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Abstract. Crosstalks between host and pathogen are crucial in the
infection process. To obtain insight into the defense mechanisms of the
host and the pathogenic mechanisms of the pathogen, pathogen-host
interactions in the infection process have become a novel and promis-
ing research subject in the field of infectious disease. In this study, two
pathogen-host dynamic crosstalk networks were constructed to inves-
tigate the transition of pathogenic and defensive mechanisms from the
innate to adaptive immune system in the entire infection process based on
two-sided time course microarray data of C. albicans-zebrafish infection
model and database mining. Potential crosstalk network biomarkers for
the transition from innate to adaptive immunity were identified based on
proteins with larger interaction variations inside the host and pathogen,
and at the interface between the host and pathogen. The crosstalk net-
work biomarkers consist of proteins with larger interaction variation
scores in the pathogen-host interaction difference network. From the
crosstalk network biomarkers, the molecular mechanisms of innate and
adaptive immunity were successfully investigated from a systems biology
perspective. In view of these results, the proposed crosstalk network bio-
markers may serve as potential therapeutic targets of infectious diseases.
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1 Introduction

Our immune system protects us from deadly threats from pathogens. To fulfil
the requirements, the immune system has to detect the invasion of exogenous
pathogens, watch for the pathogenic conversion of endogenous microbes, com-
municate the threats to the other systems in our bodies, e.g., the nervous [1–4]
and digestive system [5–7], and then coordinate the systems to evade the threats.
Obviously, the immune system cannot function alone. In the past, the studies
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regarding the immune system [8–10] focused on the molecular functions and cel-
lular constitution of the immune system itself, and on the physiological effects of
immune-related molecules and cells. However, the immune system is one part of
a biological organism. Hence, from a systematic perspective, we should consider
all systems as a whole, and not view the immune system in isolation.

Immune-related molecules (e.g., chemokines, cytokines, interferons, etc.) and
cell types (e.g., lymphocytes, monocytes, mast cells, etc.) are commonly studied
with respect to the molecular functions and cellular constitution of the immune
system. After activating the first line of the host defense mechanisms (i.e., innate
immunity), several cell types (e.g., macrophages, dendritic cells, natural killer
cells, etc.) are recruited to protect the host from pathogen invasion and elimi-
nate the threats from pathogens. The recognition of pathogen-associated molec-
ular patterns (PAMPs) and/or damage-associated molecular patterns (DAMPs)
by pattern recognition receptors (PRRs) (e.g., toll-like receptors, C-type lectin
receptors, etc.) [10,11] can be viewed as a starting point in a series of the follow-
ing complex mechanisms. The PRRs initiate downstream pathways that promote
the activation of other parts of the innate immune system and the clearance of
pathogens (e.g., production and secretion of cytokines, chemokines, and chemo-
tactic cues to recruit more leukocytes). Meanwhile, the macrophages and den-
dritic cells are responsible for presenting antigens to induce the synthesis of the
antibodies specific to the presented antigens if it is the first exposure of the host
to the pathogen (Fig. 1A). If it was not the first exposure of the host to the
pathogen, existing immunological memory cells proliferate and induce the syn-
thesis of antibodies (Fig. 1A). In short, the interplays between T cells, B cells,
macrophages, dendritic cells, etc. have been elaborated in detail at the physio-
logical level. For the treatment of infectious diseases, current drug targets focus
on some key molecules rather than the cellular level. Therefore, investigation of
the systematic offensive and defensive mechanisms at a molecular level is the
most important topic from a drug discovery and design perspective.

