
Latent Forests to Model Genetical Data
for the Purpose of Multilocus Genome-Wide

Association Studies. Which Clustering
Should Be Chosen?

Duc-Thanh Phan1, Philippe Leray1, and Christine Sinoquet2(B)

1 LINA, UMR CNRS 6241, POLYTECH, University of Nantes, Rue Christian Pauc,
BP 50609, 44306 Nantes, France

duc-thanh.phan@etu.univ-nantes.fr, philippe.leray@univ-nantes.fr
2 LINA, UMR CNRS 6241, Faculty of Sciences, University of Nantes,

2 Rue de la Houssinière, 44322 Nantes, France
christine.sinoquet@univ-nantes.fr

Abstract. The aim of genetic association studies, and in particular
genome-wide association studies (GWASs), is to unravel the genetics
of complex diseases. In this domain, machine learning offers an attrac-
tive alternative to classical statistical approaches. The seminal works of
Mourad et al. [1] have led to the proposal of a novel class of proba-
bilistic graphical models, the forest of latent trees (FLTM). The design
of this model was motivated by the necessity to model genetical data
at the genome scale, prior to a multilocus GWAS. A multilocus GWAS
fully exploits information about the complex dependences existing within
genetical data, to help detect the loci associated with the studied pathol-
ogy. The FLTM framework also allows data dimension reduction. The
FLTM model is a hierarchical Bayesian network with latent variables.
Central to the FLTM construction is the recursive clustering of vari-
ables, in a bottom up subsuming process. This article focuses on the
analysis of the impact of the choice of the clustering method used in the
FLTM learning algorithm, in a GWAS context. We rely on a real GWAS
data set describing 41400 variables for each of 3004 controls and 2005
cases affected by Crohn’s disease, and compare the impact of three clus-
tering methods. We compare statistics about data dimension reduction
as well as trends concerning the ability to split or group putative causal
SNPs in agreement with the underlying biological reality. To assess the
risk of missing significant association results due to subsumption, we
also compare the clustering methods through the corresponding FLTM-
based GWASs. In the GWAS context and in this framework, the choice
of the clustering method does not influence the satisfying performance
of the GWAS.
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1 Introduction

With the finalization of the Human Genome Project in 2003, it was confirmed
that any two individuals share, on average, 99.9 % of their genome with one
another. It is then the sole 0.1 % genetic variations that may explain why indi-
viduals are physically different or should inherit a greater risk of contracting
genetic disorders, such as coronary heart disease, diabetes, autism, some can-
cers. A heavy burden as regards public health, complex genetic diseases also
generate a considerable socio-economic impact. For instance, in France, in 1960,
2001 and 2009, public health expenditure represented respectively 4.2 %, 8.7 %
and 11.9 % of the gross domestic product. Various predictions estimate that the
health spending weight will fall in the range [7.3 % – 22.3 %] with respect to the
gross domestic product, at the horizon 2050. According to [2], in the next twenty
years, in advanced countries, these percentages will continue to rise by 3 % of
the gross domestic product on the average. In Europe, this increase could reach
2 % on average, and more than 3 % in seven other countries. A growth of 5 %
is estimated for the USA. For a main part, this ever increasing share of public
health expenditure is to be related to the gain in longevity, which favours the
emergence of chronic diseases by elderly subjects. Such diseases include old-age
onset genetic diseases.

Identifying the genetic factors underlying these diseases potentially plays a
crucial role in prediction, monitoring subjects with risks, as well as developing
new treatments. The medicine of the future, or personalized medicine, intends
to target the therapy best adapted to the patient’s genotypic background; early
gene susceptibility detection aims at a better prevention or surveillance. Thus,
deciphering the putative causes of complex genetic diseases has been one of the
main focuses of human genetics research during the last thirty years [3]. Among
different approaches that have been proposed, association studies stand out as
one of the most successful paths, even though their potential is yet to be fully
tapped.

Thanks to new advances in techniques for genotyping and sequencing genomes,
researchers started to work on seeking genetic variations potentially associ-
ated to common diseases throughout the entire genome. In the following years,
the HapMap Project [4] and its successor, the 1000 Genomes Project [5], were
launched with the hope to establish a catalogue of human genome regions in which
people of different populations have differences.

When no clue is available about the genome regions likely to contain one
of the putative causes for a studied disease, geneticists are compelled to resort
to genome-wide association studies (GWASs). Genetic markers are used for this
purpose, as well as a population of affected and unaffected individuals. Genetic
markers represent as many DNA sequences, spraid over the whole genome, with
a known location, where the DNA variations within a given population may be
observed. In a nutshell, GWASs seek to identify genetic markers whose variants
vary systematically between affected (cases) and unaffected (controls) individu-
als [6]. The standard GWAS consists in comparing variant frequencies in cases
and controls, on massive genotypic datasets (tens of thousands of individuals
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each described by hundreds of thousands up to a few millions of genetic mark-
ers). The goal is to identify the loci on the genome for which the distributions
of variants are significantly different between cases and controls, using depen-
dence - namely association - tests (e.g. the Chi2 test). The unit variants, called
single nucleotide polymorphisms (SNPs), which refer to single base pair changes
in the DNA sequence represent the most abundant type of variants in human;
they are very often used as markers in GWASs.

The key to GWASs lies in this interesting phenomenon known as “linkage
disequilibrium” (LD) where variants for different SNPs tend to co-occur non-
randomly [7] (the corresponding SNPs are said to be in LD). The case would be
exceptional if a genetic marker, which is observed in the population, coincided
with a genetic causal factor. Nevertheless, thanks to LD, a dependence exists
between the non observed causal factor and a genetic marker nearby the former.
On the other hand, by definition, a dependence exists between the causal factor
and the disease of interest. Therefore, it is likely that a dependence will be
detected between the nearby genetic marker and the disease.

