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Abstract. In the time of affordable and comfortable video-based eye
tracking, the need for analysis software becomes more and more impor-
tant. We introduce Eyetrace, a new software developed for the analysis
of eye-tracking data during static image viewing. The aim of the soft-
ware is to provide a platform for eye-tracking data analysis which works
with different eye trackers, offering thus the possibility to compare results
beyond the specific characteristics of the hardware devices. Furthermore,
by integrating various state-of-the-art and new developed algorithms for
analysis and visualization of eye-tracking data, the influence of different
analysis steps and parameter choices on typical eye-tracking measures
is totally transparent to the user. Eyetrace integrates several algorithms
to identify fixations and saccades, and to cluster them. Well-established
algorithms can be used side-by-side with bleeding-edge approaches with
a continuous visualization. Eyetrace can be downloaded at http://www.
ti.uni-tuebingen.de/Eyetrace.1751.0.html and we encourage its use for
exploratory data analysis and education.

1 Introduction

Eye-tracking technology has found its way into many fields of application and
research during the last years. With ever cheaper and easier to use devices,
the traditional usage in psychology and market investigation was accompanied
by new application fields, especially in medicine and natural sciences. Together
with the number of devices, the number of software for the analysis of eye track-
ing data increased steadily (e.g., SMI begaze, Tobii Analytics, D-Lab, NYAN,
Eyeworks, ASL Results Plus, or Gazepoint Analysis). Major brands offer their
individual analysis software with ready-to-run algorithms and preset several
parameter settings for their eye-tracker device and typical applications. All of
them share common features (such as visualizing gaze traces, attention maps and
calculating area of interest statistics) and distinguish in minor features. A major
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restriction in their usability are the licensing regulations. Supplying a class of
students with licenses for home use, post-hoc data analysis years after recording
the data may be difficult due to the financial effort associated with the licens-
ing regulations. Besides that, these applications usually can not be extended by
custom algorithms and specialized evaluation methods. Not few studies reach
the point where the manufacturer software is insufficient and its extension is not
possible. Thus, the recorded data has to be exported and loaded into other pro-
grams, e.g., Matlab, for further processing. Furthermore, individual calculations
are often non-opaque or not documented in the necessary detail in order to allow
comparison between studies conducted with different eye-tracker devices or even
between different recording software versions.

Eyetrace supports a range of common eye-trackers and offers a variety of
state-of-the-art algorithms for eye-tracking data analysis. The aim is not only to
provide a standardized work-flow, but also to highlight the variability of differ-
ent eye-tracker devices as well as different algorithms. For example, instead of
just finding all fixations and saccades in the data, we enable the data analyst to
test whether the choice of parameters for the fixation filter was adequate. Our
approach is driven by continuous data visualization such that the result of each
analysis step can be visually inspected. Different visualization techniques are
available and can be active at the same time, i.e. a scanpath can be drawn over
an attention map with areas of interest highlighted. All visualizations are cus-
tomizable in order to visualize grouping effects, being distinguishable on different
backgrounds and for color-blind persons.

We realize that no analysis software can provide all the tools required for
every possible study. Therefore, the software is not only extensible but also
offers the possibility to export all data and preliminary analysis results for usage
with common statistics software such as Gnu R or SPSS.

Eyetrace originates from a collaboration of the department of art history
at the University of Vienna [1–3] and the computer science department at the
University of Tübingen. It consists of the core analysis component and a pre-
processing step that is responsible for compatibility with many different eye-
tracker devices as well as data quality analysis. The software bundle, including
Eyetrace and EyetraceButler is written in C++, based on the experience of
the previous version (EyeTrace 3.10.4, developed by Martin Hirschbühl with
Christoph Klein and Raphael Rosenberg) as well as other eye-tracking analysis
tools [4]. We are eager to implement state-of-the-art algorithms, such as fixa-
tion filters, clustering algorithms, and data-driven area of interest annotation
and share the need to understand how these methods work. Therefore, imple-
mented methods as well as their parameters are transparent to the user and well
documented including references to the original work introducing them.

Eyetrace is available free of charge for non commercial research and educa-
tional purposes. It can be employed for analysis of eye-tracking data in scientific
studies, in education and teaching.
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2 Data Preparation

In order to make the use of different eye-tracker types convenient, recordings
are preprocessed and converted into an eye-tracker independent format. The
preprocessing software EyetraceButler handles this step and can also be used to
split a single recording into subsets (e.g., by task or stimulus) and to perform a
data quality check.

