
Springer Tracts in Advanced Robotics 113

David S. Wettergreen
Timothy D. Barfoot    Editors

Field and 
Service 
Robotics
Results of the 10th International 
Conference



Springer Tracts in Advanced Robotics

Editors

Prof. Bruno Siciliano
Dipartimento di Ingegneria Elettrica
e Tecnologie dell’Informazione
Università degli Studi di Napoli
Federico II
Via Claudio 21, 80125 Napoli
Italy
E-mail: siciliano@unina.it

Prof. Oussama Khatib
Artificial Intelligence Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010
USA
E-mail: khatib@cs.stanford.edu

113



Editorial Advisory Board

Oliver Brock, TU Berlin, Germany
Herman Bruyninckx, KU Leuven, Belgium
Raja Chatila, ISIR—UPMC & CNRS, France
Henrik Christensen, Georgia Tech, USA
Peter Corke, Queensland University of Technology, Australia
Paolo Dario, Scuola S. Anna Pisa, Italy
Rüdiger Dillmann, University of Karlsruhe, Germany
Ken Goldberg, UC Berkeley, USA
John Hollerbach, University of Utah, USA
Makoto Kaneko, Osaka University, Japan
Lydia Kavraki, Rice University, USA
Vijay Kumar, University of Pennsylvania, USA
Sukhan Lee, Sungkyunkwan University, Korea
Frank Park, Seoul National University, Korea
Tim Salcudean, University of British Columbia, Canada
Roland Siegwart, ETH Zurich, Switzerland
Gaurav Sukhatme, University of Southern California, USA
Sebastian Thrun, Stanford University, USA
Yangsheng Xu, The Chinese University of Hong Kong, PRC
Shin’ichi Yuta, Tsukuba University, Japan

More information about this series at http://www.springer.com/series/5208

http://www.springer.com/series/5208


David S. Wettergreen • Timothy D. Barfoot
Editors

Field and Service Robotics
Results of the 10th International Conference

123



Editors
David S. Wettergreen
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA
USA

Timothy D. Barfoot
Institute for Aerospace Studies
University of Toronto
Toronto, ON
Canada

ISSN 1610-7438 ISSN 1610-742X (electronic)
Springer Tracts in Advanced Robotics
ISBN 978-3-319-27700-4 ISBN 978-3-319-27702-8 (eBook)
DOI 10.1007/978-3-319-27702-8

Library of Congress Control Number: 2016930551

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland



Series Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and is vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will increas-
ingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as biomechanics, haptics, neuro-
sciences, virtual simulation, animation, surgery, and sensor networks among others.
In return, the challenges of the new emerging areas are proving an abundant source
of stimulation and insights for the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

The tenth edition of Field and Service Robotics edited by David S. Wettergreen
and Timothy D. Barfoot offers in its eight-part volume a collection of a broad range
of topics ranging from fundamental concepts such as control, vision, mapping, and
recognition to advanced applications such as aquatic, planetary, aerial, and
underground robots. The contents of the forty-two contributions represent a
cross-section of the current state of robotics research from one particular aspect:
field and service applications, and how they reflect on the theoretical basis of
subsequent developments. Pursuing technologies aimed at non-factory robots that
operate in complex and dynamic environments, as well as at service robots that
work closely with humans to help them with their lives, is the big challenge running
throughout this focused collection.
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Rich in topics and authoritative contributors, FSR culminates with this unique
reference on the current developments and new directions in field and service
robotics. A fine addition to the series!

Naples, Italy Bruno Siciliano
October 2015 STAR Editor
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Preface

Field and Service Robotics (FSR) is the leading single-track conference on appli-
cations of robotics in challenging environments. Its goal is to report and encourage
the development and experimental evaluation of field and service robots, and to
generate a vibrant exchange and discussion in the community. Field robots are
non-factory robots, typically mobile, that operate in complex and dynamic envi-
ronments: on the ground (Earth or other planets), under the ground, underwater, in
the air, or in space. Service robots are those that work closely with humans to help
them with their lives.

The first FSR was held in Canberra, Australia, in 1997. Since that first meeting,
FSR has been held roughly every two years, cycling through Asia, the Americas,
and Europe. This book presents the results of the 10th edition of Field and Service
Robotics, FSR 2015, held in Toronto, Canada, from 23 to 26 June 2015. This was
the first time it has been held in Canada. This year we had 63 submitted papers from
which we accepted 27 for oral presentations and 15 for poster presentations.

FSR 2015 was organized by the following team:

Timothy D. Barfoot
General Chair
University of Toronto

David S. Wettergreen
Program Chair
Carnegie Mellon University

Jonathan Kelly
Local Arrangements Chair
University of Toronto

Francois Pomerleau
Website and Publicity Chair
University of Toronto

vii



Angela Schoellig
Technical Tour Chair
University of Toronto

The FSR 2015 International Program Committee generously provided their time
to carry out detailed reviews of all the papers:

Peter Corke: Queensland University of Technology, Australia
Jonathan Roberts: Queensland University of Technology, Australia
Alex Zelinsky: DSTO, Australia
Uwe Zimmer: Australian National University, Australia
Salah Sukkarieh: University of Sydney, Australia
Ben Upcroft: Queensland University of Technology, Australia
Timothy D. Barfoot: University of Toronto, Canada
Jonathan Kelly: University of Toronto, Canada
David S. Wettergreen: Carnegie Mellon University, USA
Philippe Giguere: University of Laval, Canada
Steve Waslander: University of Waterloo, Canada
Josh Marshall: Queens University, Canada
Francois Pomerleau: University of Toronto, Canada
Chris Skonieczny: Concordia University, Canada
Arto Visala: Helsinki University of Technology, Finland
Simon Lacroix: LAAS, France
Christian Laugier: INRIA, France
Cedric Pradalier: GT-Lorraine, France
Andreas Birk: Jacobs University, Germany
Keiji Nagatani: Tohoku University, Japan
Kazuya Yoshida: Tohoku University, Japan
Takashi Tsubouchi: University of Tsukuba, Japan
Genya Ishigami: Keio University, Japan
Miguel Angel Salichs: Universidad Carlos III de Madrid, Spain
Roland Siegwart: ETH Zurich, Switzerland
David P. Miller: University Oklahoma, USA
Sanjiv Singh: Carnegie Mellon University, USA
Gaurav Sukhatme: University of Southern California, USA
Alonzo Kelly: Carnegie Mellon University, USA
Chuck Thorpe: Clarkson University, USA
David Silver: Google[X], USA
Carrick Dettweiler: University of Nebraska, USA
Stewart Moorehead: John Deere Corp., USA
Steve Nuske: Carnegie Mellon University, USA
Gabe Sibley: University of Colorado, USA
Ross Knepper: Cornell University, USA
Michael Jakuba: Woods Hole, USA
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In addition to the submitted papers presented at the conference, there were four
excellent keynote speakers at FSR 2015 and we would like to acknowledge their
excellent contributions to the conference:

• Chris Urmson, Director, Self-Driving Cars, Google[x], “Realizing Self-Driving
Vehicles”

• Paul Newman, Professor, University of Oxford, “Fielding Robots with Learnt
Place-Specific Excellence”

• Sanjiv Singh, Professor, Carnegie Mellon University, “As the Drone Flies: The
Shortest Path from Ground to Aerial Autonomy”

• Ryan Gariepy, Chief Technology Officer, Clearpath Robotics, “The Evolution
of a Robotics Company”

FSR 2015 would not have been possible without the generous support of our
sponsors. In particular, Clearpath Robotics went above and beyond to provide
financial and in-kind support. The University of Toronto Institute for Aerospace
Studies and Faculty of Applied Science and Engineering also provided financial
support.

David S. Wettergreen
Timothy D. Barfoot
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A Spatially and Temporally Scalable
Approach for Long-Term Lakeshore
Monitoring

Shane Griffith and Cédric Pradalier

Abstract This paper provides an image processing framework to assist in the inspec-
tion and, more generally, the data association of a natural environment, which we
demonstrate in a long-term lakeshore monitoring task with an autonomous surface
vessel. Our domain consists of 55 surveys of a 1 km lakeshore collected over a year
and a half. Our previous work introduced a framework in which images of the same
scene from different surveys are aligned using visual SLAM and SIFT Flow. This
paper: (1) minimizes the number of expensive image alignments between two surveys
using a covering set of poses, rather than all the poses in a sequence; (2) improves
alignment quality using a local search around each pose and an alignment bias derived
from the 3D information from visual SLAM; and (3) provides exhaustive results of
image alignment quality. Our improved framework finds significantly more precise
alignments despite performing image registration over an order of magnitude fewer
times. We show changes a human spotted between surveys that would have otherwise
gone unnoticed. We also show cases where our approach was robust to ‘extreme’
variation in appearance.

1 Introduction

This paper presents an application of autonomous surface vessels (ASV) for long-
term observation of lakeshore environments. A growing number of robots are being
targeted for inspection tasks in natural environments, including applications in agri-
culture, surveillance, and environment monitoring. Yet, the variation of appearance
of outdoor environments significantly limits robots in tasks requiring data asso-
ciation, with many papers only addressing particular aspects of the variation (e.g.,
illumination/shadows [4], night [19], and noise [8]). Scene structure can help provide
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Fig. 1 The registration of two images. For each VSLAM aligned image, SIFT descriptors are
computed at each pixel to form a SIFT image, which is down-sampled into an image pyramid.
To avoid aligning noise due to the sky and the water, the alignment cost is biased using an image
mask of the lakeshore (derived from the 3D information in the feature tracks of visual SLAM). The
resulting dense flow aligns the two input images, which enables quick change detection for manual
inspection tasks

robustness to natural variation of appearance [16, 18]. Few papers have, however,
demonstrated robust data association across surveys of natural environments.

This paper presents a framework for achieving high resolution, pixel-level align-
ment between fortnightly surveys of a lakeshore. Our framework uses visual SLAM
(see e.g., [1, 21, 22]) to identify images of roughly the same scene from different
surveys and then it applies SIFT Flow [16] to precisely align them (see Fig. 1). Build-
ing on our previous work [6, 7], in this paper we minimize the number of expensive
image alignments using a covering set of poses. To improve image alignment accu-
racy at a particular pose, a search for the best alignment is performed in its tight
neighborhood of images. Image alignment accuracy is further improved using the
3D landmark positions from visual SLAM to bias the image registration process.
Once images are precisely aligned, a human inspecting them can easily spot if some-
thing changed. At this stage, given the difficulty of automatically processing natural
scenes, we are assuming the inspection task is left to a human, but we endeavor to
make his/her task as efficient as possible.

To date, we have surveyed a lake a total of 55 times over 1.5 years, which rep-
resents a spatially large and a temporally long scale study using ASVs. We show
our framework enabled a human to detect changes that would have otherwise gone
unnoticed. We also show our approach is robust to variation in appearance of the
sky, the water, changes in objects on a lakeshore, and the seasonal changes of plants.
Finally, we point out failure cases, which indicate directions for future work.
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2 Related Work

The field of Simultaneous Localization and Mapping (SLAM) provides a foundation
for localizing a robot and mapping monitored spaces. Gaining the advantages of
SLAM in natural environments requires, however, a system made to handle three
particular challenges: (1) the large spatial scale; (2) the non-rigid environments (e.g.,
moving trees, changing water levels); and (3) the very high level of visual similarity
(e.g., branches and leaves of different trees may appear to be from the same one).
The variation of appearance over a long-term monitoring task further increases the
difficulty of data association in surveys of an outdoor environment.

Many different techniques have been proposed to solve data association for out-
door environments. Some approaches rely on point-based features such as SIFT
(e.g., [1, 9, 14]) for performing data association. Point-based feature matching is,
however, often not robust to common sources of variation (see e.g., [6]). In light of
this, some work has focused on directly using, or modifying, whole or parts of images.
Neubert et al. [20] deals with seasonal changes by introducing a prediction step in
which whole images are modified to look more like the current season. McManus
et al. [18] utilize patches of images, called ‘scene signatures’, which are matched
using classifiers and capture information about the structure of each scene. In case a
particular location is stubborn to feature- and whole-image-based data association,
‘multiple experiences’ of the location can be accumulated until new observations
are associated well [2]. This paper performs data association using SIFT Flow [16],
an algorithm designed to find dense correspondences using whole images worth of
point-based features. It combines the accuracy of point-based feature matching with
the robustness of whole-image matching.

Traversing a lake while mapping the location of a lakeshore is an essential task of
lakeshore monitoring, which some papers have already started to address. Sukhatme
[10] and Subramanian et al. [23] map a lakeshore and the locations of obstacles from
the visual perspectives of their ASVs. Jain et al. [12] proposed to use a drone for
autonomously mapping riverine environments, which can avoid debris in the water,
yet fly below dense tree cover. In case a robot repeatedly visits the same lakeshore,
Hitz et al. [11] show that 3D laser scans of a shoreline can be used to delineate some
types of changes. Their system distinguished the dynamic leaves from the static trunk
of a willow tree in two different surveys collected in the fall and spring. This paper
combines iSAM2 [13] for scalable SLAM with SIFT Flow for robust data association
in a framework for long-term lakeshore monitoring.

3 Experimental Setup

We used Clearpath’s Kingfisher ASV for our experiments. It is 1.35 m long and
0.98 m wide, with two pontoons, a water-tight compartment to house electronics,
and an area on top for sensors and the battery. It is propelled by a water jet in each of
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its pontoons and turns during power differentials. It can reach a top speed of about
2 m/s, but we mostly operated it at lower speeds to maximize battery life, which is
about an hour with our current payload.

Our Kingfisher is equipped with a suite of exteroceptive and interoceptive sensors.
A 704 × 480 color pan-tilt camera captures images at 10 frames per second. Beneath
it sits a single scan line laser rangefinder with a field of view of about 270◦. It is pointed
just above the surface of the water and provides a distance estimate for everything
less than 20 m away. The watertight compartment houses a GPS, a compass, and an
IMU.

The ASV was deployed on Symphony Lake in Metz, France, which is about
400 m long and 200 m wide with an 80 m-wide island in the middle. The nature of
the lakeshore varied, with shrubs, trees, boulders, grass, sand, buildings, birds, and
people in the immediate surroundings. People mostly kept to the walking trail and
a bike path a few meters from the shore, and fishermen occasionally sat along the
shore.

We used a simple set of behaviors to autonomously steer the robot around the
perimeter of the lake and the island. As the boat moves at a constant velocity of about
0.4 m/s, a local planner chooses among a set of state lattice motion primitives to keep
the boat 10 m away from the lakeshore on its starboard side. With this configuration,
the robot is capable of performing an entire survey autonomously; however, we
occasionally took control using a remote control in order to avoid fishing lines,
debris, to swap batteries, etc.

We have regularly deployed the robot up to once per week since August 18, 2013.
This paper analyzes data from 10 different surveys, which span seven months of
variation. All 10 were chosen because they each consisted of one run around the
entire lakeshore, including the island. Each survey was performed in the daytime on
a weekday in sunny or cloudy weather, at various times of the day.

4 Methodology

Our framework aligns images between two surveys using a coarse-to-fine process
with four main components. First visual SLAM is used to localize the trajectory
of the ASV and map visual features of the shore. Second a minimum view set is
identified, which covers all the sections of lakeshore with similar viewpoints in both
surveys. Third, given two poses facing the same scene from two different surveys, a
process of image registration using SIFT Flow is performed for the best pixel-wise
alignment. In the last step images are presented to an end user in a flickering display.

A single survey represents a collection of image sequences, measurements of the
camera pose, and other useful information about the robot’s movement. During a

survey, k, the robot acquires the tuple A k={T k
i ,I k

i , Ĉk
i , ω̂k

i }|A k |
i=1 every 10th of a

second, where T is the current time, I is the image from the pan-tilt camera, Ĉ ∈
SE(3) is the estimated camera pose, and ω̂ is the estimated angular velocity of the
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boat. The estimated camera pose is derived from the boat’s GPS position, the boat’s
compass heading, and the pan and tilt positions of the camera. The IMU provides
ω̂. Each survey is down-sampled by a factor of five to reduce data redundancy and
speed up computation time.

Finding nearby images in two long surveys is possible using raw measurements of
the camera pose, but because these measurements are prone to noise that could lead
to trying to align images of two different scenes, we begin by using visual–inertial
SLAM to improve our estimates of the camera poses.

4.1 Visual SLAM

We used generic feature tracking for visual SLAM, which is based on detecting 300
Harris corner features and then tracking them using the pyramidal Lucas–Kanade
Optical Flow algorithm (from OpenCV) as the boat moves. We then apply a graph-
based SLAM approach for optimizing the camera poses and the visual feature loca-
tions. A factor graph is used to represent the set of measurements of the camera
poses and the landmark positions, and the different constraints between them. The
GTSAM bundle adjustment framework is applied to the factor graph to reduce the
error in the initial estimates of the positions [5]. See [7] for more details.

4.2 Selecting a Minimum View Set

To reduce the computational overhead of image alignment (Sect. 4.3) and to enable
a manual comparison between two surveys (Sect. 4.4), we select a minimum view
set from among the roughly 50,000 images of each survey. A large set of images
in each survey is desirable for the optical flow step of visual SLAM and to reduce
motion blur. Yet, it means the images have a lot of redundancy, which is cumbersome
for a survey comparison. Ideally, a person comparing two surveys would only see
a subset of these images, where each corresponds to a unique section of the shore.
This section describes how we find a minimal subset of images that covers as much
lakeshore as is seen in both surveys.

Another name for this is the “Set Cover Problem” (SCP) [3], which can be
expressed as follows. Let S be the set of all the observable positions in a sur-
vey of a lakeshore. Each camera pose, i , of the survey observes a subset Ii of these
shore points, where S = ⋃

i∈I Ii . The goal is to find a set of poses J for which
S = ⋃

j∈J I j and |J | is as small as possible. This Set Cover Problem is NP-Hard. It
can be approximated using linear programming or a simple greedy approach, which
gives sufficient performance for our application.

The set of shore points that compose S is identified using the optimized poses
from visual SLAM. Because the robot is controlled to move at a constant distance,
d, from the shore, every point d ± ε away in the camera frustum is considered part
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of it (where d = 10 m and ε = 1 m). To get a discrete set of shore points, the shore
map is rasterized into a grid, in which each non-zero cell represents the shore. An arc
centered on a pose is drawn with radius d and thickness ε with an angle consistent
with the camera intrinsic parameters. For each shore point in the grid, all the poses
from which it was seen are identified. An example set of shore points from two
different surveys and the points where they overlap are shown in Fig. 2.

The camera poses J that make up the minimal cover set must also satisfy some
practical constraints. Poses with an invalid camera configuration or with a high
likelihood of motion blur are rejected. Poses from two different surveys without a
similar view of the lakeshore are also rejected. In this case, we estimate that two
poses have a similar view if their 3D positions are similar and both have similar
intersections of the camera axis with the shore at the distance, d, from the boat. The
distance between the camera angles is expressed in this way to keep comparable
values with the distance between the 3D positions.

The Set Cover Problem is solved with the greedy algorithm shown in Algo-
rithm 1. The method provided the results illustrated in Fig. 3 in less than 30 s (i.e.,
it’s tractable). Out of a survey with 50,000 images, roughly 200 are selected for the
cover set of the shore, which means over an order of magnitude fewer full runs of
image registration will be performed (compared to naively performing image reg-
istration for every image in a down-sampled survey). Note that the set of images
does not view the entire shore; only all the shore points seen from both surveys with
similar views can be covered (about 80 %).

Fig. 2 The recorded trajectory of the boat and the shore points it sees for two surveys. The shore
points seen from the red trajectory are displayed in red, those seen from the green trajectory are
green, and those seen from both are mauve. A closeup of the island is shown on the right
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Fig. 3 The cover set for the red survey from Fig. 2, which accounts for the estimated co-visibility
with the green survey. Black triangles indicate the visibility frustum of the selected images. A
closeup of the island is shown on the right

Let L be the list of selected view points, initially empty;
while there are shore points to observe do

Select the valid shore point P which is the least observed;
Let V be a view point such that

V observes P and;
V observes the largest number of unobserved shore points;

Remove P and all shore points observed in V from the list of points to observe;
Append V to L;

end
return L

Algorithm 1: Greedy algorithm for maximizing the coverage of the shore with
the minimal number of poses.

4.3 Image Registration

Given two poses viewing approximately the same scene from two different surveys,
we next run image registration in a local search of several nearby images, and output
the image pair with the best alignment score we find (the registration process for a
single image pair is shown in Fig. 1). Image registration is performed using a modified
version of the SIFT Flow scene alignment algorithm [16], which is designed for
matching images with significant amounts of variation between them. SIFT Flow
is named as such because a dense image of SIFT descriptors (see [17]) define the
matching pattern (the data terms of an MRF) to be optimized between two images.
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The algorithm is similar to optical flow in that each pixel is biased to have a similar
flow to nearby pixels (a smoothness criteria), and lower degrees of flow are favored
(regularization). For two images of approximately the same scene, the alignment
score is minimized when the flow lines up salient structures between them.

Because SIFT Flow’s cost function is designed to align the contents of a scene
indiscriminately, we add a bias in favor of aligning the lakeshore rather than the
sky or the water. A bias to decrease the influence of the sky and the water helps
reduce the noise they add to the image alignment process. The sky and the water
may compose a majority of each image to be aligned. Yet, they retain little consistent
salient structure between surveys. Salient structure can appear in the water if it is
reflective, which reduces the likelihood of a good alignment because the reflectivity
of the water changes between surveys. The varied appearance of the sky also affects
the alignment.

The bias to SIFT Flow’s cost function is derived from the 3D information from
visual SLAM. The location of the sky and the water in each image is approximately
determined using the estimated 3D locations of tracked landmarks. Although points
are mostly only tracked along the shore because most corner features occur there,
some are occasionally identified in the sky and the water, which this process essen-
tially filters out. Points with a negative elevation indicate a feature corresponds to
the water. Points far away indicate a feature corresponds to the sky. The rest of the
reprojected points are interpreted as part of the lakeshore. Given an image and the
valid 3D landmarks from visual SLAM, an image mask is created by drawing the
reprojected points on an image as a circle (an empirically determined radius, r = 28,
gave the best performance). For each pixel in the non-zero regions, the data terms
of SIFT Flow’s objective function are biased (by a factor of 1.5) in favor of aligning
the contents there compared to the other areas of the image.

Because belief propagation is used to find the best alignment, which can require a
significant amount of computation time to converge in large graphical models, SIFT
Flow uses image pyramids to speed up the process. An image pyramid progressively
halves the size of the two images for several layers (four in this paper). The search
for the best alignment proceeds in a search backwards down the image pyramid, with
the flow from each layer bootstrapping the optimization at the next higher resolution.
A search window defines the area to be considered for each pixel, and reduces in size
with each successive layer.

The final output alignment is chosen after a local search around the two candidate
poses to find the two images that align best. SIFT Flow seldom finds a dense cor-
respondence between the first two coarsely aligned images we give it. The perspec-
tive difference and the optimization error between the two images is often different
enough that an incorrect, high score alignment is found. A better, low score alignment
is usually possible between nearby images, which have a slightly different perspec-
tive. Therefore, the local search for the best dense correspondence is performed on
images at 0, ±1.5, and ±3.0 second offsets from the two image candidates, for a total
of 25 different alignments. To speed up this search, the alignment is only performed
for images at the highest level of the image pyramid.
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4.4 Survey Comparison

Although we endeavor to create a system for fully autonomous lakeshore monitoring,
including detecting changes autonomously, in this work change detection is left to an
end user. Our user interface is designed to exploit human skill at detecting changes
in flickering images of a scene. If an image pair from two different surveys is aligned
at the pixel level, changes flash on and off when the images are flickered back and
forth. If the precise alignment is not possible, a user can always revert to a side-by-
side comparison of images. This approach enables a human to perform fast change
detection (often requiring only a single flicker) for a survey comparison of a large
spatial environment consisting of hundreds of images.

5 Evaluation

5.1 General Alignment Quality

We first evaluate how well our framework aligns 10 consecutive lakeshore surveys,
which provides a point of reference for our system’s performance. The 10 surveys are
compared in consecutive order for a total of nine different comparisons. The surveys
span a total time of 210 days, with seven days the shortest interval between compared
surveys and 62 days the longest. For each survey, each image from its cover set and the
aligned image from the following survey were flickered back-and-forth in a display.
A human evaluated the alignment quality according to three criteria: (precise) almost
the entire image is aligned well with little noise; (coarse) the images correspond to
the same scene and some objects may be precisely aligned; and (misaligned) the
images correspond to different scenes or it is hard to tell they come from the same
scene.

The results are shown in Fig. 4. The framework in this paper significantly out-
performs that of our previous work in [7], which compared surveys from June 13
to 25 and achieved 52 % precise alignments, 36 % coarse alignments, and 12 % mis-
alignments. In all the comparisons a significant number of precise alignments are
found, although some have more than others. The two cases with the fewest precise
alignments involve a comparison with the July 11 survey, which had a much higher
water level. The upper half of many images in these two comparisons were pre-
cisely aligned, yet because the perspective significantly changed, and the shoreline
appeared very different between surveys, SIFT Flow inaccurately extended the shore
downward to try to compensate for the large differences in appearance. In the other
comparisons, fewer precise alignments are due to sun glare and larger intervals of
time between surveys (increasing e.g., the seasonal variation of plants). For every
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Fig. 4 Alignment quality for comparisons of 10 different surveys. All 10 were performed in 2014

case, however, the few number of misalignments indicates an end user is almost
always shown images of the same scene. Thus, because the approach can find good
alignments, we next demonstrate its use for change detection.

5.2 Detected Changes

While labeling the alignment quality of each comparison, we also saved notable
changes between surveys to show our approach is useful for change detection. Six
interesting examples are shown in Fig. 5. Five were found in precisely aligned images;
the removed treetop was identified in coarsely aligned images. Although the differ-
ence between precise and coarse alignments is hard to spot in the figure, it is readily
apparent in a flickering display. This is also true for the detection of the cut branch,
which is nearly impossible to notice unless the images are precisely aligned and
flickered back and forth. Except for the case with people, none of the changes were
known of before this analysis. In fact, although we noticed a tree fell in the water
after some heavy rain (its branches are sticking out of the water in the Sky and
Water example of Fig. 6), we did not know where it came from. Because being able
to spot changes depends on image alignment quality, the next section evaluates the
robustness of our framework to the variation of appearance across surveys.
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Removed Bush Cut Branch Fell Tree

Mowed Grass People Removed Treetop

Fig. 5 Six notable changes a human found while comparing the 10 different lakeshore surveys

5.3 Robustness to Different Sources of Variation

Our framework can find many precise alignments in all the surveys only because
it is robust to many different, combined sources of variation of appearance. Before
two images are precisely aligned the appearance variation between them is often
‘extreme’. Six prototypical examples of robustness to a particular source of variation
are shown in Fig. 6. Perhaps the example with the most extreme amount of variation is
the one labeled ‘seasonal’. In addition to the foliage depletion captured in this image
pair, there is also different illumination, sky, water, shadows, and a globe reflection.
Maybe a precise alignment would not have been possible if there was also sun glare.
However, there are many cases in which precise alignments are not found. The next
section identifies common types of alignment errors.
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Sky and Water Illumination Shadows

Seasonal Globe Spots Sun Glare

Fig. 6 Precisely aligned image pairs for six different sources of noise, which indicates our approach
can be robust to ‘extreme’ appearance variation

5.4 Alignment Errors

In some cases the alignment process adds significant noise to the images, which
requires reverting to the unregistered image pair for performing a comparison. Six
common ways the precise alignments failed are shown in Fig. 7. Image alignment
does not comply with the physics of structures in each warped image, which is
apparent in all the cases (and is an effect observed in other image processing work as
well, e.g., texture synthesis [15]). Because each pixel is potentially warped differently
than nearby pixels, the warp may be inconsistent across the image. Additionally, SIFT
Flow may try to align to noise (e.g., sun glare) and changes (e.g., a high-water level
water), obfuscating the scene. Notwithstanding errors, most alignments are labeled
‘coarse’ because they are translated versions of the same scenes.
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Mirage Aligned To Noise Inconsistent Warp

Broken Structure Blurred Structure Overcompensated For Changes

Fig. 7 Six different alignment errors made during image registration

6 Conclusion and Future Work

This paper presented a framework for spatially and temporally scalable lakeshore
monitoring. Our approach is based on exploiting scene geometry, using visual SLAM
and SIFT Flow, to overcome the variation in appearance of natural environments and
achieve pixel-level data association. Extending prior work, this paper (1) identified a
covering set of poses; (2) searched for the best alignment around each candidate pose;
and (3) used the lakeshore’s 3D structure to bias the image registration process. These
techniques increased survey alignment accuracy with fewer expensive image align-
ments. This enabled an analysis of ten surveys, in which a human readily identified
several changes. The number of precise alignments we obtained amidst ‘extreme’
appearance variation validates our approach.

In future work we plan to further improve our method’s robustness to the variation
in appearance between surveys. The many coarsely aligned image pairs are in reach
of becoming precisely aligned. One direction is to transition from aligning mostly
visual features to placing more weight on aligning the 3D structure of the lakeshore.
Another direction is to remove noise (particularly sun glare) before alignment. With
these extensions, precise alignments may become even more likely.

Acknowledgments Funding for this project is provided by the Lorraine Region, France.
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Autonomous Greenhouse Gas Sampling
Using Multiple Robotic Boats

Matthew Dunbabin

Abstract Accurately quantifying total greenhouse gas emissions (e.g. methane)
from natural systems such as lakes, reservoirs and wetlands requires the spatial-
temporal measurement of both diffusive and ebullitive (bubbling) emissions. Tradi-
tional, manual, measurement techniques provide only limited localised assessment
of methane flux, often introducing significant errors when extrapolated to the whole-
of-system. In this paper, we directly address these current sampling limitations and
present a novelmultiple robotic boat systemconfigured tomeasure the spatiotemporal
release ofmethane to atmosphere across inlandwaterways. The system, consisting of
multiple networked Autonomous Surface Vehicles (ASVs) and capable of persistent
operation, enables scientists to remotely evaluate the performance of sampling and
modelling algorithms for real-world process quantification over extended periods of
time. This paper provides an overview of the multi-robot sampling system including
the vehicle and gas sampling unit design. Experimental results are shown demon-
strating the system’s ability to autonomously navigate and implement an exploratory
sampling algorithm to measure methane emissions on two inland reservoirs.

1 Introduction

Quantification of greenhouse gas emissions to atmosphere is becoming an increas-
ingly important requirement for scientists and managers to understand their total car-
bon footprint. Methane in particular is a powerful greenhouse gas, approximately 21
times higher globalwarming potential than carbon dioxide.Water storages are known
emitters of methane to atmosphere [11]. The spatiotemporal variation of release is
dependent on many environmental and biogeochemical parameters. Therefore, in
order to accurately quantify this greenhouse gas release requires long duration and
repeat monitoring of the entire water body.
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There are two primary pathways for methane to be released from water storages;
(1) diffusion, and (2) ebullition (or bubbling). Diffusion is themost common pathway
considered due to greater consistency across a waterway. Rates of methane ebullition
represent a notoriously difficult emission pathway to quantify with highly variable
spatial and temporal changes [6]. However, the importance of bubbling fluxes in
terms of total emissions is increasingly recognised from a number of different glob-
ally relevant natural systems including lakes, reservoirs andwetlands. This represents
a critical challenge to currentmanual survey efforts to quantify spatiotemporal green-
house gas emissions and reduce the uncertainty associated with bubbling fluxes. This
is where robotics can play a significant role.

In this work, a novel system for direct measurement of the combined diffusive
and ebullitive methane flux and an ability to persistently monitor a wide spatial area
is presented. Named the Inference Robotic Adaptive Sampling System, it consists
of multiple (four) networked robotic boats (see Fig. 1) and provides an open archi-
tecture allowing researchers to evaluate new sampling algorithms with customisable
scientific payloads on real-world processes over extended periods of time.

The contributions presented in this paper are; (1) A novel ASV system for nav-
igating complex inland waterways, (2) a new greenhouse gas sampling system, (3)
a multi-robot sampling strategy to survey a previously unseen environment, and (4)
an experimental evaluation of the entire system on two inland water storages.

The remainder of this paper is as follows: Sect. 2 provides background informa-
tion. Section3 describes the Inference system and the gas sampling system. Section4
describes a preliminary sampling methodology with Sect. 5 showing results from
two inland water storages. Finally, Sect. 6 draws conclusions and discusses future
research.

Fig. 1 The multi-robot Inference Robotic Adaptive Sampling System
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2 Related Work

Robotic platforms capable of persistent environmental monitoring offer an efficient
alternative to manual or static sensor network sampling for studying large-scale
phenomena. However, in practice most applications are short-term experiments for
validating existing models [3]. Recent cross-disciplinary research extensively used
robots to investigate assumptions around spatiotemporal homogeneity of environ-
mental processes such as toxic algal blooms in lakes [5] and methane production in
reservoirs [6]. These studies show that combined robotic persistence and spatiotem-
poral sampling can provide significant new insight into environmental processes.
However, there are challenges to achieving persistent robotic process monitoring,
particularly in the complex environments considered here. These primarily relate to
robotic platforms for persistent navigation within complex and often dynamic envi-
ronments, and the ability to adaptively coordinate multiple robots to appropriately
sample the process of interest.

Robotic monitoring of marine and aquatic environments has received consider-
able attention over the last two decades [3]. Whilst most studies have focused on
underwater vehicles with restricted payloads and endurance, there is now increasing
focus on Autonomous Surface Vehicles (ASVs) with greater endurance and payload
carrying capacity for large-scale unsupervised environmental monitoring [12, 13,
16]. These systems are primarily designed for oceanographic surveys and are not
particularly suitable for relatively unexplored inland waterways with challenging
and often varying navigational requirements.

Recently, a series of ASVs have been designed and applied on inland waterways.
Typically, these catamaran style vehicles are of sufficient size for carrying scientific
payloads for tasks such as mapping hazards above and below the waterline [4], and
water quality monitoring [1, 7]. Whilst demonstrating environmental monitoring
capabilities, there is little flexibility for adding external payloads and their navigation
capabilities are generally customised to the specific environment. The provision of
a flexible, yet capable, robotic platform is a key consideration in this research.

Navigation around narrow inlandwaterways is oftenmore challenging than for the
ocean due to issues such as above, below and on-water obstacles and GPS reliability
(e.g. in mountainous and forested systems). A number of sensors have been used to
detect obstacles and in identifying free-space paths.Hitz et al. [7] usewater depth only
for detecting shallow regions, whereas Ferreira et al. [4] and Leedekerden et al. [9]
use scanning laser range finders and sonar to produce high-resolution 3Dmaps of the
above and below water environment. Cameras have also been proposed for detecting
specific objects on the water [2, 4]. Scherer et al. [14] have used cameras and laser
scanners (albeit on an aerial robot) to map the edges of waterways and the free-space
above the water as the robot traverses them. Whilst high-resolution sensors such as
lasers and sonar can provide robust navigation capabilities, for persistent monitoring
their power consumption can be a particular challenge. Exploiting lower power, and
cost, sensing modalities such as vision and ultrasonics to provide sufficient obstacle
detection capabilities is a goal of this research.
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The overall coordination of the mobile sensors (robots) is critical to accurately
measure spatiotemporal environmental processes. An emerging research area for
ASVs is that of mobile adaptive sampling where the ASV can alter its trajectory to
improve measurement resolution in space and time (e.g. [17]). The survey paper [3]
summarises advances in robotic adaptive sampling for environmental monitoring.
Past research has focused primarily on the Gaussian Process-based reconstruction
of stationary processes using combinations of mobile and static sensors networks
[8, 17]. Whilst demonstrating the ability to capture and reconstruct various para-
meter distributions, these studies offer simulation only or short duration small-scale
experimental validation. Larger-scale adaptive coordination of mobile sensing assets
(underwater gliders) has been considered for tracking large oceanographic plumes
in [10, 15]. Developing and demonstrating multi-robot adaptive sampling algo-
rithms for the large-scale monitoring and tracking of spatiotemporal environmental
processes is an over-arching goal of this research.

3 The Inference Autonomous Surface Vehicle

This section describes the current Inference Robotic Adaptive Sampling system and
the greenhouse gas sampling payload system as applied and evaluated in this paper.

3.1 High-Level Scenario

The Inference Robotic Adaptive Sampling system was developed with the goal of
providing a shared resource of multiple networked ASVs to allow researchers to
remotely evaluate new sampling algorithms on real-world processes over extended
periods of time. A typical use scenario proposed for the system is outlined below:

1. The ASVs, each carrying a scientific payload, are deployed on a water body.
2. Based on a desired sampling protocol (e.g. random, adaptive) and process mod-

elling requirements, new sampling locations are determined. This can be achieved
either from a remote centralised, or an on-board decentralised process.

3. Determine which ASV goes to each of the updated sample locations. This may
involve optimising a cost function (e.g. minimising energy and/or travel time,
maximising solar energy harvesting).

4. Each ASV navigates to their commanded sampling location.
5. Each ASV takes its scientific measurement and reports it back through the net-

work.
6. Repeat steps 2–5 until a termination condition is met.

The system described in this paper is working towards achieving this goal with
a preliminary experimental evaluation of this scenario using a simplified random
exploration algorithm as described in Sect. 4.
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Fig. 2 One of the autonomous surface vehicles from the Inference system. The navigation sensors,
computing and batteries are located underneath the two solar panels. The scientific payload is
attached to the moon-pool opening underneath the camera. Note the pan-tilt dome camera visible
was not used in this study, only the smaller USB camera directly in front of it

3.2 Hardware Overview

The Autonomous Surface Vehicles used in the multi-robot Inference system are cus-
tom designed for persistent and cooperative operation in challenging inland water-
ways. The overall hull shape (see Fig. 2) has four key features; (1) A low draft
allowing traversal in shallow water, (2) open sides and low curved top deck to min-
imise windage and the associated drift when station keeping during sampling, (3) a
large top surface area angled for maximising energy harvesting from the solar panels,
and (4) a moon-pool (open centre section) with standardised attachment points to
mount custom sensor packages. The overall dimensional and mass specifications for
the ASVs are given in Table1.

Table 1 Physical and
performance specifications of
the ASVs

General specifications

Length 1.50 m

Width 1.50 m

Height (above waterline) 0.7 m

Draft 0.15 m

Weight 33 kg (without payload)

External payload: 4 kg

Propulsion 2 × BlueRobotics T100
brushless electric thrusters

Power 12V 20Ah LFP battery

2× 40 W solar panels

Speed Max: 2.3 ms−1

Typical survey: 0.5–0.8 ms−1



22 M. Dunbabin

Propulsion of theASVs is provided by twoBlueRobotics T100 brushless thrusters
mounted at the rear of each side of the hull. These provide the forward motion as
well as steering (through differential control) of the vehicles. The system is powered
by a single 20 Ah Lithium Iron Phosphate battery and two 40W solar panels. This
limited energy capacity requires advanced path-planning algorithms to coordinate
the ASVs for maximising energy harvesting as well as to meet the overall sampling
objectives. These algorithms are current ongoing research and not considered in this
paper.

The ASVs are required to autonomously navigate inland waterways using only
their on-board sensors. Each ASV has a suite of low-cost navigation sensors which
include a GPS, magnetic compass with roll and pitch, and a depth sensor for mea-
suring bathymetry. Of particular importance is the ability to detect the water’s edge
and potential obstacles on top of the water. The obstacle sensors used in this study
are a USB camera (Microsoft LifeCam) mounted above the moon-pool, and four
Maxbotix ultrasonic range sensors mounted just under the leading and trailing edges
of the top deck. These sensors are used to detect the edge of the water and at-surface
structure such as reeds, trees and water lilies (see Sect. 4). To minimise power con-
sumption and cost, typical scanning laser-based or radar sensors are not currently
used, although they can be added if required in future scenarios.

The ASV’s thrusters are controlled via a custom designed motor and sensor inter-
face board. This system is capable of providing waypoint control and ultrasonic and
depth sensor based obstacle avoidance. To facilitate vision-based obstacle avoidance,
each ASV has an Odroid C1 ARM Cortex-A5 1.5 GHz quad core CPU running the
Robotic Operating System (ROS) and OpenCV.

There are two communication systems on-board the ASVs. The first is a 2.4 GHz
WiFi system allowing communication to a gateway located on a floating platform
on the water storage. This gateway has a wireless router and 3G modem allowing
bidirectional data transfer from a centralised server located at the Queensland Uni-
versity of Technology. The second is a 2.4GHz wireless embedded system (XBee
IEEE 802.15.4) allowing serial communication between each vehicle as well as with
existing static floating sensor nodes located on the water body.

Each ASV is capable of carrying additional custom payloads weighing up to
4kg. The payload is mounted under the moon-pool opening via six attachment bolts.
Currently available payloads include gas sampling (see Sect. 3.3), multi-beam and
profiling sonars, water sampling and a winch system for water column profiling. A
six pin connector is provided for use by the custompayloads. This connector provides
power as well as bi-directional serial communications via a standardised protocol
for triggering sampling, and reporting sample completion and possible faults.

3.3 Gas Sampling System

The goal of this study is tomeasure greenhouse gas emissions (efflux) from thewater-
way. Figure3 shows the self-contained greenhouse Gas Sampling System (GSS)
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developed to autonomously measure both the diffusive and ebullitive efflux. This
payload is mounted underneath the ASV via the moon-pool payload attachment
points as described in Sect. 3.2.

The GSS (Fig. 3) automates the traditional manual chamber-based sampling
process and consists of three primary components; (1) A frame allowing the lower-
ing and raising of a chamber into the water, (2) a chamber fitted with a continuous
methane gas (CH4) sensor and purge valve, and (3) a physical gas sampling unit.

The process of sampling the greenhouse gas being released from the water to the
atmosphere using theGSS is illustrated in Fig. 4 and consists of four steps. Firstly, the
ASV navigates to the desired sampling location it goes into a weak station-keeping
mode. This limits the control input to the motors to reduce any disturbance that may
influence the CH4 efflux at the expense of a slightly increased station bound. At this

Fig. 3 The Gas Sampling System (GSS) used to measure greenhouse gas (methane) release to
atmosphere from the inland water storages. The GSS is attached to the ASV as described in Sect. 3.2

Fig. 4 The sequence of actions required to measure greenhouse gas using the GSS
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point, the chamber purge valve (see Fig. 3) is opened and the chamber lowered using
the linear actuator to achieve a desired air volume within the chamber (Fig. 4a–c).
The second step involves closing the chamber purge valve and letting the methane
concentration within the chamber increase for a predetermined incubation time (see
Sect. 4 for a discussion on incubation time). During incubation, the methane sensor
continuously measures the concentration within the chamber (Fig. 4b, c). At the end
of the incubation, the third step (Fig. 4c) calculates the overall gas efflux rate from
the gradient of the recorded methane concentration time history. Also a physical
sample of gas from the chamber is collected for laboratory analysis using the gas
sampling unit (see Fig. 3). This involves a sequence of actions that firstly purges the
sample tube using the pump, then loads a pre-evacuated 12mL vial into the sampling
unit. A linear actuator on the unit drives a hypodermic needle into the vial whilst
pumping gas from the chamber. Once 20mL of gas has been pumped into the vial
(over pressure sampling technique), the needle retracts and the unit discharges the
vial ready for the next sample.

After sampling is completed, the final step involves opening the chamber purge
valve and raising the chamber out of the water. At this point the ASV can move to
the next sample location.

4 Technical Approach

This section outlines technical details relating to the sampling of greenhouse gas
(methane), obstacle avoidance, and the sample site selection algorithms used for
coordinating a number of the ASVs across a previously unexplored water body.

Gas Sampling Protocol

During the sampling phase, the concentration measured by the methane sensor is
polled every 2 s for the entire incubation period. A linear least squares line of best
fit applied to this time history and the gradient used to calculate the flux rate.

A key consideration for greenhouse gas sampling is determining the minimum
incubation time that maximises detection accuracy. The output from the continuous
methane sensor in theGSS is quantised to 0.01%.While diffusive fluxes are typically
less than 50 mg m−2 d−1, ebullitive fluxes in our region can be has high as 22,000
mg m−2 d−1 [6]. Varying the incubation time and/or head-space ratio (i.e. the ratio
of chamber surface area (Ac) to its internal air volume (Vc)) can be used to achieve
a desired detection accuracy. Figure5 shows the predicted variability in relative
measurement error (i.e. the percentage error between a true methane flux to that
which can be measured by the GSS) versus incubation time for different methane
efflux rates and head-space ratios. As can be seen, longer incubation times lead
to reduced errors as with increasing head-space ratios. However, longer incubation
times mean less sample points can be performed per day. In this study, the primary
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Fig. 5 The predicted
percentage relative
measurement error of
methane flux rate with
incubation time for the
prototype GSS (see Sect. 3.3)
with a sensor output
resolution of 0.01%. Two
efflux rates are considered,
1000 and 5000 mg m−2 d−1

with head-space ratios
(Ac/Vc) of 10 and 20 m−1

interest is the detection of methane “hot-spots”, that is where it is bubbling from the
water. Therefore, incubation times of 15–20min were chosen here to allow detection
of methane rates as low as 1000 mg m−2 d−1, albeit at lower accuracy. However, the
higher the efflux rate, the more accurate the measurement.

Obstacle Avoidance

The ASVs have three sensors for obstacle avoidance; (1) ultrasonic sensors, (2) a
camera, and (3) water depth sensor. The ultrasonic sensors have a maximum range
of 6.5m and are used to detect above water objects in front of the ASV such as land,
reeds, trees and larger buoys. The camera, only used when moving between sample
waypoints, is used to detect water lilies on the water’s surface. The image stream is
processed at 1Hz.With the camera fixed to theASV, the horizon can be approximated
and only the scene below the horizon considered. Image segmentation is conducted
using an empirically determined threshold on the green and blue color channels with
an approximate water lily size threshold to reduce noise. Figure6 shows an example
image from an ASV and the resulting segmentation of the water lilies (shown in red).

To detect shallow, non-traversable water, the depth of water below the ASV is
continuously monitored. The outputs from all obstacle sensors are parsed by the
on-board controller. When a detection occurs, the ASV trajectory is modified as
described in the following section.

Multi-robot Sample Site Selection

A random walk-based algorithm is proposed here for selecting locations for n ASVs
to sample the environment in an attempt to identify regions with high methane gas
flux. There are two key assumptions: (1) the boundary of the water body is known
from sources such as GIS, and (2) the ASVs can communicate between each other
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Fig. 6 Example of image segmentation from the ASV for detecting on-water obstacles such as
water lilies (Left original image. Right image with detected obstacles highlighted in red)

and can share their list of previous and next sample locations. In this study, we do
not use bathymetry but it could be used in the future to help guide the algorithm.

The selection of new sample locations is based on an online random walk and
potential fields. Iterating through each robot, the basis of the algorithm is as follows:

1. All previously sampled sites for all robots are represented as 2D Gaussian poten-
tials centred at those points with fixed amplitude and standard deviation.

2. A random position at radius r from the current position is selected. If this position
is not on land, and the value from the closest Gaussian potential is less than a
threshold, this becomes the next sample point for that robot. If this condition is
not met, the process is iterated until a location can be found. If no location can be
found after a set number of iterations, the search radius is increased by �r and
the process repeated until a site is found or some termination criteria is met.

3. To increase local intensification of sampling in methane “hot-spots”, if the mea-
sured flux rate at the robot’s current location exceeded some threshold, the search
radius for the next sample step is set to βr where (0 < β ≤ 1) and the potential
threshold trigger relaxed.

During waypoint execution each robot drives in a straight line towards the goal. If
the water depth falls below a threshold (i.e., too shallow), or an obstacle is detected,
the vehicle starts to move either clockwise or counter clockwise around the contour
until a new straight line to the goal can be achieved. This entire process is repeated for
all robots until a desired number of samples are collected or some other termination
condition met.

5 Results

An experimental evaluation using two ASVs with gas sampling payloads was con-
ducted on two water reservoirs in South East Queensland, Australia; (1) Gold Creek
Dam, and (2) Little Nerang Dam. These are established study sites and selected as
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they exhibit regions of significant methane ebullition and provide a range of chal-
lenging operational conditions for evaluating robotic systems.

Previous studies [6] had collected georeferenced outlines of the water’s edge
(boundary) as well as bathymetry maps for both sites. Only the boundary was used
in this study for implementing the sample site selection algorithmdescribed in Sect. 4.
Figure7 shows the two ASVs used in this study on Gold Creek Dam.

The first experiment was conducted at Gold Creek Dam. This is a small, relatively
open dam with a narrowing distal arm. The sample selection algorithm was run to
collect 12 samples for each ASV, with a step radius of 100 m, and intensification
factor of 0.5. The trigger was set at 1000 mg m−2 d−1 with 20min incubations. The
time to complete the sampling was approximately 5 h. Figure8 shows the results of
implementing the sample strategy for both ASVs. These results show the ASVs were
capable of navigating the water storage and implementing the sample protocol. The
online detections of methane exceeding the trigger threshold (markers in yellow)
correspond to areas physically observed to have methane ebullition. As ebullition
is essentially a point source emitter, there can be extreme variability even at short
spatial and temporal scales (see [6]). Therefore, whilst ebullition can often be seen
in expected regions (e.g. top image of Fig. 8) a sample within that region does not
always guarantee the capture of gas bubbles sufficient to achieve high rates.

A second experiment was conducted at Little Nerang Dam. This is a longer and
narrower water storage with a steep sided catchment. The sample selection was run
with a total of 30 samples for each ASV, step radius of 200m and an intensification
factor of 0.5. The trigger was set at 1000 mg m−2 d−1 with 15min incubations. The
time to complete the experiment was approximately 10.5 h.

Figure9 shows the results of implementing the sample strategy for both ASVs.
These results again show the ASVs ability to implement the sample protocol and

Fig. 7 The two ASVs at the start of a sampling campaign on Gold Creek Dam, Queensland. The
retracted gas sampling unit is visible underneath the ASV on the right
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Fig. 8 Sampling locations and ebullition detections from 20min incubations using two ASVs on
Gold Creek Dam, Queensland. Top An aerial image of Gold Creek Dam with red overlay showing
the regions of physically observed methane ebullition. Lower The trajectory and resulting sample
locations indicated by the circles for ASV1 and triangles for ASV2. The start location for both
ASVs is indicated by the green dot. The circles and triangles highlighted in yellow indicate the
online chamber measurements that exceeded 1000 mg m−2 d−1

navigate the water storage. The online detections of methane exceeding the trigger
threshold (markers in yellow) are consistent with previous research at the dam [6].

Whilst these experiments demonstrated the system for real-time sampling of
greenhouse gases across water bodies, the online component of gas sampling system
was not optimised for detecting lower (and more common) flux rates of less than
1000 mg m−2 d−1. Future work will look at adaptive chamber head-space control
as well as higher precision sensors to improve the utility of the system for accurate
quantification of the combined diffusive and ebullitive flux of greenhouse gases.
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Fig. 9 Sampling locations and ebullition detections from 15min incubations using two ASVs
on Little Nerang Dam, Queensland. Left An aerial image of Little Nerang Dam with red overlay
showing the regions of physically observed methane ebullition. Right The trajectory and resulting
sample locations indicated by the circles for ASV1 and triangles for ASV2. The start location
for both ASVs was at the dam wall located at the northern most end. The circles and triangles
highlighted in yellow indicate the online chamber measurements that exceeded 1000 mg m−2 d−1

6 Conclusions

This paper has presented a novel robotic sampling system for conducting large-scale,
persistent monitoring on complex inland waterways. The system, named Inference,
consists of multiple networked Autonomous Surface Vehicles (ASVs) carrying a
range of scientific payloads. Experimental results demonstrate the ASV’s ability to
navigate complex waterways whilst executing a multi-robot online sampling pro-
tocol. Using a custom Gas Sampling System (GSS) attached to each ASV, experi-
mental results also show the robotic system is capable of measuring and localising
strong greenhouse gas release (methane) to atmosphere. Future research is focused on
developing more sophisticated multi-robot adaptive sampling algorithms to achieve
persistent monitoring and mapping of spatiotemporal processes whilst considering
energy, speed and sampling constraints of the vehicles. Additionally, new sensors
and algorithms for head-space control of the GSS are being developed to improve
its lower detection limit for sampling regions with low gas flux rates.
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Experimental Analysis of Receding Horizon
Planning Algorithms for Marine Monitoring
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Abstract Autonomous surface vehicles (ASVs) are becoming more widely used in
environmental monitoring applications. Due to the limited duration of these vehicles,
algorithms need to be developed to save energy and maximize monitoring efficiency.
This paper compares receding horizon path planning models for their effectiveness
at collecting usable data in an aquatic environment. An adaptive receding horizon
approach is used to planASVpaths to collect data. A problem that often troubles con-
ventional receding horizon algorithms is the path planner becoming trapped at local
optima. Our proposed Jumping Horizon (J-Horizon) algorithm planner improves on
the conventional receding horizon algorithm by jumping out of local optima. We
demonstrate that the J-Horizon algorithm collects data more efficiently than com-
monly used lawnmower patterns, and we provide a proof-of-concept field implemen-
tation on an ASV with a temperature monitoring task in a lake.
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1 Introduction

Autonomous surface vehicles (ASVs) are becoming more commonly used to collect
data in oceans and inland waterways using instruments such as: acoustic doppler
current profilers (ADCPs); conductivity, temperature, and depth sensors (CTDs);
and sidescanning sonars. These autonomous vehicles allow data collection in tight
places, such as in and around glaciers or ice, as well as in close proximity to land
(e.g., around river deltas) [2, 5].

Commercially-available ASVs, such as the Platypus Lutra (Fig. 1b) and Ocean-
Sever Q-Boat, typically execute a simple lawnmower path to cover the area to be
explored (Fig. 2). Such a path can provide high data yield, but at the expense of
substantial fuel and time costs [11].

Previous work has shown that sampling in a spiral pattern is slightly more energy-
efficient than doing so in a lawnmower pattern [9], but only by a margin of less than
5%. This margin will be shown to be negligible compared to that demonstrated by J-
Horizon over lawnmower, so for simplicity, the lawnmower pattern will be simulated
and considered as the baseline.

Fig. 1 Two commercially-available autonomous surface vehicles for aquatic sampling. a Q-Boat
1800P with an integrated ADCP. b Platypus Lutra with a dissolved oxygen and pH sensor

Fig. 2 The proprietary area
search algorithm from
Platypus generates a dense
lawnmower pattern that is
highly energy-inefficient
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Here, we propose a receding horizon path-planning algorithm that, given an infor-
mation or uncertainty map, generates a sampling path to maximize the information
gathered or reduce the uncertainty. We compare this algorithm against the simple
lawnmower path planner for a given transport budget and examine the effects of
various algorithm parameters on the quality of the generated path. Furthermore, we
propose a Jumping Horizon (J-Horizon) algorithm that improves on the conventional
receding horizon algorithm by varying the look ahead step size if desired threshold
values cannot be found within the current horizon. This allows the planner to “jump”
out of local optima if higher peaks can be found elsewhere on the map. Finally, we
validate our simulated results during a field trial using an ASV. An initial data set is
collected to provide a base scalar field. The J-Horizon algorithm is then run over this
scalar field produced, and a qualitative analysis is given. The J-Horizon planner is
able to produce paths superior to the simple lawnmower pattern in simulation, and
experimentally the J-Horizon path is shown to cover more area and generate a more
representative scalar field.

2 Related Work

Past work has shown that a receding horizon path planner is effective at optimizing
paths in “no-fly” zone environments with hard constraints [10], where the agent is
prohibited from entering certain areas bounded by walls. This is a useful constraint
for aerial and land vehicles that must navigate cluttered environments. However,
these constraints do not apply to an ASV that must cover a large body of water such
as a lake or the open ocean.

In previous work, AUVs have played a similar role as the ASV in our project.
Binney et al. [1] describe an offline path planner for an uncertainty area. Hollinger
and Singh [7] describe an approach for multiple agents searching for a target in
a known environment. Hitz et al. [6] discuss a path planner that can choose an
efficient path for measurement of fluorescent bacteria in the ocean using an ASV. To
reduce computational complexity, all of these authors employ a receding horizon path
planner. Besides implementation on ASVs, receding horizon algorithms are widely
used in other robotics scenarios. Tisdale et al. [12] describe a receding horizon path
planner for multiple unmanned aerial vehicles to search for a stationary object. For
currently implemented receding horizon planners, no research exists that examines
the effect of the horizon length, or the possibility of modifying this horizon based on
the remaining information.

Frolov et al. [3] compares lawnmower paths to other planning algorithms using
fleets of research vehicles. They come to the conclusion that lawnmower paths are
only marginally worse than adaptive algorithms. They also conclude that graph-
based search algorithms are actually worse than lawnmower patterns, thus cannot
maximize their performance, because they are unable to adapt to prior uncertainty.
Our J-Horizon algorithm adapts to the environment and removes these limitations to
provide improved performance over other adaptive algorithms.
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Gotovos et al. [4] propose a Level Set Estimation (LSE) algorithm that uses
Gaussian Processes to estimate level sets of measured quantities and generate sam-
pling points that reduce uncertainty around a certain threshold level. In a different
context, [8] describe an incremental sampling-based motion planning algorithm.
Instead of reducing the uncertainty, they try to optimize the information gathering,
depreciating the information value of sampled points.

A key limitation of existing research in receding horizon planning is that none
of the aforementioned works discusses the role of the parameters in the receding
horizon algorithm, e.g., horizon length or adaptation based on gathered or remaining
information. In addition, prior research has not focused on a single ASV performing
data collection over large areas. In this paper, we address this gap in research in
the aforementioned papers through the presentation of the J-Horizon algorithm. We
present the application of our proposed method over different scalar fields both in
simulation and through field experiments. The algorithm’s performance is experi-
mentally demonstrated to outperform existing lawnmower and traditional receding
horizon methods.

3 Problem Setup

Due to the wide variety of data that is sampled, it is challenging to model the data
collection in a general way. The areas of interest being surveyed by ASVs are often
dynamic environments, and the data collected is often a reflection of changes in the
environment. Data collection around glaciers, in river deltas, or in relatively shallow
water are environments that are changingquickly. Thedata collected is often collected
to provide a snapshot of the processes that are evolving in the general area, and plan
for future targeted sampling. Prior surveys can provide a heuristic upon which to
formulate plans for future surveys, and multiple surveys can be combined to provide
a time-series evolution of the region of interest. Here, we exploit the existence of a
partially known underlying field and present a method for improved sampling based
on time and energy optimization while gathering data of maximal reward.

3.1 Objective Function

In this paper, the J-Horizon planner addresses the following maximization problem:

p∗ = argmax
p∈ψ

R(p) s.t. c(p) ≤ B,
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whereψ is the space of possible trajectories for the ASV, B is the initial budget (e.g.,
time, fuel), and R is a reward function that represents the information gathered or
uncertainty reduced along the trajectory p.

Furthermore, we depreciate the value of R(p) each time we sample p. That is,
for intersecting partial trajectories pa and pb (i.e., pa∩b �= ∅),

R(pa∪b) + R(pa∩b) ≤ R(pa) + R(pb),

where pa∪b and pa∩b are the union and intersection of pa and pb, respectively. This
makes the objective function submodular.

3.2 Experimental Setup

We first present a simulation setup that uses computer-generated scalar fields to
compare the performance of J-Horizon, a conventional receding horizon, and the
lawnmower planning algorithms.We then present a real-world dataset acquired from
Lake Haviland outside of Durango, CO to generate a path maximizing gathered
information for a given transport budget.

3.2.1 Simulation

The J-Horizon algorithm is most effective when there is a prior dataset that can be
used to generate an information map. The reward function is then specified by the
maximum amount of new information that could be gathered at a map location. Fur-
thermore, the algorithm improves upon the conventional receding horizon algorithm
by seeking out areas of high reward when the local map area has been exhausted of
new information, resulting in its “jumping” behavior.

For our simulated testing, a MatLab script was used to randomly generate 2960
different scalar fields with varying numbers and distributions of high-reward peaks.
Between 5 and 50 such peaks were randomly generated on each map with a reward
value that decays as a function of distance from the peak center. One such field is
visualized in Figs. 4 and 5 as contour maps.

The total reward accumulated along a path generated by J-Horizon for a given
fuel budget was averaged for these scalar fields. This performance was compared
with that of a lawnmower exploration pattern on the same datasets and fuel budget.

3.2.2 Hardware

A Platypus Lutra ASV was used to take physical samples from Lake Haviland. This
ASV is fan-powered, maneuverable and capable of sampling data in lakes or other
small bodies of water. This small ASV is an ideal platform upon which to implement
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our algorithm, based on the limited deployment duration and sensing capabilities
for relatively large bodies of water. The ASV is capable of simultaneously sampling
temperature, conductivity, pH, and Dissolved Oxygen. Additionally, it measures
depth and has a side-scan sonar. The latter sensors allow for bottom mapping of the
lake.

The Platypus Lutra ASV has non-holonomic constraints that limits its ability to
execute some of the sharper turns produced by the J-Horizon algorithm. Thus, due
to hardware limitations, it is necessary to modify the path produced by J-Horizon.
These modifications allow the ASV to follow the planned path. Due to the limited
locomotion of the Platypus Lutra as well as a need to simplify data collection, some
assumptions have to be made:

1. The ASV is limited in its motion and has non-holonomic turning constraints.
2. That sampled scalar fields were not dramatically changing over time.
3. Distance traveled equates to using a linear and constant amount of energy.
4. Additional data sampling points at a given location correlates to better quality

data.

4 Algorithm Design

We seek to maximize the reward function for a given transport budget. In reality, this
budget is a combination of fuel expenditure, time, and distance, each of which are
specific to the vehicle and data collection scheme in use. For simplicity, we assume
these factors are linearly related and that acceleration (e.g., due to turning, data
collection) has zero cost. In addition, we enhance the conventional receding horizon
algorithm by increasing the look-ahead step size if none of the predicted future states
satisfy a reward threshold, allowing the planner to “jump” out of low-information
areas. This makes J-Horizon especially effective when the input scalar field has high
local variability.

The sequence of potential future steps, as well as the final generated path, are
stored in a tree wherein each node stores the state of the ASV, which consists of
the cumulative reward value of the path, remaining budget, and the location of the
ASV. Each look-ahead step recursively generates a number of possible future states.
Of these, the best branch is chosen, and the rest are pruned. The sequence of nodes
remaining after the remaining budget reaches zero is considered the optimal path.
The lawnmower and J-Horizon algorithms share the same functions to calculate the
information available at a map location and to depreciate the available information
after sampling that location.

The following sections describe the J-Horizon implementation shown in Algo-
rithms 1, 2, and 3 by their respective line numbers.
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4.1 Algorithm 1—Main

Path planning begins with the specified transport budget B and loops over the follow-
ing four steps until either the budget is expended or the planner covers the prescribed
area.

6: From the current state σ , take L look-ahead stepswith look-ahead. This updates
the path tree with possible future states L levels below the current node.

7: Find the location of the “best” adjacent node that will achieve the highest reward
at the end of L steps through that node.

8: Prune the path tree of all descendants under the current node.
9: Add sample point nodes between current and best locations and update the current

node to the latest node.

4.2 Algorithm 2—Look-ahead

Given an initial state σ andmaximum recursion depth d, we recursively generate and
add possible future states to the path tree. Each step is taken with a new, temporary
copy of all data. During each call, it performs the following:

1: Generate set of future states S f from σ .
3: Remove a fraction R ∼ U ([0, 1)) of the states (but not all) in S f .
7: Recurse on each descendant node.

4.3 Algorithm 3—J-Horizon

Given a state σ and an information threshold t , probe outwards from the given
location and update the map:

2: Start with a sample interval of D.
3: Calculate number of future states to generate b per some factor F .
4: While S f is empty, perform the following:

5: Generate b equally spaced points around a circle of radius D around σ .
6: For each such point, if the quality of the map at that point exceeds t , then

add the point to S f .
8–9: Increment δ by D and update b.

10: Update the information map.
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Algorithm 1: Main Main function to run
1 loc ← (0, 0)
2 reward ← 0
3 budget ← B
4 σ ← {loc, reward, budget}
5 while σ.budget > 0 do
6 look-ahead(σ, L)
7 lb ← FindBest(σ )

8 Prune(σ )
9 σ ← AddSamples(σ.loc, lb)

10 return

Algorithm 2: look- ahead Recursively look several steps ahead
Input: State σ , recursion depth d
Output: Number of future states from location

1 S f = JHorizon(σ, T )

2 for i ← 1 to
⌊

R · |S f |
⌋

do
3 RemoveRandom(S f )

4 n ← 0
5 foreach {σ f ∈ S f } do
6 if R > 1 then
7 n ← n + 1 + look-ahead(σ f , d − 1)

8 return n

Algorithm 3: JHorizon Generate frontier locations
Input: State σ , threshold t
Output: Set of possible future states to explore

1 S f ← ∅
2 δ ← D

3 b ← F
√

δ

4 while |S f | = 0 do
5 for σm ∈ GenerateNew(σ, δ, b) do
6 if GetInfo(σm) > t then
7 S f ← S f ∪ {σm}
8 δ ← δ + D

9 b ← F
√

δ

10 Depreciate(σ )
11 return S f

5 Results

In this section, we present the results of application of the J-Horizon algorithm on
simulated data, as well as data collected during a field trial.
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5.1 Simulation Results

Wevalidate the J-Horizon planner using 2960 simulated scalar fields.We compare the
quality of the paths generated by the J-Horizon planner to that of a simple lawnmower
pattern using the sum of the data collected over the path given the same transport
budget as the metric. For the purpose of comparison, the information gathered was
arbitrarily selected to correspond to the deviation from a particular target value of the
quantity of interest (Fig. 3). By identifying pertinent or interesting data, the algorithm
is able to successfully maximize data collection for a given deployment region. Such
quantities are representative of the uncertainty in temperature or another physical
parameter that can be approximated by a scalar field.

The simulated vector field seen in Fig. 3 is representative of many types of scalar
data. One of the benefits of the J-Horizon algorithm is that it can plan across any type
of scalar field, e.g., temperature, humidity, pressure, salinity or dissolved oxygen.
The point being that the user may specify the data being looked for and J-Horizon
will attempt to maximize the data collection. Figure3 is an example of the J-Horizon
planning over a simulated scalar field.

Figures4, 5a, and 5b show a typical lawnmower, receding horizon, and J-Horizon
path, respectively, planned over a simulated scalar field. The same transport budget
was used for all three paths, yet the quality of the paths were 132, 189, and 420,
respectively. The J-Horizon planner outperforms lawnmower by a factor of 3.18.
Lawnmower required 3.51 times the transport budget to achieve the same reward on

Fig. 3 J-Horizon path planned over simulated scalar field. a Dense path planned over reward field.
b Field reward level map. Red indicates high reward



40 S.-H. Yoo et al.

Fig. 4 Lawnmower path on generated scalar field. Reward of 132

Fig. 5 Effect of reward threshold on J-Horizon jumping behavior. a Path generated by receding
horizon planner. Note the path lingers in the high-reward area at the lower left for a long time before
moving on to more worthwhile areas. Reward of 189. b Path generated by J-Horizon planner with
threshold of 0.1. Once the peak at the lower-left has been exhausted of potential reward, the planner
quickly moves on to other points of interest. Reward of 420
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Fig. 6 Performance comparison between lawnmower, receding horizon, and J-Horizon algorithms.
a Information gathered with increasing budget. b The information gathering ability of the J-Horizon
planner against a lawnmower pattern as we decrease the fraction of generated future states

the same map and still fails to bring the maximum uncertainty below the threshold
of 0.1.

Figure6 demonstrates the general behavior of the J-Horizon planner, which out-
performs the lawnmower planner by a factor of 4 for the first 5Km of the 25Km
total budget and slows down as it explores the remaining, lower-reward regions of
the scalar field.

Figure6a compares the information gathering ability of the three algorithms with
increasing budget. J-Horizon gathers information most rapidly. When the budget is
large enough, the information gathered by the receding horizon planner is nearly
equivalent to that of the J-Horizon planner.

Figure6b shows the information gathering ability of the J-Horizon planner against
a lawnmower pattern as we decrease the fraction of generated future states. For
example, JH80% indicates the algorithm generates 80% of the usual number of
future states. Even at JH20%, J-Horizon significantly outperforms a lawnmower
path. This suggests it is possible to drastically reduce computational complexity
with only a minor performance penalty.

One of the most advantageous qualities of this planner is that it is not limited to
any particular search space. It is capable of planning paths over anything that can be
estimated by a scalar field.

5.2 Experimental Results

Here, we present results from field trials for the implementation of the J-Horizon
planner over a scalar field of surface temperature in a small lake in Colorado.1 Specif-

1The specific location of the field trials is Lake Haviland, outside of Durango, CO, located at
37◦31′55′′N 107◦48′27′′W.
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ically, the goal presented to the ASV is to focus sampling at low-temperature regions,
which correspond to high information reward in this case. We use the Platypus Lutra
ASV, as shown in Fig. 1b, to conduct an initial survey and then use the J-Horizon
planner to compute a new path with the objective to minimize the uncertainty and
maximize information gain on the underlying scalar field. The initial path for repre-
sentative data collection is presented in Fig. 7a, with the scalar field generated from
these data and the path planned by the J-Horizon planner shown in Fig. 7b. The ASV
executed the first section of the path prescribed by the J-Horizon planner, and results
are shown in Fig. 8. At the terminus of this executed section, J-Horizon prescribed a
jump to a new region for further sampling. This second section was not executed for
the proof-of-concept field trial.

As seen in Fig. 7b, the J-Horizon gathers data in areas of low data yield from
the initial data collection. For instance, the lower left hand corner of Fig. 7b is an
area that was not covered in the initial survey and requires more data collection to
accurately represent the underlying field. This is the area of focus for our execution
of the J-Horizon planner path, as more than half of entire length of the planned path
lies within this region. The portion of the planned path that was executed is shown
in Fig. 8 by the red path.

Fig. 7 Paths executed by the ASV to test and demonstrate the J-Horizon planner. a The ASV’s
initial path on Lake Haviland outside Durango, CO. b J-Horizon path generated on ASV path shown
in (a)
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Fig. 8 The initial, data
collection path (upper, blue)
and the J-Horizon path
(lower left, red) executed by
the ASV on Lake Haviland

6 Conclusion

Improved algorithmdesign for autonomous vehicles operating onwater has a promis-
ing future in robotics. Collecting higher quality data that can be better utilized by
scientists, as well as reducing costs of the data collection, is a key goal in making
autonomous monitoring a reality. In this paper, we presented a receding horizon
algorithm that attempts to find an optimized path to perform costly, and sometimes
difficult or dangerous, data collection in oceans or other large bodies of water. In
conclusion, we have presented a novel approach to better collect data over scalar
fields. Simulation results show a 14.53% gain in reward of information collection
compared to a lawnmower pattern while in simulation. The J-Horizon planner shows
a 23.85% increase in information gathered in a simple experimental trial compared
to a lawnmower pattern. Both of these results show quality gains compared to a lawn-
mower path of equivalent length. These optimized sampling paths allow scientists to
more easily collect pertinent data in the field.

7 Future Work

Extended hardware trials would verify that the simplifying assumptions made in the
algorithm design are realistic. Additional performance improvements could be made
by running the planning algorithm on the ASV to update the error of the scalar field
and re-plan in realtime. This would serve to allow the ASV to run autonomously in
highly dynamic environments for longer periods of time without having to transmit
data to the shore for processing.
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The obvious extension of this work is the application to Autonomous Underwater
Vehicles, and sampling in three dimensions. After further testing and validation on 2-
D scalar fields, we are planning to investigate problems that exist for both underwater
and aerial applications.

Finally, we are investigating an extension to the J-Horizon planner that includes
applications for frontier searching, enabling a robotic platform to explore areas with
unknown data quality. Such an algorithm will aim to balance explore vs. exploit in
missions, searching new areas while also collecting data in areas that are deemed
interesting or have low data density.
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Return to Antikythera: Multi-session SLAM
Based AUV Mapping of a First Century B.C.
Wreck Site

Stefan B. Williams, Oscar Pizarro and Brendan Foley

Abstract This paper describes an expedition to map a first century B.C. ship wreck
off the coast of the Greek island of Antikythera using an Autonomous Underwater
Vehicle (AUV) equipped with a high-resolution stereo imaging system. The wreck,
first discovered in 1900, has yielded a wealth of important historical artefacts from
two previous interventions, including the renowned Antikythera mechanism. The
deployments described in this paper aimed to map the current state of the wreck
site prior to further excavation. Over the course of 10 days of operation, the AUV
completed multiple dives over the main wreck site and other nearby targets of inter-
est. This paper describes the motivation for returning to the wreck and producing a
detailed map, gives an overview of the techniques used for multi-session Simultane-
ous Localisation and Mapping (SLAM) to stitch data from two dives into a single,
composite map of the site and presents preliminary results of the mapping exercise.

1 Introduction

In September 2014 an expedition was mounted to revisit the site of a first century
BC shipwreck off the coast of the Greek island of Antikythera. The project began in
2013 with multibeam mapping and diver-based search of the site of the Antikythera
shipwreck in preparation for further excavation. The objective of this second phase of
the project was to produce a high-resolution, 3D map of the site using the Autonomous
Underwater Vehicle (AUV) Sirius operated by the University of Sydney’s Australian
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Fig. 1 The AUV Sirius conducting surveys over the wreck site on the coast of Antikythera, Greece.
This frame, extracted from a video (http://tinyurl.com/q7erkcv) of the vehicle surveying the wreck,
shows the footprint of the strobe on the seafloor as it travels down the slope above the wreck site
(credit: Phil Short)

Centre for Field Robotics (ACFR). Figure 1 shows the vehicle at work during one of
the deployments over the wreck site.

This paper outlines the AUV based mapping of the site. We describe the techni-
cal challenges that were addressed in order to facilitate this work and examine the
rationale for preliminary mapping of the site, showing how robotic systems are well
suited to the task of collecting data that can facilitate the documentation of the site
as a historical record prior to the commencement of excavation. We also present
preliminary outcomes of the surveys and examine how the resulting maps were used
to facilitate subsequent diving operations.

The remainder of this paper is organised as follows. Section 2 provides background
and an overview of the historical significance of the wreck site while Sect. 3 describes
the tools used to deliver geo-referenced benthic imagery and associated data products.
Section 4 presents results of the surveys conducted over a 10 day period during the
2014 field season and Sect. 5 presents concluding remarks and future directions for
this project.

2 The Antikythera Wreck

The Antikythera Shipwreck (circa 60–80 B.C.) is one of the richest ancient wrecks
ever discovered [1]. Greek sponge divers located the wreck on a rocky shelf at the
base of a cliff in a depth of approximately 55 m of water on the NE coast of the island
of Antikythera in 1900. They spent a year salvaging its treasures, with the help of the
Hellenic Navy, in the process recovering hundred of works of art including bronze
and marble statues that now fill galleries at the National Archaeological Museum

http://tinyurl.com/q7erkcv
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in Athens. The wreck also yielded the Antikythera Mechanism, a geared device
designed to calculate and display celestial information, including phases of the sun
and a luni-solar calendar [2]. This mechanism has fascinated historians for the quality
of the workmanship and the sophistication of the mechanism design which had to
capture the retro-grade motion of the planets and sun resulting from the fact that
the earth was considered to be the centre of the solar system at the time. Numerous
projects have sought to reproduce the workings of the mechanism over the years [3, 4]
to get a better understanding of this previously unknown mechanical system, which
has been described as one of the first known examples of an analog computer.

Undersea explorer Jacques Cousteau and the Calypso crew worked at the
Antikythera wreck site for several weeks in 1976, with the approval of the Ministry
of Culture. Cousteau and his team recovered numerous artefacts while documenting
their excavation as part of a television program following their expedition. As part
of their work, the team dredged a section of the wreck to reveal more artefacts for
the cameras.

Fig. 2 The location of the AUV based visual survey of the Antikythera wreck. The small island of
Antikythera is located between the larger islands of Crete to the SW and Kythera to the NW. The AUV
mission covered an area of approximately 70 m × 50 m at depths of 44–58 m on a shelf adjacent to
the coastline. The vehicle’s estimated trajectory during two dives is shown with the location of each
pose coloured by seafloor depth based on the vehicle’s depth sensor and altimeter measurements.
The underlying bathymetric map of the site was produced using ship-borne multibeam collected
during the 2013 field season
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In 2013 a team from the Hellenic Ministry of Culture and Sports, the Ephorate
of Underwater Antiquities and the Woods Hole Oceanographic Institution (WHOI)
returned to Antikythera to survey the island and map the site of the wreck. As part of
the expedition, divers conducted visual census of the site, in the process uncovering
what was thought to be a second, previously unknown wreck to the south of the
main wreck site. Figure 2 shows the location of the island in the Greek archipelago
and features a portion of the ship-borne multibeam map and the path of the AUV
used in this work to map the site. The decision was made to seek funding to support
further fieldwork in order to produce detailed maps of the wreck site and to conduct
excavation operations.

3 Wreck Survey Tools and Design

3.1 Autonomous Underwater Vehicles

AUVs have recently begun to play an increasingly important role in modern oceano-
graphic research. Tasks for which AUVs are suited range from deep water explo-
ration [5, 6] and monitoring of oceanographic phenomena to high-resolution optical
imaging [7–10] and multibeam surveying in deepwater applications [11, 12]. AUVs
are also being used to support a number of archaeological operations. Recent work
has demonstrated how AUVs equipped with imaging and multibeam systems can
be used to document wreck sites [13–15]. High-resolution imaging missions such
as that used by this work are typically flown at a relatively low altitude above the
seafloor, requiring hundreds or thousands of images to cover a site.

