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Abstract This paper addresses the automated analysis of coral in shallow reef
environments up to 90 ft deep. During a series of robotic ocean deployments, we
have collected a data set of coral and non-coral imagery from four distinct reef loca-
tions. The data has been annotated by an experienced biologist and presented as
a representative challenge for visual understanding techniques. We describe base-
line techniques using texture and color features combined with classifiers for two
vision sub-tasks: live coral image classification and live coral semantic segmentation.
The results of these methods demonstrate both the feasibility of the task as well as
the remaining challenges that must be addressed through the development of more
sophisticated techniques in the future.

1 Introduction

In this paperwedescribe a system for the automated detection andvideo identification
of coral growths using amarine robot. Our objective is to develop a fully autonomous
system that can swim over coral reefs in open water, collect video data of live coral
formations, and make an estimate of coral abundance. The video is intended for
examination by human specialists, but the system needs to be able to both remain
resident on the reef surface and recognize coral as it is encountered to perform its
mission.

Coral reefs are delicate marine environments of immense importance both
ecologically and socio-economically, and yet they are under substantial threat almost
everywhere they occur. One preliminary step to retaining these environments is to
be able to objectively record their presence, their change over time, and their health.
Such records are critical not only to any remediation effort, but also in order to present
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a compelling case to law makers and law enforcement officials regarding the preser-
vation of these ecosystems. While human divers are commonly deployed to observe
reefs and measure their health, the requisite measurements need to be performed
using scuba gear under conditions that present a risk to the divers involved.

In the work reported here, we use a small, portable, and high mobility underwater
vehicle which is able to swim over the surface of a coral reef, hover in place, navigate
in confined spaces, and collect video data from multiple cameras operating simul-
taneously. In our current experimental configuration the vehicle is accompanied by
a human supervisor, but our approach and target scenario does not require a human
operator to be present while data is being collected. This vehicle is ideally suited for
reef surveillance since it can be deployed manually by a single user either from shore
or in the water, does not require an associated tender (ship), can maneuver even in
very shallow water, and can even land on a set of legs on sand or a reef surface with
limited physical contact. Our approach to covering coral reefs requires the vehicle
to be initialized over or near a reef. It can subsequently circumnavigate the reef and
cover its interior using inertial navigation. In prior work we have also employed GPS
data, acquired by allowing the vehicle to surface, to assist in the navigation task, but
in this work navigation is accomplished while remaining underwater at the expense
of global localization. This paper does not focus on coverage and navigation, but
rather on the system architecture, the nature of the data we collect, and our ability to
detect and recognize living coral using this vehicle.

In this paper, we propose and evaluate two critical components of the visual
processing pipeline used for both the guidance and data collection for our vehicle.
These operations are the classification of images that are observed as either contain-
ing live coral or not, and the subsequent segmentation of the live coral within the
image. Several structured data sets used in our evaluation are described below and
are available to the community.1

2 Background

As coral health is an issue of worldwide importance, its monitoring has been studied
by many authors previously, both in the field of biology and intelligent systems. This
section describes several of the most relevant contributions.

2.1 Coral Reef Biology and Reef Health

Coral reefs are majestic structures crucial to ecosystem functioning. They are home
to roughly 25% of the oceans’ inhabitants, and act as a nursery, feeding ground,
and shelter for thousands of marine organisms [1]. To humans, they represent

1Dataset hosted at: http://www.cim.mcgill.ca/mrl/data.html.

http://www.cim.mcgill.ca/mrl/data.html
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approximately US$30 billion annually in goods and services, and are the focus of
many studies searching for novel biochemically active drug compounds [2]. Opti-
mistic reports estimate that at the current rate, by 2050 some 75% of the world’s
remaining reefs will be critically threatened [3]; more pessimistic estimates predict
that all of Earth’s coral reefs will be dead by the end of the century [4].

Some of the major driving forces behind coral decline worldwide include increas-
ing water temperatures, ocean acidification, increase in frequency and intensity of
coral diseases, and damage due to natural disasters such as hurricanes. Many anthro-
pogenic activities are also causing direct harm to reefs, including the overfishing of
essential herbivorous species of fish, increasing amounts of water pollution from ter-
restrial runoff, and increasing sedimentation from coastal construction [3]. Arrival of
invasive species can further exacerbate the situation and lead to a dramatic decrease in
reef diversity and health, such as the invasion of Indo-Pacific lionfish in theCaribbean
Sea and of the crown-of-thorns seastar in Australia [5].