EyetraceButler provides a separate plug-in for all supported eye-trackers and
converts the individual eye-tracking recordings into a format that holds infor-
mation common to almost all eye-tracking formats. More specifically, it contains
the x and y coordinates for both eyes, the width and height of the pupil as well
as a validity bit, together with a joint timestamp. For monocular eye-trackers or
eye-trackers that do not include pupil data the corresponding values are set to
zero. A quality report is then produced containing information about the over-
all tracking quality as well as individual tracking losses (Fig. 1). Especially for
demanding tracking situations, the quality report enables distinction between
an overall low tracking quality and the partial loss of tracking for a time slice
(such as at the beginning or end of the recording).

Fig. 1. Quality analysis for two recordings with a binocular eye-tracker. The color
represents measurement errors (red), successful tracking of both eyes (green) and of
only one eye (yellow) over time. It is easy to visually assess the overall quality of a
recording as well as the nature of individual tracking failures (Color figure online).

2.1 Supplementary Data

In addition to the eye-tracking data, arbitrary supplementary information about
the subject or relevant experimental conditions can be added, e.g. gender, age,
dominant eye, or (subject’s) patient’s status. This information is made available
to Eyetrace along with information concerning the stimulus viewed. Based on
this information, the program is able to sort and group all loaded examinations
according to these values.

2.2 Supported Eye-Tracker Devices

The EyetraceButler utilizes slim plug-ins in order to implement new eye-tracker
profiles. To date, plug-ins for five different eye-trackers are available, among them
devices by SMI, Ergoneers, TheEyeTribe as well as a calibration-free tracker
recently developed by the Fraunhofer Institute in Ilmenau.
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3 Data Analysis

3.1 Loading, Grouping and Filtering Data

Data files prepared by the EyetraceButler can be batch loaded into Eyetrace
together with their accompanying information such as the stimulus image or
subject information. Visualization and analysis techniques can handle subjects
grouping by any of the arbitrary subject information fields. For example atten-
tion maps can be calculated separately for each subject, cumulative for all sub-
jects or by subject groups. This allows to compare subjects with healthy vision
to a low vision patient group or to compare the viewing behavior of different age
groups. Adaptive filters are provided to select the desired grouping and individ-
ual recordings can be included or excluded from the visualization and analysis
process.

3.2 Fixation and Saccade Identification

One of the earliest and most frequent analysis steps is the identification of fix-
ations and saccades. Their exact identification is essential for the calculation of
many eye movement characteristics, such as the average fixation time or saccade
length.

Eye-tracking manufacturers often offer the possibility to identify fixations
and saccades automatically. However, this filtering step is not as trivial as the
automated annotation may suggest. In fact, different algorithms yield quite dif-
ferent results. By offering a variety of calculation methods and making their
parameters available for editing, we want to bring to mind the importance of
the right choice of parameters. Especially when it comes to identifying the exact
first and last point that still belong to a fixation and the merging of subsequent
fixations that come to fall to the same location, relevant differences between
algorithms and a high sensitivity to parameter changes can be observed.

To date following algorithms are implemented in Eyetrace:

Standard Algorithm. The standard algorithm for separating fixations and
saccades is based on three adjustable values: The minimum duration of the
fixations, the maximum radius of the fixations and the maximum number of
points that are allowed to be outside this radius (helpful with noisy data). A time
window of the minimum fixation duration is shifted over the measurement points
until the conditions of maximum radius and maximum outliers are fulfilled. In
the following step the beginning fixation is extended if possible until the number
of allowed outliers has been reached. A complete fixation has been identified and
the procedure starts anew. Every measurement point that was not assigned to a
fixation is assigned to the saccade between its predecessor and successor fixation.

Velocity-Based Algorithm. Since saccades show high eye movement speed
while fixations and smooth pursuit movements are much slower, putting a thresh-
old on the eye movement speed is a straight forward way of fixation filtering.
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Eyetrace currently implements three different variants of velocity based fixa-
tion identification. Each of the methods can filter short fixations via a minimum
duration in a post-processing step.

Velocity Threshold by Pixel Speed [px/s]. A simple threshold over the speed
between subsequent measurements. If the speed is exceeded, the measurement
belongs to a saccade, otherwise to a fixation. While a pixel per second threshold is
easy to interpret for the computer, it is often not meaningful to the experimenter
and therefore hard to choose.