Our recent work has demonstrated the ability of benthic imaging AUVs to rapidly
and cost-effectively deliver high-resolution, accurately geo-referenced, and precisely
targeted optical and acoustic imagery [16–18]. We employ a visual Simultaneous
Localisation and Mapping (SLAM) algorithm to identify the loop closures and to
refine the vehicle’s estimated trajectory [19]. The estimated vehicle trajectory is then
used to generate a detailed, three dimensional, texture-mapped surface model of the
survey site [20].

3.2 The Sirius AUV

The primary requirement of this expedition was to produce a high-resolution,
3D model of the wreck site prior to the diving operations. We operate an ocean
going AUV called Sirius capable of undertaking the required high-resolution, geo-
referenced survey work [18]. This platform is a modified version of a mid-size robotic
vehicle called SeaBED built at the Woods Hole Oceanographic Institution [21]. This
class of AUV has been designed specifically for relatively low speed, high-resolution
imaging and is passively stable in pitch and roll. The submersible is equipped with
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a full suite of oceanographic sensors, including a high-resolution stereo imaging
system (2 x Prosilica GC1380 cameras) with synchronised LED strobes, multibeam
sonar, CTD, fluorometers and a comprehensive navigation suite [18].

3.2.1 Realtime Navigation

Our vehicle is equipped with a single band GPS receiver, a Doppler velocity log
(DVL), a depth sensor, a magnetic compass with integrated roll and pitch sensors and
an Ultra Short Baseline (USBL) Acoustic positioning system deployed by the support
vessel. The observations of velocity provided by the DVL are fused with observations
of attitude and depth using an Extended Kalman Filter [22]. The USBL observations,
consisting of range and bearing measurements between the vessel and the vehicle,
are collected on the surface and are sent together with the ship’s position and attitude
to the vehicle using the USBL’s acoustic modem. These observations are received
by the vehicle and fused into its onboard navigation filter. The heading reference
used is sensitive to the magnetic signature of the rest of the vehicle [23], which
can introduce distortions of several degrees into the heading estimate. Even when
soft and hard iron calibration are performed, persistent heading-dependent errors of
O(1 deg) are possible. While adequate to perform linear transects or broader acoustic
surveys (particularly when aided by acoustic positioning from LBL or USBL), the
magnitude of these errors makes an intended dense ‘mow the lawn’ pattern with
reciprocal, closely spaced, parallel tracklines difficult for the vehicle to complete.
We have recently shown that it is possible to derive a heading-dependent correction
to the magnetic compass using visual data and that this correction can enable a
compass-equipped AUV to perform dense visual coverage of a seafloor patch of
approximately 50 m × 75 m with 50 parallel tracklines [24]. This has resulted in a
navigation suite that is capable of meeting the requirements for full coverage survey
with narrow track spacing.

3.3 Simultaneous Localisation and Mapping

In order to generate accurate models of the seafloor, it is important that the estimated
vehicle trajectory is self-consistent with respect to the data being collected during
each survey. We employ visual Simultaneous Localisation and Mapping (SLAM) to
optimally fuse uncertain navigation estimates and visual observations [19, 25]. This
allows us to further refine the estimated vehicle trajectory using the environmental
data, including high-resolution imagery and multibeam sonar, collected during the
survey. Stereo cameras are capable of high-resolution observations such that if the
same scene is imaged from different positions, it is possible to determine the relative
poses of the cameras using observations of features in the scene. These constraints are
fused into the vehicle’s navigation solution to further refine the vehicle’s estimated
trajectory.
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Recently, a number of authors have considered the problem of multi-session
SLAM, in which data from multiple deployments of one or more robotic platforms
must be registered and fused together to produce a final map of the environment.
This has included multi-session SLAM work in terrestrial [26, 27], aerial [28] and
underwater [29, 30] environments. In cases where there is little change in the environ-
ment between deployments, it may be sufficient to simply re-initialise the estimated
vehicle location and to match features across deployments to allow this data to be
fused. In other cases in which there are more significant changes, such as one might
expect from deployments in different seasons or over longer periods of time, more
sophisticated methods have been proposed for robust place recognition [31].

In the case considered here, deployments were completed within a period of
approximately 10 days and results are shown from two dives completed two days
apart. Given the small amount of time between dives, standard feature-based visual
recognition was sufficient to identify matching features between subsequent dives
using techniques similar to those reported in [17].

3.4 Seafloor 3D Reconstruction and Visualization

Although SLAM recovers consistent estimates of the vehicle trajectory, the estimated
vehicle poses themselves do not provide a representation of the environment suitable
for human interpretation. A typical dive will yield several thousand geo-referenced
overlapping stereo pairs. While useful in themselves, single images make it difficult
to appreciate spatial features and patterns at larger scales. We have developed a
suite of tools to combine the SLAM trajectory estimates with the stereo image pairs
to generate 3D meshes and place them in a common reference frame [20]. These
meshes are generated once the vehicle is recovered and take on the order of the same
amount of time to compute as the length of the dive allowing dive outcomes to be
examined while still at a site. The resulting composite mesh allows a user to quickly
and easily interact with the data while choosing the scale and viewpoint suitable for
the investigation. In contrast to more conventional photomosaicking approaches [32,
33], the full three dimensional spatial relationships within the data are preserved and
users can move from a high level view of the environment down to very detailed
investigation of individual images and features of interest within them. This is a
useful data exploration tool for the end user to examine the survey area.

3.5 Survey Design

As outlined above, the objective of the missions reported on in this paper were to
produce a full coverage, texture-mapped 3D map of the wreck site using the vehicle’s
high-resolution stereo imaging system. Bathymetric data from the 2013 campaign
and markers surveyed in by divers provided information with which to plan the dives
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over the wreck site. The AUV, which is capable of hovering and turning on the spot
using a pair of lateral thrusters at the rear of the vehicle, was programmed with a
mission consisting of four legs across the site spaced approximately 12.5 m apart
followed by a dense grid survey consisting of 51 parallel tracklines, each 70 m long,
spaced by 1.0 m covering the site. The initial track lines serve as candidate across-
track loop closure points while the trackline spacing of the dense grid is selected to
yield sufficient overlap between adjacent legs to ensure along-track loop closures are
also found.

4 Results

During the Antikythera dives presented here, the vehicle completed 2 full coverage
dives over the site from which data was used to generate the final site maps. The
estimated pose of each stereo pair is plotted in Fig. 2, with the symbols coloured by
estimated seafloor depth based on combining the vehicle’s depth sensor and altimeter
measurements. The underlying multibeam map shows the complex structure of the
site and the proximity of the dives to the coastline.

For this particular survey, we employed two dives completed over the main wreck
site. The site is at the base of a steep cliff in approximately 50 m of water, extending
out across a 60 m wide shelf which then drops down to 75 m of water depth. There
are a number of large boulders in the middle of the site and the north west side of
the survey area comprised a dense boulder field at the base of a cliff, presenting a
challenging environment in which to conduct near-bottom survey operations. During
the first deployment the vehicle was programmed to maintain an altitude of 2 m above
the seafloor while travelling at a speed of 0.5 m/s and capturing stereo images at 1 Hz.
With a field of view of approximately 42× 34 degrees, this yields an image footprint
of approximately 1.5 m× 1.2 m and ensures an overlap of approximately 2/3 between
frames along track and 1/3 across track.

The rough terrain and large obstacles caused the vehicle’s altitude controller to
struggle to maintain a constant height above the seafloor throughout the dive, despite
it slowing down as forward obstacles were approached. This resulted in gaps in
some portions of the vehicle’s trajectory as a lower altitude results in a narrower
image footprint on the ground. The tuning of the altitude controller was adjusted and
subsequent missions were flown at a higher altitude of 3 m to ensure full coverage of
the survey site, thereby increasing the footprint of the images and facilitating obstacle
avoidance over the rough terrain and large boulders in the survey site. The image
framerate was also increased to 1.5 Hz to increase the along track overlap between
images. This increased altitude and imaging rate increased the overlap both along
and across track, resulting in significantly more loop closures as shown below.
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4.1 Multi-session SLAM

In order to produce a complete map of the area, the two surveys were combined using
our multi-session SLAM tool. Each dive is initialised independently using the GPS
and USBL data available to the vehicle. This is sufficient to georeference the mission
data to within 2–3 m between dives. However, finescale registration requires matching
features between dives to co-register the dives. This step is performed automatically
by matching SIFT features in a manner identical to that used for identifying loop
closures from within a single dive. Figure 3 shows the result of the use of multi-
session SLAM to fuse data from two dives completed over the wreck site. The figure
shows the estimated vehicle trajectories for the two dives, as well as the combined
estimates of the two dives. We use the terminology adopted from [27], designating
loop closures from a single dive as ‘intra-session’ loop closures and loop closures
between dives as ‘inter-session’ loop closures.

Table 1 presents statistics of the two dives, including the dive times, number of
individual stereo pairs and loop closures identified within and between dives. As
can be seen, both dives took just under two hours to complete. The second dive,
completed at a higher altitude and with a higher framerate, resulted in significantly
more loop closures and, as can be seen, there are a large number of inter-session loop
closures that serve to co-register the dives.

4.2 Three Dimensional Surface Model

Sample reconstructions produced using data collected during the AUV surveys con-
ducted on the Antikythera site are shown in Fig. 4. While it is possible to examine
the individual images that were used to generate these 3D surface models, the spatial
structure of the site is more evident in the composite mesh. Figure 5 shows examples
of details from the 3D surface model, highlighting historical artefacts of interest that
were visible in the model.

Table 1 Multi-session Dive statistics

Mission time Dive A 1:49

Mission time Dive B 1:57

Dive A stereo pairs 6,565

Dive B stereo pairs 10,554

Total stereo pairs 17,119

Dive A intra-session loop closures 32,098

Dive B intra-session loop closures 162,778

Inter-session loop closures 149,386

Total loop closures 344,262
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Texture mapped model

3D Structure

Fig. 4 a The final texture mapped model of the site is generated by blending the imagery collected
by the vehicle to produce a seamless texturemap which is draped over the 3D surface model. b The
underlying 3D structure of the site reveals the base of the cliff to the SW and several large boulders
around which artefacts, including the ship’s anchor, amphorae, pottery sherds and a 2 m long bronze
spear, were located
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Amphora Anchor Stock

Pottery Sherds

Fig. 5 Examples of the detail of the 3D texture mapped surface model including a an Amphora, b
one of the ship’s lead anchor stocks and c pottery sherds, possibly left after the Cousteau excavation
in 1976

4.3 Diver Aiding

Many remaining artefacts from the wreck are thought to be buried under sediment. As
part of the 2014 expedition, divers conducted surveys of the site using underwater
metal detectors to identify buried metal objects. Figure 6 shows the project team
(a) using a 3 m × 2 m printout of the AUV derived maps to plan dives and (b) on-site
with the metal detectors and recovered artefacts. They used laminated copies of the
AUV generated maps to help with in situ identification of the location of potential
excavation sites. During the 2014 field season, the vessel’s anchor stock, a number
of small artefacts and a 2 m bronze spear were recovered.
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Planning dives Exploring the wreck

Fig. 6 a The AUV based maps were used to plan dives using both a large, wall-mounted printout
as well as GIS systems. b Divers carried small versions of the map to orient themselves on the site.
They conducted a visual census and used metal detectors to search for buried artefacts

5 Conclusions and Future Work

This paper has described an expedition to document the site of a first century B.C.
wreck on the coast of the island of Antikythera, Greece. We conducted multiple dives
using an AUV to collect tens of thousands of stereo images with which to build a
detailed model of the wreck site prior to the commencement of excavation. A multi-
session SLAM technique was used to fuse data from multiple dives into a single,
detailed model of the site. The resulting maps were used by divers to help with in
situ survey of the site and to document the resulting finds.

The ability to quickly and automatically generate detailed, texture-mapped 3D
models of the site were instrumental in assessing the quality of the maps while in the
field and in facilitating subsequent diving operations. Combining data from multiple
dives allowed us to generate a full coverage site map. We were also able to update the
vehicle’s obstacle avoidance behaviour and mission parameters, including standoff
altitude and imaging rate, to ensure full coverage and to avoid some of the more
challenging areas of the terrain.

While this first year of AUV surveys was a success, with the production of a
detailed site map and exploration of a number of other areas of interest, adverse
weather limited the number of days for the archaeological dive team. However, the
surveying they were able to complete revealed prospective targets both within the
extent of the area surveyed by the AUV as well as immediately to the south. A
potential second wreck site was also confirmed a few hundred metres to the south.
Future expeditions will seek to map areas to the south of the mapped area and
to conduct a more systematic metal detection survey to help identify prospective
excavation targets. More extensive excavation operations are also planned for the
2015 field season.
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Abstract The inaugural RobotX competition was held in Singapore in Oct. 2014.
The purpose of the competition was to challenge teams to develop new strategies
for tackling unique and important problems in marine robotics. The joint team from
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of 15 competing teams from five nations (USA, South Korea, Japan, Singapore and
Australia). The team received the surface vehicle platform, the WAM-V (Fig. 1)
in Nov. 2013 and spent a year building the propulsion, electronic, sensing, and
algorithmic capabilities required to complete the five tasks that included naviga-
tion, underwater pinger localization, docking, light sequence detection, and obstacle
avoidance. Ultimately the MIT/Olin team narrowly won first place in a competitive
field. This paper summarizes our approach to the tasks, as well as some lessons
learned in the process. As a result of the competition, we have developed a new suite
of open-source tools for feature detection and tracking, realtime shape detection from
imagery, bearing-only target localization, and obstacle avoidance.

1 Introduction

The inaugural RobotX competition, hosted by the association for unmanned vehicle
systems international (AUVSI) Foundation, was held in Singapore in October 2014.
The motivation for the competition was to increase the capabilities of marine vehicle
systems to perform commercial tasks and operate in the vast and challenging ocean
environment. Much larger in scope than previous competitions, such as RoboBoat
and RoboSub, this was the largest autonomous surface vehicle (ASV) competition
ever held. In total 15 teams competed from five different countries (USA, South
Korea, Singapore, Australia, and Japan). Each of the 15 teams were provided with
an identical platform, shown in Fig. 2, and were responsible for equipping it with
sensors, propulsion, electrical systems, and onboard autonomy to achieve the tasks.1

The competition consisted of five tasks:

• Task 1: Navigate through two sets of colored buoy gates;
• Task 2: Report the location of an underwater pinger and also the color of the closest
buoy to the pinger;

• Task 3: Identify the correct docking location based on a placard on the seawall and
then subsequently dock;

• Task 4: Find a buoy that is emitting an LED light pattern and then report the light
pattern;

• Task 5: Enter an obstacle field through a buoy gate (specified by color) and then
navigate through a densely cluttered field of obstacles, and finally exit through the
specified gate.

Each task had a unique scoring system and the sum of all task points was used to
rank teams. After three qualification days, the top six ranked teams advanced to the
finals. In the finals, the points accumulated in the last attempted run were used.

In this paper we summarize our approach to each of the five tasks. These required
basic capabilities such as object detection and autonomy, as well as task-specific

1See http://robotx.mit.edu for more details and updates.

http://robotx.mit.edu
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Fig. 1 The WAM-V [7] on the water in Singapore at the RobotX competition

Fig. 2 The “WAM-V” ASV
platform used in the
competition. Sensor payload
includes: GPS (green), 3D
laser scanner (yellow),
camera (pink), and sonar
transducer and mount (blue)

capabilities such as pattern recognition and acoustic target localization. The remain-
der of the paper is structured as follows: In Sect. 2, we detail our laser/vision based
approach to object detection and tracking for navigation tasks (required for Task 1,
2, 4, and 5). In Sect. 3, we discuss our approach to specific vision-based pattern iden-
tification tasks (Task 3 and 4). In Sect. 4, we present the particle-filter based acoustic
localization system (Task 2). In Sect. 5, we present an overview of our approach
to autonomy and control based on behavior-based multi-objective optimization. In
Sect. 6, we provide some details about the choice of hardware used. Finally we pro-
vide some of the competition results in Sect. 7 and some conclusions in Sect. 8.

2 Object Detection, Tracking, and Classification

A prerequisite for Tasks 1, 2, 4, and 5 is to be able to detect and track objects floating
on the water surface. Above-water perception onboard the vehicle was achieved
through a combination of 3D laser and vision. Laser-based sensing was particularly
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effective in this case since the water surface only produced weak returns that could
be easily removed through laser intensity filtering, leaving only solid objects such as
buoys.

Algorithm 1 Object Detection and Tracking
Input: Laser scan
Output: Feature List
1: Cull points outside of desired sector
2: Downsample to voxel grid
3: Euclidean clustering
4: Update the persistent cluster list
5: Transform persistent features to world frame
6: Try to assign feature color through image sub-windowing
7: Associate features and update tracked feature list

Since laser provides limited color information, object detections were fed to a
vision system for classification. An overview of the approach is summarized in
Algorithm 1.

2.1 Laser-Based Feature Detection

Each point in the laser scan, p = {r, φ, θ, I }, is a tuple consisting of a range r , an
azimuth φ, an elevation θ , and an intensity I . One scan of laser data consists of a
collection of N points P = {pi }i=1...N . The points are first culled using thresholds
for minimum and maximum range and azimuth, as well as minimum intensity:

Pc = {pi |rmin < ri < rmax , φmin < φi < φmax , Imin < Ii }. (1)

These points are then downsampled using a voxel grid and ordered into clusters,
C = {C j } j=1...J , C j = {P j , μ j }, where P j and μ j are the set of points and centroid
of cluster j respectively. We wish to be able to detect buoys at the maximum possible
range, at which point there may be only one or two returns from a buoy. In order to
mitigate the impact of false returns while still being able to track small features at
long distances, we use a temporal persistence filter. A persistent cluster list, C pcl =
{C , K }, is maintained, where K is the “lifetime” of the cluster. As a new set of
clusters arrives at time k, they are fused with the persistent cluster list. For each new
cluster, if its centroid, μ, is within ε of one of the centroids of the clusters in C pcl ,
then the associated cluster’s lifetime is incremented, otherwise the cluster is added to
the persistent cluster list with a lifetime of K = 1. A laser scan and associated camera
image are shown in Fig. 3. This particular snapshot is from the obstacle avoidance
task. In this case there are four persistent features.

The set of persistent clusters with a lifetime larger than Kmin are deemed to be
active objects in the world and are transformed to world coordinates and added as
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Fig. 3 Object detection from point cloud. Top Point cloud from 3D laser with buoys identified.
Bottom Corresponding image from camera used for buoy color detection

features, f :
f j = T w

l μ j (2)

where the transformation T w
l transforms the centroid of the cluster in the laser frame

to a point in the global frame. This feature is rejected if it is outside of course
boundaries.

In order to compute T w
l we directly used the output from our GPS sensor, which

provided a stable pose estimate in practice. Nevertheless, a more reliable approach
would be to implement a full SLAM system, or use some other form of marine
vehicle navigation [11].

2.2 Buoy Detection

Each reception of an object detection from the laser triggers an attempt to classify
the color of the object. The feature location is back-projected into the camera frame
to try and identify color [5]:

[
l j
u l j

v 1
]T = K

[
l j
x

l j
z

l j
y

z j
l

1
]T

, (3)

where (l j
u , l j

v ) and (l j
x , l j

y , l j
z ) are the locations of the feature in pixel and world

coordinates respectively, and K is the camera calibration matrix. A sub-windowed
image around around the landmark pixel location is created, which is then subjected
to a series of thresholding operations in the hue-saturation-value (HSV) color space.



66 A. Anderson et al.

Fig. 4 Left Sub-windowed
image from camera. Right
Output from “red” color
segmentation filter

Using the HSV colorspace is beneficial for color detection in images because it is
less sensitive to lighting conditions as the majority of the color information should
be contained within the hue channel and the aggressive sub-windowing was found
to be critical to avoid false detections.

Figure4 shows a sub-windowed image from one of the test trials as well as the
output of the red filter showing correct color identification.

2.3 Feature Association

We use a simple nearest neighbor [1] approach to associate features. If an incoming
feature is at location l j then the feature is associated to feature i if two conditions
are met:

li = argmin
l∈L

||l − l j ||
dmin < ||l − l j ||

(4)

We refer to these associated features as “tracked features” Lm = {l1...|m|, c1...|m|}
where |m| is the number of times that tracked feature Lm has been detected and the
c values corresponds to the color decisions made for each detection. The final set of
M distinct tracked featuresL = {Lm}m=1...M are used by the control and autonomy
system (Sect. 5) to complete the specific tasks.
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3 Pattern Identification

Pattern recognition was a required capability for two tasks. The first was Task 3
where a spatial pattern, either a cross, circle, or triangle, was used to identify the
correct bay for docking. The second was Task 4 which required the identification
of a temporal pattern. In both cases, aggressive sub-windowing in the image was
performed to guide the visual search and decrease false positives while maintaining
low computation.

3.1 Placard Detection for Docking

The key objectives for our placard detector were:

1. Robustness to degradation caused bymotion, scale andperspective transformation
fromdifferent viewing positions, warp and occlusion caused bywind, and variants
of color from light condition, and

2. Speed and accuracy to support real-time decision-making.

We tackle this problem by using two-step pipeline. First, a detection phase identi-
fies candidate regions and we subsequently process each region in a decoding stage
to see if it matches any of the three placards.

Detection

To minimize unnecessary computation and to avoid looking for placards in nearly
empty image regions, in the first stage we extract candidate regions using Extremal
Regions (ERs) [9]. An ER is a region R whose outer boundary pixels ∂ R have strictly
higher values in the intensity channel C than the region R itself, i.e., ∀p ∈ R, q ∈
∂ R : C(p) < θ < C(q), where θ is the threshold of the ER. Let a grayscale input
frame I be a mapping I : D ⊂ R → {0, . . . , 255}. Rb and Rw donate the sets of
detected ERs from I and inverted I, respectively. We extracted features F for each
region in Rb and Rw, and then filter according to size, aspect ratio, and number of
holes. We observed that a placard is designed as a black symbol on a white board.
The set of candidate regions Rc ⊂ Rb is formed when a region rb in Rb satisfies
rb ∩ rw = rb, as well as certain conditions on relative size, location, and intensity
of rb and rw, where rw ∈ Rw. Imposing such constraints drastically reduced false
positives, and typically only the black symbols on placards are detected.

Decoding

In the decoding stage, we desired very high precision at the expense of recall since
occasional missed detections are tolerable but false positives will cause significant
problems. During the competition the system needed to be able to adapt quickly
and there were only limited training examples of placards available. We set up one
template for each of circle, triangle, and cross, and match a candidate region rc ∈ Rc

to one of the placards, when the number of good matching keypoints is higher than
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Fig. 5 Placard feature detection. The three correctly detected placards are circled in blue, red, and
green

a threshold. SIFT [6] and FAST [12] keypoints and SIFT descriptors are appealing
choices to distinguish each placard. For example, the cross contains many SIFT
keypoints, typically corners surrounded by gradients, and triangle contains FAST
keypoints (typically “sharp” corners), where a a pixel p has contiguous n pixels in
the circle around p brighter or darker. Figure5 demonstrates the decoded candidate
regions shown with blue, red, and green circles. The computation runs at two frames
per second for an image resolution of 1280 × 720 pixels.

3.2 Light Buoy Sequence Detection

The light buoy color sequence consists of an LED panel mounted on top of a buoy
that emits a sequence of three colors (each for half a second), followed by a two
second break. Detection of color on the LED is done with a similar process as for the
buoy color detection (Sect. 2.2) except that there is an added temporal component
required to detect the sequence. An overview of the approach is given in Algorithm 2.
An example of a sequence being detected is shown in Fig. 6.

Fig. 6 Light tower sequence detection
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Algorithm 2 Light Buoy Sequence Detection
Input: Video stream
Output: Light sequence Φ

1: Φ ← ∅
2: Wait until first detection is made
3: Wait until no detection is found for 2 seconds
4: while |Φ| < 3 do
5: C ← color detected in image
6: if C 	= last entry in Φ then
7: Φ ← Φ

⋃
C

8: end if
9: if No Detection then
10: Return to Step 3
11: end if
12: end while

This system requires the light buoy to be within the field of view of the camera
for minimum of four seconds (the end a sequence and then one full sequence). If
no detections are being made the segmentation thresholds are adapted automatically
to be more admissive. Similarly, if the pause in the sequence is never being found
(caused by false detections) then the thresholds are adaptively made more restrictive.

4 Acoustic Sensing

The process of localizing the pinger in Task 2 had two main components: First,
relative bearing measurements are obtained from processing the signals received at
the hydrophone. Second, subsequent bearing measurements are combined with a
particle filter to yield a final estimate of the pinger location.

4.1 Relative Bearing Measurements

The acoustic system consisted of a 4-element hydrophone phased array, a custom
amplification and filtering board (AFB), a data acquisition board (DAB), and a com-
puter. The phased array was assembled into a ‘T’ shape (see Fig. 7) with uniform
element spacing d = 1.9cm. This formed two sub-arrays, one horizontal for use
in bearing estimation and one vertical for use in elevation estimation. The signal
from each hydrophone channel passed through a 10kHz Sallen-key high-pass filter,
a 2x amplifier, and then a 50kHz Sallen-key low-pass filter on the AFB [13]. The
resulting signal was converted to digital by the DAB and used to determine pinger
location from four channels of hydrophone data. First, matched filtering on the first
acoustic channel was used to identify if a ping of the correct frequency occurred [10].
Conventional (delay-and-sum) beamforming was applied to the array data, and the
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Fig. 7 “T”-shaped acoustic
array

maximum value in the beampattern was used to determine bearing to the pinger [14].
Let z represent the direction along the array. The discrete array has elements at loca-
tions z = [−d, 0, d]. The goal of beamforming is to find the angle of incidence, θ0, of
the signal from a pinger with frequency f0. This gives a wavenumber k0 = 2π f0/c.
The z-component of the wavenumber can be expressed in terms of ‘look’ direction
θ :

kz = k0 cos θ. (5)

This component of the wavenumber is used to calculate the delay vector v:

v(θ) = e− jzkz . (6)

Delay-and-sum beamforming [14] is then applied by first multiplying the snapshot
time series, x = [x1, x2, x3], with the delay vector and then taking the Fourier trans-
form:

Y = F (xv′). (7)

The beampattern function at look angle θ is the value of Y at frequency f0,
B(θ) = Y( f0). The bearing to the pinger of frequency f0 is the look angle that
results in the maximum for the beampattern:

θ0 = argmax
θ

‖B(θ)‖ (8)

A similar process was used to determine the pinger elevation angle: conventional
beamforming was applied to the vertical array (elements 1 and 3) and the beam-
forming angle with the maximum response identified as the elevation angle of the
pinger.
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4.2 Particle Filter Pinger Localization

The estimated elevation and bearing angles reported by the hydrophone system were
used by a particle filter [8] to estimate the possible pinger location. An overview of
the method is illustrated in Fig. 8. When the first relative bearing measurement is
received, the particles are initialized uniformly along the portion of the bearing line
that falls within the task boundary.

When the second and subsequent bearingmeasurements are received, the particles
are each given a weight based on their proximity to the new bearing line based on
the following equation:

wt
i = wt−1

i

p(r t
i |ζ t

i )p(ζ t
i |ζ t−1

i )

q(ζ t
i |ζ 0:t

i , r t
i )

(9)

where ζ t
i is the xy-positon of particle i at time t , and r t

i is the orthogonal distance from
the particle position, ζ t

i , to the line anchored at the current vehicle position, xt , yt

with slope corresponding to the bearing measurement, θ0 calculated in (8). If we set
the transition prior p(ζ t

i |ζ t−1
i ) equal to the importance function q(ζ t

i |ζ 0:t
i , rt ) [8], and

assume a normal distribution for p(r t
i |ζ t

i ), we can simplify (9) to:
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√
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i )

2
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Finally, we use sequential importance resampling to avoid particle depletion. This
involves a check to determine if the effective number of particles Nef f has fallen

Fig. 8 Particle Filter Localization. Left The particles are initialized after the first bearing line is
received.MiddleAsmore bearings are received, the particles begin to localize on the pinger location.
Right After more information is received the particles converge on a single point
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below a threshold Nthreshold . The effective number of particles is:

Nef f = 1
∑N

i=1(w
2
i )

(11)

where N is the total number of particles. The best guess for the pinger location at
any given time is computed is the average location of the particles.

5 Autonomy and Control

The operation of the vehicle is broadly characterized into two modes: (1) Autonomy,
which is used for moving the boat around and avoiding obstacles, and (2) Observa-
tion, which is used for keeping the vehicle’s sensors pointed in a specific direction.

5.1 Autonomy

In autonomy mode, the vehicle has to balance different objectives, such as transit-
ing to a goal point while avoiding obstacles. This balance is achieved using multi-
objective optimization with interval programming (IvP), [3, 4], where each goal is
represented by a piecewise linearly-defined objective function for evaluation in con-
junction with all other active objective functions. The optimization engine on-board
the ASV considers and solves for the resultant maneuver (ordered course, speed)
using

−→
x∗ = argmax

−→x

k∑

i=1

(wi · fi (
−→x )) (12)

where each fi (x1, . . . , xn) is an objective function for the i th of k active goal, and
the weights, wi are used to prioritize the different objectives.

An overview of the control methodology in the autonomymode is shown in Fig. 9.
The outer loop desired heading and speed values are generated by the IvPHelmwhich
operates within themission oriented operating suite (MOOS) environment [2]. In our
case, each feature outputted by the feature tracker (described in Sect. 2) is treated as an
obstacle and spawns a new obstacle avoidance behavior. These avoidance behaviors
(“Avoid 1” to “Avoid N” in Fig. 9) are then used to prioritize actions that move the
vehicle away from obstacles. These are weighed with a waypoint behavior that is
used to steer the vehicle towards the desired goal.
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Fig. 9 Control system used in autonomy mode. Behaviors in the IvP Helm generate objective
functions which are weighed at runtime to determine a best choice desired heading and speed.
These values are tracked by an inner loop PID controller

5.1.1 The Obstacle Manager

The association of features is performed by the feature tracker that processes the
clustered output from the laser. Due to noise in the system, as well as the fact that
features (such as buoys) may be actually moving on the water surface, the reported
locations of features can be variable. To be conservative, we track the history of
reported feature locations and avoid all of them.

This is done in the obstacle manager by tracking all reported locations for a given
feature, and then defining a convex hull for each feature as shown in Fig. 10.

The obstacle manager reports the convex hulls as polygons to the IvP Helm. The
IvPHelm is configured with an obstacle avoidance behavior template that will spawn
a new behavior with each new obstacle ID that is received and subsequent updates
from the obstacle manager may change the shape of the polygon representing the
obstacle. In Fig. 11, the vehicle is transiting through an obstacle field in a qualification
run where four of the obstacles are “active” (generating objective functions) and they
are shown in the figure as filled in polygons. An additional buffer is added around
each obstacle but if necessary this buffer is shrunk for the vehicle to be able to fit
through tight spaces. The collective objective function (Fig. 11-right) is the sum of
the waypoint behavior and the four active obstacle avoidance behaviors. In the figure,
colors closer to red are higher utility and closer to blue are worse. The angles on
the circle denote desired headings (in the same reference frame as the picture on the
right) and distance from the center of the circle denotes desired speed. The pink dot
in the figure is the outputted desired heading and speed.
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Fig. 10 Conversion of feature locations to convex hull: As new points (features) arrive, the convex
hull is incrementally updated

5.2 Observation

For observations required in Tasks 2, 3, and 4, we developed a control mode that
bypasses the IvP Helm and directly maintains a certain observation point within
the field of view of the sensor. In this mode, the desired heading is generated by
comparing the actual robot pose (observed through GPS and compass sensors) and
the heading required to maintain the observation point in the field of view (Fig. 12).
This value is computed in the “Pose Keeping” block (Fig. 13).

6 Hardware Setup

The platform base of the vehicle provided to the team was the WAM-V [7], which
is a 13-foot, double-pontooned hull with a dynamic suspension system that supports
a platform for the vehicle’s sensors and electronic components above. The custom-
designed power and propulsion system consisted of two Torqeedo Power 26–104
batteries, which rested at the back of the pontoons and powered two Riptide Tran-
som 80 saltwater transom mount trolling motors. The vehicle was steered using a
differential drive paradigm through a Roboteq VDC2450 motor controller. The bat-
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Fig. 11 Left The ASV navigating through a field of obstacles. The filled polygons are currently
active and generating objecting functions. Right A color plot showing the sum of all objective
functions where redder colors are higher utility and bluer colors are lower utility. Vehicle not
to scale

Fig. 12 Control system for maintaining observation of a fixed point. The pose keeping block is
used to generate the reference heading and error is minimized through feedback PID control loop
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Fig. 13 Pose Keeping: A vehicle with differential thrust applies opposing thrust of equivalent
magnitude to turn a vehicle in place until it achieves a desired hold_heading, with a given
hold_tolerance

teries had enough capacity to last all day, and the motors provided enough thrust to
be practical and proved easy for folding and stowage.

The vehicle had four computers on board: two Portwell NANO-6060’s and two
Intel NUC kits, which were configured to be used interchangeably. These computers
provided the processing power to process the sensor data from the laser, run the
autonomy system, and also communicate with a shoreside computer through a WiFi
antenna. The system received location and heading data from a Vector V102 GPS
system, and the acoustic data was processed on a PC-104 stack, both of which talked
directly to the four main computers. This system was powered by a lead-acid battery,
separate from the propulsion power system.

An emergency stop system was designed to sit between the vehicle’s computers
and the motor controller.

The emergency stop system can communicate directly to an operator control unit
(OCU) box, which allowed a human operator to override the autonomy system at
any point in time with manual control. Arduino microcontrollers using Xbee radios
communicating over a 2.4GHz signal were used. In addition, another layer of safety
was designed by tying a pair of on-board emergency stop buttons directly into the
motor controller. The whole emergency stop system had its own separate power
source, for an added level of safety. An overview of all of the hardware components
and connections is shown in Fig. 14.

7 Results and Discussion

Asnapshot of the vehicle performing each task is shown in the left column of Fig. 15.2

On the right column is a task-specific snapshot built from the data collected. For Task
1 (top), the figure shows the navigation through the buoys. We were able to reliably

2A video of our qualification and final has been made available (http://robotx.mit.edu/fsr_video).

http://robotx.mit.edu/fsr_video
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Fig. 14 RobotX hardware system layout and connections

achieve this task throughout. For Task 2 (second row) we show the output of the
particle filter as well as the last bearing generated. Row three shows the docking
task. Our feature detection based on the method in Sect. 3 was reliable. The fourth
row shows the light buoy sequence detection. This was perhaps the most challenging
task since it involved color detection in variable light conditions. Additionally, the
colorful background enhanced the probability of false detection. The final task was
obstacle avoidance. The feature detection and tracking system was reliable, but the
overall system had some latency issues as described below.
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Fig. 15 Left column snapshots of the WAM-V robot performing each of the five tasks (Task 1 at
top to Task 5 at bottom). Right column Row one, two and five snapshots from the pMarineViewer
[2]. Row three and four show processed snapshots from the camera onboard
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Table 1 RobotX final
rankings

1 MIT/Olin (USA)

2 KAIST (South Korea)

3 Queensland University of Technology (Australia)

4 Embry-Riddle Aeronautical University (USA)

5 National University of Singapore (Singapore)

6 Osaka University (Japan)

7.1 What Went Wrong—Lessons Learned

We were able to successfully complete all the tasks successfully in qualifications.
However, a fewmishaps prevented us from completing each task on the final run. Due
to time constraints, we reduced the amount of time that wewouldwait for the acoustic
system to process data, and therefore only received two bearing measurements. This
gave us partial points for identifying the color of the closest buoy but not the exact
pinger location.On the docking task,wewere able to correctly identify the “CIRCLE”
placard which was designated at the start of the run, but our right pontoon caught the
edge of the dock. This was likely due to incorrect extrinsic calibration of our camera
system. At the last second before the final run, we decided to add functionality such
that if the light buoy sequence was not determined before a timeout was reached,
then we would move on to the final task and at least take a guess.

Unfortunately, we inputted the incorrect task number and this forced a guess to
be reported when we entered Task 4 (the light buoy observation task), so as a result
a guess was reported after docking even though post-processing of the camera data
determined that we would have reported a correct sequence. This last-minute change
deviated from our typically methodical approach to simulating and testing all code
changes prior to deployment and really reinforced that if there is insufficient time to
test a modification before deployment then it simply should not be made. We also
struck a buoy in the obstacle field. It was later determined that this was due to a delay
in our obstacle managing system. Although the buoy had been correctly detected, the
behavior necessary to avoid it was not spawned in time to avoid collision. Despite
these errors, we accumulated the highest point total in the final round. The final
rankings are shown in Table1.

8 Conclusion

This paper outlines the MIT/Olin team’s approach and performance in the inaugural
AUVSI RobotX competition. In the competition, each of the fifteen teams were
provided with an identical marine vehicle frame and were responsible for building
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the propulsion, electronic, sensing, and autonomy systems required to complete a
series of five tasks. Ultimately, the MIT/Olin team narrowly won first place in a very
competitive field. The team’s codebase and data are publicly available.
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A Parameterized Geometric Magnetic Field
Calibration Method for Vehicles with Moving
Masses with Applications to Underwater
Gliders

Brian Claus and Ralf Bachmayer

Abstract The accuracy of magnetic measurements performed by autonomous vehi-
cles is often limited by the presence of moving ferrous masses. This work proposes
a third order parameterized ellipsoid calibration method for magnetic measurements
in the sensor frame. In this manner the ellipsoidal calibration coefficients are depen-
dent on the locations of the moving masses. The parameterized calibration method is
evaluated through field trials with an autonomous underwater glider equipped with
a low power precision fluxgate sensor. These field trials were performed in the East
Arm of Bonne Bay, Newfoundland in December of 2013. During these trials a series
of calibration profileswith themass shifting and ballastmechanisms at different loca-
tions were performed before and after the survey portion of the trials. The nominal
ellipsoidal coefficients were extracted using the full set of measurements from a set
of calibration profiles and used as the initial conditions for the third order polynomi-
als. These polynomials were then optimized using a gradient descent solver resulting
in a RMS error between the calibration measurements and the local total field of 28
and 17nT for the first and second set of calibration runs. When the parameterized
coefficients are used to correct the magnetic measurements from the survey portion
of the field trials the RMS error between the survey measurements and the local total
field was 124 and 69nT when using the first and second set of coefficients.

1 Introduction

The use of underwater vehicles as a platform for oceanic research is an excellent
way to collect high quality data in a challenging environment. Long range AUVs,
capable of travelling thousands of kilometers before needing to be recovered are
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recently the focus of significant interest [3, 10]. Underwater gliders are a type of
long range underwater vehicle, however, they require surface access for navigation,
have limited speed and require vertical translation for forward movement [14]. For
these vehicles minimizing energy consumption is one of the primary design and
operational goals.

The use of magnetic field measurements as a heading reference for navigation
in underwater vehicles has been well established [8]. In recent work earth magnetic
information has also been suggested for possible use in total-field map based rel-
ative navigation techniques [7, 16]. This use of magnetic measurements for online
navigational aiding is the motivation for this research. In such a system, magnetic
measurements are capable of augmenting a terrain relative navigation scheme in
regions of low terrain variability or when the terrain is beyond the range of the
vehicle’s acoustic sensors. However, an online implementation of a magnetic aided
navigation system has not been realized. This lack of progress has been limited by the
challenges involved in instrumenting and calibrating an underwater vehicle for accu-
rate online magnetic measurements and the lack of suitably high resolution magnetic
maps.

Scalar calibration of vector magnetometers has shown to be a robust method of
calibration based on a geometric fit to an ellipsoid [2, 13, 17]. Another method relies
on projecting the measurement vector onto the horizontal plane and fitting an ellipse
[6, 9]. Of these methods, the second is more suited to vehicles which have limita-
tions in the controllable degrees of freedom such as an underwater glider. However,
it requires a precision attitude reference to rotate the magnetic measurements to the
horizontal plane which is infeasible on an underwater glider due to their relatively
large energy consumption. Additionally, long range underwater vehicles, and under-
water gliders in particular, require additional effort to calibrate the magnetic field
measurements. This extra effort is due to the use of an adjustable internal mass for
attitude control which is typically composed of a battery pack and therefore includes
hard and soft magnetic materials.

As a step towards a real time total field magnetically aided navigation system
this work examines suitable methods for calibrating, instrumenting and performing
magnetic measurements with an underwater glider. The variable locations of the
mass shifting and ballast mechanisms on the underwater glider provide an additional
challenge for calibrating themagneticmeasurement system.As such, a parameterized
calibration method is presented which fits polynomial functions to the calibration
parameters based on the actuator locations. To this end the theory for a nominal
geometric calibration and a parameterized geometric calibration method is presented
and the underwater glider equipped with the magnetic instrumentation developed for
this work is introduced. Lastly, the calibration procedures are demonstrated on field
data gathered using the underwater glider during trials in the East Arm of Bonne
Bay. The calibrated data are compared with magnetic anomaly models produced
from prior aeromagnetic surveys of the region.
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2 Calibration Methods

Measurements of the earth’s magnetic field must be calibrated in order to remove the
effects of the sensing platform. These effects can be due to instrument non-linearities
as well as hard and soft magnetic effects.

2.1 Nominal Geometric Calibration

If the moving masses in the vehicle are held stationary the hard and soft magnetic
effects from the vehicle as well as scaling, bias and other instrument errors may be
calibrated for using geometric batch methods [2, 13, 17]. These methods assume a
constant magnetic field and rely on rotations of the instrument through the calibration
space such that an ellipsoid may be fit to the data.

An ideal magnetic sensor at a fixed location produces measurements with a con-
stant magnitude resulting in the data lying on the surface of a sphere, centered on the
origin with the radius equal to this magnitude. Distortions due to the sensor errors
and the vehicle hard and soft magnetic effects have been shown to cause themeasure-
ments to be translated, rotated and scaled such that the sphere becomes an ellipsoid.
The problem of finding this set of translation, rotation and scaling coefficients can
be expressed in matrix notation as

[M,S,T] = G(Hr ) (1)

where M, S, and T are the rotation, scaling and translation matrices that are repre-
sentative of the ellipsoidal fit G() to the rawmagnetic data vector Hr . Geometrically,
the translation coefficients are the distance from the center of the ellipsoid to the
origin, the scaling coefficients are the magnitudes of the major and minor ellipsoid
axes and the rotation coefficients are the rotations of the major and minor axes of
the ellipsoid. The ellipsoid equation representing the relationship between the raw
magnetic data and the corrected data is written as

Hr = H−1
e SMHc + T (2)

The raw magnetic data may then be translated, rotated and scaled accordingly by
re-arranging the ellipsoid equation to

Hc = HeS−1M−1(Hr − T) (3)

where Hc is the calibrated magnetic data vector in the sensor frame. This calibra-
tion procedure normalizes the magnitude of the magnetic measurements due to the
product of the inverse of the scaling coefficients. To give the calibrated values units,
the normalized values must be scaled by the magnitude of the local magnetic field at
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the calibration location He which often may be approximated from the International
Geomagnetic Reference Field (IGRF) [5]. The IGRF does not include many of the
higher frequency components and the local magnetic anomalies. If a local anomaly
map is available these anomaly values may be included as in

He = ||HI G RF || + Ha (4)

where Ha is the magnitude of the magnetic anomalies at the calibration locations.
The resulting values given by Hc are the calibrated measurements of the magnetic
field for a vehicle with fixed locations of the hard and soft magnetic influences and
no significant electrical currents.

2.2 Parameterized Geometric Calibration

For vehicles with moving hard or soft magnetic parts that have a number of steady
state values a parameterized version of the geometric calibration method is pro-
posed. In this method the nominal geometric calibration procedure from Sect. 2.1 is
performed on data gathered from a number of different steady state values for each
of the moving parts. The fixed calibration parameters are used as the initial condi-
tions for an iterative gradient decent solver which optimizes a third order function
with each of the moving masses as parameters. In the case of underwater gliders,
the primary parameters are the moving mass mechanism used for fine control of the
vehicle pitch and the ballast mechanism which is responsible for the large pitch and
buoyancy changes between diving and climbing. The geometric fitting then becomes
of the form

[M,S,T](pm, pb) = G(Hr (pm, pb)) (5)

where each of the rotation, translation and scaling coefficients is a function of the
moving mass location pm and the ballast piston location pb. The parameterized func-
tions are found by fitting polynomials to the set of individual calibration coefficients
found for a geometric fit to the magnetic measurements for a given moving mass and
ballast location. The parameterized ellipsoid equation is similarly given as

Hr = H−1
e S(pm, pb)M(pm, pb)Hc + T(pm, pb) (6)

Upon re-arranging, the raw magnetic data may be corrected by computing the trans-
lation, rotation and scaling matrices for a given moving mass and ballast location
as in

Hc = HeS(pm, pb)
−1M(pm, pb)

−1(Hr − T(pm, pb)) (7)
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The polynomial functions in this case are of third order and take the form of

c0 p3
m + c1 p3

b + c2 p2
m + c3 p2

b + c4 p2
m pb + c5 pm p2

b

+ c6 pm pb + c7 pm + c8 pb + c9 (8)

resulting in a total of 90 coefficients required for a two parameter calibration problem.

3 Instrumentation

An underwater glider’s energy is provided by onboard batteries which gives it an
endurance of around one month when using alkaline primary cells and six months
when using lithium primary cells. In a standard configuration of a vehicle equipped
only with a conductivity, temperature and pressure sensor (CTD), the vehicle uses
an average power of around one Watt. To not significantly impact the endurance
or range of the vehicle, additional sensors should use as little power as possible.
Therefore, to instrument an underwater glider with a precision magnetic sensor, the
power consumption of the device must remain low to minimize the impact on the
vehicle’s endurance.

While progress is beingmade towards lower power cesium vapourmagnetometers
whichwouldbewell suited to integration inmobile platforms, the power consumption
of presently available devices still remains on the order of Watts [12, 15]. Fluxgate
sensors, on the other hand, have power requirements down to the level of 10s of mil-
liwatts. For this reason the chosen sensor is a low power tri-axial Mag-648 fluxgate
magnetometer by Bartington Instruments which consumes around 14mW [1]. Low
power fluxgates of this type are often subject to higher degrees of noise, orthogo-
nality errors, and offset errors than higher power versions [11]. While the impact
of the higher noise is mitigated through low frequency sampling requirements, the
orthogonality errors and offset errors require careful calibration. Additionally, the
offset error settles to a slightly different value each time the sensor is powered on
requiring the sensor to remain energized once calibrated.

The fluxgate sensor is mounted in a strap-down configuration in the vehicle’s
payload bay. The device is powered by a set of independent batteries and is sampled
using an isolated 24-bit sigma-delta analog to digital converter (ADC). This ADC
uses several different internal low pass filters and modifies the filter coefficients
based on the sampling rate selected. The effective resolution of the device is therefore
variable with the sampling rate. The inputs to the ADC have anti-aliasing filters with
a corner frequency of 0.33Hz to mitigate high frequency noise from the electronics
and other systems. The ADC uses the serial peripheral interface (SPI) to send the
data to the glider payload computer where it is logged at a frequency of 0.25Hz. The
ADC used has a single digitizer and samples of each channel are taken at different
times requiring the time stamp of each channel’s measurement to be recorded such
that the measurements may be interpolated to the same time base. The electrical
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current drawn by the fluxgate and its electronics is around 4.5 mA. As a result of
this low energy consumption, a single set of three AA alkaline cells connected in
series will power the fluxgate and its electronics for one month. The goal of not
influencing the endurance of the underwater glider while staying within the size and
weight requirements for the payload are therefore achieved.

4 Field Trials

Field trials using the magnetic fluxgate sensor installed on a 200m Slocum Electric
glider were performed to evaluate the efficacy of making magnetic measurements
using this platform. The parameterized calibration field trials took place inDecember,
2013 in the East Arm of Bonne Bay, Newfoundland. In these trials the underwater
glider was launched from the small aluminum boat Freezy as illustrated in Fig. 1
and after launch was controlled from the Bonne Bay Marine Station. During the
deployment there were light winds and the air temperature was around −10 ◦C.
Recovery of the vehicle was originally planned for December 12th but had to be
delayed due to strong winds. The vehicle was left to loiter in the lee of the head on
Norris Point until a lull in the winds on the 13th allowed the recovery of the vehicle.

After the deployment, a series of clockwise calibration spirals were performed
with the vehicle commanded to set the movable battery once during each ascent or
descent to achieve a certain pitch according to a lookup table. In thiswayfivedifferent

Fig. 1 The Bonne Bay
Marine Station’s boat Freezy
shown with the Slocum
autonomous underwater
glider during the
parameterized trials in
December 2013
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Table 1 Calibration runs for the parameterized magnetic calibration trials

Run Direction pb [cm3] Pitch [◦] pm Trial 1 [in] pm Trial 2 [in]

1 Dive −200 −14 0.272 0.226

2 Climb 200 14 −0.181 −0.139

3 Dive −200 −18 0.380 0.274

4 Climb 200 18 −0.234 −0.191

5 Dive −200 −22 0.428 0.375

6 Climb 200 22 −0.289 −0.246

7 Dive −200 −26 0.491 0.400

8 Climb 200 26 −0.344 −0.300

9 Dive −200 −30 0.527 0.472

10 Climb 200 30 −0.401 −0.348

battery locations were tested for two different ballast conditions. The ballast was also
set to a single value, once for each ascent or descent. Each calibration run therefore
consisted of a single spiralling descent and ascent with the ballast and battery at a
fixed location and took around 30min to complete. Another full calibration procedure
was repeated prior to recovery. The calibration runs are summarized in Table1.

The vehicle was then flown in a criss-cross pattern down into the bay and back
again with a commanded pitch of plus or minus 26◦ and a commanded ballast of
plus or minus 200cm3. The calibration locations along with the vehicle track-line
are shown against the local residual magnetic field in Fig. 2.

To provide reference measurements, aeromagnetic data overlapping the East Arm
of Bonne Bay was used from the Newfoundland and Labrador Geoscience Atlas [4].
Unfortunately, the East Arm is split in half by the boundary of two different surveys,
the 2009 Corner Brook survey and the 2012OffshoreWestern Newfoundland survey.

Fig. 2 Calibration locations
(x’s) and the Bonne Bay
Trials track-line (black line)
starting from the circle and
proceeding to crisscross
south and then north in the
East Arm of Bonne Bay. The
residual magnetic grid of the
Bonne Bay region is shown
in the background
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To obtain a reference grid both residual magnetic grids were upward continued to a
constant altitude of 90m. The grids were then combined, using the average value in
the regions of overlap. A mask was applied to these larger grids to limit the region
to the area of the East Arm of Bonne Bay. To smooth any discontinuities, 20 passes
of a 3× 3 Convolution (Hanning) filter were applied to remove the high frequency
content introduced by combining the grids. The resulting grid is shown in Fig. 2.

For the parameterized calibration method, an initial global fit of the nominal
geometric method was performed by using the full set of raw measurements from
each of the calibration runs. To constrain the ellipsoid in this initial fit it was necessary
to make the x and z scaling values equal as there were no calibration measurements
in the “northern hemisphere” of the calibration space. Additionally, the ellipsoid
was constrained in rotation such that M = I. The global fit was then used as the
initial conditions for the parameterized equations by setting the c9 coefficients from
Eq.8 to be equal to the ellipsoid’s scaling, translation and rotation coefficients. The
parameterized equations were then adjusted using a gradient descent optimization
scheme by minimizing the error between the local total field and measured values.
In this optimization scheme the local total field was computed from the IGRF model
and themagnetic anomaly value at the calibration locations. The resultingmagnitude
of the calibrated measurements are shown in Fig. 3.

The nominal geometric method results in a root mean square error between the
total field estimate from the IGRF and aeromagnetic data and the calibrated data of
153 and145nT for thefirst and second set of calibration runs.The resultingmagnitude
of the calibration measurements, corrected with the parameterized coefficients are
shown in Fig. 4.

The parameterized geometric method results in a root mean square error between
the total field estimate from the IGRF and aeromagnetic data and the calibrated
data of 29 and 17nT for the first and second calibration trials. Each of these sets of
parameters is then used to correct the magnetic data gathered during the remainder of
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Fig. 3 Magnitude of the magnetic data using the nominal calibration method before and after
correction shown against the IGRF values for the Bonne Bay field trials using the first (left) and
second (right) set of calibration coefficients
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Fig. 4 Magnitude of the magnetic data using the nominal and parameterized calibration method
with the data from the first (left) and second (right) set of trials shown against the IGRF and local
field values for the Bonne Bay trials
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Fig. 5 Magnetic data collected during the Bonne Bay deployment inDecember 2013 shown against
the IGRF and local field values calibrated using the first (top) and second (bottom) set of nominal
and parameterized calibration coefficients

the deployment as shown in Fig. 5. In correcting this data the calibration coefficients
are assumed to be constant. As such the mean of the local magnetic field at the
calibration locations, He, is used for each set of calibration coefficients.

The calibrated magnetic measurements gathered by the glider may then be com-
pared to the residualmagnetic grids. The resulting interpolated values have a constant
bias when compared to the complete set of glider magnetic measurements. Addition-
ally, the glider data contains significantly more high frequency components than the
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aeromagnetic grids. These differences are attributed to the aeromagnetic data being
collected at a higher altitude reducing the high frequency signatures present in the
reference data as well as the significant low-pass filtering applied during the gridding
operations.

The first set of parameterized calibration coefficients perform well only for a
short period of time. After the first day or so of measurements, there is a significant
change in bias present in the measured values when compared to the local field. The
second set of parameterized calibration coefficients does not display this change in
bias, remaining consistently around the level of the local field. This difference is
thought to be due to the temperature dependence of the sensor. The first calibration
run was performed immediately after launch while the vehicle had been at a temper-
ature of less than −10 ◦C. The second calibration run was performed after the data
collection before retrieval allowing the sensor adequate time to warm up to the water
temperatures of around 2 ◦C. The measurements calibrated using the second set of
parameterized coefficients were deemed more accurate for this reason and are shown
next to the residual magnetic field values from the vehicle locations in Fig. 6.

The measured magnetic anomaly data calibrated using the second set of parame-
terized calibration coefficients is in reasonable agreement with the residual magnetic
field data from the aeromagnetic surveys with RMS errors indicated in Table2. Addi-
tionally, the parameterized geometric calibrationmethod improves significantly upon
the nominal geometric calibration method. This agreement indicates that the para-

Fig. 6 Magnetic anomaly of
the data collected during the
Bonne Bay deployment in
December 2013 calibrated
using the parameterized
geometric method (top)
compared with the
interpolated magnetic
anomaly data from the
aeromagnetic grids (bottom)
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Table 2 The RMS errors between the magnetic anomaly map values and the calibrated measure-
ments using the first and second set of nominal and parametric calibration coefficients during the
Bonne Bay field trials

Nominal (nT) Parametric (nT)

Trial 1 207 124

Trial 2 136 69

meterized calibration method is effective for calibration of magnetic measurements
performed from a vehicle with moving masses. The drawback of this method are the
increased number of calibration runs that need to be performed over the nominal cal-
ibration method. However, while the parameterized calibration method takes longer
to perform, it constrains the calibration space to a higher degree than the nominal
method for the limitedmaneuvering space available to the underwater glider resulting
in a better calibration.

5 Conclusions

Augmenting underwater relative navigation methods with total field magnetic mea-
surements and a-priori magnetic anomaly grids has been proposed previously in
several theoretical studies. Evaluating this proposition in practice is challenging due
to the high levels of distortions which must be calibrated out of the magnetic mea-
surements.

For rigid platforms with fixed components and low levels of electrical noise a
geometric calibration method may be used. In this nominal geometric calibration
method the raw measurements are assumed to lie on the surface of an ellipsoid.
The ellipsoid’s offset, radii and rotations of the major and minor axis form a set of
calibration coefficients which may be used to correct the measurements in the sensor
frame. For platforms with moving masses a parameterized geometric calibration
method has been proposed. In this method a third order polynomial is estimated
using gradient descent methods where the initial conditions are formed from the
nominal geometric method parameters.

The parameterized calibration method is evaluated using an autonomous under-
water glider equipped with a precision low power fluxgate magnetometer. During
field trials of the system, which took place in December 2013 in the East Arm of
Bonne Bay, Newfoundland, calibration runs were performed upon deployment and
before recovery. For each calibration run the underwater glider performed a series of
descending and ascending spirals such that the mass shifting mechanism and ballast
systemwere each at multiple steady state locations. Between these sets of calibration
runs, the underwater glider ran its mission, cris-crossing up and down the East Arm.
To obtain the parameterized calibration coefficients the complete set of calibration
measurements from each run was used to extract the nominal ellipsoid coefficients.
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These nominal coefficients were then used as the initial conditions for the gradient
descent solver which computed the third order polynomial coefficients which define
each ellipsoid coefficient for the given mass shifter and ballast mechanism location.

The parameterized calibration method resulted in an RMS error between the
calibration measurements and the local total field of 29 and 17nT for the first and
second set of calibration runs. During the survey portion of the field trials the first and
second set of parameterized calibration coefficients resulted in a RMS error between
the calibrated measurements and the local total field from the a-priori grid of 124
and 69nT respectively.

Magnetic measurements performed in this manner are suited to the online cal-
ibration of magnetic data. This online correction is the ultimate goal of this work
towards allowing the augmentation of terrain relative navigation methods with mag-
netic anomaly measurements.
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Towards Autonomous Robotic Coral Reef
Health Assessment

Travis Manderson, Jimmy Li, David Cortés Poza, Natasha Dudek,
David Meger and Gregory Dudek

Abstract This paper addresses the automated analysis of coral in shallow reef
environments up to 90 ft deep. During a series of robotic ocean deployments, we
have collected a data set of coral and non-coral imagery from four distinct reef loca-
tions. The data has been annotated by an experienced biologist and presented as
a representative challenge for visual understanding techniques. We describe base-
line techniques using texture and color features combined with classifiers for two
vision sub-tasks: live coral image classification and live coral semantic segmentation.
The results of these methods demonstrate both the feasibility of the task as well as
the remaining challenges that must be addressed through the development of more
sophisticated techniques in the future.

1 Introduction

In this paperwedescribe a system for the automated detection andvideo identification
of coral growths using amarine robot. Our objective is to develop a fully autonomous
system that can swim over coral reefs in open water, collect video data of live coral
formations, and make an estimate of coral abundance. The video is intended for
examination by human specialists, but the system needs to be able to both remain
resident on the reef surface and recognize coral as it is encountered to perform its
mission.

Coral reefs are delicate marine environments of immense importance both
ecologically and socio-economically, and yet they are under substantial threat almost
everywhere they occur. One preliminary step to retaining these environments is to
be able to objectively record their presence, their change over time, and their health.
Such records are critical not only to any remediation effort, but also in order to present
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a compelling case to law makers and law enforcement officials regarding the preser-
vation of these ecosystems. While human divers are commonly deployed to observe
reefs and measure their health, the requisite measurements need to be performed
using scuba gear under conditions that present a risk to the divers involved.

In the work reported here, we use a small, portable, and high mobility underwater
vehicle which is able to swim over the surface of a coral reef, hover in place, navigate
in confined spaces, and collect video data from multiple cameras operating simul-
taneously. In our current experimental configuration the vehicle is accompanied by
a human supervisor, but our approach and target scenario does not require a human
operator to be present while data is being collected. This vehicle is ideally suited for
reef surveillance since it can be deployed manually by a single user either from shore
or in the water, does not require an associated tender (ship), can maneuver even in
very shallow water, and can even land on a set of legs on sand or a reef surface with
limited physical contact. Our approach to covering coral reefs requires the vehicle
to be initialized over or near a reef. It can subsequently circumnavigate the reef and
cover its interior using inertial navigation. In prior work we have also employed GPS
data, acquired by allowing the vehicle to surface, to assist in the navigation task, but
in this work navigation is accomplished while remaining underwater at the expense
of global localization. This paper does not focus on coverage and navigation, but
rather on the system architecture, the nature of the data we collect, and our ability to
detect and recognize living coral using this vehicle.

In this paper, we propose and evaluate two critical components of the visual
processing pipeline used for both the guidance and data collection for our vehicle.
These operations are the classification of images that are observed as either contain-
ing live coral or not, and the subsequent segmentation of the live coral within the
image. Several structured data sets used in our evaluation are described below and
are available to the community.1

2 Background

As coral health is an issue of worldwide importance, its monitoring has been studied
by many authors previously, both in the field of biology and intelligent systems. This
section describes several of the most relevant contributions.

2.1 Coral Reef Biology and Reef Health

Coral reefs are majestic structures crucial to ecosystem functioning. They are home
to roughly 25% of the oceans’ inhabitants, and act as a nursery, feeding ground,
and shelter for thousands of marine organisms [1]. To humans, they represent

1Dataset hosted at: http://www.cim.mcgill.ca/mrl/data.html.

http://www.cim.mcgill.ca/mrl/data.html
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approximately US$30 billion annually in goods and services, and are the focus of
many studies searching for novel biochemically active drug compounds [2]. Opti-
mistic reports estimate that at the current rate, by 2050 some 75% of the world’s
remaining reefs will be critically threatened [3]; more pessimistic estimates predict
that all of Earth’s coral reefs will be dead by the end of the century [4].

Some of the major driving forces behind coral decline worldwide include increas-
ing water temperatures, ocean acidification, increase in frequency and intensity of
coral diseases, and damage due to natural disasters such as hurricanes. Many anthro-
pogenic activities are also causing direct harm to reefs, including the overfishing of
essential herbivorous species of fish, increasing amounts of water pollution from ter-
restrial runoff, and increasing sedimentation from coastal construction [3]. Arrival of
invasive species can further exacerbate the situation and lead to a dramatic decrease in
reef diversity and health, such as the invasion of Indo-Pacific lionfish in theCaribbean
Sea and of the crown-of-thorns seastar in Australia [5].

While little can be done on a regional scale about issues such as global warming
and increasing ocean temperature, there is an increasing focus on local management
and conservation of coral reefs [6]. One critical component of any successful conser-
vation effort is being able to assess whether a particular conservation strategy results
in beneficial outcomes on the system in question. In order to protect what remains of
the world’s coral reefs, it is essential that we design accurate and precise methods to
assess the health of coral reefs without undue risk to human participants. This will
not only allow us to see when conservation efforts work, but will also help determine
which reefs should be conservation priorities and provide evidence to policy makers
and the general public that conservation efforts are necessary to preserve the well
being of coral reef ecosystems [7].

2.2 Robotic Reef Surveys

Several research groups have considered the use of autonomous underwater vehicles
(AUVs) for data collection in marine environments, and even in coral reefs. Reefs are
challenging environments since they are both valuable and physically delicate, and
they have complex morphologies. A few vehicles have been developed that can make
close approaches to the ocean floor, corals, or aquatic structures [8, 9]. This can be
challengingdue to several factors: (a) the propulsion systemsmaybeunsafe to operate
close to sensitive underwater environments; (b) otherwise “gentle” devices such as
gliders have limited maneuverability; (c) it is difficult for humans to produce pre-
planned trajectories since sensor feedback underwater is often poor, communications
are difficult and terrain models are rarely complete; (d) many propulsion systems are
prone to disturbing bottom sediments which reduces visibility.

The problemof designing and controlling stableAUVs has been studied by several
authors [10, 11] on a variety of platforms. In prior work with the Aqua class of
vehicles developed in our lab, we have demonstrated a combination of small size,
low weight, and high maneuverability with diverse gaits [12, 13].
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Several authors have also considered using towed or autonomous surface vehi-
cles to perform visual data collection over marine environments [14], although in the
context of coral reefs such an approach is feasible only for the shallowest reef struc-
tures and depends critically on very good visibility. Deep water AUVs have been
used to map the ocean floor, inspect underwater structures, and measure species
diversity [15].

Australia’s Integrated Marine Observation System (IMOS) is carrying out a
project to deliver precisely navigated time series of seabed imagery and other vari-
ables at selected stations on Australia’s continental shelf [16]. They are using UAVs
to make this endeavor scalable and cost efficient.

In [17], the authors present a structure from motion framework aided by the
navigation sensors for building 3D reconstructions of the ocean floor and demonstrate
it on an AUV surveying over a coral reef. Their approach assumes the use of a
calibrated camera and some drifting pose information (compass, depth sensor, DVL).
They use the SeaBEDAUV, an imaging platform designed for high resolution optical
and acoustic sensing [18].

In previous work [19] we have developed a controller to allow our vehicle to
autonomously move about over coral reef structures using visual feedback. In this
paper we restrict our attention to the analysis of the data collected by such a system,
and consider the sensing issues that arise.

2.3 Visual Coral Categorization

Our methodology has been inspired by recent successes of previous biologically rel-
evant visual data sets. For example, the Fish Task of the recent LifeCLEF contest [20]
supported progress on detecting moving fish in video and fish species identification
through the release of nearly 20,000 carefully annotated images. The identification
of coral using visually equipped AUVs has been studied previously [21]. While
we share similar motivations to this work, we differ in deployment and algorithmic
objectives. Nonetheless, the relationship is a motivation for the public release of our
training and test images which could facilitate comparisons. Additionally, Girdhar
et al. [22] has demonstrated a system which modifies swimming behavior on-line to
follow novel visual content.

3 The MRL Coral Identification Challenge

The first contribution of this paper is a robot-collected data set of visual images from
environments proximal to a number of coral reefs. This data was collected by the
Aqua swimming robot during a series of field deployments in the Caribbean, where
the robot’s existing navigation technologies were exercised to cover each reef and its
surroundings.Although our robot did not use vision to inform its navigation strategies
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during these trials, the images that it collected are representative of the challenge that
faces a coral-seeking robot. Therefore,we have organized and annotated them to form
twovisual challenge tasks: live coral image classification and live coral segmentation.
The remainder of this section describes the components of this effort.

3.1 Robotic Data Collection

As mentioned previously, robots require specialized hardware and capabilities in
order to operate safely near coral formations. We utilized the Aqua robot [23], an
amphibious hexapod that swims using the oscillations of its flippers. Aqua has been
designed for use as a visual inspection device and is equipped with four cameras
with a variety of properties: a forward-facing stereo pair with a narrow field-of-view
(which allows recovery of depth), a front fish-eye camera (which captures a wider
scene), and finally a 45◦ (which allows the fourth camera to capture the ocean floor
directly below the robot).

In order to achieve broad coverage of the underwater environment, our robot
executed a coverage pattern repeatedly over the reef. We set the parameters of this
motion by hand so that the robot would pass completely over the reef as well as
an equal portion of the sandy surroundings. This gives our data set a roughly equal
split between the coral images we target and less desirable content, which poses an
interesting classification problem for the visual processing component.

Two attitude strategies were employed, each targeted to induce ideal viewpoints
for a different sub-set of Aqua’s cameras. First, a flat-swimming maneuver controlled
the robot to be alignedwith gravity in both the roll and pitch rotational axes.With this
attitude, the downward looking camera views the ocean bottom with an orthogonal
viewpoint and the front fish-eye camera views the horizon at roughly half the image
height. Second, we considered swimming with a downwards pitch of 30◦. This strat-
egy allowed the narrow-view stereo pair to view the ocean bottom slightly in front of
the robot. The depths observed at this angle would allow fixed-altitude operations,
which are desirable in order to prevent accidental collisions with the coral.

The robot executed five data collection runs at four distinct reef locations (one
reef was visited twice). We selected reefs within the Folkstone Marine Preserve and
in Heron Bay, both of which are located on the western coast of St. James, Barbados.
During each run, the robot covered an area of approximately 100m2. Each reef
location was an instance of the spur-and-groove coral formations that tend to present
the widest range of diversity of coral species, and are thus ideal regions for collection
of biologically relevant data.

Data Statistics

All of the videos are taken at 15 frames per second, with VGA resolution. The total
size of visual data collected over the five collection runs is 104 gigabytes consisting
of 164min of video. Depth and IMU data are also recorded throughout.
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3.2 Data Annotation

A marine biologist manually annotated the coral within a subset of the images we
collected. The results of this annotation have been made available in a standardized
format, and the data is being released publicly for the purposes of comparison of
results and classifier training. As a variety of tasks can be considered, depending on
the goals of the robot platform, we define two coral-related visual tasks and accom-
panying evaluation criteria. We continue by describing our annotation procedure.

Annotation for Image Classification

The first sub-task that we define is coral image classification. Given an image, the
system outputs whether there is live coral in the image. To create training and testing
data for this task, we extracted images at 5 s intervals from all of the videos taken
by the downward-looking mirrored camera while the robot was swimming flat. Each
image was then subdivided into four 320 × 256 quadrants to limit the diversity
and facilitate ease of labeling. The biologist labeled 3704 images into one of three
categories:

• Yes: There is live coral in the image
• No: There is no live coral in the image
• Reject: The image should be discarded because it is too difficult to tell whether
there is live coral or not. This could be because the image is too blurry or the coral
is too small to see clearly.

This provided uswith 1087Yes images, 2336No, and 281Reject images. Figure1
shows some examples of Yes and No images.

Annotation for Segmentation

Secondly, we define the coral segmentation task, where the coral regions within an
image must be identified, through creation of a coral mask. While some existing
segmentation data sets contain pixel-wise ground truth, we lacked the resources to
produce this detailed data. Instead, we have manually annotated rectangular coral
regions for each of the 1087 Yes images from our classification data set. Examples
of the selected image regions are shown in Fig. 2. Rectangular regions cause a small
approximation error at region boundaries, but this task is still a reliable proxy for
coral segmentation, as will be demonstrated in our results section.

Fig. 1 Annotated images used for training a detector for the image classification task. The left two
images are labeled as having coral and the right two images are labeled as not containing coral
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Fig. 2 Positive training images cropped to contain only coral, which is useful for training a detector
for the coral segmentation task

Annotation Statistics

The final annotated data set produced by our labeler was reduced in size from the
raw robot footage due to the rejection of poor quality and ambiguous images. We
separated the annotated data into a training set (416 positive examples and 701 neg-
ative examples) and a test set (492 positive examples and 1544 negative examples).
The training set contains images from three data collection runs at three unique reefs,
and the test set contains images taken from two data collection runs at the fourth reef
location. Thus, there is no overlap between the training and test sets.

We have additionally defined evaluation protocols for the use of this data, fol-
lowing best-practices from existing challenges such as the ILSVRC [24]. Broadly,
we measure performance on each binary categorization task as prediction accuracy,
normalized by the data set size. For the categorization task this represents the number
of images, and for segmentation this is measured in image area. Methods cannot be
optimized directly on the test data set. Rather, parameters should be refined by split-
ting the training set into folds and then reporting the performance after a single run
on the test set. This data is being released to the public alongside this paper and we
will maintain a record of the best performing techniques over time as other authors
attempt the task. We now continue by describing several baseline techniques that we
have developed.

4 Method

Coral identification in the ocean shares many of the typical challenges that face ter-
restrial vision systems, as well as several challenges unique to this task. The lighting
conditions in the shallow ocean include caustics caused by the water’s surface, inter-
reflections and the absorption of low-frequency colors. This makes brightness invari-
ance essential. The robot changes its orientation during the survey, which implies the
need for orientation invariance. Small floating particles are ubiquitous in the under-
water domain, causing an optical snow effect. Additionally, the appearance of the
coral itself has a wide diversity and there are local variations between reef locations,
so generalization must be the focus of learned methods.
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In the face of these challenges, our approach to coral identification is to encode
the visual data in robust feature representations that capture canonical appearance
properties of coral, such as its color and texture and to learn coral classifiers from
training data on top of these features. We develop two processing streams—one for
each of the visual tasks described above. Our classification process employs Gabor
functions and global processing to compute aggregate statistics. Segmentation is
achieved through local computations on sub-regions of the image. Each approach
will be described in detail in the remainder of this section.

4.1 Global Image Statistics for Coral Classification

The classification pipeline uses both global color and aggregate texture features
in a classifier subsystem to learn from labeled example images and subsequently
predict whether an image contains live coral. This subsystem computes two types of
attributes over the entire (global) images to produce a characteristic feature vector.
These vectors are then classified using a support vector machine (SVM) trained with
our manually classified data. Figure3 (top) illustrates the classification pipeline.

Ourmethod represents texture through the use of thewell-knownGabor transform.
The Gabor function [25] is a sinusoid occurring within a Gaussian envelope and has
inspired a class of image filters particularly suited to describing texture [26]. Our
method automatically selects a sub-set of Gabor wavelets from a large family by
selecting those with frequency and spatial support parameters that optimize task
performance, using cross-validation on the training set.

Applying filters result in a stack of transformed images and we extract robust
energy statistics from these in order to produce a vector suitable for classification.

Fig. 3 Image processing pipeline. (top) Gabor-based classification. (bottom) LBP-based segmen-
tation
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The amplitude histogramof eachGabor filter provides a characterization of the image
content including the presence of outlier objects. Order statistics can effectively
characterize such a signal [27] and are robust to much of the noise present in our
task. For this reason we characterized the energy distribution with several statistics
of each Gabor filter: the mean energy, the variance of the energy distribution, and the
energy at a specific set of percentiles of the cumulative distribution (5th, 20th, 80th
and 95th percentiles). In order to capture color information, we additionally extracted
the same robust statistics for the distribution of hue values observed in the image.

The result of both the Gabor texture filters and the color summary were concate-
nated into a fixed-length vector. Depending on the number of active Gabor compo-
nents, this representation had between 24 and several hundred dimensions. In order to
reduce computation and simplify the learning, we performed principal components
analysis on these vectors to find the subspace that captures 99.99% of the variance.

The final step in this pipeline is to predict the label of an image (live coral or
not). We learn an SVM from the training images described previously and apply the
resulting learned model to make coral predictions on new images.

4.2 Local Binary Pattern Based Coral Segmentation

Our coral segmentation pipeline uses LBPs [28] and color information as image
descriptors, and an SVM to detect whether small patches of the images correspond to
live coral or not. Unlike the Gabor filters, which are applied globally, our features and
classifier are applied on small image patches,which allowsfine-grained segmentation
of coral regions. Figure3 (bottom) illustrates the segmentation pipeline.

For a given pixel in the image, its LBP is computed by comparing its gray level
gc with that of a set of P samples in its neighborhood, gp (p = 1, 2, . . . , P). These
samples are evenly spaced along a circle with radius R pixels, centered at gc (see
Fig. 4). For any sample that does not fall exactly in the center of a pixel, its gray
value is estimated by interpolation. The LBP is computed according to

LBPP,R =
P−1∑

p=0

1{gc−gp≥0}2p, (1)

where 1{·} is the indicator function.

Fig. 4 Local binary pattern
neighbor sets for
(P = 4, R = 1),
(P = 8, R = 1) and
(P = 12, R = 2)
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To achieve rotational invariance, Ojala et al. [28] proposed to label the LBPs
according to their number of 0/1 transitions. LBPs with up to two transitions are
called uniform and they are assigned a label corresponding to the number of 1’s in
the pattern. LBPs with more than two transitions are called nonuniform and they are
all assigned the label P + 1. Finally, the rotation invariant LBP image descriptor is a
P +2 bin histogram of these labels computed across all pixels in the image. Uniform
patterns are assigned to unique bins, while nonuniform patterns are all assigned to a
single bin. As color is also an important feature for coral segmentation, we appended
the LBP histogram with an eight bin histogram of the hue values of the pixels in the
image patch.

During operation time, our learned model is used to segment an image by splitting
it into patches with the same size as those used during training. Features are extracted
from each patch and scored with the SVM, producing a coral segmentation mask
that can be used to guide the robot during its mission.

5 Experiments and Results

5.1 Global Coral Classification

Our global classifier was tested on the data sets above using distinct testing and
training sets collected over different reefs. We were able to achieve a net classifier
accuracy of 89.9% on balanced sets of images containing coral and not containing
coral. This accuracy generally increased with the number of Gabor basis functions;
however, since these are the primary source of computational cost, we are interested
in a compromise between performance and the number of filters user. The trade-off
between accuracy and the size of the filter bank is illustrated in Fig. 5. While using a
bank of 24 or more filters provides maximal performance, the 80.6% rate achieved
with just 20 filters appears quite acceptable for our applications.

Fig. 5 Classification accuracy increases with both: (left) number of Gabor filters; and (right)
number of PCA components. This reflects the trade-off of computational effort and performance
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Fig. 6 Classification accuracy versus patch size (pixels)

(a) (b)

(c)

Fig. 7 Samples of live coral segmentation. a Test set reef segmentation. b Live coral segmentation.
(right) false negative. c Live coral segmentation. (left) false positive

5.2 LBP-based Coral Segmentation

To study the effect of varying the number of points and radius (P, R) of the LBPs
and the size of the patches on the segmentation, we performed a grid search on these
parameters. Also, to optimize the performance of the SVM, we ran a grid search on
the gamma, tolerance and regularization constant (C) parameters of the radial basis
function (RBF) kernel.

The LBP parameters had very small impact on the accuracy of the classifier. We
tested over the values (P, R) = (8, 1), (16, 2), (16, 3), (24, 3), (32, 5) and found
that the difference in accuracy between them was less than 2.1%, regardless of the
patch size. Given such a small impact, we decided to use (P = 8, R = 1) for the
remaining experiments.

The patch size, on the other hand, had a much larger impact on the classifica-
tion accuracy, which is illustrated in Fig. 6. The maximum classification accuracy
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achieved was 81.16% with the RBF kernel parameters set to γ = 0.0001, tol = 2
and C = 10,000,000. The optimal patch size was found to be 30 pixels.

