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Abstract Autonomous surface vehicles (ASVs) are becoming more widely used in
environmental monitoring applications. Due to the limited duration of these vehicles,
algorithms need to be developed to save energy and maximize monitoring efficiency.
This paper compares receding horizon path planning models for their effectiveness
at collecting usable data in an aquatic environment. An adaptive receding horizon
approach is used to planASVpaths to collect data. A problem that often troubles con-
ventional receding horizon algorithms is the path planner becoming trapped at local
optima. Our proposed Jumping Horizon (J-Horizon) algorithm planner improves on
the conventional receding horizon algorithm by jumping out of local optima. We
demonstrate that the J-Horizon algorithm collects data more efficiently than com-
monly used lawnmower patterns, and we provide a proof-of-concept field implemen-
tation on an ASV with a temperature monitoring task in a lake.
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1 Introduction

Autonomous surface vehicles (ASVs) are becoming more commonly used to collect
data in oceans and inland waterways using instruments such as: acoustic doppler
current profilers (ADCPs); conductivity, temperature, and depth sensors (CTDs);
and sidescanning sonars. These autonomous vehicles allow data collection in tight
places, such as in and around glaciers or ice, as well as in close proximity to land
(e.g., around river deltas) [2, 5].

Commercially-available ASVs, such as the Platypus Lutra (Fig. 1b) and Ocean-
Sever Q-Boat, typically execute a simple lawnmower path to cover the area to be
explored (Fig. 2). Such a path can provide high data yield, but at the expense of
substantial fuel and time costs [11].

Previous work has shown that sampling in a spiral pattern is slightly more energy-
efficient than doing so in a lawnmower pattern [9], but only by a margin of less than
5%. This margin will be shown to be negligible compared to that demonstrated by J-
Horizon over lawnmower, so for simplicity, the lawnmower pattern will be simulated
and considered as the baseline.

Fig. 1 Two commercially-available autonomous surface vehicles for aquatic sampling. a Q-Boat
1800P with an integrated ADCP. b Platypus Lutra with a dissolved oxygen and pH sensor

Fig. 2 The proprietary area
search algorithm from
Platypus generates a dense
lawnmower pattern that is
highly energy-inefficient
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Here, we propose a receding horizon path-planning algorithm that, given an infor-
mation or uncertainty map, generates a sampling path to maximize the information
gathered or reduce the uncertainty. We compare this algorithm against the simple
lawnmower path planner for a given transport budget and examine the effects of
various algorithm parameters on the quality of the generated path. Furthermore, we
propose a Jumping Horizon (J-Horizon) algorithm that improves on the conventional
receding horizon algorithm by varying the look ahead step size if desired threshold
values cannot be found within the current horizon. This allows the planner to “jump”
out of local optima if higher peaks can be found elsewhere on the map. Finally, we
validate our simulated results during a field trial using an ASV. An initial data set is
collected to provide a base scalar field. The J-Horizon algorithm is then run over this
scalar field produced, and a qualitative analysis is given. The J-Horizon planner is
able to produce paths superior to the simple lawnmower pattern in simulation, and
experimentally the J-Horizon path is shown to cover more area and generate a more
representative scalar field.

2 Related Work

Past work has shown that a receding horizon path planner is effective at optimizing
paths in “no-fly” zone environments with hard constraints [10], where the agent is
prohibited from entering certain areas bounded by walls. This is a useful constraint
for aerial and land vehicles that must navigate cluttered environments. However,
these constraints do not apply to an ASV that must cover a large body of water such
as a lake or the open ocean.

In previous work, AUVs have played a similar role as the ASV in our project.
Binney et al. [1] describe an offline path planner for an uncertainty area. Hollinger
and Singh [7] describe an approach for multiple agents searching for a target in
a known environment. Hitz et al. [6] discuss a path planner that can choose an
efficient path for measurement of fluorescent bacteria in the ocean using an ASV. To
reduce computational complexity, all of these authors employ a receding horizon path
planner. Besides implementation on ASVs, receding horizon algorithms are widely
used in other robotics scenarios. Tisdale et al. [12] describe a receding horizon path
planner for multiple unmanned aerial vehicles to search for a stationary object. For
currently implemented receding horizon planners, no research exists that examines
the effect of the horizon length, or the possibility of modifying this horizon based on
the remaining information.