While little can be done on a regional scale about issues such as global warming
and increasing ocean temperature, there is an increasing focus on local management
and conservation of coral reefs [6]. One critical component of any successful conser-
vation effort is being able to assess whether a particular conservation strategy results
in beneficial outcomes on the system in question. In order to protect what remains of
the world’s coral reefs, it is essential that we design accurate and precise methods to
assess the health of coral reefs without undue risk to human participants. This will
not only allow us to see when conservation efforts work, but will also help determine
which reefs should be conservation priorities and provide evidence to policy makers
and the general public that conservation efforts are necessary to preserve the well
being of coral reef ecosystems [7].

2.2 Robotic Reef Surveys

Several research groups have considered the use of autonomous underwater vehicles
(AUVs) for data collection in marine environments, and even in coral reefs. Reefs are
challenging environments since they are both valuable and physically delicate, and
they have complex morphologies. A few vehicles have been developed that can make
close approaches to the ocean floor, corals, or aquatic structures [8, 9]. This can be
challengingdue to several factors: (a) the propulsion systemsmaybeunsafe to operate
close to sensitive underwater environments; (b) otherwise “gentle” devices such as
gliders have limited maneuverability; (c) it is difficult for humans to produce pre-
planned trajectories since sensor feedback underwater is often poor, communications
are difficult and terrain models are rarely complete; (d) many propulsion systems are
prone to disturbing bottom sediments which reduces visibility.

The problemof designing and controlling stableAUVs has been studied by several
authors [10, 11] on a variety of platforms. In prior work with the Aqua class of
vehicles developed in our lab, we have demonstrated a combination of small size,
low weight, and high maneuverability with diverse gaits [12, 13].
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Several authors have also considered using towed or autonomous surface vehi-
cles to perform visual data collection over marine environments [14], although in the
context of coral reefs such an approach is feasible only for the shallowest reef struc-
tures and depends critically on very good visibility. Deep water AUVs have been
used to map the ocean floor, inspect underwater structures, and measure species
diversity [15].

Australia’s Integrated Marine Observation System (IMOS) is carrying out a
project to deliver precisely navigated time series of seabed imagery and other vari-
ables at selected stations on Australia’s continental shelf [16]. They are using UAVs
to make this endeavor scalable and cost efficient.

In [17], the authors present a structure from motion framework aided by the
navigation sensors for building 3D reconstructions of the ocean floor and demonstrate
it on an AUV surveying over a coral reef. Their approach assumes the use of a
calibrated camera and some drifting pose information (compass, depth sensor, DVL).
They use the SeaBEDAUV, an imaging platform designed for high resolution optical
and acoustic sensing [18].

In previous work [19] we have developed a controller to allow our vehicle to
autonomously move about over coral reef structures using visual feedback. In this
paper we restrict our attention to the analysis of the data collected by such a system,
and consider the sensing issues that arise.

2.3 Visual Coral Categorization

Our methodology has been inspired by recent successes of previous biologically rel-
evant visual data sets. For example, the Fish Task of the recent LifeCLEF contest [20]
supported progress on detecting moving fish in video and fish species identification
through the release of nearly 20,000 carefully annotated images. The identification
of coral using visually equipped AUVs has been studied previously [21]. While
we share similar motivations to this work, we differ in deployment and algorithmic
objectives. Nonetheless, the relationship is a motivation for the public release of our
training and test images which could facilitate comparisons. Additionally, Girdhar
et al. [22] has demonstrated a system which modifies swimming behavior on-line to
follow novel visual content.

3 The MRL Coral Identification Challenge

The first contribution of this paper is a robot-collected data set of visual images from
environments proximal to a number of coral reefs. This data was collected by the
Aqua swimming robot during a series of field deployments in the Caribbean, where
the robot’s existing navigation technologies were exercised to cover each reef and its
surroundings.Although our robot did not use vision to inform its navigation strategies
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during these trials, the images that it collected are representative of the challenge that
faces a coral-seeking robot. Therefore,we have organized and annotated them to form
twovisual challenge tasks: live coral image classification and live coral segmentation.
The remainder of this section describes the components of this effort.

3.1 Robotic Data Collection

As mentioned previously, robots require specialized hardware and capabilities in
order to operate safely near coral formations. We utilized the Aqua robot [23], an
amphibious hexapod that swims using the oscillations of its flippers. Aqua has been
designed for use as a visual inspection device and is equipped with four cameras
with a variety of properties: a forward-facing stereo pair with a narrow field-of-view
(which allows recovery of depth), a front fish-eye camera (which captures a wider
scene), and finally a 45◦ (which allows the fourth camera to capture the ocean floor
directly below the robot).