In Fig. 7, we present some examples of images from the test set with an overlay
(in red) showing the segmented live coral. Figure7a is a stitched image created from
several consecutive frames from the original video.We observe that the segmentation
pipeline correctlyfinds areas of the imagewith live coral.Wealso observe areaswhere
the classifier has problems detecting coral, such as when the texture is uniform –with
an example of a false negative shown in Fig. 7b. Likewise, live coral can be incorrectly
detected when variations in texture (or shadows) match that of live coral – with an
example of a false positive shown in Fig. 7c.

6 Discussion

We have described a robot-vision system for performing automated coral surveys
of the sea floor. We learn coral predictors that are able to robustly detect live coral
patches and segment them from the background, agreeing with the assessments of
an experienced coral biologist with an accuracy of 80–90%. These results are based
on a data set of thousands of labeled images of only moderate quality, confounded
by the typical phenomena that confront any diver or AUV. Our data set is being made
available in conjunction with this submission.

In the future, we plan to study the disambiguation of other zooxanthellae-
containing organisms from coral and the automated labeling of different coral sub-
species. This will require suitably labeled training data, as well as more diverse raw
data sets, potentially including active illumination. Additionally, we hope to integrate
coral mapping into the navigation stack of our vehicle, as we have successfully done
in the past with other vision-guided navigation methods [22]. The resulting system
has the potential to perform autonomous longitudinal surveys, providing biologists
with an easy, quick, and accurate way of monitoring reef health. Such methods are
critical for understanding how these ecosystems respond to environmental distur-
bances, documenting the efficacy of novel coral reef conservation and restoration
efforts, and convincing policy makers to enact stringent protection measures for
coral reef ecosystems.
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BOR2G: Building Optimal Regularised
Reconstructions with GPUs (in Cubes)

Michael Tanner, Pedro Piniés, Lina Maria Paz and Paul Newman

Abstract This paper is about dense regularised mapping using a single camera as it
moves through large work spaces. Our technique is, as many are, a depth-map fusion
approach. However, our desire towork both at large scales and outdoors precludes the
use of RGB-D cameras. Instead, we need to work with the notoriously noisy depth
maps produced from small sets of sequential camera images with known inter-frame
poses. This, in turn, requires the application of a regulariser over the 3D surface
induced by the fusion of multiple (of order 100) depth maps. We accomplish this
by building and managing a cube of voxels. The combination of issues arising from
noisy depth maps and moving through our workspace/voxel cube, so it envelops
us, rather than orbiting around it as is common in desktop reconstructions, forces
the algorithmic contribution of our work. Namely, we propose a method to execute
the optimisation and regularisation in a 3D volume which has been only partially
observed and thereby avoiding inappropriate interpolation and extrapolation. We
demonstrate our technique indoors and outdoors and offer empirical analysis of the
precision of the reconstructions.

1 Introduction and Prior Work

Building maps and workspace acquisition are established and desired competen-
cies in mobile robotics. Having “better maps” is loosely synonymous with better
operation and workspace understanding. An important thread of work in this area is
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dense mapping in which, in stark contrast to the earliest sparse-point feature maps in
mobile robotics, we seek to construct continuous surfaces. This is a well studied and
vibrant area of research. In this paper we consider this task in the context of large
scale workspacemapping—both indoors (despite depleted texture on drab walls) and
outdoors (with a large range of scales) using only a mono-camera.

A precursor to many dense reconstruction techniques, including ours, are 2.5D
depth maps. These can be generated using a variety of techniques: directly with
RGB-D cameras, indirectly with stereo cameras, or as in our case, from a single
camera undergoing known motion.

RGB-D sensor-driven work often uses Microsoft Kinect or Asus Xtion PRO
devices for example [11, 17, 19, 23]. Such “RGB-D” systems provide VGA colour
and depth images at around 30Hz, but this is at the cost of range (0.8–3.5m) and the
ability to only reliably operate indoors [20], although outdoor operation is possible at
night and with the same range limitation [18]. However, for the indoor environments
these structured light sensors can operate in, they produce extremely accurate 3D
dense reconstructions even in low-texture environments.

Stereo cameras also enable dense reconstruction but do introduce complexity
and concerns around stable extrinsic calibration to the degree that they can be cost-
prohibitive for low-end robotics applications [1]. An alternative approach is to lever-
age a sequence of mono images. In this case we do need an external method to derive,
or at least seed, accurate estimates of the inter-frame motion of the camera—perhaps
from an IMU-aided Visual Odometry systems or a forward kinematic model of an
arm. Note that in this work, because our focus is on the reconstruction component,
we assume that this is given and point the reader to [9] for an example system. With
the pose estimates between sequential images as a given, the depth of each pixel can
be estimated using an identical approach to that taken in creating depth maps from
stereo cameras [5, 8].

Full 3D dense reconstruction has only been demonstrated in either indoor envi-
ronments [14] or small-scale outdoor environments [6, 21]. Interestingly both these
methods rely on a fully-observed environment in which the observer orbits the sub-
ject. In an important sense and in contrast to what we shall present, these techniques
all are object-centred in situ where the camera trajectory is chosen to generate qual-
ity depth maps. In many mobile robotics applications—e.g., an autonomous vehicle
limited to an on-road trajectory—the environment observations are constrained and
suboptimal for these traditional dense reconstruction techniques.

RGB-D based reconstructions can rely on high quality depth maps always being
available. In this case, regularisation is not required since an average ofmeasurements
in the voxel grid can provide visually appealing results. When using camera-derived
depth-maps, a vital and defining point is that the depth maps are almost always noisy
and ill formed in places—particularly a problem when operating in regions where
there is a dearth of texture. Accordingly, regularisation techniques must be applied
to reduce these effects—essentially introducing a prior over the local structure of the
workspace (planar, affine, smooth, etc.) [13].

In this paper, we propose a depth map fusion approach to densely reconstruct
environments using only a monocular camera as it moves through large work spaces.



BOR2G: Building Optimal Regularised Reconstructions with GPUs (in Cubes) 113

Given a set of noisy dense depth maps from a sub set of monocular images, we
formulate the 3D fusion as a regularised energy minimisation problem acting on the
TruncatedSignedDistance Function (TSDF) that parametrises the surface induced by
the fusion ofmultiple depthmaps.We represent our solution as the zero-crossing level
of a regularised cube. Our method can execute the optimisation and regularisation in
a 3D volume which has been only partially observed while avoiding inappropriate
interpolation and extrapolation.

What follows is a technique that leverages many of the constructs of previous
work to achieve 3D dense reconstruction with monocular cameras but with an input
range from 1.0 to 75m in regions of low texture. We do this without requiring
privileged camera motion and we do it at a near-interactive rate. We begin in Sect. 2
by describing how we frame the problem in the context of an implicit 3D function,
the TSDF. In Sect. 3, we formulate the solution of the depth map fusion problem as
a regularised energy minimisation. Section4 explains the theoretical insights which
allow us to set new boundary conditions inside the cube.We present the main steps of
algorithmic solution in Sect. 5. Quantitative and qualitative results on a synthetic data
set rendering an indoor place, and real experiments on challenging indoors/outdoors
are presented in Sect. 6. Finally, we draw our conclusions and future lines of research
in Sect. 7.

2 Construction of the Problem Volume: The BOR2G Cube

This paper is about building optimal regularised reconstructions with GPUs. Our
fundamental construct is a cube of voxels, which we refer to as the BOR2G Cube,
into which data is assimilated.

The cube model is a discretised version of a Truncated Signed Distance Function
(TSDF) u : Ω → R where Ω ⊂ R

3 represents a subset of points in 3D space and u
returns the corresponding truncated distance to surfaces in the scene [4]. The TSDF
is constructed in such a way that zero is the surface of an object, positive values
represent empty space, and negative values correspond to the interior of objects, as
shown in Fig. 1. Thus by finding the zero-crossing level-set, u = 0, we can arrive at
a dense representation of surfaces in the workspace.

Consider first the case of operating with a single depth map D, an image in which
each pixel (i, j) represents the depth di, j of the closest obstacle in space along the z
axis. We use the 4 × 4 homogeneous matrix Tgc ∈ SE(3) to express the depth map’s
camera position, c, with respect to the voxel grid’s global frame, g.

For each voxel, the steps to obtain u from a single depth map D are as follows:

1. Calculate the central point pg = [xg, yg, zg]T of the voxel with respect to the
camera coordinate frame as pc = T−1

gc pg

2. Compute the pixel (i, j) in D in which the voxel is observed by projecting pc

into D and rounding each index to the nearest integer.
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(a) (b)

Fig. 1 A graphical depiction (a) of how the TSDF values represent the zero-crossing surface
in a two-dimensional ‘voxel’ grid. In (b) these TSDF values are discretised into histogram bins
(nbins = 5). u ∈ [−1, 1] which directly maps into histogram bins with indices from 1 to nbins .
There is no u value and no histogram bin when u ≤ −μ, however the nbins histogram bin includes
all u > μ

3. If the pixel (i, j) lies within the depth image, evaluate u as the difference between
di, j and the z component of pc. If u > 0, the voxel is between the surface and the
camera whereas u < 0 indicates the surface occludes the camera’s view of the
voxel.

4. Finally, linearly scale-and-clamp u such that any voxel for which u > −μ lies in
the interval [−1, 1] whereas voxels for which u < −μ are left empty. See Fig. 1.

In the next subsection we will explain how to fuse multiple depth images Dt

obtained at different moments in time t .

3 Depth Map Fusion

When high-quality depth maps are available, for example depth maps obtained from
a Kinect camera, data fusion can be performed by minimising, for each voxel, the
following L2 norm energy,

argmin
u

∫

Ω

N∑

t=1

||u − ft ||22dΩ (1)

where N represents the number of depth maps we want to fuse, ft is the TSDF
that corresponds to depth map Dt and u is the optimised TSDF after fusing all the
information available. Using a voxel grid representation for the TSDFs, the solution
to this problem can be obtained by calculating the mean of all the f1, . . . , fN for
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each individual voxel. This operation can be performed in real time by sequentially
integrating a new ft when a new depth map is available [11]. The searched TSDF
u does not require any additional regularisation due to the high-quality of the depth
maps used in the fusion.

However, when cameras are used, the depth maps obtained are of much lower
quality due, for example, to poor parallax or incorrect pixel matches. Therefore a
more robust method is required. In [21] the authors propose an L1 norm data term,
which is able to cope with spurious measurements, and an additional regularisation
term, based on Total Variation [16], to smooth the surfaces obtained. The energy
minimised is given by,

argmin
u

∫

Ω

|∇u|1 + λ

∫

Ω

N∑

t=1

||u − ft ||1dΩ (2)

The first component is a smoothness term that penalises high-varying surfaces,
while the second component, which mirrors Eq.1, substitutes the L2 norm with a
robust L1 energy term. The parameter λ > 0 is a weight to trade off between the
regularisation and the data terms. The main drawback with this approach is that,
unlike KinectFusion, we cannot just sequentially update the TSDF u when a new
depth map arrives, instead, this method requires to store all previous history of depth
values in each voxel. This greatly limits the number of depth maps that can be
integrated due to memory requirements.

To overcome this limitation, since by construction the TSDFs ft integrated are
bounded to the interval [−1, 1], [22] proposes to sample this interval by evenly
spaced bin centres cb (see Fig. 1) and approximate the previous data fidelity term∑N

t=1 |u − ft |1 by
∑nbins

b=1 hb|u − cb|1 where hb is the number of times the interval
has been observed. The corresponding energy for the histogram approach is,

argmin
u

∫

Ω

|∇u|1 + λ

∫

Ω

nbins∑

b=1

hb|u − cb|1dΩ (3)

where the centre of the bins are calculated using,

cb = 2b

nbins
− 1 (4)

The voting process in the histogram is depicted in Fig. 1.While this voting scheme
significantly reduces the memory requirements, allowing us to integrate an unlimited
number of depth maps, the optimisation process carried out in [22] is not optimal.
A mathematically optimal solution to this problem can be found in [10] and has
been applied to histogram-based voxel grids by [6]. Before presenting this optimised
solution in Sect. 5, we must introduce what we call the Ω domain.
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4 Ω Domain

Since we are moving within the voxel grid and only observe a subset of the overall
voxels, we need to develop a new technique to prevent the unobserved voxels from
negatively affecting the regularisation results of the observed voxels. In order to
achieve this, as illustrated in Fig. 2, we define the complete voxel grid domain as Λ

and use Ω to represent the subset of voxels which have been directly observed and
which will be regularised. The remaining subset, Ω̄ , represents voxels which have
never been observed. By definition, Ω and Ω̄ form a partition of Λ and therefore
Λ = Ω ∪ Ω̄ and Ω ∩ Ω̄ = Ø. All works explained in the previous section rely on a
fully-observed voxel grid before regularisation and they implicitly assume that Λ =
Ω . In our mobile robotics platform, this assumption is not valid. The robot motion
results in unobserved regions caused by object occlusion, field-of-view limitations,
and trajectory decisions. Therefore, Ω ⊂ Λ as Fig. 2b illustrates. In this case Eq.3
turns into,

argmin
u

∫

Λ

|∇u|1 + λ

∫

Ω

nbins∑

b=1

hb|u − cb|1dΩ (5)

Note that Ω̄ voxels lack the data term. As is explained in [3], this regularisation
interpolates the content of voxels in Ω̄ . Extrapolation occurs when we have unob-
served voxels surrounding an observed region. To avoid this extrapolation, we use

(a) (b)

Fig. 2 Traditional voxel-grid-based reconstructions focus on object-centred applications as
depicted in (a). In this scenario, the objects in the voxel grid are fully observed multiple times
from a variety of angles. Even though the internal portion of the object has not been observed,
previous regularisation techniques do not make a distinction between Ω (observed regions) and Ω̄

(unobserved regions). This results in spurious interpolation inside the object. However, in mobile
robotics applications the world environment is traversed and observed during exploration, requiring
large voxel grids (b) which result in significant portions never being observed. For example, at
camera capture tx , it is unknown what exists in the camera’s upper field of view. Not accounting
for Ω̄ in regularisation results in incorrect surface generation. Our technique defines Λ as the voxel
grid domain while Ω is the subset we have directly observed and which will be regularised
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the Ω domain boundary conditions to constrain regularisation to observed voxels,
thus avoiding the indiscriminate surface creation which would occur when naively
applying prior techniques.

5 Optimal Regularisation

In this section we describe the steps required to solve Eq.3 using our Ω-domain
constraint. Notice that both terms in Eq.3 are convex but not differentiable since
they depend on the L1 norm. To solve this, we can use a Proximal Gradient method
[3] which requires us to transform one of the terms into a differentiable form. We
transform the Total Variation term using the Legendre-Fenchel Transform [15],

min
u

∫

Ω

|∇u|1dΩ = min
u

max||p||∞≤1

∫

Ω

u∇ · pdΩ (6)

where ∇ · p is the divergence of a vector field p defined by ∇ · p = ∇ px + ∇ py +
∇ pz . Applying this transformation to Eq.3 the original energyminimisation problem
turns into a saddle-point (min-max) problem that involves a new dual variable p and
the original primal variable u,

min
u

max||p||∞≤1

∫

Ω

u∇ · p + λ

∫

Ω

nbins∑

b=1

hb|u − cb|1dΩ (7)

The solution to this regularisation problemwas demonstrated in [6] with a Primal-
Dual optimisation algorithm [3] which we briefly summarise in the following steps:

1. p, u, and ū can be initialised to 0 since the problem is convex and is guaranteed
to converge regardless of the initial seed. ū is a temporary variable used to reduce
the number of optimisation iterations required to converge.

2. To solve the maximisation, we update the dual variable p,

p = p + σ∇ū

p = p
max(1, ||p||2)

(8)

where σ is the dual variable gradient-ascent step size.
3. For the minimisation problem, the primal variable u is updated by,

u = u − τ∇ · p

Wi = −
i∑

j=1

h j +
nbins∑

j=i+1

h j i ∈ [0, nbins]

bi = u + τλWi

u = median(c1, . . . , cnbins , b0, . . . , bnbins )

(9)
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where τ is the gradient-descent step size, Wi is the optimal weight for histogram
bin i , and bi is the regularisation weight for histogram bin i .

4. Finally, to converge in fewer iterations, we apply a “relaxation” step,

ū = u + θ(u − ū) (10)

where θ is a parameter to adjust the relaxation step size.

Equations8, 9, and 10 are computed for each voxel in each iteration of the opti-
misation loop. Since each voxel’s computation is independent, we implement this
as a GPU kernel which operates within the optimisation loop. The final output, u,
represents the regularised TSDF distance.

As discussed in Sect. 4, applying regularisation indiscriminately within the voxel
grid produces undesirable results. However, no technique to date, up to the authors’
knowledge, provides a method to perform this regularisation within a voxel grid.

Without loss of generality, we describe for the x component—y and z components
can be obtained by changing index i for j and k respectively—of the discrete gradient
and divergence operations traditionally used to solve Eqs. 8 and 9 [2],

∇x ui, j,k =
{

ui+1, j,k − ui, j,k if 1 ≤ i < Vx

0 if i = Vx

(11)

∇x · pi, j,k =

⎧
⎪⎪⎨

⎪⎪⎩

px
i, j,k − px

i−1, j,k if 1 < i < Vx

px
i, j,k if i = 1

−px
i−1, j,k if i = Vx

(12)

where Vx is the number of voxels in the x dimension.
We extend the traditional gradient and divergence calculations to account for new

conditions which remove the Ω̄ domain from regularisation. These methods can
be intuitively thought of as introducing additional boundary conditions in the cube
which previously only existed on the edges of the voxel grid. For an input TSDF
voxel grid u, the gradient ∇u = [∇x u,∇yu,∇zu]T is computed by Eq.11 with the
following additional conditions,

∇x ui, j,k =
{
0 if ui, j,k ∈ Ω̄

0 if ui+1, j,k ∈ Ω̄
(13)

Note that the regulariser uses the gradient to diffuse information amongneighbour-
ing voxels. Our gradient definition therefore excludes Ω̄ voxels from regularisation.

Finally, in addition to the conditions in Eq.12, the divergence operator must be
defined such that it mirrors the modified gradient operator
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∇x · pi, j,k =

⎧
⎪⎨

⎪⎩

0 if ui, j,k ∈ Ω̄

px
i, j,k if ui−1, j,k ∈ Ω̄

−px
i−1, j,k if ui+1, j,k ∈ Ω̄

(14)

6 Results

To evaluate the performance of our technique, we performed three experiments com-
paring our BOR2Gmethod to a KinectFusion implementation. The dense reconstruc-
tions are executed on a NVIDIA GeForce GTX TITAN graphics card with 2,880
CUDA Cores and 6 GB of device memory.

As a proof of concept, we first carried out a qualitative analysis of our algorithm on
synthetic data (Fig. 3) before performing more robust tests with real-world environ-
ments. The synthetic data set provides high-precision depth maps of indoor scenes
taken at 30Hz [7].1,2 Our chosen scene considers both close and far objects observed
from the camera with partial occlusions. The input of our 3D reconstruction pipeline
is a set of truth depth maps with added Gaussian noise (σn = 10cm). As can be seen
in Fig. 3, where results are represented using Phong shading, there is a significant
improvement in surface normals when the scene is regularised with our BOR2G
method compare to KinectFusion. A side-benefit of the regularised normals is that
the scene can be represented with fewer vertices. We found that our BOR2G scenes
required 2–3 times fewer vertices than the same scene processed by KinectFusion.

To quantitatively analyse our BOR2G method, we conducted two real-world
experiments in large-scale environments. Again, we compare BOR2G and KinectFu-
sion fusion pipelines, butwe generate our depthmaps from amonocular camera using

Fig. 3 Comparison of KinectFusion (left) and BOR2G regularisation (right) methods for a 3D
reconstruction of a synthetic [7] environment by fusing noisy depth maps. As input, we use truth
depth maps with added Gaussian noise with standard deviation of σn = 10cm. The Phong shading
demonstrates how our regularisation produces consistent surface normals without unnecessarily
adding or removing surfaces

1http://www.doc.ic.ac.uk/~ahanda/VaFRIC/index.html.
2http://www.doc.ic.ac.uk/~ahanda/HighFrameRateTracking/downloads.html.

http://www.doc.ic.ac.uk/~ahanda/VaFRIC/index.html
http://www.doc.ic.ac.uk/~ahanda/HighFrameRateTracking/downloads.html
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Table 1 Timing Results of BOR2G regularisation on an NVIDIA GeForce GTX TITAN graphics
card

Experiment Voxels Vol. size (m) Iterations Reg. time (s) Memory (MB)

Woodstock 5123 6 × 25 × 10 100 11.09 640

Acland 5123 4 × 6 × 30 100 11.24 640

For the configuration parameters, only the volume’s dimension changed, but the number of voxels
(and hence memory requirements) remained consistent between experiments
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Fig. 4 Woodstock Data Set: Comparison of the KinectFusion (left) and BOR2G (right) dense
reconstruction techniques. The KinectFusion has a larger number spurious outlier segments and
requires more than twice the number vertices to represent the structure due to its irregular surfaces.
The BOR2G method’s median and standard deviation are approximately half that of the Kinect-
Fusion method. a Comparison of Point Clouds. The KinectFusion implementation (left) produced
a large range of spurious data points when compared to our BOR2G method (right). The white
vertices are truth data and the colour vertices correspond to the histogram bins in b. b Histograms
of per-vertex-error when compared to laser-generated point clouds. The KinectFusion (left) has a
median error of 373mm (σ = 571mm) while our BOR2G (right) method has a median error of
144mm (σ = 364mm). Note that the BOR2Gmethod requires fewer vertices to represent the same
scene

the techniques described in [12]. The first represents the 3D scene reconstruction of
an urban outdoor environment in Woodstock, UK. The second is a long, textureless
indoor corridor of the University of Oxford’s Acland building. In both experiments,
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Fig. 5 Acland Data Set: Comparison of the KinectFusion (left) and BOR2G (right) dense recon-
struction techniques. Note that the laser truth data was only measured depth data for the lower-half
of the hallway. This results in the spurious errors for the upper-half where our depth maps pro-
duced estimates but for which there was no truth data. These errors dominate the right tail of the
histograms in (b). As with the Woodstock data set, the BOR2G method’s median and standard
deviation are approximately half that of the KinectFusion method. a Comparison of Point Clouds.
The BOR2G (right) method again outperformed the KinectFusion implementation (left). The white
vertices are truth data and the colour vertices correspond to the histogram bins in b. b Histograms
of per-vertex-error when compared to laser-generated point clouds. The KinectFusion (left) has a
median error of 310mm (σ = 571mm) while our BOR2G (right) method had a median error of
151mm (σ = 354mm). Note that the BOR2Gmethod requires fewer vertices to represent the same
scene

Table 2 Error analysis comparing KinectFusion and BOR2G methods

Experiment Median error (m) Standard deviation (m)

Woodstock (KinectFusion) 0.3730 0.5708

Woodstock (BOR2G) 0.1441 0.3636

Acland (KinectFusion) 0.3102 0.5708

Acland (BOR2G) 0.1508 0.3537

The BOR2G error is roughly half that of KinectFusion
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Fig. 6 The final 3D reconstruction of the large scale experiments using BOR2G with the Acland
building (left) and Woodstock, UK (right)

we used a frontal monocular camera covering a field of view of 65◦ × 70◦ and with
an image resolution of 512 × 384.

For ground truth, we generated metrically consistent local 3D swathes from a 2D
push-broom laser using a subset of camera-to-world pose estimates TWC ∈ SE(3) in
an active time window as,

ML = f (TWC , TCL, xL)

where f is a function of the total set of collected laser points xL in the same time
interval and TCL is the extrinsic calibration between camera and laser. The resulting
3D point cloud ML is used as ground truth for our large scale assessment.

Table1 summarises the dimensions of the volumeused for eachof the experiments,
the number of primal dual iterations, and the total running time required for our fusion
approach. The execution time for regularisation is highly correlated to the size of the
Ω space because regularisation is only performed on voxels within Ω . Figures4 and
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5 show a comparison between the ground truth and the 3D reconstructions obtained
using the BOR2G and the KinectFusion methods. To calculate our statistics, we
perform a “point-cloud-to-model” registration of the ground truth with respect to our
model estimate.3 The key statistics comparing the methods are precisely outlined
in Table2. For both scenarios, our BOR2G method was roughly two times more
accurate than KinectFusion. Finally, Fig. 6 shows the obtained continuous, dense
reconstructions of the indoor and outdoor environments.

7 Conclusions

In this paperwe presented a newapproach to reconstruct large-scale scenes in 3Dwith
a moving monocular camera. Unlike other approaches, we do not restrict ourselves
to object-centred applications or rely upon active sensors. Instead, we fuse a set of
consecutive mono-generated depth maps into a voxel grid and apply our Ω-domain
boundary conditions to limit our regularisation to the subset of observed voxelswithin
the voxel grid.

OurBOR2Gmethod results in amedian and standarddeviation error that is roughly
half that produced when using the same depth maps with the KinectFusion method.

In the future, we plan to use the Ω-domain principles to apply new boundary
conditions which select portions of the voxel grid for regularisation. These subsets
will be selected based on scene-segmentation heuristics. For example, we can extend
the Ω domain to include enclosed “holes” which will result in the regulariser inter-
polating a new surface. Alternatively, we could remove a segment fromΩ to prevent
regularisation of a scene segment which was better estimated in the depth map (e.g.,
high-texture object).
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Online Loop-Closure Detection via Dynamic
Sparse Representation

Moein Shakeri and Hong Zhang

Abstract Visual loop closure detection is an important problem in visual robot nav-
igation. Successful solutions to visual loop closure detection are based on image
matching between the current view and the map images. In order to obtain a solution
that is scalable to large environments involving thousands or millions of images,
the efficiency of a loop closure detection algorithm is critical. Recently people have
proposed to apply l1-minimization methods to visual loop closure detection in which
the problem is cast as one of obtaining a sparse representation of the current view
in terms of map images. The proposed solution, however, is insufficient with a time
complexity worse than linear search. In this paper, we present a solution that over-
comes the inefficiency by employing dynamic algorithms in l1-minimization. Our
solution exploits the sequential nature of the loop closure detection problem. As a
result, our proposed algorithm is able to obtain a performance that is an order of mag-
nitude more efficient than the existing l1-minimization based solution. We evaluate
our algorithm on publicly available visual SLAM datasets to establish its accuracy
and efficiency.

1 Introduction

Autonomous mobile robots are beneficial to work in hazardous environments, or
places out of range of human operators over long periods of time, such as explo-
ration and rescue. In many environments robots have no prior knowledge about their
surroundings. Therefore, it is essential for a robot to be able to map an unknown
environment itself in order to perform its tasks. Simultaneous Localization And
Mapping (SLAM) has been a focus of robotics research and, among the many issues
of concern, is the detection of loop closures, i.e., revisits to map locations.
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In order to be able to handle a large environment, a loop closure detection algo-
rithm must be efficient. The dominant approach in SLAM literature to meet this
requirement is based on visual bag-of-words (BoW) that achieves efficiency through
indexing. Visual BoWhowever often requires offline construction of a visual vocabu-
lary, whichmay not be representative of the environment that a robot will visit online,
and the step of keypoint detection and vector quantization can be computationally
costly.

An alternative to visual BoW for loop closure detection is compact whole image
descriptors that avoid the step of keypoint detection and vector quantization [13]. In
this case, loop closure detection is solved as a nearest neighbor search considering
the descriptor of the current view as the search key. Recently, an interesting solution
based on l1-minimization has been proposed that solves this nearest neighbor search
problem through sparse reconstruction. The proposed solution, although elegant, is
less efficient than linear search to find the nearest neighbor, and offers little incentive
for people to adopt.

In this paper, we improves the solution based on l1-minimization by exploiting the
sequential nature of the loop closure detection problem, i.e., successive robot views
look similar so that l1-minimization does not need to be solved from scratch. We
make use of recent algorithms in dynamic algorithms for l1-minimization to achieve
a solution that is an order of magnitude more efficient than the static l1-minimization,
without sacrificing accuracy. Most importantly, our solution is more efficient than
linear searsh and is therefore a competitive candidate in tackling the problem of
visual loop closure detection with whole-image descriptors.

The remainder of this paper is organized as follows. In Sect. 2, we discuss related
works that address the loop closure detection problem. In Sect. 3, we present a brief
overview of sparse representation using l1-minimization to solve the loop closure
problem. Also dynamic update of the optimization problem to avoid solving l1-
minimization for each input image is described. In Sect. 4, we explain how the pro-
posed dynamic sparse representation can be utilized in visual robot navigation and
in Sect. 5 we present the experimental results on standard datasets. Finally, we sum-
marize our approach and offer concluding remarks in Sect. 6.

2 Related Works

Loop closure detection is a fundamental problem in SLAM and is defined as the
detection of the event when a robot returns to a previously visited place. This infor-
mation is necessary, since it allows the robot to reduce and bound the errors and
uncertainty in the estimated pose and environment map. Loop closure detection has
been extensively studied and many solutions have been proposed over the years for
robot navigation. In this work we focus only on image-based methods.

One of the popular methods to address this problem is visual Bag-of-Words
(BoW). The BoW approach has achieved considerable success in content-based
image retrieval as well as in object recognition and image classification [5]. The
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solution uses an offline process in which features in training images are extracted
and their descriptors are clustered. The cluster centres then serve as visual words and
the collection of visual words form a visual dictionary or vocabulary [17]. Given a
query image, its visual features are vector quantized through a nearest-neighbor (NN)
algorithm tomatch with the visual words in the dictionary, and an image descriptor is
built in terms of the histogram of the visual words appearing in the image. Candidate
images that are similar to a query image can be retrieved efficiently using an inverted
index. Because the visual dictionary is built offline, the online cost includes feature
extraction, nearest neighbor search, and indexing of the query image. Although BoW
has been shown to be an efficient method for producing loop closure candidates, it
suffers two key weaknesses. First, an offline step is often needed to build a visual
vocabulary from training images, but the training imagesmay not represent the future
views of the robot appropriately. Secondly, the step of vector quantization, which
converts visual features into visual words required by indexing, can be inefficient
with a linear search and may cause perceptual aliasing [14], i.e., high similarity
between different locations.

Nister et al. [15] proposed “vocabulary tree” as a way of speeding up nearest
neighbor search in a large database and [3] used this method for loop closure detec-
tion in visual SLAM. Vocabulary tree was introduced as a hierarchical approach
to Bag of Words although a tree structure does not guarantee the exact nearest
neighbor. Cummins et al. [6] proposed FAB-MAP as a probabilistic appearance
based approach using BoW and showed its performance on large scale environment.
AlthoughGalvez-Lopez et al. [11] advance themethod by introducing a Binary BoW
(BBoW) to speed up the method, it still needs an offline process to build a dictionary.

As a competing approach to visual BoW, compact whole-image descriptors such
as Gist [16] have been recently employed in performing visual loop closure detec-
tion [13]. Rather than describing an image in terms of its keypoints, a whole-image
descriptor may simply use a down-sampled version of an image, its gradient informa-
tion, or its response to a filter bank, to describe the image. Whole image descriptors
can avoid the computational complexity of feature detection and vector quantization
in BoW, but introduces the need to perform nearest neighbor search in matching the
descriptor of the current view and those of the map locations. In addition, the qual-
ity of detected loop closures can be affected as the result of simple representations.
These issues have been alleviated with some success with the help of the Monte
Carlo technique [13].

Most recently, an interesting solution has been presented to cast the loop clo-
sure detection problem as one of sparse reconstruction [12]. The solution uses
l1-minimization algorithms and is accurate in matching the current view with the
map images. In their work, the current view of the robot is matched with a small
number of the all observations from the map images through convex l1-minimization
which provides a sparse solution. By using a fast convex optimization technique,
they showed their method to be fast enough for a map with 8,500 images. However,
since their method needs to solve l1-minimization problem from scratch for each
newly captured image, increasing the number of images as the map size grows leads
to a computational complexity that can be infeasible in large scale environments.
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In fact, their method has a time complexity that is worse than linear search, as we
will show in the experimental result section, and this gives little incentive for one to
choose this method for solving the loop closure detection problem.

To address the computational complexity issue of solving l1-minimization from
scratch, in this paper we introduce a highly efficient approach for loop closure detec-
tion by first solving a static l1-minimization problem once and then updating the
convex l1-minimization solution dynamically to avoid solving a new optimization
problem for each newly captured image. We exploit the fact that in visual SLAM the
current robot view is similar to the recent previous views. We use this property of
the loop closure detection problem to formulate our solution as the dynamic update
of the solution to l1-minimization in the previous step.

3 Sparse Solution for Loop-Closure Detection

Sparse Representation (SR) is a signal processing technique for reconstructing a sig-
nal by finding solutions to an underdetermined linear system and it is solved through
convex optimization algorithms. SR has been extensively used for face recogni-
tion [18], denoising [9], etc. We use this framework to find the closest image in a
robot map to a new observation for loop closure detection in SLAM. In this section,
we first present a brief overview of sparse representation and l1-minimization. Then
we will describe the dynamic update of the convex minimization problem to approx-
imate the solution without solving a complete new minimization.

3.1 Loop Closure Detection via Convex l1-Minimization

Image matching is essential for loop closure detection in visual SLAM. One
recent successful image matching method, especially in large datasets, is the SR
method [12]. Let n be the number of images in the robot map, and m be the dimen-
sion of the descriptor of each image in the map. Further, assume y to be the current
view of the robot. The map images form a matrix A ∈ Rm×n , and the linear repre-
sentation of y can be rewritten in terms of all map images:

y = Ax0 , y ∈ Rm (1)

where x0 represents the contributions of the map images to the reconstruction or
representation of the current view. In SR the system is underdetermined with m < n.
Therefore, recovering x0 constitutes a non-trivial inverse problem. A classic solution
to this problem is linear least squares, which finds the minimum l2-norm solution to
this system.

x̂2 = argmin‖x‖2 subject to Ax = y (2)
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Equation (2) can be easily solved, but the solution x̂2 is dense (i.e., all its elements
are non-zero in general) as is shown in [18] and is therefore not useful to retrieve
y. Due to the fact that the query image can be represented using the map images at
locations similar to the current robot location—if there is loop closure—the repre-
sentation is naturally sparse, i.e., all but a small number of the elements of x are 0.
The sparsest solution to y = Ax is obtained by the following optimization problem:

x̂0 = argmin‖x‖0 subject to Ax = y (3)

The problem of finding the sparsest solution of an under-determined system of linear
equations is NP-hard and difficult even to approximate [1, 18]. The theory of sparse
representation [8] shows that if the solution x̂0 is sparse enough, the solution of
the l0-minimization is equal to the solution of the l1-minimization, and x0 can be
retrieved by computing the minimum l1-norm:

x∗ = argmin‖x‖1 subject to Ax = y (4)

In real applications such as image matching in visual SLAM, a true loop closing
image y can only be represented bymap images approximatelywith slightly different
illuminations, translations, and rotations. In such cases ‖Ax − y‖2 ≤ ε, where ε > 0.
So, tofinda sparse solution x∗, one coulduse conventional l1-regularized least squares
regression as follows:

x∗ = argmin
x

1

2
‖Ax − y‖22 + λ‖x‖1 (5)

where l1-regularization enforces sparsity on x∗; unfortunately, the complexity of
solving (5) grows polynomially with m and n.

3.1.1 Solving l1-Minimization

In practice, for loop closure detection in visual SLAM, we have to solve (5) online
and accurately. One of the fastest l1-minimization methods is homotopy algorithm
associated with the basis pursuit denoising (BPDN) [4] approach, which is applied
by Latif et al. [12] and described below for the completeness of presentation.

A solution x∗ to (5) should follow the condition [2, 10]:

‖AT (Ax∗ − y)‖∞ ≤ λ (6)

In the above equation, we distinguish between the nonzero components and the zero
components of x∗. We denote x̄∗ the reduced dimensional vector built upon the
nonzero components of x∗. Similarly, AΓ denotes the associated columns in A (Γ
is a set with the indexes of nonzero elements in x∗). So, the optimality conditions for
any given value of λ are as follows [10]:
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AT
Γ (Ax∗ − y) = −λz (7)

‖AT
Γ c(Ax∗ − y)‖∞ < λ (8)

where AΓ is a m × |Γ | matrix from the columns of A indexed by Γ and vector z is
signs of x̄∗. AΓ c denotes all columns of A that are not in AΓ . From the support Γ

and z, the solution x∗ can be calculated as follows [2, 10]:

x∗ =
{

(AT
Γ AΓ )−1(AT

Γ y − λz) on Γ

0, otherwise
(9)

The algorithm proceeds by computing (7), (8), and (9) iteratively, until AT (Ax∗ −
y) < c (a small constant such as 10−6) and the final x∗ represents the solution for (5).

3.2 Dynamic Update for Homotopy

The static homotopy solution described in the previous section has a complexity
that is polynomial in n and m, and can therefore be too slow for a large scale map.
However, in loop closure detection, we expect the current image captured by a robot
to be similar to the image that robot captured in the previous time instance. So, we
can update the l1-minimizer for the last image, described in Sect. 3.1.1, to obtain the
solution to the current image without solving the optimization problem from scratch.
Asif and Romberg [2] explained the problem of estimating a time varying sparse
signal from a series of linear measurement vectors to update the standard BPDN
homotopy dynamically. They assumed that the signal changes only slightly between
measurements, so that the reconstructions will be closely related, an assumption that
holds true in visual SLAM for finding the best match between the current image
and the map images. This dynamic method enables us to arrive at a solution that is
highly efficient and capable of handling large-scale robot environments. In the rest of
this section, we apply the dynamic algorithm [2] to loop closure detection in visual
SLAM.

Assume that we have solved the BPDN problem (5) for a given value of λ. Now,
for a new image, we express it as a m-dimensional feature vector y̆, and the problem
we have to solve for the new image approximately is:

argmin
x

1

2
‖Ax − y̆‖22 + λ‖x‖1 (10)

with the same value of λ in (5). In classical approaches (10) is solved for each
image without benefiting from the just-completed solution. Our goal is using the
information from the solution of (5) to quickly compute the solution for (10). Thus,
we use the homotopy formulation in [2]:
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argmin
x

1 − ε

2
‖Ax − y‖22 + ε

2
‖Ax − y̆‖22 + λ‖x‖1 (11)

where ε is the homotopy parameter. By increasing ε from 0 to 1, (11) moves from
the solution of (5) to the solution of (10). By adapting the optimally conditions of
(7) and (8) for (11), we have:

AT
Γ (Ax∗ − (1 − ε)y − εy̆) = −λz (12)

‖AT
Γ c(Ax∗ − (1 − ε)y − εy̆)‖∞ < λ (13)

where Γ is the support of solution x∗ and z is its sign sequence on Γ . From (12) the
solution x∗ for (11) follows a piecewise linear path as ε varies. The critical point in
this path occurs when an element is either added or removed from the solution x∗.
Parameter ε increases incrementally from 0 to 1 and [2] proved that the direction of
the solution x∗ moves by:

∂x =
{

(AT
Γ AΓ )−1AT

Γ (y̆ − y), on Γ

0, otherwise
(14)

With the moving direction given by (14), we are able to find the step-size θ [2],
which leads us to the next critical value of ε. Afterwards, the solutions at that point
are as follows:

ε ←− ε + θ, x∗ ←− x∗ + θ∂x (15)

This procedure is repeated from (12) to (15) until ε = 1 and the final x∗ represents
the solution for (11), which means the best matched images could be found by this
dynamic updating method without solving (11) independently.

4 Implementation Details and Discussion

We have formulated loop closure detection problem with the dynamic update of
BPDN homotopy algorithm in Sect. 3.2. Here, we explain how this novel formulation
can be utilized in visual loop closure detection.

4.1 Initialization

To initialize our solution to loop closure detection and construct our A matrix, we
use the first n images or keyframes captured by the robot where n is a small number
(e.g., 20). In addition, as is customary, we exclude the last l images seen by the robot
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from consideration in matching the current view with the map images in order to
avoid triggering false loop closure detection due to the similarity between successive
images. l is another small number where l < n (e.g., 15).

After constructing A, for the next query imagewe use standard homotopy to obtain
the initial solution x∗ just once, and this solution is updated via dynamic method for
all the subsequent images while the robot moves and captures additional keyframes.

4.2 Selection of the Top Candidate from Solution x∗

The solution x∗, obtained by either homotopy or its dynamic update, is naturally
sparse and represents candidate images from the robot map to best match with the
current view.Tofindaunique image andpotentially close a loop,we select the greatest
contribution αi from the solution x∗ = [α1, . . . ,αn]. The index i , corresponds to the
column of the matched image in the map. To improve the chance of true positive
detection and reduce false alarm, we use the heuristic that if 2-norm between the
matched image and the current image is less than a predefined threshold τ , a loop
closure is detected (‖A:,i − y̆‖2 < τ ). τ can be chosen empirically and, as will be
shown in our experiments, the precision of the detected loop closures can reach
100%.

We should add that the proposed method accommodates the growth of the robot
map, when a novel image is detected, by adding a column to the end of the matrix A,
i.e. Ak = [Ak−1, fk] so that the map grows incrementally similar to [12]. fk denotes
the descriptor of kth image being added to the map. The main steps of our method
are summarized in Algorithm 1.

Algorithm 1 Closing Loops via the Proposed Method
Initialization:
Preparing Matrix A (see Sect. 4.1), λ = 0.5,

For the first query image i
Obtain x∗ with Solving (5) via standard homotopy
Closing loops (see Sect. 4.2)
Update matrix A (see Sect. 4.2)

For all query images i to n
Update x∗ via dynamic method (see Sect. 3.2)
Closing loops (see Sect. 4.2)
Update matrix A (see Sect. 4.2)

4.3 Discussion

In terms of computational cost, although homotopy is one of the popular and fastest
solvers for SR, the computational complexity of homotopy is still O(dm2 + dmn) to
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recover a d-sparse signal in d steps. Obviously, this complexity grows polynomially
withm and it is expensive for large-scale datasets ormaps. In contrast, in the proposed
method, for each query image, the main computational cost comes from solving a
|Γ | × |Γ | system of equations to compute the direction in (14). |Γ | is equal to the
number of nonzero elements of the sparse solution x∗ which means its size is small
enough. Therefore, the computational cost of the proposed method is significantly
lower than the static homotopy method.

5 Experimental Results

In this section, we perform a set of experiments to demonstrate and validate the capa-
bility of the dynamic updating of l1-minimization method to perform loop closure
detection in visual SLAM. In particular, we evaluate the computational cost and the
accuracy of the proposed method and compare it with the standard l1-minimization
in [12] and a nearest neighbor (NN) method. Since the proposed method is appro-
priate to detect loop closure in large scale datasets, we compare our method with
FAB-MAP as well. We use three datasets: New College, City Centre, and a Google
Street View dataset, with the following details.

• New College: This dataset consists of 2146 images along a 2.2km trajectory. Each
image has originally a resolution of 640 × 480 and is down sampled to 320 × 240.
The dataset provides stereo images from the left and right of the robot, and we
use both images from each location as query image with a combined resolution of
640 × 240 so that n = 1073.

• City Centre: This dataset consists of 2474 images and similar to New College
dataset provides stereo images. Each image has a resolution of 640 × 480 and is
down sampled to 320 × 240. Again, we use both images from each location as
query image with a combined resolution of 640 × 240 so that n = 1237.

• Google Street View: This dataset consists of about 50,000 images captured in
downtown Pittsburg by Google. This dataset has omni-directional images by four
cameras at each location, and we reduce the resolution of the obtained panoramic
view to 640 × 240. The number of locations in this dataset is around n = 12,500.

To describe an image, we use HOG [7] with m = 576 dimensions and a constant
weighting parameter λ = 0.5. In this section, we focus on the capability of our
dynamic model in comparison with the static homotopy and NN method. In all
methods we use the same algorithm for closing loops. Also, to be consistent with [12]
we just pick the highest α as a top candidate (the first method in Sect. 4.2).
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5.1 Execution Time

In the first set of experiments, we compare the computational cost of the proposed
method with the standard l1-minimization and the NN method, when the size of the
dataset is increased incrementally. We run the experiments in Matlab 2011b on a
desktop computer with Core-i7 CPU of 3.40GHz and 16GB RAM.

Figures1 and 2 show the execution time for finding the best candidates on “City
Centre” and “New College” datasets respectively, when the images are added to the
map incrementally. These figures illustrate the proposed method is faster and more
stable (smaller standard deviation) than the standard L1-minimizer, by a factor of
four on average. Also, our dynamic model is around two times faster than the nearest
neighbor method on both datasets.

To show the capability of the proposed method on larger datasets, we compare
the computational time of the dynamic method with the standard l1-minimizer and
NN method to find the best match on “Google Street View” dataset in Fig. 3. This
experiment confirms that the proposed method is much faster than both the stan-
dard homotopy and NN methods when the map is large. Also, Fig. 3 demonstrates

Fig. 1 Execution time
comparison (in seconds) on
“City Centre” dataset
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Fig. 2 Execution time
comparison (in seconds) on
“New College” dataset
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Fig. 3 Execution time
comparison (in seconds) on
“Google Street View”
dataset with using of 576
dimensional HOG descriptor
for images
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Fig. 4 Execution time
comparison (in seconds) on
“Google Street View” dataset
with using of 81 dimensional
HOG descriptor for images
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the dynamic update method has much smaller standard deviation than the standard
homotopy method to obtain the solution as the map expands with additional images.
Furthermore, comparison of Figs. 3 and 4 shows the scalability of our model in com-
parison with two other methods in terms of feature vector dimension. By increasing
m as the dimension of feature vector, computation time of the two other competing
methods increases at a faster rate than ourmodel. The qualitative result on theGoogle
Street View dataset is also shown in Fig. 5 where the blue lines represent the robot
map and the red dots represent detected loop closures by the proposed method. The
ground truth of loop closures (in green dots) can be found in Fig. 6.

Table1 shows the quantitative results of Figs. 1, 2 and 3 in terms of average
execution time and standard deviation on the three datasets. For small maps like
City Centre or New College datasets, the proposed method is 10 times faster than the
standard homotopy on average. The execution time on theGoogle Street View dataset
in Table1 shows the capability of our method on large maps in comparison with the
standard homotopy and even NN method. The average computational time of the
standard homotopy increases more than 20 times from around 3.5 to 77ms, when
the map grows 10 times from around 1200 images to 12,000 images; however, the
computational time for the proposedmethod only increases linearly, and the standard
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Fig. 5 Qualitative result of
the proposed method on
“Google Street View”
dataset to find loop closures

5.842 5.844 5.846 5.848 5.85 5.852
x 105

4.4767

4.4768

4.4769

4.477

4.4771

4.4772

4.4773

4.4774

4.4775

4.4776

x 106

Fig. 6 Graphical ground
truth for “Google Street
View” dataset from Pittsburg

Table 1 Execution time statistics for one iteration of the loop detection algorithm of the proposed
method, the standard homotopy, and NN method on different datasets

Map size (K) Nearest Neighbor Standard homotopy Proposed method

Mean (ms) Std (ms) Mean (ms) Std (ms) Mean (ms) Std (ms)

City
Centre

1.2 1.91 0.20 3.59 2.28 0.40 0.26

New
College

1.1 1.74 0.23 3.32 2.52 0.39 0.22

Google
Street

12.5 26.80 1.53 77.34 33.40 4.97 0.82

deviation increases approximately 3 times when the map grows 10 times. In absolute
terms, with crude extrapolation, our proposed algorithm could potentially perform
loop closure detection in a map with a million images in under one second.
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5.2 Loop Closure Detection Accuracy

In this part, we compare the accuracy of the proposed dynamic method against the
standard homotopy method for the loop closure detection. Figures7 and 8 show the
precision recall curves of the proposed method and the standard homotopy method
on “City Centre” and “New College” datasets respectively. Like before, no specific
verification step was used and the decision for closing loops is only based on simple
thresholding of the top αi as described in the Sect. 4.2. According to these figures,
the accuracy of the proposed method using a dynamic algorithm is essentially the
same as the standard l1-minimizationmethod. Therefore, using the proposedmethod,
loop closure detection can be solved much faster without losing accuracy. We also
compare the proposed method with FAB-MAP as a baseline method for large-scale
dataset in Table2. Although FAB-MAP is not the state-of-the-art in terms of loop
detection accuracy, it has been evaluated on the samedatasets as used in thiswork, and
is therefore directly comparable. At 100% precision, the proposed method achieves
68 and 57% recall on “City Centre” and “New College” datasets with τ = 0.98

Fig. 7 Precision and recall
curves of the proposed
method, the standard
homotopy, and NN method
for loop closure detection on
“City Centre” dataset
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Fig. 8 Precision and recall
curves of the proposed
method, the standard
homotopy, and NN method
for loop closure detection on
“New College” dataset
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Table 2 Comparison of the recall between the proposed method and FAB-MAP as baseline at
precision 100%

City Centre (%) New College (%)

Proposed method 68 57

FAB MAP 37 48

and τ = 0.45 respectively, which is higher than the recall for FAB-MAP method
reported in [6]. τ is empirically chosen to allow comparison with other methods at
100% precision.

6 Conclusion

We have presented in this paper a novel technique to detect loop closure that is
highly efficient in time and competitive in detection accuracy. The proposed method
formulates the loop closure detection as a sparse representation problem. Since
in visual SLAM the current view of the robot is similar to the most recent previ-
ous image, we are able to update the obtained solution from one iteration of static
l1-minimization for loop closure detection using the subsequent robot view without
solving the minimization problem from scratch. Using our dynamic update method,
loop closure detection can be solved much faster than the static method without
losing accuracy. The proposed method is therefore more scalable and able to han-
dle larger robot maps. The reliability and efficiency of the proposed method have
been validated on three different publicly available datasets. In the future, we plan
to implement the proposed algorithm on real robots in an online SLAM system.
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Large Scale Dense Visual Inertial SLAM

Lu Ma, Juan M. Falquez, Steve McGuire and Gabe Sibley

Abstract In this paper we present a novel large scale SLAM system that combines
dense stereo vision with inertial tracking. The system divides space into a grid and
efficiently allocates GPU memory only when there is surface information within
a grid cell. A rolling grid approach allows the system to work for large scale out-
door SLAM. A dense visual inertial dense tracking pipeline incrementally localizes
stereo cameras against the scene. The proposed system is tested with both a simu-
lated data set and several real-life data in different lighting (illumination changes),
motion (slow and fast), and weather (snow, sunny) conditions. Compared to struc-
tured light-RGBD systems the proposed systemworks indoors and outdoors and over
large scales beyond single rooms or desktop scenes. Crucially, the system is able to
leverage inertial measurements for robust tracking when visual measurements do
not suffice. Results demonstrate effective operation with simulated and real data,
and both indoors and outdoors under varying lighting conditions.

1 Introduction

Large Scale SLAM is an important research area in robotics and computer vision.
Perhaps the point based approaches [1–3] are the most popular ones for large scale
SLAM. Normally, such approaches use a point cloud to reconstruct the scene and
cannot reconstruct connected surfaces. These approaches register the point cloud in
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Fig. 1 An example of the reconstruction result for an outdoor scene from 7000 stereo frames
(approx. 75 million vertices). a–b Reconstruction detail of a scene with both shadow and harsh
illumination, and snow on the ground. c An overview of the camera path

different views and present the reconstruction result as a point cloud. However, a
connected surface is important for planning and control of robots (Fig. 1).

Dense SLAM with volumetric representation have been popular in recent years
[4–6]. Such techniques use a Truncated Signed Distance Function (TSDF) to repre-
sent the scene surface and incrementally refine it with the registered depth frames.
Meanwhile, similar approaches have also been proposed in monocular SLAM
[7, 8]. Usually, these approaches use a fixed amount of GPU memory for track-
ing and reconstruction; this hard constraint limits the size of the reconstructed scene
and cannot be used for large scale dense SLAM.

Several systems have been proposed in order to reconstruct large scale scenes
with volumetric approaches. Zeng et al. [9] and Steinbrucker et al. [10] proposed
an octree based approach for indoor dense SLAM. Roth and Vona [11], Whelan et
al. [12] and Finman et al. [13] used a fixed bounded volume to represent portions
of the scene and incrementally reconstruct it with a rolling scheme. However, these
approaches mostly focus on the indoor scene and uses RGB-D sensors, which does
not perform outdoor SLAM with stereo data. Meanwhile, these approaches heavily
rely on ICP for tracking which are not suitable for outdoor environments due to the
quality of the depth images from the stereo sensors. Besides, a combined ICP + RGB
tracking approach [11] may also fail if the scene only contain simple geometric or
color information.

Here we propose a new large scale dense visual inertial SLAM system that does
not rely on active depth sensing. The system uses rolling grid fusion scheme which
effectivelymanagesGPUmemory and is capable of reconstructing a fully dense scene
online. The system obtains depth images from stereo matching [14] and simultane-
ously localizes the camera based on whole image alignment and inertial data while
reconstructing the scene with SDF fusion. The system automatically saves and loads
data from device, host memory and hard disk, and generates a mesh (.obj, .dae, .ply
formats) of the large scene (e.g. 20 millions vertices) in seconds. Given these com-
ponents, a wide range of applications can be developed, especially in robotics where
the proposed system is capable of providing high fidelity meshes of any outdoor
environment for use in path planning and control.

Perhaps the most similar system to ours is [12, 15–17]. There are, however, key
methodological differences. (1) Our approach focuses on outdoor scenes and uses
stereo data while [12, 15, 17] uses an RGB-D sensor and mainly focus on indoor
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scenes. (2) Our system uses an dense visual inertial stereo system for tracking while
other rely solely on cameras, either ICP or RGB-D approach. (3) Our approach uses
a simple rolling grid SDF pipeline for reconstruction while [15, 17] used a hashing
scheme, [12] used a rolling SDF scheme and [16] uses a fix grid volume scheme.

The remainder of this paper is structured as follows: Sect. 2 briefly covers prelimi-
naries of our approach. Section3 covers the technical details of the Rolling Grid SDF
approach. Section4 covers the dense visual inertial tracking. Section5 offers testing
methods and discusses the systemperformancewith indoor and outdoor experiments.
Section6 addresses failure cases and limitations. Section7 draws conclusions.

2 Overview

2.1 Grid Based Volumetric Representation

The proposed system uses a grid based volumetric representation, namely the Grid
SDF S (see Fig. 2), to reconstruct a 3D model of the scene in the current camera
view. Each cell c in the Grid SDFS is a smallNxNxN dimensional TSDF (Truncated
Signed Distance Function) volume and contains a pointer to GPUmemory. The Grid
SDF S contains (xg, yg, zg) cells in the each dimension.Assuming that the resolution
of each voxel is rv, the maximum size of the scene in each dimension is the number
of cells in that dimension times the size of the SDF. For example, for the x dimension
we have:

Fig. 2 a An example of the Grid SDF S . In this example, S has (e.g. (8 ∗ 8 ∗ 8)) cells in the
x, y, z directions. The GPU memory of a cell g in S is not initialized (gray cells) until there is
actual information available corresponding to c (red cells). b An example of the pose ofS w.r.t the
camera. The z axis of the initial pose ofS starts from the minimum distance of camera range dmin
to rz
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rx = rv ∗ N ∗ xg. (1)

The values of xg and yg are usually selected depending on the horizontal and verti-
cal field of view of the camera, and zg is based on the maximum depth measurement
desired. This can be selected dependent on the maximum expected scene depth, or
ideally, thresholded by the maximum depth uncertainty desired given the rig’s stereo
baseline. Notice that when initializing S , the system does not allocate any GPU
memory for cell c. Meanwhile, given the camera with an initial pose Twc, the system
defines a Grid SDF S as in Fig. 2, where the size of S is (rx, ry, rz).

2.2 Grid Pose Representation

The system uses Pg to represent the global pose of the whole grid, S , with Pg =
(0, 0, 0) being the world pose of the initial Grid SDF). Pl represents the local pose
of a cell c within the grid. Thus, a cell c in the current camera view can be accessed
by its local index and a voxel within the cell can also be accessed by Pg and Pl.

2.3 System Structure

The following flow chart (Fig. 3) shows the structure of the proposed system.
Initialization The system first initializes a Grid SDF S without allocating any

GPU memory for any cell c inS .
Tracking Given the input stereo data, the system generates the depth images of the

current frame via stereo matching and localizes the camera between the reference
frame Twr and the live frame Twl via dense visual inertial tracking.

Fig. 3 Flow chart of the proposed system.After system initialization, the proposed system localizes
the pose of cameras and incrementally reconstructs the scene with a rolling SDF scheme. Portions
of the scene that are out of the camera view will be streamed from the GPU memory to the CPU
memory (or the hard disk) directly. Such data can also bemerged into a complete mesh via marching
cubes
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Rolling and Streaming Once the system updates the latest world pose of the
camera, the system will check if rolling is needed based on the motion of the camera.
If required, the systemwill stream the data of cells c that are out of the current camera
view from the GPU memory to the CPU memory.

Reconstruction Once streaming is done, the system model can be updated via
SDF fusion. Also, an updated view of the reconstructed scene is obtained via ray
casting.

3 Grid Based SDF Fusion

3.1 Rolling Grid

In large scale outdoor SLAM, it is important to continuously performmapping while
at the same time reuse the GPU memory of voxels that have been taken out of the
camera view. The proposed system achieves this via a rolling scheme which streams
the data of cells that are currently out of the camera view into the CPU memory and
reuses the GPU memory of the cells.

To address this problem, we assume the initial pose of the Grid SDF S is the
origin, and S moves with respect to the camera motion. The global pose of S in
the x, y, z directions will increase by 1 if the camera moves +rx,+ry,+rz in the
corresponding direction, and −1 if in the opposite direction.

Meanwhile, under the current camera view, the system can easily access a cell c
ofS via its local pose. However, based on the motion of the camera, a cell (e.g. c

′
)

inS may have moved out of the current camera view. To reuse the GPU memory of
cell c

′
for a new cell c

′′
in the current camera view, the system will stream the data of

c
′
from the GPU memory to the CPU memory and reuse the same allocation for the

new cell. In this case, we can no longer access c
′′
via its local index directly in the

current S , implying that the real index of c
′′
will be different from its local index.

Figure4 shows how the system computes the real index of a cell based on its local
index during rolling.

The proposed system performs rolling in a very straightforward way, as shown
in Fig. 4. Assume that the initial scene the camera sees is the word ′GRID′. If the
camera moves forward in four steps, (e.g. Fig. 4a), it will see the letters ′L′, ′L′,′O′,′R′
respectively. Here, each step (the minimum rx/xv, ry/yv, rz/zv) of the camera motion
in a direction is considered a shift in that direction. Each timewhen the cameramoves
forward, the real index of the new cell (e.g. L in the second column of Fig. 4a) will be
saved to the cell which just moved out of view, and the corresponding previous cell
(letter D) will be saved to the CPU memory. Now, the local index of L in the current
Grid SDF should be 3, but its real index is 0 instead. The following pseudocode
shows how the system computes reused GPU memory by streaming cells that are
out of the current camera view:
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Fig. 4 An example of rolling Grid SDF. The camera is moving in the positive (a) and negative (b)
directions; This example shows how the system reuses the GPU memory of the scene that is out of
the current view. Here we assume the number of cells is 4 and the initial camera location is in the
letter D, seeing the letter sequence GRID (from far to close). In each steps, the camera moves in the
direction of the arrow. The white cells is the scene that the camera sees before, remain stationary
within GPU memory. The blue cells store the scene that the camera sees only in the current view,
while the corresponding previous GPU-located cells have been streamed to the CPU memory. For
example, in (a), column 2, the camera moves one steps forward, sees LGRI (from far to close) in
the current view, streams D from the GPU memory to the CPU memory, and then reuses the GPU
memory location to store the new view L (in blue)

Meanwhile, once rolling is performed, the real index of a cell can be computed
directly by algorithm 2. Notice the voxel position is the real position of the voxel
(3D point) in the space in the current Grid SDF.

Algorithm 1 Compute the index of cells that needs to be streamed from GPU to
CPU in a given direction (e.g. in the x axis)
Require: shift: s, previous shift: sp, cell index: x, number of cells in one dimension xg, stream flag:

f
Ensure: s != 0 and s < xg and s > −xg

if s > 0 then
if sp ≥ 0 and x ≥ sp and x < sp + s then

f ← true
else if x ≥ xg + sp and x < xg + sp + s then

f ← true
else

f ← false
end if

else
if sp < 0 and x ≥ xg + sp + s and x < xg + sp then

f ← true
else if x ≥ sp + s and x < sp then

f ← true
else

f ← false
end if

end if
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Algorithm 2 Access a voxel in the Grid SDF by the voxel position (e.g. in the x
axis)
Require: shift: s, local index: xl , number of cells in one dimension xv, real index: xr
Ensure: s < xv and s > −xv

if s > 0 then
if xl < xv − 1 − s then

xr ← xl + s
else

xr ← xl − (xv − s)
end if

else
if xl > −s then

xr ← xl + s
else

xr ← xl + xv + s
end if

end if

3.2 SDF Fusion

The system updatesS by fusing every valid point from the stereo depth map Id into
S once Twc is tracked:

S
′ = F (S , Id, Twc) (2)

Here, F (·) is the SDF fusion operation. Twc is the world pose of the camera in the
live frame (i.e. current frame). The system also generates a virtual gray image Ig

v and
depth image Id

v by ray casting ϒ(·) [4]:

Iv = ϒ(S , Twv), Iv = Ig
v ∪ Id

v (3)

where Twv is the pose of the virtual camera.
Notice during fusion, the system will check every valid voxel position in the Grid

SDF and project the voxel to 2D. If there is a valid 2D pixel in the current live image
with a valid depth value, the voxel will be updated (a similar operation also happens
during ray casting).

3.3 Device to Host Streaming

The proposed system automatically streams data from device memory to the host
(CPU) memory if the data present in the Grid SDF is out of the current camera view.
Once the memory block which hold the past SDF in the CPU memory is full, the
system streams data of the cells which has the furthest distance to the current camera
pose from the host memory to the hard disk. See Fig. 5.
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Fig. 5 Host—device streaming pipeline in the system. The blue block in the GPU memory will be
streamed to the host CPU memory array when the data is out of the camera view and will be saved
to the hard disk when the CPU memory array is full

When the camera moves to a new location, the system checks if the data in the
new location previously exists in the system. If it does, the system will reuse that
memory and load it back from the CPUmemory or the hard disk to the GPUmemory.
Reloading saved data helps to complete the model of the scene from different views.
Notice that each time a cell file is saved in the host memory or the hard disk, the
system indexes it with a global and local index which allows fast retrieval of stored
cells. Since all the SDF data is stored as individual cell files in the host memory or
the hard disk, the system can merge any portion of the scene of interest into a mesh,
which can be used later for any robotic application.

4 Dense Visual Inertial Tracking

Tracking is performed in a windowed dense visual inertial bundle adjuster. Visual-
only frame-to-frame constraints are transformed into the IMU frame and added into
the bundle adjuster as binary constraints. Inertial measurements between frames are
integrated forming residuals against the estimated poses as seen in Fig. 6. Velocities
and IMU biases are also estimated, and are carried through in the sliding window.

Visual tracking is performedby aLucas-Kanade [18] stylewhole-image alignment
algorithm via the Efficient Second Order Minimization (ESM) technique [19], and
a 6-DOF camera transform is estimated by minimizing the photometric error (ev)
between a reference image and the current live image:

ev = ‖Ilive

(
ϕ

(
T̂lrϕ

−1 (ur, d)
))

− Iref (ur) ‖2. (4)

The pixelur in the reference frame is back-projectedϕ−1 using the camera calibra-
tion parameters and the associated depth value d obtained by the stereo reconstruction
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Fig. 6 Binary constraints from the visual tracker and integrated IMU poses, along with velocities
and accelerometer+gyrobiases are jointly optimized.The camera to IMUtransformTic is calibrated
offline

algorithm. The 3D point is then transferred into the live frame via the estimated trans-
form, T̂lr , and projected ϕ onto the camera.

The pose covariances from the visual tracking system are then added into the
bundle adjuster, which runs once a sufficient number of frames and inertial measure-
ments are obtained. The covariance of the inertial residual between two consecutive
frames is dependent on the number of measurements between images, and as such
must be carried forward during the integration process (Fig. 7). Details about inertial
integration and error propagation can be found in [20].

Inertial residuals between the parameters and the integrated state take the form
of:

eI =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎢
⎢
⎣

pwp − p̂
log

(
q−1

wp ⊗ q̂
)

vw − v̂
bg − b̂g

ba − b̂a

⎤

⎥
⎥
⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

, (5)

where (pwp − p̂) is the translation residual, log
(
q−1

wp ⊗ q̂
) ∈ R3 calculates the rotation

residual in so(3), (vw − v̂) is the velocity residual, and (bg − b̂g) and (ba − b̂a) are
the gyro and accelerometer bias residuals respectively.

A total of 15 parameters per frame are estimated during the sliding window opti-
mization: 6 for pose parameters, 3 for velocities, 3 for accelerometer biases and 3 for
gyroscope biases. Initial velocities as well as the biases are estimated and kept up to
date as the sliding window shifts during execution. Given the size of the sliding win-
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Fig. 7 Errors from the vision system (ev) are formed by compounding the estimated relative
transforms with world poses. Similarly, inertial errors (eI ) are formed by integrating inertial mea-
surements. Uncertainties (shown as ellipsoids) are used to weigh in residuals for the estima-
tion of the state parameters: world poses comprised of a translation (p) and rotation (q) vector

(Xwp = [
pwp qwp

]T ), velocities (Vw), accelerometer biases (ba) and gyroscope biases (bg)

dow and the unambiguity of scale from the stereo vision system, no marginalization
or conditioning is done on the sliding window as all parameters are observable.

The inclusion of inertial data enhances visual tracking in general, and in particular
during fast camera movements and low textured areas. The addition of the IMU also
speeds up visual tracking, since the typical coarse-to-fine pyramid scheme used in
visual odometry is no longer required. Instead, the visual tracking is initialized with
an estimated pose given by the integration of inertial measurements from the last
frame up to the point where a new image is captured. In this way, only a refinement
in the form of a few iterations at full image resolution is required for the final pose
estimate.

5 Result and Discussions

The proposed system is tested by a hand held camera and a ClearPath Robotics
Husky robot (Fig. 8) with two Ximea (MQ013MG-ON) gray scale cameras and a
Microstrain 3DM-GX3-35 Inertial Measurement Unit (IMU). The camera intrinsics
as well as sensor extrinsics are calibrated offline with a method similar to [21], and
the rigid sensor rig is attached to the robot via a T-mount.

We implement the system using the GPU for the reconstruction pipeline and
using the CPU with Intel Threaded Building Blocks for the visual inertial tracking
pipeline. All the real-world datasets were captured using the stereo camera + IMU
rig. The images were undistorted and scan-line rectified, andwere later fed to a stereo
matching technique [14] for depth map generation.
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Fig. 8 An example of the system platform. a A clearpath Husky robot. An b IMU and a calibrated
stereo rig or an RGB-D camera is mounted on the robot which provides stereo and inertial data
during navigation

To evaluate the performance of the proposed system, we tested it with a simulated
city-block dataset (15m by 15m in width and length, containing approximately 200
frames) with simulated IMU measurements and several real-world datasets (approx.
40–250m in length). For the real-world datasets, we captured a variety of indoor
and outdoor scenes under different lighting and weather conditions (e.g. sunny and
snow). To test the robustness of the proposed visual inertial tracking system, we
especially test the system in a dark office scene (Fig. 10) and in an hallway with very
simple geometry (Fig. 1), where either the traditional RGB-D approach or an ICP
approach would easily fail. During the experiments, we set the maximum depth of
voxels that fuse into the Grid SDF to 15m given the average maximum depth in all
the scenes and in order to limit any potentially erroneous depth data from the stereo
matching algorithm.

The dense visual inertial tracker initially performs visual odometry using a coarse
to fine approach via an image pyramid. After a theminimum number of image frames
is acquired, the sliding window kicks in and the image pyramid is no longer required

Fig. 9 An example of the reconstruction result for the simulated city block data. a The original
ground truth model. b An overview of the reconstruction result. c Close view of the reconstruction
result showing loop closure error
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since the IMU is capable of seeding the visual odometry optimization by providing
a hint of the camera’s pose. The window size used for all experiments was 15, with
the minimum number of frames being 10.

We tested the accuracy of the proposed systemwith a simulated city block dataset.
When compared against the ground truth depth map, the proposed system accurately
tracks and reconstructs the city block scene with online performance. The path error
is approx. 8cm after 60m of camera travel. When using the depth from the stereo
algorithm, the path error is approx. 5cm after the same camera travel. Figure9 shows
the original mesh and the mesh generated by the proposed system. Notice in the
detailed view the drift of the tracking system in the end of the reconstruction (Fig. 9c)
showing the relative loop closure error.

The proposed system also shows effective performance with real-world data.
While the quality of the depth images generated from stereo matching is affected
significantly by different lighting, texture and weather conditions, our system is
capable of successfully reconstructing all large-scale outdoor scenes with high a
quality mesh.

Figure10 shows the reconstruction result of an indoor office scene (approx. 30m
by30m) from6000 stereo frames. The systemhas a high precisionwhich reconstructs
fine details of objects in the scene.

While visual-only trackingmay easily fail in real-world scenes with simple geom-
etry, low texture or fast motion, the proposed visual inertial tracking shows a promis-
ing tracking result. Figures1, 11 and 12 show the system successfully tracking under
several difficult frames where the inertial measurements adjust the visual tracking
result.

Fig. 10 An example of the reconstruction result for an office scene (approx. 5000 stereo frames
(final mesh includes approx. 6 million vertices)) from a hand held camera (first row) and from the
Husky robot (second row)
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Fig. 11 An example of the reconstruction result for an outdoor snow scene from approximate 5000
stereo frames (final mesh includes approx. 32 million vertices). a A close look at a house in the
scene. b An overview of the scene mesh. c An overview of the scene texture

Fig. 12 An example of the reconstruction result for an outdoor snow yard from approximate 7000
stereo frames (final mesh includes approxi. 15 million vertices). a A close look of the scene. b An
overview of the scene mesh

In general, the cell representation of the SDF volume massively saves GPUmem-
ory. When testing our simulated and real-world datasets, we set the resolution from
5–25mm based on the dimension of the scene. In general, the proposed system
requires around 650–1500 MB GPU memory to store voxels of the current camera
view in a large scale scene while the regular SDF uses around 1000–3500 MB GPU
memory, due to the fact that in general scenes, most of the voxels are empty.

System Run-Time. We tested our system with a single NVidia TITAN GPU,
Intel i7 quad-CPU desktop, using 640× 480 pixel resolution input images and 2.5cm
resolution of voxels. Table1 shows our system run-time in different stages. Except
for final mesh generation, the system is capable of online performance.

Table 1 System run-time Stereo matching, 1 frame 15ms

Tracking (CPU), 1 frame 20ms

Reconstruction, 1 frame 32ms

Ray casting 8ms

Device-Host Streaming 1 cell 0.01ms

Generate cell to mesh (e.g.
13 million vertices)

15 s



154 L. Ma et al.

6 Failure Cases and Limitations

Although the system is robust to many real-world conditions, there are several lim-
itations of our current work. The final reconstruction and tracking results depend
heavily on the quality of the depth images which can be improved by [8]. The recon-
struction can also be improved by adding loop closure by changing the local and
global index of cells.

7 Conclusions

We present a large scale dense visual inertial SLAM system based on a rolling grid
fusion scheme. As far as we know this is the first system to combine inertial tracking
in a dense SLAM framework. The proposed system manages the space into small
volume grids and only allocates GPU memory for cells if data exists. A large scale
dense mapping solution is obtained via a rolling grid scheme with simple index
computation while the device and the host memory automatically stream between
each other in order to reuse the GPU memory. Depending on the requirements of
an actual application, the system utilizes stereo cameras in both indoor and outdoor
scenes. The system is tested in several outdoor and indoor scenes under different
lighting (illumination changes), weather (e.g. snow, sunny), and motion conditions
and shows promising results. In conclusion, the main contributions of the paper are:
(1) A new large scale outdoor dense mapping system based on stereo data and (2) a
new dense visual inertial dense tracking pipeline. We believe the proposed system
is useful for outdoor scene reconstruction and especially for planning and control of
high-speed ground vehicles.
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Dense and Swift Mapping
with Monocular Vision

Pedro Piniés, Lina Maria Paz and Paul Newman

Abstract The estimation of dense depth maps has become a fundamental module in
the pipeline of many visual-based navigation and planning systems. The motivation
of our work is to achieve a fast and accurate in-situ infrastructure modelling from a
monocular camera mounted on an autonomous car. Our technical contribution is in
the application of a Lagrangian Multipliers based formulation to minimise an energy
that combines a non-convex datatermwith adaptive pixel-wise regularisation to yield
the final local reconstruction.We advocate the use of constrained optimisation for this
task—we shall show it is swift, accurate and simple to implement. Specifically we
propose an Augmented Lagrangian (AL) method that markedly reduces the number
of iterations required for convergence, more than 50% of reduction in all cases
in comparison to the state-of-the-art approach. As a result, part of this significant
saving is invested in improving the accuracy of the depth map. We introduce a
novel per pixel inverse depth uncertainty estimation that affords us to apply adaptive
regularisation on the initial depth map: high informative inverse depth pixels require
less regularisation, however its impact on more uncertain regions can be propagated
providing significant improvement on textureless regions. To illustrate the benefits
of our approach, we ran our experiments on three synthetich datasets with perfect
ground truth for textureless scenes. An exhaustive analysis shows that AL can speed
up the convergence up to 90% achieving less than 4cm of error. In addition, we
demonstrate the application of the proposed approach on a challenging urban outdoor
dataset exhibiting a very diverse and heterogeneous structure.
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1 Introduction

The creation of denseworkspacemodels from cameras alone has long been a focus of
robotics research. The mapping task is sometimes seen in a limited light as simply a
precursor or at best dual for localisation. When maps were simply sparse collections
of points1 this narrow perspective was reasonable. But robots that can, through their
own motion, produce dense reconstructions offer a new vista for autonomous and
semi-autonomous plant inspection. But to do so the reconstruction process must be
rapid allowing in-situ formation of the dense scene structure. This paper is about
precisely that competency—creating dense depth maps rapidly.

Recent work has made clear the potential of variational methods in producing
dense volumetric reconstructions of small workspaces under controlled lighting con-
ditions [6, 10, 13]. In [13] the authors address the problem as a depth map estimation
from a set of keyframes with corresponding camera poses obtained from a PTAM
system. An energy function is optimized based on a data term that measures the
photoconsistency over a set of small-baseline images, as well as total variation (TV)
based regularization term. This preserves sharp depth discontinuities due to occlusion
boundaries, while simultaneously enforcing smoothness of homogeneous surfaces.
The problem is stated as the minimisation of an energy functional comprising both
terms by using an alternation scheme with a good initial seed. A similar approach
is adopted in [10]. In this case, the solution relies on a primal-dual formulation suc-
cessfully applied in solving variational convex functions that arise in many image
processing problems [4]. Despite the non-convex nature of the energy functional for
the depth map estimation, the authors provide theoretical insights to decouple the
terms leading to a two-stage optimization. Their solution is based on the application
of the well known Quadratic Penalty (QP) method firstly introduced in [15] in the
context of optical flow estimation with a similar energy formulation. In contrast to
[13], an efficient cumulative discrete cost volume is considered to compute one of
the terms allowing a robust initialization of the depth map before the optimization.
While [13] avoids an exhaustive point-wise search to find a minimum solution, [10]
provides strategies that accelerate the search while achieving good accuracy. A dif-
ferent approach was introduced in [6]. Instead of optimizing depth maps, a different
energy functional over a 3D volume is formulated using a primal-dual algorithm
for the minimization. The authors use an implicit truncated signed distance function
(TSDF) representation to compute the globally optimal fusion using a (TV regular-
ized) convex energy. Then the surface is extracted by finding the zero level set of the
accumulated TSDF. As input, the minimization receives initial depth map estimates
that are not required to be highly-accurate.

Despite these energy minimisation approaches reach soft real-time performance,
their application to active tasks such as planning and obstacle avoidance is criti-
cal. For instance, in [2] the authors follow a DTAM based approach to estimate
dense depth maps for live collision avoidance of a MAV. Their analysis shows that
online generation of each depth map requires usually 900 primal dual iterations

1As in early SLAM formulations.
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to converge with an estimated final error of 10cm, requiring a significant time of
500ms for this task. More recently the works of [1, 5, 8] introduce the use of the
Augmented Lagrangian (AL) in the field of video restauration and general image
inverse problems. As first paper contribution, we demonstrate the efficacy of the
Augmented Lagrangian method [3] for dense depth map creation using monocular
cameras which at the time of writing was the first time this had been done. Our exper-
iments show that AL method dramatically reduces the number of iterations (more
than 50% ) required for the decoupling approach adopted in [10].

A second contribution lies in our consideration of how to progress from an initial
guess to a final solution. In particular we need to reinforce pixels in the seed solution
containing plausible depth estimates and propagate its effect over those pixels with
less accurate depth estimates. We advocate that large texture-less areas of the RGB
images produce noisy and often grossly misleading meaningless regions in the initial
depth map that greatly impede successful optimisation. We propose a inverse depth
uncertainty estimation to calculate per-pixel adaptive confidences that aid the trade-
off between the data fidelity term and the regularisation term. This provides a novel
approach that affords us a principled way to only seed the optimisation with pixels
from regions which should yield reliable depth estimates. Furthermore, we offer an
illustrative study of the effect of three different photo-consistency measures. Our
motivation is to understand the degree to which each affects final solution accuracy
because each determines an initial seed solution for the optimisation.