Compared with the host immune system, pathogenic mechanisms, not to
mention interspecies protein-protein interactions (PPIs) between the host and
pathogen, have attracted less attention. The battle is a two-sided affair, that
is, the interplays between the host and pathogen shape the whole infection
process, from the first exposure to the pathogen to the final outcomes of the infec-
tion [12]. Therefore, about a decade ago, the traditional viewpoint to treat the
host and pathogen separately shifted to a more holistic viewpoint that included
both players in the infection process. This viewpoint transition resulted from (i)
the realization of the indispensability of pathogen-host interactions (PHIs) in
infectious diseases and (ii) the advent of omics biotechnology to quantify genes,
transcripts, and proteins at whole cell/organism levels [13]. This permitted a
comprehensive interrogation of both the pathogen and host at the whole-genome,
transcriptome, and proteome levels. Despite tremendous advances in under-
standing pathogenic mechanisms and the subsequent triumphs in drug devel-
opment [14], the remaining issues (e.g., drug resistance) of infectious diseases
have become more troublesome. The dynamic and complex interactions between
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Fig. 1. Study design and the flowchart of PH-PPIN construction. (A) The first and sec-
ond exposure induced the innate and adaptive immune responses, respectively, and the
two-sided temporal gene expression profiles were recorded by microarray experiments
(the rectangles are the observation windows of microarray experiments). (B) The flow-
chart delineates the procedures used in this study. Selected proteins of interest based
on the microarray data formed a protein pool. The PPI candidates collected from the
database mining and ortholog information were further pruned into the innate and
adaptive dynamic PH-PPINs by the dynamic interaction model, system order detec-
tion method, and microarray data. Finally, the interaction variation scores were used
to evaluate the significance of proteins in the interaction difference network, which was
derived from the two constructed PH-PPINs.

the host and pathogen may partially explain why certain drugs are often not
effective in vivo [15]. Hence, to investigate infection processes from a systematic
perspective, in this study we constructed dynamic pathogen-host PPI networks
(PH-PPINs) of innate and adaptive immunity.

To obtain systematic molecular interaction networks for targeted therapy,
we utilized the C. albicans-zebrafish infection model [16]. We measured the tem-
poral gene expression profiles of C. albicans and zebrafish during the infection
process, constructed the interspecies PPIs using a dynamic interaction model,
and identified the crosstalk network biomarkers with proposed interaction vari-
ation scores (Fig. 1B). Given the success of the C. albicans-zebrafish infection
model [16] as well as its amenability to genetic manipulation [17], the zebrafish
is a novel and potential model organism to study immunity. Furthermore, the
zebrafish and human immune systems are remarkably similar and more than 75 %
of human genes implicated in diseases have counterparts in zebrafish [18]. This
provides a strong connection between the zebrafish and humans with respect to
pathogenic mechanisms as well as immune responses, which are important for
biomedical applications. The immune system of zebrafish as well as other verte-
brates can be divided into two subsystems: i.e., innate and adaptive immunity
[11]. The first dataset (GSE32119, [19]) we used to construct a dynamic PH-
PPIN measured the two-sided gene expression profiles during the first 18 hours
after zebrafish was first exposed to C. albicans to induce primary responses.
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The second dataset (GSE51603, [20]) measured the two-sided gene expression
profiles during the first 42 hours after zebrafish was secondarily exposed to C.
albicans to induce secondary responses. To extract the interaction information
from the time course microarray data, two dynamic PH-PPINs were constructed
for innate and adaptive immunity in the infection process. By evaluating inter-
action variations based on the corresponding interaction variation scores, critical
proteins and crosstalk network biomarkers of larger interaction variations in the
infection process were identified. These crosstalk network biomarkers suggest the
strategies taken by the host and pathogen during the infection process. Thus,
these crosstalk network biomarkers could be potential drug targets when battling
infectious diseases [13].

2 Material and Methods

2.1 Overview of Microarray Data

In this study, we used two microarray datasets: one was the two-sided tem-
poral gene expression profiles of the host (zebrafish) and pathogen (C. albi-
cans) in the period after first exposure (GSE32119, [19]), which were used to
record the pathogen-host interaction information of innate immunity; the other
was the two-sided temporal expression profiles of the host and pathogen in the
period after secondary exposure (GSE51603, [20]), which were used to record
the pathogen-host interaction information of adaptive immunity. For the first
dataset, an experiment was performed to simultaneously profile the genome-wide
gene expressions of innate immunity in both C. albicans and zebrafish during the
infection process. C. albicans (SC5314 strain) was intraperitoneally injected into
Adult AB strain zebrafish. The second dataset measured the genome-wide gene
expressions of adaptive immunity in both C. albicans and zebrafish after the
second exposure to C. albicans, fourteen days after the first exposure. Then, a
two-step homogenization/mRNA extraction procedure was performed using the
whole zebrafish infected with C. albicans. This approach can provide separate
pools of gene transcripts from both the host and the pathogen, which provides
individual estimates of specific gene expression profiles in either the host or
pathogen using sequence-targeted probes derived from the individual genomes.
Agilent in situ oligonucleotide microarrays, which cover 6,202 and 26,206 genes
for C. albicans and zebrafish respectively, were used to profile temporal gene
expressions; the first dataset consisted of three replicates of each organism mea-
sured at 9 time points (0.5, 1, 2, 4, 6, 8, 12, 16, and 18 h post-injection), and the
second dataset consisted of two replicates of each organism measured at 8 time
points (2, 6, 12, 18, 24, 30, 36, and 42 h post-re-injection). Both datasets were
prepared under similar experimental conditions.

