards practical avoidance of information leakage in enterprise
networks. In: Proceedings of the 6th USENIX conference on hot topics in security, HotSec’11,
pp 7–7

16. Croft J, Caesar, M (2011) Towards practical avoidance of information leakage in enterprise
networks. In: 6th USENIX workshop on hot topics in security, HotSec’11. USENIX
Association

17. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun
ACM 51(1):107–113

18. Elsayed T, Lin JJ, Oard DW (2008) Pairwise document similarity in large collections with
MapReduce. In: ACL (Short Papers). The Association for Computer Linguistics, pp 265–268

19. Fang W, He B, Luo Q, Govindaraju NK (2011) Mars: accelerating MapReduce with graphics
processors. IEEE Trans Parallel Distrib Syst 22(4):608–620

20. FBI Cyber Division (2014) Recent cyber intrusion events directed toward retail firms
21. François J, Wang S, Bronzi W, State R, Engel T (2011) BotCloud: detecting botnets using

MapReduce. In: IEEE international workshop on information forensics and security. IEEE,
Iguacu Falls, Brazil, pp 1–6

22. Fu X, Ren R, Zhan J, Zhou W, Jia Z, Lu G (2012) LogMaster: mining event correlations in
logs of large-scale cluster systems. In: IEEE 31st symposium on reliable distributed systems.
IEEE, Irvine, CA, USA, pp 71–80

23. Global Velocity Inc (2015) Global velocity inc. http://www.globalvelocity.com/. Accessed Feb
2015

24. GTB Technologies Inc (2015) GoCloudDLP. http://www.goclouddlp.com/. Accessed Feb 2015
25. Hao F, Kodialam M, Lakshman T, Zhang H (2005) Fast payload-based flow estimation for

traffic monitoring and network security. In: Proceedings of the 2005 symposium on architecture
for networking and communications systems, pp 211–220

26. Hoyle R, Patil S, White D, Dawson J, Whalen P, Kapadia A (2013) Attire: conveying
information exposure through avatar apparel. In: Proceedings of the 2013 conference on
computer supported cooperative work companion, CSCW ’13, pp 19–22

27. Huang Q, Jao D, Wang HJ (2005) Applications of secure electronic voting to automated
privacy-preserving troubleshooting. In: Proceedings of the 12th ACM conference on computer
and communications security, pp 68–80

28. Identifyfinder (2015) Identity finder. http://www.identityfinder.com/. Accessed Feb 2015
29. Jagannathan G, Wright RN (2005) Privacy-preserving distributed k-means clustering over arbi-

trarily partitioned data. In: Proceedings of the 11th ACM SIGKDD international conference
on knowledge discovery in data mining, pp 593–599

30. Jang J, Brumley D, Venkataraman S (2011) BitShred: feature hashing malware for scalable
triage and semantic analysis. In: Proceedings of the 18th ACM conference on computer and
communications security, CCS ’11, pp 309–320

31. Jang Y, Chung S, Payne B, Lee W (2014) Gyrus: a framework for user-intent monitoring of
text-based networked applications. In: Proceedings of the 23rd USENIX security symposium,
pp 79–93

32. Jha S, Kruger L, Shmatikov V (2008) Towards practical privacy for genomic computation. In:
Proceedings of the 29th Ieee symposium on security and privacy, pp 216–230

33. Jung J, Sheth A, Greenstein B, Wetherall D, Maganis G, Kohno T (2008) Privacy oracle: a
system for finding application leaks with black box differential testing. In: Proceedings of the
15th ACM conference on computer and communications security, pp 279–288

34. Kalyan C, Chandrasekaran K (2007) Information leak detection in financial e-mails using mail
pattern analysis under partial information. In: Proceedings of the 7th WSEAS international
conference on applied informatics and communications, vol 7, pp 104–109

http://dx.doi.org/10.1109/TC.2013.15
http://www.globalvelocity.com/
http://www.goclouddlp.com/
http://www.identityfinder.com/

5 Rapid Screening of Big Data Against Inadvertent Leaks 233

35. Kaspersky Lab (2014) Kaspersky lab IT security risks survey 2014: a business approach to
managing data security threats

36. Kemerlis VP, Pappas V, Portokalidis G, Keromytis AD (2010) iLeak: a lightweight system for
detecting inadvertent information leaks. In: Proceedings of the 6th European conference on
computer network defense

37. Kleinberg J, Papadimitriou CH, Raghavan P (2001) On the value of private information.
In: Proceedings of the 8th conference on theoretical aspects of rationality and knowledge,
pp 249–257

38. Lam W, Liu L, Prasad S, Rajaraman A, Vacheri Z, Doan A (2012) Muppet:
Mapreduce-style processing of fast data. Proc VLDB Endow 5(12):1814–1825.
doi:10.14778/2367502.2367520. http://dx.doi.org/10.14778/2367502.2367520