In Sect. 2 we briefly review the approach presented in [10] to build an initial depth
map from monocular frames. Dealing with non-convex data terms requires careful
attention, thusSect. 3 is devoted to explain the sooftenusedQuadratic Penaltymethod
and the proposed Augmented Lagrangian method. How to estimate per-pixel depth
uncertainties for adaptive regularisation is introduced in Sect. 4. An evaluation of
the precision and convergence of the complete approach on monocular synthetic
datasets with perfect Ground Truth is described in Sect. 5. Also, we demonstrate the
application of the proposed approach on challenging urban outdoor dataset exhibiting
a very diverse and heterogeneous structure. Finally,we drawour conlusions in Sect. 6.

2 Building an Initial Seed

As in [10], to obtain an initial depth map for our optimization algorithm, we build a
cost volume Cr that accumulates, for a uniformly sampled set of inverse depths ξj,
j = 1 : d, the photo-consistency error of overlapping images. The reason for using
an inverse depth representation being that a uniform discretisation of ξ produces a
uniform sampling of epipolar lines in an image.

Figure1 shows a 2D top view of the process used to initialize each voxel of the
cost volume. Given a pixel ui ∈ u in a reference image Ir and an inverse depth ξj the
corresponding pixel in a neighboring image Ik ∈ I(r), where I(r) is the set of images
that overlap with Ir , is given by the warp
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Fig. 1 This example illustrates the process of building the “data fidelity” term for our energy
minimization problem. A discretised cost volume is built to accumulate the photo-consistency
error: for each pixel ui in a reference image frame Ir , we back-project the pixel along a discrete
set of inverse depth distances ξj in the interval [ξmax ξmin] obtaining the 3D pose for the center of
each voxel in the cube. Then each voxel center gets projected into the current image frame (Ik, ck)

and we compare the corresponding intensities according to a predefined similarity metric ρ∗
ij . The

results of these comparisons are stored in the corresponding cells. This process is repeated for all
overlapping image frames Ik ∈ I(r) and the final average cost is calculated according to Eq. (2)

wk(ui, ξj) = π(Tkrπ
−1(ui, ξj)) (1)

where π(x) describes a perspective projection of a 3D point x, π−1(ui, ξj) is the
back-projection of a pixel ui with inverse depth ξj and Tkr ∈ SE(3) is the relative
transformation between cameras corresponding to images Ik and Ir .

We have studied the effect of different photo-consistencymeasures in the accuracy
of depth map estimates. In particular, we have tested, for different window sizes W ,
the Sum of Squared Differences (ρSSD), the Sum of Absolute Differences (ρSAD) and
the Normalised Cross Correlation (ρNCC) which are described in Table1.

The average photometric error Cr(ui, ξj) for all images Ik ∈ I(r) and for each
inverse depth ξj is given by:

Cr(ui, ξj) = 1

|I(r)|
∑

k∈I(r)

ρ∗
ij(Ik, ui, ξj) (2)

Table 1 Similarity metrics

Metric Definition Equation

Sum of square distances ρSSD
ij

∑
i∈W ‖Ir(ui) − Ik(wk(ui, ξj))‖2

Sum of absolute distances ρSAD
ij

∑
i∈W ‖Ir(ui) − Ik(wk(ui, ξi))‖1

Normalized cross correlation ρNCC
ij

∑
i∈W Ir (ui)Ik (wk (ui,ξi))√∑

i∈W I2r (ui)
∑

i∈W I2k (wk (ui,ξi))
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where |I(r)| is the number of images that overlap with Ir and ρ∗
ij represents the chosen

similarity metric.
Once the cost volume is computed, an inverse depth map ξr(u) over the whole set

of pixels u can be recovered by searching for the minimum cost for each pixel:

ξr(u) = argmin
ξj

Cr(u, ξj) (3)

Since ξr(u) is usually noisy, it will be used as initial seed for the optimization algo-
rithm explained in the next section. Without loss of generality and to improve read-
ability, we will drop the subindex r and will refer only to ξ and C in the remaining
of the paper.

3 Dealing with Non-convex Data Terms

In this section we show howwe can improve the initial crude depth map using search
over a regular partitioning which replaces the so called “winner-takes-all approach”
described in Eq. (3). The searched solution ξ(u)∗ minimises the energy functional:

min
ξ

E(ξ) =
∫

�

w(u)||∇ξ(u)||ε + λC(u, ξ(u))du (4)

where � ∈ R2 is the depth map domain, w(u) is a per pixel weight based on Ir

gradient that reduces the effect of regularization across image edges, ||∇ξ(u)||ε is the
Huber norm and λ is a parameter used to define the trade-off between the regulariser
and the data term. After discretising the domain �, a depth map is redefined as the
set ξ = [. . . , ξij, . . .]. Therefore, we can express previous equation as:

min
ξ

ER(ξ) + λED(ξ) (5)

where ER(ξ) is the regularization term and ED(ξ) is the data term that corresponds
with the information stored in the cost volume. In order to solve Eq. (5), we will
make use of the iterative Primal Dual optimization algorithm presented in [4]. This
algorithm requires both the regulariser and the data term to be convex, howeverED(ξ)

is not a convex function. One solution to this problem is to decouple both terms and
solve instead the following equivalent constrained optimization

minξ ,η ER(ξ) + λED(η)

s.t. ξ = η
(6)

The advantage of the decoupling approach is that it allows us to independently solve
for the regulariser term using convex optimization methods and for the data term
using a simple exhaustive search in the cube. Obviously, both problems are in fact
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coupled by the constraint. In the following subsections we will discuss the main
possible solutions of the previous constraint optimization problem: The Quadratic
Penalty (QP) and the Augmented Lagrangian (AL) whose numerical implementation
is illustrated inAlgorithm 1. The interested reader can find amore detailed discussion
of these and more general techniques for constraint minimization in [3].

3.1 Quadratic Coupling Penalty

We briefly describe the algorithm proposed in [10] in order to obtain an improved
ξ(u)∗ depth map solution from the initial seed in Eq.3. This approach is based on
eliminating the constraints through the use of a coupling penalty function. Popularly a

Algorithm 1 ξ = EnergyMinimisation(η, θ, ε,α)
1: {Initialization of variables:}

2: τ, σ > 0, γ ∈ [0, 1], θ ∈ [0, 1]
3: {For each pixel ij}

4: ξ0ij = ηij, p0
ij = 0

5: ξ̄ij = ξ0ij
6: while t ≤ N do
7: {Update Dual}

8: pt+1
ij = pt

ij+σwij∇ ξ̄ t
ij

1+σε

9: pt+1
ij = pt+1

ij /max(1, |pt+1
ij |)

10: {Update Primal}

11: ξ t+1
ij = (ξ t

ij + τwij∇ · pt+1
ij + τ

θ t η
t
ij − ταt

ij)/(1 + τ
θ
)

12: {Relaxation}

13: ξ̄ t+1
ij = ξ t+1

ij + γ (ξ t+1
ij − ξ t

ij)

14: ηt+1
ij = SubpixelSearch(ξ t+1, θ, C, λ,αt)

15: αt+1
ij = αt

ij + 1
θ
(ξ t+1

ij − ηt+1
ij )

16: end while

Algorithm 2 η = SubpixelSearch(ξ , θ, C, λ,α)
1: {Accelerated search:}

2: r =
√
2θλ(Cmax

ij − Cmin
ij )

3: {Exhaustive search for ηij ∈ [ξij − r, ξij + r]}
4: ηaux

ij = argminηij
1
2θ (ξij − ηij)

2 + λCij(ηi,j) + αi,j(ξi,j − ηi,j)

5: {Subpixel refinement:}

6: ∇Eaux = λ∇Cij(η
aux
ij ) + ηaux

ij −xiij
θ

− αij

7: ∇2Eaux = λ∇2Cij(η
aux
ij ) + 1

θ

8: ηij = ηaux
ij − ∇Eaux/∇2Eaux
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simple quadratic penalty function suffices. Using this approach, Eq. (6) is minimized
by sequentially solving an unconstrained minimization problem of the form

min
ξ ,η

ER(ξ) + 1

2θ
‖ξ − η‖22 + λED(η) (7)

whereE(ξ , η) → E(ξ) as θ → 0. In general, themaindisadvantages of this approach,
reported in [3], are its slow convergence and ill-conditioning for small values of θ .
Nevertheless, for the depth map estimation problem, this algorithm has shown an
admirable performance in practice. Note that Lagrange multipliers play no direct
role in this method. The new energy functional in Eq. (7) allows us to split the mini-
mization into two different problems that are alternatively solved until convergence:

• First, for a fixed η solve:

min
ξ

ER(ξ) + 1

2θ
‖ξ − η‖22 (8)

which corresponds to the well known TV-ROF convex denoising problem that can
be solved using a primal-dual algorithm [4]. In this case η represents a noisy image
whereas ξ is the searched denoised result.

• Second, for a fixed ξ solve:

min
η

1

2θ
‖ξ − η‖22 + λED(η) (9)

this optimization is performed by a point-wise exhaustive search followed by an
accelerated subpixel refinement for each η in the cost volumn as it is explained in
[10].We show its general implementation of these steps inAlgorithm2. Lines 6–16
illustrate themain iterative per-pixel primal dual algorithm. Line 9: ascend gradient
step to update the dual variable p. Line 11: descend gradient step to update the
primal variable ξ . The parameters τ and σ are calculated via preconditioning [11].

3.2 Lagrange Multipliers

We must now briefly mention the role of Langrange Multipliers as a precursor to
our use of the “Augmented Lagrangian” in the next section. The original constrained
optimization Eq. (6) can be transformed to an unconstrained minimization problem
by introducing the Lagrangian function

ER(ξ) + αT (ξ − η) + λED(η) (10)

where α is a Lagrange multiplier associated with the original constraint. In this
approach the Lagrange multiplier is treated on an equal basis with the variables ξ , η,
which means that in order to solve the unconstrained problem we have to iterate
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as well for α. Although there exist different methods to iteratively update ξ , η, α

and solve the Lagrangian equation, we are going to concentrate on the Augmented
Lagrangian method explained in the next subsection.

3.3 Augmented Lagrangian

The Augmented Lagrangian belongs to a class of methods called methods of multi-
pliers in which the penalty regularization is combined with the Lagrange Multipli-
ers method. The resultant objective function, called the Augmented Lagrangian, is
sequentially minimized to obtain a solution to the original constrained problem. In
our case the augmented Lagrangian is given by

ER(ξ) + αT (ξ − η) + 1

2θ
‖ξ − η‖22 + λED(η) (11)

The main advantages of this method over the previous ones are: First, convergence
can be attained even when θ does not decrease to zero improving the stability of the
algorithm. Second, there exists a simple update of the Lagrange Mulltiplier α that
tends to make it converge faster to its proper value than pure Lagrange Multipliers
approaches [3].

As in the Quadratic Penalty section, Eq. (11) is minimized by alternatively solving
the following sub-problems until convergence

• First, for a fixed η solve:

min
ξ

ER(ξ) + αT (ξ − η) + 1

2θ
‖ξ − η‖22 (12)

using a primal-dual algorithm [4] since previous optimization is convex in ξ

• Second, for a fixed ξ solve:

min
η

αT (ξ − η) + 1

2θ
‖ξ − η‖22 + λED(η) (13)

using a point-wise exhaustive search for each η in the cube.
• Third, update α

α = α + 1

θ
(ξ − η) (14)

In contrast to Quadratic Penalty method, we have introduced the new variable α.
Although it implies a change in the numerical implementation, the iterations required
for convergence are substantially reduced as we will show in Sect. 5. In particular,
it affects the update of the primal variable ξ (line 11 in algorithm 1) as well as the
accelerated search and smoothing step for sup-pixel accuracy (algorithm 2, lines 4
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and 6). For better readability, we have highlight in red color the differences between
the QP and AL numerical implementations. Notice that the changes between both
algorithms are minimal.

4 Adaptive Regularisation

In this paper we also exploit the concept of the uncertainty on the inverse depth to
reinforce regularization on non-informative depth map regions. Regularization plays
an important role in achieving high accurate depth-maps in small scenes. However,
depending on the quality of the metric used as well as the initial depth seed, the
effect of the regularisation does not necessarily provide a positive impact on the final
solution. The lack of texture in some regions of the scene (blank walls, texture-less
surfaces,…) generates in fact a non-informative cost along the volume. Figure2 bot-
tom shows, for two different pixels ug and ur in the reference image, the correspond-
ing set of cost values store in the cube along the inverse depth interval [ξmax ξmin].
Notice that the 1D cost functions present a low or high variability depending on
whether the pixel belongs to a texture-less region ur (flat walls, floor, roof, …) or to

Fig. 2 Adaptive selection of λ. Toweight the contribution of each pixel in the dataterm, we estimate
the uncertainty of the depth represented as a Gaussian distribution on the cost along the inverse
depth range, with mean centered in the depth for which the cost is minimum. First row shows the
pixel-wise uncertainty overlapping the reference image for three synthetic datasets. Green crosses
represent examples of highly informative pixels ug, while red crosses determine pixels ur with more
uncertainty. Second row shows variability of the cost along 64-discrete inverse depth index values
for the two examples. The fitted Gaussian is illustrated for the green case. a Scene 1. b Scene 2.
c Scene 3. d σg = 0.0684, σr = 1. e σg = 0.0668, σr = 1. f σg = 0.0760, σr = 1
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an informative one ug. For each pixel ui ∈ u in the reference image, we can estimate
the inverse depth uncertainty using the following second order approximation,

C(ui, ξ) ∼ C(ui, ξ
∗) + (ξ − ξ ∗)∇C(ui, ξ)|ξ=ξ∗ + 1

2
∇2C(ui, ξ)|ξ=ξ∗(ξ − ξ ∗)2

(15)

where C(ui, ξ
∗) represents the minimum cost along the sampled distances. Figure2

bottom, shows the quadratic approximation of the cost function at a particular pixel.
Note that the quadratic is naturally centered at the sampled depth ξ ∗ at which the
cost is minimum. To associate uncertainties with per-pixel inverse depth estimates
we look at the curvature of the correlation surface, i.e., how strong the minimum
in the cost volume is at the winning inverse depth [14]. Under the assumption of
small noise, photometrically calibrated images, and densely sampled inverse depth,
the uncertainty is approximated by a normal distribution synthetised as follows

ξ(ui) ∼ N (ξ ∗(ui),�ξ ) (16)

where the variance is locally estimated by the hessian�ξ ∝ 1/∇2C(ui, ξ)|ξ=ξ∗ in the
inverse depth point where the cost is minimum. Equation (15) allows us to calculate a
per-pixel adaptive trade off λ(u) between the data fidelity term and the regularisation
depending on the quality of the information in the initial depth map.

λ(ui) ∝ 1

�ξ

(17)

Figure2 top, shows the output image that results after the calculation of the per
pixel variance for three synthetic indoor datasets. Notice that the reference image is
overlapped for better interpretation.

5 Results

5.1 Evaluation on Indoor Synthetic Datasets

We have conducted our experiments on three synthetic indoor scenes that provide
high precision depth maps from images taken at 30Hz [7, 9].2,3 Our chosen scenes
consider both close and far objects from the camera and partial occlusions. We first
evaluate the influence of the similarity metric used to obtain the initial solution.

2http://www.doc.ic.ac.uk/~ahanda/VaFRIC/index.html.
3http://www.doc.ic.ac.uk/~ahanda/HighFrameRateTracking/downloads.html.

http://www.doc.ic.ac.uk/~ahanda/VaFRIC/index.html
http://www.doc.ic.ac.uk/~ahanda/HighFrameRateTracking/downloads.html
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Recall that the metrics under evaluation are the SSD, the SAD and the NCC. After
executing the AL optimization algorithm for each metric, we calculate the median
error of the depth-map solution with respect to the ground truth. In order to compare
the accuracy of AL and QP algorithms we will calculate:

cost(u) = median(‖ξ(u)GT − ξ ∗(u)‖1) (18)

Figure3 shows for all scenes the median errors obtained for window sizes ranging
in the interval W = [1 . . . 15]. This preliminary analysis shows that, for the correct

Fig. 3 Median error
obtained after optimisation
on three different synthetic
scenes. For each similarity
metric (SAD, SSD, NCC),
the plots show the optimal
window size to achieve the
minimum error. In general,
NCC yields more accurate
results on all datasets (see the
scale of y-axis). a Scene 1.
b Scene 2. c Scene 3 1 3 5 7 11 15
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Table 2 Convergence analysis for AL and QP

Scene 1, range = [1.655 3.445] [m]

Median error [m] Energy ‖ξ − η‖2 % iter saved

Metric AL QP AL QP AL QP (%)

SAD 3 0.0111 0.0107 3283.77 3233.44 0.0452 0.0500 57

SSD 3 0.1084 0.1459 1288.70 1342.70 0.0466 0.0130 74

NCC 7 0.0038 0.0032 26081.11 27804.42 0.0480 0.0497 63

Scene 2, range = [1.102 6.186] [m]

Median error [m] Energy ‖ξ − η‖2 % iter saved

Metric AL QP AL QP AL QP (%)

SAD 1 0.0549 0.0551 8278.24 8317.93 0.0426 0.0456 66

SSD 5 0.2264 0.2821 8141.76 8383.51 0.0406 0.0236 72

NCC 7 0.0467 0.0488 49449.81 49356.62 0.0462 0.0496 55

Scene 3, range = [0.773 5.953] [m]

Median error [m] Energy ‖ξ − η‖2 % iter saved

Metric AL QP AL QP AL QP (%)

SAD 5 0.0037 0.0043 11410.13 11456.60 0.0460 0.0190 84

SSD 11 0.0092 0.0089 2594.75 2577.19 0.0482 0.0098 90

NCC 5 0.0032 0.0032 75876.31 75601.43 0.0423 0.0433 67

Analysis of Errors, Energy convergence and constraint fulfill at the final solution for both the
Augmented Lagrange (AL) and the Quadratic Penalty (QP) methods using different similarity
measures to obtain the initial seed

window size, the NCC measure achieves the best results. This can be a consequence
of the NCC invariance to illumination changes. Since the NCC is usually costly
to evaluate we can also see that the SAD even with a window size of 1 performs
relatively well and can be used in case of computation constraints. “Median Error”
column in Table2, shows for the AL and QP algorithms the lowest median errors
obtained for all similarity measures at their optimal window size. Observe that NCC
produces the best results and that the QP and AL algorithms produce similar accurate
estimates.

We also studied the convergence properties of theALandQP algorithms described
in the paper. In order to obtain a fair comparison, we have applied the same stop
criteria to both methods: First, the relative decrease in the energy minimization has
to be below a given threshold (to assure we can not makemuch progress) and second,
the equality constraint is considered to be fulfill if ‖ξ − η‖ ≤ 5e − 2. Figure4 shows
the energy evolution for both algorithms using NCC with optimal window size for
the initial seed. In two of the three synthetic scenes (Fig. 4 second, third column)
both methods converge to similar final energy and constraint values. Notice that, in
the limit, ξ and η must achieve the same values, thus the decouple energies for AL
and QP should approximate very well the original energy in Eq.4. However, the most
important advantage of the AL method, which is one the contributions of this paper,
over the QPmethod is its faster convergence requiring fewer iterations to achieve the
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Fig. 4 Convergence and Accuracy Analysis for the proposed Augmented Lagrangian (AL) method
in comparison to the common Quadratic Penalty (QP) approach. The experiments are shown for
three synthetic scenes: left, scene 1; middle, scene 2; right, scene 3. First row, ground truth depth
map. Second row, Initial seed obtained wiht a NCC-based cost volume at the optimal window size
as reported in Table2. Third row, achieved depth-map solution. Fourth row, energy evolution over
all iterations. Fifth row, evolution of the constraint ‖ξ − η‖2 per iteration. Notice that AL (black
solid line) outperforms QP (blue light line) to converge at the final solution. Energy is evaluated at
the ground truth (GT) which constant value is displayed with a red line. Sixth row, boxplots of the
error distributions of the per pixel inverse depth map estimates. The tops and bottoms of each box
are the 25 and 75th percentiles of the samples, respectively. The distances between the tops and
bottoms are the inter-quartile ranges. The line in the middle of each box is the sample median. AL
and QP achieve high accurate depth-maps with similar error distributions. However, AL achieves
the final solution faster than QP
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same result. In Fig. 4, second row, we observe how the quadratic constraint decreases
rapidly for AL and so the energy falls to its minimum value. Table2 column nine,
shows the gain percentage of AL with respect to the number of iterations required
for QP. The proposed approach requires 50% less iterations till convergence for all
cases. Figure4, sixth row, shows the histogram of the errors for AL and QP. Note
that the accuracy of the solution is not traded for speed.

Fig. 5 3D reconstruction of outdoor scenes from monocular images. The use of Adaptive regular-
isation improve the appearance of the point cloud capturing the diverse shapes present in the envi-
ronment. First row, pixel-wise depth uncertainty. Second row, Inverse depth map obtained after 30
primal dual iterations. Third-fifth rows, different camera views of the final 3D dense reconstruction
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5.2 Dense Reconstruction of Outdoor Scenes

Our goal is to show that the AL method in combination with adaptive regularisation
improve the appearance of the point cloud capturing the diverse shapes present in
outdoor environments. Our motivation is that while a sparse map provides a compact
representation for autonomous navigation, higher level robot tasks can require denser
maps to improve scene understanding. We have a forwards-facing camera mounted
on a car travelling forwards and sensing distant objects with a low parallax. This leads
us to rely on an improved regularisation method to reinforce depth on critical parts of
the scene. In our case, a suitable assumption is to expect to find many affine surfaces
in the environment, like roads, pathways, building façades or vehicle surfaces.

The input to our pipeline consists of only two consecutive image frames gathered
by a camera at 25Hz. This choice enables us to estimate the depth of dynamic
objects (particularly important in urban environments), which could be potentially
disregarded by a long sequence integration. The sensor is mounted on a car that
traverses a city environment. Figure5, shows the reconstruction of three different
scenes with heterogeneous geometry (walls, roads and vegetation). To track the
camera, we employ our own scaled Visual Odometry system [12].

Figure5 first row, shows the per pixel inverse depth uncertainty. As it is expected,
road surfaces and distant regions exhibit low information. The use of the per-pixel
adaptive regularisation allows us to recover most of the structure. A video show-
ing more details of the execution of the algorithms is available at (http://youtu.be/
LrNv9QCKH1s).

6 Conclusions

We have shown the efficacy of the Augmented Lagrangian method for depth map
estimation using monocular cameras. As a result we can substantially reduce the
number of iterations required for convergence, more than 50% of reduction in all
cases, compare to state of the art algorithms based on Quadratic Penalty methods.
We have also performed an exhaustive study of different photo-consistencymeasures
SSD, SAD and NCC and different windows sizes in order to improve the accuracy
of the initial depth map used as seed in the optimization algorithm. As was expected,
NCC provides the best results due to its intrinsic properties to cope with illumi-
nation changes. Finally, we introduce a novel per pixel inverse depth uncertainty
estimation that affords us to apply adaptive regularisation on the initial depth map:
high informative inverse depth pixels require less regularisation, however its impact
on more uncertain regions can be propagated providing significant improvement on
textureless regions.

http://youtu.be/LrNv9QCKH1s
http://youtu.be/LrNv9QCKH1s
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Wrong Today, Right Tomorrow:
Experience-Based Classification for Robot
Perception

Jeffrey Hawke, Corina Gurău, Chi Hay Tong and Ingmar Posner

Abstract This paper is about building robots that get better through use in their
particular environment, improving their perceptual abilities. We approach this from
a life long learning perspective: we want the robot’s ability to detect objects in its
specific operating environment to evolve and improve over time. Our idea, which we
call Experience-BasedClassification (EBC), builds on thewell establishedpractice of
performing hard negative mining to train object detectors. Rather than cease mining
for data once a detector is trained, EBC continuously seeks to learn from mistakes
made while processing data observed during the robot’s operation. This process
is entirely self-supervised, facilitated by spatial heuristics and the fact that we have
additional scene data at our disposal in mobile robotics. In the context of autonomous
driving we demonstrate considerable object detector improvement over time using
40Km of data gathered from different driving routes at different times of year.

1 Introduction

Object detection forms one of the cornerstones of autonomous operation in complex,
dynamic environments. Whether it concerns the detection of assets for the purpose
of infrastructure survey, the detection of wares and co-workers for applications in
logistics, or the detection of other traffic participants in an autonomous driving con-
text, object detectors need to provide fast, reliable performance across a number of
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workspaces. This is explicitly encouraged in the machine vision community as wit-
nessed by, for example, the ImageNet Large Scale Visual Recognition Challenge [6].

However, while much progress is being made, error rates of state-of-the-art
approaches are still prohibitive, particularly for safety critical applications (e.g. [1]
for the case of pedestrian detection). This is often due to a significant amount of
variation in the negative class which, in reality, is not captured in the training data.
While it is relatively easy to obtain negative samples, computational limits imply
that we should only include ones that have a large effect on the decision boundary.
The standard method for obtaining relevant negative samples is known as hard neg-
ative mining (HNM) [13, 25], which is commonly used to bootstrap the underlying
classifier used in an object detector. HNM is widely considered a mandatory part
of detector training, where the classifier is first trained on the original training data
and then used to perform object detection on a labelled dataset. False positives are
identified using the ground truth labels provided and included for classifier retrain-
ing. This provides considerable improvement over the original detector, but the data
used for negative mining strongly influences the resulting performance due to dataset
bias [21, 28]. In robotics, where we have a limited range of operation and are not
as concerned with general performance, biasing the detector’s performance to our
workspace is a powerful tool.

In robotics, in order to improve performance for a particular application, scene
context—obtained through online sensing or contained in (semantic) map priors—
is commonly leveraged as a filter (e.g. [15, 24]). Typically, this takes the form of
discarding detections as spurious if certain validation criteria are not met (e.g. a car
needs to be found on or near a road [22]).

In this work we also exploit scene context to validate the detections obtained.
However, we advocate a radically different detector deployment model from the
status quo, which leads to self-supervised and environment-dependent performance
improvement over the lifetime of the detector. This reflects our desire for lifelong
learning systems which excel in a robot’s specific application domain instead of
providing mediocre performance everywhere.

Our approach, is from one perspective, a simple and straightforward one and yet it
brings remarkable and profound benefits to our problem domain: some applications
of embedded perception can afford to trade generality for specificity. Robotic agents
should adjust to a vanishingly small subset of all possible workspaces: the ones they
operate in, or ‘experience’, on a daily basis.

Inspired by hard negative mining, we continue to train our detectors in a self-
supervised learning by exploiting scene context from the robot’s operating environ-
ment. This is achieved by continuously feeding back into the training process of the
detector any false positives identified by a validation step throughout the lifetime of
the system. We call this process Experience-Based Classification (EBC).

In effect, EBC automatically trains detectors for specific operating environments.
While this may lead to overfitting to the background encountered, we argue that this
is exactlywhat is required inmobile roboticswhere autonomous agents often traverse
the same workspace over and over again. In fact, EBC relies on this behaviour and,
inspired by recent work in the vision community such as [7], exploits similarities in
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Fig. 1 Images from the same route at twodifferent times of year (January andMay) onwhichweper-
formed pedestrian detection. While the pedestrians look similar in all images, the background class
is quite different, with visible seasonal effects. This suggests the need for environment-dependent
classifiers. False positives are shown in purple, while true positives have a yellow bounding box. A
few iterations of EBC over the course of a few days show great improvement

geo-spatially related locations. Furthermore, the self-supervised, operational nature
of this approach means that it can incorporate considerably more data in training
than conventionally performing HNM on small canonical datasets. This opens up
the possibility for life-long learning on robot perception, building up a collection of
environment dependent object detectors over the robot’s lifetime.
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EBC is agnostic to the application domain, detection framework and object class
considered. However, in this paper we frame the discussion in the context of pedes-
trian detection for autonomous driving (see Fig. 1). We utilise the fact that object
detection is often performed alongside navigation and that current navigation solu-
tions localise against a previously-acquired map [3, 14, 23]. This provides the scene
context for EBC.

2 Related Work

One common approach to pedestrian detection from monocular imagery utilises
a linear SVM classifier on Histogram of Oriented Gradients (HOG) features [5].
The use of a linear model permits efficient sliding window computations [9] when
a sliding window detector is implemented using this classifier. More recent work
in pedestrian detection has extended this to use alternative feature types such as
AggregateChannel Features (ACF) [8], or alternative classifiers such asLatent SVMs
with deformable parts models [13], and decision trees with Adaboost [1]. For our
sliding window detector, we elected to use the same feature type as the current state
of the art pedestrian detector (Aggregate Channel Features), but with a simpler linear
classifier model and a reduced number of scales.

3D scene information has been primarily used in object detection to generate
Regions of Interest (ROIs). For example, a ground plane computed from stereo
imagery canprovide a search space for detections (e.g. [15, 24]), or enforce scale [16].
Enzweiler et al. [10] extend this idea by maintaining a height-based representation
of the local environment to generate ROIs, and Ess et al. [11] jointly infer the depth,
ground plane and object detections.

Instead of generatingROIs to present to our classifier,we invert the order and apply
scene information after we compute detections. While both approaches provide us
with a set of valid positive classifications, this ordering also allows us to obtain a set
of informative negative data samples that can be used for detector improvement.

As mentioned in the introduction, the conventional approach for obtaining these
hard negatives when initially training a detector is Hard Negative Mining (HNM),
performed on a labelled training dataset. Initially introduced by Sung and Poggio [25]
as a bootstrap method for expanding the training set, Felzenszwalb et al. [13] tailor
it for structural SVMs by defining ‘hard’ negatives as examples that are incorrectly
classified or within the margin of the SVM classifier. HNM has also been used for
multiclass object detection [20], where positive samples of other classes can serve
as hard negatives.

Instead of HNM, Hariharan et al. [18] suggested training Linear Discriminant
Analysis (LDA) classifiers with an extremely large negative class. This was made
possible for SVM classifiers by Henriques et al. [19], who used block-circulant
decomposition to train with an approximation to the set of all negative samples from
a series of images. In effect, training with a vast set of negatives reduces the need to
specifically mine for hard negatives. While efficient, the training remains limited by
computational resources, and does not escape the core requirement of labelled data.
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This prior work on HNM is complementary to our work on EBC. HNM still forms
a critical step when initially training a detector, and EBC builds on this to continue
bootstrapping the detector to the robot’s operating environment. In addition, many of
these techniques to extend HNM could equally be applied to EBC. This paper is an
extension of a previous workshop paper [17], which showed that EBC is comparable
to HNM on the same labelled data. Here we consider the effect of place and season
on life-long learning.

In all these approaches, labelled data are used to identify negative samples. While
the labelling effort may be tolerated for individual datasets, real-world operation is
subject to variation from seasonal, lighting and environmental changes. This has a
significant impact on detection performance, but manually labelling data for all of
these scenarios is impractical for life-long learning in robotics. EBC is able to meet
these requirements by identifying relevant samples in a self-supervised manner.

We share some similarities with the concept of group induction [27], where
self-supervised training is performed by alternating between classifying unlabelled
tracks and incorporating the most confident positive classifications in retraining. Our
approach differs by the fact that we use an external signal in the form of an environ-
mental prior to provide labels for the whole scene. This allows us to focus only on
hard samples and provides a means to automatically train our detectors for specific
environments.

3 Framework Description

EBC augments a standard perception pipeline by introducing a scene filtering step
after object detection, a memory bank of negative samples and classifier retraining.
Our implementation of this system is depicted in Fig. 2. The following sections

(a)

(b)

(d)

(c)

Fig. 2 The EBC architecture implemented in this paper. a An object detector provides detections
based on the image feed. b A scene prior is used to filter out detections that do not touch the ground
plane or have an unexpected scale. c Rejected samples are stored. d The detector is retrained at
the end of an experience using additional rejected samples. The EBC detector improves through
successive outings as it automatically adjusts to what it experiences
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describe the function of each component in further detail and provide specific
information about our implementation.

3.1 Object Detector

In general terms, an object detector processes a data stream and produces detections.
EBC serves as a wrapper for this, providing additional training samples for lifelong
improvement. In this work we employ a linear SVM classifier to classify whether
an image patch is part of the positive class or the negative class. Given an input
image, we first compute features for the entire image, and then employ a sliding
window approach to obtain classification scores. Multiscale detection is performed
by resizing the image and repeating the process. Finally, non-maximal suppression
is used to filter out overlapping detections. The output is a set of bounding boxes
which correspond to subwindows that score above a threshold, which are deemed to
be positive detections. Further detail on the object detector specifics can be found in
Sect. 4.

3.2 Scene Filter

The scene filter is a core component of the EBC framework. Given a set of detections,
the scene filter employs local context to filter out false positives according to strong
heuristics. Accepted detections are passed on to the remainder of the perception
pipeline, while rejected detections are stored in the memory bank. Since the rejected
samples are detections that scored highly in the previous step these are by definition
hard negatives.

Given localisation information and a 3D scene prior, we first look up the local
ground plane for our current location, then project the local ground plane into the
image. This is used by a first filter, which rejects detections that lie off the ground
plane for the current navigation frame. Our second filter then projects each remaining
bounding box into the 3D scene to ensure detections are of a viable scale. The
application of these heuristics is illustrated in Fig. 3. The scene filtering step should
be conservative to avoid rejecting a valid detection (true positive), which may lead
to semantic drift [4]. The goal of this filtering component is to reduce the number of
false positives while not introducing false negatives.

3.3 Memory Bank and Retraining

The final step of the EBC cycle augments the original training set with the rejected
samples and retrains the classifier model. Since these additional negatives are
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Fig. 3 An illustration of the
scene filter employed in this
work, using localisation
information and heuristics
such as scale and ground
correction

obtained during operation, each subsequent training cycle further adapts the classifier
to the specific environment. It should be noted that data streams gathered frommobile
robotic platforms tend to be spatially and temporally correlated. This can cause prob-
lems in retraining asmost classifiers assume independent, identically distributed data.
Subsampling may be required to avoid these issues.

4 Experimental Evaluation

4.1 Methodology

We seek to evaluate the implications of an object detector learning from the envi-
ronment it experiences. We do this by taking a common baseline detector model,
then use this to train separate detectors for different classes of data, comparing their
performance on test datasets from these same classes. To do this, we put a base-
line pedestrian detector through successive training cycles on urban driving datasets
gathered from two different routes in Oxford at different times of year. We anticipate
that the detector which has learned from operating data which most closely matches
the test data (place and season) will perform the best, as the detector becomes fitted
to the operating environment.

A single experiment consisted of the baseline detector being presented with
driving data from successive days, with a detector retraining step between each
dataset. This process follows the EBC system architecture diagram in Fig. 2. For a
given detector model, the image data from the single specified urban driving dataset
was processed to compute detections. The detections were then processed by the
scene filter to validate or reject the samples according to spatial heuristics. The
resulting negative samples were then sampled (taking the top 10 false positives from
a random frame in every second of time), aggregated with prior rejected negative
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data samples, then used to retrain the detector along with the original training data.
The negative data was weighted to ensure the class balance from the original training
data was maintained.

Each experimental run was evaluated against a manually labelled test dataset
which shared the same location and environmental conditions as one of the training
categories.

4.2 Baseline Detector

Our baseline pedestrian detector used a classifier trained using LIBLINEAR [12] on
the INRIA Pedestrian Dataset [5] with Aggregate Channel Features and a similar
training methodology to [8]. We performed ten-fold cross validation on a training set
consisting of 1237 cropped positive pedestrian samples, and 12,180 sampled nega-
tives (10 windows per negative image). The final step in the detector training process
is a bootstrapping step consisting of ten consecutive cycles of HNMusing the INRIA
negative images. In eachHNMcycle the classifier was presentedwith 10,000 random
negative cropped samples extracted from the negative images. Misclassified ‘hard’
negatives were saved and used as additional training data to retrain the classifier.

4.3 Datasets

To show the impact of environmental variation and to evaluate our self-supervised
learning approach, we used twelve different urban driving training datasets gathered
with a Bumblebee2 stereo camera mounted on our Wildcat vehicle (Fig. 4a) driving
around Oxford. These unlabelled datasets were gathered from two different routes
from successive outings at different times of year.We allocated these datasets to three
categories based on the route and time of year (season), with 4 training datasets per
category. These categories are referred to in this section as North Oxford January,
North Oxford May, and Central Oxford August. A map of the routes is provided in
Fig. 4b, with no overlap between the North Oxford and Central Oxford routes. For
all datasets, we used only the left stereo image with a capture rate of 20Hz.

For evaluation,we used an additionalmanually labelled test dataset from theNorth
Oxford January category. This provided a total of 40Km of unlabelled training data
and 2Km of labelled test data. The datasets are summarised in Table1.

4.4 Results

We trained three different detectors from the same starting base detector, one per cat-
egory. These detectors are referred to by their category name: North Oxford January
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Fig. 4 The Wildcat vehicle (left) used to gather the image data, and a map (right) depicting the
routes for our datasets, where we gathered images in January, May, and August. The difference in
time of year provided seasonal variation, which affects the visual appearance of the scene. The two
North Oxford routes, illustrated in blue, provided variation in season, and the Central Oxford route,
depicted in red, provided a difference in location

Table 1 A summary of the datasets used for training and evaluation

Route Train 1 Train 2 Train 3 Train 4 Train
Total

Test

North Oxford January Distance (km) 2.60 2.01 1.92 1.92 8.45 1.99

Image frames 12782 9436 8172 8215 38605 9155

Time (min) 10.7 7.86 6.81 6.84 32.2 7.63

North Oxford May Distance (km) 1.43 1.95 1.01 1.01 5.40 –

Image frames 6066 8676 4001 3977 22720 –

Time (min) 5.06 7.23 3.33 3.31 18.9 –

Central Oxford Distance (km) 6.91 6.79 6.68 6.56 26.94 –

Image frames 36472 27720 27607 23463 115262 –

Time (min) 30.4 23.1 23.0 19.6 96.1 –

and North Oxford May, and Central Oxford August. Each detector was evaluated
against a separate test dataset also derived from the North Oxford route during
January.

Firstly, the results in Fig. 5 show that we are able to improve the perceptual perfor-
mance of a detector by training it on data gathered from the environment it operates
in. However place is clearly important in Fig. 6. We see that both detectors trained in
the same place (North Oxford) improve notably in performance, whereas the detector
trained in a different place (Central Oxford) does not.
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Fig. 5 The precision-recall (left) and miss rate-false positives per image (right) performance of
the detector during learning, tested on the North Oxford January data. The PR curve performance
increases with the first three datasets observed, moving to the top right corner of the graph. This
then settles with a very slight performance drop on the fourth dataset. The same trend is visible in
the MR-FPPI graph with the curves moving to the lower left corner
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Fig. 6 The average precision (obtained by computing the area under a PR curve) for three detectors
trained using EBC, evaluated on the North Oxford January test dataset. Learning from operating on
the same route (North Oxford) improves performance over the baseline detector, with the detector
shown data from the same season as the evaluation set performing the best (January). The detector
which learned from operation on a different route and time of year (Central Oxford August) does
not improve performance

Secondly, the same figure shows that there is a seasonal effect in addition to the
spatial similarities. There are clear perceptual differences between the two North
Oxford seasons, and a detector trained on a driving route in January has improved
performance when operating in January compared to a detector which learned from
the same driving route in May.
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Fig. 7 The average
precision (obtained by
computing the area under a
PR curve) for a detector
trained using EBC on all
datasets (both routes),
evaluated on the North
Oxford January test dataset.
The detector shows a
performance improvement
with January data, but drops
as it incorporates data from
dissimilar environments,
changing seasons to May,
then changing route and
season to August
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These results support our argument for experience-specific classifiers. However,
while it is clear that a detector trained for its operating environment is better than
the general baseline detector, this raises questions around the necessary spatial and
temporal resolution for these experiences in robot perception. To confirm the value
of experience-specific classifiers, we also investigated the effects of simply amalga-
mating all the training data into one classifier, with all twelve datasets processed in
temporal order (January through August). The results in Fig. 7 show that this detector
is not comparable to the detector trained only on data from the same place and season
as the evaluation data, with performance degrading substantially as dissimilar data
is observed and learned. This result adds further weight to the argument for training
place dependent classifiers, and emphasises the need for research into what defines
a ‘place’. Our trials considered a small set of possible places and conditions, and it
is likely that experiences in robot perception will be influenced by more than sim-
ply season and route. These factors could include weather, lighting, and additional
environmental changes such as traffic.

Finally, we note that we have only showed the raw detector performance in our
experimental trials. Since the scene filter is already incorporated into the EBC frame-
work, we can also validate our detections while running online if a 3D scene prior and
localisation information is available. The performance increase from the scene filter
on the detector’s output decreases over successive training cycles, with a large initial
improvement tapering off to a very small difference by the end of our trials in Fig. 8.
The small difference at the end may be attributed to the fact that the ACF model
is sufficiently expressive to cover what the current scene filter is able to invalidate.
Further investigation is needed into the unintended slight drop in precision at higher
recall when using the scene filter. Additional checks may be needed to achieve better
results, potentially including computationally expensive offline checks.
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Fig. 8 Performance increase
provided by the scene filter
(referred to as ‘validating’ a
classifier) when applied to
both the base classifier and
the final EBC detector on the
North Oxford January test
dataset. The invalidated data
from the scene filter
facilitates learning from the
environment
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5 Conclusions

Though general object detection remains a noble goal, applications in robotics tend
to be constrained to particular operating environments. We can exploit this fact to
obtain practical systems which excel in a specific application domain. This is a major
step towards reliable performance for real-world safety-critical systems. In particular,
we make use of scene context to validate detections, and feed the rejected samples
back to retrain the detector. This augmentation to the standard perception pipeline
provides self-supervised environment-dependent improvement over the lifetime of
the system. We call this process Experience-Based Classification.

Using urban driving data, we demonstrate that EBC provides a means to improve
a general baseline object detector beyond what conventional negative data mining on
a training dataset achieves. This suggests great utility in training experience-specific
classifiers, potentially leading to life-long learning in robot perception without the
need for human assistance. Perceptual systems benefit from being trained to suit the
local environment and their performance varies as the robot experiences different
environments.

Our experimental results show that environment-specific tuning provides benefits
in performance at the cost of generality, but the results raise a number of research
questions, primarily around what defines a robot’s perceptual experience. While we
manually divided the datasets here, we require an automated method to determine
when to train new classifiers based on some metric of difference between perceptual
experiences. This could be achieved through localisation, with a new detector model
for every smallmap segment.However this approachwould not accommodate normal
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variation in weather, lighting, and seasons. We believe that there is some benefit in
pursuing a data driven approach, transferring classifiers to different locations with
similar observed environmental conditions. Probabilistic topic modelling [2] offers a
possible mechanism for this. Finally, as we desire lifelong learning, we must address
the issues of positive mining [26], further scene filter checks (including expensive
offline checks), semantic drift [4], and when to ‘forget’ data.
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Beyond a Shadow of a Doubt: Place
Recognition with Colour-Constant Images

Kirk MacTavish, Michael Paton and Timothy D. Barfoot

Abstract Colour-constant images have been shown to improve visual navigation
taking place over extended periods of time. These images use a colour space that
aims to be invariant to lighting conditions—a quality that makes them very attractive
for place recognition, which tries to identify temporally distant imagematches. Place
recognition after extended periods of time is especially useful for SLAM algorithms,
since it bounds growing odometry errors. We present results from the FAB-MAP 2.0
place recognition algorithm, using colour-constant images for the first time, tested
with a robot driving a 1km loop 11 times over the course of several days. Computation
can be improved by grouping short sequences of images and describing them with a
single descriptor. Colour-constant images are shown to improve performance with-
out a significant impact on computation, and the grouping strategy greatly speeds
up computation while improving some performance measures. These two simple
additions contribute robustness and speed, without modifying FAB-MAP 2.0.

1 Introduction

Visual place recognition aims to recognize, from a stream of images, if the vehicle
is revisiting a place it has previously seen. Since integrated odometry measurements
drift over time, this information is especially useful if a long period of time has passed
since the last visit. Over this period, lighting conditions will change, making it more
difficult to recognize the matching image. To address this problem, colour-constant
images transform an RGB image into a colour-space that changes less with lighting
conditions than greyscale [3, 7, 10, 12, 16, 19]. This paper presents experimen-
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tal results from a challenging multi-day dataset [16] where colour-constant images
improve place recognition performance with no modification to the underlying infer-
ence algorithm, Fast Appearance-Based Mapping (FAB-MAP) 2.0 [6].

The use of colour-constant images does add a small computational overhead, since
these images are used alongside the original greyscale images, increasing vocabulary
size and the average number of observed features. To recover this computation effort,
we use the image grouping strategy introduced by MacTavish and Barfoot [9]. This
method is faster by an order of magnitude, improves some performance measures
(see Sect. 4), and does not require modification or parameter tuning of the place
recognition algorithm.

Similar work has been performed by Maddern and Vidas [11], who used FAB-
MAPwith amonochromatic and thermal camera,with a similar channel-concatenated
Bag-of-Words (BoW). Collier et al. [2] address lighting change using lidar geometry
and monochromatic images, running FAB-MAP separately on each sensor. Mac-
Tavish and Barfoot [9] use lidar intensity with FAB-MAP to achieve lighting invari-
ance, requiring specialized hardware and introducing motion distortion due to a
rolling shutter. Paul and Newman [17] augment visual features with spatial informa-
tion using lidar. This paper focuses on improved lighting invariance without addi-
tional hardware beyond an RGB camera.

Sunderhauf et al. [20] use Sequence SLAM (SeqSLAM) [14] with monochro-
matic images to localize a train over 3000km across seasons with impressive results,
but do not perform full Simultaneous Localization and Mapping (SLAM) with the
ability to add new places. Milford [13] shows how SeqSLAM can use very-low-
resolution images to localize by leveraging sequence information. The FAB-MAP
image-grouping strategy [9] used in this paper also makes use of sequence informa-
tion by grouping local regions in a single descriptor.

In an effort to learn appearance change and proactively translate the image to
different appearance conditions, Neubert et al. [15] introduce a super-pixel-based
translation algorithm. This algorithm targets large seasonal change rather than light-
ing, and requires training data of the expected appearance domain. Pepperell et al.
[18] blacken the sky in daytime images for better matching against those captured at
night using a whole-image matching technique. Aiming to improve lighting invari-
ance at the descriptor level, Carlevaris-Bianco and Eustice [1] train neural-net fea-
tures using data from outdoor webcams. Colour-constant images improve lighting
invariance without algorithm modification even at the descriptor level.

Corke et al. [3] compute image similarity scores across a small set of colour-
constant images, andMaddern et al. [10] perform local metric localization; however,
there has not been an evaluation of place recognition using colour-constant images.
In this paper, we discuss this task and present the results of our approach on an 11km
dataset consisting of over 2000 images.

This paper presents novel results for place recognition using colour-constant
images. This contribution goes beyond the simple image similarity scores that have
been used in previous work to benchmark this image transform. In Sect. 2 we discuss
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the place recognition and image processing techniques that we have used. In Sect. 3
we discuss the field experiment, and in Sect. 4 we present and analyze the experi-
mental results. Final conclusions and future work are discussed in Sect. 5.

2 Methodology

2.1 Place Recognition

The FAB-MAP algorithm and its extensions [4–6] have been extensively tested and
widely used; in particular, FAB-MAP 2.0 has been tested on a 1000km dataset.
This paper examines the results of two input preprocessing techniques for place
recognition: colour-constant images, andBoWimagegrouping. For place recognition
itself, we use the OpenFABMAP implementation [8] of the FAB-MAP 2.0 algorithm
which is summarized below.

FAB-MAP uses a BoW descriptor to describe images. To train the BoW vocabu-
lary, Speeded Up Robust Features (SURF) descriptors are extracted from a training
image dataset. These descriptors are clustered, and the BoW vocabulary is described
by these cluster centers (words). An image can now be described by a BoW descrip-
tor by quantizing its SURF features using the vocabulary, and listing which words
were seen. A BoW descriptor can be represented as a binary vector of word pres-
ence, or as a list of which words were observed. To learn a factorized probability
prior distribution over BoW descriptors, FAB-MAP trains a (CLT) using the BoW
descriptors from the training dataset.

FAB-MAP represents a place as a vector of Bernoulli variables indicating the
existence of the generator for each word in the vocabulary. The measurement model
is given by the trained CLT and two user-specified parameters, and full Bayesian
inference determines the posterior generator probabilities. The probability of being
in a new place is determined using a Monte-Carlo approximation, sampling training
images as representative new places. FAB-MAP 2.0 speeds up inference using an
inverted index for each word in the vocabulary and slightly modified inference.

FAB-MAP 2.0 also uses geometric verification in the form of a 1-point Random
Sample Consensus (RANSAC) test to improve precision. The results in this paper
focus only on the recall task, and have not used any geometric verification, though
they have used the FAB-MAP 2.0 simple motion model. Since the Visual Teach
and Repeat (VT&R) algorithm [16] used to collect the dataset is already performing
visual odometry, it would be straightforward to use only features that are stable over
a short distance to verify geometric stability; we leave this as future work.
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2.2 Colour-Constant Images

Colour-constant images were first developed in the optics community. Recent meth-
ods are based on the theory that a 1D colour space that is invariant to outdoor lighting
conditions can be calculated from the channel responses of an RGB camera, given
certain assumptions about the sensor and environment [7, 19]. Themethod presented
by Ratnasingam and Collins [19] asserts that a colour-constant feature, F , can be
extracted from a three-channel camera from the following:

F = log(R2) − α log(R1) − β log(R3), (1)

where Ri , is the approximated sensor response for channel i , and α and β are weights
subject to the following constraints:

1

λ2
= α

λ1
+ β

λ3
, β = (1 − α), (2)

where λ1, λ2, λ3 are the peak sensor responses numbered from highest to lowest. The
result of Eq. (1) is a 1D feature with much of the effect of lighting removed.

Colour-constant images have appeared in various forms [3, 10, 12, 16] in the
robotics and computer vision community. The approach taken in this paper is identical
to that of Paton et al. [16], which uses experimentally trained coefficients of Eq.1
to obtain two colour-constant images: {F ′

v, F ′
r } that perform well in vegetation and

rocks-and-sand, respectively. Examples of these images can be seen in Fig. 1.

Fig. 1 This figure illustrates the transformation of an RGB image into a set of greyscale images.
The top image is a typical greyscale image obtained from the green channel, and the bottom two
are the colour-constant image pair {F ′

v, F ′
r } [16] used in this paper to boost place recognition.

By making assumptions about the sensor and environment, a weighted log-difference of the three
camera channels can cancel the effect lighting has on the appearance of the scene. Credit [16]
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These images were used to great success in an autonomous route-following algo-
rithm presented by Paton et al. [16], which was used to collect the dataset that is used
in this paper. Details on the environment and route can be found in Sect. 3.

Since FAB-MAP requires a single BoW descriptor for each observation, we can
create a unified place descriptor by concatenating the BoW descriptors from each
channel [11, 16]: the green channel (greyscale), F ′

v , and F ′
r . A separate vocabulary is

trained for each channel, and each is quantized into a separate BoWdescriptor. These
per-channel-BoW descriptors are concatenated into a stacked BoW that is used to
train the CLT, and for online place recognition. We expect that there will be a strong
correlation between words in each of the channels, since the channels themselves
are correlated. Luckily the CLT accounts for this correlation to the extent that it is
apparent in the training dataset.

2.3 Image Grouping

MacTavish and Barfoot [9] show that sequences of images can be grouped together
and described with a single BoW descriptor. This provides two benefits: temporal
smoothing, which can improve robustness if features are somewhat unstable; and
a theoretical speedup of n2 for groups of n images. The major drawback is that
matches are not established at an image level. Simply adding the BoW descriptors
loses sparsity as group size increases. For the CLT training to be valid, these grouped
BoWs must have similar sparsity to the single-image training descriptors. We can
meet this requirement by increasing the binary BoW threshold, requiring multiple
observations of a word before it is considered present. A detailed description and
results for this method is available by MacTavish and Barfoot [9].

3 Field Experiment

A four day field trial was conducted at the (CSA)’s Mars Emulation Terrain (MET)
at Montreal, Quebec on May 12–15th, 2014, with the purpose of testing the colour-
constant VT&R algorithm introduced by Paton et al. [16]. The MET, pictured in
Fig. 2, is a 60 × 120m manicured environment emulating the surface of Mars. It
consists primarily of rock and sand, with interesting features such as outcroppings
and craters. The MET is surrounded by unstructured vegetation containing trees,
marshland, open fields, a small stream, and a gravel roadway.

The field trial proceeded by teaching a 1km path, marked as a yellow line in Fig. 2,
through the MET and its surrounding fields. This path was taught at approximately
11 am on the first day during sunny conditions with pronounced shadows. Over the
course of the field trial, this path was autonomously traversed 26 times in varying
lighting conditions. During this time the robotmaintained an autonomy rate of 99.9%
of distance travelled.
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Fig. 2 Satellite imagery of the CSAMET, with the teach pass from the 2014 field trials highlighted
in yellow, and interesting environmental features annotated. Credit [16]

Fig. 3 Grizzly Robotic Vehicle autonomously repeating a route during the CSA field trials, with
applicable sensors highlighted. Credit [16]

The hardware setup used during these experiments is pictured in Fig. 3. The robot
is the Clearpath Grizzly Robotic Utility vehicle. The VT&R algorithm ran on an
on-board computer using a Point Grey Research Bumblebee XB3 stereo camera.
GPS data was collected for the purpose of visualization only.
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During the traversals of the 1km path, the robot recorded rectified 512 × 384
stereo RGB images at 16Hz from the Grizzly’s front PGR XB3 Camera. The result
is close to 1 TB of stereo data along the same path in many lighting conditions. In
this paper we present results using 11 of these traversals, from dawn to dusk, selected
with the intent of maximizing appearance variation. Additionally, a 247 image, 1.2
km dataset was collected in Ontario, Canada, which was used for training the place
recognition algorithm.

4 Results

This section presents the place recognition results for the colour-constant and image
grouping techniques. Parameter training for the FAB-MAP algorithm is covered by
[5], the tuning process and results for the colour-constant images are detailed by
[16], and the tuning process for image groups is explained by [9].

The CSA dataset is quite challenging for several reasons. Over the course of
the experiment, the terrain was significantly modified by the vehicle, as shown in
Fig. 4a, c, d. This dataset is collected by a single camera pointed forward and down,
meaning a significant portion of the field of view is physically changing over the
course of the experiment. As anticipated, the changing lighting conditions had a large
effect—including the robot’s own shadow being visiblewhen the sunwas behind (see
Fig. 4b), leading to similar features being seen in different places depending on the
time of day. Natural environments also tend be more challenging than urban [6], and
the geometric intricacy of vegetation leads to difficult shadows as lighting changes.
Finally, at times the lighting conditions were so extreme that the auto exposure was
unable to produce a usable image (see Fig. 4e).

FAB-MAP is fairly sensitive to feature stability, and SURF detector thresholds
had to be carefully selected for the colour-constant images, due to their far-lower
dynamic range (see Fig. 1), and limited intensity information (by design). Initial
results used a detector threshold that would extract a similar number of features
across all image channels. This resulted in poorer performance than greyscale on
its own, since many of the colour-constant features turned out to be unstable. Since
colour-constant images are deliberately removing intensity information from the
image to provide invariance, there is less information remaining. This leads to a
noisier image, and noisier feature descriptors. The final SURF thresholds for the
greyscale, F ′

v , and F ′
r images lead to an average of 83, 9, and 22 keypoints per

training image, respectively. The clustering threshold was set so that the feature-
to-vocabulary-size ratio was similar for the image channels, resulting in 1017, 85
and 244 words per image type, respectively. The performance for the greyscale-and-
colour-constant stack is shown in Fig. 5 as Stack, and for the greyscale only baseline
as Grey. Colour-constant-only results have not been shown, as the low feature count
and vocabulary size are unable support place recognition alone. For equivalent recall,
the precision is strictly better using the colour-constant stack. The timing results in
Table1 show that there is a 22% increase in computation, due to a larger vocabulary.
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10:59 am

(a)

8:25 am

(b)

10:37 am 8:26 am

(c)

10:50 am 8:36 am

(d)

11:03 am 8:27 pm

(e) 

Fig. 4 Example images from the test dataset showing several of the challenging cases. a Tall grass
that was flattened by the vehicle over the course of the experiment. b The vehicle’s shadow is seen
in different places depending on the time of day. c The same location during the first and last loop
showing the terrain modification on sand. d The same location during the first and last loop showing
the terrain modification on vegetation. e The same location during the first and latest-in-the-day
loop showing the auto exposure struggling with low light and a still-bright sky
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Fig. 5 Precision-Recall curves for the recall-only task (no geometric verification). Grey indicates
only greyscale images were used, Stack consists of the greyscale as well as both colour-constant
images. The x5 indicates that sequences of 5 images were grouped and described with a single
BoW descriptor. Matches are labelled as true if they are within 30m of ground truth. a Precision-
Recall for all matches between loops. Unfortunately, the colour-constant stack shows only modest
improvement, and the image grouping fares far worse. This measure is the most common, but is not
necessarily representative of the desired output. The curve below presents an alternative measure
that might represent a more realistic use case. b Precision-Recall for at least one matches between
loops (per query). This P-R curve represents how the system might actually be used; if every query
has at least one match, the connected graph (chain of matches) will cover all of the loops even if
they aren’t explicit. For example, if query B matches place A and query C also matches place A, we
can infer that C also matches B, without needing to explicitly label that match. Contrary to 5a, the
image groupings show improved performance compared to their ungrouped counterparts, and the
colour-constant stack is significantly improved over greyscale. Both techniques combined produce
far better recall at 100% precision
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Table 1 Timing results show that the colour-constant stack only adds a small amount of overhead,
and that the image grouping is faster by an order of magnitude

Name # Queries Average time (s)

Grey 2189 1.18

Stack 2189 1.44

Grey x5 437 0.11

Stack x5 437 0.15

6:33 pm 8:43 am

(a)

6:38 pm 8:50 am

(b)

Fig. 6 Interesting examples of successful match hypotheses with the two processing techniques. a
A successful match at 95% precision with the colour-constant stack that was not found using only
greyscale (no image grouping). b A successful match at 95% precision with the image grouping
that was not found using single images (no colour-constant channels)

Figure6a shows an example of a place that is correctly recognized by the colour-
constant stack, but not by greyscale.

Image sequences were also grouped in sequences of 5 images, to illustrate the
speed-up without introducing a large disparity in match specificity. MacTavish and
Barfoot [9] further investigate different sized image groups. The binary BoW thresh-
old was chosen as 2 feature occurrences per group to maintain sparsity. The mean
binary BoW density for single images were 0.1357 and 0.1227; after grouping and
thresholding, they were 0.1149 and 0.1639, respectively. In both cases, the speedup
is approximately an order of magnitude (see Table1). The precision-recall curves
shown in Fig. 5 show that the grouping deflates the first measure, but improves the
second. The first measure considers the precision-recall if the task is to identify all
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Fig. 7 Contrast-enhanced
confusion matrices show the
probability mass for each
query (rows) over the
mapped places (columns).
Correct (true positive) match
probability is shown in blue,
incorrect (false positive) in
red, and ignored matches
(temporally close) in grey.
The ground-truth for the
confusion matrices is shown
in Fig. 8. The circled interest
points correspond to the
image examples in Figs. 4
and 6. The darker red
checkering of false positives
show that the system
struggled in the
rocks-and-sand of the MET,
which was underrepresented
in the training dataset. a
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of the possible loop closures for each query. The second measure only aims to find
at least one of the loop closures. Due to the temporal ordering of the queries, if every
query has correctly identified at least one loop closure, all possible loop closures are
connected without the match being explicitly identified; e.g., B matches A and C
matches B, therefore C and A must be a match.

The training for FAB-MAP must be done prior to run-time and is fairly time-
consuming compared to the online algorithm. Therefore, the place recognition algo-
rithm is trained in a geographically separate but visually similar environment. Due
to geographic limitations, and since this was the first major field deployment for this
robotic platform, our training dataset was restricted to 247 images over 1.2km. It
consists of a dry-run for the CSA experiment that took place in Ontario, Canada, pri-
marily in vegetation with a very small sand portion. The confusionmatrices, showing
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Fig. 8 Ground truth
confusion matrix. Since the
dataset is a repeated loop,
there is diagonal banding,
with the current loop on the
diagonal, and previous loops
on the off-diagonal bands.
The smaller dots are regions
of the MET that are
re-observed toward the end
of the loop
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the match probabilities for each query are shown in Fig. 7. The difficult checkered
square regions are the rocks-and-sand sections of the trajectory, the terrain type that
was underrepresented in the training dataset.

5 Conclusion and Future Work

We can conclude that both colour-constant images and image grouping show value
for place recognition in real outdoor environments. We have also shown reason-
able system performance despite a very limited and not fully representative training
dataset, and difficult lighting conditions that changed over the course of the day.
Future work consists of improving the stability of the colour-constant image chan-
nels. By increasing the contrast of the images, the features descriptors may be less
corrupted by quantization error, and the detector response may be more stable. A
geometric consistency check such as the FAB-MAP 2.0 1-point RANSAC will also
improve results by using more-stable features [6]. We can also verify geometric sta-
bility by only using features that have been tracked through several frames by VT&R
[16].
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Segmentation and Classification of 3D Urban
Point Clouds: Comparison and Combination
of Two Approaches

A.K. Aijazi, A. Serna, B. Marcotegui, P. Checchin and L. Trassoudaine

Abstract Segmentation and classification of 3D urban point clouds is a complex
task, making it very difficult for any single method to overcome all the diverse
challenges offered. This sometimes requires the combination of several techniques to
obtain the desired results for different applications. This work presents and compares
two different approaches for segmenting and classifying 3Durban point clouds. In the
first approach, detection, segmentation and classification of urban objects from 3D
point clouds, converted into elevation images, are performed by using mathematical
morphology. First, the ground is segmented and objects are detected as discontinuities
on the ground. Then, connected objects are segmented using a watershed approach.
Finally, objects are classified using SVM (Support VectorMachine) with geometrical
and contextual features. The secondmethod employs a super-voxel based approach in
which the 3D urban point cloud is first segmented into voxels and then converted into
super-voxels. These are then clustered together using an efficient link-chain method
to form objects. These segmented objects are then classified using local descriptors
and geometrical features into basic object classes. Evaluated on a common dataset
(real data), both these methods arethoroughly compared on three different levels:
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detection, segmentation and classification. After analyses, simple strategies are also
presented to combine the two methods, exploiting their complementary strengths
and weaknesses, to improve the overall segmentation and classification results.

1 Introduction

The segmentation and classification of 3D point clouds for the interpretation of urban
scenes and detailed semantic analysis have gained major interest in recent years.
This considerable attention is due to the recent advancements in 3D data acquisition
technologies as well as the increasing demand for different robotics applications
in the field or service industry. Presenting a fundamental problem in robotics and
computer vision, different research activities pertaining to automatic interpretation
of 3D urban point clouds for various field robots and autonomous vehicles operating
in outdoor environments are underway such as urban accessibility analysis [23],
drivable road detection [4] and point cloud classification [17].

For scene interpretation and assignment of a semantic label to each 3D point
(e.g. building, ground, trees, etc.), the first step is to segment the 3D point cloud.
Point cloud segmentation can support classification and further feature extraction
provided that the segments are logical groups of points belonging to the same object
class. Some methods, including [20, 27], employ the use of small sets of specialized
features, such as local point density or height from the ground, to discriminate only
few object categories in outdoor scenes, or to separate foreground from background
while some segmentation methods based on surface discontinuities, such as in [15],
use surface convexity in a terrain mesh as a separator between objects. Lately, seg-
mentation has been commonly formulated as graph clustering [9, 21]. Instances of
such approaches are Graph-Cuts including Normalized-Cuts and Min-Cuts. Markov
Random Fields are also used to segment and label 3D point clouds [2]. Different
methods, such as in [17], are introduced in order to increase their efficiency while
reducing their computational time.

The next step is to extract corresponding features from the segmented 3D object.
These features rely on a local 3D neighborhood which is typically chosen as a spheri-
cal neighborhood formed by a fixed number of the k closest 3D points [13], spherical
neighborhood with fixed radius [12] or cylindrical neighborhood with fixed radius
[7]. These features are mainly based on geometrical features (shape, size, etc.) [19],
local descriptors (color, intensity, surface normals, etc.) [1] or contextual features
(position with respect to neighbors, etc.) [24].

Once these features have been calculated, the next step is the classification of
each 3D point. Some methods such as [1, 19] rely on pre-defined geometrical mod-
els and thresholds but classification may also be conducted via different supervised
learning techniques as well, such as Support Vector Machines [22], Gaussian Mix-
ture Models [11], Random Forests [5], AdaBoost [14] and Bayesian Discriminant
Classifiers [16]. Furthermore, contextual learning approaches also utilize relation-
ships between 3D points in a local neighborhood which is usually inferred from the
training data. Such methods for classifying point cloud data have been proposed
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with Associative and non-Associative Markov Networks [26], Conditional Random
Fields [18] and multi-stage inference procedures focusing on point cloud statistics
and relational information over different scales [28], etc. In addition to the above
methods, Stamos et al. [8] propose an online algorithm to classify scanned points
into 6 distinct classes (ground vegetation, car, horizontal surfaces, vertical surfaces
and curb regions) during data acquisition by analyzing each scan-line one-by-one
relying on several efficiently computed local features.

Common problems in this detection, segmentation and classification pipeline
include coping with the complexity of 3D scenes caused by the irregular sampling, a
large variety of objects, occlusions caused by obstructions, density variation caused
by different distances of objects from the sensors as well as the computational bur-
den arising from large 3D point clouds and handling the various types of features.
These diverse problems make it very difficult for any single method to produce the
desired results. Hence, the combination of several approaches is necessary for differ-
ent applications. Consequently, for effective combination, thorough evaluation and
comparison is essential.

In this work, we present and compare two different approaches for segmenting and
classifying 3D urban point clouds i.e. a method exploitingmathematical morphology
(Sect. 2) and another based on super-voxels (Sect. 3). Evaluated on a common dataset
(real data), both these methods are thoroughly compared (Sect. 4) on three different
levels: detection, segmentation and classification. After analyses, simple strategies
are also presented to combine the two methods, exploiting their complementary
strengths and weaknesses, to improve the overall segmentation and classification
results (Sect. 5).

2 Morphological Transformation Method

Themethod for segmenting 3Durban point cloud based onmathematicalmorphology
is presented in [24]. It aims at developing a process to detect, segment and classify
urban objects, suitable for large scale applications. In this method, the input point
cloud is firstmapped to a range image.This image is then interpolated in order to avoid
connectivity problems and a k-flat zones algorithm is used to segment the ground
(road and sidewalk). The facades and objects are extracted using morphological
transformations. The method relies on facades being the highest vertical structures
in the scene and objects are represented as bumps on the ground on the range image
as shown in Fig. 1. Several geometrical and contextual features are computed for
each object and classification is carried out using a standard SVM (Support Vector
Machine). These features are summarized as follows:

• Geometrical features: object area and perimeter; bounding box area; maximum,
mean, standard deviation and mode (the most frequent value) of the object height;
object volume, computed as the integral of the elevation image over each object.

• Contextual features: Neighboring objects Nneigh, defined as the number of regions
touching the object, using 8-connectivity on the elevation image. This feature is
very discriminative in the case of group of trees and cars parked next to each other;
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Fig. 1 a Segmentation of 3Dpoint clouds based onmorphologicalmodeling.Objects are segmented
out as bumps on the ground. b Input point cloud. c Range image. d Segmentation results

confidence index Cind = nreal
nreal+ninterp

, where nreal and ninterp are the number of non-
empty object pixels before and after elevation image interpolation, respectively.
In general, occluded and far objects have a low confidence index.

Relatively fast, the method uses little a priori information, and is based on robust
morphological operators and supervised classification.

3 Super-Voxel Based Segmentation and Classification
Method

This method presents a super-voxel based approach in which the 3D urban point
cloud is first segmented into voxels and then converted into super-voxels. These
are then clustered together using an efficient link-chain method to form objects.
The method as presented in [1] uses an agglomerative clustering methodology to
group 3D points based on r -NN (radius Nearest Neighbor). Although the maximum
voxel size is predefined, the actual voxel sizes vary according to the maximum and
minimum values of the neighboring points found along each axis to ensure the profile
of the structure is maintained. A voxel is then transformed into a super-voxel when
properties based on its constituting points are assigned to it. These properties mainly
include: geometrical center, mean R, G and B value, maximum of the variance of
R, G and B values; mean intensity value; variance of intensity values; voxel size
along each axis X , Y and Z and surface normals of the constituting 3D points. With
the assignment of all these properties, a voxel is transformed into a super-voxel. All
these properties are then used to cluster these super-voxels into objects using a link
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Fig. 2 a Super-voxel based segmentation. b Classified 3D points

chain method. In this method, each super voxel is considered as a link of a chain.
All secondary links attached to each of these principal links are found. In the final
step, all the principal links are linked together to form a continuous chain removing
redundant secondary links in the process. If VP be a principal link and Vn be the
nth secondary link then each Vn is linked to VP if and only if the following three
conditions are fulfilled:

∣
∣VPX,Y,Z − VnX,Y,Z

∣
∣ ≤ (wD + cD)

∣
∣VPR,G,B − VnR,G,B

∣
∣ ≤ 3

√
wC

∣
∣VPI − VnI

∣
∣ ≤ 3

√
wI

where, for the principal and secondary link super-voxels respectively:

• VPX,Y,Z , VnX,Y,Z are the geometrical centers;
• VPR,G,B , VnR,G,B are the mean R, G and B values;
• VPI , VnI are the mean laser reflectance intensity values;
• wC is the color weight equal to the maximum value of the two variances

Var(R,G, B), i.e. max(VPV ar(R,G,B) ,VnV ar(R,G,B) );
• wI is the intensity weight equal to the maximum value of the two variances Var(I ).

wD is the distance weight given as

(
VPsX,Y,Z

+ VnsX,Y,Z

)

2 . Here sX,Y,Z is the voxel size
along X , Y and Z axis respectively. cD is the inter-distance constant (along the
three dimensions) added depending upon the density of points and also to overcome
measurement errors, holes and occlusions, etc.

These clustered objects are then classified using local descriptors and geometrical
features into 6 main classes: {Road, Building, Car, Pole, Tree, Unclassified}. These
mainly include: surface normals, geometrical and barycenter, color, intensity, geo-
metrical shape and size. The details of this method are presented in [1] while some
results of this method are shown in Fig. 2. The salient features of this method are
data reduction, efficiency and simplicity of approach.
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4 Comparison: Results, Evaluation and Discussion

In order to compare the two approaches, we evaluated the two methods using the
“Paris-Rue-Madame” dataset as presented in [25]. This database, used for bench-
marking urban detection-segmentation-classification methods, consists of annotated
3D point clouds acquired by mobile terrestrial data acquisition system [10] of “Rue
Madame” in the 6th Parisian district (France).

The evaluation was conducted for five common classes: {Building, Road, Pole,
Tree, Car}. The detailed assessment carried out for each of the detection, segmenta-
tion and classification phase respectively are presented below.

4.1 Detection Evaluation

The detection evaluation is done to measure the capacity of the method to detect the
objects present in the scene. This requires the choice of a criterion to decide if an
object from the ground truth is detected or not. In order to ensure that this criterion
does not bias the evaluation, the results are evaluated for a varying threshold m on the
minimum object overlap as presented in [3]. In this analysis, an objectOBJ is defined
by the subset of points with the same object identifier i.e. SGT and SAR are the ground
truth and the evaluated algorithm result subsets respectively. For any object j , S j

AR

is only validated as a correct detection of S j
GT (a match) if the following condition

is satisfied:

OBJJ (detected)
iff−→

( |SGT |
|SGT ∪ SAR| > m

)∧( |SAR|
|SGT ∪ SAR| > m

)
(1)

where |.| is the cardinal (number of objects) of a set. The standard Precision Pr
and Recall Re are then calculated as functions of m:

Pr(m) = number_of_detected_objects_matched

total_number_of_detected_objects

Re(m) = number_of_detected_objects_matched

total_number_of_ground_truth_objects

These values of Pr and Re are then combined together to calculate the F-Measure
as a function of m as expressed in Eq. (2).

F(m) = 2 × Pr(m) × Re(m)

Pr(m) + Re(m)
(2)

Figure3 shows the values of F-Measurewith the variation ofm for the different object
types using both methods. The value of F-Measure decreases with the increasing
value of m and this decay indicates the performance quality of the detection (good
performance implies slower decay). Although the super-voxel based method does
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Fig. 3 Detection results for both super-voxel based and morphological transformation based
methods are presented for 5 different classes in a–e respectively. a Buildings. b Ground. c Car.
d Motorcycle. e Pole

not classify motorcycles, they were detected and classified manually to analyze their
segmentation quality (discussed in the next section).

The results show that the building and ground are much better detected by the
morphological transformation method while the detection quality performance for
cars, poles, and other road furniture is much more superior for the super-voxel based
method.

4.2 Segmentation and Classification Evaluation

The evaluation was conducted for five common classes: {Building, Road, Pole, Tree,
Car} and also the motorcycle class (only segmentation results). The segmentation
and classification results are presented in Fig. 4. As trees were not present in the
dataset, they were not considered for analysis.

The segmentation and classification qualitywas evaluated point-wise i.e. the num-
ber of 3D points correctly classified as members of a particular class. The results
presented in Table1 are in the form of a confusion matrix in which rows and columns
are the class labels from the ground truth and the evaluated method respectively. The
matrix values are the percentage of points with the corresponding labels using the
metrics defined in [1]. If Ti , i ∈ {1, . . . , N }, is the total number of 3D points distrib-
uted into objects belonging to N number of different classes in the ground truth and,
and let t ji , i ∈ {1, . . . , N }, be the total number of 3D points classified as a particu-
lar class of type- j and distributed into objects belonging to N different classes (for
example a 3D point classified as part of the building class may actually belong to a
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Fig. 4 a and b show the segmentation and classification results for super-voxel basedmethod while
c and d show the segmentation and classification results for morphological transformation based
method respectively. In a and c every segmented object is represented by a separate color (some
colors are repeated) while in b and d each class is represented by a different color
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Fig. 5 a and b show the misclassification of some 3D points at boundary regions of road surface
with building and car respectively for super-voxel based method

Table 1 Segmentation and classification results for both super-voxel based and mathematical
morphology-based method (inside braces) are presented respectively

Building Road Pole Car CACC

Building 0.914 (0.986) 0.013 (0.045) 0.000 (0.000) 0.000 (0.010) 0.950 (0.970)
Road 0.02 (0.002) 0.901 (0.940) 0.005 (0.000) 0.010 (0.002) 0.933 (0.968)
Pole 0.000 (0.000) 0.001 (0.001) 0.710 (0.000) 0.000 (0.010) 0.850 (0.495)
Car 0.000 (0.010) 0.005 (0.195) 0.000 (0.000) 0.900 (0.950) 0.950 (0.870)

Overall segmentation accuracy: OSACC 0.856 (0.720)
Overall classification accuracy: OCACC 0.920 (0.825)

tree) then the ratio Sjk ( j is the class type as well as the row number of the matrix
and k ∈ {1, . . . , N }) is given as: Sjk = t jk

Tk
.

These values of Sjk are calculated for each class and are used to fill up each ele-
ment of the confusion matrix, row by row. The Segmentation ACCuracy (SACC)
is represented by the diagonal of the matrix while the values of classification accu-
racy (CACC), overall segmentation accuracy (OSACC) and overall classification
accuracy (OCACC) are calculated as explained in [1].

Compared to contemporary evaluation methods such as used in [17], employing
a standard confusion matrix, this method is more suitable for this type of work as
it provides more insight in segmentation results along with the classification results
and directly gives the segmentation accuracy similar to [6]. Also as compared to
standard precision and recall evaluation, the use of this metric, also accommodates
for the unclassified 3D points in the results giving a more accurate result without
incorporating the unclassified objects as a class in the confusion matrix.

Table1 shows the results. It can be seen that for the super-voxel based method,
some of the 3D points belonging to different object classes are found in the road class
and vice versa. This was found evident at boundary regions of objects belonging to
two different classes, as shown in Fig. 5, as sometimes in the voxelisation process,
some of the 3D points belonging to adjacent objects are incorporated in the same
voxel if they have similar color and reflectance intensity values.

Also, it was found that, for this method, one of the traffic sign post was wrongly
classified as a tree resulting in a low SACC and CACC of 0.71 and 0.85 respectively.
This was due to the fact that the particular sign post contained two traffic signs on the
same post giving it a small tree like appearance (in 3D point cloud at least) as shown
in Fig. 6. Compared to this method, the morphological transformation method failed
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to classify any of the poles correctly (as depicted in the table), confusing most of
them with trees.

Also evident from the table, the interaction between classes is much more signifi-
cant in the case of the morphological transformation method while on the other hand
in the super-voxel based method the segmented objects belonging to a particular
class instead of being distributed in other classes rather remain unclassified.

In order to further assess the quality of segmentation, the ratio (f) of the total
number of objects segmented by the applied method and the total number of seg-
mented objects in the ground truth was plotted for each of the object classes as shown
in Fig. 7. A value of 1 represents overall best segmentation whereas a value greater
than 1 denotes overall over-segmentation while a value less than 1 denotes overall
under-segmentation. A value of 0 shows failure to detect or no detection.