In order to achieve broad coverage of the underwater environment, our robot
executed a coverage pattern repeatedly over the reef. We set the parameters of this
motion by hand so that the robot would pass completely over the reef as well as
an equal portion of the sandy surroundings. This gives our data set a roughly equal
split between the coral images we target and less desirable content, which poses an
interesting classification problem for the visual processing component.

Two attitude strategies were employed, each targeted to induce ideal viewpoints
for a different sub-set of Aqua’s cameras. First, a flat-swimming maneuver controlled
the robot to be alignedwith gravity in both the roll and pitch rotational axes.With this
attitude, the downward looking camera views the ocean bottom with an orthogonal
viewpoint and the front fish-eye camera views the horizon at roughly half the image
height. Second, we considered swimming with a downwards pitch of 30◦. This strat-
egy allowed the narrow-view stereo pair to view the ocean bottom slightly in front of
the robot. The depths observed at this angle would allow fixed-altitude operations,
which are desirable in order to prevent accidental collisions with the coral.

The robot executed five data collection runs at four distinct reef locations (one
reef was visited twice). We selected reefs within the Folkstone Marine Preserve and
in Heron Bay, both of which are located on the western coast of St. James, Barbados.
During each run, the robot covered an area of approximately 100m2. Each reef
location was an instance of the spur-and-groove coral formations that tend to present
the widest range of diversity of coral species, and are thus ideal regions for collection
of biologically relevant data.

Data Statistics

All of the videos are taken at 15 frames per second, with VGA resolution. The total
size of visual data collected over the five collection runs is 104 gigabytes consisting
of 164min of video. Depth and IMU data are also recorded throughout.
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3.2 Data Annotation

A marine biologist manually annotated the coral within a subset of the images we
collected. The results of this annotation have been made available in a standardized
format, and the data is being released publicly for the purposes of comparison of
results and classifier training. As a variety of tasks can be considered, depending on
the goals of the robot platform, we define two coral-related visual tasks and accom-
panying evaluation criteria. We continue by describing our annotation procedure.

Annotation for Image Classification

The first sub-task that we define is coral image classification. Given an image, the
system outputs whether there is live coral in the image. To create training and testing
data for this task, we extracted images at 5 s intervals from all of the videos taken
by the downward-looking mirrored camera while the robot was swimming flat. Each
image was then subdivided into four 320 × 256 quadrants to limit the diversity
and facilitate ease of labeling. The biologist labeled 3704 images into one of three
categories:

• Yes: There is live coral in the image
• No: There is no live coral in the image
• Reject: The image should be discarded because it is too difficult to tell whether
there is live coral or not. This could be because the image is too blurry or the coral
is too small to see clearly.

This provided uswith 1087Yes images, 2336No, and 281Reject images. Figure1
shows some examples of Yes and No images.

Annotation for Segmentation

Secondly, we define the coral segmentation task, where the coral regions within an
image must be identified, through creation of a coral mask. While some existing
segmentation data sets contain pixel-wise ground truth, we lacked the resources to
produce this detailed data. Instead, we have manually annotated rectangular coral
regions for each of the 1087 Yes images from our classification data set. Examples
of the selected image regions are shown in Fig. 2. Rectangular regions cause a small
approximation error at region boundaries, but this task is still a reliable proxy for
coral segmentation, as will be demonstrated in our results section.

Fig. 1 Annotated images used for training a detector for the image classification task. The left two
images are labeled as having coral and the right two images are labeled as not containing coral
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Fig. 2 Positive training images cropped to contain only coral, which is useful for training a detector
for the coral segmentation task

Annotation Statistics

The final annotated data set produced by our labeler was reduced in size from the
raw robot footage due to the rejection of poor quality and ambiguous images. We
separated the annotated data into a training set (416 positive examples and 701 neg-
ative examples) and a test set (492 positive examples and 1544 negative examples).
The training set contains images from three data collection runs at three unique reefs,
and the test set contains images taken from two data collection runs at the fourth reef
location. Thus, there is no overlap between the training and test sets.