Frolov et al. [3] compares lawnmower paths to other planning algorithms using
fleets of research vehicles. They come to the conclusion that lawnmower paths are
only marginally worse than adaptive algorithms. They also conclude that graph-
based search algorithms are actually worse than lawnmower patterns, thus cannot
maximize their performance, because they are unable to adapt to prior uncertainty.
Our J-Horizon algorithm adapts to the environment and removes these limitations to
provide improved performance over other adaptive algorithms.
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Gotovos et al. [4] propose a Level Set Estimation (LSE) algorithm that uses
Gaussian Processes to estimate level sets of measured quantities and generate sam-
pling points that reduce uncertainty around a certain threshold level. In a different
context, [8] describe an incremental sampling-based motion planning algorithm.
Instead of reducing the uncertainty, they try to optimize the information gathering,
depreciating the information value of sampled points.

A key limitation of existing research in receding horizon planning is that none
of the aforementioned works discusses the role of the parameters in the receding
horizon algorithm, e.g., horizon length or adaptation based on gathered or remaining
information. In addition, prior research has not focused on a single ASV performing
data collection over large areas. In this paper, we address this gap in research in
the aforementioned papers through the presentation of the J-Horizon algorithm. We
present the application of our proposed method over different scalar fields both in
simulation and through field experiments. The algorithm’s performance is experi-
mentally demonstrated to outperform existing lawnmower and traditional receding
horizon methods.

3 Problem Setup

Due to the wide variety of data that is sampled, it is challenging to model the data
collection in a general way. The areas of interest being surveyed by ASVs are often
dynamic environments, and the data collected is often a reflection of changes in the
environment. Data collection around glaciers, in river deltas, or in relatively shallow
water are environments that are changingquickly. Thedata collected is often collected
to provide a snapshot of the processes that are evolving in the general area, and plan
for future targeted sampling. Prior surveys can provide a heuristic upon which to
formulate plans for future surveys, and multiple surveys can be combined to provide
a time-series evolution of the region of interest. Here, we exploit the existence of a
partially known underlying field and present a method for improved sampling based
on time and energy optimization while gathering data of maximal reward.

3.1 Objective Function

In this paper, the J-Horizon planner addresses the following maximization problem:

p∗ = argmax
p∈ψ

R(p) s.t. c(p) ≤ B,
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whereψ is the space of possible trajectories for the ASV, B is the initial budget (e.g.,
time, fuel), and R is a reward function that represents the information gathered or
uncertainty reduced along the trajectory p.

Furthermore, we depreciate the value of R(p) each time we sample p. That is,
for intersecting partial trajectories pa and pb (i.e., pa∩b �= ∅),

R(pa∪b) + R(pa∩b) ≤ R(pa) + R(pb),

where pa∪b and pa∩b are the union and intersection of pa and pb, respectively. This
makes the objective function submodular.

3.2 Experimental Setup

We first present a simulation setup that uses computer-generated scalar fields to
compare the performance of J-Horizon, a conventional receding horizon, and the
lawnmower planning algorithms.We then present a real-world dataset acquired from
Lake Haviland outside of Durango, CO to generate a path maximizing gathered
information for a given transport budget.

3.2.1 Simulation

The J-Horizon algorithm is most effective when there is a prior dataset that can be
used to generate an information map. The reward function is then specified by the
maximum amount of new information that could be gathered at a map location. Fur-
thermore, the algorithm improves upon the conventional receding horizon algorithm
by seeking out areas of high reward when the local map area has been exhausted of
new information, resulting in its “jumping” behavior.

For our simulated testing, a MatLab script was used to randomly generate 2960
different scalar fields with varying numbers and distributions of high-reward peaks.
Between 5 and 50 such peaks were randomly generated on each map with a reward
value that decays as a function of distance from the peak center. One such field is
visualized in Figs. 4 and 5 as contour maps.