In the human genome, the HapMap project confirmed evidence of the linkage
disequilibrium, this latent structure organized in the so-called “haplotype blocks”
[8]. Therein, regions showing high dependences between contiguous markers
(blocks) alternate with shorter regions characterized by low statistical depen-
dences. In general, LD exhibited among physically close loci is stronger than LD
between SNPs that are farther apart. In other words, LD decays with distance.

However, standard GWASs do not fully exploit LD. Some authors proposed
to test combinations of SNPs - haplotype blocks - against the disease, rather
than merely each SNP against the disease: this is the principle of multilocus
approaches. First, if the causal SNP has low frequency and is not in high LD
with any one of the genotyped SNPs, then the multilocus test will tend to be
more powerful. Besides, the advantage to the GWAS is that the LD is likely to
reveal an excess of haplotype sharing around a causative locus, amongst cases.
Third, testing haplotypes instead of SNPs is a way to implement data dimension
reduction. In this context, fine LD modeling at genome scale is required.

Few works have focused on LD modeling at genome scale, which is a chal-
lenging task. The proposals of [9,10] both rely on the use of Markov random
fields, a popular kind of probabilistic graphical models. Two scalable models
designed for the specific purpose of multilocus GWASs have been described by
[1,11]. The approach in [11] relies on a variable length Markov chain (VLMC),
a Markov model where the size of the memory conditioning the prediction of
the variant at a given location is flexible. The model obtained is a graph where
each path from the root to a given node represents an haplotype shared by
individuals in the population. In this graph, edges converging in the same child
node delineate a cluster of haplotypes relevant for association testing. In con-
trast with this block-based method, the works in [1] seek to subsume clusters of
SNPs through latent variables. SNPs within the same cluster are not necessarily
contiguous. Such latent variables are intented to be tested against the disease.
Both methods account for the fuzzy nature of LD since block boundaries are not
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accurately defined over the genome. However, being blocked-based, the method
in [11] cannot take into account long-range dependences. Moreover, LD is intrin-
sically hierarchical, with clusters of SNPs recursively structured in clusters of
lower and lower correlated SNPs. To attempt a faithful representation of LD
upstream of a GWAS, hierarchical clustering is one of the key ingredients of the
learning algorithm of the Bayesian model used in [1]. Since clustering is central
to learning the model in [1], namely the forest of latent tree models (FLTM),
this paper analyses the impact of the choice of the clustering method in a GWAS
context.

2 Objectives and Structure of the Paper

In the remainder of this paper, data partitioning - or clustering - denotes the
generation of a set of non overlapping clusters. Such a task is NP-complete [12].
Though, choosing a clustering method to learn an FLTM must comply with the
scalability goal. This paper compares the native clustering method used in [1]
(CASTbin) with a relaxed version (CASTreal) and another clustering method
(DBSCAN). In this framework, two aims of the paper are to evaluate whether
FLTM learning is robust to the choice of the clustering method and how close
a clustering method approximates the underlying biological reality. However,
there exists no generic method dedicated to the comparison of the two par-
titions yielded by any two clustering methods [13]. To fulfill the first goal, a
protocol is used that relies on assessing how much two partitions agree. The
second objective is met by applying the previous protocol to compare each clus-
tering method to a reference partition supposed to be close to biological reality.
The Haploview software program is the tool chosen to derive such a reference
partition. Focusing on the data dimension reduction aspect, a third objective
of the paper is to analyze the impact of the choice of the clustering method on
data subsumption quality. By construction, an FLTM-based GWAS processes
data subsumed through latent variables, to hopefully pinpoint the interesting
regions of a genome without testing each SNP for association. Thus, the third
objective of this paper is to assess whether the choice of the clustering method
impacts the risk of missing significant association results through subsumption.
FLTM-driven GWASs are run to study this impact. In this paper, we will focus
on the GWAS data set relative to the Crohn’s disease.

The remainder of the paper is organized in five sections. Section 3 first offers
a brief introduction to Bayesian networks, the kind of probabilistic graphical
models FLTM is based upon. Then Sect. 3 provides a broad brush description
of the FLTM learning algorithm together with a sketch of a GWAS strategy
based on FLTM. Section 4 describes the native clustering method used in FLTM
(CASTbin) and its relaxed version (CASTreal); it then motivates the choice of the
alternative clustering method (DBSCAN) plugged in the FLTM learning algo-
rithm and depicts the principle of the DBSCAN method. Then, Sect. 5 explains
the design of the protocols and methods used in our work. First, we discuss the
protocol used to assess how much two partitions agree. Second, we justify the
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use of the Haploview software program to derive the reference partition, suppos-
edly the closest representation of the underlying reality. In Sect. 6, we describe
the Crohn’s disease GWAS data used in our study. Section 7 is devoted to the
presentation and discussion of the results observed.

3 Framework and FLTM Model

The FLTM model is a tree-structured Bayesian network (BN). Therefore this
section first briefly introduces Bayesian networks, to further focus on the FLTM
model. The principle of the FLTM learning algorithm is then presented. Finally,
the principle for a multilocus GWAS based on the FLTM model is sketched.

3.1 A Brief Reminder About Probabilistic Graphical Models

When probabilistic graphical models are learnt from scratch, one has to learn
their two fundamental components from a data matrix. In this matrix, the lines
correspond to the observations and the columns correspond to the variables Xi

(1 ≤ i ≤ n). For example, in the case of genetical data, the observations are the
individuals (cases and controls) in the population studied, and the variables are
the SNPs. The qualitative component of a BN is a graph where the variables are
represented as nodes. The connections between the nodes represent the direct
dependences between the variables. More specifically, the qualitative component
of a BN is a directed acyclic graph. The quantitative component of a BN is
a collection of probability distributions, denoted as “the parameters θ”. If the
variable Xi has no parent in the graph, then θi is merely an a priori distribu-
tion (θi = P(Xi)). If the variable Xi has a set of parents PaXi

, then θi is the
conditional distribution θi = P(Xi | PaXi

). In particular, Bayesian networks
offer a practicable framework: exploiting the network structure, this framework
allows to compute the joint probability of the variables, P(X), as a product of
low-dimensional functions.