We have additionally defined evaluation protocols for the use of this data, fol-
lowing best-practices from existing challenges such as the ILSVRC [24]. Broadly,
we measure performance on each binary categorization task as prediction accuracy,
normalized by the data set size. For the categorization task this represents the number
of images, and for segmentation this is measured in image area. Methods cannot be
optimized directly on the test data set. Rather, parameters should be refined by split-
ting the training set into folds and then reporting the performance after a single run
on the test set. This data is being released to the public alongside this paper and we
will maintain a record of the best performing techniques over time as other authors
attempt the task. We now continue by describing several baseline techniques that we
have developed.

4 Method

Coral identification in the ocean shares many of the typical challenges that face ter-
restrial vision systems, as well as several challenges unique to this task. The lighting
conditions in the shallow ocean include caustics caused by the water’s surface, inter-
reflections and the absorption of low-frequency colors. This makes brightness invari-
ance essential. The robot changes its orientation during the survey, which implies the
need for orientation invariance. Small floating particles are ubiquitous in the under-
water domain, causing an optical snow effect. Additionally, the appearance of the
coral itself has a wide diversity and there are local variations between reef locations,
so generalization must be the focus of learned methods.
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In the face of these challenges, our approach to coral identification is to encode
the visual data in robust feature representations that capture canonical appearance
properties of coral, such as its color and texture and to learn coral classifiers from
training data on top of these features. We develop two processing streams—one for
each of the visual tasks described above. Our classification process employs Gabor
functions and global processing to compute aggregate statistics. Segmentation is
achieved through local computations on sub-regions of the image. Each approach
will be described in detail in the remainder of this section.

4.1 Global Image Statistics for Coral Classification

The classification pipeline uses both global color and aggregate texture features
in a classifier subsystem to learn from labeled example images and subsequently
predict whether an image contains live coral. This subsystem computes two types of
attributes over the entire (global) images to produce a characteristic feature vector.
These vectors are then classified using a support vector machine (SVM) trained with
our manually classified data. Figure3 (top) illustrates the classification pipeline.

Ourmethod represents texture through the use of thewell-knownGabor transform.
The Gabor function [25] is a sinusoid occurring within a Gaussian envelope and has
inspired a class of image filters particularly suited to describing texture [26]. Our
method automatically selects a sub-set of Gabor wavelets from a large family by
selecting those with frequency and spatial support parameters that optimize task
performance, using cross-validation on the training set.

Applying filters result in a stack of transformed images and we extract robust
energy statistics from these in order to produce a vector suitable for classification.

Fig. 3 Image processing pipeline. (top) Gabor-based classification. (bottom) LBP-based segmen-
tation
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The amplitude histogramof eachGabor filter provides a characterization of the image
content including the presence of outlier objects. Order statistics can effectively
characterize such a signal [27] and are robust to much of the noise present in our
task. For this reason we characterized the energy distribution with several statistics
of each Gabor filter: the mean energy, the variance of the energy distribution, and the
energy at a specific set of percentiles of the cumulative distribution (5th, 20th, 80th
and 95th percentiles). In order to capture color information, we additionally extracted
the same robust statistics for the distribution of hue values observed in the image.

The result of both the Gabor texture filters and the color summary were concate-
nated into a fixed-length vector. Depending on the number of active Gabor compo-
nents, this representation had between 24 and several hundred dimensions. In order to
reduce computation and simplify the learning, we performed principal components
analysis on these vectors to find the subspace that captures 99.99% of the variance.

The final step in this pipeline is to predict the label of an image (live coral or
not). We learn an SVM from the training images described previously and apply the
resulting learned model to make coral predictions on new images.

4.2 Local Binary Pattern Based Coral Segmentation

Our coral segmentation pipeline uses LBPs [28] and color information as image
descriptors, and an SVM to detect whether small patches of the images correspond to
live coral or not. Unlike the Gabor filters, which are applied globally, our features and
classifier are applied on small image patches,which allowsfine-grained segmentation
of coral regions. Figure3 (bottom) illustrates the segmentation pipeline.

For a given pixel in the image, its LBP is computed by comparing its gray level
gc with that of a set of P samples in its neighborhood, gp (p = 1, 2, . . . , P). These
samples are evenly spaced along a circle with radius R pixels, centered at gc (see
Fig. 4). For any sample that does not fall exactly in the center of a pixel, its gray
value is estimated by interpolation. The LBP is computed according to

LBPP,R =
P−1∑

p=0

1{gc−gp≥0}2p, (1)

where 1{·} is the indicator function.