2.2 Protein Pool Selection and Database Integration

There are two steps that need to be completed before a dynamic protein-protein
interaction (PPI) network with a dynamic interaction model can be constructed.
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The first step is to have a protein pool from which the nodes in the resultant net-
works will be selected, and the second step is to obtain all possible PPIs among
the proteins in the protein pool by integrating the interaction information from
database mining. Here, our protein pool consisted of the union of the differ-
entially expressed genes in the first and second datasets and the differentially
expressed genes between the first and second microarray datasets. The criterion
used to select the differentially expressed genes in the first and second microarray
datasets was to compute the p-value of the ANOVA test to determine whether
the average expression levels differed over time (i.e., for the first dataset, the null
hypothesis was μ1 = · · · = μ9, and the average expression levels were the same for
all 9 time points; for the second dataset, the null hypothesis was μ1 = · · · = μ8,
and the average expression levels were the same for all 8 time points), and then
to select those proteins with a Bonferroni corrected p-value< 0.05 for inclu-
sion in the protein pool. In addition, the genes in the top 5 % of the expression
difference between the first and second datasets were selected for the protein
pool. Next, to know all possible interactions between the proteins in the protein
pool, interaction information for the zebrafish-zebrafish, C. albicans-C. albicans,
and zebrafish-C. albicans pairs are needed. However, the lack of information
about these three kinds of interactions makes it difficult to collect all possible
interactions. In addition, it is impossible to consider all interactions between
the proteins in the protein pool. To overcome this issue, interaction information
from human and yeast was used because of their similarity to our study subjects
(zebrafish and C. albicans) and data availability. To infer the possible interac-
tions of the study subjects (zebrafish and C. albicans), the ortholog information
in the Inparanoid database [21] was used to convert the interactions of human
and yeast [19,22] into the interactions of zebrafish and C. albicans. It should
be noted that the interactions inferred from the ortholog-based method were
derived under different experimental conditions. Consequently, the data do not
accurately reflect the actual biological condition of the pathogen-host interac-
tions during the C. albicans infection process; that is, false positive interactions
exist in the complete set of inferred possible interactions of zebrafish and C.
albicans, and these false positive interactions need to be validated and removed
using real microarray data. Therefore, the false positive interactions were deleted
from the candidate PPIs and realistic pathogen-host crosstalk PPI networks in
innate and adaptive immunity were constructed using the two-sided microarray
data and the dynamic model of PPI interaction in the following section.

2.3 Pathogen-Host Protein-Protein Interaction Network
(PH-PPIN) Construction

To construct the interspecies PPI network from the protein pool and candidate
PPIs, the dynamic protein-protein interaction model was used to determine the
realistic PH-PPIN using individual proteins in succession. Given that the total
numbers of the host and pathogen proteins are N and M , respectively, then for
a host target protein i in the PH-PPIN, the dynamic interaction model is as
follows [26]:
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the host protein n and the host target protein i, γim denotes the interaction
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interaction model of a pathogen target protein j can be written as follows:
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The biological significance of this formulation is that the protein level of the
host (pathogen) target protein i (j) in the future (at time k + 1) is determined
by its current protein level (at time k) with self-regulation ability σ

(h)
i (σ(p)

j ),
the interaction strength between the host (pathogen) target protein i (j) and
the proteins of the same species α
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in (α(p)

jm) and the other species γim (γjn),

the basal level β
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i (β(p)

j ), and the environmental noise ε
(h)
i (ε(p)j ) in the future.