Themathematicalmorphology basedmethod seems to outperform the super-voxel
based method in terms of segmenting building and road surface. In the super-voxel
based segmentation method the road was over-segmented in 4 parts as they were
found disconnected and also one of the building was over-segmented due to strong

Fig. 6 a Google street view photo of the sign post with two traffic signs on Rue Madame.
b Corresponding 3D points

Fig. 7 Overall segmentation quality of the two methods for different object classes
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Fig. 8 a Google street map view photo of the building on Rue Madame with a strong variation of
paint color. b Segmentation results of the super-voxel based method

Fig. 9 a and b show the segmentation results of a particular building in Rue Madame for super-
voxel based method and mathematical morphology based method respectively. In (a) it can be seen
that part of the building that was disjoint was segmented as a separate object

variation in color and reflectance intensity values (as shown in Fig. 8) while in case
of another building small part found disjoint from the main building was segmented
as a separate object (shown in Fig. 9).

However, compared to the mathematical morphology based method, the super-
voxel based method segments cars and other road furniture better as apart from the
adjacency of the 3D points it also uses color and reflectance intensity values in the
segmentation phase. Figure10 shows the segmentation results, for both methods, of
some of the motorcycles parked in the scene. For the super-voxel based method, we
also find in one instance that two cars parked very close together, having similar
color and reflectance intensity values, are segmented out as one single car.

The mathematical morphology based method, constrained by the generated pro-
file, also fails to segment out 3D ground points directly under the motorcycles and
car as shown in Fig. 11. These ground points are hence considered as part of the car
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Fig. 10 a and b show the segmentation results of some motorcycles parked in the street for math-
ematical morphology and super-voxel based method respectively

Fig. 11 a and b show the segmentation results of some cars in the street for both mathematical
morphology and super-voxel based methods respectively. a shows some ground point directly
underneath the cars, segmented as part of the cars

(also expressed in Table1 i.e. value of 0.195). This is not an issue for the super-voxel
based method relying on local descriptors i.e. color, reflectance intensity and surface
normals.

5 Combining the Two Approaches

In order to exploit the strengths of the two methods and overcome their respective
weaknesses, we combined the results of the two approaches. Two different types of
combinations were tried which are explained below.

5.1 Direct Combination

In this combination, a simple union is applied to the segments, from the twomethods,
belonging to the same objects from the different object classes. A simple overlap
ratio of 75% was set (i.e. if more than 75% of overlap between two segments,
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Table 2 Segmentation and classification results for direct combination are presented
Building Road Pole Car CACC

Building 0.986 0.031 0.000 0.010 0.972
Road 0.015 0.940 0.005 0.010 0.955
Pole 0.000 0.001 0.710 0.006 0.851
Car 0.001 0.110 0.000 0.950 0.912

Overall segmentation accuracy: OSACC 0.896
Overall classification accuracy: OCACC 0.922

they are merged together as one). The improved results are presented in Table2.
We find that although the segmentation and classification results improve slightly
(OSACC = 0.896, OCACC = 0.922), the overall segmentation quality decreases,
due to the fact that combining of segments for each object class, in such a manner,
often results in over-segmentation as shown in Fig. 12.

5.2 Selective Combination

In order to preserve the strengths of each method and overcome their respective
weaknesses, a selective combination is proposed. Using the complimentary perfor-
mances of the two approaches as discussed in Sect. 1, we combine the outputs of
the two methods i.e. mathematical morphology based method for building and road
surface while super-voxel based method for other classes and road furniture. The
improved results are presented in Table3. We find that not only the segmentation
and classification results improve (OSACC = 0.884, OSACC = 0.935), but also
the segmentation quality as shown in Fig. 12.

Fig. 12 Overall
segmentation quality for
different object classes, for
the two combination
methods
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Table 3 Segmentation and classification results for selective combination are presented
Building Road Pole Car CACC

Building 0.986 0.045 0.000 0.000 0.970
Road 0.002 0.940 0.000 0.002 0.968
Pole 0.000 0.001 0.710 0.000 0.854
Car 0.000 0.002 0.000 0.900 0.950

Overall segmentation accuracy: OSACC 0.884
Overall classification accuracy: OCACC 0.935

6 Conclusion

In this paper, we present and compare two different approaches for segmenting and
classifying of 3D urban point clouds i.e. one based on mathematical morphology
while the other on super-voxels. Evaluated on a commondataset (real data), both these
methods are thoroughly compared on three different levels: detection, segmentation
and classification. The results show that the building and ground are much better
detected by the mathematical morphology based method while the detection quality
performance for cars, poles, and other road furniture is much more superior for
the super-voxel based method. After analyses, simple strategies are also presented to
combine the twomethods, exploiting their complementary strengths andweaknesses,
to improve the overall segmentation and classification results.

The same comparison methodology can be easily adapted to compare other seg-
mentation and classification methods while the combination strategies need to be
further studied and better adapted to improve upon the overall performances, for
different applications.
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A Stereo Vision Based Obstacle Detection
System for Agricultural Applications

Patrick Fleischmann and Karsten Berns

Abstract In this paper, an obstacle detection system for field applications is pre-
sented which relies on the output of a stereo vision camera. In a first step, it splits
the point cloud into cells which are analyzed in parallel. Here, features like density
and distribution of the points and the normal of a fitted plane are taken into account.
Finally, a neighborhood analysis clusters the obstacles and identifies additional ones
based on the terrain slope. Furthermore, additional properties can be easily derived
from the grid structure like a terrain traversability estimation or a dominant ground
plane. The experimental validation has been done on a modified tractor on the field,
with a test vehicle on the campus and within the forest.

1 Introduction

According to [10], the agricultural guidance research exploring the capabilities of
image sensors started in themid-1980s in North America.With the full availability of
the NAVSTAR Global Positioning System (GPS) one decade later, researchers also
started to explore this new technology including its application for the agricultural
sector. This research on GPS-based guidance solutions led to successful commercial
products which are nowadays offered by almost all big manufacturers of agricultural
products or can be bought from component suppliers. The success of this technology
can be probably explained by its universal applicability. In contrast to early camera-
based and specialized solutions such as crop row guidance, the GPS guidance is
not restricted to individual field work or a special machine. The already mentioned,
commercial products for example, offer functions such as creating a linear trajectory
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defined by awaypoint and a direction. Furthermore, a complete track can be recorded
and by specification of the implement’s width, the system can calculate parallels to
cover the whole field.

Here, a systemic disadvantage of GNSS-based (Global Navigation Satellite Sys-
tem) guidance systems is visible, which alone is not solvable with the GNSS tech-
nology: the calculated trajectories are not necessarily free of obstacles, which can
lead to serious accidents. Accidents are caused by fatigue or inattention of the driver
who has to monitor the Advanced Driver Assistance System (ADAS), where the two
main reasons can be identified. On one hand, the use of an automated steering system
can increase the monotony of work and thus cause fatigue—especially with large
acreage. On the other hand, agricultural manufacturers are constantly increasing the
working width of their machines and implements for economic reasons. For modern
sprayers of 40 m width, it is difficult for the driver to estimate if the boom of the
implement can be safely moved past an obstacle, especially at higher speeds.

While GNSS-based products are already very successful on the agricultural mar-
ket, solutions using cameras or time-of-flight sensors are still a niche product for
very specialized tasks and still in the focus of research. In the research domain stereo
vision based obstacle detection for off-road and on-road is a large area, a recent
survey [2] summarizes the contributions of the last decade. A very popular method
is presented in [7] where obstacles are detected by analyzing the so called compat-
ibility of the 3D points. To speed up the process, the evaluation is performed in the
Disparity Space Image (DSI) where the truncated cones that have to be examined to
get the compatibility turn into triangles. The well cited method has been extended
and refined several times, e.g. in [13] or in [4], where the DSI was splitted into dif-
ferent stripes with different resolutions to allow for parallelization and to reduce the
number of comparisons.

Another group of approaches can be identified which rely on a 2D grid or use a
Digital ElevationMap (DEM). One recent example [5] uses the grid representation to
fit B-spline surfaces into the reduced data to estimate the traversability of the ground
and presence of obstacles. For road application [9] demonstrates an approach where
a DEM and a density measurement of the points within a cell are used to separate
the road surface from obstacles.

The QUAD-AV project [12] addresses the obstacle detection problem for agricul-
tural vehicles by the investigation of different sensor technologies like stereo vision,
thermography, ladar and a microwave radar. Along with this project, several inter-
esting publications were made, e.g. a self-learning framework which uses geometric
3D data and color information of a trinocular camera [11] to classify the ground.
Both classifiers are updated during runtime to adapt the approach to changing envi-
ronments. Reference [8] describes the same framework for a multi-baseline camera
but only relies on the geometric classifier. Additionally, a so called Unevenness Point
Descriptor has been proposed [1] by the same research group which uses the normal
vector distribution of small surfaces which are fitted using PCA.
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In this paper, an obstacle detection system for the field is presented which can
prevent collisionswith obstacleswhile using a guidance system. For different reasons
which are explained in detail in Sect. 2 a colored stereo camera was chosen to
approach this task. As a first step after the data acquisition and pre-processing, the 3D
points are sampled into a 2D grid. Initially, each grid cell is analyzed independently
of its neighbors, which enables a strong parallelization of the method. Afterwards,
the relations to the neighborhood are examined, the obstacles are grouped and a
terrain abstraction is generated.

2 System and Scenario Description

As described in the introduction themotivation to start the research on a field obstacle
detection systemwas driven by reported accidents with automated guidance systems.
Possible and probable obstacles in this scenario can be divided into 3 categories:
natural, artificial or man-made and dynamic obstacles. The first class includes any
kind of vegetation which is not traversable like bushes or trees and additionally
impassable terrain like ground with high slope or negative obstacles like ditches
and trenches. For the field scenario, the second category includes any kind of poles
(transmission, power), buildings, bridges and fences. Themost difficult class contains
dynamic obstacles like persons, other agricultural equipment and animals.

The system described in this paper uses a Bumblebee2 stereo vision camera by
Point Grey. It has a focal length of 2.5 mm which results in a wide horizontal field of
view of 97◦. Furthermore, the stereo setup has a fixed 12 cm baseline and includes
two Sony ICX204 1/3′′ color CCD sensors providing a maximum usable resolution
of 1024 × 768 pixels at 20 FPS. The decision to use a stereo camera instead of more
precise sensor like a 3D laser scanner was influenced by the following properties.
Firstly, the stereo vision system provides a very dense point cloud together with
additional color information. Additional advantages like the low price of camera
systems in mass production, the low energy consumption and the light weight makes
the technology interesting for commercial applications. Furthermore, it could be
pointed out during the tests, that the dust influence is lower than for a laser sensor
which makes the device interesting for agricultural purposes.

The camera system has been mounted at a height of 2.8 m above the ground in
front of the driver’s cabin of a modified John Deere 6R series tractor. It was tilted
downwards by about 10.5◦ to reduce the amount of sunlight falling into the camera.
For better understanding, the mounting position together with the used Cartesian
coordinate systems is shown in Fig. 1.
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Fig. 1 Overview on the used
coordinate systems: SCS:
sensor, RCS: robot/tractor
and the position of the
camera which was mounted
in front of the cabin below
the roof

zSCS

ySCS

xRCS

zRCS

3 Implementation and Algorithms

3.1 Data Acquisition and Pre-processing

To grab the images from the camera, the libdc1394 library is employed. For the
undistortion and rectification step, the calibration offered by Point Grey is used.
Therefore, functions of the Triclops SDK1 together with the calibration parameters
stored on the sensor were used to generate lookup-tables for each camera in an offline
process which map the pixels of the original image to the target. By applying these
pre-computed tables, undistortion, rectification, cropping and scaling to a desired
resolution can be done in one step. In addition, this enables the usage of the cali-
bration together with other libraries, e.g. OpenCV [3] remap functionality which is
applied in this case. The rectified images are then processed by a block matching
algorithm which uses the sum of absolute differences as a metric to compute the
disparity map. Neither the matching algorithm nor the metric are known to produce
the best possible results. But its simplicity and its efficiency makes the algorithm
suitable for embedded or GPU implementations. Knowing the disparity map, 3D
points according to the camera reference frame (xSCS, ySCS, zSCS) (see Fig. 1) can be
calculated. In this step, the properties of the stereo vision system like the principal
point, the focal length measured in pixels and the baseline is needed. All parameters
are stored on the camera and can be scaled to the selected resolution. As a last step
of the point cloud generation, all points are projected into the robot coordinate sys-
tem (xRCS, yRCS, zRCS). This system is originated on the ground below the kinematic
center, with the xRCS-axis pointing in the driving direction, zRCS directed into the sky.
The transformation requires the knowledge of the camera position in relation to this
coordinate system. Please note that neither a statistical filtering nor a density reduc-
tion, e.g. a voxel grid filter, has been applied as it is often done in other approaches
after this step.

1http://www.ptgrey.com/triclops.

http://www.ptgrey.com/triclops
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3.2 Grid Generation and Pre-processing

Thepoint cloud P = {p1, . . . , pn}given in the robot coordinate system is splitted into
a 2D grid lying in the horizontal (xRCS, yRCS) plane. Each cell C j has a parametrized
dimension of w × h. Due to the characteristics of the matching algorithm which
produces a more dense cloud in the y-direction than in the x-direction, the width
w and the height h could be set to different values. Additionally, the extend of the
grid is limited in two directions [0, xmax ] × [− ymax

2 ,
ymax

2 ] as the output of a stereo
vision system is only useful in a certain range, which depends on the baseline, the
resulation and the focal length. The target cell index (cx , cy) of a point pi ∈ P, pi =
(pix , piy , piz ) can be calculated as:

cx =
⌊ pix

w

⌋
(1)

cy =
⌊ piy

h
+ ymax

2h

⌋
(2)

To avoid errors in addressing the cells, the maximum grid dimensions should
be defined as xmax = a · w and ymax = 2 · b · h where a, b ∈ N

∗. After this step,
each cell C j contains a subset Pj of the original point cloud P . Due to the defined
boundaries of the grid, the following relation applies

P =
⎛

⎝

xmax
w · ymax

h⋃

j=1

Pj

⎞

⎠ ∪ Q (3)

where Q contains all points which do not belong to the grid and are not further
analyzed. In a first parallelized step, the points p( j)

i ∈ Pj of each cell are sorted
ascending according their p( j)

iz
-coordinate to prepare the further steps which results

into Pj = {p( j)
i | i = 1, . . . , n( j); p( j)

iz
≤ p( j)

(i+1)z
}.

This is followed by a sequential extraction of the z-coordinate of the lowest point
p( j)
1 of each non-empty cell. Combined with the cell’s 2D center (m( j)

x , m( j)
y ), this

set of lowest points is used to define an initial dominant ground plane by applying a
least-squares fitting algorithm (see Sect. 3.3 and Eq.17 for the details). Afterwards,
the shortest distance between the plane and the points (m( j)

x , m( j)
y , p( j)

1z
) is tested.

If the distance is larger than a threshold tg or in the case of empty cells, the z-
value is extracted from the fitted plane. Furthermore, all these height values—either
originated from p( j)

1 or determined using the plane—are saved in a matrix whose
number of rows and columns is equal to the grid. This matrix is then smoothed
using a Gaussian blurring (kernel size 5 × 5) to reduce the influences of cells which
do not provide ground points as they are containing large obstacles. Thereafter, the
determined height values are stored in the corresponding grid cells as a ground guess
value g j . These height values are used to be able to separate overhangs even if no
ground points are available, for instance in “obstacle shadows”.
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3.3 Cell Evaluation

One advantage of the presented approach is—as already mentioned—the ability
to parallelize the following steps, as each subset Pj is firstly evaluated individually
without incorporating the neighborhood.As a first step, the number of points assigned
to a cell C j is calculated, as it has to be above a defined threshold |Pj | ≥ ρ to
get meaningful results. If this density of points is too low, the cell is marked as
non-evaluable. Based on the vehicle’s properties shown inTable1, the following
derived quantities can be calculated:

d =
√

(cx w + w

2
)2 + (cyh − ymax

2
+ h

2
)2 (4)

α = max(vβ, d · vα) (5)

zmax = max(vg, d · tan(α)) (6)

Afterwards, a decision tree is used to test if a cell contains an obstacle. If one of
the rules (7), (9) or (14)–(16) applies, the label obstacle is assigned to the cell
and the evaluation is terminated. In the other case, the next test is executed. The
first rule (Eq.7) checks if the lowest measured sample p1z (from this point on, the
superscript ( j) is omitted to improve the readability) is above the position which
could be reached with the given maximum slope vα . Similarly, the highest measured
point pnz has to be higher than the lowest reachable position.

p1z > zmax ∨ pnz < −zmax (7)

In forestry scenarios it often happens that overhanging parts are detected. In com-
bination with missing ground points, Eq. 7 would lead to many false classifications.
Thus, the distance between p1z and the ground guess g j is evaluated and the cell
label is fixed to non-evaluable if p1z − g j > vh .

For cells which include ground as well as overhanging objects, the space between
these clusters has to be examined to see if the robot can safely pass this cell. To
handle this situation, the range of the z-coordinates is tested:

(pnz − p1z ) > vh (8)

Table 1 Vehicle properties
used to evaluate a grid cell

Symbol Property

vh Height of the vehicle

vα Maximum slope which the vehicle can handle
between two cells

vβ Maximum desired attitude (roll and pitch)

vg Ground clearance of the vehicle
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In the case that the range is larger than vh , a k-means clustering algorithm is applied
to the point cloud subset Pj to see if the points can be separated into ground and
overhang. The number of clusters k is set to 2. Additionally, it is ensured that the
center of first cluster Pg = {pi | i = 1, . . . , k; piz ≤ p(i+1)z } has a lower z-value
than the center of the second cluster Po = {pi | i = (k + 1), . . . , n; piz ≤ p(i+1)z }
which is expected to contain the points of the overhang. If both clusters Pg and Po

fulfill a density criterion, the distance between the highest point of the ground cluster
Pg and the lowest of the overhang cluster is evaluated:

p(k+1)z − pkz < vh (9)

Here, the ground guess value g j calculated during the pre-processing is used
instead of pkz , if the density of Pg is too low. Furthermore, the cell label is set to
non-evaluable if both densities are below a threshold or g j has been applied to
Eq.9 which was evaluated to false. If the space is insufficient (Eq.9 is true), the cell
is rated as an obstacle in all other cases.

At this point, the remaining point cloud is either still the original one (Pj ) or
the overhangs have been successfully separated and only the portion Pg has to be
further analyzed. To improve readability, the next steps are just explained for Pj ,
nevertheless the same tests will be executed on Pg if the overhang separation was
conducted.

To get rid of outliers and matching errors of the stereo correspondence module,
a smoothing filter as well as statistical outlier filter is applied to a copy of Pj to not
lose the original measurements.

piz := piz + μz

2
, μz = 1

n

n∑

i=1

piz (10)

The output of the smoothing filter shown in Eq.10 is used as the input for the
statistical filter shown in (13). Therefore, the indexes q1 of the first quartile Q1

(also known as 25th percentile) and q3 of the third quartile Q3 (75th percentile)
are calculated. Using these indexes, the following boundaries are defined, where
(pq3z

− pq1z
) is known as the interquartile range which contains 50% of the data.

fmin = pq1z
− 1.5 · (pq3z

− pq1z
) (11)

fmax = pq3z
+ 1.5 · (pq3z

− pq1z
) (12)

Pf = {pi | i = 0, . . . , n; l ≤ i ≤ m; fmin ≤ plz ; pmz ≤ fmax ; piz ≤ p(i+1)z }
(13)

The resulting filtered point cloud Pf is tested according the following criteria. If
one of the conditions apply, the obstacle-label is assigned to the cell.
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|Pf | < ρ (14)

pmz − plz > vg (15)

pmz > zmax ∨ plz < −zmax (16)

Here, the first rule is again a density check, the second rule tests if the cell range is
acceptable and the third rule if the cell contains points which are above or below a
reachable height.

The last and maybe strongest criterion evaluates properties of a plane fitted to
the point cloud Pf . Therefore, a least squares fitting algorithm which minimizes
the distance between the plane and the z-components of the points is used to
find a plane defined as z = ax + by + c. For determination, the error E(a, b, c) =∑m

i=l [(apix + bpiy + c) − piz ]2 needs to be minimized. According to [6], the fol-
lowing equation system (17) solves the problem, as the function E(a, b, c) has its
vertex when the gradient is zero.
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⎞
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After the plane is determined, the slope γ is calculated as the enclosed angle
between the normal of the plane and the z-axis: If the slope is above the maximum
slopeα (seeEq.5) or above the desired attitude vβ the cell is interpreted as an obstacle.
This decision can be overwritten and the cell is marked as non-evaluable, if the
range pmz − g j is below the ground clearance value vg .

3.4 Neighborhood Evaluation

At this stage, only the cells have been evaluated without taking their neighborhood
into account. This could lead to some misclassifications and has to be corrected in
the following steps. As the methods are working on the grid structure, the neigh-
boring cells need to be known for each cell C j . Figure2 shows the naming con-
vention which is used to describe the evaluation. The full neighborhood contains 8
cells N(8)(C j ) = {Ni (C j )| i = 1, . . . , 8} while a reduced neighborhood N(4)(C j )—
shown in red—only contains the neighboring cells with even indexes. Some extra
attention is required at the borders of the grid as these cells do not have the full
number of neighbors.

First, a function iterates over the whole grid and does the following analysis for
each grid cellC j which has not been labeled asobstacle or non-evaluable as
described in Sect. 3.3. For each neighbor Ni (C j ) ∈ N(8)(C j )which has been marked
as potentially drivable in the cell analysis as well as for the center C j , the mean
height above the horizontal plane μz(C j ) is calculated based on the distance of the
cell’s center (cx w + w

2 ) + (cyh − ymax

2 + h
2 ) to the fitted plane. Afterwards, the slope

between the center and each adjoining cell Ni is determined as follows
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Fig. 2 Naming convention
and traversing scheme of the
grid cell neighborhood

γi (C j , Ni (C j )) = atan2
[|μz(C j ) − μz(Ni (C j ))|, dist(C j , Ni (C j ))

]
(18)

where dist(C j , Ni (C j )) returns the spatial distance between two cell centers in the
2D x-y-plane. In addition, a counter is incremented for each slope measurement
γi (C j , Ni (C j )) which is above the threshold vα . If this counter is smaller than 4
after the evaluation, the cell is labeled as obstacle otherwise the cell is labeled
as drivable. Some special cases have to be handled at the borders of the grid,
in areas where no data points are available or if the label non-evaluable was
assigned.

Finally, a post-processing step is executed to remove scattered drivable cells
which are surrounded by obstacles. Therefore, a drivable cell close to the origin
of the RCS is determined and used as a seed S. Furthermore, the cell is added to
a list of non-isolated cells and its N(4)(S) neighbors are identified. For each of the
neighbors Ni (S) ∈ N(4)(S) the assigned label is inspected. If it is not on the list of
non-isolated cells and has been marked as drivable or non-evaluable it is
used as a new seed and the method is recursively called.

3.5 Derived Properties

Based on the cell and the neighborhood evaluation different properties and views can
be derived. For the presented application, the segmented obstacle view is the most
important information. To generate this information, all cells tagged as obstacle
are collected and added to an obstacle list. As long as this list contains elements, the
following steps are repeated. The first element of the list generates a new obstacle
cluster and is added to an auxiliary stack. Until the stack is empty, the N(4)(C j )

neighborhood of the top of the stack is analyzed and if it contains cells which are also
on the obstacle list, they are added to the cluster as well as to an auxiliary stack and
removed from the obstacle list. The process generates a collection of clusters which
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Fig. 3 Properties derived from the grid based evaluation: a Image of the left camera showing a
winter scenario of a hill and thewall of a bridge. Additionally, the classification results are overlayed
(green drivable, red obstacle). b Clustered point cloud: points belonging to the ground are shown in
green, obstacle points are red, Terrain classification: the triangulated surface is color coded based
on height above the x-y-plane

are enriched with some attributes like the maximum and minimum sample height
within the cluster and the total number of 3D samples of the cluster. Furthermore, a
polygon is calculated which describes the outer hull of the obstacle.

For the purpose of classification, the 3D points and the RGB-data of all obstacle
clusters can be combined and accessed. This is possible since each cell of the grid still
contains the original piece of the point cloud which was assigned to the cell. Besides
the obstacle clusters, the evaluation results can also be used to divide the original
point cloud into 3 separate clouds. The first one contains all points which belong
to the traversable ground. The second one represents the measurements labeled as
obstacles and the last one the overhanging objects which are higher than the vehicle.
An example of a partitioned point cloud is shown in Fig. 3b. Here, the green points
are showing all 3D points which belong to the ground. The red points are classified
as an obstacle. In Fig. 3a the point cloud is shown as an overlay on the left image of
a grayscale stereo camera.

For some applications, like an inverse perspective mapping which can be used to
extract waysides or road markings, a dominant ground plane is a valuable informa-
tion. Using the presented grid based structure, such a plane can be easily extracted. In
a first step, the 2D cell center points of alldrivable cells are collected. Afterwards,
the medium cell heights of the same cells are determined using the approach depicted
in Sect. 3.4 incorporating the distance to the planes fitted to the cells. Finally, the
generated 3D points are used as an input for a least-squares plane fitting as described
at the end of Sect. 3.3 or by applying a RANSAC plane fitting.

In addition to a binary obstacle or not-obstacle view, also the shape of the terrain
is interesting as some areas might be traversable but with an increased effort or
unwanted side effects like reduced wheel grip. Here, an abstract terrain model can
be helpful for path planning or implement guidance. Using the grid representation,
this shape of the ground can again be extracted using the small planes fitted to each
cell. The algorithm to create a reduced version of a Digital Elevation Map (DEM)
starts at a cell close to the RCS’s origin which has not been labeled as obstacle
or non-evaluable (it has a reasonable height information). This starting cell is
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added to an auxiliary stack. In this case, a stack is required as the used grid size blasts
the maximum recursion depth. While the stack is not empty, the following steps are
repeated: 1. The top element is removed. 2. The N(8)(C j )-neighbors are calculated.
3. If the cell can provide a height value, the value is added to the DEM together
with the 2D coordinates of the cell center. If it has been labeled as obstacle or
non-evaluable the height is averaged using the neighboring cells. If they cannot
provide valuable data, the last height value is used. 4. All neighbors which are not
yet represented in the DEM are added to the stack. The final elevation map is then
generated by triangulating the determined points.

Figure3c shows the result of the traversability analysis. The hilly ground on the
left side of the image has been classified as drivable ground as shown in green on Fig.
3a based of the capabilities of the vehicle. Nevertheless, the height map in Fig. 3c
shows that the slope is quite high and if it is not required to go there, this area should
be avoided.

4 Experiments and Results

To test and evaluate the presented obstacle detection approach, different scenarios
have been recorded on the field, the campus of the University of Kaiserslautern, and
the forest connected to it. For the field scenarios a JohnDeere 6R tractorwas equipped
with the stereo camera system described in Sect. 2, a differential GPS-system, an
inertial measurement unit and other time-of-flight sensors to evaluate the data quality
of the stereo camera. The first collection of datasets was recorded on grassland (see
Fig. 4a) and on fields with different kinds and sizes of grass and weeds in summer
2014. With varying speeds from 1−15 km/h different obstacle types and open field
scenarios have been captured during different daytimes. In a second test, data has
been recorded while using a stubble cultivator on a harvested grain field. This field
contained several obstacles like a forest on one side, some houses at the opposite
border, 2 power poles within the field and a ditch to a street nearby. Both datasets
with 96,372 stereo image pairs in total were used to evaluate the obstacle detection
system offline before deploying it to a real machine.

Both Figs. 4a and 4b show some typical classification results which were created
in the offline analysis. In all of these scenarios a cell size of 0.5 m × 0.5 m was used
to get rid of some small weeds sticking out of the ground. The grid dimensions where
limited to 16 m × 16 m, as the point cloud density was too low for higher distances
and the noise dramatically increased in farther regions. The 3D points belonging to
the ground are summarized by the fitted planes which are shown in different colors
depending on their distance to the horizontal plane. Cells which are classified as
obstacles are highlighted with a red transparent box. Additionally, the individual 3D
points are shown alongwith their color. For better understanding, the right part shows
the left image of the stereo camera. The obstacle points have been back-projected to
the image coordinates and are overlayed as a red mask for visualization. The hole
in the center of the grid arises from the engine hood which was removed from the
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Fig. 4 Two typical obstacle situations captured on the field. The left images depict the results of
the grid based evaluation showing the fitted planes—the color scale depends on the height above
the x-y-plane—and the identified obstacles as red boxes together with the colored 3D points. Right
resulting classification projected back to the SCS and visualized as an overlay on the left camera
image. Green pixels show the drivable ground, obstacles are shown with red pixels. a Trees and a
mound on grassland. b A power pole on a harvested grain field

point cloud before handing the data to the obstacle detection module. Figures 4a and
4b depict scenarios where the tractor was manually driven. The first figure shows
the system’s response to an apple tree and a small mound, the second visualization
demonstrates the detection results of a large power pole which is blocking the path
calculated by the GPS guidance system.

To quantitatively evaluate the detection performance, 100 randomly selected
stereo pairs have been extracted from the recorded dataset described above. The
ground-truth (obstacle or drivable ground) was manually set for each grid cell for all
items of the selection. Using the parameters vh = 3.2 m, vα = 10◦ and vg = 0.5
m suitable for the tractor, it resulted in an average precision of 81.76%, a recall of
93.16% and an accuracy of 99.41%. The determined false positive rate is 0.45%. It
should be mentioned, that the example images contained much more drivable cells
(53,941) than obstacles (1169) as the data was collected on real fields. Furthermore,
it could be seen that most of the false positive detections were caused by weeds
sticking out of the ground or by cells connected to real obstacles which appear larger
in the stereo cloud. Additionally, most of the false positives which were identified



A Stereo Vision Based Obstacle Detection System for Agricultural Applications 229

by the slope estimation γ were positioned at the border of the camera’s field of view
were the grid cells are only partially filled with 3D points.

To demonstrate the applicability of the approach, the obstacle detection was inte-
grated into a guidance system and implemented on a modified tractor with electroni-
cally controllable steering and velocity. Here, the output of the detection was passed
to a map where the results of multiple frames were combined to increase the robust-
ness and to get rid of single misclassified cells. If an obstacle intersected the space
requirements along the calculated GPS-path, the tractor was stopped by decreasing
the speed to zero. The prototype was used to demonstrate an emergency stop in front
of a person, a tree and a small pole while driving tracks on the field.

In addition, the methodology has also been tested at the campus and inside the
Palatinate Forest as the number of obstacles and overhangs is higher than in the field
scenarios and the detection has to be more precise. Two examples are given in Fig. 5a
and 5b. For both sites the grid cell size was reduced to 0.25 m × 0.25 m for a better
segmentation of obstacles. Additionally, the ground clearance was reduced to 0.2
m to fit to the capabilities of the testing vehicle, a John Deere Gator XUV 855D.
It can been seen in both examples that the drivable ground is correctly classified

Fig. 5 Obstacle detection applied to a campus and a forest scenario using a cell size of 0.25 m ×
0.25 m. For the tests, the camera was mounted on a John Deere Gator XUV 855D at a height of 2
m above the ground. For the forest scenario, a grayscale Bumblebee XB3 camera was used instead
of the Bumblebee2 model employed for the other experiments. Both visualizations use the same
color coding as described in the previous figure. a Campus scenario. b Forest scenario
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by the system as well as the obstacles within the detection range of the camera.
For the forest capture, a Bumblebee XB3 grayscale camera was used instead of the
Bumblebee2. Due to the larger baseline of 24 cm also the x dimension of the grid
could be increased to 35 m. For both examples the same visualization scheme as
described for the field scenarios applies.

5 Summary and Future Work

The obstacle detection system presented in this paper was successfully used to detect
severe obstacles on the field, the campus and inside the forest. Splitting the detection
into a grid cell and a neighborhood based part allows for parallelization of the detec-
tion process which makes the approach real-time capable. Furthermore, the results
are more robust than a point-wise analysis as small outliers have a reduced influence
on the evaluation.

The collected data showed that further research is needed to distinguish between
softweeds stickingout of the ground anddangerous solid objectswhich is challenging
based on the geometric data extracted by the stereo system. Thus, the system is
currently extended to extract the image patches representing the obstacles found by
the geometric evaluation. Afterwards, the obstacle is analyzed in the image domain to
further classify the obstruction and neglect it in case of weeds.
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CoPilot: Autonomous Doorway Detection
and Traversal for Electric Powered
Wheelchairs

Tom Panzarella, Dylan Schwesinger and John Spletzer

Abstract In this paper we introduce CoPilot, an active driving aid that enables
semi-autonomous, cooperative navigation of an electric powered wheelchair (EPW)
for automated doorway detection and traversal. The system has been cleanly inte-
grated into a commercially available EPW, and demonstrated with both joystick and
head array interfaces. Leveraging the latest in 3D perception systems, we developed
both feature and histogram-based approaches to the doorway detection problem.
When coupled with a sample-based planner, success rates for automated doorway
traversal approaching 100% were achieved.

1 Introduction

The U.S. Department of Health and Human Services reports that the number of
people over the age of 65 will increase from 40.4 million people in 2010 to over
70 million by 2030 [16]. This rapid growth in the U.S. elder population will also
increase the number of people with age-related symptoms that hamper their mobil-
ity. Such common symptoms include visual impairments, dementia, and Alzheimer’s
disease [14]. Providing electric-powered wheelchairs (EPWs) to seniors (and others)
is a significant step in helping them live at home and maintain independent mobility.
However, it is not without its own challenges. Maintaining straight paths and avoid-
ing obstacles is often challenging—especially for drivers using alternative controls
such as sip-and-puff devices, switch driving systems, chin controls, or short-throw
joysticks. Additionally, traditional joystick users with impaired hand control and
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those who rely on “latched driving” modes (i.e., cruise control) for independence
and functionmay require additional assistance to ensure safe and comfortable mobil-
ity. To realize the home health benefits of EPWswhile also maintaining safety, active
safety systems for EPWs could be deployed.

To this end, we have developed CoPilot, an active driving aid that enables semi-
autonomous, cooperative navigation of an EPW. Similar to active driver-assist sys-
tems in automobiles, the driver remains in primary control of the vehicle, while in the
background, CoPilot uses intelligent sensing and drive control systems that work in
cooperation with the driver to aid in avoiding obstacles/collisions and fine precision
driving tasks. The motivation is that as an individual begins to lose cognitive, percep-
tive, or motor function due to age, injury, or disease, CoPilot can augment that loss
because it can interpret the user’s intent by seeing into the environment. This exte-
roceptive sensing capability is enabled by leveraging the latest in three-dimensional
(3D) imaging technology. While being developed with a suite of semi-autonomous
driving behaviors in mind, the focus of this paper is automated doorway detection
and traversal. This functionality was motivated by discussions with physical and
occupational therapists in the wheelchair space who prioritized doorway navigation
as a capability that would provide real value to EPW users. CoPilot provides near
100% effectiveness in this application.

2 Related Work

Doorway detection using 3D sensing has been accomplished in various ways. Rusu
et al. used 3D point clouds to locate doors [13]. The goal was to find doors for
the purpose of opening or closing them with a robotic manipulator. When the robot
was at a door location, a planar model was fit to the point cloud data. The models
were validated based on geometric constraints. More recently, RGB-D data has been
used for the task of parsing indoor scenes [5, 11]. The goal of which is to detect
and correctly label objects in indoor environments. This is a more difficult task than
looking for a single category of object, in our case doorways. These algorithms
are based on learning classifiers where the feature vectors are largely inspired from
computer vision techniques, such as histograms of oriented features. In our work, we
also leverage computer vision approaches for some aspects of doorway detection.

Early approaches of wheelchair systems capable of doorway traversal include [8,
9, 17]. For navigation, Levine et al. [8] and Yanco [17] both utilized an array of sonar
sensors and Parikh et al. [9] used a planar laser scanner. While these works yielded
successful demonstrations, the limitations of the sensorswere not necessarily suitable
for use in cluttered environments. For example, depending on sensor placement, these
approaches might be susceptible to navigating through a table because the table legs
could be detected but not the table top.

The work most similar to our own is Derry and Argall [3], where the goal was
to detect open doorways suitable for wheelchair traversal. Their approach involved
processing point cloud data to fit planar models under the assumption that gaps in
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the planar model correspond to doorways if they meet certain geometric criteria.
A key difference in approaches is that while their focus was in processing point
clouds, our algorithms emphasize processing the depth images directly. Furthermore,
their investigation was limited to doorway detection. In contrast, CoPilot provides a
complete solution for automated doorway navigation.

3 Development Platform

The development platform used in this research was based on the Quantum Q6 Edge
electric powered wheelchair (EPW) shown in Fig. 1. The Q6 features motors with
integrated encoders for measuring wheel velocities. To access these for odometry
purposes, we interfaced an on-board embedded computer with the EPW’s motor
controller over the CAN bus. It also enabled the regulation of the EPW’s linear and
angular velocities via a software-based PID.

Exteroceptive sensing was from two Primesense Carmine 1.09 sensors. The
Carmine 1.09 is the shorter range version of the Primesense structured lighting sen-
sor. It has an advertised effective range between 35–140 cm (compared to 80–350
cm for the standard range Carmine 1.08). The decision to use the short range variant
was to ensure that doorways and obstacles remained visible in close proximity to the
chair. However, the maximum range of 1.4m was extremely limiting. We addressed
this through an intrinsic calibration procedure which extended the effective range
to approximately 3 m with little degradation in accuracy. This is discussed in detail
in Sect. 4.1. Two sensors were used in order to increase the total field of view. This

Fig. 1 CoPilot integrated
into an Quantum Q6 Edge
EPW
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ensured better coverage of the chair footprint (to avoid collisions with obstacles), as
well as facilitated doorway detection at a range of chair orientations. The mounting
positions of the sensors are depicted in Fig. 1. Note that the sensors are mounted
vertically rather than horizontally as this was found to be a less obstructive configu-
ration.

The software was developed using the Robot Operating System (ROS) [10]
framework and modularized based on ROS’ message passing paradigm. For basic
image processing and point cloud manipulation, we leveraged the OpenCV [2] and
Point Cloud Library (PCL) [12] projects respectively. Processing was via a separate
onboard computer with a 2.2 GHz Intel Core i7 processor and 8 GiB of RAM.

4 CoPilot Perception

4.1 Intrinsic Sensor Calibration

As alluded to in Sect. 3, the maximum advertised range of the Carmine 1.09 (1.4 m)
was insufficient for effective doorway detection. While objects at depths farther than
1.4m could still be detected, the triangulation based nature of structured light sensors
induces a nonlinear noisemodel of the form |δz| ∝ z2|δd|, where δz is the error in the
depth observation, z is the actual depth, and δd is the error in disparity. In otherwords,
errors grow quadratically with depth. This can be mitigated by using an appropriate
errormodel and adjusting the depthmeasurements accordingly.Unfortunately, global
distortion models used for traditional camera calibration are of limited use as sensors
based on the Primesense appear to have irregular distortion patterns unique to each
individual sensor [15]. While they propose an unsupervised procedure to intrinsic
calibration in [15], we use an alternate approach that while supervised, is fast to use
and significantly less complex to implement.

Starting at the minimum effective range of the sensor, the user captures a depth
image of a nominally flat wall. The sensor is then moved incrementally farther from
the wall, and a new image is captured out to themaximum sensor range. For example,
if the minimum and maximum ranges of interest were 0.5m and 3.0m respectively,
depth images would be captured at nominal depths of z = [0.5,1.0,1.5,2.0,2.5,3.0]
meters. Note that the exact spacing is not critical. However, the accuracy of the depths
z is the basis for the calibration, andmust bemeasured accurately. This can be readily
accomplished using standard tools (e.g., a tapemeasure or laser distancemeasurer). It
is also important that the sensor’s optical axis be roughly normal to the wall surface.
To ensure this, we developed an application that provides visual feedback of the
alignment error between the sensor’s optical axis o and the wall’s surface normal nw.
This is estimated by using RANSAC [4] to automatically segment the wall plane in
real-time. The user then adjusts the sensor orientation until ||o×nw|| ≈ 0. In practice,
an alignment error of ≤1 degree is adequate for calibration, and easily obtained.
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Given a set of k point cloud images P = [P1, . . . , Pk] and corresponding ground
truth depth measurements z, the remainder of the calibration process is completely
automated. For each P ∈ P, we recover the parameters for the respective wall
planes Π = [Π1, . . . ,Πk] where the relative orientation is again estimated using
RANSACand the translation using the depthmeasurements z. Given robust estimates
of the actual wall’s relative positions and orientations Π , the point clouds P are
adjusted to ensure that each point pi (i, j) ∈ Pi lies on its respective plane Πi . This
is accomplished by generating a set of scaling coefficients K = K1, . . . , Kk for each
point of each point cloud. We denote the corrected point cloud set as P∗.

The scaling coefficients K are to this point limited to the discrete set of ranges z
where calibration data were collected. These are generalized to continuous space by
modeling the scaling coefficients as a quadratic function of scene depth, i.e.,

K (i, j, z) = A(i, j)z2 + B(i, j)z + C(i, j) (1)

where (i, j) are the pixel coordinates of the point cloud. Thus, every sensor pixel
has it’s own specific quadratic function k(i, j, z) that is used to determine the scaling
factor at a given depth z. The quadratic coefficients [A(i, j), B(i, j), C(i, j)] for
each pixel (i, j) are recovered as a least squares solution minimizing the residuals
between P and P∗. The coefficients are calculated offline, and stored in three Look
Up Tables (LUTs) A, B, C corresponding to the respective quadratic coefficients.

A point cloud P ofm×n points can be described through its Euclidean coordinates
X, Y, Z ∈ R

m×n where each matrix entry corresponds to the x, y, z coordinates of
the respective point. To calculate the corrected points, the following operations are
performed on the streaming point cloud:

K (i, j) = A(i, j) ∗ Z(i, j)2 + B(i, j) ∗ Z(i, j) + C(i, j) ∀ (i, j)

X∗(i, j) = K (i, j) ∗ X (i, j)

Y ∗(i, j) = K (i, j) ∗ Y (i, j)

Z∗(i, j) = K (i, j) ∗ Z(i, j)

where X∗, Y ∗, Z∗ denote the corrected point set. Thus, online intrinsic calibration
can be performed at a cost of only several floating point operations and array look
ups per point.

We have used the calibration procedure extensively over the past year, and per-
formance has been very good. A sample calibration run is shown at Fig. 2. The left
sub-figure shows a point cloud before (top in red) and after (bottom in blue) calibra-
tion. Qualitatively, we see that both the distortion and dispersion of the points were
significantly reduced. This is also reflected quantitatively in the center-right sub-
figures, which show the mean error and mean standard deviation of the points versus
scene depth (pre-calibration and post-calibration). The reductions in both error and
variance were significant, clearly demonstrating the efficacy of the approach.
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Fig. 2 Left Sensor points before (top) and after (bottom) intrinsic calibration. Note that both point
distortions and dispersion is reduced. This is also reflected in the mean error (center) and standard
deviation (left) of the points

4.2 Depth Image Warping and Fusion

Our approach to doorway segmentation relies heavily upon the observation that door-
way border features are strongly vertical. We further observe that computationally,
these features can be extractedmost efficiently if the sensor frame is aligned vertically
with the world frame, i.e., the gravity vector. An analogy would be the motivation
for rectification of stereo image pairs. As a result, we warped and fused the depth
image pair as a pre-processing stage.

Given two point clouds PL , PR associated with the left and right sensors, respec-
tively, the first step was to warp the points to a common coordinate frame F. We
chose F to be centered between the actual sensor positions, and with an orientation
identical to the EPWvehicle frame. Using the extrinsic calibration relating the sensor
and vehicle frames, we recovered the rigid transformation between the frames and
transformed the points in each point cloud

P̂L = C RL PL + C tL (2)

P̂R = C RL PR + C tR (3)

where (C RL , C tL) and (C RR, C tR) were the rigid transformations relating the left
and right sensor frames to F. Since most of our processing will be in the depth
image space, we next calculated the back projection of P̂L , P̂R to form the fused
depth image ID . In doing so, a couple of subtleties needed to be addressed. First, the
back projection of points do not lie on exact pixel boundaries. As a result, we use a
nearest neighbor interpolation scheme to form the depth image. Second, there was
the potential that a point in both P̂L and P̂R would warp to the same pixel ID(i, j).
In this event, the depth of the closer point was used.

The process is reflected in Fig. 3. The left-center sub-figures show the raw depth
images from the left and right sensors. Note that when mounted on the EPW, the
sensors were rolled approximately 90 degrees which explains the vertical orientation
of the depth images. The right sub-figure shows the resulting depth image ID after
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Fig. 3 Left-Center raw depth images of a doorway from the left and right sensors. Right Fused
depth image

transforming and fusing the point clouds. All subsequent image and point cloud
processing is done using this image as input.

4.3 Real-Time Doorway Detection

After the transformation outlined in Sect. 4.2, vertical edges in the real-world map
to vertical columns in ID . The doorway detection procedure exploits this fact to
efficiently find doorway boundaries based on salient features in the depth image. We
evaluated two approaches to finding doorway boundaries, a feature based approach
and a histogram based approach. After a set of doorway boundaries was obtained
(from either approach), they were then validated based upon geometric constraints.
We now describe the process in detail.

4.3.1 Feature Based Doorway Boundary Detection

Doorways are transition features between interior and exterior space. When viewed
within a depth image ID , they appear as spatial discontinuities. This is to be expected,
as there must be sufficient free space to accommodate pedestrian (or EPW) traffic
across the spaces.We leveraged techniques traditionally used in 2D image processing
to localize this discontinuity, and by association the doorway edges. To enhance
these edges, we convolved ID with a [−1, 0, 1] kernel to generate the horizontal
gradient image, and then thresholded based upon the size of the depth discontinuity
to generate an edge image ED . The next stepwas to identify edges of sufficient length
to be classified as a doorway edge. Note that simply summing the edge pixels for
each column of ED would produce incorrect results for two reasons: (i) the edges
could actually be at different depths in 3-space, possibly corresponding to multiple
objects, and (ii) the resulting sumwould be biased towards objects close to the sensor
because they subtend more pixels.

The first problemwasmitigated by calculating themedian depth z̄k of each column
k of ID and generating a copy of the depth image, MD , where values in column k
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are set to zero if they are not within some specified distance to z̄k . The idea was that
true doorway edges would represent the majority of the edge length in the column,
and the median value would therefore lie upon this edge. The second problem was
addressed by weighting the depth measurements with the height of the unit pixel ph

subtended at the respective depth. The approach can be expressed concisely as

Φ = 1T (ph · ED � MD) (4)

where 1 is a column vector of all ones, � denotes elementwise multiplication, and
Φ defines a row vector where each component corresponds to the edge height in
each column. Each component in Φ was evaluated based on a minimum height
requirement. The set of columns that meet the threshold were marked as potential
doorway boundaries at a depth of z̄k .

The process is illustrated in Fig. 4. The left sub-figure shows the edge image ED .
The center image shows edge pixels overlaid on the fused RGB-D image. The right
image shows edge clusters projected to the x − y plane. Note that each cell represents
a potential doorway boundary, so that multiple candidates can be obtained from a
single doorway image. Discriminating the correct edge (e.g., the front doorway edge
vs. the rear) will be discussed in Sect. 4.3.3.

We quickly determined that by themselves, doorway edges were an insufficient
feature for doorway detection. For example, an inward opening door may not offer
a strong edge on the hinge side as the door face can provide a smooth transition into
the room. As a result, we also integrated corner features into our classifier. To do
this, we first generated a 2D histogram H(x, y) that bins points in 3-space to the
ground plane. After applying the Harris operator to H(x, y) [6], we identified the
set of bins C in H(x, y) that corresponded to corner features using an appropriate
threshold. Marking a column as a potential doorway based on C required a small
amount of effort since measurements frommultiple columns could fall into the same
bin. For each Ck ∈ C, we found the data point x closest to the centroid of the bin
and marked the associated column as a potential doorway boundary at a depth equal
to the distance to x.

Fig. 4 Left Edge image of doorway. Center Edge pixels identified in the scene. Right Top down
view of door edge coordinates



CoPilot: Autonomous Doorway Detection and Traversal … 241

Fig. 5 Left Fused depth image of doorway. Center Corner pixels identified in the scene. Right Top
down view of doorway corner coordinates

The corner detection process is illustrated in Fig. 5. The left sub-figure shows
the fused depth image. The center image shows corner pixels overlaid on the fused
RGB-D image. The right image shows valid corners projected to the x − y plane.

In practice, our feature based approach was very successful at segmenting
doorways. However, its computational complexity—dominated by the corner seg-
mentation component—was of concern. This motivated our investigation into the
histogram-based approach described below.

4.3.2 Occupancy Histogram Doorway Boundary Detection

Our feature-based approach attempts to directly identify the doorway boundaries,
leaving only a small number of candidates as input to the validation procedure
outlined in Sect. 4.3.3. However, this comes at the expense of significant up-front
computation. As a result, we investigated a simpler descriptor. It is based upon the
observation that the segmented edge and corner features were subsets of all columns
largely occupied by a vertical object. For edge and corner features, we expend signif-
icant computational resources verifying that neighboring columns in 3-space are not
occupied. But what if we simply identified each column that had a high occupancy
rate as a potential doorway boundary? Undoubtedly this would lead to a much larger
number of candidates for validation, but in practice the computational savings in
image and point cloud processing more than makes up for this expense.

In effect, the depth image was reduced to a 1-D occupancy histogram. To accom-
plish this, we simplified the approach summarized in (4) to

Φ = 1T (ph · MD) (5)

which yielded a row vector where each component was the height of the object in
each column corresponding to the median value z̄k . In other words, where in (4)
we accumulated edge lengths, in (5) we are accumulating object height. Φ is now
a 1D histogram of heights per bin where each bin corresponds to a column in MD .
Thresholding each component of Φ on a minimum height requirement segments
every column that corresponds to a large vertical object.
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When combinedwith the validation procedure in Sect. 4.3.3, this approachworked
surprisingly well in practice. Compared to the feature-based approach, the imple-
mentation is far simpler as neither edge nor corner detection is required. It is also
more efficient computationally. With a Primesense at VGA resolution (640 × 480),
the feature based approach detected doorways at 12Hz on the computer in Sect. 3.
By comparison, the histogram approach ran at frame-rate (30 Hz). In the current
version of CoPilot, the occupancy histogram approach is used exclusively.

4.3.3 Doorway Validation

Given the columnsmarked as candidate doorway boundaries and the associated depth
depth values, the role of the doorway validation procedure is to find the best estimate
of the relative position and orientation of the doorway. Algorithm 1 Validate-
Doors outlines the procedure of reducing the set of doorway boundaries to a set
of doorway candidates D. Each pair of doorway boundaries must meet geometric
constraints based on the width of the doorway (line 5), the orientation of the EPW
to the doorway (line 5) and the amount of free space beyond the sill of the doorway
(lines 10–14). Guided by the American’s with Disability Act (ADA) [1] accessibility
guidelines, minimum and maximum doorway widths were set to 82cm and 162 cm,
respectively. The orientation constraint was set to±45◦ and the free space beyond the
doorway had to be sufficient to accommodate the EPW footprint. Doorwaywidth and
orientation validation are performed by theGeometric-Validation sub-procedure.

Computationally, the most expensive part of Validate-Doors is the Intersect
sub-procedure which verifies that sufficient free space exists beyond the candidate
doorway via ray-tracing. In theory, there could be O(n2k) calls, where n is the num-
ber of columns and k is the number of free space tracing operations per doorway
boundary pair. In practice, this will not happen due to constraints on doorway width,
sensor field-of-view, and wheelchair orientation. When benchmarked with a single
Primesense at VGA resolution, Validate-Doors had a mean run time of approxi-
mately 3 ms with a standard deviation of approximately 1 ms.

Fig. 6 Left Free space check for feature pairs. Center The set of valid doorway features. Right The
final doorway chosen using the “nearest doorway” doorway heuristic
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Algorithm 1 Door Validation
1: procedure Validate- Doors(O, B) 
 O: obstacle coordinates, B : boundary coordinates
2: D ← ∅ 
 set of valid doorways
3: for i ← 0 to n − 1 do
4: for j ← i + 1 to n do
5: if Geometric − Validation(B[i], B[ j]) then
6: continue
7: end if
8: is_valid ← true
9: for k ← i to j do 
 trace free space
10: p ← Intersect(B[i], B[ j], k) 
 line segment intersection point
11: if ‖O[k]‖ < ‖p‖ then
12: is_valid ← false
13: end if
14: end for
15: if is_valid = true then
16: D ∪ {[x, y, θ]T } 
 add doorway pose
17: end if
18: end for
19: end for
20: end procedure
21: Note: The loops on B continue early when the column has no associated doorway boundary.

The doorway validation procedure returns the set of valid doorways D with the
relative position of the doorway’s center and its orientation. Note there is high proba-
bility that the classifier will return multiple doorway candidates. However, these will
typically be variants of the actual doorway opening (e.g., front edge to rear edge,
front corner to rear edge, door stop to front corner, etc.). To ensure consistent posi-
tion and orientation estimates, we wish to identify only the front edges/corners of the
doorway. To this end, we use a heuristic of choosing the closest doorway candidate.
In practice, this has worked quite well for detecting the actual doorway.

The process is illustrated in Fig. 6. The center sub-figure shows the valid doorway
candidates (red arrows), and the right sub-figure the chosen doorway. The latter well
approximates the doorway position and orientation.

5 Autonomous Doorway Navigation

At the user level, the CoPilot interface is very intuitive. The user switches the EPW
controller drive mode to “CoPilot” and manually drives towards the door. As soon
as CoPilot detects the doorway, an icon appears on the LCD control panel. The user
then pushes a single button to effect doorway traversal. Note also that the user can
also steal back control from CoPilot at any time by simply touching the joystick.

At the software level, doorway navigation is decomposed into two primary sub-
tasks: mapping the environment, and given such a map perform real-time planning
and control of the EPW for safe and reliable doorway traversal.
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5.1 Mapping

The local map was a 2D occupancy grid centered at the current EPW pose. We
leveraged ROS for populating and clearing cells in the local map through ray tracing
techniques [10]. For navigation purposes, 3D points were projected down to a 2D
costmap M where the individual cells were categorized as either occupied (i.e.,
obstacles), free, or unknown. Each cell M(x, y) was also assigned a cost C(x, y)

based on its proximity to obstacle cells taking into account the vehicle footprint. If
the EPW were to occupy a cell (x, y), and any portion of its footprint would overlap
with an obstacle cell,C(x, y)would be assigned a lethal cost making it untraversable
by the local planner. Otherwise, obstacles were modeled by exponential functions.
The resulting costmap was then input to the local planner for trajectory planning. In
our implementation, map updates were done asynchronously whenever a scan from
either of the sensors was available, with an objective feedback rate of 15 Hz.

Figure7 shows a top-down view of the costmap for the EPW staring at a doorway.
The doorway edges are inflated by the potential function to define traversable regions
in the costmap. Cyan colored cells correspond to regions with lethal cost, while the
transition region from red to dark blue is traversable with decaying cost.

5.2 Planning

The global planner for doorway navigation is very intuitive.Given a doorway position
and orientation, the it constructs an objective path down the doorway centerline with

Fig. 7 Costmap C(x, y) of
the EPW at a doorway. The
black line denotes the
desired path
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the same orientation as the doorway itself. A goal pose G = [xg, yg, θg] is then
placed on this path the length of the EPW through the doorway.

For local planning, we employed a traditional sample based approach on the input
space of the linear and angular control velocities (v, ω) [7]. The range of velocities
sampled was v ∈ [0.1, 0.4] m/s, and ω ∈ [−0.3, 0.3] rad/s. Each sampled trajectory
Ti was then evaluated against a cost function

C(Ti , M) = Cobst + Cgoal + C path (6)

Cobst was the maximum obstacle cost of any cell along the specified trajectory. If
Cobst > Cmax , the obstacle cost was considered fatal and the associated trajectory
discarded. Cgoal was proportional to the distance from the current EPW position to
G. Similarly, C path was proportional to the to the distance from the EPW position
to the path derived from the doorway’s centerline. The optimal trajectory T ∗ =
argminC(T, M)was then selected, and the associated velocity command (v∗, ω∗) ∈
T ∗ was issued to the CoPilot motor controller.

6 Experiments

The doorway navigation behavior for CoPilot is extremely effective. ADA compli-
ant doorways can be navigated with near 100% reliability. The mapping capability
also allows CoPilot to identify both static and dynamic obstacles in the environment,
and react to these accordingly (i.e., by avoiding the obstacle or stopping when nec-
essary). As additional anecdotal evidence of its performance, CoPilot was recently
demonstrated at the headquarters of a major EPW manufacturer. The system was
fully integrated into an EPW with a user-friendly interface. When placed in CoPilot
driving mode, an icon would appear on the EPW’s control display when a door-
way was detected. The user then simply pressed a button to initiate door traversal.
Although no data was collected during the demonstration, the system was tested
by numerous company representatives across a large population of doors. CoPilot
successfully traversed every door that the participants attempted.

To support this paper, a more formal experiment was conducted over the course
of several days at various locations around the Lehigh University campus. During
this time, the EPW was operated in a natural fashion with no attempt to specifically
align the wheelchair into a favorable pose. A total of 100 traversals of 100 unique
doorway instances were attempted. All were successful. Figure8 depicts a sample of
the doorways that were traversed. Note that CoPilot was even successful navigating
through doorways where structured lighting systems might be expected to struggle,
e.g., doorways with glass doors. Figure9 shows the variety of starting EPW poses
and a probability mass function of the door widths. Note also that the large majority
of the doorways were at the lower range of ADA compliant doorway widths.
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Fig. 8 Examples of the variety of doors successfully traversed

Fig. 9 (Left) visualization of EPW starting poses with respect to a doorway centered at the origin
with an orientation of −90◦ and (right) the probability mass function of the traversed door widths

In terms of “failure modes,” the doorway detection system used in CoPilot is
susceptible to false positives in that clustered vertical objects meeting the geometry
constraints could be interpreted as doorways. For example, two tall file cabinets with
a sufficient opening in between would be segmented as a doorway. However, while
some may consider this a false positive, others might consider it a feature as it gener-
alizes CoPilot to traversing a larger range of narrow openings. We should emphasize
that since migrating to the occupancy histogram approach to doorway segmentation,
no false positives have been observed when attempting an actual doorway traversal.

Finally, videos demonstrating the use of CoPilot can be found at http://
loveparkrobotics.com/?p=993 and http://loveparkrobotics.com/?p=997. The latter
shows CoPilot integrated with a head array controller, an input device not well suited
for the doorway navigation tasks. With the EPW in CoPilot mode and the doorway
detected (i.e., when it puts the icon on the screen), a momentary tap of the rear switch
embedded in the head-array will signal CoPilot to initiate door traversal. Just as with
the Joystick mode of operation, the user can steal back control at any time by pushing
the head-array switches.

http://loveparkrobotics.com/?p=993
http://loveparkrobotics.com/?p=993
http://loveparkrobotics.com/?p=997
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7 Conclusion

In this paper we introduced CoPilot, an active driving aid that enables semi-
autonomous, cooperative navigation of an EPW for automated doorway detection
and traversal. The system was fully integrated into a Quantum Q6 Edge EPW using
both joystick and head array controls. For doorway detection, we investigated both
feature and histogram based approaches. The latter exhibited at least as good perfor-
mance with significantly lower computational burden. Coupled with a sample-based
planner, CoPilot demonstrated near 100% reliability in detecting and traversing a
large population of doorways when employed by a range of users. We are currently
investigating the integration of additional driving aids for CoPilot, to include active
braking for real-time collision avoidance and corridor following.
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Learning a Context-Dependent Switching
Strategy for Robust Visual Odometry

Kristen Holtz, Daniel Maturana and Sebastian Scherer

Abstract Many applications for robotic systems require the systems to traverse
diverse, unstructured environments. State estimation with Visual Odometry (VO) in
these applications is challenging because there is no single algorithm that performs
well across all environments and situations. The unique trade-offs inherent to each
algorithm mean different algorithms excel in different environments. We develop
a method to increase robustness in state estimation by using an ensemble of VO
algorithms. The method combines the estimates by dynamically switching to the
best algorithm for the current context, according to a statistical model of VO estimate
errors. The model is a Random Forest regressor that is trained to predict the accuracy
of each algorithm as a function of different features extracted from the sensory input.
We evaluate our method in a dataset of consisting of four unique environments and
eight runs, totaling over 25min of data. Our method reduces the mean translational
relative pose error by 3.5% and the angular error by 4.3% compared to the single
best odometry algorithm. Compared to the poorest performing odometry algorithm,
our method reduces the mean translational error by 39.4% and the angular error
by 20.1%.

1 Introduction

Autonomous aerial vehicles are often desired for performing tasks that are danger-
ous or impossible for humans. From urban search-and-rescue missions to remote
exploration of nuclear disaster sites, these tasks often take UAVs to unknown envi-
ronments that are challenging due to their diverse and dynamic nature. Among these
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challenges is the likely inability of external communication, including limitations on
the availability and reliability of GPS data. This requires all perception, processing,
and decision-making to be made onboard. The unpredictability of the environment
further contributes to the need for a more robust system that is capable of recovering
from unanticipated faults. The infeasibility of considering all possible exception and
errors beforehand has led to research in fault-tolerant control (FTC) and fault-tolerant
perception [16].

Fault-tolerant perception can pose an especially difficult problem due to the vast
diversity of environments that occur in the real world. This diversity means that for
many tasks, a single method is rarely the best in all situations; instead, different
methods excel in different kinds of environments. This phenomenon was shown
in the task of Visual Odometry (VO) by Fang and Scherer [5], who compared the
performance of different VO systems using RGB and depth data. They found that
VO systems that used both kinds of information performed better, on average, than
systems using only depth information. However, in dark or smoky environments, the
depth-only systems would fail significantly less often than the other systems.

This motivates the main contribution of this paper, a practical and flexible frame-
work for fault-tolerant state estimation. The main idea of our framework is to use
an ensemble of algorithms, and dynamically switch between them as the vehicle
moves between environments. Switching is performed by periodically selecting the
algorithm expected to be the most accurate in the current context, according to a sta-
tistical model of the accuracy of each algorithm. The model is trained to predict the
accuracy of the motion estimates of each algorithm as a function of various features
describing different aspects of the environment and vehicle state.

We evaluate our framework in a benchmark with data from two sensors covering
four challenging, real-world environments. As further contributions, this evaluation
empirically shows that:

1. It is possible to improve on the performance (in terms of accuracy and robustness)
of the single best algorithm in an ensemble by dynamically switching between
algorithms.

2. Algorithm performance is correlated with observable characteristics of the envi-
ronment and vehicle state, so it is possible to predict which algorithmwill perform
best in each context from the sensory input.

3. Our proposed switching strategy results in more accurate and robust estimates
than any of the individual VO algorithms.

2 Related Work

Several state estimation methods can report some form of variance or confidence
estimate together with their state estimate, e.g. Censi’s method for ICP [4]. These
variances are often used for soft fusion, e.g. in a Kalman Filter [10]. They can also
be used for fusion. For example, Tomic et al. [14] use the self-reported variances
of a stereo odometry algorithm and laser odometry algorithm to switch between
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them as the vehicle navigated between indoor and outdoor estimates. Compared to
our approach, these methods have the advantage of not requiring any extra training
step; however, this comes at a cost in terms of flexibility. These methods cannot take
advantage of extra information our method can incorporate seamlessly. Addition-
ally, our method does not require running an algorithm to predict its performance;
this can provide significant computational benefits by turning the unused odometry
algorithms “off”. Finally, only some specific methods can self-report their variance,
while our method is applicable to any algorithm, whether or not it has this capability.

Leishman et al. [12] propose a system that dynamically switches between different
odometry methods based on context-dependent variables. The switching is based on
an ad-hoc strategy based onmanually selected quality thresholds for eachmodality. In
contrast, our method uses machine learning to learn this strategy, which considerably
simplifies adapting the method to different environments, sensors or algorithms.

An algorithm that has several similarities to ours is CELLO [15]. This method
predicts a covariance matrix for each method as a function of past training data.
The covariance matrix is predicted with a nonparametric estimator similar to nearest
neighbors methods. Compared to CELLO, our method makes various choices that
make it simpler and more practical. Instead of predicting a full covariance matrix,
we predict error magnitudes, which are simpler to learn and sufficient in many cases.
We choose a random forest-based regressor, which is faster than and more robust
than nearest neighbor methods [3]. In addition, our evaluation is more exhaustive, as
it has different and more challenging environments.

3 Approach

The system implementing our proposed method can be decomposed into various
components:

Sensor Suite In our framework sensors serve two purposes: to serve as input for the
VO estimates and to capture characteristics of the environment that will allow the
model to predict which algorithm will be the most reliable in any given context.

Algorithm Ensemble Our method requires a set of base algorithms performing the
same task (VO, in this paper). The algorithms should be diverse in terms of their
performance characteristics across different environments.

Features In order to describe aspects of the environment that are potentially relevant
for predicting accuracy, we extract various features from the sensor data and
estimated vehicle state.

Error Prediction Model Using data annotated with ground truth, we train a statis-
tical regression model to predict the accuracy of each algorithm in the ensemble
from the extracted features.

Switching Planner At each time step, the switchingplanner selectswhich algorithm
to run based on the predicted accuracy of each method and potentially other
factors, such as computational cost.
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Fig. 1 Framework Outline—The adaptive architecture framework allows the robotic system to
switch between different visual odometry methods. To choose whereto and when to switch between
methods, we predict the error associated with each method given a feature vector extracted from
current sensory information and state

We note that there is considerable flexibility in regards to the concrete implemen-
tation of each component. The concrete choices for the VO system proposed in this
paper are outlined in Fig. 1. While this system worked well in our experiments, this
framework easily accommodates variations for each component.

Below we describe selected components in more detail.

3.1 Sensor Suite

In the experiments for this work we use two different sensors. The first is a forward-
facingRGB-Dsensor,which combines a visible light camerawith an active structured
light system to create registered RGB and Depth (RGB-D) images.

The second is a specialized camera for optical flow [7], which faces downwards.
The camera has an attached ultrasonic range sensor to estimate height relative to the
ground.

Between these two sensors we have four channels of information: RGB, depth,
ground optical flow and height relative to the ground. Each of these channels provide
informative and complementary cues about the environment and vehicle state.
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3.2 Algorithm Ensemble

A diverse yet powerful set of algorithms is crucial to maximizing the robustness and
accuracy of our system as a whole. For this work we selected three representative
VO methods, each using different subsets of the data:

Fovis [8] This VO algorithm uses the RGB and depth data from the RGB-D sensor.
It works by detecting sparse keypoints from the RGB image and their 3D positions
relative to the camera using the depth image. Then motion is estimated by robust
matching of keypoints across frames using appearance information and geometric
constraints.

FastICP [1] This method relies solely on depth data. It converts each depth image
to a point cloud and estimates motion between frames by registering the point
clouds to a local surface map using point-to-plane Iterative Closest Points (ICP).

Optical Flow [7] This method uses optical flow and height measurements to esti-
mate motion. Unlike the other two methods, this method assumes the vehicle
maintains constant height in each motion.

3.3 Feature Extraction

For each of our sensormodalities we extract multiple features designed to summarize
various potentially relevant characteristics of the environment. We chose these fea-
tures as they are compact, efficient to calculate and commonly used in the computer
vision and point cloud processing literature.

Below we describe each feature according to the type of sensor data it describes;
see Table1 for a summary. The number corresponding to each featurewill also appear
in parenthesis with the description of that feature in the following text.

Table 1 Image features in the feature vector will be referred to according to the numbers in this
table

RGB image Depth and point cloud State

1. Contrasta 10. Contrasta 18. Translational velocity

2. Harris Corners 11. Correlationa 19. Angular velocity

3. Shi Tomasi Corners 12. Valid depth ratio

4. Correlationa 13. Energya

5. Edge Ratio 14. Homogeneitya

6. Energya 15. Linear-ness

7. Entropy 16. Scattered-ness

8. Homogeneitya 17. Surface-ness

9. Mean intensity
aIndicates a GLCM statistic
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3.3.1 RGB Image Features

Note that as we do not expect color to be a discriminative feature in this context, we
convert images to grayscale before further processing.

Luminance (9) We expect the luminance of the environment to be a useful predictor
of algorithm accuracy, as methods that rely on RGB information will likely fail
in dark environments. We use the Mean Intensity (9) of the grayscale image as a
simple estimate of luminance.

Corners (2, 3) Keypoint-based algorithms such as Fovis rely on the presence of
corner-like features in the environment; therefore, the quantity of these features
may be a good predictor of the success of these algorithms. While we could use
the results of Fovis’ own corner detection step, this would entail running Fovis
itself, and one of our goal’s objectives is to reduce computation by only running
algorithmswewill use. Insteadwe simply run two corner detector algorithms from
OpenCV, the Harris (2) and Shi-Tomasi (3) detectors and include the number of
corners from each as in the feature vector.

Edges (5) The presence of strong intensity edges is correlated with certain kinds of
environments; for example, a cluttered indoor scene will probably have a larger
number of edge pixels than an empty hallway. Hence we include the number of
Sobel Edge (5) pixels in each image in the feature vector.

Texture (1, 4, 6–8) The presence of salient intensity textures in an environmentmay
aid in the extraction and tracking of keypoints, and is also a strong cue to distin-
guish physical environments (for example, outdoors and indoor scenes have very
different textures). To succinctly describe image texture we include the entropy
(7) of each image, calculated using a histogram of the 256 possible intensity val-
ues, and features extracted from the gray-level co-occurrence matrix (GLCM) [6]
of the image over four different angles (0, 45, 90, and 135◦). The GLCM counts
how often every possible combination of gray-level pixel values occurs next to
each other, and statistics of this matrix are popular texture features. The statistics
we use are contrast (1), correlation (4), energy (6) and homogeneity (8).

3.3.2 Depth Features

Valid depth ratio (12) Our RGB-D sensor reports depth as a 16-bit image in which
pixels are set to a special value if depth estimation is unsuccessful, deeming them
invalid. If a large amount of the depth image is invalid, likely meaning it was out
of range of the depth sensor, then any method using depth information may not
be reliable. To quantify this we include the Valid Depth Ratio (12) of each depth
image was computed to estimate the amount of information in that image.

Saliency (15–17) The three-dimensional shape of the environment may be a useful
predictor of algorithm performance. For example, it might distinguish between
environments that are underconstrained in depth information—particularly long,
clear corridors—and environments that have several interesting depth features
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to track. To capture this we compute global saliency features [11], a coarse but
efficient measure of shape. These features operate on point clouds, so we first
project the pixels with valid depth to a 3D point cloud {Xi } = {(xi , yi , zi )

�}N
i=1.

A 3 × 3 covariance matrix
∑N

i=1(Xi − X̄)(Xi − X̄)�/N is computed, λ0, λ1, λ2

are extracted, such thatλ0 ≥ λ1 ≥ λ2. The three saliency features of the pointcloud
are the scattered-ness fscatter = λ2 (16), the linear-ness flinear = λ0 − λ1 (15), and
the surface-ness fsurface = λ1 − λ2 (17).

Depth Texture (10, 11, 13, 14) GLCM statistics, as described for the RGB texture
features, were also extracted from the depth image.

3.3.3 State Features

The velocity, as reported by the visual odometry algorithms, was also included in the
feature vector. Specifically, the magnitudes of both the translational (18) and angular
(19) velocities of the currently active odometry method were used as features. This
was added as a possible predictor formotion blur, which could affect the performance
of visual odometry algorithms.

3.4 Error Prediction Model

The task of the error prediction model is to predict the trajectory errors of each
algorithm at each time step given the feature vector described in the last section.

We formulate the problem as a regression problem, for which various methods
may be used. Below we describe our chosen methodology.

Error Evaluation The output of our algorithm is an prediction of the trajectory
errors each algorithm will make. We chose a metric based on the relative pose
error (RPE) at a given time, described by [13] for VO evaluation. RPE measures
the local accuracy of a trajectory, as compared to a ground truth trajectory, over
a specified time interval. This measures how far the trajectory drifts in the given
time interval.

Ei := (
Q−1

i Qi+Δ

)−1 (
P−1

i Pi+Δ

)
(1)

Equation (1) calculates RPE at time step i , over the time intervalΔ. Here Q refers
to the ground truth path and P refers to the estimated trajectory. In all experiments
in this paper we use a time interval of Δt = 2 s.

As predicting structured matrices in nontrivial, instead we choose to predict two
scalar quantities: the translational error, extracted from (1) as the Euclidean norm
of the translational portion of Ei , and the angular error, extracted as the absolute
value of the angle of rotation from the rotation matrix portion of Ei .
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Error Prediction To predict the trajectory errors given the feature vector, we
proceed as follows. First, we learn an independent regression model for each
method and for each type of error (translational and angular). While joint predic-
tion of the errors could potentially be more accurate, performing the predictions
independently allows us to use virtually any off-the-shelf regression algorithm.
Another advantage of using several different regressors instead of a joint regres-
sor is that VO methods can easily be added to the algorithm ensemble without
affecting regression models that have already been learned.

Regression was used instead of the potentially simpler classification. One advan-
tage of regression over classification is that we are able to determine the mag-
nitude of an error before switching away from a method. Regression commits
less strongly to which method might be the least accurate at any time. Regres-
sion gives us more nuanced information that allows more informed decisions.
For example, if two methods are performing well, classification may indicate to
frequently switch between the two. With regression, we may be able to determine
that the cost of switching is not worth the slight decrease in error.

For the regressionmodelwe chooseRandomForests (RF) [2]. TheRF algorithm is
an ensemble learning method that contains many decision trees, each contributing
a vote towards an answer. We chose to use RF compared to other regression
algorithms because random forests are efficient, robust, and empirically among
the most accurate algorithms in many problems [3]. They are also able to predict
feature importance.

3.5 Switching Planner

Decision Method Weobtain both translational and angular error fromevaluating the
RPE as above.We considered twomethods of combining angular and translational
error to decide which visual odometry method to use. These two methods are
shown in (2) and (3). Here ετ

i is the translational error for method i , and εα
i is the

angular error for method i .

method = argmin
i

(ετ
i εα

i ). (2)

method = argmin
i

(βετ
i + εα

i ). (3)

Ultimately we decided to use the additive metric, as in Eq.3, with β = 0.5. This
showed a larger decrease in both translational and angular error than metric (2),
or the metric (3) for for either β = 0.25 or β = 1.
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Greedy Switching Planner We aim to improve VO estimation without greatly
increasing the computational cost, as it is important for our method to run online.
Therefore, it is important that we do not run multiple odometry methods in paral-
lel, as that can be very computationally expensive. As Fovis relies on keyframes
for motion estimation, and our depth-only method relies on building a map from
previous point clouds, it would introduce error into the system to instantaneously
switch from one method to another.

We therefore allow three image frames of overlap between the twovisual odometry
methods, during which both methods would be making motion estimates. We do not
use the newly started visual odometry method until the overlap is completed. Amore
complicated switching planner may be implemented, possibly by considering the
benefit of switching before committing to a switch.

4 Experiments

Datasets We test our framework in a variety of conditions that would be chal-
lenging for any individual algorithm. We looked specifically at four different
environments. The basement datasets were taken in a dark, cluttered hallway (see
Fig. 2a). This environment is particularly challenging for any algorithm relying
on light-dependent RGB images or the limited optical flow information available.
The hallways datasets were taken in an area with brightly lit, blank hallways that
may be challenging for algorithms relying on depth information (see Fig. 2b). A
depth cloud will be underconstrained, and therefore forward motion may be diffi-
cult to detect. The spacious environment included a large spacious room in which
few depth features are available due to the limited range of the depth sensor (see
Fig. 2c). Lastly, the cluttered datasets were taken in an area with many objects
detectable in both depth and RGB images (see Fig. 2d).

We extract the feature vector and predict the VO error in real time, and switch
between algorithms based on the predictions. For this paper, we trained RF regres-
sions using one complete, >60 s dataset from each of the four environments and
tested on the remaining four datasets, again one from each environment.

Ground Truth Because we wanted data from a variety of environments, the use of
motion capture systemswas infeasible. Instead, localizationwas performed on the
datasets, matching the depth point cloud with dense 3D maps of the environment.
However, due to the challenging nature of these environments, localization failed
in many cases. In order to get a close estimation of ground truth, points of the
path that were accurately localized were manually selected. These points were
then used as landmarks for the path. The most accurate odometry method for that
dataset was then smoothed using iSAM [9].
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(a)

(b)

(c)

(d)

Fig. 2 Environment Examples—Four different, unique indoor environments were explored.
Sample RGB and depth images are shown. a Basement Environment—RGB (Left) and Depth
(Right) Images. b Hallways Environment—RGB (Left) and Depth (Right) Images. c Spacious
Environment—RGB (Left) and Depth (Right) Images. d Cluttered Environment—RGB (Left) and
Depth (Right) Images
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Fig. 3 Feature
Importance—The
importance of each feature is
an estimation of how much it
affects the accuracy of the
random forest regression.
The numbers refer to the
features as numbered in
Table1. The features in red
highlight some of the more
important features

4.1 Feature Importance

The importance of each variable in the feature vector can be estimated during the
training process of a random forest.We also collected information on the computation
time for each feature. Computation time and variable importance were compared to
determine if any features were not worthwhile to compute. In Fig. 3, the maximum
importance across all six forests for each variable is plotted against the variable
computation time. We see that the mean intensity of the RGB image has a higher
maximum importance than the other features and relatively low computation time.
It is also clear that the corner detection methods are the most time-consuming and
only of moderate importance. However, the computation time remained under 3ms
for these features, which is within the limits given by the image frequency of 15Hz.
Therefore, we kept all features while moving to the next step.