It may happen that the data observed is thought to embed a latent structure,
depicted through latent variables and their connections in the learnt BN. In this
case, learning the Bayesian network encompasses the task of inferring the latent
variables, and their connections within the BN.

The FLTM model is a forest of latent tree models (LTMs). Figure 1(a) shows
that an LTM is characterized by a hierarchical structure organized in layers. The
first layer is composed of the observed variables. The other layers are composed
of latent variables. The learning algorithm of the FLTM (see Fig. 1(b)) relies on
the simplest LTM that may be described, the latent class model (LCM). A latent
class model connects a single latent variable to child variables; no connections
are allowed between the latter (see Fig. 1(c)).

3.2 Outline of the FLTM Learning Algorithm

Learning a BN is a hard task that consists in inferring both the graph struc-
ture and the parameters. For example, there exists respectively 25, 29 × 103
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(a) (b) (c)

Fig. 1. (a) Latent tree model (LTM). (b) Forest of latent tree models (FLTM). (c)
Latent class model. Observed and latent variables are represented in dark and light
color shades, respectively.

and 4.2 × 1018 possible structures for a BN with 3, 5 and 10 observed vari-
ables [14]. Learning a BN with latent variables is far more complicated. First,
one does not even know how many latent variables have to be inferred; it has
been shown that the number of different possible LTMs that may be inferred
from n observed variables is upper bounded by 23n2

[15]. Second, in a BN with-
out latent variables, the parameters are estimated to maximize the likelihood,
that is the probability of the (observed) data given the parameters. In contrast
to this rapid algorithm, a slow procedure has to be employed for BNs with latent
variables, the expectation-maximization algorithm dedicated to learn parame-
ters in the case of missing data. Prior knowledge (the hierarchical LD structure)
is used by the specific procedure described in [1], to provide a scalable learning
algorithm. Figure 2 depicts the principle of this iterative algorithm, based on an
ascending hierarchical clustering procedure.

In the case of LD modeling, the observed variables are the SNPs. The cardi-
nality of these observed variables is equal to 3, which codes for minor homozy-
gosity, heterozygosity and major homozygosity. The first iteration starts with
the partitioning of the observed variables into non overlapping clusters of pair-
wise highly dependent SNPs. No two variables are allowed in the same cluster
if their physical distance on the genome is above a given threshold, δ. For each
cluster, an LCM is constructed whose child variables are the variables in the
cluster and whose latent variable is created. The approach of [1] considers dis-
crete latent variables whose cardinalities may be different from one another; a
heuristic is used to determine the specific cardinality of each latent variable.
This specific cardinality is computed as an affine function of the number of vari-
ables in the cluster. Then, the parameters of each LCM are estimated through
the standard expectation-maximization procedure. Knowing the parameters of
each LCM further allows to impute the data corresponding to its latent vari-
able. For each observation xj (i.e. the jth individual), the value for the latent
variable L is drawn from the probabilistic distribution P(L | xj) derived from
the LCM’s parameters. Such imputed data are used by a validation step; this
step relies on a normalized mutual information criterion to examine whether each
novel latent variable is sufficiently informative to subsume its child variables. The
data is updated with the validated latent variables replacing their child variables.



Latent Forests to Model Genetical Data 175

Fig. 2. Sketch of the iterative FLTM learning algorithm.

The validated latent variables can thus be considered as observed variables and
an iteration begins anew.

It is now easy to see how an iterative ascending procedure constructs the
whole forest: after iteration i has inferred and imputed novel latent variables,
iteration i + 1 partitions into clusters the set composed of these newly created
variables and of the remaining variables. These remaining variables are the pre-
vious validated latent variables and the observed variables that could never be
incorporated in a valid cluster so far. This ascending process is iterated until
no valid cluster can be identified, or until a single cluster of maximal size is
obtained. Among other parameters of the learning procedure, the clustering
procedure plugged in the algorithm is likely to impact the quality of the LD
modeling, and therefore the quality of the GWAS performed downstream.

3.3 Performing a GWAS Guided by the FLTM Model

Central to the use of the FLTM model for a GWAS purpose are the request for
data dimension reduction and the motivation for a multilocus strategy. In the
study described here, we have implemented a multilocus GWAS strategy as fol-
lows: in the lowest layers, we traverse the forest top down, following a best-first
search strategy which only tests all child nodes for the nodes whose associa-
tion significances (i.e. p-values) are below a threshold. The way to compute this
threshold is specific to the layer the variable belongs to. These child nodes are
selected in turn with respect to the appropriate threshold. The standard Chi2
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test is applied to test a variable against the disease and to provide a pointwise
p-value. We now explain how to compute the thresholds for the variables in the
lowest layers. To test statistical significance, we consider a global threshold, say
α = 5%. The pointwise p-value of a variable is corrected based on permutations
applied on all the variables in this variable’s latent layer. Thus, the correction
is layer specific. Considering, say, 1000 permutations, and all the layers in the
FLTM model, we test any variable in a layer against the disease, for each permu-
tation. For a given permutation, we select the minimum p-value over all variables
in a given layer. This provides a “point” for each permutation, for a given layer.
Thus, for this layer, we can construct a so-called H0 distribution (no association
with the disease), collecting the 1000 minima corresponding to the 1000 permu-
tations. Finally, we merely correct the initial p-value p of a variable in layer �
into pcorrected = ap

at
, where at is the aera under the H0 distribution curve for

layer �, and ap is the aera x ≤ p specified by the H0 distribution. Statistical
significance is assessed by testing the condition (p-valuecorrected ≤ α). On the
other hand, due to dimension reduction, the highest layers have a low number of
variables. No correction is applied for these layers, from which we systematically
select the top most associated variables, based on some pre-specified β threshold
(e.g. β = 10%).