39. Lee Y, Kang W, Son H (2010) An internet traffic analysis method with MapReduce. In: Net-
work operations and management symposium workshops (NOMS Wksps), 2010 IEEE/IFIP,
pp 357–361. doi:10.1109/NOMSW.2010.5486551

40. Li K, Zhong Z, Ramaswamy L (2009) Privacy-aware collaborative spam filtering. IEEE Trans
Parallel Distrib Syst 20(5):725–739

41. Liu F, Shu X, Yao D, Butt AR (2015) Privacy-preserving scanning of big content for
sensitive data exposure with mapreduce. In: Proceedings of the 5th ACM conference on
data and application security and privacy, CODASPY 2015, San Antonio, TX, 2–4 Mar 2015,
pp 195–206

42. Logothetis D, Trezzo C, Webb KC, Yocum K (2011) In-situ MapReduce for log processing.
In: USENIX annual technical conference. USENIX Association

43. Matsunaga AM, Tsugawa MO, Fortes JAB (2008) Cloudblast: combining MapReduce and
virtualization on distributed resources for bioinformatics applications. In: eScience. IEEE
Computer Society, Indianapolis, IN, USA, pp 222–229

44. Nadkarni A, Enck W (2013) Preventing accidental data disclosure in modern operating
systems. In: ACM conference on computer and communications security. ACM, Berlin,
Germany, pp 1029–1042

45. Panda B, Herbach JS, Basu S, Bayardo RJ (2009) Planet: massively parallel learn-
ing of tree ensembles with MapReduce. Proc VLDB Endow 2(2):1426–1437.
doi:10.14778/1687553.1687569. http://dx.doi.org/10.14778/1687553.1687569

46. Papadimitriou P, Garcia-Molina H (2011) Data leakage detection. IEEE Trans Knowl Data Eng
23(1):51–63

47. Pappas V, Kemerlis V, Zavou A, Polychronakis M, Keromytis A (2013) Cloudfence: enabling
users to audit the use of their cloud-resident data. In: Research in attacks, intrusions,
and defenses. Lecture notes in computer science, vol 8145. Springer, Berlin, pp 411–431.
doi:10.1007/978-3-642-41284-4_21. http://dx.doi.org/10.1007/978-3-642-41284-4_21

48. Peng D, Dabek F (2010) Large-scale incremental processing using distributed transactions and
notifications. In: Proceedings of the 9th USENIX conference on operating systems design and
implementation, OSDI’10. USENIX Association, Berkeley, CA, pp 1–15. http://dl.acm.org/
citation.cfm?id=1924943.1924961

49. Provos N, McNamee D, Mavrommatis P, Wang K, Modadugu N (2007) The ghost in the
browser: analysis of web-based malware. In: First workshop on hot topics in understanding
botnets. USENIX Association

50. Rabin MO (1981) Fingerprinting by random polynomials. Technical Report TR-15-81, The
Hebrew University of Jerusalem

51. Rabin MO (1981) Fingerprinting by random polynomials. Technical Report TR-15-81,
Harvard Aliken Computation Laboratory

52. Ramaswamy L, Iyengar A, Liu L, Douglis F (2004) Automatic detection of fragments in
dynamically generated web pages. In: Proceedings of the 13th international conference on
world wide web, pp 443–454

53. RiskBasedSecurity (2015) Data breach quickview: 2014 data breach trends
54. Roy I, Setty STV, Kilzer A, Shmatikov V, Witchel E (2010) Airavat: security and privacy for

MapReduce. In: Proceedings of the 7th USENIX symposium on networked systems design
and implementation, pp 297–312. USENIX Association

http://dx.doi.org/10.14778/2367502.2367520
http://dx.doi.org/10.14778/2367502.2367520
http://dx.doi.org/10.1109/NOMSW.2010.5486551
http://dx.doi.org/10.14778/1687553.1687569
http://dx.doi.org/10.14778/1687553.1687569
http://dx.doi.org/10.1007/978-3-642-41284-4_21
http://dx.doi.org/10.1007/978-3-642-41284-4_21
http://dl.acm.org/citation.cfm?id=1924943.1924961
http://dl.acm.org/citation.cfm?id=1924943.1924961

234 X. Shu et al.

55. Schatz MC (2008) Blastreduce: high performance short read mapping with mapreduce.
University of Maryland. http://cgis.cs.umd.edu/Grad/scholarlypapers/papers/MichaelSchatz.
pdf

56. Schatz MC (2009) Cloudburst: highly sensitive read mapping with mapreduce. Bioinformatics
25(11):1363–1369. doi:10.1093/bioinformatics/btp236. http://bioinformatics.oxfordjournals.
org/content/25/11/1363.abstract

