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Abstract Visual Teach and Repeat (VT&R) allows an autonomous vehicle to repeat
a previously traversed route without a global positioning system. Existing implemen-
tations of VT&R typically rely on 3D sensors such as stereo cameras formapping and
localization, but many mobile robots are equipped with only 2D monocular vision
for tasks such as teleoperated bomb disposal. While simultaneous localization and
mapping (SLAM) algorithms exist that can recover 3D structure and motion from
monocular images, the scale ambiguity inherent in these methods complicates the
estimation and control of lateral path-tracking error, which is essential for achiev-
ing high-accuracy path following. In this paper, we propose a monocular vision
pipeline that enables kilometre-scale route repetition with centimetre-level accuracy
by approximating the ground surface near the vehicle as planar (with some uncer-
tainty) and recovering absolute scale from the known position and orientation of
the camera relative to the vehicle. This system provides added value to many exist-
ing robots by allowing for high-accuracy autonomous route repetition with a simple
software upgrade and no additional sensors. We validate our system over 4.3km
of autonomous navigation and demonstrate accuracy on par with the conventional
stereo pipeline, even in highly non-planar terrain.

1 Introduction

Visual Teach and Repeat (VT&R) is an effective tool for autonomously navigating
previously traversed paths using only on-board visual sensors. In an initial teach pass,
a human operator manually drives an autonomous vehicle along a desired route while
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the VT&R system uses imagery from a camera to build a map of the route. In the
subsequent repeat pass, the system localizes against the stored map to autonomously
repeat the route, sometimes combining map-based localization with visual odometry
(VO) to estimate relativemotion in caseswheremap-based localization is temporarily
unavailable (Fig. 1). VT&R is well-suited to repetitive navigation tasks where GPS
is unavailable or insufficiently accurate, and has found applications in autonomous
tramming for mining operations [14] and sample return missions [8].

The map representation in a VT&R system may be purely topological, purely
metric, or a mixture of the two (sometimes called topometric). Purely topological
VT&R [9, 15, 20] uses a network of reference images (keyframes) where the naviga-
tion goal is to match the current image to the nearest keyframe using a visual homing
procedure. These systems are restricted to heading-based control, which only loosely
bounds lateral path-tracking error. Purely metric maps are uncommon in VT&R sys-
tems due to the high computational cost of creating globally consistent maps for long
routes, but successful applications do exist [11, 21]. Topometric systems [8, 14, 22,
23] reap the benefits of both mapping strategies by decoupling map size from path
length while still retaining metric information.

Furgale andBarfoot [8] developed thefirstVT&Rsystemcapable of autonomously
repeating multi-kilometre routes in unstructured outdoor terrain using only a stereo
camera. Their system creates a topometric map of metric keyframes connected by
6DOF VO estimates, which are combined via local bundle adjustment into locally
consistent metric submaps for localization in the repeat pass.

Furgale and Barfoot’s system has been extended to other 3D sensors such as lidar
[16] andRGB-Dcameras, but amonocular implementation has not been forthcoming.
Whilemonocular cameras are appealing in terms of size, cost, and simplicity, perhaps
themost compellingmotivation for usingmonocular vision for VT&R is the plethora
of existing mobile robots that would benefit from it. Indeed, vehicles equipped with
monocular vision, typically for teleoperation, run the gamut of robotics applications,

Fig. 1 Our field robot during a 140m autonomous traverse in the UTIAS MarsDome indoor rover
testing environment, with the path overlaid for illustration. In order to compare the performance of
stereo and monocular VT&R with the same hardware, we equipped our rover with a stereo camera
and used only the left image stream for our monocular traverses
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and in many cases—search and rescue, mining, construction, and personal assistive
robotics, to name a few—would benefit from accurate autonomous route-repetition,
especially if it were achievable with existing sensors.

Several techniques exist for accomplishing online 3D simultaneous localization
and mapping (SLAM) with monocular vision, ranging from filter-based approaches
[4, 5] to online batch techniques that make use of local bundle adjustment [10, 12,
25]. Such algorithms are capable of producing accurate 3D maps, but only up to
an unknown scale factor. This scale ambiguity complicates threshold-based outlier
rejection, as well as the estimation and control of lateral path-tracking error during
the repeat pass, which are essential for achieving high-accuracy route-following.