The total reward accumulated along a path generated by J-Horizon for a given
fuel budget was averaged for these scalar fields. This performance was compared
with that of a lawnmower exploration pattern on the same datasets and fuel budget.

3.2.2 Hardware

A Platypus Lutra ASV was used to take physical samples from Lake Haviland. This
ASV is fan-powered, maneuverable and capable of sampling data in lakes or other
small bodies of water. This small ASV is an ideal platform upon which to implement
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our algorithm, based on the limited deployment duration and sensing capabilities
for relatively large bodies of water. The ASV is capable of simultaneously sampling
temperature, conductivity, pH, and Dissolved Oxygen. Additionally, it measures
depth and has a side-scan sonar. The latter sensors allow for bottom mapping of the
lake.

The Platypus Lutra ASV has non-holonomic constraints that limits its ability to
execute some of the sharper turns produced by the J-Horizon algorithm. Thus, due
to hardware limitations, it is necessary to modify the path produced by J-Horizon.
These modifications allow the ASV to follow the planned path. Due to the limited
locomotion of the Platypus Lutra as well as a need to simplify data collection, some
assumptions have to be made:

1. The ASV is limited in its motion and has non-holonomic turning constraints.
2. That sampled scalar fields were not dramatically changing over time.
3. Distance traveled equates to using a linear and constant amount of energy.
4. Additional data sampling points at a given location correlates to better quality

data.

4 Algorithm Design

We seek to maximize the reward function for a given transport budget. In reality, this
budget is a combination of fuel expenditure, time, and distance, each of which are
specific to the vehicle and data collection scheme in use. For simplicity, we assume
these factors are linearly related and that acceleration (e.g., due to turning, data
collection) has zero cost. In addition, we enhance the conventional receding horizon
algorithm by increasing the look-ahead step size if none of the predicted future states
satisfy a reward threshold, allowing the planner to “jump” out of low-information
areas. This makes J-Horizon especially effective when the input scalar field has high
local variability.

The sequence of potential future steps, as well as the final generated path, are
stored in a tree wherein each node stores the state of the ASV, which consists of
the cumulative reward value of the path, remaining budget, and the location of the
ASV. Each look-ahead step recursively generates a number of possible future states.
Of these, the best branch is chosen, and the rest are pruned. The sequence of nodes
remaining after the remaining budget reaches zero is considered the optimal path.
The lawnmower and J-Horizon algorithms share the same functions to calculate the
information available at a map location and to depreciate the available information
after sampling that location.

The following sections describe the J-Horizon implementation shown in Algo-
rithms 1, 2, and 3 by their respective line numbers.
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4.1 Algorithm 1—Main

Path planning begins with the specified transport budget B and loops over the follow-
ing four steps until either the budget is expended or the planner covers the prescribed
area.

6: From the current state σ , take L look-ahead stepswith look-ahead. This updates
the path tree with possible future states L levels below the current node.

7: Find the location of the “best” adjacent node that will achieve the highest reward
at the end of L steps through that node.

8: Prune the path tree of all descendants under the current node.
9: Add sample point nodes between current and best locations and update the current

node to the latest node.

4.2 Algorithm 2—Look-ahead

Given an initial state σ andmaximum recursion depth d, we recursively generate and
add possible future states to the path tree. Each step is taken with a new, temporary
copy of all data. During each call, it performs the following:

1: Generate set of future states S f from σ .
3: Remove a fraction R ∼ U ([0, 1)) of the states (but not all) in S f .
7: Recurse on each descendant node.

4.3 Algorithm 3—J-Horizon

Given a state σ and an information threshold t , probe outwards from the given
location and update the map:

2: Start with a sample interval of D.
3: Calculate number of future states to generate b per some factor F .
4: While S f is empty, perform the following:

5: Generate b equally spaced points around a circle of radius D around σ .
6: For each such point, if the quality of the map at that point exceeds t , then

add the point to S f .
8–9: Increment δ by D and update b.