Velocity Threshold by Percentile. Based on the assumption that the velocity
is bigger within saccades than within fixations, velocities are sorted by mag-
nitude and a threshold is chosen by a percentile of the data selected by the
user (usually 80–90%). An example of sorted distances between measurements:
1 3 7 11 12 13 18 21 21 22

Green distances are supposed to belong to fixations for a 60 % percentile (6
out of 10 distances) and the value 18 would be chosen as velocity threshold.

Velocity Threshold by Angular Velocity [/s]. This is the representation most com-
mon in the literature since it is independent of pixel count and individual view-
ing behavior. However, it also requires most knowledge about the data recording
process in order to be able to convert the pixel distances into angular distances
(namely the distance between viewer and screen, screen width and resolution).
Suggested values for individual tasks can be found in the literature [5,6].

Gaussian Mixture Model. A Gaussian mixture model as introduced in [7] is
also implemented in Eyetrace. This method is based on the assumption that dis-
tances between subsequent measurement points within a fixation form a Gaussian
distribution. Furthermore distances between measurement points that belong

Fig. 2. Fit of two Gaussian distributions to the large distances between subsequent
measurements within saccades and the short distances between fixations. Two sample
points are shown, one with higher probability to belong to a fixation (left) and one
with a higher probability for a saccade (right).
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to a saccade also form a Gaussian distribution, but with different mean and
standard deviation. A maximum likelihood estimation of the parameters of the
Mixture of Gaussians is performed. Afterward for each measurement point the
probability that it belongs to a fixation or to a saccade can be calculated and
fixation/saccade labels are assigned based on these probabilities (Fig. 2). The
major advantage of this approach is that all parameters can be derived from the
data. One could evaluate data recorded during an unknown experiment without
the need to specify any thresholds or experimental conditions. The method has
been evaluated in several studies [8–10].

3.3 Fixation Clustering

After identification of fixations and saccades the fixations can also be clustered.
Clustering fixations either by neighborhood thresholds or mean-shift clustering
(as proposed by [11]) results in data-driven, automatically assigned areas of
interest.

Fixation clusters can be calculated on the scan patterns of one subject or
cumulative on a group of subjects.

Standard Clustering Algorithm. This greedy algorithm requires the defin-
ition of a minimum number of fixations that will be considered a cluster, the
maximum radius of a cluster, and the overlap. Fixations are sorted in descending
order of the number of included gaze points. Starting with the longest fixation,
the algorithm iterates over all fixations, checking whether they fulfill the condi-
tions of building a cluster with the biggest one. If the number of found fixations
is sufficient, all found fixations are assigned to the same cluster and excluded
from further clustering. If not, the first fixation cannot be assigned to any cluster
and the algorithm starts again from the second longest fixation.

Mean-Shift Clustering. The mean-shift clustering method assumes that mea-
surements are sampled from Gaussian distributions around the cluster centers.
The algorithm converges towards local point density maxima. The iterative pro-
cedure is shown in Fig. 3. One of the main advantages is that it does not require
the expected number of clusters in advance but determines an optimal clustering
based on the data.

Cumulative Clustering. The clustering algorithms mentioned above can also
be used on the cumulative data of more than one subject or more than one experi-
ment condition. This way cumulative population clusters can be formed. They are
more robust to noise and individual viewing behavior differences. The parameters
of the algorithms are adapted for cumulative usage (e.g. the number of minimum
fixations for the standard algorithm depends on the number of data sets used for
cumulative analysis), but the way the methods work remain the same.
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Fig. 3. Simplified visualization of the mean-shift algorithm for the first two iterations
at one starting point. In each iteration the mean (green square) of all data points (blue
circles) within a certain window around a point (big red circle) is calculated. In the
next iteration the procedure is repeated with the window shifted towards the previous
mean. This is done until the mean convergence (Color figure online).

3.4 Areas of Interests (AOIs)

For the evaluation of gaze directed at specific regions, Eyetrace provides both the
possibility to annotate top-down AOIs manually (via a graphical editor with only
few mouse clicks) or to determine bottom-up clusters of high fixation density.
Figure 4 shows an example of manually defined AOIs and bottom-up defined
clusters.

Fig. 4. Simultaneous overlay of multiple visualization techniques for one scanpath of
an image viewing task. The background image is shown together with a scanpath rep-
resentation of fixed-size fixation markers (small circles) and generated fixation clusters
(bigger ellipses) for left (green) and right (blue) eye. AOIs were annotated by hand
(marked as white overlay) (Color figure online).