In this paper, we extend Furgale and Barfoot’s VT&R system to monocular vision
by using the approximately known position and orientation of a camera mounted
on a rover to estimate the 3D positions of keypoints near the ground with absolute
scale. Similar techniques have succeeded in computing VOwith amonocular camera
using both sparse feature tracking [3, 6, 24] and dense image alignment [13], but
have not considered the problem of map construction. We show that by treating the
ground surface near the vehicle as approximately planar and applying an appropriate
uncertainty model, we can generate local metric maps that are accurate enough to
achieve centimetre-level accuracy during the repeat pass, even on highly non-planar
terrain. Although the flat-ground assumption is not globally valid, it is sufficient for
our purposes since VT&R uses metric information only locally.

Themain contribution of this paper is an extensive comparison of the performance
of monocular and stereo VT&R in a variety of conditions, including an evaluation of
their robustness to common failure cases. To this end, we present experimental results
comparing the two systems over 4.3km of autonomous navigation. While our results
show that both systems achieve similar path-tracking accuracy when functioning
normally, the monocular system suffers a reduction in robustness compared to its
stereo counterpart in certain conditions. We argue that, for many applications, the
benefit of deployingVT&Rwithout a potentially costly sensor upgrade far outweighs
the associated reduction in robustness.

2 Monocular Depth Estimation

We estimate the 3D coordinates of features observed by a camera pointed downward,
but not directly at the ground surface, by approximating the local ground surface
near the vehicle as planar and recovering absolute scale from the known position and
orientation of the camera relative to the vehicle. We account for variations in terrain
shape by applying an appropriate uncertainty model. In what follows, zi

j denotes the
3D coordinates of feature i expressed in coordinate frameF j .
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(a) (b)

Fig. 2 Geometry and uncertainty model of our monocular depth estimation scheme. a Coordinate
frames in our monocular depth estimation scheme. The local ground frame Fg is defined relative
to the vehicle frameFv and travels with the vehicle. b Evenly-spaced synthetic image features (top
right) and estimated D coordinates with 1σ uncertainity ellipses for the experimental configuration
described in Sect. 4

2.1 Locally Planar Ground Surfaces

For a monocular camera observing the ground, we can estimate the 3D coordinates
of features near the ground by making the following assumptions (see Fig. 2a):

1. all features of interest lie in the xy-plane of a local ground frame Fg defined
such that its z-axis is normal to the ground and always intersects the origin of the
vehicle coordinate frameFv (for a ground vehicle, this is the vehicle’s footprint);

2. the transformation Tc,v ∈ SE(3) fromFv to the camera-centric coordinate frame
Fc is known; and

3. the transformation Tv,g ∈ SE(3) fromFg toFv is known.

Assuming that incoming images have been de-warped and rectified in a pre-
processing step, we can model the camera as an ideal pinhole camera with calibrated
camera matrix K such that the image coordinates yi of zi

c are given by

yi := [
ui vi 1

]T = Kpi , (1)

where

pi := [
pi

x pi
y 1

]T = 1

zi
c

[
xi

c yi
c zi

c

]T
(2)

represents the (unitless) normalized coordinates of zi
c on the image plane. Note that

although ui , vi represent pixel coordinates, they are not necessarily integer-valued.
By assumption 1, zi

g = 0,∀i , so we can write

zi
c := [

xi
c yi

c zi
c 1

]T = Tc,g
[
xi

g yi
g 0 1

]T
, (3)
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where Tc,g = Tc,vTv,g . We can therefore obtain the feature depth zi
c as a function

of pi by substituting xi
c = zi

c pi
x and yi

c = zi
c pi

y according to Eq. (2), and solving the
third component of Eq. (3) for zi

c, yielding

zi
c = k1

k2 + k3 pi
x + k4 pi

y

, (4)

where, using Tmn as shorthand for the mth row and nth column of Tc,g ,

k1 = T11 (T22T34 − T24T32) k2 = T11T22 − T12T21

+ T12 (T24T31 − T21T34) k3 = T21T32 − T22T31

+ T14 (T21T32 − T22T31) k4 = T12T31 − T11T32 .