Due to the unavailability of proteomic data, the expression levels measured by
the two-sided microarray experiments were used to represent the protein levels
in the dynamic interaction model. The dynamic interaction model for the host
target protein i can be further rewritten into a concise form as follows:
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The dynamic model for the pathogen can also be rewritten into a similar
form. The only unknown parameter θ

(h)
i can then be estimated using parameter

estimation methods, such as the least-squares estimation. However, due to the
lack of large-scale measurements of host and pathogen protein levels, we used
the temporal gene expression profiles as a substitute of protein activities to iden-
tify the parameter θ

(h)
i in the model. Furthermore, to ensure the model was not

unnecessarily complex, the Akaike information criterion (AIC) was introduced
to detect the true model order (the number of interactions). The true model
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order with minimum AIC was considered as the criterion to delete false positive
interactions in the candidate PH-PPINs. Hence, the final dynamic PH-PPINs
encompass the dynamic interaction model of each protein with the minimum AIC
value to remove the false positive PPIs. Finally, after identifying the parame-
ters for each protein in the protein pools, the identified interactions parameters(
α
(h)
in , α

(p)
jm, γim, and γjn

)
formed the final dynamic PH-PPIN.

2.4 Interaction Variation Score (IVS) Calculation

To target the network biomarkers in the PH-PPINs, the IVSs were calculated for
proteins to correlate proteins with the transition of the pathogen-host interac-
tions from innate to adaptive immunity. The proteins in the PH-PPINs with the
largest PPI variations from innate to adaptive immunity can be considered as
crosstalk network biomarkers in the entire infection process and are considered
as significant drug targets. Therefore, we investigated these crosstalk network
biomarkers as follows. The IVS is a measurement of the variation of the interac-
tion strength under a biological condition transition. According to the dynamic
interaction models, the constructed PH-PPIN under a specific condition (innate
or adaptive) can be written as follows:
⎡
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where the notations are the same as in the dynamic interaction models. The
above equation can be written in a more concise form:

p [k + 1] = Ap [k] + β + ε [k + 1] (5)

where A is a systematic interaction matrix of the PH-PPIN constructed under
a specific condition. The interaction difference of two PH-PPINs between innate
and adaptive immunity can be expressed in the following interaction difference
matrix form:

Dadaptive−innate = Aadaptive − Ainnate . (6)

If the variation of the interaction strength of a protein is larger during a biological
condition transition (innate→adaptive immunity in this study), this may imply
the protein has a more important role in the transition from innate to adaptive
immunity. Therefore, the IVS used to evaluate the interaction variability of a
protein in the transition from innate to adaptive immunity can be defined as
follows:

IV Sp =

∑Q
q=1 |dpq|

Degree of protein p
(7)
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where dpq is the pq-entry of Dadaptive−innate, that is, the average interaction
variation of the protein p in the transition from innate to adaptive immunity.
The degree of protein p is the number of non-zero elements in the pth row of the
interaction difference matrix Dadaptive−innate. Those proteins with larger IVSs are
considered as significant proteins that play an important role in the transition
from innate to adaptive immunity in the infection process.

3 Results

3.1 The Pathogen-Host Protein-Protein Interaction Networks
(PH-PPINs) of Innate and Adaptive Immunity

In this study, we aimed to investigate the systematic offensive and defensive
mechanisms of pathogen and host at the molecular level. In particular, we aimed
to understand the roles of pathogen-host interactions (PHIs) in innate and adap-
tive immunity from a systems biology perspective. The outcomes of interactions
between the host and pathogen were recorded based on the two-sided temporal
gene expression profiles of C. albicans and zebrafish that were simultaneously
measured during the primary and secondary response periods in the infection
process. During the two periods (the rectangles in Fig. 1A), the observed vari-
ations in the gene expression levels were mainly due to innate and adaptive
immunity, respectively. We further selected 1620 proteins of interest for the pro-
tein pool, including those with differentially expressed features and the top 5 %
of the expression level difference between the two datasets. The comparison of
their temporal profiles (Fig. 2A) implied that their expression patterns changed:
the activation of a group of pathogens genes was delayed and the repression
of a group of hosts’ genes was advanced. The changes in the gene expression
patterns implied the PHIs in these two periods should have corresponding varia-
tions. To determine the variations of the underlying PHIs, 26060 PPI candidates
inferred from the database mining and ortholog information were further pruned
using the dynamic interaction models, model order detection method, and two-
sided microarray data (Fig. 1B) and then the innate and adaptive dynamic PH-
PPINs were formed (Fig. 2B). In particular, the two constructed PH-PPINs were
the underlying mechanisms used to explain the observed changes in the gene
expression patterns in the infection process.