10: Update the information map.
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Algorithm 1: Main Main function to run
1 loc ← (0, 0)
2 reward ← 0
3 budget ← B
4 σ ← {loc, reward, budget}
5 while σ.budget > 0 do
6 look-ahead(σ, L)
7 lb ← FindBest(σ )

8 Prune(σ )
9 σ ← AddSamples(σ.loc, lb)

10 return

Algorithm 2: look- ahead Recursively look several steps ahead
Input: State σ , recursion depth d
Output: Number of future states from location

1 S f = JHorizon(σ, T )

2 for i ← 1 to
⌊

R · |S f |
⌋

do
3 RemoveRandom(S f )

4 n ← 0
5 foreach {σ f ∈ S f } do
6 if R > 1 then
7 n ← n + 1 + look-ahead(σ f , d − 1)

8 return n

Algorithm 3: JHorizon Generate frontier locations
Input: State σ , threshold t
Output: Set of possible future states to explore

1 S f ← ∅
2 δ ← D

3 b ← F
√

δ

4 while |S f | = 0 do
5 for σm ∈ GenerateNew(σ, δ, b) do
6 if GetInfo(σm) > t then
7 S f ← S f ∪ {σm}
8 δ ← δ + D

9 b ← F
√

δ

10 Depreciate(σ )
11 return S f

5 Results

In this section, we present the results of application of the J-Horizon algorithm on
simulated data, as well as data collected during a field trial.
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5.1 Simulation Results

Wevalidate the J-Horizon planner using 2960 simulated scalar fields.We compare the
quality of the paths generated by the J-Horizon planner to that of a simple lawnmower
pattern using the sum of the data collected over the path given the same transport
budget as the metric. For the purpose of comparison, the information gathered was
arbitrarily selected to correspond to the deviation from a particular target value of the
quantity of interest (Fig. 3). By identifying pertinent or interesting data, the algorithm
is able to successfully maximize data collection for a given deployment region. Such
quantities are representative of the uncertainty in temperature or another physical
parameter that can be approximated by a scalar field.

The simulated vector field seen in Fig. 3 is representative of many types of scalar
data. One of the benefits of the J-Horizon algorithm is that it can plan across any type
of scalar field, e.g., temperature, humidity, pressure, salinity or dissolved oxygen.
The point being that the user may specify the data being looked for and J-Horizon
will attempt to maximize the data collection. Figure3 is an example of the J-Horizon
planning over a simulated scalar field.

Figures4, 5a, and 5b show a typical lawnmower, receding horizon, and J-Horizon
path, respectively, planned over a simulated scalar field. The same transport budget
was used for all three paths, yet the quality of the paths were 132, 189, and 420,
respectively. The J-Horizon planner outperforms lawnmower by a factor of 3.18.
Lawnmower required 3.51 times the transport budget to achieve the same reward on

Fig. 3 J-Horizon path planned over simulated scalar field. a Dense path planned over reward field.
b Field reward level map. Red indicates high reward
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Fig. 4 Lawnmower path on generated scalar field. Reward of 132

Fig. 5 Effect of reward threshold on J-Horizon jumping behavior. a Path generated by receding
horizon planner. Note the path lingers in the high-reward area at the lower left for a long time before
moving on to more worthwhile areas. Reward of 189. b Path generated by J-Horizon planner with
threshold of 0.1. Once the peak at the lower-left has been exhausted of potential reward, the planner
quickly moves on to other points of interest. Reward of 420
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Fig. 6 Performance comparison between lawnmower, receding horizon, and J-Horizon algorithms.
a Information gathered with increasing budget. b The information gathering ability of the J-Horizon
planner against a lawnmower pattern as we decrease the fraction of generated future states

the same map and still fails to bring the maximum uncertainty below the threshold
of 0.1.

Figure6 demonstrates the general behavior of the J-Horizon planner, which out-
performs the lawnmower planner by a factor of 4 for the first 5Km of the 25Km
total budget and slows down as it explores the remaining, lower-reward regions of
the scalar field.

Figure6a compares the information gathering ability of the three algorithms with
increasing budget. J-Horizon gathers information most rapidly. When the budget is
large enough, the information gathered by the receding horizon planner is nearly
equivalent to that of the J-Horizon planner.