Finally, using Eqs. (1) and (2) with zi
c as in Eq. (4), we can express the Cartesian

coordinates of zi
c in terms of yi as

zi
c = zi

cK−1yi . (5)

2.2 Uncertainty Considerations

A crucial component of enabling monocular VT&R using this depth estimation
scheme is an appropriatemodel of the uncertainty in each observation zi

c .We consider
two important factors: uncertainty in image coordinates yi , and uncertainty in ground
shape far from the vehicle. In early experiments, we found that image coordinate
uncertainty alone did not permit reliable feature tracking since therewas little overlap
in 3D feature coordinate estimates across multiple frames.

Wemodel feature coordinates in image space as Gaussian distributions centred on
yi with covarianceRyi := diag{(σ i

u)
2, (σ i

v )
2}.WeuseSURF features [2] in our system

and determine σ i
u, σ

i
v from the image pyramid level at which each feature is detected.

To incorporate uncertainty in ground shape far from the vehicle, we represent the
ground-to-vehicle transformation as a Gaussian distribution on SE(3) with mean
Tv,g and covariance RTv,g := diag{σ 2

1 , σ 2
2 , σ 2

3 , σ 2
4 , σ 2

5 , σ 2
6 }, where σ1 . . . σ6 are tun-

able parameters corresponding to the six generators of SE(3). Together these factors
form an 8-dimensional Gaussian distributionwith covarianceRi := diag{Ryi , RTv,g },
which we propagate via the combined Jacobian

Gi :=
[
∂zi

c

∂yi

∂zi
c

∂Tv,g

]

to approximate zi
c as a Gaussian in 3D space with covariance Qi = Gi Ri GT

i .
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Using the Cartesian coordinates of zi
c and yi to compute the Jacobian, we have

∂zi
c

∂yi
= zi

c

k1

⎡

⎣

(
k1 + k3xi

c

)
/ fu k4xi

c/ fv

k3yi
c/ fu

(
k1 + k4yi

c

)
/ fv

k3zi
c/ fu k4zi

c/ fv

⎤

⎦ (6)

and

∂zi
c

∂Tv,g
= ∂zi

c

∂Tc,g

∂Tc,g

∂Tv,g
= [

1 (−zi
c)

×]
Ad(Tc,v) . (7)

In the above, we adopt the notation of [1]: 1 denotes the (3 × 3) identity matrix,
Ad(·) the adjoint in SE(3), and (·)× the skew-symmetric cross-product matrix.

Figure2b shows 1σ uncertainty ellipses for a number of evenly spaced synthetic
image features resulting from a camera configuration similar to that used in the
experiments described in Sect. 4.

3 System Overview

This section provides an overview of the VT&R system as it pertains to the methods
of the previous section. In particular, we discuss the generic localization pipeline
used for both online mapping in the teach pass and local map construction in the
repeat pass. Figure3 shows the stereo and monocular versions of the pipeline, which
differ mainly in the front-end image processing used to generate 3D keypoints.

Fig. 3 Themajor processing blocks of the stereo andmonocular localization pipelines. Themonoc-
ular pipeline shares most of the same processing blocks as its stereo counterpart, differing mainly
in the front-end image processing used to generate 3D keypoints. The “Current Local Map” block
is only used for keypoint tracking during the repeat pass
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3.1 Keypoint Generation

Raw images entering the pipeline first pass through a pre-processing step that uses
a calibrated camera model to make them appear as though they were produced by
an ideal pinhole camera. A GPU implementation of the SURF detector [2] then
identifies keypoints in the de-warped and rectified images. The pipeline estimates
the 3D coordinates of each keypoint in the camera frame using a matching procedure
in the stereo case or the technique of Sect. 2 in the monocular case. The subsequent
behavior of the pipeline differs slightly between the teach pass and the repeat pass.