The resultant PH-PPINs consisted of 1512 proteins (1431 C. albicans pro-
teins; 81 zebrafish proteins) and 5721 PPIs (5510 intracellular interactions inside
C. albicans; 145 interspecies interactions; 66 intracellular interactions inside
zebrafish) for innate immunity, and 1578 proteins (1480 C. albicans proteins; 98
zebrafish proteins) and 3755 PPIs (3577 intracellular interactions inside C. albi-
cans; 96 interspecies interactions; 82 intracellular interactions inside zebrafish)
for adaptive immunity. Looking at the amount of variation in the nodes and
edges of the pathogen, although most of the pathogenic nodes are shared between
innate and adaptive immunity, the number of edges changed from 5511 to 3577:
that is, only 1203 edges are shared. This implies that the pathogen may use
almost the same set of proteins (85 %) but with different links to interact with
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the host and to regulate functions within the pathogen itself in response to var-
ious challenges from innate and adaptive immunity. In contrast, the host may
use a different strategy since a different distribution of node and edge numbers
was found compared with the pathogen. In the zebrafish, there are three more

Fig. 2. Temporal gene expression profiles of the proteins of interest and the con-
structed innate and adaptive dynamic PH-PPINs. (A) The horizontal axis indicates
the sampling time points in the microarray experiments. The vertical axis shows the
genes clustered according to their expression patterns in innate immunity. (B) The
innate and adaptive PH-PPINs consist of PPIs in three domains: pathogen-pathogen,
pathogen-host, and host-host.

Fig. 3. The interaction difference network between innate and adaptive immunity.
The IDN between innate and adaptive immunity consists of interactions in the three
domains: pathogen-pathogen, pathogen-host, and host-host domains. The round and
square nodes indicate the pathogen and host proteins, respectively.
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significantly enriched functions (angiogenesis, coagulation, and circadian clock)
in the adaptive PH-PPIN compared with the innate PH-PPINs (metabolic
processes, immune responses, and apoptosis). In addition, in C. albicans, there
are two more significantly enriched functions (circadian clock and filament
growth) compared with the innate PH-PPINs (response to stimulus, redox sta-
tus, and budding). The new functions in the adaptive PH-PPIN compared with
the innate PH-PPIN indicated changes in the response strategies of the host
and pathogen. To efficiently identify and evaluate the significance of proteins
in the innate and adaptive dynamic PH-PPINs, we differentiated the two PH-
PPINs into an interaction difference network (IDN) (Fig. 3), i.e., the matrix
D in Eq. (6), and then used interaction variation scores (IVSs) to evaluate the
interaction variations of proteins in the IDN.

3.2 Identifying Crosstalk Network Biomarkers in the IDN Using
IVS

Cell signaling depends on dynamic PPINs [23]. Hence, the interaction varia-
tion in the PPINs indicates the change in cell signaling and the corresponding
consequences in the cellular functions. To illustrate the variation of PPINs, we
adopted the notations of node color, edge color, and edge line style as shown
in Fig. 3 to illustrate the existence of proteins and their interactions, and the
variation of interactions from innate to adaptive dynamic PH-PPINs. Further,
to focus on the proteins with significant variations, the IVS stated in Eq. (7)
was used to evaluate the average interaction variation of a protein: that is, the
ratio of the total interaction variation of a protein to the number of links pos-
sessed by the protein. Hence, the IVS can quantify the extent of the interaction
variations, which may signify the importance of the proteins in the transition
from innate to adaptive immunity, i.e., the IDN between innate and adaptive
PH-PPINs (Fig. 3). In the following, we focused on the proteins with the ten
highest IVSs in the three domains, that is, the host-host (zebrafish-zebrafish),
pathogen-pathogen (C. albicans-C. albicans), and pathogen-host (C. albicans-
zebrafish) domain, and determined the crosstalk network biomarkers in these
domains.