4 The CAST and DBSCAN Partitioning Methods

Performing an optimal clustering is NP-hard [12]. Therefore, heuristics must be
designed instead. In this paper, we focus on two partitioning methods, CAST
and DBSCAN, to study how they impact LD modeling and a further downstream
GWAS analysis.

Since we address high-dimensional data, we could not envisage the use of
ascending hierarchical clustering (AHC), whose complexity scales in O(n3) where
n is the number of objects to be asssigned to clusters. CAST and DBSCAN are
well known partitioning methods whose complexity is lower than AHC’s. More-
over, in contrast to AHC and k-means, another well known partitioning method,
CAST and DBSCAN do not request the tuning of the number of clusters.

Partitioning objects into clusters relies on pairwise distances (alternatively
pairwise similarities). Storing a pairwise similarity matrix at the genome scale
is intractable. Thus, following [1], we acknowledge a physical constraint, δ,
expressed in kbp (kilobase pairs), in both implementations of the CAST and
DBSCAN methods. This constraint δ represents the physical distance on the
genome beyond which two objects (in our case two variables) are not allowed in
the same cluster. Additional calculus is required to estimate the distance between
two variables one of which at least is a latent variable.

4.1 The CAST Partitioning Method

The CAST (Cluster Affinity Search Technique) algorithm was proposed in
[16] and is depicted in [17]. Its theoretical runtime complexity scales in
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O(n2 (log(n))c), and its empirical complexity allows to handle high-dimensional
data. CAST is the native clustering method used in the FLTM learning algorithm
depicted in [1].

To decide cluster membership, CAST relies on an affinity measure. The affin-
ity measure of an object is defined as the average of the similarity measures
between objects in a given cluster and this former object outside the cluster.
To grow a cluster, the CAST algorithm successively adds the object with great-
est affinity to this cluster as long as this maximum affinity satisfies a threshold
constraint (see Algorithm 1, lines 15 to 24). When the maximum affinity drops

Algorithm 1. CAST clustering algorithm (M, n, τ).

INPUT: M, an n-by-n similarity matrix, pairwise-comparing n objects

τ , an affinity threshold.

OUTPUT: C, a partition of the n objects into clusters.

1: /* initialization */

2: C ← ∅ /* collection of closed clusters */

3: U ← {1, 2, · · · n} /* objects not yet assigned to a closed cluster */

4: while (U �= ∅)

5: C ← ∅ /* start a new cluster */

6: reset all affinity measures aff to 0

7: change occurs ← yes

8: while (change occurs)

9: change occurs ← no

10: add(C, change occurs)

11: remove(C, change occurs)

12: end while

13: C ← C ∪ {C} /* close the current cluster */

14: end while

15: procedure add(C, change occurs)

16: while (max
x∈U

(aff(x)) ≥ τ | C |)
17: o ← argmax

o∈U
(aff(o)) /* select an object with maximum affinity */

18: C ← C ∪ {o}; U ← U \ {o}; change occurs ← yes

19: /* update affinity */

20: for each x ∈ U ∪ C

21: aff(x) ← aff(x) + M(x, o)

22: end for

23: end while

24: end procedure

25: procedure remove(C, change occurs)

26: o ← argmin
o∈U

(aff(o)) /* select an object with minimum affinity */

27: C ← C \ {o}; U ← U ∪ {o}; change occurs ← yes

28: /* update affinity */

29: for each x ∈ U ∪ C

30: aff(x) ← aff(x) − M(x, o)

31: end for

32: end procedure
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below the threshold, CAST removes the object with the minimum affinity with
respect to the cluster (see lines 25 to 32). Additions and removals are operated as
long as the current cluster undergoes modifications (see lines 10 and 11). Finally,
the cluster is closed (see line 13).

In the implementation of CAST adapted to FLTM learning, the binary
similarity measure is assessed as the thresholded mutual information (MI).
The mutual information between variables X1 and X2 is computed as:
MI(X1, X2) = H(X1) + H(X2) − H(X1, X2) where the entropy for the
discrete variable X defined on domain Dom(X) (e.g. {0, 1, 2, 3, 4}) is
H(X) = −∑

c∈Dom(X) P(X = c) log2 P(X = c), and the joint entropy of
two variables X1 and X2 is H(X1, X2) = −∑

c1∈Dom(X1), c2∈Dom(X2)
P(X1 =

c1,X2 = c2) log2 P(X1 = c1,X2 = c2). A parameter qpairwise (e.g. 50%) allows
to compute the MI quantile (e.g. median) over the pairs of variables whose phys-
ical distance is below δ. This quantile allows to assign a binary similarity (0/1),
as in the native FLTM learning algorithm. We also consider the unthresholded
version. These two CAST versions are denoted CASTbin and CASTreal.