4 Data Visualization

The software allows simultaneous visualization of multiple scanpaths. These may
represent different subjects, subject groups or distinct experiment conditions.
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The scan patterns are rendered in real-time as an overlay to an image or video
stimulus. Various customizable visualization techniques are available: Fixations
that encode fixation duration in their circular size, elliptical approximations
encoding spatial extend as well as attention and shadow maps. Exploratory data
analysis can be performed by traversing through the time dimension of the scan
patterns as if it was a video. Most of the visualizations are interactive so that
placing the cursor over the visualization of e.g. a fixation gives access to detailed
information such as its duration and onset time.

4.1 Fixations and Fixation Clusters

The visualization of fixations and fixation clusters has to account for their spatial
and temporal information. It is common to draw them as circles of either uniform
size or to encode the fixation duration in the circle diameter (see Fig. 6). Besides
these options, Eyetrace can fit an ellipse to the spatial extend of all measurement
points assigned to the fixation. The eigenvectors of these measurements point
into the direction of highest variance within the data (see Fig. 5) and can there-
fore be used as major and minor axis for the ellipse fit. This visualization gives
an excellent impression of measurement accuracy, since fixations are supposed
to represent a relatively stable eye position and the variance of measurements

Fig. 5. The two eigenvectors of Gaussian distributed samples (that correspond to the
directions of highest variance). These are used as the major and minor axes for an
elliptic fit.

(a) (b)

Fig. 6. (a) Fixation visualization as circles scaled by the respective dwell times, rep-
resenting location and temporal information. (b) Elliptic fit to the individual mea-
surement points assigned to the fixation. This visualization indicates the measurement
accuracy and the quality of the fixation filter. Usually fixations are supposed to be
circular, however wrong settings during the fixation identification step may cause adja-
cent saccade points to be clustered into the fixation and therefore deform the circle
towards a more ellipsoid shape.
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within a fixation therefore stands representative for the measurement inaccuracy.
When evaluating different fixation filters the circularity of resulting ellipses can
be used as a quality measure: Realistic fixations are supposed to be approxi-
mately circular. Once fixations begin to grow ellipsoid, the choice of parameters
for the selected filter is probably inadequate.

4.2 Attention and Shadow Maps

Attention maps are one of the most common eye-tracking analysis tools, besides
the high number of subjects that have to be measured in order to get reliable
results [12]. In order to enable fast attention map rendering even for a large
number of recordings and high resolution, the attention map calculation utilizes
multiple processor cores. Attention maps can be calculated for gaze points, fix-
ations and fixation clusters. We provide the classical red-green color palette for
attention maps as well as blue version for color-blind persons.

For the gaze point attention map each gaze point contributes as a two dimen-
sional Gaussian distribution. The final attention map is calculated as the sum
over all Gaussians. The Gaussian distribution is specified by the two parameters
size and intensity which are adjustable by the user. This Gaussian distribution
is circular because gaze points do not have information about orientation and
size. For fixations and fixation clusters the elliptic fit is used to determine the
shape and orientation of the Gaussian distribution. Figure 8 shows an example
of a circular Gaussian distribution (a) and a stretched, elliptical one (b).

P (x, y) =
1

σ1σ22π
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Equation 1 shows the Gaussian distribution in the two dimensional case. σ1

and σ2 are the variance in horizontal and vertical direction respectively (see
Fig. 8). x and y are the offsets to the center of the Gaussian distribution (see
Fig. 8). The correlation coefficient � is zero in Fig. 8 to simplify the case.

(a) (b)

Fig. 7. An attention map calculated for fixation clusters (a) and the corresponding
shadow map (b). Data of microsureons during a tumor removal surgery lend from [13].



Analysis of Eye Movements with Eyetrace 467

(a) (b)

Fig. 8. Two Gaussian distribution calculated with σ1 = σ2 = 1 (a) and σ1 = 1 and
σ2 = 5 (b).

A variant of the attention map is the shadow map that reveals only areas
frequently hit by gaze (see Fig. 7(b)). Its calculation is identical to that of the
attention map with the difference of a smoothing step in order to show the
border regions with higher sensitivity. This is done by calculating the n-th root
of each map value where n is a user-defined parameter that regulates the desired
smoothing.

4.3 Saccades

Saccades are typically visualized as arrows or lines connecting two fixations.
Besides this, a statistical evaluation can be visualized as a diagram called

anglestar. It consists of a number of slices and a rotation offset. A slice of the
anglestar codes in its length the number of saccades with the same angular
orientation as the slice (e.g. if the slice represents the angles between 0◦ and 45◦

the number of saccades within that angle range contribute to that slice) to the
horizontal axis is considered. The extend of a slice from the center of the star
can represent the quantity, summed length or summed duration of the saccades
towards that direction. Figure 9 shows a diagram where the extension of the
slices is based on the summed length of the saccades.