The Crosstalk Network Biomarkers in the Host-Host Domain. In the
host-host domain of the IDN, the ten proteins with the highest IVSs show
close relationships with innate and adaptive immune responses. Extracting the
ten proteins and their first neighbors from the IDN, there are five compo-
nents in the host-host domain (Fig. 4A). The largest component consists of
f2, LOC798231, LOC793315, ace2, gnai1, and their first neighbors (the left
part of Fig. 4A). gnat2, a host G-protein that formed one end of the inter-
species interaction, has connections with chemokine-related proteins (ccl-c5a
and si:dkey-269d20.3) and chemotaxis-related proteins (ENSDARP00000105159
and ENSDARP0000111107). The angiogenesis- and coagulation-related proteins
(agt, ace2, f2, and ENSDARP00000098661) are connected to these chemokine-
related proteins. This component also consists of two other proteins: i.e., serine
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proteinase inhibitor (serpinc1 ) and prokineticin (ENSDARP00000109666). The
roles of angiogenesis, coagulation, and chemokines are manifested in innate and
adaptive immunity in this component. The second component mainly consists
of complements (c7b, c8g, c8a, c8b, and c9 ) and vitronectins (vtna and vtnb).
Given the well-known roles of the complements system in immunity, vitronectins
have recently attracted much attention in the field of immunity [24]. The cd36
and apolipoproteins (apob1, apoba, and apobb) form the third component (the
lower right part of Fig. 4A). CD36 plays a pivotal role in macrophage foam-cell
formation and atherogenesis, which is reduced by apolipoproteins. Although the
last two components are much less documented, the roles of versican (vcanb)
and tank in inflammation have been reported [25].

Fig. 4. The crosstalk network biomarkers in the host-host and pathogen-pathogen
domains. (A) Chemokines, the complements system, and angiogenesis and coagula-
tion are the three major crosstalk network biomarkers in the host-host domain of the
IDN owing to the higher IVSs of their members. (B) Redox status and pathogen expan-
sion are the two major crosstalk network biomarkers in the pathogen-pathogen domain
of the IDN owing to the higher IVSs of their members. The shadowed nodes represent
the proteins with the ten highest IVSs in their domains.

The Crosstalk Network Biomarkers in the Pathogen-Pathogen
Domain. In the pathogen-pathogen domain, the ten proteins with the high-
est IVSs and their first neighbors form a single component (see Fig. 4B). In this
component, the importance of redox status in the innate and adaptive immune
responses is re-emphasized [26]. ERG1, CAL0005908, MET10, and GCV3 are
all related to the redox status of C. albicans. In addition, CAL0005225, ERG1,
and SDS24 are related to the expansion of C. albicans due to their functions in
budding, filament growth, and the cell cycle, respectively. In particular, MET10
is related to the response to stress from the host and environment. Another
major function in this component is transferase activity. MET2 is a homoser-
ine acetyltransferase that can transform homoserine, a toxin for C. albicans,
and is important for C. albicans survival. ARG3 facilitates the production of
citrulline, which can induce pseudohyphal morphogenesis. The morphological
transformation of C. albicans has been proven to be important in its pathogene-
sis. The hydrolase CAF16 exerts its influence on RNA polymerase II although the
specific targeted genes are still unknown.
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The Crosstalk Network Biomarkers in the Pathogen-Host Domain. In
the pathogen-host domain, we also selected ten proteins from both the host and
pathogen. These interspecies proteins form crosstalks that are more complicated
than those in the pathogen-pathogen domain (Fig. 5). A possible mechanism for
the correlation between redox status in the host and pathogen is shown in the
pathogen-host domain, i.e., the interaction between thioredoxin (txn) and ribo-
nucleotide reductase 1 (RNR1). In addition to its role in redox status, RNR1
also influences the iron utility, filament growth, and cell cycle of C. albicans.
This implies that the effect of redox status on the pathogen is multifaceted.
Compared with chemokine-related functions in the host-host domain, the role
of chemokine-related functions in the PHIs of the pathogen-host domain are
more interesting. CAG1, one protein involved in how chemokine-related func-
tions affect the pathogen, is related to the hyphal growth, mating, and biofilm
formation of the pathogen, which are all important in pathogenesis. In contrast
to the appearance of redox status and chemokines in the pathogen-pathogen
and host-host domains, respectively, gene transcription and the circadian clock
can only be seen in the pathogen-host domain. Interactions between TAF60,

Fig. 5. The crosstalk network biomarkers in the pathogen-host domain. Redox status,
circadian rhythm, gene transcriptions, and chemokines are the four major crosstalk
network biomarkers in the pathogen-host domain. The shadowed nodes represent the
proteins with the ten highest IVSs in the pathogen-host domain. The round and square
nodes indicate the pathogen and host proteins, respectively.
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gtf2a2, and polr2e emerged in adaptive immunity. TAF60, a transcription fac-
tor, is responsible for the drug responses in the pathogen, and gtf2a2 and polr2e
are related to gene transcription in the host. Their interactions indicate a possi-
ble mechanism as to how the PHIs affect the gene expression level. In addition
to gene transcription, the circadian clock has an interesting function in the host
and pathogen. The circadian clock-related proteins of the host (cry2a, cry2b, and
per2 ) and pathogen (HRR25) form a sub-network in the host-pathogen domain.
The circadian rhythms in the host and pathogen are correlated and numerous
functions of the pathogen (yeast-hyphal switch, gene transcription, pathogenesis,
etc.) are affected through HRR25.