4.2 The DBSCAN Partitioning Method

The DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
algorithm was proposed in [18]. Its theoretical runtime complexity is O(n2),
where n is the number of objects to be assigned to clusters. However, its empiri-
cal complexity is known to be lower. The DBSCAN principle lies in constructing
clusters from the estimated density distribution of the objects to be clustered.
This method requires two parameters: R, the maximum radius of the neighbor-
hood to be considered, and Nmin, the minimum number of neighbors needed
for a cluster. DBSCAN exploits the fact that an object in a cluster also has its
R-neighborhood in this cluster. The R-neighborhood of an object o is merely the
set of objects whose distance from o is less than or equal to R (see Algorithm 2,
line 4). If this R-neighborhood is dense (i.e. its size is greater than or equal to
Nmin), then, o’s R-neighborhood is grown through the addition of the proper R-
neighborhoods of o’neighbors, provided that these neighborhoods are themselves
dense (see lines 7 and 16). In the end, the grown neighborhood augmented with
o represents a new cluster. If the R-neighborhood of an object is not sufficiently
dense, this object is labeled as noise (see line 6). This object might later be found
in the sufficiently dense R-neighborhood of a further visited object, and hence
be assigned to the cluster constructed from this latter point (see line 16). Then,
a new unvisited point is retrieved and processed, leading to the discovery of a
further cluster or to the labeling as noise.

We have chosen DBSCAN as it is resistant to noise and can handle clusters
of different shapes and sizes. Notably, DBSCAN is known to be able to iden-
tify a cluster embedded in another cluster. On the genome line, long-range LD
corresponds to this situation.
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Algorithm 2. DBSCAN clustering algorithm (X, R, Nmin).

INPUT: X, the data set consisting in objects

R, the maximum radius of the neighborhood to be considered,

Nmin, the minimum number of neighbors needed for a cluster.

OUTPUT: C, a partition of the n objects into clusters.

1: C ← ∅ /* collection of clusters */

2: for each unvisited object o ∈ X

3: mark(o) ← visited

4: Neigho ← neighborhood(o, R)

5: if (| Neigho |< Nmin)

6: then mark(o) ← noise

7: else C ← expandCluster(o, Neigho, R, Nmin); C ← C ∪ C

8: end if

9: end for

10: function expandCluster(o, Neigho, R, Nmin)

11: C ← {o}
12: for each object x ∈ Neigho

13: if (x is unvisited)

14: mark(x) ← visited

15: Neighx ← neighborhood(x, R)

16: if (| Neighx |≥ Nmin) Neigho ← Neigho ∪ Neighx end if

17: end if

18: if (x belongs to no cluster)

19: C ← C ∪ {x}
20: end if

21: end for

22: return C

23: end function

5 Methods

In this section, we first present the protocol used to evaluate how much two
partitions agree when focusing on the top most associated SNPs found by a
GWAS. Then, we motivate how we derived the so-called reference partition (to
be further defined). This methodological section ends with the presentation of
the protocol used to compare the impact of the choice of the partitioning method
on the subsequent GWAS. For this purpose, we rely on GWAS results published
in the literature.

5.1 Comparing Two Partitions

To cope with the genome scale, we were compelled to select a simple method:
we focused on the comparison of the partitions respectively obtained for the first
layer (SNPs) by two partitioning methods, and we examined how the top most
associated SNPs identified by a GWAS are distributed among the clusters.

The methods dedicated to the comparison of two partitions may be cate-
gorized into three main groups [19]. Two groups attempt to map a partition
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onto the other, either from set matching functions, or from information theory-
centered methods. The third category relies on counting for how many pairs of
elements two partitions agree or disagree. The FLTM-driven GWAS strategy
is a multilocus strategy by definition. In this multilocus GWAS framework, it
is relevant to analyze pair agreement between two partitioning methods, for a
selection of top most associated SNPs. A counting method fits well this purpose
of focusing on a subset of SNPs.

Given two partitions over the same set of objects, and a pair of objects (in
our case, a pair of variables), an agreement means that the two partitions both
group the two variables in a cluster or both assign two different clusters to the
two variables. Consequently, a disagreement means that the variables belong to a
cluster according to one partition, but belong to two different clusters according
to the other partition. Given two partitions P1 and P2, let

– N11, the number of pairs both partitions assign to one cluster,
– N00, the number of pairs both partitions assign to different clusters,
– N10, the number of pairs kept in the same cluster by P1 but splitted by P2,
– N01, the symmetric case of the latter.

From here, a large set of comparison measures is available. We selected
three measures to perform the following comparisons: CASTbin versus CASTreal,
CASTbin versus DBSCAN, CASTreal versus DBSCAN, and each of the three
methods CASTbin, CASTreal and DBSCAN versus the reference partition (to
be defined in Sect. 5.2). The comparison measures selected are:

– the Rand index [20]:

RI =
N11 + N00

N11 + N00 + N10 + N01
(1)

for which we used instead an adjusted corrected-for-chance version (ARI =
RI−expected RI

maximum RI−expected RI ) (for the detailed description, see [13]);
– the Mirkin distance [21]:

MI =
SP1 + SP2 − 2SP1P2

n2
(2)

with
SPj

=
∑

clusteri∈Pj

| clusteri |2, j = 1, 2

SP1P2 =
∑

clusteri∈P1, clusterj∈P2

| clusteri | | clusterj |,

and n the number of objects to be assigned to clusters and | S | the size of
set S;

– the Fowlkes-Mallows index [22]:

FM =
√

N11

N11 + N10
· N11

N11 + N01
. (3)
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Our concern is to study the relevance of the partitioning method used in
the FLTM model to represent the LD, and further allow an efficient multilocus
GWAS. For this purpose, not all pairs of SNPs are interesting to assess the agree-
ment between two partitioning methods: we are only interested in pairs of SNPs
selected among the top SNPs found most associated with the studied disease.
As using the top SNPs selected by an FLTM-based GWAS would introduce a
bias in our comparisons, the standard tool PLINK was used to identify these
top SNPs [23] (http://pngu.mgh.harvard.edu/purcell/plink/).

5.2 Deriving the Reference Partition

The reference partition intends to be the closest representation of the underlying
reality, that is the haplotype blocks. We used the Haploview software program
[24] for this purpose. This application allows to select commonly used block def-
initions to partition the genome into regions of strong LD [24,25]. As this block
generation is dedicated to handle genetical data, Haploview can only be used
for the first layer (observed variables). This reason explains why the partition-
ing method of the Haploview application has not been plugged in the FLTM
learning algorithm.