57. Shu X, Yao D (2012) Data leak detection as a service. In: Proceedings of the 8th international
conference on security and privacy in communication networks (SecureComm), Padua,
pp 222–240

58. Shu X, Zhang J, Yao D, Feng W (2015) Rapid and parallel content screening for detecting
transformed data exposure. In: Proceedings of the third international workshop on security and
privacy in big data (BigSecurity). Hongkong, China

59. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol
147(1):195–197

60. Squicciarini AC, Sundareswaran S, Lin D (2010) Preventing information leakage from
indexing in the cloud. In: IEEE international conference on cloud computing, CLOUD 2010,
Miami, FL 5–10 July. IEEE, Miami, FL, USA, pp 188–195. doi:10.1109/CLOUD.2010.82.
http://dx.doi.org/10.1109/CLOUD.2010.82

61. Stuart JA, Owens JD (2011) Multi-gpu mapreduce on gpu clusters. In: Proceedings of the 2011
ieee international parallel & distributed processing symposium, IPDPS ’11. IEEE Computer
Society, Washington, DC, pp 1068–1079. doi:10.1109/IPDPS.2011.102. http://dx.doi.org/10.
1109/IPDPS.2011.102

62. Symantec (2015) Symantec data loss prevention. http://www.symantec.com/data-loss-
prevention. Accessed Feb 2015

63. Troncoso-Pastoriza JR, Katzenbeisser S, Celik M (2007) Privacy preserving error resilient
DNA searching through oblivious automata. In: Proceedings of the 14th ACM conference
on computer and communications security, pp 519–528

64. Vernica R, Carey MJ, Li C (2010) Efficient parallel set-similarity joins using MapReduce. In:
Proceedings of the 2010 ACM SIGMOD international conference on management of data,
SIGMOD ’10. ACM, New York, NY, pp 495–506. doi:10.1145/1807167.1807222. http://doi.
acm.org/10.1145/1807167.1807222

65. Williams P, Sion R (2008) Usable PIR. In: Proceedings of the 13th network and distributed
system security symposium

66. Xu S (2009) Collaborative attack vs. collaborative defense. In: Collaborative computing:
networking, applications and worksharing. Lecture notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, vol 10. Springer, Berlin,
pp 217–228

67. Xu K, Yao D, Ma Q, Crowell A (2011) Detecting infection onset with behavior-based policies.
In: Proceedings of the 5th international conference on network and system security, pp 57–64

68. Yang SF, Chen WY, Wang YT (2011) ICAS: an inter-VM IDS log cloud analysis system.
In: 2011 IEEE international conference on cloud computing and intelligence systems (CCIS),
pp 285–289. doi:10.1109/CCIS.2011.6045076

69. Yang Z, Yang M, Zhang Y, Gu G, Ning P, Wang XS (2013) AppIntent: analyzing sensitive
data transmission in Android for privacy leakage detection. In: Proceedings of the 20th ACM
conference on computer and communications security

70. Yao ACC (1986) How to generate and exchange secrets. In: Proceedings of the 27th annual
symposium on foundations of computer science, pp 162–167

71. Yao D, Frikken KB, Atallah MJ, Tamassia R (2008) Private information: to reveal or not to
reveal. ACM Trans Inf Syst Secur 12(1):6

72. Yen TF, Oprea A, Onarlioglu K, Leetham T, Robertson W, Juels A, Kirda E (2013) Beehive:
large-scale log analysis for detecting suspicious activity in enterprise networks. In: Proceedings
of the 29th annual computer security applications conference, ACSAC ’13. ACM, New York,
pp 199–208. doi:10.1145/2523649.2523670. http://doi.acm.org/10.1145/2523649.2523670

http://cgis.cs.umd.edu/Grad/scholarlypapers/papers/MichaelSchatz.pdf
http://cgis.cs.umd.edu/Grad/scholarlypapers/papers/MichaelSchatz.pdf
http://dx.doi.org/10.1093/bioinformatics/btp236
http://bioinformatics.oxfordjournals.org/content/25/11/1363.abstract
http://bioinformatics.oxfordjournals.org/content/25/11/1363.abstract
http://dx.doi.org/10.1109/CLOUD.2010.82
http://dx.doi.org/10.1109/CLOUD.2010.82
http://dx.doi.org/10.1109/IPDPS.2011.102
http://dx.doi.org/10.1109/IPDPS.2011.102
http://dx.doi.org/10.1109/IPDPS.2011.102
http://www.symantec.com/data-loss-prevention
http://www.symantec.com/data-loss-prevention
http://dx.doi.org/10.1145/1807167.1807222
http://doi.acm.org/10.1145/1807167.1807222
http://doi.acm.org/10.1145/1807167.1807222
http://dx.doi.org/10.1109/CCIS.2011.6045076
http://dx.doi.org/10.1145/2523649.2523670
http://doi.acm.org/10.1145/2523649.2523670