3.2 Teach Pass

In the teach pass, the system constructs a pose graph whose vertices store lists of
3D keypoints with associated uncertainty and SURF descriptors, and whose edges
store lists of matched keypoints and 6DOF pose change estimates. The system first
tracks 3D keypoints in the current image against those in the most recent keyframe
to generate a list of keypoint matches. These matches form the input to a 3-point
RANSAC algorithm [7] that generates hypotheses for the 6DOF interframe pose
change and rejects outlying feature tracks. In the context of monocular VT&R, this
procedure typically rejects features far from the local ground surface (e.g., walls)
since their motion is not adequately captured by the uncertainty model described in
Sect. 2.2. The resulting pose change estimate serves as the initial guess in an iterative
Gauss-Newton that refines the estimate based on inlying tracks.

3.3 Repeat Pass

The repeat pass begins with a manual initialization at some vertex in the pose graph,
and the specification of a destination vertex. The system then reconstructs the vehi-
cle’s path from the appropriate chain of relative transformations.

At every timestep, the system identifies the nearest keyframe in the path and
performs a local bundle adjustment over a user-specified number of topologically
adjacent keyframes, generating a local metric map in the reference frame of the
nearest keyframe. The system then forms an augmented keyframe from the adjusted
map keypoints against which freshly detected features may be matched. As in the
teach pass, the system performs frame-to-frame VO to obtain an initial 6DOF pose
estimate at each time step, which it uses as an initial guess to localize against the
current local map and refine its pose estimate.

If the system fails to localize against the map, it may rely purely on VO until
either a successful localization occurs or the vehicle exceeds some preset distance
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threshold since the last successful localization. In the latter case, the system will halt
the traverse and enter a search mode until it relocalizes or the operator intervenes.

4 Experiments

We conducted two sets of experiments at the University of Toronto Institute for
Aerospace Studies (UTIAS), the first outdoors on relatively flat terrain, and the sec-
ond on the highly non-planar terrain of the UTIAS MarsDome indoor rover testing
environment. We compare the performance of our monocular VT&R system to that
of the established stereo system [8] over 4.3km of autonomous navigation. Table1
reports path lengths, repeat speeds, start times, and autonomy rates for each experi-
ment. We repeated each route using the monocular pipeline first, and conducted each
experiment between roughly 10:00 and 14:00 when the sun was highest in the sky
to minimize the effects of lighting changes and shadows.

4.1 Hardware

We used a four-wheeled skid-steered Clearpath Husky A200 rover equipped with a
PointGrey Bumblebee XB3 stereo camera, which outputs 512 × 384 pixel greyscale
images at 15 frames per second. The camera is mounted 1.0m above the ground and
is angled downwards at 47◦ to the horizontal (Fig. 4). These values were measured
by hand since our system functions well even without an especially accurate estimate
of Tc,v. Small errors in Tc,v are simply absorbed by the uncertainty in Tv,g .

Table 1 Summary of experimental results

Trial Route Path
length (m)

Repeat
speed (m/s)

Local start time (UTC-4) Autonomy rate

Teach Mono Stereo Mono
(%)

Stereo
(%)

1 Outdoor 1370 0.6 09:56:46 10:35:10 12:08:30 99.71a 100.00

2 Outdoor 1360 0.6 11:45:40 12:22:26 13:43:49 99.88 100.00

3 Outdoor 1361 0.6 13:26:41 14:00:12 15:20:12 99.74 100.00

4 Indoor 126 0.3 13:32:23 13:40:53 14:02:46 96.28 100.00

5 Indoor 140 0.3 12:18:57 12:32:20 12:59:11 91.60 100.00

Mono Stereo
Total distance driven 4298 ma 4357 m

Total distance autonomously traversed 99.41% 100.00%
aDuring the monocular repeat pass of Trial 1, a parked vehicle on the path forced manual driving
for 59m before successful relocalization. We exclude this segment in our analysis and report the
monocular autonomy rate for Trial 1 based on a reduced path length of 1311 m
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Fig. 4 Clearpath Husky
A200 rover equipped with
PointGrey Bumblebee XB3
stereo camera, DGPS
receiver, Leica Nova MS50
MultiStation prism, 1 kW
gas generator, and Linux
laptop running ROS [19]

During the teach pass, we recorded stereo images and used them to teach identical
paths using both the monocular and stereo pipelines. For the monocular pipeline, we
used imagery from the left camera of the stereo pair only. The system detects 600
SURF keypoints in each incoming image and creates new keyframes every 25cm
in translation or 2.5◦ in rotation. For the monocular pipeline, we assigned standard
deviations of 10cm to the translational components of Tv,g and 10◦ to its rotational
components as these values generally worked well in practice.