4.2 Evaluation of Random Forest and Switching
Performance

After training, we compared the trajectory error predicted by the random forest
regression to the trajectory error previously extracted for training. We measure the
effectiveness of our method by evaluating the RPE of the resultant path of switching,
particularly in comparison with the lowest error odometry method.

Our results are detailed in Table2a, b. Here the RMSE, maximum, and failure
rate (FR) of the translational component of the RPE of each of the trajectories are
compared. The same statistics on the angular component of the RPE is shown in
Table3a, b. Here, the ideal path is generated by making the correct selection (accord-
ing to Eq.2) at each point, using the true, extracted RPE. The switching path is
generated using the architecture we have described thus far. In these Tables (2 and
3), the RMS RPE is shown as a percentage of the RMS of the ideal path’s RPE.
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Table 2 Translational Error—We compare translational relative pose error (RPE) of our method
against raw odometry output to determine if the random forest regression can predict RPE in a
useful way

Dataset Data Switching FastICP Fovis Opt. Flow

Training data

Basement (136s) RMSE 1.09 1.40 1.14 1.97

Max. 5.43 27.38 5.43 18.95

FR 0.04 0.16 0.05 0.44

Hallways (235s) RMSE 1.49 4.40 2.32 0.93
Max. 25.58 172.34 90.30 8.77
FR 0.00 0.12 0.00 0.00

Spacious (305s) RMSE 1.04 1.84 1.04 1.51

Max. 11.82 34.67 11.82 18.75

FR 0.03 0.30 0.03 0.12

Cluttered (106s) RMSE 1.08 1.63 1.08 2.75

Max. 10.95 11.45 10.95 168.62

FR 0.01 0.05 0.01 0.05

Overall RMSE 1.07 1.86 1.14 1.75

Max. 25.58 172.34 90.30 168.62

FR 0.02 0.20 0.03 0.15

Testing data

Basement (130s) RMSE 1.15 1.84 1.13 2.49

Max. 24.06 24.06 15.04 15.46

FR 0.04 0.19 0.04 0.59

Hallways (244s) RMSE 1.51 3.31 1.85 1.10
Max. 15.32 34.21 15.74 3.88
FR 0.02 0.10 0.03 0.00

Spacious (257s) RMSE 1.04 1.80 1.04 1.41

Max. 9.01 39.19 9.01 6.11
FR 0.02 0.56 0.02 0.27

Cluttered (93s) RMSE 1.14 1.06 1.14 1.10

Max. 12.08 11.93 12.08 67.45

FR 0.41 0.36 0.41 0.36

Overall RMSE 1.11 1.76 1.13 1.55

Max. 24.06 39.19 15.74 67.45

FR 0.07 0.34 0.07 0.28

The RMS error is represented as a fraction of the RMS error of the ideal path. The Max. error is
chosen as the largest % increase over the ideal path’s error and is also represented as a fraction of
the ideal. The failure rate (FR) is the fraction of data points for which the RPE exceeds a certain
threshold. For translational error this threshold is 1m
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Table 3 Angular Error—Angular error is represented here as translational error is in Table2

Dataset Data Switching FastICP Fovis Opt. Flow

Training data

Basement (136s) RMSE 1.53 1.51 1.77 1.23
Max. 18.35 22.23 18.35 21.46

FR 0.06 0.04 0.07 0.01

Hallways (235s) RMSE 1.08 1.39 1.32 1.08
Max. 77.87 82.88 77.87 10.36
FR 0.00 0.04 0.04 0.01

Spacious (305s) RMSE 1.01 1.54 1.01 1.62

Max. 28.96 20.94 28.96 32.41

FR 0.01 0.06 0.01 0.07

Cluttered (106s) RMSE 1.09 1.21 1.09 3.89

Max. 5.89 5.20 5.89 60.40

FR 0.02 0.03 0.02 0.22

Overall RMSE 1.13 1.46 1.25 1.68

Max. 77.87 82.88 77.87 60.40
FR 0.02 0.04 0.03 0.06

Testing data

Basement (130s) RMSE 1.22 1.06 1.30 1.13

Max. 11.87 9.50 11.87 9.07
FR 0.05 0.01 0.08 0.03

Hallways (244s) RMSE 1.15 1.23 1.19 1.08
Max. 13.73 14.48 13.73 3.26
FR 0.03 0.04 0.02 0.04

Spacious (257s) RMSE 1.06 1.26 1.05 1.33

Max. 11.46 157.67 11.46 79.82

FR 0.04 0.10 0.03 0.13

Cluttered (93s) RMSE 1.01 1.07 1.01 1.16

Max. 22.74 29.48 22.74 70.82

FR 0.15 0.18 0.15 0.18

Overall RMSE 1.10 1.19 1.12 1.22

Max. 22.74 157.67 22.74 79.82

FR 0.05 0.07 0.05 0.09

The threshold used to calculate the failure rate (FR) was 0.5 rad

The maximum of each path is the largest percentage increase in RPE over the ideal
path’s RPE over all time points. The FR of each path is the fraction of data points for
which RPE exceeds a given threshold. For translational error, this threshold is 1m;
for angular error it is 0.5 rad.

Our method is able to improve robustness to large faults in VO. This is demon-
strated by both the maximum and failure rate metrics. The switching method almost
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always has the lowest rate of failure, and often avoids the largest maximums in error
that correspond to large failures in the VO estimation.

Our data also shows that overall ourmethod is able to improve accuracy by improv-
ing theRMS relative pose error.However, ourmethod does not always outperform the
best individual odometry method. Notably, our method fails to outperform optical
flow odometry in translational or angular RPE for either dataset, training or test-
ing, of the hallways environment. One possible explanation is that this environment
was not sufficiently distinguished from others in the feature space. Future work will
include analyzing the difference between these environments in the feature space and
exploring potential new features that may aid distinguishing different environments.

5 Conclusions

In this paper we presented a method to robustify visual odometry by switching
between algorithms based on the environment. By learning the error associated with
sensory information through regression, this method aims to reduce visual odometry
errors. The current results are promising in improving state estimation in various
indoor environments, and particularly in avoiding large failures.

In future work, we would like to explore different methods in each component of
the framework, and evaluate how they affect performance; for example, by adding
more sensors and odometry algorithms, or jointly learning the features and the error
prediction model.

References

1. Besl, P., McKay, N.D.: A method for registration of 3-D shapes. IEEE TPAMI 14(2), 239–256
(1992)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms.

In: ICML, pp. 161–168 (2006)
4. Censi, A.: An accurate closed-form estimate of ICP’s covariance. In: ICRA, pp. 3167–3172

(2007)
5. Fang, Z., Scherer, S.: Experimental study of odometry estimation methods using RGB-D cam-

eras. In: IROS, pp. 680–687 (2014)
6. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification.

IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)
7. Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An open source and open hardware

embedded metric optical flow cmos camera for indoor and outdoor applications. In: ICRA, pp.
1736–1741 (2013)

8. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual
odometry and mapping for autonomous flight using an RGB-D camera. In: International Sym-
posium on Robotics Research (ISRR), pp. 1–16 (2011)

9. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: incremental smoothing and mapping. IEEE
Trans. Robot. 24(6), 1365–1378 (2008)



Learning a Context-Dependent Switching Strategy for Robust Visual Odometry 263

10. Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME J. Basic Eng.
(1960)

11. Lalonde, J.F., Vandapel, N., Huber, D.F., Hebert, M.: Natural terrain classification using three-
dimensional ladar data for ground robot mobility. J. Field Robot. 23(10), 839–861 (2006)

12. Leishman, R.C., Koch, D.P., McLain, T.W., Beard, R.W.: Robust visual motion estimation
using RGB-D cameras. In: AIAA Infotech Aerospace Conference, pp. 1–13 (2013)

13. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation
of RGB-D SLAM systems. In: IROS, pp. 573–580. IEEE (2012)

14. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I.L., Ruess, F.,
Suppa, M., Burschka, D.: Toward a fully autonomous UAV: research platform for indoor and
outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012)

15. Vega-Brown,W., Bachrach, A., Bry, A., Kelly, J., Roy, N.: CELLO: a fast algorithm for covari-
ance estimation. In: ICRA, pp. 3160–3167 (2013)

16. Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C.Y., Rakheja, S., Fulford, C.,
Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniqueswith application
to an unmanned quadrotor helicopter testbed. J. Franklin Inst. 350(9), 2396–2422 (2013)



Part III
Planetary



System Design of a Tethered Robotic
Explorer (TReX) for 3D Mapping of Steep
Terrain and Harsh Environments

Patrick McGarey, François Pomerleau and Timothy D. Barfoot

Abstract The use of a tether in mobile robotics provides a method to safely explore
steep terrain and harsh environments considered too dangerous for humans and
beyond the capability of standard ground rovers. However, there are significant chal-
lenges yet to be addressed concerning mobility while under tension, autonomous
tether management, and the methods by which an environment is assessed. As an
incremental step towards solving these problems, this paper outlines the design and
testing of a center-pivoting tethermanagement payload enabling a four-wheeled rover
to access and map steep terrain. The chosen design permits a tether to attach and
rotate passively near the rover’s center-of-mass in the direction of applied tension.
Prior design approaches in tethered climbing robotics are presented for comparison.
Tests of our integrated payload and rover, Tethered Robotic Explorer (TReX), show
full rotational freedomwhile under tension on steep terrain, and basic autonomy dur-
ing flat-ground tether management. Extensions for steep-terrain tether management
are also discussed. Lastly, a planar lidar fixed to a tether spool is used to demon-
strate a 3D mapping capability during a tethered traverse. Using visual odometry to
construct local point-cloud maps over short distances, a globally-aligned 3D map is
reconstructed using a variant of the Iterative Closest Point (ICP) algorithm.

1 Introduction

Robotic planetary and terrestrial exploration has historically been risk-averse, favor-
ing benign terrain in order to reduce the likelihood ofmission failure [12]. Even state-
of-the-art rovers deployed on Mars are not suited to access steep terrain directly, and
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instead rely on remote observation [7]. As we push towards developing autonomous
systems for harsh terrain, tethering (i.e., attachment of supportive electromechanical
cable or climbing rope between a robot and an anchor point) will not only be nec-
essary for safety and mobility, but also a benefit to robots requiring both assistive
power and robust communication throughout challenging traverses.

Geologic exploration of steep terrain, safety inspection of walls and dams, and
disaster response in resource- and communication-limited environments, are typical
applications appropriate for tethered robots. Detailed point-cloud maps constructed
from lidar data enable geologists to model vertical stratigraphy at high resolution [9].
Robots inspecting walls and dams allow for repeated observations of targeted areas
as a means to evaluate temporal changes and reduce risk to humans [11]. Deploying
robots to assist in disaster response may require that wired communication and
external power sources are provided due to extended operation in resource-limited
environments. The use of a tether offers a solution to power and communication
requirements. However, tether management still presents a significant challenge to
robots operating in dangerous conditions [8] (Fig. 1).

While prior systems have addressed these challenges with some success, it is the
opinion of the authors that a lack of autonomy has attenuated continued progress in
tethered mobile robotics. In order to make advancements in autonomous mobility,
tether management, and environmental mapping, we have developed a new research
platform, Tethered Robotic Explorer (TReX).

This paper is organized as follows. Section2 evaluates prior tethered climbing
rovers, Sect. 3 details the system design of TReX, Sect. 4 presents experimental
results, Sect. 5 provides lessons learned, and Sect. 6 offers conclusions.

Fig. 1 Our Tethered Robotic Explorer (TReX) traverses the exterior of a dome structure, showing
lateral motion (green arrow) under tension



System Design of a Tethered Robotic Explorer (TReX) … 269

Fig. 2 Past and present tethered climbing rovers: a Dante II [2], b TRESSA [5], c Axel II and
d DuAxel [7], e Tetris and Moonraker [3], f VolcanoBot II (JPL/CalTech), and g vScout [13]

2 Related Work

The archetype of tethered climbing robots was Dante II (Fig. 2a), an eight-legged
walking rover used to traverse the interior craters of volcanoes [15]. Dante II suc-
cessfully repelled down extreme slopes and demonstrated the challenges/limitations
of tethered mobility; during an ascent of a crater, Dante II was critically damaged
from a fall while rotating outside the direction of applied tension.

Teamed Robots for Exploration and Science on Steep Areas (TRESSA) (Fig. 2b)
was the first modular system allowing an attached flat-ground rover to access vertical
terrain [14]. The off-board managed dual-tether configuration provided easy integra-
tion with different rovers and allowed some lateral motion on steep terrain. However,
multiple tethers implied an increased difficulty navigating around obstacles, tether
abrasion, and reduced range due to dragging (tethers were not spooled on the robot).

Themost capable tethered climbing robot to date has been Axel II (Fig. 2c), a two-
wheeled rover with an actuated tether caster arm [7]. Multiple Axel II rovers could be
linked by a docking station to operate as either a four-wheeled rover (i.e., DuAxel),
or as a redundant base station and climbing rover (Fig. 2d). Axel II’s innovative
configuration has been adapted by the Moonraker and Tetris robots1 (Fig. 2e), and
VolcanoBot2 (Fig. 2f).

The vScout prototype (shown in Fig. 2g) consisted of a winch payload mounted to
a Clearpath Husky A200 rover [13]. The prototype was a precursor to TReX. While
the tether was not actively managed on board, vScout successfully demonstrated the
maneuverability of a 50kg commercial rover on steep slopes.

1Moonraker and Tetris were developed by Team Hakutu from Tohoku University.
2VolcanoBot II is a small rover used for mapping volcanic vents, JPL/Caltech.
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Prior tethered climbing robots have shown minimal vehicle rotational range cen-
tered around the direction of applied tension on steep slopes, implying both an
increased risk of entanglement with obstacles, and limitations on drivable paths.
The design of TReX considered both attributes and limitations of prior designs.

3 System Design

3.1 Tethered Robotic Explorer (TReX)

In order for a tethered rover to rotate continuously under tension, a tether is connected
to a freely rotating joint. When taut, the tether’s tensional force is aligned with a
virtual line intersecting the vehicle’s center-of-mass. The on-board managed tether
is wound around an actuated spool, which is mounted to a rotational joint in the
center of a skid-steered Clearpath Husky A200 rover. A cut view of the TReX CAD
model shown in Fig. 3 illustrates themounting configuration of the spool on a rotating
tether arm, which mechanically links to the rover using a slew bearing. The three
rotating elements (rover, tether arm, and spool) are outlined in colored dashed lines.
The spool, which rests on a separate turntable bearing above the tether arm, can only
rotate when actuated by a motor. The motor, which is suspended in the 10cm cavity
of a rotary slip ring, is fixed to the tether arm, while its shaft is coupled to the spool.
To reduce torque on the rover, a manually adjustable angled arm allows for load
balancing with the vehicle’s center-of-mass. The design permits the rover to rotate
freely regardless of applied tension, provided there is sufficient wheel traction.

Sensor interfacing requires careful consideration of the design’s rotational degrees
of freedom. In order to produce three-dimensional (3D) point-clouds with a planar
scanning lidar, the sensor is mounted on the rotating tether spool. This configuration
allows for a single actuator (not including vehicle wheels) to be used in tether man-
agement and 3D mapping. Since the rotation of the lidar is coupled to a tether spool,
3D scanning is only possible when the vehicle is moving and the tether is actively
being managed. Providing power to and receiving data from the lidar requires two
Ethernet-enabled slip rings that bridge three separate rotating elements (the elec-
tronic configuration used for the lidar is adaptable to other types of Ethernet-enabled
sensors if desired). A junction within the spool cylinder allows an optional electro-
mechanical tether to be connected. When connected, TReX can leverage external
power sources, continuous battery charging, and Power-over-Ethernet (PoE) com-
munication. Sensors and electrical interfaces housed in the tether arm and spool are
connected to the rover through the lower 30-channel slip ring. The motor’s power is
supplied through several high-current channels in the same 30-channel slip ring. A
stereo camera mounted on the front of the vehicle is used for visual odometry, terrain
imaging, and live display for tele-operation. The on-board fanless computer serves
in data collection, processing, and communication with a base station.
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Fig. 3 Annotated CAD model (cut view). The three rotating elements include the rover (green),
tether arm (red), and spool (blue). The tether spool is actuated only when motorized. Major internal
components are labeled. Note that the tether arm, lidar, and rover wheels have been cropped

TReX’s ability to map an environment using 3D point-clouds and to accurately
measure tether orientation are illustrated in Fig. 4. In terms of 3D mapping, the
left illustration shows the lidar scan plane, and provides specifications on the range
and rotational scan spacing. The right image shows how tether orientation is mea-
sured. Tether yaw (i.e., bearing to current anchor point) is measured at the rotating
joint between the tether arm and rover. Tether pitch is measured using the c-shaped
extension mounted on the angled arm. Tether length is measured by a combined
pulley-and-force-plate assembly mounted on the tether arm. The spool encoder is
used to measure lidar rotation with respect to the tether arm. Given the maximum
spool motor speed (≈0.23 rps) and the scanning frequency of the lidar (≈50Hz),
the worst-case azimuth scan spacing is 1.7◦ (0.029 rad) when the vehicle is under
tension.

Lastly, Fig. 5 provides as-built system specifications and an image of the final
build. The payload was tailored for the Clearpath Husky A200 rover due to its suc-
cessful implementation in the vScout prototype.
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Fig. 4 Left 3D Mapping specifications. The lidar plane is shown by an opaque red disk. Right
Tether orientation and sensor specifications. The locations of measurement for pitch, length, and
yaw are indicated. The spool encoder provides rotational measurements for the lidar

Fig. 5 Left Final system specifications. Right TReX with major systems labeled. We note that the
stereo camera may be occluded by the tether arm during a traverse. However, the pivoting tether
arm allows for reorientation of the rover and camera while under tension

3.2 Comparison to Prior Systems

Figure6 presents an illustrated comparison between past tethered climbing rovers
and TReX. The comparison allows for a qualitative evaluation of tethered maneu-
verability on steep terrain, and demonstrates the benefit of added rotational freedom
while under tension.
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Fig. 6 Maneuverability comparison of Dante II, TRESSA, Axel II, and TReX (figure not drawn to
scale). Each row represents attributes of tethered mobility: Rotational Freedom, Passing Obstacles,
Climbing Obstacles, and Coverage Area (single traverse). Each column corresponds to a different
vehicle. View orientations are given by row (e.g., top and side). All vehicles with the exception
of TRESSA manage tether on board. Tether is indicated by dashed red lines, while interactions
with obstacles are shown with yellow stars. The light blue and red colors represent feasible and
infeasible rotations/paths, respectively. Small blue arrows indicate vehicle heading

(1) Rotational Freedom: Prior tethered climbing robots have lacked the abil-
ity to turn significantly outside the direction of applied tension on steep terrain.
TReX allows continuous rotation about a center-pivot point, which enables horizon-
tal motion while under tension, provided there is sufficient wheel traction.

(2) Passing Obstacles: Obstacles may serve as additional anchor points for teth-
ered rovers. Without the ability to rotate outside the direction of applied tension,
obstacles serving as anchor points must be approached directly. Dante II and Axel
II were designed for rough terrain and may traverse mid-sized obstacles. While
TRESSA has some ability to drive laterally, its dependence on two discrete off-
board winches implies higher tether abrasion due to dragging cables. TReX has the
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unique ability to rotate perpendicular to any anchor point, resulting in an improved
method for passing obstacles.

(3) Climbing Obstacles: Harsh, obstacle-ridden slopes may be difficult, if not
impossible, for flat ground vehicles to traverse due to smaller wheel radii and terrain
clearance issues. While TReX may encounter insurmountable obstacles along a tra-
verse, its rotational freedom may allow for an alternate path to be taken if feasible.
Although TRESSA can perform a similar maneuver, its lateral range is limited by the
baseline configuration of top-mounted anchor winches. Furthermore, tether abrasion
or entanglement become a concern due to off-board management.

(4) Coverage Area: The effective coverage area of a single traverse is directly
related to a rover’s ability to translate laterally on steep slopes.Outside of significantly
steep terrain, causing a reduction of traction and horizontal mobility, TReX provides
increased access to steep areas in comparison to prior rovers. We note that TRESSA
allows some lateral motion in the absence of wheel traction at the cost of tether
control complexity.

4 Experimental Results

4.1 Rover Maneuverability

An initial evaluation of rover maneuverability was performed on the exterior of a
50-m-diameter dome (MarsDome) located at the University of Toronto Institute for
Aerospace Studies (UTIAS). A composite time-lapse image of this test is shown
in Fig. 7. TReX was manually operated over varying slopes, demonstrating tether-
assisted mobility and rotational freedom under tension. The overlaid yellow and blue
arrows represent discrete sides of the lidar scan plane. The coverage area (i.e., the
combined point-cloud) depends on the rotation of the spool with respect to the world.

4.2 Tether Management

Autonomy in tether management presents a significant barrier to mobility on steep
slopes, especially in the presence of obstacles. To the best knowledge of the authors,
no tethered climbing rover has fully implemented autonomous tether management in
field experimentation. Tether management was first considered for mobile robots in
the mechanical design of Dante II [6]. The developers of TRESSA and Axel II have
proposed a method for tether management based on inclination, mass, and tether
orientation [1, 14]. However, this has yet to be demonstrated in field testing.

Provided that tension is measured, tether management on flat ground relies on
the selection of a static reference tension to maintain. On steep terrain, the influence
of gravity on the rover’s mass makes the selection of an appropriate reference ten-
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Fig. 7 TReX was manually piloted in a maneuverability test on a 50m dome while under tension

sion nontrivial. An evaluation of tension-based tether management with the TReX
platform is discussed in the following sections.

4.2.1 Tether Management on Flat Ground

Tether management on flat ground utilizes a tension-based controller, which is not
reliant on feed-forward input from the rover. Figure8 illustrates the closed-loop
spool velocity controller. The overall goal is to maintain an adequate tension while
preserving maneuverability.

As a basic test of the flat-ground tension-based controller, TReX was driven in
the presence of a Vicon motion-capture system. The position of the rover, tether arm,
and anchor point were recorded during two traverses. Figure9 provides a colorized
representation of tether tension and orientation with respect to the known rover
position and anchor point. An accompanying time-lapse image of the experiment

Fig. 8 Closed-loop feedback controller. The error between Ftref (t) and Ft (t) (reference and mea-
sured force) is eFt (t). A gain, K (t), is computed using a PID. The resulting spool control input,
uspool(t), is the maximum spool velocity scaled by K (t). The robot plant is Probot. The inputs,
nsensor(t) and dcontrol(t), correspond to sensor noise and control disturbances, respectively
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Fig. 9 Tension sensor
output is illustrated by
colorized tether vectors
corresponding to volts. Black
lines along the path represent
vehicle headings. The
dashed box on the color
legend corresponds to the
range of voltages sensed,
while the star indicates the
desired reference tension

Fig. 10 A time-lapse of the
Vicon test shows TReX
performing tension-based
tether management.
Throughout two traverses,
the tether was taut with
minimal sag

is shown in Fig. 10. The range of sensed volts indicated by a dashed box in the
figure shows that extremes in measurement were avoided (i.e., the tether remained
generally taut throughout, and at no point did it touch the ground or prevent the
rover from driving its path). Volts are shown in place of kilograms force for this
figure due to inaccuracies in calibration/measurement, which are discussed in the
proceeding section. Further development of the controller will be necessary in order
to compensate for the disparity between reeling conditions (i.e., there is currently a
distinct trend in tension error when traversing to or away from the anchor point).

4.2.2 Extensions Towards Steep Terrain

Steep-terrain tether management requires an understanding of sensor performance at
varying inclinations. The force sensor used in the design is provided with a factory-
calibrated linear output (given in terms of volts per unit force). Unfortunately, fric-
tional elements within the angled-arm design cause a hysteresis-influenced sensor
response, where loading and unloading conditions imply different output measure-
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ments at similar inclinations.Weattempted to characterize hysteresis using an angled-
plane test. During the test, TReX was fixed to an anchor point and the plane angle,
θ , was cycled between 0◦ and 90◦. Three tests were performed where the tether pitch
was varied with respect to the plane as shown in Fig. 11.

The result of three angled-plane tests with variations in tether pitch are shown in
Fig. 12. Only test 1 shows a full cycle of the plane θ between 0◦ and 90◦. In tests
2 and 3, the rover’s rear tires left the plane due to applied torque on the tether arm
at steep inclinations as noted in Fig. 12. Fortunately, the tests were still useful in
determining an overall trend in sensor response due to variations in tether pitch and
plane inclination.

In the first test, tether pitch was constrained parallel to the plane of inclination.
While unloading, friction between the arm and tether resulted in an unchanged sen-
sor output until stiction was overcome near 45◦. During a second test, the tether
pitch was set to 25◦. The voltage output in test 2 generally increased in comparison
to test 1, suggesting that friction had been reduced by increasing tether pitch; the

Fig. 11 Angled-plane test (illustrated). TReX was fixed statically on the plane, while variations of
tether pitch and plane inclination, θ , were tested. The plane θ was cycled between 0◦ and 90◦. The
colors correspond to different tests in Fig. 12. Force sensor placement is shown by a gray box in the
inset illustration

Fig. 12 Sensor hysteresis
over three lifting cycles with
varied tether pitch. The lower
portion of the wing-shaped
pattern represents loading,
while the upper is unloading.
The plot indicates that
tension was lost due to
friction. Test 1 displayed the
most loss, suggesting that
friction inducing parts should
be replaced in the arm
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increased pitch minimized the contact surface and bending moment of the tether on
the mechanical fairlead. In test 3, the fairlead was completely removed to evaluate
its impact on sensor measurement. Tether pitch was constrained to 45◦, matching
the tilt of the angled arm. Removing the fairlead caused the entire sensor output to
increase substantially from what was observed in the first two tests. However, the
continued disparity between loading and unloading conditions suggested that fric-
tion was still a factor elsewhere in the tether arm design. The most likely source was
the steel retaining ring located before the pulley. Unfortunately, the ring was critical
to maintaining a balanced load over the pulley and force sensor, and could not be
removed to test its frictional impact.

Problems in the tether arm design made a repeatable characterization of the force
sensor impossible. Therefore, moving towards tension-based tether management on
steep terrain will require modifications to the arm design as proposed in Sect. 5.

4.3 3D Point Cloud Mapping

The collection of a single 3D point-cloud is triggered after every 180◦ rotation of a
lidar with respect to the world frame. Visual odometry is used to locally provide a
motion estimate of the lidar during this time. Once a series of point-clouds have been
recorded, a global representation is generated using an efficient variant of Iterative
Closest Point (ICP) relying on libpointmatcher [10].

As an initial test of this 3D mapping functionality, TReX was anchored and man-
ually piloted through an indoor environment with obstacles to produce a fused 3D
point-cloud map. Figure13, provides multiple views of the reconstructed environ-
ment, as well as a time-lapse image of the test. Odometry was provided by a Skybotix
VI-Sensor stereo camera, which outputs a pair of calibrated images to an open-source

Fig. 13 Combined point-cloud of an indoor workshop with a time-lapse image of the test. All maps
are point representations with correlated intensity. Obstacles were placed in the room to prevent
TReX from performing a full scan before driving. The rover was driven around three weighted
plastic bins, filling in portions of the map along the way. Red circles correspond to the same bin



System Design of a Tethered Robotic Explorer (TReX) … 279

library, Fast Odometry from VISion (FOVIS).3 The library functions by detecting
similar features in stereo images as a means to compute a velocity and output a
camera pose [4].

5 Lessons Learned

With respect to the experimental results previously discussed, engineering lessons
learned in the design and initial testing of TReX are summarized by category below.

Platform Maneuverability:
When rotation is constrained, linear motion is limited to the direction of tension.

For Dante II, TRESSA, and Axel II, this means that vehicle motion on steep terrain
is generally linear, where vehicle velocities directly correlate to tether velocities.
For TReX, full range of motion implies that tether velocity is a factor of the current
vehicle pose, commanded linear/angular velocities, and position of the anchor point.
Excessive inclinations denote higher wheel slippage, resulting in a need for tether-
assisted mobility (e.g., commanded vehicle motion is converted into tether actions).
For this to occur, we must localize the robot on steep terrain and sense when and
where new anchor points have been added.

Tether Management: Tension-based tether management on steep terrain was not
demonstrated due to the accumulation of friction in the tether arm. The friction
implied a significant variation in sensor output during repeated tests. As such, the
tether arm requires modification in the form of additional pulley wheels or bear-
ings to replace friction-inducing parts. When greater repeatability is achieved, then
a characterization of the force sensor at varying inclinations should allow for a
tension-based controller to be tested on moderate slopes. When the wheel traction is
sufficiently reduced in steep terrain, the rover will require tether-assisted mobility. A
feed-forward tethermanagement controller, where piloted vehicle actions correspond
to appropriate tether actions, will be evaluated.

3D Point Cloud Mapping: Point misalignment in the 3D map shown in Fig. 13
stems from poor visual odometry calibration as well sensor drift in the spool angle
encoder. The first issue is likely related to an inaccurate measurement of the cam-
era pose transformation to the vehicle frame. The sensor drift problem stems from
measuring angular position before the gearing on the motor. This means that sev-
eral hundred rotations will occur before a complete rotation is sensed. The addition
of a magnetic hall effect sensor on the spool could help in reducing drift. Finally,
the scan spacing of the rotating lidar is dependent on spool velocity with respect
to the world frame. The impact of variances in rotating elements generate nonuni-
form radial densities for points, as the rotational speed of the sensor is dependent on
the environment. Accordingly, an in-depth evaluation of the 3D point reconstruction
pipeline is necessary.

3Package available: https://github.com/srv/fovis.

https://github.com/srv/fovis
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6 Conclusion

This work describes the system design and initial testing of a new tethered climbing
rover. Tethered Robotic Explorer (TReX) allows for 3D mapping in steep terrain
and harsh environments, and is intended to be used for cliff exploration, dam safety
inspection, and disaster response. Tests of rotational freedom while under tension,
tension-based tether management in varied terrain, and 3D mapping capabilities
have demonstrated that the center-pivoting TReX offers improved methods for steep
terrain navigation in comparison to prior tethered climbing rovers.
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Design, Control, and Experimentation
of Internally-Actuated Rovers
for the Exploration of Low-Gravity
Planetary Bodies

B. Hockman, A. Frick, I.A.D. Nesnas and M. Pavone

Abstract In this paper we discuss the design, control, and experimentation of
internally-actuated rovers for the exploration of low-gravity (micro-g to milli-g)
planetary bodies, such as asteroids, comets, or small moons. The actuation of the
rover relies on spinning three internal flywheels, which allows all subsystems to
be packaged in one sealed enclosure and enables the platform to be minimalistic,
thereby reducing its cost. By controlling the flywheels’ spin rates, the rover is capa-
ble of achieving large surface coverage by attitude-controlled hops, fine mobility
by tumbling, and coarse instrument pointing by changing orientation relative to
the ground. We discuss the dynamics of such rovers, their control, and key design
features (e.g., flywheel design and orientation, geometry of external spikes, and sys-
tem engineering aspects). The theoretical analysis is validated on a first-of-a-kind 6
degree-of-freedom (DoF) microgravity test bed, which consists of a 3 DoF gimbal
attached to an actively controlled gantry crane.

1 Introduction

The exploration of small Solar System bodies (such as comets, asteroids, or irregular
moons) has become a central objective for planetary exploration [1, 2]. In fact, recent
ground- and space-based observations indicate that the exploration of small bodies
would collectively address all three main science objectives prioritized by NASA’s
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recent decadal survey: (1) the characterization of the early Solar System history, (2)
the search for planetary habitats, and (3) an improved understanding about the nature
of planetary processes [1]. While measurements of some chemical and physical
properties can be obtained by remote sensing from space telescopes or orbiters,
measurements that constrain composition (e.g., origin science) and measurements of
physical properties that fill strategic knowledge gaps for human exploration require
direct contact with the surface at multiple locations for extended time periods [2].
Accordingly, controlled mobility in low-gravity environments (micro-g to milli-g)
has been identified by the National Research Council in 2012 as one of NASA’s high
priorities for technology development [3].

Microgravitymobility is challenging due to the virtual absence of traction.A num-
ber of approaches to mobility have been proposed in the past two decades, which
can be roughly divided into four classes: mobility via thrusters, wheels, legs, and
hopping. Thrusters have a number of disadvantages for mobility, including mechan-
ical and operational complexity, limited lifetime (due to propellant limitation), and
potential for surface contamination. Wheeled vehicles rely on surface normal forces
to create lateral traction—a force that is orders of magnitude weaker in micrograv-
ity environments. As a result, wheeled systems are bound to extremely low speeds
(1.5mm/s per previous JPL studies [4]) and can easily lose contact with the surface
when traversing rocky terrain, resulting in uncontrollable tumbling. Legged systems
rely on anchoring devices at the tips, which are mechanically complex and highly
dependent on (largely unknown) surface properties (the challenge of anchoring on a
small body has been well illustrated by the recent Philae’s landing on a comet [5, 6]).
Alternatively, hopping systems use the low-gravity environment to their advantage.
Space agencies such as NASA [4, 7], RKA [8], ESA [9], and JAXA [10] have all
recognized this advantage and have designed a number of hopping rovers. However,
existing platforms do not appear to allow precise traverses to designated targets in
low gravity environments, as required for targeted in-situ sampling.

Statement of Contributions: In this paper we discuss our ongoing efforts toward
the design of a microgravity rover aimed at controlled mobility. The platform uses
internal actuation (threemutually-orthogonal flywheels) to generate reaction torques,
enabling directional hopping capabilities. Specifically, by applying a controlled inter-
nal torque between the flywheels and the platform, one generates an angular rotation
of the platform. In turn, this angular rotation gives rise to surface reaction forces at
external contact points, which lead to either tumbling (i.e., pivoting around a spike
tip) or hopping (when the reaction forces are large enough), as shown in Fig. 1, left.
External spikes protect the platform during ground collisions and provide the primary
contact interface with the surface (see Fig. 1, right). With this design, all subsystems
are packaged in one sealed enclosure, which enables the platform to be minimalistic
and drastically reduces its cost. Henceforth, we will refer to such a rover as space-
craft/rover hybrid (S/R hybrid), since it leverages flywheel actuation (typically used
for spacecraft attitude control) for rover mobility.

This paper builds upon a number of previous results onmicrogravity internal actu-
ation, namely [10], which first proposed the use of internal actuation (specifically
a single flywheel mounted on a turntable for limited motion control), and [11, 12],
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Fig. 1 Left By rotating internal flywheels, surface reaction forces make the rover tumble/hop.Right
Our current prototype without avionics, covers, or solar panels. The cubical structure encloses three
flywheels and is protected by external spikes on each of its corners

which consider a torque-controlled three-flywheel configuration and present exper-
imental results on 3 degree-of-freedom (DoF) test beds. This paper is also related to
[13], which considers the problem of balancing a cubic body on a corner by actuating
three orthogonal flywheels.

Specifically, the contributions of this paper are threefold. First, we characterize the
dynamics of the platform and develop hybrid control algorithms for precise mobility
(Sect. 2). Our approach leverages a conservation of angular momentum argument,
as opposed to the energy approach in [11] used to characterize hopping maneuvers.
Second, in Sect. 3 we discuss the mobility platform design, with a focus on impulsive
actuation of the flywheels to generate more efficient hopping/tumbling maneuvers
as compared to [11], and present a preliminary system architecture design. Third,
we validate models and control algorithms on a first-of-a-kind 6 DoF microgravity
test bed in Sect. 4. The test bed consists of a 3 DoF gimbal attached to an actively
controlled gantry crane, and represents, on its own, amajor step toward characterizing
and validating microgravity mobility (previous test beds only allowed 3DoF tests,
e.g., Atwood machine [12], or only allowed tests of the first phases of motion, e.g.,
parabolic flights and drop towers [14]).

2 Dynamics and Control

In this sectionwe study the dynamics and control of a S/R hybrid by considering a 2D
model, i.e., the platform is modeled as a disk with equispaced rigid spikes attached to
it, similar to the model commonly used in the field of passive dynamic walking [15].
At the center of mass, a motor drives a single flywheel, producing a torque on the
platform (see Fig. 2). A 2Dmodel allows us to derive useful analytical guidelines for
actuation and represents a reasonable approximation for 3D configurations in which
the S/R hybrid pivots about a pair of spikes.

Our analysis extends earlier studies for this class of rovers (chiefly, [11, 12]) along
a number of dimensions. First, our analysis is based on a conservation of angular
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Definition
θ hybrid’s angle
β surface inclination
l spikes’ length from CG
mp total mass of platform
If flywheel’s rotational inertia
Ip platform’s rotational inertia
τ flywheel’s torque on platform
2α angle in between spikes
ω f flywheel angular velocity in n̂z
g gravity acceleration

Fig. 2 2D model: A S/R hybrid is modeled as a rigid body that pivots on an inclined surface

momentum argument, which directly accounts for energy losses. In contrast, [11,
12] mostly rely on an energy conservation approach, which, as we will show in
Sect. 2.1.1, can lead to gross underestimates in required flywheel actuation. Second,
we study the effect of an inclined surface. Third, and perhaps most importantly, we
study in detail control strategies for the flywheel.

2.1 Dynamics of S/R Hybrids

A S/R hybrid is essentially capable of twomodes of mobility: tumbling and hopping.
The key assumption in our study is that the stance spike acts as a pin joint and does
not slip. Under this assumption, the 2D model of a S/R hybrid is uniquely described
by two states, θ and θ̇ . See Fig. 2 for a detailed description of all parameters. A
detailed study of the transition between pivoting and sliding motion of the spike tip
can be found in [12] for a Coulomb friction model. One can show that modeling the
spike tip as a pin joint is a reasonable approximation for coarse spike geometries
where (θ − β) > tan−1(1/μd), where μd is the coefficient of dynamic friction. For
the rubber spike tips on our current prototype, 1 < μd < 1.5, which, as validated
via simulations in Sect. 2.2, is high enough to justify this no-slip assumption. This
assumption, however, would not hold in cases where the hybrid operates on non-rigid
surfaces (i.e., loose regolith), whereby the slip properties are governed by frictional
interactions with granular media. This aspect is left for future research.

2.1.1 Hopping

A hopping maneuver consists of a stride phase, when the system is supported by
a single stance spike, and a flight phase when the stance spike leaves the ground.
We study the flywheel’s torque needed to cause the platform to hop to the right at a
desired speed vh and angle θh (the subscript “h” denotes quantities evaluated at the
hopping instant). Assume that the platform starts at rest on the inclined surface and
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applies a sufficient clockwise torque τ(t) that causes it to rotate about its stance spike.
For the stride phase (i.e., before ground contact is lost), the equations of motion are
those of an inverted pendulum and can be easily written as

θ̈ (t) = mpgl sin(θ(t)) − τ(t)

Ip + mpl2
, (1)

as also derived in [11]. By studying the free body diagram of the system, one can
readily show that in order to obtain a negative normal force (i.e., loss of ground
contact) it is required that

|θ̇ (th)| >

√
mpg cos(β) + τ(th)

l sin(θ(th) − β)

mpl cos(θ(th) − β)
. (2)

For aflat terrain (i.e.,β → 0) andwith no input torque, |θ̇ (th)|min = √
g/ [l cos(θ(th))],

which corresponds to a hop distance on the order of 2l.
Due to its simplicity, a control strategy of particular interest involves instantaneous

momentum transfer from the flywheel to the platform (e.g., via impulsive braking).
By equating the initial angularmomentumof the flywheel Ifωf to the resulting angular
momentum of the platform about the spike tip θ̇ (Ip + mpl2), and assuming that a hop
is initiated immediately after momentum transfer (i.e., vh = lθ̇ (0+)), the resulting
hop velocity, angle, and lateral distance are given by, respectively,

vh = lωf

(
If

Ip + mpl2

)

, θh = α + β, dh = v2h
g
sin(2θh). (3)

A few interesting observations can bemade from these results. First, in this regime,
the hop angle is governed exclusively by the spike geometry and surface inclination.
Tomaximize the lateral distance of the parabolic trajectory (which scales as sin(2θh)),
a 45◦ hop is desired. This is one of the reasons why our current prototype is a cube
(i.e., α = 45◦), see Sect. 3. Second, we define the energy transfer efficiency as

η := E(t+)

E(t−)
= If

Ip + mpl2
, (4)

where E(t−) is the energy of the system just before actuation (flywheel kinetic
energy), and E(t+) is the energy just after actuation (platform kinetic energy). Inter-
estingly, the efficiency is given by the ratio of flywheel inertia to platform inertia
about the spike tip, which depends quadratically on the length of the spikes. Hence,
there is an important trade-off between the capability of negotiating obstacles (that
would require long spikes) and the actuation efficiency (that prefers short spikes). For
our current prototype (augmented with dead mass as stand-in for scientific payload),
η ≈ 0.01. This result is critically enabled by angular momentum arguments.
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2.1.2 Tumbling

The goal of a tumbling maneuver is to cause the platform to pivot to the right and
land on the next consecutive spike such that its orientation is incremented by −2α
and that it does not lose contact with the surface. From (1), the minimum torque
required to initiate angular acceleration (−θ̈ ) from rest on the surface is given by

τmin = mpgl sin(α + β). (5)

For typical gravity levels of interest (10–1000µg), small motors of only a fewWatts
would be sufficient to exceed this torque. To characterize actuation bounds for tum-
bling, the actuation is regarded as an instantaneous transfer of momentum, similar to
the hopping analysis in Sect. 2.1.1. Accordingly, the initial kinetic energy of the plat-
form at t = 0+ can be equated to the gravitational potential energy at the tumbling
apex (θ = 0). This yields an expression for theminimum flywheel velocity required to
vault the platform over its leading spike: ωf, min = √

2mpgl(1 − cos(α + β))/ (ηIf).
Note that a similar result is provided in [11], but it does not directly account for
energy losses or accommodate inclined surfaces. This leads to an underestimate of
control input by a factor of 1/

√
η ≈ 10, thus illustrating the importance of an angular

momentum approach.
To characterize the maximum flywheel velocity for tumbling, consider the hop

criterion given by (2) and a zero torque input for t ≥ 0+. It follows that θ(t) and
|θ̇ (t)| both decrease with time. Thus, if surface contact is lost, it will occur just
after momentum transfer when θ(0+) = α + β, and |θ̇ (0+)| = ηωf. This yields
the maximum flywheel velocity to perform a tumble without hopping: ωf, max =√[

g cos(β)
]
/
[
η2l cos(α)

]
. Interestingly, there exists an inclination angle, βmax, for

whichωf, min = ωf, max and tumbling is impossible. For a square geometry (α = 45◦),
βmax ≈ 30◦. Also, as expected, ωf, min = 0 when β = −α, which corresponds to the
declination angle at which the platform freely tumbles “downhill” without actuation.

2.2 Control of S/R Hybrids

In this section, we study a control strategy that leverages (5) by slowly spinning up
the flywheels with motor torque τ < τmin, such that the platform remains grounded.
When the desired flywheel speed is achieved, a brake is applied and a hop is initiated
as discussed in Sect. 2.1.1. This approach is attractive as it is simple, does not cause
momentum build up in the flywheels, and generates high torques for larger hops.

With this control strategy, one can regard the initial flywheel speedωf and constant
braking torque τ̄ as the two control variables. In bringing the flywheel to a full stop,
the control variables are related by τ̄�t = Ifωf, where �t is the time duration of
braking. In the limit as �t → 0, the impulsive torque corresponds to the case of
instantaneous momentum transfer discussed in Sect. 2.1, whereby Eqs. (3) and (4)
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can be combined to develop an expression for the flywheel speedωf required to cover
a lateral distance dh:

ωf(dh) =
√

dhg

η2l2 sin(2(α + β))
. (6)

For a square geometry, this expression is minimized for flat terrain, but tends
towards infinity as β → 45◦. This motivates the potential utility of controllable fric-
tion brakes, which can extend the duration of the stride phase and thus control the
hop angle. To study the case where �t is finite, the nonlinear differential equations
of motion given by (1) must be solved numerically. However, for aggressive hops,
one can assume that τ̄ � mpgl sin(θ), so (1) can be well approximated by the lin-
ear second order ODE, θ̈ (t) ≈ −τ̄ /(Ip + mpl2). For high enough torques, the hop
criterion in (2) is not met until immediately after actuation (i.e., a hop is induced at
th = �t = ωfIf/τ̄ ), so the initial hop state can be determined by integration:

θ̇ (th) = −τ̄ th
Ip + ml2

= ηωf, θ(th) = α − ηIfω2
f

2τ̄
. (7)

Since θ(th) is now a function ofωf and τ̄ , the required torque input requires solving
a nonlinear algebraic equation: dh = sin

(
2α − ηIfω2

f /τ̄
)

(ηlωf)
2/g.

To better visualize these results and validate the pivoting assumptions, numer-
ical simulations were generated based on a full 6 DoF model, including normal
spring/damper and tangential coulomb friction contact forces (as used in [12]).

The plots in Fig. 3 illustrate the hopping angle and distance relationships. Each
plot represents a different flywheel speed (2000, 5000, and 10,000 rpm) and the x-
axis is the braking torque τ̄ . The kink in each curve marks the threshold of an “early
hop”—the torque level τ̄s below which surface contact is lost before the flywheel is
fully stopped. In other words, for a given flywheel speed, τ̄s is the minimum braking
torque that should be applied to convert all of theflywheel’s available kinetic energy to
forward motion. This threshold (marked by a vertical line) is in very close agreement
with predictions based on (2).

Figure3b shows that forβ ≤ 0, travel distance increases as the torque is increased.
However, the situation is different when considering inclined poses (β ≥ 0), whereby
high torque inputs result in high angle arching hops—an undesirable effect for dis-
tance coverage but potentially useful for getting out of pits. The peaks in these
distance curves are in agreement with (6).

The duration of a single hopping maneuver can be thought of as the sum of the
time to spin up the flywheels (Tspin), and the time of flight (Tflight), where

Tspin = KS

(√
2ωfIf

mpgl

)

, Tflight = KB

(√
2ηlωf

g

)

, dhop = KD

(
(ηlωf)

2

g

)

. (8)
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Fig. 3 Resulting hop angles and distances as functions of input torque for three initial flywheel
speeds: ωf = 2000, 5000, and 10,000 rpm (the x-axis is in logarithmic scale). Each curve corre-
sponds to a particular surface inclination β. The vertical line on each graph marks the minimum
torque at which the flywheel can be fully stopped before a hop is initiated (see Eq. (2)). Results
are based on Phobos’ gravity level (0.0058m/s2) and parameters of our prototype (see Sect. 3.1).
a Hopping angle (θh) as a function of input torque (τ̄ ). The horizontal line marks the 45◦ “ideal”
hop angle. b Lateral hop distance (dh) as a function of input torque (τ̄ )

These equations result directly from (1) and (3), and assuming θhop = α = 45◦.
Here, KS represents a safety factor for tipping during flywheel spin-up, KB can
be thought of as the settling time for residual bouncing as a proportional gain on
the parabolic flight time, and KD is also a proportional gain on hop distance to
account for bouncing as well as for deviations in heading. Based on observations
from simulations, conservative estimates are KB = 2, and KS, KD = 1.2. Combining
(8) and (6) yields the average expected speed:

V̄ = dhop
Tflight + Tspin

=
√
2dhg

2

(
KDηmpl2

KBηmpl2 + KSIf

)

≈
√
2dhg

2

(
KD

KB + KS

)

. (9)

The above approximation assumes Ip + mpl2 ≈ mpl2, which is reasonable for our
prototype (mpl2 = 0.13 and Ip = 0.03). Interestingly, V̄ depends on the square root
of hop distance and gravity, indicating that farther hops result in faster net motion,
and motion on bodies with weaker gravity is slower. On Phobos (g = 0.0058m/s2),
with the parameters of our current prototype, the parameters KS, KB, and KD defined
above, and for an average 10m hop, we can expect a net speed of about 7cm/s.
However, for longer excursions, hops of 100m are reasonable (i.e., ωf = 6000 rpm),
and could increase net speed to over 20cm/s.
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3 Prototype Design

3.1 S/R Hybrid Structural Design

The prototype and CAD models for the structure and the flywheels (including the
braking mechanism) are shown in Fig. 4. The three mutually orthogonal flywheels
are mounted with bearing supports to adjacent internal faces of the cube to maximize
their inertia (larger diameter) and allow more space for scientific payload and avion-
ics. Each flywheel is directly driven by a small 2W brushless DC motor (capable of
τmax ≈ 10mNm) and motor controllers. Inspired by the theoretical benefits of high
torque capabilities (discussed in Sect. 2.2), an impulsive braking mechanism was
implemented, whereby an actuated “impact hammer” mounted to the structure col-
lideswith a protruding surface on theflywheel (earlier prototypes utilize, instead, fric-
tion brakes [11]). The spring-loaded impact hammers are jointly actuated to retract,
allowing the flywheels to freely spin, and simultaneously released to snap into place
for braking. An on-board microcontroller coordinates motion and collects data, and
the system is powered by a 12V DC battery. The motors have embedded hall sensors
that act as velocity sensors, which can also provide torque information according to
the relation τ = Ifαf.

The overall structure and frame consists of a cube with an 8-in edge constructed
out of lightweight laser-cut and 3-D printed parts (see Eq. (4) for motivation behind
keeping mp and Ip low), and one spike on each corner. Previous prototype iterations
included more spikes [11], but it has been determined through experimentation and
insights from dynamic analysis (see Sect. 2) that a cubic geometry with 8 spikes
offers the best balance of protection and mobility performance. Each spike is fitted
with a rubber tip to absorb impacts and increase surface friction.

Fig. 4 Prototype and CAD models (not to scale), highlighting the impulsive braking system. The
structural parameters are: mp = 3.75kg, l = 0.17m, If = 0.95g m2, Ip = 30g m2, α = 45◦
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Fig. 5 Preliminary system architecture based on the current prototype design discussed in Sect. 3.1.
Key subsystems include: avionics, gas propulsion system, telecommunications, sensors/actuators,
power system, and scientific instruments. For the CubeSat mission acronyms, we refer the reader
to [16]

3.2 S/R Hybrid System Architecture

Figure5 shows a preliminary system architecture configuration where most subsys-
tems leverage concurrent CubeSat missions under design at JPL [16] (due to space
limitations, we provide here a very brief discussion). Although not required for
mobility, space was allocated for a gas propulsion system to facilitate soft landing
on deployment from the mothership. The deployment phase is a challenging prob-
lem but not the focus of this paper. The power system can incorporate both primary
batteries (greater storage density) and secondary batteries that can be recharged by
the solar panels. The rest of the space is available for avionics, telecommunication
systems, sensors, and of course scientific instruments such as microscopes and an
X-Ray Spectrometer (XRS).While this system is built on an 8U package size1 (same
as our current prototype), the platform is scalable and could be miniaturized to 1U
nano-versions or enlarged for very capable versions up to 27U.

4 Microgravity Test Bed and Experiments

4.1 Test Bed Design

To the best of authors’ knowledge, no preexisting test beds are capable of accurately
emulating 6 DoF motion within a microgravity environment for an extended period
of time (say, more than 20s) andwithin an extendedworkspace (say, more than 1m2).
ARGOS, a gravity offload system developed at NASA’s Johnson Space Center, may

1In CubeSat’s jargon, one unit, i.e., 1U, refers to the standard size 10 × 10 × 10cm volume.
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Fig. 6 Left 6DoFmicrogravity test bedCAD rendering. The powered gantry tracks the translational
motion of the platform in x, y, and z within a volume of 3m× 1m× 1m respectively, while allowing
for free fall in z at sub-milli-g levels. The gimbal frame allows the platform to rotate in all three
axes. Right Image of the test bed

come the closest [17]. Used primarily for human testing in zero-g environments,
ARGOS consists of an actively-controlled overhead 3-axis gantry crane that tracks
the motion of the suspended subject, enabling the “free-floating” behaviors observed
in space. At Stanford, we have extended this idea to create a novel 6 DoF test bed
for operating rovers in microgravity conditions (see Fig. 6). Similar to ARGOS, this
test bed is built on a powered gantry crane that permits the tracking of translational
motion.

The 3-axis rotational motion is achieved by mounting the platform within a light-
weight rigid gimbal frame (see Fig. 6) (Rigorously, the gimbal only enables 2.5 DoF
of rotation because the roll axis is bounded to avoid ground contact with the gimbal
itself.). Dead mass is fixed to the platform to geometrically center the CG such that
it is precisely aligned with the three rotational axes of the gimbal for free rotation.
However, this requirement can be relaxed for operation in true microgravity (i.e.,
on an asteroid) where the platform is no longer suspended. In this case, the control
analysis in Sect. 2.2 can be modified to account for an offset CG. For example, a
CG offset from the geometric centroid by 10% of the spike radius would scale the
required flywheel speed up by about 20% on one side, and down by 20% on the
opposite side.

The gimbal-mounted platform is suspended by a (2m) cable from an overhead
attachment point on the gantry crane so that it can swing freely. By accurately mea-
suring the relative deflection of the pendulum at 100Hz, the x and y axes are actuated
using feedback control techniques to keep the pendulum in a vertical state. In this
manner, external lateral forces that act on the platform cause the whole system to
accelerate as Newton’s second law predicts. The sensor that performs this measure-
ment is based on the principle of inductive sensing, whereby strategically placed
inductive pick-up circuits measure the strength of the AC current-induced magnetic
field emitted by the suspension cable (and thus its deflection due to 1/r dissipation).
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The vertical actuation of the test bed enables microgravity behaviors, yet presents
a very difficult engineering challenge. Its role is to apply a finely controlled constant
lifting force on the platform equal to 99.9% of its weight to induce milli-g level free
fall. Applying such a precise force is a challenge in its own right, as passive force
elements such as springs and bearings have excessive friction and hysteresis, and the
noise floor ofmany force sensors is also on the order of 0.1%.A precision load cell (4
digit resolution) is mounted along the suspension cable in a feedback configuration
with the z-axis control of the gantry to produce the desired free fall accelerations.
However, in order to maintain this constant offloading force during impulsive force
inputs (i.e., ground collisions), the gantry must also respond immediately and at
very high accelerations—a fundamental limitation of the drive motors. The dynamic
response for force tracking can be greatly improved by introducing a passive spring
element along the pendulum, which behaves like a series elastic actuator—a com-
monly used technique in robotics for high fidelity force control [18]. A low-stiffness
spring/cam pulley system provides this compliance as described in [19].

Since the dynamics of the system in both the lateral and vertical axes can be
simplified to an equivalent linear mass/spring/damper system about the equilibrium,
we use standard PID control. Furthermore, because the pendulum deflections are
kept very small (less than 1◦), the vertical force feedback is decoupled from lateral
cable deflections, allowing for three independent control loops (one for each axis).

4.2 Test Bed Validation

The test bed was validated by performing reference drop and lateral maneuvers.
Specifically, drop tests with only vertical actuation exhibit a very strong parabolic fit
(correlation typically above 99%), and the noise floor on the force sensor feedback
allows for effective gravity levels down to about 0.0005g’s. The lateral motion also
behaves precisely as predicted without force input, remaining stationary or in a
constant velocity. However, there is a small amount of drift in the signal from the
lateral sensors (roughly 0.0001g’s/min), which is handledwith periodic recalibration
before experiments. Interestingly, the lateral signal can be intentionally biased to tilt
the acceleration vector off vertical, producing an effectively inclined surface.

A more careful analysis is required to validate the test bed’s response to external
forces, which can be either impulsive or non-impulsive. As a first test, a constant
lateral force was applied to the platform (mass mp) mounted on the test bed with a
horizontal string looped over a pulley with a known mass mt suspended. After initial
transients settle, the system tracks the expected acceleration (a = gmt/(mp + mt)) to
within 5%. A similar test was performed in the vertical axis by simply adding small
amounts of known mass to the platform, which also produces accelerations in close
agreement with theoretical predictions (to within 1%).

Characterizing the behavior under impulsive contact forces is more challenging.
First of all, the elasticity of a collision depends on many factors (e.g., properties
of contacting materials, speed of impact, geometry of deformation, etc.), making
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Fig. 7 Experimental results from bouncing on a rigid surface at 0.001g’s: height and velocity of
test mass and error in vertical offloading force. Data is sampled at 10kHz and the control loop runs
at 100Hz. Note that data is scaled to fit on same axes (see legend for scaling and units)

it impractical to characterize theoretically as a basis for comparison. However, as a
preliminary test, a proofmass (equal to themass of the prototype)wasmounted on the
test bed and dropped onto an elastic surface (basically a webbing of rubber surgical
tubing acting as trampoline)—a contrived, low-stiffness interface that dissipates very
little energy. In drop tests at 0.001 and 0.005g’s, the mass was released from rest a
height of roughly 1m, and it did indeed recover about 90% of its energy after each
subsequent collision (number of trials=36,mean=91.5%, and standard deviation=
2.7%).

For collisions with stiffer or even rigid surfaces, energy dissipation is much more
difficult to predict. However, the deviation observed in the force signal during impact
is a good indicator of fidelity. Figure7 reports the vertical height and velocity of the
proof mass during an example drop/bouncing sequence on a rigid surface, as well as
the transient force errors. Although the gantry overshoots vertical position by up to
a few inches after a collision, the low stiffness of the spring mechanism (≈5N/m)
results in transient force errors less than a few hundred milli-Newtons—less than 1%
of the proof mass’ weight. Since the force error scales roughly linearly with impact
speed, there is an upper bound at which the transient response becomes unacceptable,
putting the ideal range of operation between 0.0005 and 0.005g’s.

4.3 Mobility Experiments

To further characterize the dynamics and controllability of the hybrid and to asses
the validity of the model presented in Sect. 2.1, simple hopping experiments were
performed on the test bed discussed in Sect. 4.1. As a first set of experiments, we
considered a flat rigid surface and constrained the test bed motion to only two axes
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(x and z) for direct comparison with the 2D analysis in Sect. 2.1. The initial platform
orientation about the yaw axis is also set such that it is “facing” along the x axis,
for stable pivoting about its two leading spikes. In each experiment, we executed the
control approach discussed in Sect. 2.2, whereby the flywheel is slowly accelerated
until a target angular velocity is reached, at which point the impulsive brakes are
applied and the hopping sequence ensues unactuated. For a desired hop distance of
0.75m in an emulated gravity level of 0.001g’s, the target flywheel velocity was
calculated using (6) to be 700 rpm. The x/y/z position feedback from the gantry
was used in conjunction with the force and displacement signals to determine the
trajectory of the hybrid in 20 experiments, four of which are plotted in Fig. 8.

An interesting observation from Fig. 8 is the variability in bouncing. Even for con-
strained 2D motion on a uniform flat surface, bouncing speed and angle are highly
dependent on spin and orientation at the instant of impact. On the other hand, hop-
ping angle measurements exhibit a more consistent trend and are in close agreement
to the prediction of (7). The mean hop angle for the 20 experiments was 51◦ with a
standard deviation of 4◦. This is marginally higher than the 45◦ prediction likely due
to the elastic rebound of the spike tip, which is not accounted for in the theoretical
model. Specifically, instead of stopping immediately on impact as assumed in analy-
sis, the flywheel rebounds and strikes the brake in the opposite direction, resulting in
an initial hopping torque much higher than expected, shortly followed by a reverse
torque. This actually causes the hybrid to counter-rotate immediately after liftoff.
This explains why more energy is converted to translational motion and more distant
hops than predicted. In fact, based on the 20 experiments, the mean hop distance
of 1.27m is about 70% farther than intended—a seemingly beneficial effect. How-
ever, this presumably comes at the cost of shorter bounces due to counter-rotation.
Nonetheless, correcting for hopping angle and distance discrepancies allows for con-
trolled hopping with repeatable performance.We note that, although the analysis and
experimental results suggest that impulsive brakes are indeed more efficient, they are

Fig. 8 Hopping trajectories of the hybrid within the microgravity test bed. The gravity level of
these experiments was set to 0.001g’s, and the flywheel was commanded to 700 rpms. Position data
for each experiment was shifted to start at the origin. A z position of zero corresponds to a flat stance
where four spikes are in contact with the ground. Thus, bounces above zero indicate collision at a
tilted orientation
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also less controllable than friction brakes and induce high mechanical stresses in the
structure. See http://web.stanford.edu/~pavone/movies/hop.mov for a sample video
of a hopping experiment.

5 Conclusions

In this paper, we presented a planetary mobility platform that uses internal actua-
tion to achieve controlled maneuvers for long excursions (by hopping) and short,
precise traverses (by tumbling) in low-gravity environments. We have characterized
the dynamics of such platforms using angular momentum arguments and developed
hybrid control strategies for precise mobility. We have also presented a preliminary
system architecture and prototype design, which has been used to validate con-
trol techniques in a first-of-a-kind 6 DoF microgravity test bed. Experimentation is
ongoing, but the preliminary results constitute the first successful demonstration of
controlled hopping mobility in such a high fidelity test bed.

This paper leaves numerous important extensions open for further research. First,
it is important to develop more realistic contact models for interactions with loose,
granular media typically found on small bodies. Second, we seek to extend the
control algorithms to reliably maneuver rocky terrains and leverage them for higher
level motion planning objectives. Third, from a navigation perspective, we plan to
develop SLAM techniques suited for the unique and challenging environments of
small bodies, and for the constantly rotating motion of the platform. Finally, future
experiments will include (1) extension to all three axes, with hopping about non-
symmetric orientations, (2) various surface characteristics such as inclination, rocks,
sand, and fine powder, and (3) tests of the closed-loop system integrating planning,
control, and navigation.
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Considering the Effects of Gravity
When Developing and Field Testing
Planetary Excavator Robots
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and David S. Wettergreen

Abstract One of the challenges of field testing planetary rovers on Earth is the
difference in gravity between the test and the intended operating conditions. This
not only changes the weight exerted by the robot on the surface but also affects
the behaviour of the granular surface itself, and unfortunatly no field test can fully
address this shortcoming. This research introduces novel experimentation that for the
first time subjects planetary excavator robots to gravity offload (a cable pulls up on
the robot with 5/6 its weight, to simulate lunar gravity) while they dig. Excavating
with gravity offload underestimates the detrimental effects of gravity on traction,
but overestimates the detrimental effects on excavation resistance; though not ideal,
this is a more balanced test than excavating in Earth gravity, which underestimates
detrimental effects on both traction and resistance. Experiments demonstrate that
continuous excavation (e.g. bucket-wheel) fares better than discrete excavation (e.g.
front-loader) when subjected to gravity offload, and is better suited for planetary
excavation. This key result is incorporated into the development of a novel planetary
excavator prototype. Lessons learned from the prototype development also address
ways to mitigate suspension lift-off for lightweight skid-steer robots, a problem
encountered during mobility field testing.
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1 Introduction

Excavating on the Moon and Mars enables in situ resource utilization (ISRU) and
extraterrestrial contruction. However, planetary excavators face unique and extreme
engineering constraints relative to terrestrial counterparts. In space missions mass is
always at a premium because it is the main driver behind launch costs. Lightweight
planetary operation, due to low mass and reduced gravity, hinders excavation and
mobility by reducing the forces a robot can effect on its environment.

This work considers lightweight excavation from the point of view of excavator
configuration. It shows that continuous excavators (bucket-wheels, bucket chains,
etc.) are more suitable than discrete excavators (loaders, scrapers, etc.). Figure1
shows an example of a continuous and discrete excavator.

A wide assortment of planetary excavator prototypes have been developed in
recent years, of both the continuous and discrete variety, specifically for excavation
and ISRU. Muff et al. proposed a bucket-wheel excavator [15]. A Bucket-Drum
Excavator, which is an adaptation of a bucket wheel [6], excavates regolith directly
into a rotating drum. NASA’s Regolith Advanced Surface Systems Operations Robot
(RASSOR) has counter-rotating front and rear bucket drums, enabling it to balance
horizontal excavation forces [13].

Examples of discrete excavator prototypes include NASA’s Cratos [5], a scraper
with a central bucket between its tracks. Other examples include NASA’s Centaur
II with front-loader bucket and Chariot with LANCE bulldozer blade [11]. The
Canadian Space Agency’s Juno rovers [20] can be equipped with front-end load-
haul-dump scoops. The wide variability in prototypes and approaches highlights the
need for a far-reaching framework to analyze, test, and classify planetary excavators.

Testing of planetary excavation has been done almost exclusively in Earth gravity
with full-weight excavators. Only a single set of experiments has been published
characterizing excavation with a scoop in reduced gravity [3]. A discussion of these
experimental results, as well as other results pertaining to traction in reduced gravity,

Fig. 1 A robotic excavator configured for continuous (left) and discrete excavation (right)



Considering the Effects of Gravity When Developing … 301

in Sect. 2 shows why testing in Earth gravity can substantially overestimate planetary
excavator performance, thus highlighting the need for a new testing methodology; a
test method for gravity-offloaded excavation experiments is then presented. Section3
predicts analytically why continuous excavators should be expected to perform better
in reduced gravity than discrete excavators, and Sect. 4 uses the newly developed
test methodology to provide experimental evidence supporting this result. Section5
outlines the development of a novel prototype excavator based on the results of
this research campaign, and also describes practical issues that were encountered
during mobility field testing. Finally, Sect. 6 presents conclusions, lessons learned,
and future work.

2 Gravity Offload Experimentation

This work presents novel experiments that for the first time subject excavators to
gravity offload (a cable pulls up on the robot with 5/6 its weight, to simulate lunar
gravity) while they dig. Although not fully representative of excavation on planetary
surfaces (where the regolith is also subject to reduced gravity), these experiments are
more representative of planetary excavation performance than testing in full Earth
gravity. Testing in Earth gravity is an inadequate evaluation of planetary excavators,
as it over-predicts excavator performance relative to reduced gravity. The following
subsections discuss the effects of gravity on traction and excavation resistance, and
explain why gravity offload testing is a more balanced approach than testing in Earth
gravity. Details of the testing methodology are then described.

2.1 Effects of Reduced Gravity on Traction

A vehicle’s drawbar pull is its net traction: DP = T − R (i.e. Thrust − Resistance).
Note that both Thrust and Resistance depend on wheel slip. Drawbar pull at 20% slip
is a good measure of tractive performance, as pull begins to plateau around 20% slip
for many wheels (or tracks) while negative effects such as sinkage increase [21]. A
non-dimensional quantity,P20/W (Drawbar pull at 20% slip, normalized byweight),
has been used as a benchmark metric for lunar wheel performance from the times of
Apollo [7] to today [22, 25].

The most representative test environment for planetary rovers is a reduced gravity
flight, where rover and regolith are both subject to reduced g [3, 12]. Another class
of tests reduces the weight of the robot, but not the regolith. NASA JPL runs mobility
tests for the Curiosity rover using a full geometric scale 3/8th mass ‘SCARECROW’
rover [23]. SCARECROW’s 3/8th mass loads the wheels with an equivalent weight
to the full mass Curiosity rover in Mars gravity. Another way to achieve equivalent
results is to use a full mass robot, but to ‘offload gravity’ by offloading a portion of
the robot’s weight; this is the approach used in this work.
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Testing with reduced robot weight in Earth gravity does not exhibit the same
mobility performance as planetary driving (or reduced-g flights), where the regolith is
also subject to reduced gravity [24]. It seems to in fact over-predict traction for scenar-
ios governed byP20/W , such as pulling and slope climbing.P20/W is approximately
constant with changing load (i.e. changing W but keeping scale and gravity constant,
as with SCARECROW or gravity offload), as has been observed experimentally [7].
This is because both thrust, T , and resistance R, are reduced under lower loads; the
former due to reduced frictional shearing, the latter due to reduced sinkage. On the
other hand, changing W by reducing gravity reduces P20/W . Kobayashi’s reduced-
gravity parabolic flight experiments showed that wheel sinkage is not reduced when
driving in low gravity [12], though thrust still is.

These results suggest that gravity offload testing underestimates detrimental
effects on rover tractive performance, by maintaining constant rather than dimin-
ished P20/W at conditions meant to represent lower gravity environments. However,
the next subsection explains that for excavators this fact is balanced by an overesti-
mate of the detrimental effects on excavation resistance.

2.2 Effect of Reduced Gravity of Excavation
Resistance Forces

Reduced gravity increases the ratio of excavation resistance to weight in cohesive
lunar regolith. Boles et al. compared excavation resistance forces measured in Earth
gravity to resistance forces measured during reduced-gravity parabolic flights (for
otherwise identical experiments), and showed that excavation resistance in 1/6 g
could be anywhere between 1/6 and 1 of the resistance experienced in full Earth
gravity (Fex/E) [3]. This result is consistent with a theoretical analysis of exca-
vation forces. Consider the two dominant terms of Reece’s fundamental equation
of earthmoving mechanics [9], based on the principles of passive earth pressure:
Fex = Nγ γ gwd2 + Nccwd Gravitational acceleration is denoted g, γ is soil density,
c is cohesion, d is cut depth, w is blade width, and the Ni are non-dimensional
coefficients pertaining to different sources of resistance. The frictional part of Fex

is proportional to g, whereas the cohesive part is independent of g. This suggests
that for a purely frictional soil Fex in 1/6 g should be 1/6 of the Fex/E , for a purely
cohesive soil Fex in 1/6 g should be 100% of Fex/E , and for typical combination soils
the result should be somewhere in between. Sample data from Boles et al. shows
examples of Fex in 1/6 g that average 1/3 of Fex/E .

Characterizing planetary excavators performance based on tests in Earth gravity
is equivalent to assuming that excavation resistance scales down proportionally to a
reduction in gravity, which Boles’ experiments show is not generally, or even typi-
cally, the case.Making such an assumption would thus underestimate the detrimental
effects of reduced gravity on excavation resistance.
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Reducing robot weight but not regolith weight makes excavation more difficult
than is to be expected in reduced gravity. Longitudinal soil-tool interactions are
not directly affected by reduced robot weight, so excavation resistance force, Fex,
remains unchanged. Reducing weight to 1/6 thus directly increases Fex/W sixfold.
For planetary excavation, this corresponds to the worst possible case of purely cohe-
sive regolith. As neither lunar nor Martian regolith is purely cohesive, excavation
resistance on these planetary surfaces in not expected to scale quite so poorly.

Excavating with gravity offload thus underestimates the detrimental effects of
gravity on traction, but overestimates the detrimental effects on excavation resistance.
This is a more balanced and conservative test than excavating in full Earth gravity,
which underestimates detrimental effects on both traction and resistance.

2.3 Experimental Setup

Gravity offloaded excavation experiments were set up at NASA Glenn Research
Center’s (GRC) Simulated Lunar OPErations (SLOPE) lab. The facility contains a
large soil bin with GRC-1 [16] lunar simulant. This research developed an experi-
mental apparatus for achieving gravity offload in the SLOPE lab. The main aspects
of the apparatus are shown in Fig. 2. A cable pulls up on the robot, tensioned by
weights acting through a 2:1 lever arm. The weights and lever assembly hang from
a hoist that is pulled along a passive rail by a separate winch-driven cable. All tests
are conducted in a straight line below the hoist rail. The winch speed is controlled
so that the hoist is pulled along at the same speed as the robot is driving, keeping the
cable vertical. For tests where excavator speed remains constant, winch speed is set

Fig. 2 Gravity offload testingwith bucket-wheel (left) and front-loader bucket (right) on the Scarab
robot. A cable pulls up on the robot, tensioned byweights acting through a 2:1 lever arm. The offload
assembly hangs from a hoist that is pulled along a rail by a separate winch-driven cable
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open loop. For tests where the excavator enters into high slip, winch speed has to be
manually reduced to match the robot’s decreasing speed.

Continuous bucket-wheel and discrete bucket excavation was performed using
the Scarab robot (for a detailed description of the robot, see [2, 22]. With Scarab’s
shell removed, excavation tools were mounted to the robot’s structural chassis. For
continuous excavation, a bucket-wheel was mounted with its axis of rotation aligned
with Scarab’s driving direction. The bucket wheel is 80cm diameter with 12 buckets,
and each bucket has a width of 15 cm. The bucket used for discrete excavation is
66cm wide, and was mounted behind Scarab’s front wheels at a cutting angle of 15◦
down from horizontal. Figure1 shows Scarab configured both as a continuous and
as a discrete excavator.

Scarab has a mass of 312 kg (weight of 3060N in Earth gravity) in the configu-
ration used for these experiments. The connection point for the gravity offload cable
was adjusted to preserve the robot’s weight distribution (54% on the rear wheels).
This was confirmed by weighing Scarab on 4 scales (one under each wheel) before
and after being connected to the gravity offload apparatus. The offloading cable was
equipped with a 2-axis inclinometer and a single-axis load cell to measure cable
angle and tension, respectively.

Continuous and discrete excavation experiments were conducted at equivalent
nominal production rates of approximately 0.5 kg/s, and at equal speeds of 2.7 cm/s.
To account for the differing geometry of the excavation tools, the rectangular discrete
bucket cut at a depth of 2 cm, and the circular bucket-wheel cut at a central depth
of 5 cm. Depth was set using Scarab’s active suspension, which raises and lowers
the central chassis. Regolith picked up by the bucket-wheel was manually collected
in 5-gallon buckets not connected to the robot, and weighed. The discrete bucket
collected regolith directly, and after a test that regolith was transferred into 5-gallon
buckets and weighed. To capture mobility data, the excavator’s position was tracked
using a laser total station at a data rate of 1Hz during all experiments.

Between each test run, soil conditions were reset using a technique developed
at NASA GRC. First, the GRC-1 simulant is fully loosened by plunging a shovel
approximately 30cm deep and then levering the shovel to fluff the regolith to the
surface; this is repeated every 15–20 cm in overlapping rows. Next, the regolith is
leveled with a sand rake (first with tines, then the flat back edge). The regolith is
then compacted by dropping a 10kg tamper from a height of approximately 15 cm;
each spot of soil is tamped 3 times. Finally, the regolith is lightly leveled again for a
smooth flat finish. A cone penetrometer was used to verify that the soil preparation
consistently achieved bulk density between 1700 and 1740 kg/m3.

3 Predicted Excavation Performance

Considering that gravity offloaded excavation experiments are, on balance, more
representative of planetary operating conditions, there is value in investigating cases
where offloaded test results may diverge from tests in full Earth gravity; one such
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case is the comparison of continuous and discrete excavation. Estimates of excavation
performance predict that continuous and discrete excavation should both be success-
ful in 1 g, but that a continuous excavator achieves this with a higher performance
margin. These differences in performance margin become apparent at conditions
offloaded to 1/6 g, where discrete excavation is predicted to fail.

Predicted excavator performance is based on a comparison of traction and excava-
tion forces. Excavator failure is defined as a degradation of mobility (i.e. significant
increase in slip and/or sinkage), which is caused by excavation resistance forces
exceeding the traction forces that the robot can sustainably produce.

The achievable traction is directly comparable for continuous and discrete exca-
vation experiments, because in both cases Scarab is equipped with the same ‘spring
tire’ wheels. These wheels can sustainably produce a DP/W ratio of 0.25, as mea-
sured by drawbar pull–slip experiments. Achievable traction is thus approximately
equal at the start of continuous and discrete experiments, when weight is approx-
imately equal. In the course of a discrete excavation experiment, weight and thus
traction increases as regolith is collected. In continuous experiments, on the other
hand, traction remains approximately constant as regolith is collected into buckets
not connected to the rover. Thus in 1 g, the maximum sustainable drawbar pull for
continuous excavation is 765 N, while for discrete excavation it is 765N plus 0.25 N
for every 1Nof regolith collected. Similarly in offloaded 1/6 g, themaximum sustain-
able drawbar pull for continuous excavation is 128 N, while for discrete excavation
it is 128N plus 0.25 N for every 1N of regolith collected (note that collected regolith
is not offloaded).

Force measurements from preliminary tests show that continuous excavation
forces are bounded [18], and are in the range of 6–12 N in the case of the bucket-
wheel being tested. Discrete excavation forces, on the other hand, rise approximately
linearly with payload collected [1, 18], at a rate of 1.2–1.5 N per 1N or regolith col-
lected for a similar discrete bucket [1]. This rise in force for discrete excavation is
attributable to accumulation of surcharge at the cutting edge, resisting entry of further
regolith into the bucket.

Comparing continuous excavation force to achievable traction predicts consistent
margins of at least 98–99% in 1 g, and at least 90–95% in 1/6 g. For discrete
excavation, on the other hand, initially high margins are predicted to decrease to
zero once 600–800 N of regolith is collected in 1 g, or once 100–140 N of regolith is
collected in offloaded 1/6 g. Themaximum capacity of the discrete excavation bucket
is approximately 450N of GRC-1, so in 1g it is predicted to be filled to capacity with
leftover performance margin, but in 1/6 g the zero margin condition is predicted to
be reached before the discrete bucket is filled.

Analyses of these preliminary force measurements also suggest that continuous
excavation is somewhatmore energy efficient than discrete excavation.By integrating
over a 2.5m excavation distance, and taking into account the 1.2–1.5 N increase in
excavation force per 1N of regolith collected, 0.5 kg/s production and 2.6 cm/s
forward speed, discrete excavation of 45kg in 1g requires 700–900 J. On the other
hand, accounting for lateral and longitudinal bucket-wheel forces and displacements
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as well as vertical lifting of excavated soil, continuous excavation of 45kg in 1g
requires 500–600 J; in lower g continuous excavation would be even more efficient
because much of the energy goes into lifting the soil against gravity. Despite the
additional actuator to turn the bucket-wheel, energy is saved due to lack of energy-
sapping resistive soil accumulation.

4 Experimental Results

Experimental data support the predictions made in the previous section, highlighting
the importance of including gravity offloaded experiments into testing campaigns
for proposed planetary excavators. Experiments show that in 1g continuous and dis-
crete excavation both achieve successful performance. On the other hand, in gravity
offloaded 1/6 g, discrete excavation fails from degraded mobility, while continuous
excavation does not.