5 Rapid Screening of Big Data Against Inadvertent Leaks 235

73. Yi X, Kaosar MG, Paulet R, Bertino E (2013) Single-database private information retrieval
from fully homomorphic encryption. IEEE Trans Knowl Data Eng 25(5):1125–1134

74. Yi X, Paulet R, Bertino E (2013) Private information retrieval. Synthesis lectures on
information security, privacy, and trust. Morgan & Claypool Publishers

75. Yoon E, Squicciarini A (2014) Toward detecting compromised mapreduce workers through
log analysis. In: 2014 14th IEEE/ACM international symposium on cluster, cloud and grid
computing (CCGrid), pp 41–50. doi:10.1109/CCGrid.2014.120

76. Yuan P, Sha C, Wang X, Yang B, Zhou A, Yang S (2010) XML structural similarity search using
MapReduce. In: 11th international conference, web-age information management. Lecture
notes in computer science, vol 6184. Springer, New York, pp 169–181

77. Zhang C, Chang EC, Yap R (2014) Tagged-MapReduce: a general framework for secure
computing with mixed-sensitivity data on hybrid clouds. In: 2014 14th IEEE/ACM
international symposium on cluster, cloud and grid computing (CCGrid), pp 31–40.
doi:10.1109/CCGrid.2014.96

78. Zhao W, Ma H, He Q (2009) Parallel k-means clustering based on MapReduce. In: Cloud
computing, first international conference, CloudCom 2009. lecture notes in computer science,
vol 5931. Springer, Berlin. pp 674–679

79. Zhuang L, Dunagan J, Simon DR, Wang HJ, Osipkov I, Tygar JD (2008) Characterizing botnets
from Email spam records. In: First USENIX workshop on large-scale exploits and emergent
threats, LEET ’08. USENIX Association

80. Zohrevandi M, Bazzi RA (2013) Auto-FBI: a user-friendly approach for secure access to
sensitive content on the web. In: Proceedings of the 29th annual computer security applications
conference, ACSAC ’13. ACM, New York, NY, pp 349–358. doi:10.1145/2523649.2523683.
http://doi.acm.org/10.1145/2523649.2523683

http://dx.doi.org/10.1109/CCGrid.2014.120
http://dx.doi.org/10.1109/CCGrid.2014.96
http://dx.doi.org/10.1145/2523649.2523683
http://doi.acm.org/10.1145/2523649.2523683

	5 Rapid Screening of Big Data Against Inadvertent Leaks
	5.1 Introduction: Data Leaks in the Era of Big Data
	5.1.1 MR-DLD: Privacy-Preserving Data-Leak Detection Through MapReduce Collection Intersection
	5.1.2 AlignDLD: Data-Leak Detection Through Alignment

	5.2 Model and Background
	5.2.1 Security Model
	5.2.2 Basic Solution

	5.3 MR-DLD: MapReduce-Based Data-Leak Detection
	5.3.1 Threat Model
	5.3.2 Confidentiality of Sensitive Data
	5.3.3 Technical Requirements and Design Overview
	5.3.3.1 MapReduce-Based Design and Challenges
	5.3.3.2 Workload Distribution and Detection Workflow

	5.3.4 Collection Intersection in MapReduce
	5.3.4.1 Divider Algorithm
	5.3.4.2 Reassembler Algorithm
	5.3.4.3 Example of the Algorithms
	5.3.4.4 Complexity Analysis

	5.3.5 Security Analysis and Discussion
	5.3.5.1 Privacy Guarantee
	5.3.5.2 Detection Accuracy

	5.3.6 Evaluation
	5.3.6.1 Optimal Size of Content Segment
	5.3.6.2 Scalability
	5.3.6.3 Performance Impact of Sensitive Data

	5.4 AlignDLD: Data-Leak Detection Through Alignment
	5.4.1 Models and Overview
	5.4.2 Comparable Sampling
	5.4.2.1 Definitions
	5.4.2.2 Comparable Sampling Algorithm
	5.4.2.3 Sampling Algorithm Analysis

	5.4.3 Sampling Oblivious Alignment
	5.4.3.1 Dynamic Programming Components
	5.4.3.2 Alignment Algorithm Analysis

	5.4.4 Detection Accuracy Evaluation
	5.4.4.1 Detecting Modified Leaks
	5.4.4.2 Partial Data Leaks

	5.4.5 Parallelization and Evaluation

	5.5 Other Defenses Against Data Leaks
	5.5.1 Other Data-Leak Detection Techniques
	5.5.2 Existing Privacy-Preserving Techniques
	5.5.3 Applications and Improvements of MapReduce

	5.6 Conclusions
	5.7 Future Work
	References