5.3 GWAS-oriented Analysis of a Partition

We have performed three FLTM-driven GWASs, using the method described in
Sect. 3.3, and respectively relying on the three partitioning methods: CASTbin,
CASTreal and DBSCAN. To pursue our investigations relative to the impact of
the choice of the partitioning method, we have analyzed how published associ-
ated SNPs are distributed within the clusters of the first layer, according to the
three partitioning methods used. For this purpose, it was necessary to consider
a disease for which published causal SNPs are available. In this study, we relied
on the results published on the Crohn’s disease, one of the most studied genetic
diseases.

6 Crohn’S Disease GWAS Data

The Crohn’s disease data set we used is made available by the WTCCC Con-
sortium (http://www.wtccc.org.uk/); it consists of 5009 individuals genotyped
using the Affymetrix GeneChip 500 K Mapping Array Set (3004 controls, 2005
cases). We performed the same data quality control as the WTCCC. We excluded
individuals, using exactly the same criteria as the WTCCC ([26], page 26) (e.g.
individuals with more than 3% missing data across all SNPs; individuals sharing
more than 86% of identity with other ones). The rules to exclude SNPs were
also modelled after those of the WTCCC (e.g. missing rate over 5%; if MAF
(minor allele frequency) under 5%, missing rate threshold decreased to 1%)
([26], page 27).

In this paper, we focus on chromosome 2, known to harbour SNPs with
susceptibility towards Crohn’s disease. The initial WTCCC data set describes
41400 SNPs. After the quality control step, our data consisted of 38730 SNPs.

http://pngu.mgh.harvard.edu/purcell/plink/
http://www.wtccc.org.uk/
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Fig. 3. Impact of the choice of the partitioning methods CASTbin, CASTreal and
DBSCAN on the structure of the FLTM model. (a) Impact on the number of variables
per layer. (b) Impact on the sizes of the clusters for the first layer (observed layer).

7 Results and Discussion

The parameter tCAST (see details in [17]) specific to the CAST method, whatever
the version (bin or real), was empirically set to 0.50. The parameter qpairwise

specific to the CASTbin clustering method was empirically chosen to be 50%.
The Nmin and R parameters specific to DBSCAN were tuned to 2 and 0.2 respec-
tively. The FLTM learning algorithm requires the setting of six parameters. We
systematically evaluated the coefficients of the affine function used to determine
the cardinality of each latent variable, �1 and �2, in [0.2, 0.3, 0.4, 0.5] × [1, 2].
We observed no differences between the eight settings, with regard to the sizes
and contents of the clusters. Thus, �1 and �2 were set 0.5 and 1. Following [1],
we fixed the maximum cardinality as 20, the physical distance constraint δ as
45 kbp and the number of restarts of the stochastic expectation-maximization
procedure as 10. The threshold for the quality control of the candidate latent
variables was set to a low value, 0.01. The GWAS thresholds α and β were fixed
to 5% and 10%. The study was conducted using a 3.3 GHz processor. We had
to adapt the generic versions of the CAST and DBSCAN algorithms, to store a
sparse similarity matrix instead of a pairwise similarity matrix (see Sect. 4).

7.1 FLTM Architectures

On average, the running time observed for FLTM learning with each clustering
method is in the order of 60 hours. A closer examination shows that cluster-
ing and other operations only required at most 1 min for each layer, and that
practically all the running time was spent in the expectation-maximization pro-
cedure (see Sect. 3.2). Moreover, it is likely that the presence of a few clusters
of large size (size up to 50) severely increases running times for the expectation-
maximization procedure.
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We first analyze the impact of the partitioning method on the structure of the
FLTM model constructed prior to a GWAS. Figure 3(a) compares the impacts
of the three partitioning methods on the data dimension reduction. We observe
that for any layer, the total number of latent variables created using CASTreal

is always greater than that created using DBSCAN. Moreover, layer 3 does not
exist for DBSCAN whereas it exists for CASTbin and CASTreal. Indeed, for
DBSCAN, no more variables can be grouped in layer 2: all candidate clusters
are singletons. The numbers of variables in layers 1 and 3 are either very close
or similar between CASTbin and CASTreal. Again, among the three methods,
the numbers of variables in layer 2 are the closest for CASTbin and CASTreal.

Figure 3(b) provides the histogram for the sizes of the clusters in the first
(observed) layer, for each of the three partitioning methods, together with the
histogram of the reference Haploview partitioning. It has to be mentioned that,
for reasons of presentation, the histograms have been truncated. Very few clusters
of large sizes are observed: the maximum sizes observed are 18, 45 and 50 for
CASTreal, DBSCAN and CASTbin, respectively. Such clusters would normally
appear far apart on the right section of Fig. 3 (b).

First, we observe that from size 3, the CASTbin curve is slightly above the
CASTreal and DBSCAN curves. Besides, the latter curves are nearly super-
imposed. Finally, we note that from size 3, the curve relative to the reference
partitioning is located slightly below that of CASTbin, on the one hand, and
slightly above the quasi superimposed curves of CASTreal and DBSCAN, on the
other hand.

Therefore, the general conclusion to draw for this section is the propensity for
DBSCAN to produce a lower number of variables than CASTbin and CASTreal,
but with no clear impact on the differences between the cluster size histograms.

7.2 Comparison of the Partitioning Methods in a GWAS Context

In a GWAS context, we wish to focus in priority on pairs of SNPs selected among
the top SNPs found most associated with the studied disease. The standard tool
PLINK was used to identify these top SNPs [23] (http://pngu.mgh.harvard.edu/
purcell/plink/). Relying on PLINK, we performed a single-SNP GWAS on the
WTCCC data set relative to chromosome 2. The association test used was the
Chi2. We have extended the agreement analysis of two partitions to embedded
sets of associated SNPs, increasing the size of the set of top associated SNPs
up to 1000.