Three or four runswere conducted at each of the test conditions, including baseline
runs of driving without digging. Total station data were analyzed to calculate exca-
vator speed during each test, as shown in Fig. 3. The excavator maintains constant
forward progress in all cases except discrete excavation with gravity offload. Aver-
age speed (as well as standard deviation) for the various test cases, is summarized in
Table1.

Tests in 1g exhibit a slightly slower speed, because the higher weight compresses
the compliant ‘spring tires’ and reduces their radius. Excavation and gravity offload
both introduce a small amount of additional variability in speed compared to driving
without digging in 1 g. Continuous and discrete excavation in 1 g, as well as contin-
uous excavation in gravity offloaded 1/6 g, all collected approximately 45kg during
each 2.5m test run. Discrete excavation in gravity offloaded 1/6 g collected only
15–20 kg, in contrast.

Gravity offload was controlled with sufficient precision to avoid pulling the exca-
vator forward or backward. During continuous excavation, cable angle was unbiased
about vertical, with a mean absolute value of just 0.1 degrees; with a cable tension of
2600 N, this corresponds to 4.5 N, or less than 1% of offloaded excavator weight. In
contrast, inducing 20% slip in the spring tires used in the experiments would require
sustained horizontal forces of 25% of offloaded excavator weight. Transient motions
of the cable did not exceed 0.8 degrees from vertical for more than a fraction of a
second; this corresponds to brief transients of 35 N, or 7% of offloaded excavator
weight. Cable tension varies just ±1% which, amplified by the offloading ratio, cor-
responds to 5% variation in the offloaded excavator weight; this also translates to no
more than approximately 1% variation in the ratio of horizontal force to offloaded
excavator weight. Figure4 shows longitudinal cable angle and cable tension for a dis-
crete excavation test, the most challenging test due to the changing speed. Variability
in angle and tension were again unbiased and small.
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Fig. 3 Excavator forward driving speed during continuous excavation in 1 g (top left), discrete
excavation in 1 g (top right), continuous excavation in gravity offloaded 1/6 g (bottom left), and
discrete excavation in gravity offloaded 1/6 g (bottom right; time axes aligned at stall point). The
excavator maintains constant progress in all cases except discrete excavation with gravity offload

Table 1 Discrete excavation offloaded to 1/6 g is the only test condition that does not maintain
constant steady state (S/S) velocity

Excavation type ‘Gravity’ (g) Average v (cm/s) σv (cm/s)

Driving only 1 2.6 0.2

Continuous 1 2.6 0.3

Discrete 1 2.6 0.4

Driving only 1/6 2.7 0.3

Continuous 1/6 2.7 0.3

Discrete 1/6 No S/S n/a

Note that σv represents the mean of the 3 tests’ σ values, not the σ of the tests’ mean v (which
showed negligible variation between tests of any single set)

The gravity offload system was implemented primarily to test the hypotheses
in this work and is not itself intended for extensive experimentation campaigns.
Specialized gravity offload apparatus can be used to achieve even greater repeatabil-
ity, and to overcome the limitations of the current system that include operating only
in a straight line and lacking automatic speed adjustment.
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Fig. 4 Longitudinal angle (left) and tension (right) of the gravity offloading cable during a discrete
excavation experiment, showing minimal variation

5 Development of Planetary Excavator Prototype

This section describes a planetary excavator prototype that incorporates the principles
established by this research and addresses practical considerations of implementing
a continuous excavator for planetary environments. The Polaris excavator, shown
in Fig. 5, is a continuous bucket-wheel excavator. It is intended for in-situ resource
utilization (ISRU), a task requiring substantial productivity. The 200 kg Polaris exca-
vator features a nominal payload capacity of 80kg for a payload ratio of 40%; prior
research by the authors has shown that payload ratio governs productivity [17]. To
collect its payload Polaris uses continuous excavation, the benefits of which have
been discussed in this paper. The entire bucket-wheel/collection bin subsystem is
actuated to engage cutting with the bucket-wheel and to enable dumping at out the
back of the bin at a height of 50 cm. Polaris’ top driving speed is 40 cm/s.

Fig. 5 Polaris excavator
featuring continuous
bucket-wheel excavation and
high payload ratio
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5.1 Bucket-Wheel Excavator Configuration and Performance

Past planetary bucket-wheel excavator prototypes have had difficulty transferring
regolith from bucket-wheel to collection bin, and as a result bucket-ladders have
gained favor [10]. Bucket-ladders use chains to move buckets along easily shapeable
paths, making transfer to a collection bin easy. Winners of the NASA Regolith Exca-
vation Challenge and subsequent Lunabotics mining competitions (which require
digging in lunar regolith simulant for 30min) all employed bucket-ladders driven
by exposed chains [14]. However, bucket-ladder chains are exposed directly to the
soil surface and these could degrade very quickly in harsh lunar regolith and vac-
uum. The abrasiveness of lunar regolith rapidly degrades exposed sliding contacts
or flexible materials [8, 19]. Exposed bucket-ladder chains may thus not be relevant
to operation in lunar conditions.

A novel excavator configuration, with bucket-wheel mounted centrally and trans-
verse to driving direction, achieves direct regolith transfer into a collection bin. The
bucket-wheel is a single moving part, with no need for chains or conveyors. This
reduces complexity and risk from regolith and dust. Once regolith has been carried
to the top of the wheel in an individual bucket, it drops down out the back of the
bucket and into a collection bin. This configuration offers a solution to the transfer
problem for bucket-wheels identified in past literature.

The excavator prototype has demonstrated mining productivity of over 1000 kg/h.
1040 kg was produced in 58 min, with an average round trip of approximately
14 m, as demonstrated in GRC-1 at NASA Glenn’s SLOPE lap. During the hour-
long operation, the teleoperated excavator performed 17 dig-dump task cycles, of
which approximately 1/3 of the time was spent digging. Average power draw was
470 W, with the wheels causing an average power draw of 142 W, the bucket-wheel
18 W, and lift/dump 310 W. Although this particular test was not conducted with
gravity offload, the similarity in continuous excavation results in Table1 suggests that
comparable productivity may perhaps also be possible in 1/6 g. Full-scale excavation
task experimentation with gravity offload is suggested for future work.

5.2 Suspension Lift-Off for Lightweight Skid Steer Rovers

Prior to integrating the excavation subsystem (consisting of bucket-wheel, dump-
bed and raise/lower actuation) into Polaris, field tests were conducted to evaluate
the performance of its mobility platform. These field tests revealed an undesireable
phenomenon inwhich awheel unintentionally lifts off the ground in a ‘wheelie’ fash-
ion. Field and laboratory testing demonstrating the phenomenon, termed Suspension
Lift-Off (SLO), are shown in Fig. 6. SLO occurs during skid-steering and results in
reduced stability and loss of control authority; it is a problem that can be encountered
with any passive differential mobility suspensions, such as rocker bogies.
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Fig. 6 Field tests (left) led to the discovery and study of suspension lift-off (right)

An analytical model that relates lateral turning forces to vertical terrain-contact
forces was developed, though its full details are omitted here for brevity; these details
are presented in [4]. The following parameters are concluded to be root causes of
SLO: a tall shoulder height to wheelbase ratio, narrow aspect ratio (i.e. ratio of lateral
to longitunalwheel spacing), eccentricweight distribution, and high center of gravity.
Operational factors that increase risk are high turning resistance anddrivingon slopes.
Parameter sensitivity analysis suggests that the shoulder height to wheelbase ratio is
the single most important factor.

For rovers with two shoulders, like Polaris, the effective wheelbase is the rover’s
actual wheelbase minus the distance between shoulders. Decreasing the effective
wheelbase by separating the shoulders directly increases the shoulder height towheel-
base ratio and thus the risk of SLO. This overlooked caveat of Polaris’ design was
the single greatest contribution to the SLO problem encountered in field tests, par-
ticularly when the weight distribution on front and rear wheels was highly eccentric
prior to integrating the excavation subsystem.

Tests compared the analytical model’s predictions to experimentally measured
values and found good accuracy across thirty-five long duration skid-steer trials
that varied suspension geometry and weight [4]. Agreement of empirical evidence
with the model suggests that SLO is predictable, and thus preventable if key design
criteria are met. The mitigation is to achieve a shoulder height less than one third of
the wheelbase, and a center of gravity height less than half the wheelbase. If these
design criteria are met, SLO is very unlikely to occur.

The contribution of turning resistance to SLO suggests that operation in reduced
gravity may exacerbate the problem. Section2.1 discussed how sinkage does not
diminish in low g for forward driving, decreasing DP/W . If sinkage also does not
diminish in low g during skid-steering, this could increase the ratio of lateral resis-
tance force to vertical contact force and lead to greater risk of SLO. Investigation of
skid-steering in reduced gravity is thus suggested as a direction for future study.
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6 Conclusions, Lessons Learned, and Future Work

Conclusions. The contributions of this work include the first of their kind gravity
offload experiments from planetary excavators, and the conclusion that continuous
excavation ismore suitable for lowgravity than discrete excavation.Gravity offload is
an important and practical class of field or laboratory test for planetary excavator pro-
totypes. Though not an ideal representation of low gravity operations, as the effects
of gravity on regolith are not included, this is a more balanced test than excavating in
full Earth gravity, which canmisleadingly overpredict performance. Omitting gravity
considerations from planetary excavator development misses important distinctions
between classes of excavator configuration, such as the advantages of continuous
excavation over discrete excavation.

The experiments presented in this work demonstrate that continuous excavation
fares better than discrete excavation when subjected to low gravity. They also suggest
caution in interpreting low gravity performance predictions based solely on testing in
Earth gravity, where both the continuous and discrete configurations, misleadingly,
operated successfully.

Lessons Learned. The key lesson learned from field testing is the need to con-
sider suspension lift-off (SLO) for lightweight skid-steer robots. The mitigation is to
achieve a shoulder height less than one third of the wheelbase, and a center of grav-
ity height less than half the wheelbase. If the need to separate rocker arm shoulders
arising in rover design, shoulder spacing should be minimized to avoid reducing the
effective SLO wheelbase.

Future Work. Future research on lightweight excavation, including skid-steer
testing, would benefit from testing in reduced gravity flights or drop towers. Excava-
tion task testing would also benefit from more gravity offload testing in generalized
terrain, beyond the flat straight-line tests shown here. Another important direction
for future study is deep excavation in the presence of submerged rocks, which pose
challenges for lightweight continuous and discrete excavators alike.
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Update on the Qualification of the Hakuto
Micro-rover for the Google Lunar X-Prize

John Walker, Nathan Britton, Kazuya Yoshida, Toshiro Shimizu,
Louis-Jerome Burtz and Alperen Pala

Abstract Hakuto is developing a dual rover system for the Google Lunar XPRIZE
(GLXP) and exploration of a potential lava tube skylight. We designed, built and
tested two rovers and a lander interface in order to prove flight-readiness. The
rover architecture was iterated over several prototype phases as an academic project,
and then updated for flight-readiness using space-ready Commercial Off The Shelf
(COTS) parts and a program for qualifying terrestrial COTS parts as well as the
overall system. We have successfully tested a robust rover architecture including
controllers with performance orders of magnitude higher than currently available
space-ready controllers. The test regime included component level radiation testing
to 15.3 kilo-rads, integrated thermal vacuum testing to simulate the environments
during the cruise phase and surface mission phases, integrated vibration testing to
10 Grms , and field testing. The overall development methodology of moving from a
flexible architecture composed of inexpensive parts towards a single purpose archi-
tecture composed of qualified partswas successful and all components passed testing,
with onlyminor changes required to flight model rovers required ahead of amid 2016
launch date.

1 Introduction

1.1 Commercial Off the Shelf Components in Space
Robotics Missions

In the past several years, due to the proliferation of cubesat and micro-satellite mis-
sions, several companies have started offering off-the-shelf space-readyhardware [3].
These products offer awelcome reduction in cost but do not solve amajor problem for
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space robotics designers: available space-ready controllers are years behind COTS
microprocessors and microcontrollers in terms of performance and power consump-
tion. For applications involving human safety or critical timing, the extra cost and
difficulty of using certified space-ready hardware is justifiable.

But for some low-cost missions that require high performance, terrestrial com-
ponents are increasingly being qualified and integrated. The University of Tokyo’s
HODOYOSHI 3 and 4 satellites have integrated readily available COTS FPGAs and
microcontrollers and protected them with safeguards against Single Event Latch-up
(SEL) [9]. This paper presets a lunar rover architecture that uses many COTS parts,
with a focus on electrical parts and their function in and survival of various tests.

1.2 Google Lunar XPRIZE

The Google Lunar XPRIZE (GLXP) is a privately funded competition to land a
rover on the surface of the Moon, travel 500m and send HD video back to Earth.
$30 million USD are available to teams who can complete these requirements, with
$20 million USD for the first team to complete the requirements before December
31, 2016 [4].

In October of 2014, XPRIZE announced the Terrestrial Milestone Prize (TMP),
a program for teams to be awarded for demonstrating flight-readiness to a panel
of independent judges. Hakuto was selected as one of four teams to demonstrate
mobility capability. Overall, five teams were selected to demonstrate achievements
in mobility, imaging and lander capability. The TMP round concluded in January
of 2015, and Hakuto was awarded $500 thousand USD for successfully testing its
Moonraker rover with functional testing, thermal-vacuum testing, vibration testing
and field testing [2].

1.3 Hakuto and Space Robotics Lab

Hakuto is the sole entrant from Japan in the GLXP competition and is developing
rovers to send as payload on its landing service provider. As of 2015, it is one of
18 teams remaining in the competition. The Space Robotics Lab (SRL) is led by
Professor Yoshida in the Department of Aerospace and Mechanical Engineering at
TohokuUniversity in Sendai. It is partneredwithHakuto to design the rovers required
for its mission.
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1.4 Hakuto Mission and Rovers

In 2009, images from JAXA’s KAGUYA (SELENE) spacecraft showed the presence
of potential skylights on the surface of the moon [5]. The Lunar Reconnaissance
Orbiter (LRO) has also shown several potential skylights. Hakuto’s landing service
provider has identified one such potential skylights as its landing target. The target
is in the Lacus Mortis region at 44.95◦N and 25.61◦E, south of the Rimae Bürg
rille. The skylight is just under 400m in diameter, with a ramp on one side, possibly
formed by a partial collapse. The minimum average slope angle is 13◦, although the
data from the LRO for this estimation is sparse [1].

In order to explore a skylight or cave, we developed a dual rover architecture,
consisting of a one four-wheeled parent rover (code-named “Moonraker”)and one
two-wheeled tethered child rover (code-named “Tetris”). In this architecture, both
rovers use radio communication via the third-party lander to Earth.

Moonraker will travel near the edge of a skylight with Tetris towed by a tether.
The tether, up to 100m long is wound on a motorized spool within Tetris is used to
pull itself back to Moonraker after exploring steep, vertical, or any terrain that the
operators wish to “scout” ahead of Moonraker (Fig. 1).

Active tethers for similar purpose have been demonstrated by the European Space
Agency [6], but they are complex, requiring slip rings and multiple conductors. They
would eliminate the need for solar cells or batteries, but we chose a passive tether
for two types of redundancy:

Type 1 Operational redundancy: In case of failure of one rover, we can still complete
the GLXP requirements.

Type 2 Lander agnosticism: Depending on the lander capabilities, one (Tetris or
Moonraker) or both rovers can be integrated, maximizing the number of
potential launches

Fig. 1 Hakuto’s dual rover mission architecture, with one four-wheeled parent rover and one two-
wheeled tethered child rover
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Because both rovers use many of the same or similar components and potentially
identical controller architectures, the additional resources required for developing
the dual rover system is marginal.

1.4.1 Development Phases

Hakuto has just completed the fourth development phase as described in Table1. In
this phase, within our budget and time constraints, we made the rovers as close as
possible to flight configuration. There is overlap in the phases, as environmental and
field testing can overlap with the design stage of a subsequent design.

Up until the end of Phase 3, Moonraker was made from an aluminum chassis with
nylon body panels, and Tetris was made from an aluminum sheet metal structure.
Throughout this time, small iterations to items such as wheel size, grouser length
and motor power were made as a result of many field tests and lab experiments [1].
Throughout these phases, the primary goal of the rovers was academic research, with
the general requirements of the GLXP used for guidance. Moonraker’s development
history for the GLXP project goes back to 2009. The addition of Tetris to Phase 2
created Phase 3. We plan to maintain this cycle of “major-minor” updates. Phase 4
was amajor update, internally called the “Pre-FlightModel” or PFM. It was designed
to the flight requirements and every component which was not a space-ready COTS
component was designed or selected to qualified to flight-ready status.

Aminor update to Phase 4will also be tested. Itwill include theflight configuration
of all electronics. In parallel, the design of Phase 6 (flight model) will be conducted,
with all testing for Phase 5 completed before the Critical Design Review for Phase
6. The overall scheme is illustrated in Fig. 2.

Table 1 Description of the phases of development

Phase Time period Description

Phase 1 Jan 2009 to June 2010 Research and trade studies

Phase 2 (major) June 2010 to Sept 2013 Prototype of Moonraker using COTS hardware

Phase 3 (minor) Sept 2013 to March 2014 Prototype of Tetris added to system

Phase 4 (major) Jan 2014 to Dec 2014 PFM: CFRP structure, COTS space-ready
components and COTS terrestrial components

Phase 5 (minor) Dec 2014 to Aug 2015 PFM2: Additional/alternate COTS candidate
components added

Phase 6 (major) Jan 2015 to Dec 2016 FM: Final flight configuration

Phase 7 April 2016 to June 2016 FM integration to lander

Launch July 2016 Tentative launch date



Update on the Qualification of the Hakuto Micro-rover … 317

Phase 4 
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Flight Model Design

Phase 2 
Proto 

(major)

Fig. 2 Hakuto’s Major-minor development strategy

2 Phase Four System Architecture

We updated the design for Phase 4 based on the design and field testing of the Phase 3
rovers. We made minimal changes to overall configuration, but performed extensive
detailed design with attention to the thermal and vibration environments expected
during the mission.

The criteria for component selection was: mass, power consumption, and use of
components with flight heritage, especially by SRL when possible.

2.1 Rovers

The rovers we built for Phase 4 feature an aluminum substructure and Carbon Fibre
Reinforced Plastic (CFRP) outer body (Fig. 3). We built these in order to meet the
requirements for the Terrestrial Milestone Prize detailed in Sect. 1.2.

Fig. 3 Phase 4 Moonraker and Tetris rovers
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2.1.1 Moonraker

The architecture of Phase 4 Moonraker (Fig. 4) was based on previous versions. A
COTS space-ready FPGA-based controller with a “soft” ARMCPU [7] was selected
due to previous experience in integration to COTS parts for the RISING-2 satellite
[8]. A COTS cubesat Power Distribution Unit (PDU) and 80Wh lithium-ion battery,
including a watchdog timer, was used for the power subsystem. Solar panels were
not included in Phase 4 but one solar cell was included on Moonraker to confirm its
physical integration and survival of environmental testing.

The omni-directional imaging components, consisting of a COTS USB 5 mega-
pixel camera, lens and parabolic mirror were retained from Phase 3. The camera
points upwards to the mirror, to capture a 360◦ image that is manipulated by the
operator to enable them to look in any direction without the complexity or lag asso-
ciated with a pan-tilt mechanism [1]. We also kept a COTS laser range-finder from
Phase 3 that uses a MEMS mirror to control the pan and tilt of a stationary laser to
produce 3D data via a time of flight algorithm.

Themain controller is not powerful enough for the real-time HD video processing
required by the GLXP, so a COTS ARMv7-based controller was added to handle
imaging. This is a readily-available product primarily marketed towards hobbyists,
with nearly all signals from the CPU made available on two 48-pin headers making
it ideal for a flexible development platform. Other COTS components were picked
primarily based on flight heritage and are described in Table2.

We made two interface boards to connect components. The “power interface”
board was used to mount and connect the main controller, ethernet switch, and PDU.
The “imaging interface” was used to connect the imaging controller, camera, radio.
Both included minor components such as power relays, ethernet transformers, level
converters andmultiplexers.Many electrical connections to the interface boardswere
made by the pin headers factory installed on the PDU and imaging controller. We
removed all connectors not designed for aerospace use, such as ethernet andUSB, and
replaced them with soldered “pigtail” wiring with connectors having space heritage.

2.1.2 Tetris

Tetris’ planned architecture for Phase 4 was nearly identical to Moonraker’s, with
two wheels instead of four, no range-finder, and a tether mechanism added. The total
mass of Tetris is 2629g and the average power consumption budget is 7.3 W.

2.2 Interface to Lander

The lander interface box was made from CFRP and machined parts, with 3D printed
Ultem parts in the interior to hold both rovers fixed during the launch, cruise and
landing phases. Upon landing, the interface box is opened with a single Shape Mem-
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Fig. 4 Moonraker architecture for phase four of development

Fig. 5 View of the interface box. Moonraker and Tetris are nested inside when stowed. When
deployed, the door forms a ramp for the rovers to drive down. a Stowed configuration. b Deployed
configuration

ory Alloy (SMA) pin-puller actuator. The open box acts as a ramp with a slope of
approximately 30◦ for easy egress of the rovers on to the lunar surface. Figure5
shows the interface in the stowed configuration and deployed ramp configuration.
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2.3 Communication to Ground Station

The rovers are configurablewith three types of radios: a 900MHz, 1W radio supplied
by our landing service provider (ethernet interface, TCP/IP and UDP protocols), a
2.4 GHz, 25 mWCOTS wi-fi radio (USB interface, TCP/IP and UDP protocols) and
a 900 MHz, 1 W COTS radio (Serial interface).

The supplied radio was not available to us in Phase 4, so the COTS wi-fi radio
was used. This allowed us to use the same protocols, in our communication, as in the
FlightModels butwere limited in range.Due to strict restrictions on radio frequencies
and power in Japan, we could not conduct full field testing with Option 3 in Japan.
We did perform radio testing in Canada (where the radio is legal to use) to confirm
general performance of a 900MHz radio system at long distances and near obstacles.

3 Testing

In 2014, we thoroughly tested the Phase 4 rovers to determine the suitability of all
components for inclusion in the flight model. During these tests, two configurations
of the rovers were used:

MTM Model Motors included, but all other electronics replaced by representative
masses of approximately the same mass and centre of gravity

Integrated Model All electronics included, except where noted otherwise

A brief summary of each test is included below, followed by the overall results
presented in Table2.

3.1 Thermal-Vacuum Testing

3.1.1 Cruise Phase Testing (MTM Model)

Thermal-Vacuum tests were performed at the Kyushu Institute of Technology estab-
lished Center for Nanosatellite Testing (CeNT) in the Tobata campus of the Kyushu
Institute of Technology. This is a centralized facility with test apparatuses for satellite
testing, including thermal-vacuum testing (10−5 Pa).

The MTM model of Moonraker, Tetris and the interface box, in the stowed con-
figuration were tested, with sensors at various internal and external points to verify
thermal conductance values used in the thermal models.

We simulated the cruising phase of the mission, with the shroud temperature
of the vacuum chamber at −173 ◦C, and the interface box wrapped in Multi-Layer
Insulation (MLI). The interface box was fastened to an aluminum plate to simulate
the deck of the lander. The deck was temperature controlled between 0 and 40 ◦C.
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Fig. 6 Experimental setups used for Cruise Phase and Surface Mission. a Cruise phase. b Surface
Mission phase

The data from this test will be used to confirm thermal models and design heaters
for the interface box in order to keep the rovers electrical components within their
preferred range (with the battery having the most severe requirements of between
−20 and 40 ◦C).

Figure6 below shows the vacuum chamber used in the test, and the MLI-wrapped
interface ready for insertion.

3.1.2 Surface Mission Phase Testing (integrated Models)

We performed integrated vacuum testing on Moonraker at Next generation Space
system Technology Research Association (NESTRA) at the Kikuicho campus of
Waseda University in Tokyo. This is a facility for micro-satellite integration and
thermal-vacuum testing.Weplan to land 12h after sunrise (−68 ◦C),with deployment
at 30 h after sunrise (−10 ◦C) with the GLXP mission complete by 75 h after sunrise
(50 ◦C). The lens and mirror used were COTS products manufactured using the
vacuum deposition coatings, so were not tested in oder to avoid contaminating the
vacuum chamber through out-gassing.

Figure6 shows the rover installed on the vacuum chamber testing baseplate. Five
panel heaters were placed around the rover. During vacuum conditions, hot and
cold tests, to certify operation of the rover up to 75 h after sunrise were performed.
Since our current engineering model batteries do not have battery heaters installed,
−20 ◦C was selected for the cold mode temperature. This allows us to validate our
thermal model for the system without risk of damage to the batteries (minimum
temperature −20 ◦C). 40 ◦C was selected for the hot mode temperature.

The data from this test will be used to confirm thermalmodels and design radiative
cooling for the rovers during the surface mission. Although Tetris was not tested, its
similar materials and design mean its thermal model can also be partially validated.
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Fig. 7 Vibration testing PSD and experimental setup. a QT Level PSD. b X-Axis testing

3.2 Vibration Testing

We performed vibration testing to Qualification Level (QT), 14.1 Grms , using motors
and representative masses in place of electronics and to Acceptance Level (AT),
10.0 Grms , using fully integrated rovers. These levels come from our landing service
provider based on NASA standard GSFC-STD-7000A. The prescribed Power Spec-
tral Density (PSD) is shown in Fig. 7 along with the system mounted in the X-axis
configuration on a shaker table.

3.2.1 QT Level MTM Testing

Although only AT level testing was required for qualification to our landing service
provider’s requirements, we tested the structures only (by using the MTM models)
to QT level of 14.1 Grms . No damage was observed, and the overall modes of vibra-
tion were acceptable. However, five structural parts were identified with resonant
frequencies near or below 40 Hz. Upon deployment the rovers could freely move
down the ramp shown in Fig. 5.

3.2.2 AT Level Integrated Testing

We tested the system to AT level of 10.0 Grms with all electronics disabled by holding
a normally closed deployment switch open. The integrated testing to AT level also
resulted in no damage. Upon deployment, the deployment switch as well as every
electrical component functioned correctly, and Moonraker was commanded via a
radio link and simulated ground station to leave the interface box. This test was also
successful.
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3.3 Component Level Radiation Test

We performed component level radiation testing at Takasaki Advanced Radiation
Research Institute, Japan Atomic Energy Agency. All electrical components except
those with demonstrated flight heritage were tested. Electronic subsystems were
placed in front of Cobalt-60 γ source. Precise dosimeters were mounted included to
provide accurate measurements of total dose. Exposure time was 4.5h, providing a
total absorbed dose of 15.3 kilo-rads ±3%, about four times the expected total dose
(4 kilo-rads). Testing was done with components on, and function tested continu-
ously. All components functioned correctly and without issue except for the imaging
controller. This had two reboot events, presumably caused by the effects of radiation.
Correct function resumed after reboot. This result was anticipated due to the high
density of transistors on the CPU, so our design relies on a watchdog timer on the
PDU to reset both controllers if activity stops.

3.4 Field Testing

A field test was conducted at the Nakatajima sand dunes in Hamamatsu Japan. The
sand dunes are a lunar analogue site nearly void of all vegetation except some sporadic
grasses. Surface features of interest to us are long valleys of soft sand, local hills,
steep cliffs, rocky as well as rock-void areas (Fig. 8).

All components functioned as expected during the field test, with no major issues.
In the presence of a GLXP judge, we successfully traveled 620m and demonstrated
ability to teleoperate in realistic conditions, including a simulated time delay, and a
data rate of only 100 kbps [2]. The only issue uncovered was that the grouser design
can pick up rocks which become lodged in the suspension mechanism.

Fig. 8 Moonraker performance during field testing. a Overcoming a 15cm high rock obstacle
during field testing. b Climbing an approximately 30◦ slope on soft soil
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3.5 Radio Testing

As described in Sect. 2.3, the third radio option could not be tested in Japan. We con-
ducted two tests using antenna configurations and heights similar to the flight model
in Vancouver, Canada to a distance of 1.5 km, and characterized the performance
near obstacles up to 3m in height so that operators can determine where to expect
“dead zones” that should not be traversed [10].

3.6 Test Results

All of the test results are summarized in the Table2. In this table, “NT” is used for
items that weren’t included in a particular test. Nearly all components passed all
tests or has demonstrated flight heritage. The exceptions are shown in the first part
of Table3 with an explanation and proposed resolution.

Table 3 Phase Six changes for Moonraker

Component Issue Solution

Wheels Rocks can get stuck in grouser Modify grouser for clearance of
suspension

Main controller Some parts near 40Hz threshold Stiffen parts for FM design

Structure and body Integrated structure will save mass Remove aluminum substructure

Thermal interfaces Integrated structure will save mass Remove thermal paths, integrate
design to structure

Deployment switches Not radiation tested Passive components; testing not
required

Debug/charge interface Not radiation tested For development; not required for
FM

Power interface board Not radiation tested Iterate design and radiation test

Power Switches Not radiation tested Not required for FM

Charging board Not radiation tested For development; not required for
FM

Main interface board New controller architecture Change from COTS ARM-based
board to custom

Wiring New wiring standard for FM Change connectors to MDM

Camera Redundant architecture for FM Change to parallel interface, add
camera

Range-finder Reduce power consumption and
mass

Change from laser-based to
camera-based

Debug interface Not needed for flight configuration Make removable debug interface

Switch interface Not needed for flight configuration Remove from design

Charge interface Not needed, use solar interface Use external connector for solar
cell simulation
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Fig. 9 Moonraker’s internal components, with complex wiring harness

Each motor uses approximately 10W while the rover is in motion, but in our
field testing experience, the rover is stopped much of the time while operators make
decisions. Therefore the average power consumption is greatly reduced, to about
12 W.

The main controller for Phase 4 was selected due to its robustness, flight heritage
and SRL’s experience with it. But HD imaging is a strict requirement of the GLXP
competition, effectivelymaking the architecture, aswedesigned it, dependent on both
the imaging and main controllers functioning properly. With this result, for Phase
5 and 6 we merged the function of the two controllers and changed to a redundant
computing architecture (Sect. 4).

As important as the test results was the experience of integration. The wiring
shown in Fig. 9 is mostly made of a single harness with many connectors. Wiring
routing, thermal paths and component placement and connector position can all be
greatly improved to reduce integration time and decrease wiring mass.

4 Phase Five Architecture

Weare nowusing the results of Phase 4 development to design and fabricate the Phase
6 rovers. Aside from the change in controller, onlyminor changes are specified by the
test results themselves, as described in Table2. All updates to electrical components,
wiring and connectors will be tested in the Phase 5 rovers before the Critical Design
Review for Phase 6.
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4.1 Changes from Phase Four to Phase Five and Six

At the time the lander interface was not fixed, so the interface boards and wiring har-
ness included options for different interconnections and protocols. This was flexible
for development but now these options have been reduced so there are mass savings
and opportunities for the FM. Many connectors can be removed and/or consoli-
dated. To simplify wiring, all signal routing will take place on the interface boards.
“Straight” cables with identical pin assignments on both sides are also easier to
specify and purchase as items from suppliers with quality-control certifications.

HD video is a strong requirement that demands a capable controller, redundancy
for both the main controller and imaging controller (and camera) is a hard require-
ment. Since the imaging controller is capable of the main controller functions, and
passed all environental testing in Phase 4, we made a new architecture (Fig. 10) with
identical controllers, each connected to a cameras. This way, redundancy is created,
development time is reduced (because a heterogeneous architecture does not have to
be supported).

Phase Four used a USB camera but the flight model will change to use the same
imaging sensor’s native parallel interface. This will eliminate the camera’s on-board
USB circuitry and approximately 500 mW of power consumption. We chose a 10 g,
“System on Module” (SOM) board with only the components that we require. Most
available SOMs include unnecessary components such as DC-DC converters and
HDMI ports, or do not route all of the required interfaces to the CPU. The Phase 4
controller was approximately 40g and included many components that use power
and add failure points. Debug and charge interfaces will also be made modular so
they can be removed prior to flight to save mass.

F.L. R.R. R.L. F.R.

Motor Controller 
(RISING2 heritage)

Power (unreg.)
Power (reg.)
Data

COTS
Space

Space
Heritage

Debug I/F

PFM 
Tested

Switch I/F

OUT
IN

MAIN 
I/F

TOF

cubesat 
Batteries

cubesat 
PDU

Power I/F

relay
TOFju

m
p

switch

15V

Kill Sw.I/F

CAM2CAM1

Solar cells

Connect charge 
or solar

5V

ARM 8 SOC

ETH

eMMC

CAN

eth

ser

USB

USB 
hub6

USB 
ser5

se
ria

l j
um

p

CAN

SD

ARM 8 SOC

eMMC

SD

KS1

KS2

KSR

RBF

PHY PHY

radio

FLA
SH

MUX

Fig. 10 Moonraker flight model architecture



Update on the Qualification of the Hakuto Micro-rover … 329

The testing regimen for this phase will be similar: radiation testing, thermal-
vacuum testing, vibration testing and field testing. Although architecture changes
have been minimized, the change of controller described above presents a large risk,
if it is not qualified before the rest of the electronics systems are designed and manu-
factured. This is because, due to time constraints and subsystem interdependencies,
it will be difficult or impossible to change the controller. Therefore the first step of
Phase 5 is fabrication of prototype boards so that component-level radiation testing
can be completed ahead of detailed design.

The design target for the flight model Moonraker is a reduction of mass from 8.4
to 4.0 kg and of power from 24 to 18W. Approximately half of the reduction in mass
will be achieved by removing the aluminum substructure. The rest is achieved by
small reductions in each subsystem. Reduction in power is achieved by replacing
the laser rangefinder changing away from a heterogeneous controller architecture,
as well as removing unnecessary interfaces (such as USB).

5 Conclusion

Through extensive radiation testing, vibration testing, thermal-vacuum testing and
field testing, we have demonstrated a dual rover architecture using many space-ready
and terrestrial COTS components. This architecture is capable of completing both
the GLXP mission requirements and exploration of a potential lava tube skylight on
the surface of the moon. We have identified five structural parts to be redesigned,
and changed from a heterogeneous controller architecture using both a space-ready
main controller and ARM-based imaging controller to a dual, COTS, ARM-based
architecture. This has allowed us to reduce mass, number of components, power
consumption and development time even while adding a redundant camera and the-
oretically increasing reliability of the overall system. The use of COTS components
has allowed us to start from a convenient, inexpensive flexible architecture for devel-
opment and arrive at purpose-built, power-efficient architecture by removing compo-
nents and options for interconnections over time. The overall development strategy
of alternating large overall design changes and small subsystem iterations was also
effective.
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Mobility Assessment of Wheeled Robots
Operating on Soft Terrain

Bahareh Ghotbi, Francisco González, József Kövecses
and Jorge Angeles

Abstract Optimizing the vehicle mobility is an important goal in the design and
operation of wheeled robots intended to perform on soft, unstructured terrain. In the
case of vehicles operating on soft soil, mobility is not only a kinematic concept, but
it is related to the traction developed at the wheel-ground interface and cannot be
separated from terramechanics. Poor mobility may result in the entrapment of the
vehicle or limited manoeuvring capabilities. This paper discusses the effect of normal
load distribution among the wheels of an exploration rover and proposes strategies to
modify this distribution in a convenient way to enhance the vehicle ability to generate
traction. The reconfiguration of the suspension and the introduction of actuation on
previously passive joints were the strategies explored in this research. The effect of
these actions on vehicle mobility was assessed with numerical simulation and sets
of experiments, conducted on a six-wheeled rover prototype. Results confirmed that
modifying the normal load distribution is a suitable technique to improve the vehicle
behaviour in certain manoeuvres such as slope climbing.

1 Introduction

Defining robust and reliable operational strategies for wheeled robots operating on
soft terrain is a challenging task. An example of this are planetary exploration rovers,
one of the most demanding applications of wheeled robotics. Besides tackling the
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usual problems derived from operating on irregular terrain, rovers must often deal
with an incomplete knowledge of the soil properties. Moreover, most missions must
be accomplished in an autonomous or semi-autonomous fashion.

Optimizing the vehicle mobility is an important goal in the design and operation of
wheeled robots on soft soil. In the case of wheeled robots that operate on rigid ground,
mobility is a kinematic concept which can be defined based on the assumption that
each wheel in the robot rolls without slipping. However, when the same robots operate
on soft terrain the above mentioned assumption is generally no longer valid. Mobility
can be understood in the sense of the ability to move from a certain configuration, or
to move with maximum speed. This definition is close to the trafficability concept
introduced by Apostolopoulos [1], which points to the capacity of the vehicle to
overcome terrain resistance and generate traction.

Reduction of the slip at the wheel-terrain contact area has been proposed as a
way to enhance the mobility of wheeled robots operating on unstructured terrain by
Lamon et al. [2] and Thueer et al. [3]. In these papers, the wheel-terrain interface is
modelled using the assumption of Coulomb friction while the ratio of tangential to
normal forces at the wheel-ground contact is minimized with the goal of reducing
the risk of developing slip. While not directly dealing with soft soil modeling, these
papers highlight the need for keeping wheel slip under control in order to improve
mobility.

Some publications in the literature point out that a uniform distribution of normal
forces among the vehicle wheels may have a positive effect on the mobility. Grand
et al. [4] state that balancing the normal loads helps the vehicle to develop a higher
value of the overall traction force. Along the same lines, it is suggested by Freitas [5]
that uniformly distributing the weight of the rover among the wheels is a valid strategy
to achieve better mobility, when enough information about contact forces is not
available. A similar conclusion was also reported in [6]: the load distribution among
the wheels has to be even on flat ground to achieve the best performance. Thueer
et al. [7] chose an alternative strategy to reduce the likelihood of developing wheel
slip that relies on the minimization of the virtual friction coefficient μ∗ = FT /FN

where FT is the traction and FN the normal force at each contact. Iagnemma and
Dubowsky [8] computed the normal load and the motor torque applied to each wheel
as a solution of an optimization problem to enhance mobility for quasi-static motion
of the rover on rough terrain.

The authors of this paper reported an experimental confirmation of the above
research for a particular rover design in [9, 10]. We also introduced the normal force
dispersion as performance indicator to quantify the proximity of the load distribu-
tion to ideal operation conditions [11]. This distribution can be changed by means of
reconfiguration or by introducing actuation on the suspension elements. As a conse-
quence, in some cases it is possible to obtain a more favourable load distribution that
would increase the mobility for a given manoeuvre. This paper discusses the effect
of two of these strategies during slope climbing and drawbar pull tests. The first one
consists of relocating the vehicle centre of mass (CoM), while the second introduces
redundant internal actuation between suspension elements.
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2 Normal Force Dispersion as Mobility Indicator

The mobility of a wheeled robot depends on its ability to generate a required amount
of drawbar pull while keeping the slip ratio low. Terramechanics theory [12] points
out that the normal force Fn at each wheel of a robot affects the developed tangential
force FD and, in turn, the total drawbar pull that the vehicle provides. The terrain
normal reactions have to balance the inertial and external forces applied on the rover.
However, changing the normal load distribution among the wheels can result in
different values of the total drawbar pull developed by the vehicle.

The effect of normal force distribution can be studied using the FD-vs.-Fn curve.
An example for a planar three-axle system in 2-D motion is shown in Fig. 1. If the
three axles are moving with the same angular speed, the terrain under the vehicle
is homogeneous, and the multipass effect is negligible, then the same curve can be
used for all the wheels. In this case, an even normal load distribution would be the
one in which Fn1 = Fn2 = Fn3 = F∗

n . A normal load transfer between the first and
second axles of the robot (ΔFn1 = −ΔFn2) will result in ΔFD1 < 0 and ΔFD2 > 0
in the drawbar pull at these wheels. If the slope of the FD-vs.-Fn curve decreases
consistently with Fn , then |ΔFD2| < |ΔFD1|, which will yield a lower total available
drawbar pull for the same slip values. In other words, in the uneven configuration the
slip should become higher in order to achieve the same drawbar pull delivered by
its balanced counterpart, where the normal forces are uniformly distributed among
the wheels.

For the case of a wheeled robot operating on homogeneous terrain with negligible
multipass effect, the FD-vs.-Fn relation will be the same for all the wheels if they are
identical and have the same slip. These assumptions can be considered close enough
to reality for a broad range of operating conditions.

The Normal Force Dispersion (NFD) denoted by η was introduced in [11] to mea-
sure and quantify the uniformity of the normal force distribution. This performance
indicator is the standard deviation of the normal forces at the wheel-terrain contact
interfaces, namely,

Fig. 1 Effect of
non-uniform normal force
distribution on the total
available drawbar pull
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η
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where p is the number of wheels of the vehicle and μ is the average normal force:

μ = 1

p

p∑

i=1

Fni (2)

An even distribution of normal forces (Fn1 = Fn2 = · · · = Fnp) would result in
η = 0, which is optimum in terms of developed drawbar pull for operation on homo-
geneous terrain with negligible multipass effect and assuming that all the wheels of
the vehicle have the same slip ratio. Quantifying the unevenness of the load distri-
bution via NFD facilitates the comparison of different rover configurations in terms
of their mobility, while it may avoid the need for a detailed knowledge of the terrain
properties.

As a conclusion, it can be stated that making the normal force distribution more
uniform will have a noticeable effect on the drawbar pull when the FD-vs.-Fn curve
shows an apparent sublinear relationship. This is the case of operation conditions
where high slip values are expected to develop, such as in slope climbing, or in the
presence of loose terrain with low values of kφ .

2.1 Case Study: The RCP Rover

The normal force dispersion was used to study the mobility of the RCP, a six-
wheeled rover prototype developed by the Robotics and Automation unit of MDA
(MacDonald, Dettwiler and Associates Ltd.) shown in Fig. 2. The total mass of the
RCP is about 125 kg. The rover main body is attached to three bogies (starboard,
port, and rear), each one connected to two wheels. Every wheel can be independently
steered and actuated.

Fig. 2 The RCP rover (left) and its multibody model (right)
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A full-scale model of the rover was built using the generic multibody dynamics
library, a multibody software tool developed by the authors [13], implemented in
MATLAB. This library includes functions to evaluate the wheel-terrain interaction
forces according to the terramechanics semi-empirical relations introduced in [12,
14]. Among many features of this library having access to all dynamic terms and
choice of various multibody dynamics formulations and integrators make it suit-
able for rover analysis in complex environments. RCAST is an alternative dynamic
simulation tool which has been reported to model the same rover [15].

First, the climbing manoeuvre of the RCP on a 10◦ slope with the terrain prop-
erties listed in Table 1 was simulated. The wheels of the rover were commanded
to move with a constant angular speed ω = 0.4 rad/s. In order to obtain different
load distributions among the wheels of the RCP, a 22.5-kg payload was added as a
movable mass element to the rover model. The simulation was repeated for different
locations of the payload along the longitudinal axis of the vehicle. This resulted in
variations of the position of the centre of mass (CoM) of the rover, which in turn
produced different values of NFD during the climbing manoeuvre.

Figure 3 confirms that lower values of NFD resulted in less slip required to carry
out the climbing, which is beneficial from the mobility and energy-consumption
points of view.

Alternatively, the improvement in mobility can be quantified by the value of
the maximum slope that the vehicle can negotiate. The climbing manoeuvre was
simulated for a variable slope with the soil properties summarized in Table 1. In this

Fig. 3 Values of the slip-vs.-η index developed by the RCP while climbing a 10◦ slope, with a
22.5-kg payload

Table 1 Soil properties used in the simulation of the slope climbing manoeuvres

n – c (N/m2) φ (deg) kc (N/mn+1) kφ (kN/mn+2) Kd (m)

1 220 33.1 1400 2000 0.015
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Fig. 4 Correlation between
the maximum slope angle
that the RCP can climb (with
a 90 % slip) and the NFD

study the rover was considered unable to climb if the required slip ratio became
higher than 90 %. A similar slip threshold was used in slope-climbing tests with
the Dynamic Test Model of the Mars Exploration Rover [16]. The slope angle was
increased until the rover was unable to complete the manoeuvre without exceeding
the maximum admissible slip. Figure 4 shows that a correlation exists between the
value of NFD and the maximum slope the vehicle can successfully climb. Lower
values of the NFD enables the rover to climb steeper slopes which is due to the
improvement of its ability to develop a greater drawbar pull for the same slip ratio.

3 Modification of the Normal Load Distribution

Two strategies to decrease the normal force dispersion were designed and tested on the
real prototype of RCP: displacing the centre of mass of the vehicle and introducing
actuation torques between the suspension components. In this work, the latter is
refereed to redundant internal actuation which allows for altering the system internal
forces via applying actuation forces and torques on the suspension components.

Movable mass elements were mounted on the rover chassis to obtain different sets
of normal force distributions during experiments. These mass elements consisted of
two weights of 22.5 kg. Two attachment positions for the weights were designated on
the rover body, one at the front end of the chassis and another one on the connection
to the rear bogie. Three load configurations were defined: extra mass at the front
location, extra mass at the rear location, and evenly distributed extra mass. An even
distribution of the normal loads, however, could not be achieved only via displace-
ment of the CoM of the vehicle. There were limitations in terms of the placement
of the movable elements and their mass. For example, the weight of these elements
cannot exceed certain limits and their location must be within certain boundaries.
Therefore the CoM cannot be arbitrarily displaced.
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In the case of some rover designs such as the RCP, the presence of passive joints
between the bogies and the chassis frame does not allow one to fully control the load
distribution among all the wheels. By repositioning the CoM of the rover one can
only control the load distribution between the rear wheels and the side bogies. The
way in which the load of each side bogie is distributed between front and middle
wheels depends on the orientation of the bogie with respect to the rover main body.
Since this joint is not active, in principle the angle between the body and the bogies
cannot be controlled. It is possible, however, to actuate this joint by introducing a
torque between the chassis and the side bogies.

Figure 5 illustrates the effect of these two strategies on NFD. The left part of the
figure represents the default configuration of RCP. In the right diagram, the CoM is
displaced towards the front of the rover and redundant internal actuation is introduced
between each side bogie and the main body. In this example, a 60 Nm torque in the
clockwise direction is applied at each bogie joint. In these figures the lengths of
the arrows that represent the reactions at the wheel-terrain interface are proportional
to the magnitudes of the normal forces obtained from simulation. In the default
configuration the load dispersion is η = 158.1 N and the rover is able to negotiate
a maximum slope of 11◦. As shown in Fig. 5, a considerable reduction of NFD was
achieved with the application of the techniques described here. The normal force
dispersion went down to η = 24.2 N and the rover was able to climb a 14.5◦ slope
with the same slip as in the original configuration.

The climbing manoeuvre of the RCP with online modification of η was simu-
lated. In this simulation the RCP climbed a 12◦ slope. The soil properties used in
the modelling were the ones listed in Table 1 with the exception of two parameters:
the parameters related to the frictional aspect of the soil were chosen as kφ = 1410
kN/mn+2 and φ = 34.1◦. The reason for this modification was to simulate a scenario
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Fig. 5 Uneven load distribution during climbing manoeuvre with the original configuration of the
RCP (left); improved load distribution after displacing the CoM and introducing a torque between
the chassis and the side bogies to reduce NFD (right)
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Fig. 6 Slip of the front, middle and rear wheels of the RCP during the climbing of a 12◦ slope

in which the slip developed to climb the slope in absence of redundant internal actua-
tion exceeds 80 %. Figure 6 displays the results of the simulation. At the beginning of
the simulation the rover was placed on a 12◦ slope and the wheels where commanded
to move with ω = 0.4 rad/s. Initially, in the absence of redundant internal actuation,
the normal force dispersion was around η = 150 N. The rover reached a steady-state
motion after t = 2 s, requiring 87 % slip to move forward. At t = 3 s, the torque on
the bogie joint was increased gradually up to T = 20 Nm. A new steady-state ensued
after t = 5 s. The new normal force distribution, η = 100 N, brought the slip down
to 60 %. An additional increase in T to 50 Nm further improved the load distribution,
enabling the rover to climb the same slope with 53 % slip.

4 Experimental Results

In the previous sections the effect of CoM repositioning and redundant internal
actuation on the mobility of rovers was studied based on simulation results. In this
section an experimental study of the effect of these factors on the normal force
distribution and consequently the rover performance is presented.

In the simulation studies the performance of the rover was measured by its ability
to climb slopes. Drawbar pull tests can be considered analogous to slope negotiation
tests since the application point of the dragging force was chosen to be close to the
CoM of the rover, at least in the vertical direction. Drawbar pull experiments are also
easier to carry out, because applying a variable external force to the rover requires
less resources than building a soft soil slope with variable inclination.

A set of experiments, including drawbar-pull tests with variable load distribution
and wheel slip was carried out with the RCP on soft, sandy soil. These experiments
took place in the Mars Dome which is a testing facility located in the UTIAS (Uni-
versity of Toronto Institute for Aerospace studies) campus. All the tests used for this
study were carried out with 60 % slip and the load distribution was modified via CoM
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Pneumatic actuator

Fig. 7 Electric winch used for controlling the wheel slip in drawbar pull experiments (left) and
design modification of RCP to add the redundant internal actuation option (right)

repositioning and redundant internal actuation. The objective of these experiments
was to study the effect of load dispersion on the ability of the rover in developing
drawbar pull. The slip ratio was controlled by connecting the RCP to the winch
shown in Fig. 7. By specifying the winch rotary speed the translational velocity of
the rover and consequently its slip ratio were controlled.

Redundant internal actuation was realized by mounting two pneumatic linear
actuators on each side of the chassis [17]. One end of each actuator was connected
to the front tip of the bogie and the other end to the main body. The force generated
by the linear actuator resulted in a moment about the revolute joint between the body
and the bogie. The actuator force was regulated by the input air pressure. Therefore,
the load distribution between the front and the middle wheels was directly controlled
via the pneumatic actuators. This also made the online modification of the load
distribution during each test possible. The pneumatic actuator added to the original
design of the RCP is shown in Fig. 7.

The RCP is equipped with six triaxial force-torque sensors mounted on each of
its legs. These sensors measured the normal, tangent, and lateral terrain reactions
on the wheels. However, for the purpose of online measurement of load distribution
only normal force sensing is required. A digital force scale was used to measure the
net drawbar pull developed by the rover. One end on the force scale was connected
to the rope of the winch and the other end to the rear bogie of the rover.

In drawbar pull experiments the RCP travelled on a straight line on soft soil.
The motion input was the angular velocity of the wheels, which was set to ω = 0.4
rad/s. The rover was connected to the winch and its translational velocity was set
to 0.027 m/s which resulted in about 60 % wheel slip. The normal force readings
from the sensors of the front, middle, and rear wheels of the port side of the rover
are plotted in Fig. 8. The rover started its motion with the additional mass elements
attached to the front of the rover and no actuation was applied on the bogies. The
plot shows a very uneven distribution of the load among the wheels, with the middle
wheel carrying most of the load. The second part of the motion started at t = 120 s,
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Fig. 8 Effect of redundant internal actuation on normal forces (upper plot) and on normal force
distribution (lower plot)

where a 16-Nm moment about the bogie joints was introduced via the pneumatic
actuators. The effect of the actuation on the normal forces can be clearly seen in the
plot. The load on the middle wheel was significantly reduced and transferred to the
front and rear wheels.

To magnify this effect the actuation was increased to 32 Nm at t = 160 s. As
expected, this modification further balanced the load distribution among the wheels.

The normal force dispersion was computed for the duration of this test and is
plotted in Fig. 8. The results show that only with the aid of the bogie actuation and
without CoM repositioning the NFD was reduced significantly in this experiment.
Online adjustment of the redundant internal actuation is specially useful for rover
manoeuvres on terrain with various slopes. Data from force sensors can be used
internally during the rover operation to calculate the required actuation for online
tuning of the load distribution.

The presented results shows that redundant internal actuation has a significant
effect on the normal force distribution. The final objective in this study, however,
is the mobility improvement of rovers, in which the ability of the rover to develop
a higher drawbar pull plays a key role. To this end, a similar set of experiments
were conducted to study the way drawbar pull changes with variation of the NFD. In
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Fig. 9 Effect of normal force dispersion on development of drawbar pull

these experiments NFD was modified by a combination of CoM repositioning and
redundant internal actuation. The time history of drawbar pull during these tests is
illustrated in Fig. 9.

The comparison of the experimental results shows that for the same slip ratio, the
rover configuration with lower NFD provides more drawbar pull compared to the con-
figurations with higher NFD. It was shown in [11] that the relation between the nor-
mal and tangential force generated at the wheel-terrain interface follows a non-linear
curve. The shape of the curve is a function of the wheel slip and soil and wheel prop-
erties. Consequently, the relation between NFD and drawbar pull is also non-linear.
The average value of the drawbar pull for each test along with the value of NFD
corresponding to the rover configuration in that test are tabulated in Table 2.

Among the reported experiments four cases were selected to be simulated with the
generic multibody dynamics library with the soil properties summarized in Table 1.
The same angular and linear velocity specifications for the rover in the experiments
were used for the simulation tests. Table 3 includes details of the configuration and

Table 2 Experimental results of drawbar pull for different values of normal force dispersion (aver-
aged for each test)

Case 1 2 3 4 5 6 7

η (N) 69.0 82.3 85.9 97.3 111.3 113.2 139.4

DBP (N) 322.9 313.9 307.9 306.8 281.8 272.6 268.2
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Table 3 Operation
conditions of experimental
tests

Experiment Mass element
position

Bogie actuation
(N.m)

η (N)

1 Rear 0 141

2 Front 0 125

3 Front 9 70

4 Front 32 63

Fig. 10 Experimental
(upper plot) and simulation
(lower plot) results from the
drawbar pull experiments
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redundant internal actuation for the selected tests. Figure 10 shows the experimental
and simulation results of drawbar pull in these tests.

Experiments 1 and 2 only differed in the position of the mass elements, which
resulted in a more uniform load distribution in the latter. Both experiment and sim-
ulation results showed that due to the lower value of NFD in experiment 2 more
drawbar pull is generated. In experiment 3 the position of the CoM was the same as
in experiment 2. However, after the initial period of the manoeuvre the pneumatic
actuators exerted a 9-Nm torque on each bogie, reducing NFD for the rest of the
motion. During this phase of the motion the drawbar pull increased in both simula-
tion and experiment. In experiment 4 the actuation was changed in two steps during
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the motion: first, to 16 Nm and then to 32 Nm. After each increase in the value
of the redundant internal actuation the rover reached a more uniform load distribu-
tion among the wheels, leading to its improved ability in developing drawbar pull.
Both simulation and experiments confirm that lower values of NFD have a positive
effect on the developed drawbar pull. The simulation results capture the same trends
that can be appreciated in the experiments. The differences between the two plots
are explained by simplifications introduced in the multibody modelling, such as not
considering the wheel grousers and chassis flexibility, and also to the uncertainty and
variability of the terrain parameters.

5 Conclusions

The ability of a wheeled robot to generate traction on soft terrain can be quantified
by means of the normal force dispersion. This performance indicator allows one to
compare different vehicle configurations and actuation strategies in terms of their
suitability to improve the mobility for a given manoeuvre. In the reported research,
the performance of a planetary exploration rover prototype was studied with simu-
lation and experiments. Results consistently showed that reducing the normal force
dispersion resulted in a better vehicle mobility. A low value of NFD allows the vehicle
to develop less slip when climbing a given slope. Two strategies to reduce NFD were
designed and tested on the rover prototype: changing the vehicle configuration by
displacing its centre of mass, and introducing redundant internal actuation between
suspension components. Both strategies proved effective in the reduction of the NFD
and therefore, enhancing the vehicle mobility on soft terrains.
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Taming the North: Multi-camera Parallel
Tracking and Mapping in Snow-Laden
Environments

Arun Das, Devinder Kumar, Abdelhamid El Bably
and Steven L. Waslander

Abstract Robot deployment in open snow-covered environments poses challenges
to existing vision-based localization and mapping methods. Limited field of view
and over-exposure in regions where snow is present leads to difficulty identifying
and tracking features in the environment. The wide variation in scene depth and
relative visual saliency of points on the horizon results in clustered features with
poor depth estimates, as well as the failure of typical keyframe selection metrics
to produce reliable bundle adjustment results. In this work, we propose the use of
and two extensions to Multi-Camera Parallel Tracking and Mapping (MCPTAM)
to improve localization performance in snow-laden environments. First, we define a
snow segmentation method and snow-specific image filtering to enhance detectability
of local features on the snow surface. Then, we define a feature entropy reduction
metric for keyframe selection that leads to reduced map sizes while maintaining
localization accuracy. Both refinements are demonstrated on a snow-laden outdoor
dataset collected with a wide field-of-view, three camera cluster on a ground rover
platform.

1 Introduction

A wide range of challenging and remote tasks have been proposed as possible field
robotics applications, from wilderness search and rescue, to pipeline and infrastruc-
ture inspection, to environmental monitoring. Particularly in Northern climates, these
activities require autonomous navigation in snow-laden environments, which present
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distinct perception challenges for autonomous vehicles. The possibility of tree cover
precludes reliance on GPS alone for positioning, and both obstacle detection and
accuracy requirements further drive the need for alternate localization methods.

Both visual and laser based simultaneous localization and mapping methods can
provide such improved localization. Although laser scanners are not significantly
affected by snow, their relatively large costs can be prohibitive for many applications.
In this work, we consider the problem of deploying a feature based visual SLAM
system known as Multi-Camera Parallel Tracking and Mapping (MCPTAM) in a
snowy, outdoor environment. MCPTAM employs an arbitrary cluster of cameras with
wide field of view, with or without overlap, to track point features in the environment,
and has been demonstrated to provide accuracy better than 1 % of distance traveled
in both indoor and outdoor environments [1–3].

The primary challenge with outdoor and snowy environments is that large areas
of the image are relatively feature poor due to limited geometric structure, overcast
skies and large regions of uniform snow cover. Without employing expensive high
dynamic range cameras, this leads to difficulties tracking features near the robot and
clusters the points used for map generation along the horizon. The result is poor
translational tracking and a susceptibility to map optimization failures if features are
incorrectly corresponded.

To address these limitations, we introduce two extensions to our previous work.
First we investigate changes to MCPTAM’s front-end, by pre-processing the camera
frames to extract more robust features. We use as motivation some of the works of
[4, 5] which use region based contrast equalization and horizon detection [6] to fulfill
this goal. Second, we propose core changes to MCPTAM’s backend which allow
for more informed keyframe selection based on the expected entropy reduction of
uncertainty in the map points. These modifications directly impact the quality of the
localization solution by creating a more robust set of features to track and optimize
against for mapping.

2 Related Works

To date, there have been comparatively few instances of autonomous robotic deploy-
ments in snowy conditions. The CoolRobot is a mobile sensor station deployed
both in Greenland and on the Antarctic plateau, and relies on solar power and GPS
waypoint navigation to move through primarily flat terrain [7]. Similarly, both the
Nomad [8] and MARVIN [9] rely on GPS guided navigation with a laser scanner and
vision for local collision avoidance in polar environments. The SnoMote platform
seeks to augment GPS with visual localization and terrain drivability estimation for
detailed ice sheet mapping [5].

Closely related to visual navigation in snow-covered terrain is use of computer
vision for planetary exploration. The visual localization challenges are similar in
both environments, with limited local features, large variations in scene depth, and
unreliable features in the sky portion of images. For example, stereo localization



Taming the North: Multi-camera Parallel Tracking … 347

has been used on lengthy datasets collected in Devon Island, Canada [10], where
repetitive ground terrain and a lack of rotation invariant features led the authors to
note the concentration of features on the horizon. Similarly, stereo and/or laser scan
data was employed in a large range of planetary analog terrains for localization and
drivability analysis [11]. In both cases, the image quality both near the robot and at
a distance was not often an issue for feature extraction.

The MCPTAM method builds on the foundation of Parallel Tracking and Map-
ping [12], which splits the localization and mapping problem into separate pose
tracking and keyframe based feature mapping processes. This divide prevents pose
estimation from being delayed by the batch optimization required as a part of the
mapping bundle adjustment. Features are tracked between images and localization
is performed relative to the known map, while map updates are performed when new
keyframes are selected to be inserted into the global map.

Many visual mapping techniques use keyframes in order to reduce the computa-
tional burden of the mapping process. Existing approaches generally insert keyframes
based on point triangulation baseline [12], or other heuristics such as the co-visibility
of features [13], or the overlap in the number of tracked points [14]. These heuris-
tics attempt to insert keyframes in order to maintain the map integrity, yet do not
directly attempt to minimize the uncertainty in the map. The work most related to
ours generates image features off-line, creates a buffer of the image frames, and
selects keyframes based on saliency in order to reduce content redundancy [15]. In
contrast, our approach is a real-time, online system, and attempts to reduce feature
uncertainty while the camera is in motion.

In addition to keyframe selection, the identification of strong and stable visual
features is both important and challenging in snowy environments. The Snomote [5]
integrates a pre-processing technique of contrast limited adaptive histogram equal-
ization (CLAHE) to enhance the contrast of the captured images. A slope finding
method is applied to mask out the mountain peaks or other structures from the back-
ground and SIFT features are detected mainly from the foreground.

Applying feature detection methods to the entire image is problematic, however,
as environments with trees and foliage result in self similar image features which are
difficult to match. Instead, horizon detection can be used to apply specific feature
detection criteria in the snow-laden region of the image. Existing methods (e.g. [16])
do not explicitly consider the snow-laden case, with the exception of the SnoMote [6],
which uses a weighted sum of weak and strong visual cues to identify fairly precise
horizon lines. The method is overly computationally expensive for our application,
and so we present a simplified method based on the Hough transform in this work.

3 Multiple Camera Parallel Tracking and Mapping

MCPTAM is a real-time, feature-based, visual slam algorithm which extends Klein
and Murray’s Parallel Tracking and Mapping (PTAM) [12] in five ways. First it allows
multiple, non-overlapping field-of-view (FOV), heterogeneous cameras in any fixed
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configuration to be successfully combined. MCPTAM’s novel initialization mecha-
nism allows for scale to be recovered, even with non-overlapping cameras. Second it
extends the PTAM’s pinhole camera model to work with fish-eye and omnidirectional
lenses through the use of the Taylor camera model [17]. The ultra-wide FOV coupled
with the multi-camera cluster prevents feature starvation due to occlusions and tex-
tureless frames in any single camera. Third, PTAM’s backend has been replaced with
the g2o optimizer allowing for faster and more flexible optimization structures [18].
Finally, MCPTAM introduces both an improved update process based on box-plus
manifolds and a novel feature parameterization using spherical co-ordinates anchored
in a base-frame [3].

A brief overview of the MCPTAM formulation proceeds as follows. Denote a point
in the global frame, p ∈ R

3 as p = [px py pz]T where px , py , pz represent the x , y,
and z components of the point, respectively. Let the map, P , be a set of points, defined
as P = {p1, p2, . . . , pn}. Denote the re-projection function as Π : R3 �→ R

2, which
maps a point in the global 3D frame to a pixel location on the image plane.

In the standard pinhole camera model, light rays are represented as lines which
converge at the center of projection and intersect with the image plane. In order to
accommodate the large radial distortion caused by fisheye lenses, the Taylor model
uses a spherical mapping where the elevation and azimuth angles to a 3D point,
s = [θ, φ]T , are modeled as half lines which pass through the sphere’s center, which
are then mapped to the image plane through a polynomial mapping function.

In order to track the camera cluster pose, ωc ∈ SE(3), the map points, P , are
reprojected into the image frames of the cameras. Given a set of feature correspon-
dences, the camera cluster pose parameters are found through a weighted nonlinear
least squares optimization which seeks to determine the pose parameters such that
the re-projection error between corresponding points is minimized. By re-observing
features, the point locations in the map can be refined using additional measurements,
and new map points can be inserted into the map. To perform these tasks, MCPTAM
uses keyframes, which are a snapshot of the images and point measurements taken
from a point along the camera cluster’s trajectory. Since MCPTAM performs tracking
using multiple cameras, it extends the idea of key-frames to multi-keyframes, which
are simply a collection of the key-frames from the individual cameras at a particular
instant in time.

We shall define a multi-keyframe, M , as collection of keyframes, M = {K1,

. . . , Km}, corresponding to the m individual cameras which are part of the multi-
camera cluster. Each multi-keyframe is associated with its pose in SE(3). In order
to insert a new multi-keyframe into the map, the point measurements from each
observing keyframe are collected, and the parameters of the point locations, as well
as the keyframe poses are optimized using a bundle adjustment procedure.

Entropy Computation for a Gaussian PDF: The Shannon entropy is a mea-
sure of the unpredictability or uncertainty of information content. Suppose X =
{x1, x2, . . . , xn} is a discrete random variable. The Shannon entropy for X , H(X)

is given as H(X) = −∑
xi ∈X P(xi ) log P(xi ), where P(xi ) denotes the probability

of event xi occurring. The Shannon entropy provides a scalar value that quantifies
the average variance of the discrete random variable X . The base of the logarithm
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denotes the units of the entropy. In the case where the base of the logarithm is 2,
the units are referred to as bits, and when performed using the natural logarithm, the
units are referred to as nats. It is also possible to compute the Shannon entropy for
a continuous random variable. In the case where the continuous random variable is
modeled as a Gaussian distribution, the entropy can be computed as

he(Y ) = 1

2
ln((2πe)n |Σ |), (1)

whereΣ is the covariance matrix of the multivariate Gaussian distribution, |· | denotes
the determinant operator, and he(Y ) is used to denote that the logarithm was taken
with base e. Note that unlike the entropy for discrete random variables, it is possible
for the entropy of continuous random variables to be less than zero.

4 Proposed Approach

Our approach involves both pre-processing of images to improve feature track-
ing despite the limitations of images acquired in snow-covered environments, and
improvements to the keyframe selection process that help maintain map quality
throughout the test datasets.

4.1 Pre-processing Pipeline

The pre-processing pipeline that is used to enhance the captured image for detecting
good features for localization of our mobile robot consists of snow segmentation,
histogram equalization, and feature selection phases.

Snow Segmentation: We first apply a Canny edge detector [19] to remove the
undesired information from the image while still retaining the structural information.
This is applied prior to a Hough Line transform, which is used to detect the line that
segments out the snow from the rest of the regions in image.

Consider a line represented in the polar form ρ = x cos θ + y sin θ where ρ is
the radial distance from the origin and θ is the angle formed by this radial line and
the horizontal axis measured in the counter-clockwise direction. The Hough Line
transform uses a 2D accumulator array to detect the existence of lines in the edge
based image from the Canny edge detector using a voting based method to output ρ

and θ . Each element, (ρ, θ ), in the output represents a line. For our task, we select
the element with the highest value as the horizon, which indicates the straight line
that is the most strongly represented in the input image. It is important to note that
for our concerned task, we only detect horizontal lines in the image.

Histogram Equalization: Before feeding the input image to MCPTAM we use
histogram equalization to enhance the global contrast of the image. Since snow laden
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environments lead to low contrast images, enhancing the contrast can significantly
improve the detection of stable features. The global histogram equalization (GHE)
transform, T (r), can be represented as

T (r) = (L − 1)

L−1∑

j=0

pr (r j ), (2)

where L represents the number of gray level intensities present in the image, j is
the intensity level varying from 0 to L − 1, and pr (r j ) is the probability distribution
function (pdf) of intensity level j .

The pdf is defined by:

pr (r j ) = N j

Nt
, (3)

where N j is the number of pixels with intensity level j and Nt is the total number of
pixels present in the image. We also implemented contrast limited adaptive histogram
equalization (CLAHE) [20] for comparison. Instead of accounting for global illu-
mination changes and coming up with single histogram, CLAHE computes several
histograms each belonging to a different part of the image and uses this information
for changing the local contrast of the image. CLAHE also contains a contrast limiting
function that limits the amplification of noise.

Feature Selection: We take this enhanced image obtained after histogram equal-
ization and input it into MCPTAM system where we detect coarse, mid level and fine
FAST features in the images for each camera. FAST features are used because of
their computational efficiency and ability to detect stable corner features [21]. Using
the (ρ, θ) obtained from the Hough Line transform, we select fine features from the
segmented snow region below the horizon, and coarse features from the rest of the
image. The large structural features in the snow laden environments are generally
trees or far away buildings, and generating fine features from these image regions are
not helpful as the features generated are not sufficiently distinguishable to produce
correct correspondences. The nearby features in snow on the ground can be better
localized, however, and therefore become very important to the mapping process.
Hence we detect and track fine features in snow and coarse features from far away
structures for localization and mapping.

4.2 Entropy Based Keyframe Selection

The quality of the map point parameter estimation is heavily dependent on the trian-
gulation baseline between the measurement viewpoints. Many visual SLAM tech-
niques use heuristics based on the point triangulation baseline to perform keyframe
insertion, however no existing approaches attempt to perform keyframe selection
through direct minimization of the point estimate covariance.
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We propose a covariance update on the point with the assumption that the keyframe
candidate’s location is known and fixed. Although the keyframe’s pose parameters
are in fact updated through bundle adjustment once inserted into the map, the fixed
keyframe parameter assumption allows for rapid evaluation of the point covariance
update, and is reasonable so long as the tracker pose estimate is sufficiently accurate.

In order to determine when a multi-keyframe should be inserted into the map, we
inspect the uncertainty of the current camera cluster provided by the tracking process.
The covariance of the tracking pose parameters is given by Σc = (GT W G)−1, where
G = ∂Π

∂ωc is the Jacobian of the map re-projection error with respect to the cluster
state, and W is the matrix of weights associated with the measurements. To assess
the current tracking performance, we extract the x , y, and z diagonal components of
covariance matrix Σc, denoted as σx , σy , σz , respectively. The rotational covariances
are ignored at this stage, as generally the rotations of the camera cluster can be
tracked accurately using points of varying depth, whereas accurate positional tracking
requires relatively close points in order to resolve the scale of the motion. Finally, a
multi-keyframe is added when any element of the positional entropy is above a user
defined threshold, ε, or

max(he(σx ), he(σy), he(σz)) > ε, (4)

where he(·) is computed using Eq. (1). When a multi-keyframe addition is triggered,
the next step is to determine which multi-keyframe should be added. For this, multi-
keyframe candidates are maintained in a buffer and scored based on the expected
reduction in point depth entropy if added to the map through a bundle adjustment
process.

As the tracking thread operates, each successfully tracked frame, along with its
corresponding set of point feature measurements and global pose estimate, are added
as multi-keyframe candidates in a buffer. Suppose the tracking thread is currently
operating at time t , and the last multi-keyframe insertion occurred at time k. Denote
the set of multi-keyframe candidates which are buffered between times t and k as

Φ = {Mt , Mt−1, Mt−2, . . . , Mt−k}. (5)

Since each of the multi-keyframe candidates are saved from the tracking thread,
an estimate of the global pose of each candidate is available from the tracking solu-
tion. Therefore, it is possible to determine the subset of map points observed in the
individual keyframes within each multi-keyframe candidate. Denote the set of map
points from P , visible in Kl ∈ Mi , as P̃Kil ⊂ P .

Since each map point position is estimated through a standard bundle adjustment
approach, the map point parameters are modeled as a Gaussian distribution with an
associated mean and covariance. We denote the estimate for point p j as p̂ j , and the
associated covariance matrix Σ j ∈ R

3×3.
Suppose point p j ∈ P̃Kil is observed in keyframe Kl ∈ Mi . Our method seeks

to determine the updated covariance of point p j , if triangulated using an additional
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measurement from keyframe Kl . This is accomplished using a covariance update
step as per the Extended Kalman Filter.

Denote the Jacobian of the re-projection function with respect to the point para-
meters, p, evaluated at point p̂ j , as

Jj = ∂Π

∂p
| p̂ j . (6)

The Jacobian, Jj , describes how perturbations in the point parameters for p̂ j map
to perturbations in the image re-projections. Using the Jacobian, Jj , and the prior
point covariance Σ j , the predicted point covariance is given as

Σ̄ j = (I − Σ j J T
j (JjΣ j J T

j + R)−1 Jj )Σ j . (7)

The predicted covariance Σ̄ j provides an estimate of the covariance for point p j ,
if the observing keyframe was inserted into the bundle adjustment process. Note that
Eq. (7) can be evaluated rapidly for each point, as the computational bottleneck is
the inversion of a 3 by 3 matrix.

Although comparison of the predicted covariance to the prior covariance provides
information on reduction of point parameter uncertainty for one point, the covariance
representation does not allow for a convenient way to asses the uncertainty reduction
across all of the points observed in the multi-keyframe. To that end, we propose
evaluation of the uncertainty reduction using the point entropy.

Denote the entropy corresponding to the point’s prior and predicted covariance
as he( p̂ j ) and h̄e( p̂ j ), respectively. The reduction in entropy for point p j is given as
Λ(p j ) = he( p̂ j ) − h̄e( p̂ j ). Using the expected entropy reduction for a single point,
the expected entropy reduction for all of the points observed in multi-keyframe Mi is
given as Ψ (Mi ) = ∑

Kl∈Mi

∑
p∈P̃Kil

Λ(p). Finally, when a multi-keyframe needs to
be inserted into the map, all of the multi-keyframes within the buffer, Φ, are evaluated
for total point entropy reduction. The multi-keyframe selected for insertion, M∗

i , is
the one from the buffer which maximizes the point entropy reduction:

M∗
i = argmax

Mi ∈Φ

Ψ (Mi ). (8)

Once the optimal keyframe from the buffer is selected, it is inserted into the map
through bundle adjustment, and the multi-keyframe buffer, Φ, is cleared.

Although it is possible perform keyframe selection using heuristics which rely on
the geometric relationships between point observation baselines, such approaches
do not account for possible degradation of point re-projection sensitivity that is also
dependent on the camera model. For example, an image taken from a wide field
of view fisheye lens camera will generally have significant distortion and spatial
compression near the image edges. To illustrate this point, consider a uniform, 2D,
planar grid of points, positioned at unit depth from a camera. Figure 1a, b show the
projection of the grid onto the image plane using the pinhole and Taylor models,
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(a) Pinhole (b) Taylor (c) Jacobian (pin-
hole)

(d) Jacobian (Taylor)

Fig. 1 Comparison of image re-projection sensitivity between pinhole and Taylor camera models.
a and b illustrate the projection of 3D points onto the image plane, using the pinhole and Taylor
camera models, respectively. The image compression around the edges results in reduced sensitivity
of image projection Jacobian in the outer edge areas, as seen in (d), where as the pinhole camera
model displays uniform strength in the image re-projection Jacobian, as seen in (c)

respectively. The pinhole projection preserves the uniform spatial distribution of
the 3D grid on the image plane, while the Taylor model spatially compresses the
points near the boundaries of the image plane. Such compression suggests that with
a large FOV lens described using the Taylor camera model, the point projections
which fall near the boundaries of the image are less sensitive to perturbations of the
3D point location. This insight is illustrated in Fig. 1c, d, which show the norm of
the projection Jacobian with respect to perturbations in the x direction of the 3D
point grid. It is evident that the pinhole camera model maintains uniform sensitivity
to point perturbations across the image plane, while the Taylor camera model has
reduced sensitivity as the points are projected farther from the image center.

Our proposed keyframe selection method is able to account for the properties
of the lens model being used, as the point projection Jacobian, given by Eq. (6), is
dependent on the underlying camera model. For example, using the Taylor model,
Eq. (6) can be expanded as

∂Π

∂p
= ∂Π

∂s

∂s

∂r

∂r

∂p
(9)

where r ∈ R
3 is the position of point p with respect to the observing frame, ∂Π

∂s

relates the image re-projection to the point’s projection on the unit sphere, ∂s
∂r relates

the perturbations of a point projection on the unit sphere to perturbations of the point
position in the observing keyframe, and ∂r

∂p relates the changes of the point in the
observing keyframe to changes of the point parameters.

5 Experimental Results

To verify our proposed methods, experiments were conducted using field data col-
lected in a snow laden environment. A Clearpath Robotics Husky platform was
equipped with three Ximia xiQ cameras, arranged in a rigid cluster, with one camera
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looking forwards, and the others facing off to the left and right sides of the vehicle.
The cameras were fitted with wide angle lenses, with approximately 160◦ field of
view. Images were captured at 30 frames/s, at a resolution of 900 × 600 pixels. The
vehicle traveled at a constant velocity of 0.5 m/s for over 120 m, and traversed a snow
and ice covered path, as well as a snowy field area.

5.1 Image Pre-processing

We compare GHE and CLAHE in terms of the features that result after pre-
processing. The FAST features detected on snow in the enhanced images are shown
in Fig. 2. It is evident that the largest number of features detected in snow were found
with GHE. To quantitatively compare the two histogram equalization techniques,
we calculated the number of features detected below the horizon. The total num-
ber of features obtained for a video sequence of 1497 frames from our dataset were
407,665 for GHE, 83,650 for CLAHE and 4,919 without any histogram equalization,
demonstrating the advantage of GHE in terms of FAST feature detection in snow.

For segmenting the snow from the rest of the image, representative results are
shown in Fig. 3, which includes the output of our snow segmentation algorithm (the
red line) for the single frontal view (camera 1) and features detected on snow in
Canny edge images for the three camera cluster. Our approach produces a rough
segmentation of each image in 0.015 s, on average, over the entire dataset, which
has an image resolution of 900 × 600. To compare our approach with the state of
the art result [6], we decrease the resolution of our captured dataset to 640 × 480. A
naive implementation of our approach took on average 0.0098 s/frame, whereas the
method proposed in [6] requires 0.0296 s/frame.