Fig. 4 Local binary pattern
neighbor sets for
(P = 4, R = 1),
(P = 8, R = 1) and
(P = 12, R = 2)
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To achieve rotational invariance, Ojala et al. [28] proposed to label the LBPs
according to their number of 0/1 transitions. LBPs with up to two transitions are
called uniform and they are assigned a label corresponding to the number of 1’s in
the pattern. LBPs with more than two transitions are called nonuniform and they are
all assigned the label P + 1. Finally, the rotation invariant LBP image descriptor is a
P +2 bin histogram of these labels computed across all pixels in the image. Uniform
patterns are assigned to unique bins, while nonuniform patterns are all assigned to a
single bin. As color is also an important feature for coral segmentation, we appended
the LBP histogram with an eight bin histogram of the hue values of the pixels in the
image patch.

During operation time, our learned model is used to segment an image by splitting
it into patches with the same size as those used during training. Features are extracted
from each patch and scored with the SVM, producing a coral segmentation mask
that can be used to guide the robot during its mission.

5 Experiments and Results

5.1 Global Coral Classification

Our global classifier was tested on the data sets above using distinct testing and
training sets collected over different reefs. We were able to achieve a net classifier
accuracy of 89.9% on balanced sets of images containing coral and not containing
coral. This accuracy generally increased with the number of Gabor basis functions;
however, since these are the primary source of computational cost, we are interested
in a compromise between performance and the number of filters user. The trade-off
between accuracy and the size of the filter bank is illustrated in Fig. 5. While using a
bank of 24 or more filters provides maximal performance, the 80.6% rate achieved
with just 20 filters appears quite acceptable for our applications.

Fig. 5 Classification accuracy increases with both: (left) number of Gabor filters; and (right)
number of PCA components. This reflects the trade-off of computational effort and performance
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Fig. 6 Classification accuracy versus patch size (pixels)

(a) (b)

(c)

Fig. 7 Samples of live coral segmentation. a Test set reef segmentation. b Live coral segmentation.
(right) false negative. c Live coral segmentation. (left) false positive

5.2 LBP-based Coral Segmentation

To study the effect of varying the number of points and radius (P, R) of the LBPs
and the size of the patches on the segmentation, we performed a grid search on these
parameters. Also, to optimize the performance of the SVM, we ran a grid search on
the gamma, tolerance and regularization constant (C) parameters of the radial basis
function (RBF) kernel.

The LBP parameters had very small impact on the accuracy of the classifier. We
tested over the values (P, R) = (8, 1), (16, 2), (16, 3), (24, 3), (32, 5) and found
that the difference in accuracy between them was less than 2.1%, regardless of the
patch size. Given such a small impact, we decided to use (P = 8, R = 1) for the
remaining experiments.

The patch size, on the other hand, had a much larger impact on the classifica-
tion accuracy, which is illustrated in Fig. 6. The maximum classification accuracy
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achieved was 81.16% with the RBF kernel parameters set to γ = 0.0001, tol = 2
and C = 10,000,000. The optimal patch size was found to be 30 pixels.

In Fig. 7, we present some examples of images from the test set with an overlay
(in red) showing the segmented live coral. Figure7a is a stitched image created from
several consecutive frames from the original video.We observe that the segmentation
pipeline correctlyfinds areas of the imagewith live coral.Wealso observe areaswhere
the classifier has problems detecting coral, such as when the texture is uniform –with
an example of a false negative shown in Fig. 7b. Likewise, live coral can be incorrectly
detected when variations in texture (or shadows) match that of live coral – with an
example of a false positive shown in Fig. 7c.

6 Discussion

We have described a robot-vision system for performing automated coral surveys
of the sea floor. We learn coral predictors that are able to robustly detect live coral
patches and segment them from the background, agreeing with the assessments of
an experienced coral biologist with an accuracy of 80–90%. These results are based
on a data set of thousands of labeled images of only moderate quality, confounded
by the typical phenomena that confront any diver or AUV. Our data set is being made
available in conjunction with this submission.

In the future, we plan to study the disambiguation of other zooxanthellae-
containing organisms from coral and the automated labeling of different coral sub-
species. This will require suitably labeled training data, as well as more diverse raw
data sets, potentially including active illumination. Additionally, we hope to integrate
coral mapping into the navigation stack of our vehicle, as we have successfully done
in the past with other vision-guided navigation methods [22]. The resulting system
has the potential to perform autonomous longitudinal surveys, providing biologists
with an easy, quick, and accurate way of monitoring reef health. Such methods are
critical for understanding how these ecosystems respond to environmental distur-
bances, documenting the efficacy of novel coral reef conservation and restoration
efforts, and convincing policy makers to enact stringent protection measures for
coral reef ecosystems.
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