Figure6b shows the information gathering ability of the J-Horizon planner against
a lawnmower pattern as we decrease the fraction of generated future states. For
example, JH80% indicates the algorithm generates 80% of the usual number of
future states. Even at JH20%, J-Horizon significantly outperforms a lawnmower
path. This suggests it is possible to drastically reduce computational complexity
with only a minor performance penalty.

One of the most advantageous qualities of this planner is that it is not limited to
any particular search space. It is capable of planning paths over anything that can be
estimated by a scalar field.

5.2 Experimental Results

Here, we present results from field trials for the implementation of the J-Horizon
planner over a scalar field of surface temperature in a small lake in Colorado.1 Specif-

1The specific location of the field trials is Lake Haviland, outside of Durango, CO, located at
37◦31′55′′N 107◦48′27′′W.
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ically, the goal presented to the ASV is to focus sampling at low-temperature regions,
which correspond to high information reward in this case. We use the Platypus Lutra
ASV, as shown in Fig. 1b, to conduct an initial survey and then use the J-Horizon
planner to compute a new path with the objective to minimize the uncertainty and
maximize information gain on the underlying scalar field. The initial path for repre-
sentative data collection is presented in Fig. 7a, with the scalar field generated from
these data and the path planned by the J-Horizon planner shown in Fig. 7b. The ASV
executed the first section of the path prescribed by the J-Horizon planner, and results
are shown in Fig. 8. At the terminus of this executed section, J-Horizon prescribed a
jump to a new region for further sampling. This second section was not executed for
the proof-of-concept field trial.

As seen in Fig. 7b, the J-Horizon gathers data in areas of low data yield from
the initial data collection. For instance, the lower left hand corner of Fig. 7b is an
area that was not covered in the initial survey and requires more data collection to
accurately represent the underlying field. This is the area of focus for our execution
of the J-Horizon planner path, as more than half of entire length of the planned path
lies within this region. The portion of the planned path that was executed is shown
in Fig. 8 by the red path.

Fig. 7 Paths executed by the ASV to test and demonstrate the J-Horizon planner. a The ASV’s
initial path on Lake Haviland outside Durango, CO. b J-Horizon path generated on ASV path shown
in (a)
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Fig. 8 The initial, data
collection path (upper, blue)
and the J-Horizon path
(lower left, red) executed by
the ASV on Lake Haviland

6 Conclusion

Improved algorithmdesign for autonomous vehicles operating onwater has a promis-
ing future in robotics. Collecting higher quality data that can be better utilized by
scientists, as well as reducing costs of the data collection, is a key goal in making
autonomous monitoring a reality. In this paper, we presented a receding horizon
algorithm that attempts to find an optimized path to perform costly, and sometimes
difficult or dangerous, data collection in oceans or other large bodies of water. In
conclusion, we have presented a novel approach to better collect data over scalar
fields. Simulation results show a 14.53% gain in reward of information collection
compared to a lawnmower pattern while in simulation. The J-Horizon planner shows
a 23.85% increase in information gathered in a simple experimental trial compared
to a lawnmower pattern. Both of these results show quality gains compared to a lawn-
mower path of equivalent length. These optimized sampling paths allow scientists to
more easily collect pertinent data in the field.

7 Future Work

Extended hardware trials would verify that the simplifying assumptions made in the
algorithm design are realistic. Additional performance improvements could be made
by running the planning algorithm on the ASV to update the error of the scalar field
and re-plan in realtime. This would serve to allow the ASV to run autonomously in
highly dynamic environments for longer periods of time without having to transmit
data to the shore for processing.
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The obvious extension of this work is the application to Autonomous Underwater
Vehicles, and sampling in three dimensions. After further testing and validation on 2-
D scalar fields, we are planning to investigate problems that exist for both underwater
and aerial applications.

Finally, we are investigating an extension to the J-Horizon planner that includes
applications for frontier searching, enabling a robotic platform to explore areas with
unknown data quality. Such an algorithm will aim to balance explore vs. exploit in
missions, searching new areas while also collecting data in areas that are deemed
interesting or have low data density.
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