In summary, we found that the proteins of the most variable interactions
in the IDN are the elements related to chemokines, angiogenesis, coagulation,
redox status, pathogen expansion, gene transcription, and circadian clock func-
tions: i.e., the so-called crosstalk network biomarkers. Thus, these crosstalk net-
work biomarkers change considerably in the transition from innate to adaptive
immunity in the infection process and are potential targets for treatment and
vaccination. To further evaluate the plausibility of the crosstalk network bio-
markers, we selected angiogenesis, coagulation, redox status, and the circadian
clock due to their systemic influence and investigated the interplay between these
biomarkers based on the IDN.

4 Discussion

We presented pathogen-host protein-protein interaction networks (PH-PPINs),
which were generated by dynamic interaction models and two-sided microarray
data during innate and adaptive response periods. The dramatic changes in the
number of PHIs from innate to adaptive immunity (145 interactions in innate
immunity, 96 interactions in adaptive immunity, and 36 shared interactions) and
almost the same nodes appearing in both innate and adaptive immunity suggest
that the strategy used by the pathogen are characterized by the use of almost the
same subset of proteins to respond to the two different defense mechanisms of the
host (i.e., innate and adaptive immunity) but with different interactions. On the
other hand, although the strategies used by the host were quite subtle, we can
tell that the expression patterns of the host genes change from innate to adaptive
immunity based on the temporal gene expression profiles (Fig. 2A). Once the lack
of PPI information for zebrafish is remedied, the resultant PH-PPIN can provide
further insight into the responding strategies of the host and pathogen. For now,
we were able to quantitatively investigate the interaction variations from innate
to adaptive immunity in the infection process by following the clues regarding the
variations in the number of interaction and the interaction strengths identified
in the dynamic interaction models.

To focus our investigation over a smaller and more meaningful range, we
utilized IVS to evaluate the average interaction variation of a protein in the
transition from innate to adaptive immunity in the infection process. The IVS
rules out the possibility of a large IVS being caused by many small interac-
tion variations, a weakness of the carcinogenesis relevance value (CRV) of [28].
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Hence, the IVS could better focus on proteins with large interaction variations.
Further, we visualized the interaction difference matrix from innate to adap-
tive immunity as an IDN (Fig. 3B), which can be divided into three domains
according to the types of interactions involved. For the three domains, we
focused on the proteins with the ten highest IVSs to investigate their interaction
variations and determined the crosstalk network biomarkers. Not surprisingly,
several immune-related and pathogenic crosstalk network biomarkers emerged:
chemokines, cytokines, the complement system, pathogen expansion, and redox
status. Nevertheless, three additional crosstalk network biomarkers—circadian
clock, angiogenesis, and coagulation—were found for the larger interaction vari-
ations of their components. Although these functions are not totally new in
immunity research, crosstalk among these crosstalk network biomarkers is a novel
contribution of this study. In particular, the influences of circadian clock, redox
status, angiogenesis, and coagulation are systemic. The samples and sampling
time points of the microarray data provided us an opportunity to gain insight into
the mechanisms of how these systemic crosstalk network biomarkers interact.
The whole fish body samples provided a holistic view of the systemic variations
of the transcriptomes from innate to adaptive immune response. The observa-
tion windows of the microarray experiments (Fig. 1A) revealed the involvement
of the circadian clock in innate and adaptive immunity, which may be concealed
if there are not enough sampling points over several days. Thus, we identified sev-
eral significant proteins and crosstalk network biomarkers in the three domains
based on their larger interaction variations from innate to adaptive immunity
and then explored them by taking a closer look at the IDN.

In summary, our findings underpin the criticality of the circadian clock
crosstalk network biomarker in terms of the type of immune response generated
by an organism [27] and further show how the circadian clock, redox status,
angiogenesis, and coagulation crosstalk network biomarkers are tightly coupled
with pathogenesis and the host immune systems. This provides an opportunity
to design new and efficient therapeutic guidelines for drug targets and the time
window for treatments.
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