Fig. 9. Representation of an anglestar.
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4.4 Fixations Clusters and AOI Transitions Diagram

For some evaluation cases it is interesting in which sequence attention is shifted
between different areas. The AOI transitions diagram (Fig. 10) visualizes the
transition probabilities between AOIs manually annotated and/or converted
from fixation clusters during a specific time period. The color of the transi-
tion is inherited from the AOI with most outgoing saccades. Hovering the mouse
over an AOI shows all transitions from this AOI and hides the transitions from
all other AOIs. Hovering the cursor over a specific transition displays an infor-
mation box containing the number of transitions in both directions. Figure 10(b)
visualizes the transitions directly on the image.

(a) (b)

Fig. 10. (a) Abstract diagram of the transitions between AOIs. The graphic is inter-
active and can blend out irrelevant edges if one AOI is selected. (b) AOIs as defined
by cumulative fixation clusters and corresponding transition frequencies as an overlay
over the original image. Eyetrace offers interaction with the graphic via the cursor in
order to show only the currently relevant subset of transitions from and to one AOI.

5 Data Export

5.1 Statistics

General Statistics. Independent of all other calculations it is possible to calcu-
late some general gaze statistics. These include the horizontal and vertical gaze
activity, minimum, maximum and average speed of the gaze. These statistics
shine a light on the agility and exploratory behavior of the subjects and can be
exported in a format ready to use in statistical programs such as JMP or SPSS.

AOI Statistics. Numerous gaze characteristics can be calculated for AOIs,
such as the total number of glances towards the AOI, the time of the first glance,
glance frequency, total glance time, the glance proportion towards the AOI in
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respect to the whole recording and the minimum, maximum and mean glance
duration. Glance in this case means that a sequence of gaze points are located
inside the AOI, no matter if they belong to a saccade or a fixation. These statis-
tics are a supplement to the AOI transitions diagram and can also be exported.

5.2 Visualization

The transition diagram as well as every visualization can be exported either loss-
less as vector graphics or as bitmaps (png, jpg). Eyetrace provides the option
to export the information about the subject (e.g. age, dominant eye) and the
parameters used for calculation and visualization as a footer in the exported
image. That way results can be reproduced and understood based solely on the
exported image.

5.3 Evaluation Results

After calculating fixations, fixation clusters or cumulative clusters Eyetrace pro-
vides the possibility to export them as a text file.

Fixations are exported in a table including the running number, the number
of included points, x and y coordinate, radius and if calculated the id of the
cluster this fixation belongs to. The text file for the clusters and cumulative
clusters include an ID number, the number of fixations contained, mean x, mean
y and the radius.

6 Conclusion and Outlook

Eyetrace is a well-structured software tool, advantageous enough to be employed
for academic research in a number of application fields but with its convenient
handling nonetheless usable for persons without broad eye-tracking experience,
e.g., for teaching students. The major advantages of the software are the flexi-
bility of algorithms and their parameters as well as their actuality with respect
to the state-of-the-art.

Eyetrace has already been tested on data of various research projects, ranging
from the viewing of fine art [1–3] recorded via a static binocular SMI infrared eye-
tracker to on-road and simulator driving experiments [14,15] and supermarket
search tasks [16,17] recorded via a mobile Dikablis tracker by Ergoneers.

In our future work, we will not only extend the EyetraceButler for applica-
bility to further eye-tracking device, but also extend the general and AOI-based
statistics calculations, integrate and implement new calculation and visualiza-
tion algorithms and make the existing ones more interactive. A special focus will
be given to the analysis and processing of saccadic eye movements as well as to
the automated annotation of AOIs for dynamic scenarios [18] and non-elliptical
AOIs. In addition, we plan on including further automated scanpath comparison
metrics, such as MultiMatch [19] or SubsMatch [18].



470 T.C. Kübler et al.

Another relevant area is for our future work will be the monitoring of vigilance
and workload during visual tasks. Especially for medical applications such as
reaction or stimulus sensitivity testing, the mental state of the subject is of
great importance. Available data, such as the pupil dilation, fatigue waves [20],
saccade length differences [21], and blink rate may give important insight into the
recorded data and even yield e.g. cognitive workload weighted attention maps.

Acknowledgements. We want to thank the department of art history at the univer-
sity of Vienna for the inspiring collaboration. The project was partly financed by the
the WWTF (Project CS11-023 to Helmut Leder and Raphael Rosenberg).
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