4.2 Outdoor Experiments

To evaluate the performance of the monocular VT&R system over long distances,
we taught three 1.4km paths through the parking lots and driveways of UTIAS.
While these paths consisted mostly of flat pavement, they included many non-planar
features such as speed bumps, side slopes, deep puddles, and rough shoulders, as
well as other terrain types including gravel, sand, and grass.

We equipped the rover with an Ashtech DG14 Differential GPS unit used in
tandem with a second stationary DG14 unit to obtain centimetre-accuracy RTK-
corrected GPS data during the outdoor experiments. We used these data purely for
ground-truthing purposes; they had no bearing on the behaviour of either pipeline.
Figure5 shows GPS tracks of the teach and repeat passes of one outdoor route.

Figure6 shows estimated and measured lateral path-tracking errors during the
monocular and stereo repeat passes. Both pipelines achieved centimetre-level accu-
racy in their respective repeat passes and produced similar estimates of lateral path-
tracking error. In cases of map localization failure (i.e., when the system relied on
pure VO), the monocular pipeline’s estimated lateral path-tracking error diverged
from ground truth more quickly than that of the stereo pipeline since keypoint posi-
tion uncertainties are poorly constrained by only two measurements. Note, however,
that the vehicle remained within about 20cm of the taught path at all times.

Figure7 compares the number of successful feature matches for frame-to-frame
VO and map-based localization for both pipelines. Both pipelines track similar num-
bers of features from frame to frame, but the monocular pipeline generally tracks
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Fig. 5 Comparison of RTK-corrected GPS tracks of the teach pass, stereo repeat pass, and monoc-
ular repeat pass of a 1.4km outdoor route (Trial 3 in Table1). The zoomed-in section highlights the
centimetre-level accuracy of both pipelines (Map data: Google, DigitalGlobe.)
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Fig. 6 Estimated and measured lateral path-tracking error during the monocular and stereo repeat
passes of the 1.4km outdoor route shown in Fig. 5 (Trial 3 in Table1). GPS tracking shows that
both monocular and stereo VT&R achieve centimetre-level accuracy, although estimated lateral
path-tracking error tends to diverge from the true value in cases of localization failure. a Monocular
repeat pass. b Stereo repeat pass

twice as many map features as its stereo counterpart. This result is most likely due to
bad data association during local map construction in the monocular pipeline, which
stems from the comparatively large positional uncertainties of distant keypoints.

Bad data association is especially problematic in regions of highly self-similar
terrain (e.g., Fig. 11a) since large positional uncertainties exacerbate ambiguity in
feature matches. With fewer correctly associated measurements, the bundle adjust-
ment procedure will not maximally constrain the positions of map keypoints, which
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Fig. 7 Keypoint matches during the monocular and stereo repeat passes of the 1.4km outdoor route
shown in Fig. 5 (Trial 3 in Table1), with localization failures highlighted. A localization failure is
defined as less than 10 feature matches. There were no VO failures during either repeat pass. For
clarity, we have applied a 20-point sliding-windowmean filter to the raw data. aVO featurematches.
b Map feature matches

we would expect to increase the risk of localization failures. Indeed, Fig. 7b shows
that the monocular pipeline suffered more serious map localization failures than the
stereo pipeline, although these forced manual intervention only once.

4.3 Indoor Experiments

The second set of experiments took place in the more challenging terrain of the
UTIAS MarsDome. These routes included a number of highly non-planar features
such as hills, large bumps, valleys, and slopes of a similar scale to the vehicle.

Since the MarsDome is an enclosed facility, GPS tracking was not available, and
we instead made use of a Leica Nova MS50 MultiStation to track the position of
the rover with millimetre-level accuracy. Similarly to the outdoor experiments, we
used these data for ground-truthing purposes only. Figure8 shows MultiStation data
of the teach and repeat passes of a 140m route through the MarsDome, along with
images of some of the more challenging terrain features on the route.