Figure 4(a) and (b) compare the partioning methods CASTbin, CASTreal

and DBSCAN together with Haploview, following two of the three comparison
criteria described in Sect. 5.1.

The adjusted Rand index is all the higher as the agreement between two
partitioning methods is high. Thus, we observe that CASTbin does not agree with
the reference (Haploview) partitioning as well as CASTreal and DBSCAN. This
specificity of CASTbin is explained by the conversion of real mutual information
values into binary values (see the role of parameter qpairwise in Sect. 4). This
discretization therefore entails slightly larger cluster sizes for CASTbin, as seen
in Sect. 7.1.

http://pngu.mgh.harvard.edu/purcell/plink/
http://pngu.mgh.harvard.edu/purcell/plink/
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Fig. 4. Agreement of two partitioning methods, in a GWAS context. (a) and (b)
Agreement of a partitioning method with the reference block partitioning method
used by Haploview. Comparison for the partitioning methods CASTbin, CASTreal and
DBSCAN. Impact of the number of top SNPs considered on the agreement. The top
SNPs considered are those found most significantly associated by a standard single-
SNP GWAS. (a) Adjusted Rand index. (b) Mirkin distance. (c) Pairwise comparison
of the partitioning methods CASTbin, CASTreal and DBSCAN. Impact of the number
of top SNPs considered on the agreement. Adjusted Rand index.

On the left section of Fig. 4 (a), the index is computed from few top SNPs.
We observe that CASTbin and CASTreal show a high Rand index in contrast
to DBSCAN. However, in a GWAS context, we do not wish to examine only,
say, the 20 top significantly associated SNPs. Thus, the most relevant section
to focus on is around 50-100 top SNPs. In this latter section of Fig. 4 (a), we
observe that the CASTreal and DBSCAN curves are comparatively close and
clearly located higher than the CASTbin curve. This trend is observed up to the
1000 top most associated SNPs.

In Fig. 4(b), a low Mirkin distance indicates a high agreement between two
partitioning methods. The observations in Fig. 4(b) confirm that CASTbin’s
agreement with Haploview clustering is always worse than the other two meth-
ods’. We have not shown the results for the Fowlkes-Mallows index as the curves
obtained are quasi superimposable with those plotted for the adjusted Rand
index.

The first general conclusion to draw from this first series of agreement com-
parisons on the Crohn’s disease data set is that DBSCAN and CASTreal show
a high level agreement with Haploview partitioning, both being quite clearly
better than CASTbin.

Figure 4(c) displays the results for pairwise comparisons: CASTreal versus
CASTbin, DBSCAN versus CASTbin and DBSCAN versus CASTreal. Accord-
ing to the adjusted Rand index, DBSCAN and CASTreal show a high agree-
ment. Given our previous observations, we expected that CASTbin and CASTreal

would show a low level agreement, which is confirmed. DBSCAN and CASTbin

yield partitions that almost always disagree more than for the two former cou-
ples of partitioning methods. This trend is confirmed with the Mirkin distance
and the Fowlkes-Mallows index (results not shown).
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As a second general conclusion of this section, we cross-confirm one of our
previous observations: DBSCAN and CASTreal each show a high agreement with
Haploview. This fact is therefore also reflected by a high agreement between
DBSCAN and CASTreal.

7.3 FLTM-driven GWASs

In Fig. 5, the comparison of plots (a) to (c) and plot (d) shows how the dimen-
sion reduction allows to pinpoint the potentially most interesting regions on
the genome. Thus, “sparse” association profiles are produced, as opposed to the
dense output of the standard single-SNP GWAS.

The two putative causal SNPs located on chromosome 2 respectively reported
in the WTCCC study [26] and in [27] are identified by the three FLTM-driven
GWASs. Given that we used the same data set as in [26], one of the two
results was expected. However, this result was not guaranteed, because of the
data dimension reduction and of the subsumption involved in an FLTM-driven
GWAS. Besides, it must be highlighted that the study in [27] analyzed 8059 indi-
viduals (3230 cases and 4829 controls), whereas the WTCCC data set describes
a population of size 5009. Table 1 shows that CASTbin and CASTreal capture
exactly the same four highly associated SNPs through the latent variables L1

and L2, belonging to layer 1. These variables are the right-most latent vari-
ables in layer 1, on the plots (a) and (b) of Fig. 5. The virtual location of a
latent variable is computed as the average of the locations of its child variables.

Table 1. Analysis of the latent variables in layer 1 found significantly associated with
Crohn’s disease, by the three FLTM-driven GWASs with plug-in CASTbin, CASTreal

and DBSCAN, respectively. For each clustering method, the latent variable is described
on the first line. On the following lines, the highly associated SNPs subsumed by this
latent variable are depicted. The identifier of each SNP is provided (rsXXXXXXX).
The • character highlights the SNPs which are common children of latent variables L1

(or L2) and L3. ∗ Note that the association tests used may differ between studies.