Figure9 shows estimated andmeasured lateral path-tracking errors for themonoc-
ular and stereo repeat passes. As in the outdoor case, both pipelines achieved
centimetre-level accuracy, even in difficult terrain. Again, note that although the
monocular pipeline’s estimated lateral path-tracking error diverged significantly from
ground-truth during localization failures, the MultiStation tracks show that the vehi-
cle remained within a few centimetres of the path throughout the traverse.

Figure10 shows VO and map feature matches for both repeat passes. The monoc-
ular pipeline suffered map localization failures more often than the stereo pipeline,
theworst failure occurring in the valley and hill regions (see Fig. 8) where the lighting
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Fig. 8 Comparison of MultiStation tracks of the teach pass, stereo repeat pass, and monocular
repeat pass of a 140m indoor route (Trial 5 in Table1), with some interesting segments highlighted
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Fig. 9 Estimated and measured lateral path-tracking error during the monocular and stereo repeat
passes of the 140m indoor route shown in Fig. 8 (Trial 5 in Table1). MultiStation tracking shows
that both monocular and stereo VT&R achieve centimetre-level accuracy in highly non-planar
terrain, although estimated lateral path-tracking error tends to diverge from the true value in cases
of localization failure. Note the difference in scale between the two plots. a Monocular repeat pass.
b Stereo repeat pass

was especially poor. This led to increased motion blur (see Fig. 11b) and poor feature
matching due to greater uncertainty in keypoint positions. Both failures necessitated
manual intervention over a few metres, however, the system successfully relocalized
once the lighting improved.
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Fig. 10 Keypoint matches during the monocular and stereo repeat passes of the 140m indoor route
shown in Fig. 8 (Trial 5 in Table1), with localization failures highlighted. A localization failure is
defined as less than 10 feature matches. There were no VO failures during either repeat pass. For
clarity, we have applied a 5-point sliding-windowmean filter to the raw data. a VO feature matches.
b Map feature matches

Fig. 11 Themost common causes of localization failurewere highly self-similar terrain andmotion
blur. Neither stereo nor monocular VT&R is immune to these conditions, but their effects were
exacerbated by high spatial uncertainty in the monocular case. a Self-similar terrain. b Motion blur

5 Lessons Learned and Future Work

Experiments with our systems led to several useful lessons and possible extensions:

1. With sufficient spatial uncertainty, the flat-ground assumption seems to be usable
even in rough driving conditions, provided the scene is well-lit and reasonably
textured. Steep hills were problematic for monocular VT&R since the camera
would observe features mainly on the horizon or on walls during the ascent.

2. The performance our systems depends on a search (often manual) through a high-
dimensional space of tuning parameters, and it is difficult to be certain that an
optimal configuration has been found. Iterative learning algorithms such as [17]
may present a solution by learning optimal parameters from experience.

3. Data association quality is not a monotonic function of observation uncertainty.
Too little uncertainty and good feature matches get rejected; too much and all
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matches are equally good (or bad). Both cases result in tracking failure. This
reinforces the need for an accurate model of a system’s noise properties.

4. Experimenting with camera orientation could improve the accuracy of monocular
VT&R, particularly on hills. For example, orienting the camera perpendicular to
the direction of travel has been shown to improve the accuracy of stereo visual
odometry [18].

5. By using stereo vision in the teach pass and monocular vision in the repeat pass,
we could forgo the flat-ground assumption for mapping, which should result in
fewer localization failures in the repeat pass.

6 Conclusions

This paper has described a Visual Teach and Repeat (VT&R) system capable of
autonomously repeating kilometre-scale routes in rough terrain using only monocu-
lar vision. By constraining features of interest to lie on a manifold of uncertain local
ground planes, we relax the requirement for true 3D sensing that had prevented the
deployment of Furgale and Barfoot’s VT&R system [8] on a wide range of vehi-
cles equipped with monocular cameras. Extensive field tests have demonstrated that
this system is capable of achieving centimetre-level accuracy on par with its stereo
counterpart, but that there is an associated trade-off in robustness. Nevertheless, we
believe that the benefit of deploying VT&R on existing vehicles without requir-
ing the installation of additional sensors far outweighs the associated reduction in
robustness.
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