Clustering method Variable Location p-value p-value reported in

another study∗

CASTbin latent L1 233837691 (1) 5.86 × 10−14

rs6752107 233826187 • (2) 9.65 × 10−14 (3)

rs6431654 233826508 • (2) 9.96 × 10−14 (4)

rs3828309 233845149 • (2) 2.30 × 10−13 (5) 2 × 10−32 [27]

rs3792106 233855479 (2) 3.70 × 10−12

CASTreal latent L2 see (1) 5.52 × 10−14

see (2)

DBSCAN latent L3 233830355 6.58 × 10−14

rs10210302 233823578 4.60 × 10−14 7 × 10−14 [26]

rs6752107 233826187 • see (3)

rs6431654 233826508 • see (4)

rs3828309 233845149 • see (5) 2 × 10−32 [27]
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Fig. 5. Impact of the choice of the partitioning method on the multilocus GWAS
results. For the FLTM-based GWASs ((a) to (c)), one “sparse” association profile is
displayed for each layer, as not all variables in a layer are examined. The single-SNP
GWAS in (d) was performed using the gold standard PLINK [23]. Its output only deals
with variables in layer 0 (observed variables). All plots show initial (i.e. non corrected)
p-values.

Thus, the location of L1 (or L2) is 233837691 bp. The p-values computed for L1

and L2 differ since the data imputed for these latent variables differ. For either
CASTbin or CASTreal, the SNP published in [26] is not grouped with other
SNPs into a cluster, in contrast to DBSCAN. Table 1 shows that for DBSCAN,
the latent variable L3 subsumes SNPs among which are the two already pub-
lished putative causal SNPs. L1 and L3 share three highly associated SNPs,
including the putative causal SNP published in [27]. The virtual location of L3

is 233830355 bp. We can see that L1 captures LD on a slightly wider range than
L3, since the regions encompassed by the former and the latter variables spread
over 29292 and 21571 bp, respectively.
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A more thorough analysis of the Affymetrix array indicates that the region
encompassed by L1, [233826187, 233855479], contains four highly associated
SNPs, interspersed with three non associated SNPs. Similarly, the interval cov-
ered by L3, [233823578, 233845149], contains eight SNPs, including four non
associated SNPs. Clearly, among the four highly associated SNPs pinpointed by
each of L1 and L3, respectively three and two SNPs are highly associated with
the disease because they are in LD with a putative causal SNP (see Table 1).
However, not every SNP close to a putative causal SNP has been incorporated in
the cluster subsumed by L1, L2 or L3. To confirm the relevance of the clustering
performed, an in-depth examination shows that these former close SNPs that
are not in LD with putative causal SNPs are found poorly associated with the
disease (in the order of 10−1). Importantly, even the SNP flanking on the left the
causal putative SNP published in [27] and having a p-value equal to 1.32×10−5,
was not retained in L1 or L3’s cluster. This observation shows that a fine-grain
clustering is achieved for each of the three partitioning methods.

Therefore, a first remarkable result is that the subsumption process does not
hinder the informativeness of L1, L2 and L3: L1, L2 and L3 are still found highly
associated with the disease (5.86×10−14, 5.52×10−14, 6.58×10−14 respectively).

Moreover, a second remarkable result is obtained. The standard GWAS
(Fig. 5(d)) identifies two SNPs with a high statistical significance (rs13394205,
located at around 18 Mbp (17849508), and rs11887827, located at around 81
Mbp (81519665)). The p-values of these two SNPs are respectively 2.28 × 10−9

and 1.81 × 10−11. None of these SNPs were reported in former studies [26,27],
which identified them as false positives. In the layers 0 of the plots (a) to (c) of
Fig. 5, none of these two SNPs either appears. The reason lies in that during the
top down traversal of the FLTM, the parents of these SNPs are detected as not
significantly associated with the studied disease. Consequently, the descendants
of these latent variables are not examined (and not displayed in the sparse out-
puts). Therefore, the FLTM-driven GWAS strategy exerts an efficient control of
the number of false positives. Furthermore, all layers potentially allow to exert
such a control, with a pruning effect on the forest structure guiding the GWAS.

In the context of this study, the general conclusion to draw from this section
is that the three FLTM-driven GWASs capture the SNPs reported associated
by two other studies and correctly detect false positive associations. Second, the
differences reported in Sects. 7.1 and 7.2 between CASTbin and the two other
clustering methods do not impact the quality of the corresponding FLTM-driven
GWAS.

8 Conclusion and Future Work

In this paper, we have analyzed the influence of the choice of the clustering
method to be plugged in the FLTM learning algorithm, for the purpose of a
GWAS application. We have started examining this impact focusing on two scal-
able clustering methods, adding a relaxed variant of one of them. For this pur-
pose, a methodological framework has been designed, which allows to compare
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the three clustering methods according to the following viewpoints: (1) effective
ability to split or group the top associated SNPs, according to the underly-
ing linkage disequilibrium structure; (2) data dimension reduction and associ-
ated risk of missing significant results through subsumption; (3) relevance of
the partitioning method to guide an FLTM-based GWAS pinpointing regions
with significantly associated SNPs. The CASTbin clustering method was shown
slightly different from CASTreal and DBSCAN, from the clustering viewpoint.
However, this discrepancy was not reflected by a difference in GWASs’ perfor-
mances. Therefore, to the initial question “Which clustering method should be
chosen”, the answer for the Crohn’s disease WTCCC data set relative to chromo-
some 2 would rather prioritize easiness in tuning parameters. In our experiments
so far, the FLTM learning algorithm seems robust to the choice of the clustering
method, provided that the intrinsic parameters of the latter are appropriately
set. Further works include extending the current analysis to other chromosomes,
for the WTCCC data set, as well as to other diseases, and extending our analysis
to other clustering methods.

It was the first time that the FLTM learning algorithm was run on real
GWAS data. It is questionable whether the present study should be comple-
mented by intensive experiments run on simulated GWAS data sets. Given the
high processing times required as soon as GWASs are addressed, and the recur-
ring question of generating sufficiently realistic GWAS data, a less systematic
approach, encompassing more diseases, seems wholly relevant.

Finally, to return to the multilocus aspect of the type of GWAS addressed
here, one of our next tasks is to compare the FLTM-based GWAS strategy with
the few other scalable multilocus approaches existing, including BEAGLE [11].
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