5.2 MCPTAM Using Histogram Equalization

We next compare MCPTAM mapping performance with different equalization meth-
ods. As evident in Fig. 4, GHE provides the most consistent feature map, compared

Fig. 2 Comparison of FAST features detection on a a normal image, b image ehanced by global
histogram equalization, c image ehanced by CLAHE
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Fig. 3 The result of snow segmentation from camera 1 (lower left) and FAST features detected on
snow in Canny edge images for the three cameras

(a) GHE (b) CLAHE (8 px)

(c) CLAHE (16 px) (d) CLAHE (32 px)

Fig. 4 Comparison of feature maps with different histogram equalization techniques. Red points
denote fine features, while blue and green points denote coarse features. a shows the resulting
map when the images are processed using GHE. b–d present maps generated using CLAHE with
different patch sizes. Note that large patch sizes cause instability in the feature tracking due to
mismatched points

to the CLAHE methods. As the patch size for the CLAHE methods increase, the
resulting map exhibits signs of scale drift, as well as poor feature matches. It is
also worth noting that GHE results in the recovery of a greater number of fine fea-
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Table 1 Summary of results for histogram equalization experiments

GHE CLAHE (8) CLAHE (16) CLAHE (32)

Max. tracking
entropy (nats)

–2.4851 –2.2738 –1.5941 –1.6170

No. map points 2777 2960 6115 –

No. MKFs 168 175 240 –

tures, compared to the adaptive method. This is likely because GHE maintains more
consistent illumination between the inserted keyframes, resulting in better feature
matches over local methods.

Table 1 presents a summary of the results. It is evident that GHE resulted in a fea-
ture map with the fewest number of inserted multi-keyframes and the fewest number
of points. This suggests the robot was able to travel longer distances on average
before inserting a multi-keyframe into the map and localize more accurately with the
features that were included, which is further verified by the reported maximum track-
ing entropy over the trail. The GHE method resulted in the lowest tracking entropy
(as calculated by Eq. (4)), suggesting the generated map provided stable points to
track against throughout the test run.

5.3 Multi-keyframe Selection

Although previous authors have successfully used keyframe insertion methods
related to feature overlap and the number of features tracked, such approaches
were completely unsuccessful for our application due to intermittent feature tracking
experienced in snowy environments. Instead, we compare our entropy based (EB)
approach to a movement threshold on the vehicle, where a multi-keyframe is inserted
once the camera cluster moves a user defined threshold distance from the previously
inserted multi-keyframe. Only a threshold on the position is used; the rotation need
not be considered due to the nearly 360◦ view of the multi-camera cluster, which
tends to maintain consistent orientation based on stable, persistent horizon features.

Table 2 Summary of Results for multi-keyframe selection experiments

EB-MKF 1 m threshold 2 m threshold

Max. tracking entropy
(nats)

–2.76771 –2.0314 –2.4113

No. map points 2316 4001 2897

No. MKFs 150 175 162
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Figure 6 presents a comparison of the multi-keyframe selection methods tested.
The EB approach provides consistent mapping results, while the 2 m threshold
approach fails midway through the path. This is likely because the non-entropy
based approaches do not consider any improvements in the map points, and merely
assume that the multi-keyframe insertion will improve the map and provide stable
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Fig. 5 Comparison of the recovered vehicle motion using different multi-keyframe selection
methods. Note that the EB approach demonstrates the lowest scale drift in the trajectory

(a) 1mt (b) 2mt

(c) EB (d) Map Overlay

Fig. 6 Comparison of multi-keyframe selection methods. a and b show the resulting map using a
1 and 2 m movement threshold, respectively. c and d present the generated map using our proposed
entropy based keyframe selection method
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points to track against. Our approach, on the other hand, actively seeks to insert
multi-keyframes such that the map integrity is maintained, providing the camera
cluster with stable and well estimated point features for localization. Although the
map generated by the 1 m threshold (1 mt) policy (Fig. 6a) is qualitatively similar to
the one generated by the EB approach, the 1 mt map contains approximately 42 %
more points compared to our proposed method, as summarized in Table 2. From
Table 2, it is also clear that the EB method results in the lowest tracking entropy,
along with the fewest inserted multi-keyframes. This is because our approach only
adds new multi-keyframes when required by the tracker, and seeks to improve the
points which exist in the map. As a result, fewer multi-keyframes are added, and
fewer points are required to maintain suitable tracking integrity.

Figure 5 presents the recovered vehicle trajectories. As seen in Fig. 6d, the vehicle
traverses along a path area, then moves onto a field, and finally joins up with the path
again. All of the evaluated methods result in similar trajectories over the path area, but
exhibit differences once the vehicle moves onto the field. We see that the EB multi-
keyframe selection approach results in the smallest scale drift while traversing the
field, as demonstrated by the path closely rejoining itself. Conversely, the 1 and 2 mt
approaches both exhibit a larger scale drift in the trajectory solution, since the static
threshold policies do not account for map integrity when inserting multi-keyframes.

6 Conclusion

In this work, two extensions to the MCPTAM visual localization method are shown to
significantly improve the performance of the system in snow laden environments. We
demonstrate that a pre-processing pipeline that uses GHE to improve FAST feature
detection in snow, as well as horizon detection and a tailored feature selection process,
results in improved feature tracking. We also show that point entropy reduction can
be used as a keyframe selection metric, which leads to fewer keyframes and reduced
map drift when compared to existing methods. In the future, we intend to expand the
set of environments employed for testing, incorporate ground truth measurement of
vehicle motion, and investigate the persistence and accurate localization of features
in the map.
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Four-Wheel Rover Performance Analysis
at Lunar Analog Test

Nathan Britton, John Walker, Kazuya Yoshida, Toshiro Shimizu,
Tommaso Paniccia and Kei Nakata

Abstract A high fidelity field test of a four-wheeled lunar micro-rover, code-named
Moonraker, was conducted by the Space Robotics Lab at a lunar analog site in
Hamamatsu Japan, in cooperation with Google Lunar XPRIZE Team Hakuto. For
the target mission to a lunar maria region with a steep slope, slippage in loose soil
is a key risk; a prediction method of the slip ratio of the system based on the angle
of the slope being traversed using only on-board telemetry is highly desirable. A
ground truth of Moonraker’s location was measured and compared with the motor
telemetry to obtain a profile of slippage during the entire four hour 500m mission.
A linear relationship between the slope angle and slip ratio was determined which
can be used to predict the slip ratio when ground truth data is not available.

1 Introduction

The focus of this paper is on the soft soil traveling performance of a four-wheel skid-
steer rover, code-named Moonraker—one of a dual-rover system intended for a mis-
sion to explore lunar caves by tethered-descent.Moonraker was designed specifically
for travel over soft loose soil, where slippage is a primary mobility and localization
concern. This section introduces Moonraker and the development background of its
intended mission.
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Fig. 1 The Space Robotics Lab’s dual-rover lunar rover system; the parent rover, Moonraker (left)
and tethered child rover, Tetris (right)

1.1 Moonraker

Moonraker (Fig. 1) is 8 kg, and was designed to be as light as possible while not
sacrificing mobility performance over lunar regolith, especially of steep slopes of
20◦ or more that may be encountered around cave entrances [1]. Actuation points
were kept minimal, reducing mass and failure modes. The key design features are
large relative wheel size and a single non-actuated catadioptric camera (implemented
with a hyperbolic mirror) on the top of the rover. There is an additional TOF laser
scanner in the front of the rover for detecting obstacles that the camera might fail
to. These sensors can also be used to track the location of the rover and assess
slippage [2].

Using four wheels, as opposed to six, allows for twice the wheel diameter, assum-
ing the same volume constraints [1]; Larger wheel diameter reduces slip on loose
soil. The use of grousers also dramatically reduces slip on loose soil, up to the point
at which the grousers no longer penetrate the soil completely [4]. The wheels were
therefore designed to be 20cm in diameter with 2.25cm grousers. Laboratory exper-
iments indicate that a slip ratio of under 0.1 should be expected with these wheels
on slopes of up to 10◦.

With a single actuation axis per wheel, turning maneuvers are performed by skid
steering, where the wheels on one side turn at different speeds than the other. This
can take the form of a spot turn, where both sides spin in opposide directions at the
same speeds, or as various degrees of course corrections where one side simply spins
forward at a slower rate. Because of this maneuvering dynamic, for the purpose of
calculating the total travel distance through wheel odometry, an average of each of
the wheels’ rotations (as measured by motor encoders) is used.
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1.2 Dual Micro Rover System

The Space Robotics Lab has also developed a small, 2 kg child rover, codenamed
Tetris, that together with Moonraker composes a dual rover system. Tetris will be
tethered to Moonraker, which will serve as an anchor for exploration into pits and
down steep cliffs. Cliff traversal experiments and Tetris mobility tests were also
conducted, but are not the focus of this paper.

1.3 Team Hakuto

The Space Robotics Lab has partneredwith TeamHakuto, a competitor in theGoogle
Lunar XPRIZE (GLXP). These rovers have passed space qualification tests and are
intended to be launched on a lunar surface exploration mission in 2017. The field
tests reported here were conducted as part of the demonstration round of the GLXP
Milestone Mobility Prize, which was awarded to Team Hakuto in January 2015.

2 Field Test

This section introduces the field test conducted at the Nakatajima Sand Dunes in
Hamamatsu, Japan on December 19th, 2014. The requirements and conditions of the
test as well as the equipment used are presented.

The mission was conducted over the span of 5h, from 11:30 am until sunset
at 16:30. A total travel distance of 550 m (570 m as estimated by wheel encoder
odometry) was traversed. Results and performance analysis are presented in Sect. 3.

2.1 High Fidelity Requirements

In preparation for Team Hakuto’s planned lunar surface mission (Sect. 1.3), the field
test was conducted in “high-fidelity”, or as close to the conditions of an actual lunar
mission as possible. The test was set up to begin with blind deployment; the rover
was placed inside the stowage envelope that will be attached to the lunar lander. After
opening the envelope remotely, deploying to the surface, the test was conducted with
the following requirements:

• Total travel distance of at least 500 m
• Travel distance must be proven solely by telemetry
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Fig. 2 Moonraker climbs a 10◦ slope at the Nakatajima Sand Dunes

• No manual reset or human intervention with the hardware after deployment
• Operators forbidden to view the test site, and forbidden contact with anyone who
did view the test site during the test

• A time lag of 1.3 s introduced on both the operator laptop and on the rover itself,
in order to emulate the communication lag due to the distance between the Earth
and Moon.

• Transmission data rate limited to 100 kbps in order to ensure similar bandwidth
restrictions to a lunar mission.

Due to legal restrictions in Japan, a 920MHz radio that is planned for the flight
model could not be used for this field test. Instead, a 2.4GHz 802.11 wireless module
was used, dramatically reducing the range of travel from the emulated lander. This had
the consequence of limiting the operation range to a 30m radius from the emulated
lander’s relay radios.

2.2 Test Site

The Nakatajima Sand Dunes is a seaside region of Hamamatsu City and a protected
natural environment. The key features are sprawling hills and valleys of loose sand
between sections of sparse vegetation. Erosion at the borders of grassy areas create
natural steep cliffs. The test site was selected to provide access to sandy slopes, rocky
areas, obstacles, and a cliff (Fig. 2).

These macro-features are considered representative of the potential hazards and
features of the intended lunar mission. The environment around the target skylight in
lacus mortis is in a maria region, with dune-like rolling slopes, and exposed rocks in
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Fig. 3 Moonraker maneuvering in a rocky area. A Leica 360◦ prism, used for ground truth mea-
surements, is visible on top of the mirror

Fig. 4 The Leica
TDRA6000 Total Station
tracking system used as a
ground truth to the wheel
odometry

shallow craters and at the edge of the skylight. The average slope down the ramp of
the skylight is expected to be an average of 15◦, with unpredictable local maxima [1].

The sand itself at Nakatajima, commonEarth beach sand, is not as good amatch of
the target environment. It is well sorted (near-homogenous) granule sizes of 0.1mm
to 1mm, which is distinct from lunar regolith with very poorly sorted (heterogenous)
granule sizes down to the nanometer scale. The sand is quite susceptible to slippage,
however, which is sufficient for the goal of assessing relative slip performance.
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Fig. 5 Map of the rover’s
path around the field test site.
The envelope from which the
rover is deployed is at the
center of the figure,
coordinates (30,30)

2.3 Ground Truth Equipment

In order to evaluate the accuracy of the telemetry gathered by the rover, an external
measurement of the rover’s location was conducted to serve as a ground truth. A
Leica Total Station surveying tool was used with a 360◦ prism (Fig. 3) attached to the
top of the rover. The Total Station unit is equipped with a time of flight laser range
finder and a pan/tilt mechanism; when used in conjunction with a reflecting prism,
the target can be tracked at 7 points/s, with 3mm accuracy (Fig. 4). The ground truth
data was used to create the map in Fig. 5 tracing the rover’s movement.

3 Data Analysis

The data presented in this section corresponds to the first 500m of the field test,
over the course of 4h. 98% of the test was captured properly with the Total Station
(Sect. 2.3), with the exception of a 5min gap due to a tracking error at 1h into the
test. Fortunately no significant turns or maneuvers were made during this period of
time.
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3.1 Travel Distance

The total distance traveled over time is shown in Fig. 6, with the altitude of the
rover (above sea level) overlaid to visualize where in the test the major slopes were
encountered. The slope angle profile is also presented in Fig. 7, normalized to the
travel distance rather than time. The maximum average slope over 2 s periods never
exceeded 10◦ for this segment of the experiment.

In Fig. 6, both the distance as estimated by the motor odometry, and the ground
truth data are displayed together; their divergence over time is small but readily
apparent. By the end of the ground truth data collection at the 3:50 mark, the wheel

Fig. 6 The total cumulative travel distance over time, as measured byMoonraker’s on-board odom-
etry vs externally measured ground truth. Altitude is displayed to indicate the location of slopes

Fig. 7 The altitude of Moonraker’s trajectory throughout the test is presented (above), relative to
the travel distance. The slope angle at each point is also presented as the derivative of the altitude
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odometry-based distance estimation indicated a total 505m distance traveled, while
the ground truth measured 489.6 m.

This represents a total average slip ratio of 0.03, which is consistent with lab-
based sandbox tests for the wheel configuration used (Sect. 1.1) for up to 10◦ slope
environments. However due to the uneven and randomly undulating terrain, a total
average value does not provide enough data to accurately determine the rover’s total
travel distance at any given time. It is useful to know what the slip ratio profile is
throughout the mission, ideally in real time using only rover telemetry [3].

3.2 Slip Ratio

The speed of Moonraker at each moment, both as estimated by averaging each
wheels’ encoder odometry and through ground truth, can be used to determine the
slip. Figure8 displays the error of the odometry estimation as a simple difference.
These speed data were used to calculate the slip ratio of the rover as a whole every 2 s
according to the following formula (ignoring 0 and near-zero wheel speed values):

1 − (rover speed/wheel speed) (1)

where rover speed is the ground truth data and wheel speed refers to the speed of
the rover as estimated by averaging the encoder odometry from all four wheels. This
result was then median filtered to remove outliers. Figure9 shows the slip ratio as
clusters of data points along the timeline of the field test. The resulting slip ratios
occasionally vary widely, but also cleanly cluster together. The slope angles from
Fig. 7 are included for comparison; as expected, the slip ratios have a clear relationship
with the corresponding slope angle.

Fig. 8 This graph displays the difference between the speed as calculated by the wheel odometry
and by ground truth, which indicates slippage
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Fig. 9 The slip ratio is calculated every 2s throughout the field test, and is displayed here in
conjunction with the corresponding slope angle. The data points cluster around strong clear slippage
events

3.3 Slope Angle-Slip Ratio Relationship

The relationship between the slip ratio and the slope angel is presented in Fig. 10,
where each of the 6800 slip ratio data points is plotted according to the angle of the
slope at the time the measurement was taken. The majority of points are clustered
neatly between 0 and 0.2 slip ratio. There are many data points outside of any pattern
and artifacts that follow unpredictable trajectories across the graph. Some of these

Fig. 10 A cloud of slip ratio data points relative to the angle of the slope they were measured at.
Each point represents a 2 s period of time. Figure11 shows a magnified view
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Fig. 11 A magnified view of Fig. 10; a linear trendline from 0 to 0.1 slip ratio is indicated

appear to be due to lateral slip (which is unaccounted for in this study), while others
are due to transient-state slip ratios during turning maneuvers.

Figure11 shows a linear regression calculated after data from turning maneuvers
with negligible forward movement (e.g. 2:00–2:30 in Fig. 6) are removed. The linear
regression equation is as follows:

y = 0.0066x + 0.0426 (2)

The correlation coefficient is 0.1122, with a standard deviation of 0.03. This is
a loose, but significant linear trend from near-zero to slight negative slip (slipping
forward) on downward slopes of 9◦ to 0.1 slip ratio at 9◦ upward slope. This linear
trendline can therefore be used to estimate the slip ratio of the rover at any given time
using only an IMU to determine the angle of the slope that the rover is traversing, even
before accounting for the rover’s heading with respect to the slope being traversed.

4 Conclusion

Slippage is a very important threat to wheeled mobility, which needs to be under-
stood and accounted for in rover missions to the lunar mare and similar environments
on Mars [3]. Controlled laboratory tests are useful for validating the relative effec-
tiveness of different mobility configurations, but field validation is necessary for
determining the actual performance in a real environment. At our field test in a lunar
analog environment, we traveled over 500 m, and measured a high precision ground
truth in order to perform a moment-by-moment slip analysis.
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Our results indicate a linear relationship between the angle of the slope being
traversed at any given time and the slippage occurring. This linear relationship gives
valuable insight into the extent of slippage that can be expected based on a simple
easily measurable characteristic of the rover’s environment—slope angle, without
concern to the heading of the rover with respect to the slope. The data used in
this investigation, having come from a high fidelity field test at a lunar analogue
environment, gives us high confidence that this linear relationship can be a useful
component of navigation systems implemented for lunar and martian wheeled rover
systems.

4.1 Future Work

This information can be used in navigation systems to correct rovers wheel odometry
in real time. By extracting the heading of the rover from the camera data, a system to
account for lateral slopes/slip would further improve the accuracy of wheel odometry
for navigation systems. There is also room to investigate refining or defining this
linear relationship for different soils without the use of ground truth equipment.
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Energy-Aware Terrain Analysis for Mobile
Robot Exploration

Kyohei Otsu and Takashi Kubota

Abstract This paper presents an approach to predict energy consumption in
mobility systems for wheeled ground robots. The energy autonomy is a critical
problem for various battery-powered systems. Specifically, the consumption predic-
tion in mobility systems, which is difficult to obtain due to its complex interactivity,
can be used to improve energy efficiency. To address this problem, a self-supervised
approach is presented which considers terrain geometry and soil types. Especially,
this paper analyzes soil types which affect energy usage models, then proposes a
prediction scheme based on terrain type recognition and simple consumption mod-
eling. The developed vibration-based terrain classifier is validated with a field test in
diverse volcanic terrain.

1 Introduction

As robotics technology develops rapidly, a number of applications are deployed into
real fields. These real-world robotic applications are typically subject to the inter-
action with a challenging environment, which is characterized by its dynamic and
unknown properties. The robots deployed in these fields should have the capability to
percept, model, and interact with surrounding situations, in order to enable safe and
efficient operations under several hardware restrictions. Such autonomy is to some
extent required for any independent systems, especially for robots in extreme envi-
ronments including planetary surfaces and active volcanoes. Significant examples
for extreme terrain operations include the Mars rovers developed by NASA/JPL.

K. Otsu (B)
Department of Electrical Engineering and Information Systems,
The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
e-mail: kyon@ac.jaxa.jp

T. Kubota
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency,
3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa, Japan
e-mail: kubota@isas.jaxa.jp

© Springer International Publishing Switzerland 2016
D.S. Wettergreen and T.D. Barfoot (eds.), Field and Service Robotics,
Springer Tracts in Advanced Robotics 113, DOI 10.1007/978-3-319-27702-8_25

373



374 K. Otsu and T. Kubota

The autonomous navigation system have shown successful results on the remote
planetary surface without intensive human intervention [2, 11].

Besides the interaction with surroundings, the energy autonomy is an essential
technique for battery-powered embedded systems. To enable long-term operations,
the robots should be capable to obtain power either from mounted generators or
external energy hotspots, and use it properly to perform all assigned tasks. Since the
energy budget is severely limited, system designers will face difficult challenges for
efficient energy utilization. A battery-powered system is known to survive longer
by appropriate scheduling of energy-consuming tasks. For example, an decreasing
load profile improves the battery behavior and makes the lifetime longer than an
inverse profile [14]. This battery characteristic leads to the following idea: if the
energy consumption can be predicted prior to the execution, and the task scheduling
is appropriately performed, the exploration period and range might be extended.

The aim of this research is a priori estimation of energy consumption in mobility
systems. The energy consumption is associated in some way with the robot mechan-
ical properties and terrain characteristics. One of the challenging problems is to
estimate the interaction between a robot and terrain since the soil behavior cannot be
modeled uniformly. In the proposed method, a self-supervised scheme is adopted to
make a simple model for energy prediction. Firstly, a vibration-based classifier pro-
vides the estimation of terrain class which characterize the interaction model. Then,
given the class as teacher data, a vision-based classifier gives a priori estimation of
the class through machine learning techniques. Finally, the energy consumption is
predicted using the terrain class and geometry data.

This paper presents the concept of the proposed scheme and detailed description of
energy-aware terrain classification based on vibration signals. The algorithm is tested
by real-world data obtained with a four-wheeled vehicle in diverse volcanic terrain.

2 Related Work

The core part of this research belongs to the terrain classification problem. Specif-
ically, vibration-based terrain classification has been conducted by several research
groups after it is initially suggested by Iagnemma and Dubowsky [9]. Sadhukhan et
al. and DuPont et al. developed a neural network approach using FFT-based vibra-
tion analysis, which distinguishes different terrain types [8, 15, 16]. Brooks et al.
proposed a classification framework using contact microphones, which estimates
terrain components such as sand and gravel [3, 4]. Weiss et al. proposed a feature-
based compact representation, which is fairly relevant to this research, classifying
different terrain types [20]. Ojeda et al. developed a neural network method applica-
ble to other sensors [12]. Similarly, road roughness estimation was performed for
high-speed vehicles by Stavens et al. [17]. These works extract descriptive vectors
from raw vibration signals, and utilize machine learning to compute terrain labels.
Many of the works are conducted in the frequency domain. Comparisons of different
classification methods are given by Weiss et al. [19] and Coyle et al. [7], where they



Energy-Aware Terrain Analysis for Mobile Robot Exploration 375

mention high accuracy of the SVM (Support Vector Machine) classifier when paired
with proper kernel functions.

Recently, the self-supervised scheme is actively studied and applied to robotics
applications. The self-supervised classification is an automatic training of a classifier
using estimated labels from other classifiers. The classifier to be trained is usually
using remote sensors such as cameras andLIDARs.Angelova et al. performed vision-
based unsupervised clustering to obtain terrain labels, then the labels are used to train
their slip estimator [1]. Krebs et al. enabled an on-line learning of mobility attributes
by combining vision and inertial/mechanical measurements using a Bayesian frame-
work [10]. Brooks et al. proposed a framework to predict mechanical properties of
distant terrain by empirical learning of wheel-terrain interaction [5]. Those works
successfully predicted terrain attributes of distant terrain.

The research presented in this article also employs self-supervised learning in
order to predict energy consumption before the robot actually drives over the ter-
rain. The attribute to be estimated is apparently important for energy-aware behavior
planning. However, it is difficult to make accurate estimation since required power
is determined by a complex function of the robot and terrain interaction. This paper
analyzes the relation of energy consumption and robot-terrain interaction and devel-
ops a simple inference model using a vibration sensor and cameras. Based on the
model, the energy consumption is predicted for typical wheeled vehicles.

3 Technical Approaches

This section describes the conceptual overview of the system. Then, the detailed
technical description is given for the energy-aware terrain analysis using vibration
measurements.

3.1 Self-supervised Scheme for Inferencing Energy
Consumption

The energy consumption in mobility systems depends on both terrain types and
geometry. Let E be the energy consumption, A, G be the appearance and geome-
try information obtained from cameras, and V be the vibration measurement from
an IMU. Assuming the consumption model is specific for finite terrain types, the
regression function of energy from inputs can be expressed as

f (E |A, G, V ) =
∑

T

P(T |A, G, V ) f (E |T, A, G, V ) (1)

=
∑

T

P(T |A, V ) f (E |T, G) (2)
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Fig. 1 Overview of self-supervised scheme

for terrain type T and
∑

T P(T |A, V ) = 1. From this equation, the problem can be
split into the terrain type recognition problem (P(T |A, V )) and the energy consump-
tion inference problem ( f (E |T, G)). For recognizing terrain types, a robot classifies
terrain using appearance and vibration measurements. The self-supervised scheme
is used in this part, i.e., the terrain labels from the vibration-based classifier are
used as teacher data for the vision-based predictive classifier. On the other hand, the
regression function is determined empirically from experimental data. The function
is developed based on the physical model of typical wheeled robots.

The illustration of the proposed self-supervised scheme is given in Fig. 1. The
remainder of this paper focuses on the method to estimate energy consumption based
on vibration analysis. Firstly, the function f (E |T, G) is formulated from a physical
model. It shows the energy consumption is a linear function that depends on the robot-
terrain interaction.Next, the self-supervised classification based on vibration analysis
is explained. The classified result is processed in a winner-take-all manner, and
combinedwith the formulated energy equation to provide accurate energy prediction.

3.2 Energy Consumption Model for Wheeled Vehicles

The amount of energy consumption depends on the soil type and the terrain geometry.
In this section, themodel is explained based on a physical model of wheeled vehicles.

Consider a robot driving in a velocity v over a slanted pseudo plane with angle θp

(Fig. 2). The vehicle dynamics is expressed by

∑

j

fd j −
∑

j

fr j − Mg sin θp = Mv̇ (3)

where Fd j is the driving force of each wheel, fr j is the driving resistance of each
wheel, M is the total mass of the robot, and g is the gravity constant. The driving
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Fig. 2 Wheeled robot model
on slanted pseudo plane

resistance fr j is expressed as the sum of rolling resistance between the wheel and
terrain fw j (v) and friction loss in bearing and gear fg j (v).

Fr j (v) = fw j (v) + fg j (v) (4)

The resistance depends on the robot velocity. To simplify the problem, let us put an
affordable assumption that the robot drives at an arbitrary constant speed v0 within
a small distance. Then, the Eq. (3) becomes

Fd =
∑

j

[
fw j (v0) + fg j (v0)

] + Mg sin θp (5)

where Fd is the sum of all driving forces.
On the other hand, the driving force can be computed from the motor torque

fd j = ηγ Tj

R
(6)

where η is the transmission efficiency, γ is the gear reduction ratio, Tj is the generated
torque, and R is the wheel radius. Since the torque is proportional to current

Tj = kt I j (7)

the electrical energy consumption is expressed by

Ee =
V R

(∑
j

[
fw j (v0) + fg j (v0)

] + Mg sin θp

)

η γ kt
(8)

where V represents the source voltage. Under the assumption that the traversable
slope for wheeled robots is small, the equation can be simplified to

Ee � αr,t + βrθp (9)

where αr,t and βr is constant values. Note that αr,t depends on both robots and terrain,
while βr depends on only robot systems. However, in the real natural environments,
the slope angle observation θ is not consistent with the pseudo plane angle θp due to
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the terrain deformation. In this paper, the deformation effect is modeled by a linear
equation as θp = γr,tθ . Hence, the final inference model is expressed as

Ee � αr,t + βrγr,tθ (10)

= αr,t + δr,tθ (11)

The above model suggests that we can infer the energy consumption using two
constants and a slope angle measurement. The constants are estimated empirically
from experiments. In the preliminary study, they depends on soil types, which can be
classified by vibration-based machine learning. On the other hand, the slope angle
is computed geometrically from stereo vision. There are several efficient methods to
recover terrain geometry from images [13].

3.3 Vibration-Based Terrain Classification

In order to know the terrain class and the associated constants which affect energy
consumption, a vibration-based terrain classifier is proposed. The reason to choose
vibration is that it well represents the wheel-terrain interaction as presented in the
previous studies [3, 20], whereas the direct measurement of motor currents does not
work due to its high dependency on the terrain geometry (which can also be seen
in (11)).

Theproposed classifier employes the feature-basedSVMsimilar to [20].However,
the feature representation described here is computed in the frequency domain, and
designed to work for a real outdoor robot.

At first, vibration data is collected from an accelerometer rigidly attached to
the robot body. Using 3-axis acceleration data the signal power is computed and
then subtracted by the short-time averages. The processed time-series acceleration
vector a = [a1, . . . , at , . . .] is converted to the time-frequency domain by continuous
wavelet transform [18].

A =
⎡

⎢
⎣

A f1,1 · · · A f1,t · · ·
...

. . .
...

A fm ,1 · · · A fm ,t · · ·

⎤

⎥
⎦ (12)

In this representation, each column corresponds to the signal spectrum for each time,
and each row corresponds to the time-series of a single frequency.

The raw matrix can be used to train the classifiers. However, in this paper, the raw
matrix is subsampled to 2 × N matrix for sake of efficiency. The rows and columns
are selected so that the characteristic elements are preserved. For the frequency
domain, the natural frequency fn and its octave 2 fn are preserved. The signal power
for the natural frequency is dominant in vibration analysis of the robot locomotion.
For the time domain, samples on the grouser-to-grouser interval tg are selected. Typi-
cally, all-terrain robots have grousers to obtain traction. The symmetric arrangement
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Fig. 3 Time-series signal
power corresponding to the
natural frequency. Detected
positive peaks caused by
grouser-to-grouser intervals
are marked with red circles
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of grousers causes periodical characteristics to signal spectra as shown in Fig. 3.
The local peak positions are utilized to describe the time-domain characteristics. N
samples around designated time t are extracted.

After the subsample process, the following 2 × N matrix is obtained.

[
xt, fn

xt,2 fn

]

=
[

A fn ,1 · · · A fn ,N

A2 fn ,1 · · · A2 fn ,N

]

(13)

For each row vector xt , the following features are extracted.

• The mean μt of the vector. The mean is roughly 0 for smooth surfaces, while it
becomes grater for rough surfaces.

μt = 1

N

N∑

i=1

xi (14)

• The standard deviation σt . The larger deviation represents the terrain is not uni-
formly composed.

σt =
√
√
√
√ 1

N

N∑

i=1

(xi − μt )2 (15)

• The maximum value mt of the vector. It corresponds to the strength of the shock
from the terrain.

mt = max(xt ) (16)

• The coefficient of variation ct . It is the relative variance to the signal strength.

ct = σt

μt
(17)

Using these four types of features, the feature vector for each time is acquired as
follows.

X t = [
μt, fn σt, fn mt, fn ct, fn μt,2 fn σt,2 fn mt,2 fn ct,2 fn

]�
(18)
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The 8-element feature vectors are used to train classifiers. Each classifier detects one
pre-defined terrain type against all others. Although unsupervised clustering can be
used here as in [1], the supervised learning still provides accurate enough estimation
of the energy-related constants. Therefore, the supervised SVM is employed for
implementation in order to classify different soil sizes.

4 Experiment

In the previous section, the energy inference method based on vibration measure-
ments is presented. The field experiment described in this section shows the validity
of the approach and evaluates the performance.

4.1 Setup

The rover used in the field experiment is shown in Fig. 4. It is a four-wheeled
unmanned vehicle with a customized suspension system. The dimensions are 0.88 ×
0.83 × 1.50m and it weighs 50kg. Four aluminum wheels with silicon grousers are
driven by DCmotors at a rate 7.6 rpm. The wheel radius is 0.10m and the grouser-to-
grouser distance is 0.05m. Attached to the body, a 3-axis accelerometer Crossbow
CXL17LF3measures vibration data at 100Hz. The consumption energy is computed
from motor currents.

Izu-Oshima island in Japan is selected as the experimental field. The formation
of the place is based on an active volcano Mt. Mihara. The geological features have
been created by volcanic eruptions and water penetrations; therefore, diverse soil
types are mixed in local regions. Three terrain types that can be seen in Fig. 5 are
defined as follows.

Fig. 4 The AKI rover. Four
wheeled all-terrain robots
with custom suspension
mechanism. Silicon rugs are
attached to the aluminum
wheels
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Fig. 5 Experimental fields with various soil types. Terrain types are labeled manually. (Green
Dense Sand, Blue Fine Gravel, Red Coarse Gravel)

1. Dense Sand: very small particles are packed and form hard terrain.
2. Fine Gravel: gravels of a few centimeters are loosely packed.
3. Coarse Gravel: larger gravels are piled and form deformable terrain.

The detailed appearance and sample vibration data are shown in Fig. 6. Each terrain
types have distinct signal properties in terms of strength, periodicity, and so on.

The algorithm is implemented in MATLAB. For the wavelet transform to extract
features, the software provided in [18] is used. The Morlet wavelet is selected as the
mother wavelet. For the terrain classification, LIBSVM [6] is used. It employes the
radial basis function kernel with optimal parameters tuned by 5-fold cross validation.

4.2 Classifying Terrain Based on Vibration Signals

Thewavelet transform results for various terrain (i.e., A) are shown in Fig. 7. The nat-
ural frequency fn = 6.8Hz and its octave show significant properties. Time-domain
periodicity can be observed in correspondence with the grouser-to-grouser interval
tg = 0.63s. In the algorithm, 2 × 20 matrices are extracted from these results to
generate 8-element feature vectors.

The classification result by the vibration-based classifier is shown in Table1. The
dataset size is 191, 300, and 225, respectively. In the experiment, 10-fold cross val-
idation is used to compute the average accuracy and variance. The 64-point FFT
features similar to [15, 19] are used as reference. The accuracy was 76.80% for
3-class classification which is slightly inferior to the FFT features. However, the dif-
ference is small considering the number of elements is eight times smaller.Moreover,
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Fig. 6 Vibration signal example for 10 s traversal. Three terrain types are (1) Dense Sand, (2)
Fine Gravel, and (3) Coarse Gravel. Each terrain presents distinct properties in signal strength,
periodicity, etc

higher classification accuracy is achieved for some classes. In fact, the error rate for
dense sand terrain is less than 3%.

The confusion matrix for 3-class test data is shown in Table2. There is confusion
in fine and coarse gravels. This is because the separability in the feature spacewas rel-
atively small. One reason will be the ambiguity of human hand-labeling. Introducing
pre-training and new data might improve the classification.

4.3 Modeling Energy Usage

Two parameters αr,t and δr,t in the energy consumption model in (11) is empirically
estimated. From average consumption of all 1m segments in a 773m trajectory,
the linear regression model is estimated. Obtained data points and parameters are
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Fig. 7 Wavelet analysis of
vibration signals for 50 s.
The signal power
corresponding to the natural
frequency fn = 6.8Hz and
its octave 2 fn shows
significant characteristics
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Table 1 Classification rates per class and total classification accuracy (%) in10-fold cross validation

Proposed 64pt-FFT

Dense sand 97.21 ± 1.85 95.45 ± 3.71

Fine gravel 79.59 ± 5.42 86.81 ± 8.42

Coarse gravel 83.80 ± 3.38 80.90 ± 7.67

Total 76.80 ± 4.59 78.18 ± 7.67

Table 2 Confusion matrix for test data

Dense sand Fine gravel Coarse gravel Unclassified

Sand 93.71 2.63 0.53 3.13

Fine gravel 1.67 81.00 8.33 9.00

Coarse gravel 2.23 30.61 58.74 8.42

presented inFig. 8. The result shows that the terrain in the largest consumption (coarse
gravel) requires more than 15% times grater than the smallest (dense sand). This fact
supports the importance of distinguishing classes in the energy-aware context.

Along with the vibration-based classifier, these regression functions produce the
energy estimation using a vibration sensor and slopemeasurement. Figures9, 10, and
11 present the results for three 100m paths. Although terrain has various elevation
profiles, the energy estimates were accurate. The RMS errors are 3.42, 3.06, 5.56W
for three paths. The reason for worse performance in Fig. 11 is that geometrical steps
caused wheel stuck at around 700 and 1000s, resulting in the rapid increase of energy
consumption. In addition to the soil type classification, the importance of geometrical
hazard estimation is suggested.

5 Conclusion

This paper presented an approach to estimate the energy consumption of mobility
systems using vibration-based terrain classification. The compact feature represen-
tation in the time-frequency domain shows accurate classification performance in
the multi-class labeling problem. The classification results are combined with the
regression model considering a simple physical model to estimate actual energy
consumption. The real field data validate the promising performance of the proposed
vibration-based approach.

Several improvements can be suggested to the current inference model. As the
experiments showed, the energy consumption drastically changes in the presence
of (non-)geometrical hazards such as steps or slip-inducing terrain. The regression
model should consider those hazards in order to improve robustness. Moreover, the
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Fig. 8 Relationship between
slope angle and energy
consumption for 1m
traversal on natural terrain.
The linearity can be observed
in every terrain types. The
estimated constants are
shown in the figure
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Fig. 9 Experimental result for path 1. Top row actual velocity (left) and elevation profile (right).
Bottom row Comparison between predicted andmeasured energy consumption (left) and its integral
(right)
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Fig. 10 Experimental result for path 2
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Fig. 11 Experimental result for path 3. Note that the error grows at 700 and 1000s due to the
geometrical step hazards

confusion in similar terrain types may be improved by introducing pre-training, or
handling visual information at the same time.
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Vision and Learning for Deliberative
Monocular Cluttered Flight
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M. Talha Agcayazi, Christopher Eriksen, Shreyansh Daftry,
Martial Hebert and J. Andrew Bagnell

Abstract Cameras provide a rich source of information while being passive, cheap
and lightweight for small UnmannedAerial Vehicles (UAVs). In this workwe present
the first implementation of receding horizon control, which is widely used in ground
vehicles, with monocular vision as the only sensing mode for autonomous UAV
flight in dense clutter. Two key contributions make this possible: novel coupling
of perception and control via relevant and diverse, multiple interpretations of the
scene around the robot, leveraging recent advances in machine learning to showcase
anytime budgeted cost-sensitive feature selection, and fast non-linear regression for
monocular depth prediction. We empirically demonstrate the efficacy of our novel
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pipeline via real world experiments of more than 2kms through dense trees with an
off-the-shelf quadrotor. Moreover our pipeline is designed to combine information
from other modalities like stereo and lidar.

1 Introduction

Unmanned Aerial Vehicles (UAVs) have recently received a lot of attention by the
robotics community. While autonomous flight with active sensors like lidars has
been well studied [2, 28], flight using passive sensors like cameras has relatively
lagged behind. This is especially important given that small UAVs do not have the
payload and power capabilities for carrying such sensors. Additionally, most of the
modern research on UAVs has focussed on flying at altitudes with mostly open space
[9]. Flying UAVs close to the ground through dense clutter [26, 28] has been less
explored (Fig. 1).

Receding horizon control [18] is a classical deliberative scheme commonly used
in autonomous ground vehicles including five out of the six finalists of the DARPA
Urban Challenge [5]. Figure2 illustrates receding horizon control on our UAV in
motion capture. In receding horizon control, a pre-selected set of dynamically fea-
sible trajectories of fixed length (the horizon), are evaluated on a cost map of the
environment around the vehicle and the trajectory that avoids collision while making
most progress towards a goal location is chosen. This trajectory is traversed for a bit
and the process repeated again.

We demonstrate the first receding horizon control with monocular vision imple-
mentation on a UAV. Figure1 shows our quadrotor evaluating a set of trajectories on
the projected depth image obtained from monocular depth prediction and traversing
the chosen one.

This is motivated by our previous work [26], where we used imitation learning
to learn a purely reactive controller for flying a UAV using only monocular vision
through dense clutter. While good obstacle avoidance behavior was obtained, there
are certain limitations of a purely reactive layer that amore deliberative approach like
receding horizon control can ameliorate. Reactive control is by definition myopic,
i.e., it concerns itself with avoiding the obstacles closest to the vehicle. This can lead
to it being easily stuck in cul-de-sacs. Since receding horizon control plans for longer
horizons it achieves better plans and minimizes the chances of getting stuck [20].
Another limitation of pure reactive control is the difficulty to reach a goal location
or direction. In a receding horizon control scheme, trajectories are selected based
on a score which is the sum of two terms: first, the collision score of traversing it
and second, the heuristic cost of reaching the goal from the end of the trajectory.
By weighting both these terms suitably, goal-directed behavior is realized while
maintaining obstacle-avoidance capability. Though it is to be noted that reactive
control can be integrated with receding horizon for obtaining the best of both worlds
in terms of collision avoidance behavior.
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Fig. 1 Example of receding horizonwith a quadrotor usingmonocular vision. The lower left images
show the view from the front camera and the corresponding depth images from the monocular depth
perception layer. The rest of thefigure shows the overheadviewof the quadrotor and the traversability
map (built by projecting out the depth image) where red indicates higher obstacle density. The grid
is 1 × 1m2. The trajectories are evaluated on the projected depth image and the one with the least
collision score (thick green) trajectory followed

Fig. 2 Receding horizon
control on UAV in motion
capture. A library of 78
trajectories of length 5m are
evaluated to find the best
collision-free trajectory. This
is followed for 1m at 1m/s
and the process repeated

Receding horizon control needs three working components

1. A method to estimate depth: This can be obtained from stereo vision [23, 29] or
dense structure-from-motion (SfM) [32]. But these are not amenable for achiev-
ing higher speeds due to high computational expense.Wenote that in the presence
of enough computation power, information from these techniques can be com-
bined with monocular vision to improve overall perception.
Biologists have found strong evidence that birds and insects use optical flow to
navigate through dense clutter [30]. Optical flow has been used for autonomous
flight of UAVs [4]. However, it is difficult to directly derive a robust control prin-
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ciple from flow. Instead we follow the same data driven principle as our previous
work [26] and use local statistics of optical flow as features in the monocular
depth prediction module. This allows the learning algorithm to derive complex
behaviors in a data driven fashion.

2. A method for relative pose estimation: To track the trajectory chosen at every
cycle, the pose of the vehicle must be tracked. We demonstrate a relative pose
estimation system using a downward facing camera and a sonar, which is utilized
by the controller for tracking the trajectory (Sect. 2.5).

3. A method to deal with perception uncertainty: Most planning schemes either
assume that perception is perfect or make simplistic assumptions of uncertainty.
We introduce the concept ofmakingmultiple, relevant yet diverse predictions for
incorporating perception uncertainty into planning. The intuition is predicated
on the observation that avoiding a small number of ghost obstacles is acceptable
as long as true obstacles are not missed (high recall, low precision). The details
are presented in Sect. 2.4. We demonstrate in experiments the efficacy of this
approach as compared to making only a single best prediction.

In summary our list of contributions are:

• Budgeted near-optimal feature selection and fast non-linear regression for monoc-
ular depth prediction.

• Real time relative vision-based pose estimation.
• Multiple predictions to efficiently incorporate uncertainty in the planning stage.
• First complete receding horizon control implementation on aUAVwithmonocular
vision.

2 Approach

2.1 Hardware and Software Overview

In this section we describe the hardware platforms used in our experiments. Devel-
oping and testing all the integrated modules of receding horizon is very challenging.
Therefore we assembled a rover (Fig. 3a) in addition to a UAV (Fig. 3b) to be able to
test various modules separately. The rover also facilitated parallel development and
testing of modules. Here we describe the hardware platforms and overall software
architecture.

2.1.1 Rover

The skid-steered rover (Fig. 3a) uses an Ardupilot microcontroller board which takes
in high level control commands from the planner and controls the four motors to
achieve the desired motion.
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Fig. 3 Rover and Quadrotor platforms used in experiments. a Rover assembled with the same
control chips and perception software as UAV for rapid tandem development and validation of
modules. b Quadrotor used as our development platform

Other than the low-level controllers, all other aspects of the rover are kept exactly
the same as the UAV to allow seamless transfer of software. For example, the rover
has a front facing PlayStation Eye camera which is also used as the front facing
camera on the UAV.

A Bumblebee color stereo camera pair (1024× 768 at 20 fps) is rigidly mounted
with respect to the front camera using a custom 3Dprinted fiber plastic encasing. This
is used for collecting data with groundtruth depth values (Sect. 2.2) and validation of
planning (Sect. 2.6). We calibrate the rigid body transform between the front camera
and the left camera of the stereo pair. Stereo depth images and front camera images
of the environment are recorded simultaneously while driving the rover around using
a joystick. The depth images are then transformed to the front camera’s coordinate
system to provide groundtruth depth values for every pixel. The training depth images
are from a slightly different perspective than encountered by the UAV during flight,
but we found in practice that depth prediction performance generalized well. Details
in Sect. 2.2.

2.1.2 UAV

Figure3b shows the quadrotor we use for our experiments. Figure4 shows the
schematic of the various modules that run onboard and offboard. The base chas-
sis, motors and autopilot are assembled using the Arducopter kit. Due to drift and
noise of the IMU integrated in the Ardupilot unit, we added aMicrostrain 3DMGX3
25 IMUwhich is used to aid real time pose estimation. There are two PlayStation Eye
cameras: one facing downwards for real time pose estimation, one facing forward.
The onboard processor is a quad-core ARM based computer which runs Ubuntu
and ROS [25]. This unit runs the pose tracking and trajectory following modules.
A sonar is used to estimate altitude. The image stream from the front facing cam-
era is streamed to the base station where the depth prediction module processes it;
the trajectory evaluation module then finds the best trajectory to follow to minimize
probability of collision and transmits it to the onboard computer where the trajectory
following module runs a pure pursuit controller to do trajectory tracking [6]. The
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Fig. 4 Schematic diagram of hardware and software modules

resulting desired velocity control commands are sent to the Ardupilot which sends
low level control commands to the motor controllers to achieve the desired motion.

2.2 Monocular Depth Prediction

In this section we describe the depth prediction approach from monocular images,
and the fast non-linear regression method used for regression.

An image is first gridded up into non-overlapping patches. We predict the depth
in meters at every patch of the image (Fig. 5 yellow box). For each patch we extract
separate features which describe the patch, the full column containing the patch
(Fig. 5 green box) and the column of three times the patch width (Fig. 5 red box),
centered around the patch. The final feature vector for a patch is the concatenation
of the feature vectors of all three regions. When a patch is seen by itself it is very
hard to tell the relative depth with respect to the rest of the scene. But by adding
the features of the surrounding area of the patch, more context is available to aid the
predictor.

2.2.1 Description of Features

In this part we describe in brief the features used to represent the patch. We mainly
borrow the features as used in previous work on monocular imitation learning
[26] for UAVs, which are partly inspired by the work of Hoiem et al. [15] and
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Fig. 5 The yellow box is an
example patch, the green box
is the column of the same
width surrounding it, and the
red box is the column of 3
times the patch width
surrounding it. Features are
extracted individually at the
patch, and the columns are
concatenated together to
form the total feature
representation of the patch

Saxena et al. [27]. We predict the depth at every patch which is then used by the
planning module.

• Optical flow: We use the Farneback dense optical flow [11] implementation in
OpenCV to compute for every patch the average, minimum and maximum optical
flow values.

• Radon Transform: The radon transform captures strong edges in a patch [14].
• Structure Tensor: The structure tensor describes the local texture of a patch [13].
• Laws’ Masks: These describe the texture intensities [8]. For details on radon trans-
form, structure tensor and Laws’ masks usage see [26].

• Histogram of Oriented Gradients (HoG): This feature has been used widely in the
computer vision community for capturing texture information for object detection
[7]. For each patch we compute the HoG feature in 9 orientation bins.

• Tree feature:We use the per pixel fast classifier by Li et al. [22] to train a supervised
tree detector. Li et al. originally used this for real time hand detection in ego-centric
videos. For a given image patch we use this predictor to output the probability of
each pixel being a tree. This information is then used as a feature for that patch.

2.2.2 Data Collection

RGB-Dsensors like theKinect, currently donotworkoutdoors. Since camera and cal-
ibrated nodding lidar setup is expensive and complicated we used a rigidly mounted
Bumblebee stereo color camera and the PlayStation Eye camera for our outdoor data
collection. This setup was mounted on the rover (Fig. 3a). We collected data at 4
different locations with tree density varying from low to high, under varying illumi-
nation conditions and in both summer and winter conditions. Our corpus of imagery
with stereo depth information is around 16000 images and growing. We will make
this dataset publicly available in the near future.
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2.2.3 Fast Non-linear Prediction

Due to harsh real-time constraints an accurate but fast predictor is needed. Recent lin-
ear regression implementations are very fast and can operate on millions of features
in real time [21] but are limited in predictive performance by the inherent linearity
assumption. In very recent work Agarwal et al. [1] develop fast iterative methods
which use linear regression in the inner loop to obtain overall non-linear behavior.
This leads to fast prediction times while obtaining much better accuracy. We imple-
mented Algorithm 2 in [1] and found that it lowered the error by 10% compared to
just linear regression, while still allowing real time prediction.

2.3 Budgeted Feature Selection

While many different visual features can be extracted on images, they need to be
computed in real time. The faster the desired speed of the vehicle, the faster the
perception and planning modules have to work to maintain safety. Additionally the
limited computational power onboard a small UAV imposes a budget within which
to make a prediction. Each kind of feature requires different time periods to extract,
while contributing different amounts to the prediction accuracy. For example, radon
transforms might take relatively less time to compute but contribute a lot to the
prediction accuracy, while another feature might take more time but also contribute
relatively less or vice versa. This problem is further complicated by the “grouping”
effectswhere a particular feature’s performance is affected by the presence or absence
of other features.

Given a time budget, the naive but obvious solution is to enumerate all possible
combinations of features within the budget and find the group of features which
achieveminimum loss. This is exponential in the number of available features. Instead
we use the efficient approach developed by Hu et al. [17] to select the near-optimal
set of features which meet the imposed budget constraints. Their approach uses
a simple greedy algorithm that first whitens feature groups and then recursively
chooses groups by the reduction in explained variance divided by the time to achieve
that reduction. A more efficient variant of this with equivalent guarantees, chooses
features by computing gradients to approximate the reduction in explained variance,
eliminating the need to “try” all feature groups sequentially. For each specified time
budget, the features selected by this procedure are within a constant factor of the
optimal set of features which respect that budget. Since this holds across all time
budgets, this procedure provides a recursive way to generate feature sets across time
steps.

Figure6 shows the sequence of features that was selected by Hu et al. [17] feature
selection procedure. For any given budget only the features on the left up to the
specified time budget need to be computed (Fig. 7).
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Fig. 6 On the upper x-axis the sequence of features selected byHu et al.’smethod [17] and the lower
x-axis shows the cumulative time taken for all features up to that point. The near-optimal sequence
of features rapidly decrease the depth prediction error. For a given time budget, the sequence of
features to the left of that time should be used

Fig. 7 Depth prediction examples on real outdoor scenes. Closer obstacles are indicated by red

2.4 Multiple Predictions

The monocular depth estimates are often noisy and inaccurate due to the challenging
nature of the problem.Aplanning systemmust incorporate this uncertainty to achieve
safe flight. Figure8 illustrates the difficulty of trying to train a predictive method for
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Groundtruth Bad Prediction Fatal Prediction 

3 m
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Fig. 8 Illustration of the complicated nature of the loss function for collision avoidance. (Left)
Groundtruth tree locations. (Middle) Bad prediction where a tree is predicted closer than it actually
is located. (Right) Fatal prediction where a tree close by is mispredicted further away

building a perception system for collision avoidance. Figure8 (left) shows a ground
truth location of trees in the vicinity of an autonomous UAV. Figure8 (middle) shows
the location of the trees as predicted by the perception system. In this prediction the
trees on the left and far away in front are predicted correctly but the tree on the right is
predicted close to the UAV. This will cause the UAV to dodge a ghost obstacle.While
this is bad, it is not fatal because the UAV will not crash but make some extraneous
motions. But the prediction of trees in Fig. 8 (right) is potentially fatal. Here the trees
far away in front and on the right are correctly predicted whereas the tree on the left
originally close to the UAV, is mispredicted to be far away. This type of mistake will
cause the UAV to crash into an obstacle it does not know is there.

Ideally, a vision-based perception system should be trained to minimize loss func-
tions which will penalize such fatal predictions more than other kind of predictions.
But even writing down such a loss function is difficult. Therefore most monocular
depth perception systems try to minimize easy to optimize surrogate loss functions
like regularized L1 or L2 loss [27]. We try to reduce the probability of collision by
generating multiple interpretations of the scene to hedge against the risk of commit-
ting to a single potentially fatal interpretation as illustrated in Fig. 8. Specifically we
generate 3 interpretations of the scene and evaluate the trajectories in all of them.
The trajectory which is least likely to collide on average in all interpretations is then
chosen as the one to traverse.

Oneway ofmakingmultiple predictions is to just sample the posterior distribution
of a learnt predictor. In order to truly capture the uncertainty of the predictor, a lot
of interpretations have to be sampled and trajectories evaluated on each of them. A
large number of samples will be from around the peaks of this distribution leading to
wasted samples. This is not feasible given the real time constraints of the problem.

In previous work [10], we have developed techniques for predicting a budgeted
number of interpretations of an environment with applications to manipulation, plan-
ning and control. Batra et al. [3] have also applied similar ideas to structured pre-
diction problems in computer vision. These approaches try to come up with a small
number of relevant but diverse interpretations of the scene so that at least one of them
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Fig. 9 The scene at top is an example from the front camera of the UAV. On the left is shown the
predicted traversability map (red is high cost, blue is low cost) resulting from a single interpretation
of the scene. Here the UAV has selected the straight path (thick, green) which will make it collide
with the tree right in front. While on the right the traversability map is constructed from multiple
interpretations of the image, leading to the trajectory in the right being selected which will make
the UAV avoid collision

is correct. In this work, we adopt a similar philosophy and use the error profile of the
fast non-linear regressor described in Sect. 2.2 to make two additional predictions:
The non-linear regressor is first trained on a dataset of 14500 images and it’s per-
formance on a held-out dataset of 1500 images is evaluated. For each depth value
predicted by it, the average over-prediction and under-prediction error is recorded.
For example the predictor may say that an image patch is at 3m while it is actually
either, on average, at 4m or at 2.5m. We round each prediction depth to the nearest
integer, and record the average over and under-predictions as in the above example
in a look-up table (LUT). At test time the predictor produces a depth map and the
LUT is applied to this depth map, producing two additional depth maps: one for
over-prediction error, and one for the under-prediction error.

Figure9 shows an example in which making multiple predictions is clearly ben-
eficial compared to the single best interpretation. We provide more experimental
details and statistics in Sect. 3.

2.5 Pose Estimation

As discussed before, a relative pose-estimation system is needed to follow the
trajectories chosen by the planning layer. We use a downward looking camera in
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Fig. 10 The overall flow of data and control commands between various modules. The pure pursuit
trajectory follower and low level control loops (red boxes) are shown in greater detail at the bottom

conjunction with a sonar for determining relative pose. Looking forward to deter-
mine pose is ill-conditioned due to a lack of parallax as the camera faces the direction
ofmotion. There are still significant challenges involvedwhen looking down. Texture
is often very self similar making it challenging for traditional feature based methods
[19, 24] to be employed (Figs. 10 and 11).

In receding horizon, absolute pose with respect to some fixed world coordinate
system is not needed, as one needs to follow trajectories for short durations only. So
as long as one has a relative, consistent pose estimation system for this duration (3 s
in our implementation), one can successfully follow trajectories.

We used a variant of a simple algorithm that has been presented quite often,
most recently in [16]. This approach uses a Kanade-Lucas-Tomasi (KLT) tracker
[31] to detect where each pixel in a grid of pixels moves over consecutive frames,
and estimating the mean flow from these after rejecting outliers. We do the outlier
detection step by comparing the variation of the flow vectors obtained for every pixel
on the grid to a specific threshold. Whenever the variance of the flow is high, we do
not calculate themean flow velocity, and instead decay the previous velocity estimate
by a constant factor (Fig. 12).

This estimate of flow however tries to find the best planar displacement between
the two patches, and does not take into account out-of-plane rotations, due to motion
of the camera. Camera ego-motion is compensated using motion information from
the IMU. Finally the metric scale is estimated from sonar.We compute instantaneous
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Fig. 11 Comparison of the differential flow tracker performance versus ground truth in MOCAP.
Red tracks are the trajectories in MOCAP, blue are those determined by the algorithm. Note that
the formulation of the receding horizon setup is such that mistakes made in following a specific
trajectory are forgiven up to an extent since we replan every few seconds

Fig. 12 Instances of failure of the pose tracking system over challenging surfaces. Note the absence
of texture in these 320× 240 images. The figure shows the flow tracks corresponding to the points
on the grid. Red tracks show the uncorrected optical flow, while the green tracks (superimposed)
show the flow vectors ‘unrotated’ using the IMU

relative velocity between the camera and ground which is integrated over time to get
position.

This process is computationally inexpensive, and can be run at very high frame
rates. Higher frame rates lead to smaller displacements between pairs of images,
which in turn makes tracking easier.

We evaluated the performance of the flow based tracker in motion capture and
compared the true motion capture tracks to the tracks returned by flow based tracker.
The resulting tracks are shown in Fig. 11.
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2.6 Planning and Control

Figure10 shows the overall flow of data and control commands. The front camera
video stream is fed to the perceptionmodulewhich predicts the depth of every pixel in
a frame, projects it to a point cloud representation and sends it to the receding horizon
control module. A trajectory library of 78 trajectories of length 5m is budgeted and
picked from amuch larger library of 2401 trajectories using the maximum dispersion
algorithm by Green et al. [12]. This is a greedy procedure for selecting trajectories,
one at a time, so that each subsequent trajectory spans maximum area between it
and the rest of the trajectories. The receding horizon module maintains a score for
every point in the point cloud. The score of a point decays exponentially the longer it
exists. After some time when it drops below a user set threshold, the point is deleted.
The decay rate is specified by setting the time constant of the decaying function. This
fading memory representation of the local scene layout has two advantages: (1) It
prevents collisions caused by narrowfield-of-view issueswhere the quadrotor forgets
that it has just avoided a tree, sees the next tree and dodges sideways, crashing into
the just avoided tree. (2) It allows emergency backtracking maneuvers to be safely
executed if required, since there is some local memory of the obstacles it has just
passed.

Our system accepts a goal direction as input and ensures that the vehicle makes
progress towards the goal while avoiding obstacles along the way. The score for each
trajectory is the sum of three terms: (1) A sphere of the same radius as the quadrotor
is convolved along a trajectory and the score of each point in collision is added
up. The higher this term is relative to other trajectories, the higher the likelihood
of this trajectory being in collision. (2) A term which penalizes a trajectory whose
end direction deviates from goal direction. This is weighted by a user specified
parameter. This term induces goal directed behavior and is tuned to ensure that the
planner always avoids obstacles as a first priority. (3) A term which penalizes a
trajectory for deviating in translation from the goal direction.

The pure pursuit controller module (Fig. 10) takes in the coordinates of the tra-
jectory to follow and the current pose of the vehicle from the optical flow based pose
estimation system (Sect. 2.5). We use a pure pursuit strategy [6] to track it. Specifi-
cally, this involves finding the closest point on the trajectory from the robot’s current
estimated position and setting the target waypoint to be a certain fixed lookahead dis-
tance further along the trajectory. The lookahead distance can be tuned to obtain the
desired smoothness while following the trajectory; a larger lookahead distance leads
to smoother motions, at the cost of not following the trajectory exactly. Using the
pose updates provided by the pose estimation module, we head towards this moving
waypoint using a generic PD controller. Since the receding horizon control module
continuously replans (at 5Hz) based on the image data provided by the front facing
camera, we can choose to follow arbitrary lengths along a particular trajectory before
switching over to the latest chosen one.
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Fig. 13 Receding horizon
control validation with rover
using depth images from
stereo. The bright green
trajectory is the currently
selected trajectory to follow.
Red trajectories indicate that
they are more likely to be in
collision

2.6.1 Validation of Modules

We validated each module separately as well as in tandem with other modules where
each validation was progressively integrated with other modules. This helped reveal
bugs and instabilities in the system.

• Trajectory Evaluation and Pure Pursuit Validation with Stereo Data on Rover:
We tested the trajectory evaluation and pure pursuit control module by running the
entire pipeline (other than monocular depth prediction) with stereo depth images
on the rover (Fig. 13).

• Trajectory Evaluation and Pure Pursuit Validation with Monocular Depth on
Rover: This test is the same as above but instead of using depth images from
stereo we used the monocular depth prediction. This allowed us to tune the para-
meters for scoring trajectories in the receding horizon module to head towards
goal without colliding with obstacles.

• Trajectory Evaluation and Pure Pursuit Validation with Known Obstacles in
Motion Capture on UAV : While testing of modules progressed on the rover we
assembled and developed the pose estimation module (Sect. 2.5) for the UAV. We
tested this module in a motion capture lab where the position of the UAV as well
of the obstacles was known and updated at 120Hz. (See Fig. 2).

• Trajectory Evaluation and Pure Pursuit Validation with Hardware-in-the-Loop
(HWIL): In this test we ran the UAV in an open field, fooled the receding horizon
module to think it was in the midst of a point cloud and ran the whole system
(except perception) to validate planning and control modules. Figure14 shows an
example from this setup.

• Whole System: After validating each module following the evaluation protocol
described above, we ran the whole system end-to-end. Figure1 shows an example
scene of the quadrotor in full autonomous mode avoiding trees outdoors.We detail
the results of collision avoidance in Sect. 3.
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Fig. 14 Hardware-in-the-
loop testing with UAV in
open field. The receding
horizon module was fooled
into thinking that it was in
the midst of a real world
point cloud while it planned
and executed its way through
it. This allowed us to validate
planning and control without
endangering the UAV

3 Experiments

Weanalyze the performance of our proposed deliberative approach in this section.All
the experiments were conducted in a densely cluttered forest area, while restraining
the drone through a light-weight tether.

Quantitatively, we evaluate performance by recording the average distance flown
autonomously by the UAV over several runs (at 1m/s), before an intervention. An
intervention, in this context, is defined as the pilot overriding the autonomous system
to prevent the drone from an inevitable crash. Experiments were performed using the
multiple predictions approach and single best prediction. The comparison has been
shown in Fig. 15. Tests were performed in regions of high and low clutter density
(approx. 1 tree per 6× 6m2 and 12× 12m2, respectively). Multiple predictions
results in significantly better performance. In particular, the drone was able to fly
without intervention over a 137 m distance for low density regions. The difference is
even higher in case of high-density regions where committing to a single prediction
can be even more fatal.

Further, we evaluate the success rate for avoiding large and small trees using
our proposed approach (Table1). We are able to avoid 96% of all trees over a total
covered distance of more than 1km. Failures are broken down by the type of obstacle
the UAV failed to avoid, or whether the obstacle was not in the field-of-view (FOV).
Overall, 39% of the failures were due to large trees and 33% on hard to perceive
obstacles like branches and leaves. As expected, the narrow FOV is now the least
contributor to failure cases as compared to a more reactive control strategy [26]. This
is intuitive, since the reactive control is myopic in nature and our deliberate approach
helps overcome this problem as described in the previous sections. Figure16 shows
some typical intervention examples.
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Fig. 15 a Average distance flown by the drone before a failure. b Percentage of failure for each
type. Red Large Trees, Yellow Thin Trees, Blue Foliage, Green Narrow FOV

Table 1 Success rate of avoiding trees

Multiple predictions Single prediction

Total distance 1020m 1010m

Large trees avoided 93.1% 84.8%

Small trees avoided 98.6% 95.9%

Overall accuracy 96.6 % 92.5 %

Fig. 16 Examples of interventions: (Left) Bright trees saturated by sunlight from behind (Second
from left) Thick foliage (Third from left) Thin trees (Right) Flare from direct sunlight. Camera/lens
with higher dynamic range and more data of rare classes should improve performance

4 Conclusion

In ongoing workwe aremoving towards complete onboard computing of all modules
to reduce latency.We can leverage other sensingmodes like sparse, butmore accurate
depth estimation from stereo, which can be used as “anchor” points to improve dense
monocular depth estimation. Similarly low power, light weight lidars can be actively
foveated to high probability obstacle regions to reduce false positives and get exact
depth. Another central future effort is to integrate the purely reactive [26] approach
with the deliberative scheme detailed here, for better performance.
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Robust Autonomous Flight in Constrained
and Visually Degraded Environments

Zheng Fang, Shichao Yang, Sezal Jain, Geetesh Dubey, Silvio Maeta,
Stephan Roth, Sebastian Scherer, Yu Zhang and Stephen Nuske

Abstract This paper addresses the problem of autonomous navigation of a micro
aerial vehicle (MAV) inside a constrained shipboard environment for inspection and
damage assessment, which might be perilous or inaccessible for humans especially
in emergency scenarios. The environment is GPS-denied and visually degraded, con-
taining narrow passageways, doorways and small objects protruding from the wall.
This makes existing 2D LIDAR, vision or mechanical bumper-based autonomous
navigation solutions fail. To realize autonomous navigation in such challenging
environments, we propose a fast and robust state estimation algorithm that fuses
estimates from a direct depth odometry method and aMonte Carlo localization algo-
rithm with other sensor information in an EKF framework. Then, an online motion
planning algorithm that combines trajectory optimization with receding horizon con-
trol framework is proposed for fast obstacle avoidance. All the computations are done
in real-time onboard our customized MAV platform. We validate the system by run-
ning experiments in different environmental conditions. The results of over 10 runs
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show that our vehicle robustly navigates 20m long corridors only 1m wide and goes
through a very narrow doorway (66cm width, only 4cm clearance on each side)
completely autonomously even when it is completely dark or full of light smoke.

1 Introduction

Over the past few years, micro aerial vehicles (MAVs) have gained a wide popularity
in both military and civil domains. Surveillance and reconnaissance is one area
where they have made a huge impact. In this paper, we aim to develop a MAV
that is capable of autonomously navigating through a ship to aid in fire control,
damage assessment and inspection, which might be dangerous or inaccessible for
humans. Such a constrained and GPS-denied environment poses various challenges
for navigating though narrow corridors and doorways, especially because it might be
visually degraded: potentially dark and smoke-filled. An illustrative picture is shown
in Fig. 1.

For successful operation in such environments, we need to address several chal-
lenging problems. First, the MAV should be small enough to travel in the narrow
corridors with narrower doorways (66cm width). Therefore, only lightweight sen-
sors can be used, which provide limited measurement range and noisy data. Second,
the onboard computational resources are very limited while every module should
run in real-time, posing great challenges for pose estimation and motion planning.
Third, since the practical environment is potentially a dark and smoke-filled environ-
ment, it prevents us from using state-of-the-art visual navigation methods. Though
putting LED lights can give better illumination, it might not output a usable RGB
image under smoky conditions. Besides, clear corridors with few geometric features
or corridors with many small objects on the wall pose great difficulty for accurate
pose estimation and obstacle avoidance. In addition, air turbulence from the MAV
in confined spaces poses difficulty for precise control.

Fig. 1 AutonomousMAVforfire-detection inside a ship:The left picture showsMAV’s autonomous
flight through doorways. The right picture shows a testing scenario with fire
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To address the above challenges, we build a robust and efficient autonomous
navigation system with the following contributions.

• A real-time 6DoF pose estimation system that can directly recover the relative
pose from a series of depth images and estimate the absolute pose of the MAV in
a given 3D map.

• A data fusion framework of odometry and absolute pose with other sensors to
provide fast and robust state estimation.

• An online motion planning algorithm using a modified trajectory optimization
method under receding horizon control framework.

We demonstrate the effectiveness of our system through both simulation and field
experiments. The field experiment is performed in a constrained shipboard environ-
ment containing a 20m long, 1mwide corridor and a 66cmwide doorway. The width
of the vehicle is 58cm leaving only 4cm clearance on both sides.We conductedmore
than 10 runs in various environment conditions, from normal to complete dark and
smoke-filled environments to demonstrate autonomous navigation capabilities of the
MAV.

2 Related Work

In recent years, a number of autonomous navigation solutions have been proposed
for MAVs. Those solutions mainly differ in the sensors used for perception in
the autonomous navigation problem, the amount of processing that is performed
onboard/offboard and the assumptions made about the environment.

2DLIDARhas been extensively and successfully used for autonomous navigation
for its accuracy and low latency [1–3]. However, those systems are usually only
suitable for structured or 2.5D environments. Recently, there are also many vision-
based navigation systems since cameras can provide rich information and have low
weight, etc. For example, a stereo camera is used in [4, 5] and a monocular camera
with IMU is used in [6–8], but vision is sensitive to illumination changes and could not
work in dark or smoky environments. More recently, RGB-D cameras have become
very popular for autonomous navigation of indoor MAVs [9–11] because they can
provide both image anddepth. For example, in [10] aRGB-Dvisual odometrymethod
is proposed for real-time pose estimation of a MAV and a 3D map is created offline.
In [11], a fast visual odometry method is used for pose estimation and 3D visual
SLAM is used for constructing a 3D octomap in real-time.

Unfortunately, the existing autonomous navigation methods can not work in our
case since our application environment is a confined, complex visually degraded
3D environment that may be very dark or filled with smoke. For example, for state
estimation, vision-based methods [8, 10] could not work in our case due to that it
is a potentially dark and smoky environment. Besides, for obstacle avoidance, 2D
LIDAR-based methods are also unqualified for this complex environment since it
only perceives planar informationwhile there aremany small objects (e.g. slim cables
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and pipes) protruding from the wall in our environment. In addition, many above
papers’ motion planning methods either compute paths offline [2, 11] or heavily rely
on prior maps [1]. Some papers online generate steering angles to avoid obstacles by
vector field histogram [5] or waypoints by sampling based planners (e.g. RRT*) [3].
However, steering angle is not suitable for precise control and RRT* path is usually
not smooth and not fast enough.

In this paper, we present a robust autonomous navigation system that can work
in challenging practical environments, which is based on our previous work [12].
However, our previous work only deals with the pose estimation problem while this
paper presents all the details of the whole system. In our system, we mainly use
depth images for odometry estimation, localization and motion planning, which can
work in completely dark or even light smoke-filled environments. Besides, all the
components of the system run onboard on an ARM based embedded computer.

3 Approach

3.1 Real-Time Pose Estimation

Pose estimation is required to allow the robot to be self aware of its placement in
the surroundings and hence allows it to plan appropriate paths to maneuver around
obstacles in the corridor.

3.1.1 Low-Frequency Pose Estimation

Low frequency pose estimates are primarily based on the RGB-D sensor. This
includes relative ego-motion of the robot calculated from depth images as well as
the absolute pose of robot calculated from the point cloud and a given 3D map.

Relative Pose Estimation A direct method based on [12, 13] is used to calculate the
relative pose estimation, which is much faster than state of the art ICP method [14].
Let a 3D point R = (X, Y, Z)T (measured in the depth camera’s coordinate system)
be captured at pixel position r = (x, y)T in the depth image Zt . This point undergoes
a 3D motionΔR = (ΔX,ΔY,ΔZ)T , which results in an image motionΔr between
frames t0 and t1. Given that the depth of the 3D point will have moved by ΔZ ,
the depth value captured at this new image location r + Δr will have consequently
changed by this amount:

Z1(r + Δr) = Z0(r) + ΔZ (1)

This equation is called range change constraint equation.
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For a pin hole camera model, any small 2D displacement Δr in the image can be
related directly to the 3D displacementΔR which gave rise to it by differentiating the
perspective projection equation with respect to the components of the 3D position:

∂r

∂ R
= Δr

ΔR
=
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where fx and fy are the normalised focal lengths.
Under small rotation assumption, if the camera moves with instantaneous trans-

lational velocity v and instantaneous rotational velocity ω with respect to the envi-
ronment, then the point R appears to move with a velocity

d R

dt
= −v − ω × R (3)

with respect to the sensor.
Taking the first-order Taylor expansion of the term Z1(r + Δr) in Eq.1 and

substituting Eqs. 3 and 2 into it gives us Eq.4 where ∇Z1(r) = (Zx , Z y) are the
spatial derivatives of Z1(r). This equation generates a pixel-based constraint relating
the gradient of the depth image∇Z1 and the temporal depth difference to the unknown
pixelmotion and the change of depth. In practice, in order to improve the computation
speed, the depth image is downsampled to 80 × 60 which is sufficient to get an
accurate estimation. Using Eq.4, fast odometry can be calculated from depth images.
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whereωx , ωy, ωz and vx , vy, vz are components of the rotation and translation vectors.
However, in environments with few geometric features, this method will suffer

from the degeneration problem, for example when the camera can only see a ground
plane or parallel walls. In these “ill-conditioned”cases which are really common in
indoor environments, the proposed method will produce inaccurate estimates. We
use the “condition number” [15] to measure the degeneration degree of Eq.4. When
severe degeneration happens, the estimation outputs a failure signal.



416 Z. Fang et al.

Absolute Pose Estimation To obtain the vehicle’s absolute pose in a given 3D map,
a Monte Carlo Localization (MCL) [16] algorithm is used. Though MCL has been
successfully used on ground robots [16], 6DoF pose state S = (x, y, z, φ, θ, ψ)

necessary for MAVs increases the complexity of the problem. We show that by
carefully designing the motion and observation model, MCL can work very well on
an embedded computer. More details can be found in our previous work [12].

(1) Motion Model For each subsequent frame, we propagate the previous state
estimate according to the motion model p(St |St−1, ut ). The motion command ut is
the visual odometry computed from Eq.4. To account for unexpected motion, the
prediction step adds a small amount of Gaussian noise to the motion command for
each particle. The propagation equation is of the form:

St = St−1 + ut + et et ∼ N (0, σ 2) (5)

where ut is the odometry and et is the Gaussian noise. When odometry estimation
fails, we propagate the particle set using a noise-driven dynamical model

St = St−1 + e′
t e′

t ∼ N (0, σ ′2) (6)

where σ ′ is much bigger than σ .
(2) Observation Model The belief of vehicle’s 6DoF state is updated according

to three different sources of sensor information in one observation Ot , namely depth
measurements dt from depth camera, roll θ̃t and pitch φ̃t measurements from IMU
and height measurement z̃t from ground plane detection or the point laser. The final
observation model is:

p(Ot |St ) = p(dt , z̃t , φ̃t , θ̃t |St ) = p(dt |St ) · p(z̃t |St ) · p(φ̃t |St ) · p(θ̃t |St ) (7)

The likelihood formulation is given by a Gaussian distribution. To improve the
computation efficiency, an endpoint observation model [16] is used for calculating
p(dt |St ).

3.1.2 High-Frequency Pose Estimation

For real-time control, low latency, accurate, fast and robust estimate of the position
and orientation is required. We fuse data from all of the sources providing motion
information to output high frequency state estimate as shown in the Fig. 2. We run a
high rate attitude estimator at 250Hz on the flight controller unit (FCU) to stabilize
the robot’s angular motion. We also designed a robust full state with 9DoF position
estimator capable of fusing data from optical flow (downward facing camera), odom-
etry and localization (running onboard computer), height measurement and inertial
sensors using anEKF running on the FCUat 100Hz. Such a setup allows tomaintain a
reliable estimate of full current pose evenwhen data from a sensor/estimator degrades
due to change in environment e.g. if optical flow fails to find enough features on the
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Fig. 2 Software architecture
showing main modules with
update rates

floor to generate odometry, other sensors/estimators provide enough information to
estimate the current pose, therefore maintaining system redundancy and allowing
smooth operation of the motion controller. Also, the input signals to the position
estimator is pre-processed to produce a smooth input and reject any outliers eg. a
moving average with outlier rejection is used for sonar. All these techniques together
ensure the filter running on pixhawk FCU doesn’t diverge due to outliers.

3.2 Online Motion Planning

Onlinemotion planning is needed to keepMAVsafe by quickly avoiding the obstacles
which are represented by an online updated 3D occupancy grid [17]. Global mission
points for motion planning are specified by a human or a high level mission planner.
Here, we focus on localmotion planning to generate collision-free trajectories, which
is divided into two steps: path planning to generate optimal waypoints and spline
fitting to generate optimal polynomial trajectories through waypoints.

3.2.1 Path Planning

We first search an optimal path, containing a series of safe waypoints to avoid the
obstacles. We adopt the receding horizon control (RHC) framework, which searches
the best path among an offline library [18]. In order to get a good path for different
environments, the library is usually dense with large amounts of paths which is time
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consuming to check. Instead, we combine RHC with a modified CHOMP optimiza-
tion method [19]. RHC serves to provide a good initial guess and CHOMP further
optimizes it. Through the comparison in Sect. 4.3, this method is faster and better
than RRT* in corridor environments.

Each waypoint in the path contains 4 DOF {x, y, z, ψ(yaw)}, namely the flat
output space of quadrotor [20]. Let the path be ξ(s) : [0, 1] �→ R4 mapping from
arc length s to 4 DOF (ξ(0) is starting point, ξ(1) is ending point) such that:

min
ξ

J (ξ) = w1 fobst (ξ) + w2 fsmooth(ξ) + fgoal(ξ)

s.t. ξ(0) = ξ0

(8)

where w1, w2 are the weighting parameters of different cost functions. fobst (ξ) is the
obstacle cost and fsmooth(ξ) is the path smoothness cost as defined in CHOMP [19]:

fobst (ξ) =
∫ 1

0
cobs(ξ(s))‖ d

dt
ξ(s)‖ds (9)

fsmooth(ξ) = 1

2

∫ 1

0
‖ d

ds
ξ(s)‖2ds (10)

fgoal(ξ) is the cost-to-go heuristicmeasuring distance between path endpoint ξ(1)
to global mission point ξg . We add this heuristic to free the endpoint for optimization,
while CHOMP doesn’t.

fgoal(ξ) = ‖ξ(1) − ξg‖2 (11)

Asmentioned before, we create an offline path library L containing 27 specifically
designed paths shown in Fig. 3a. It is based on the structure property of corridor,
where obstacles usually lie on two sides of walls. So it is easy and fast to find a safe
path from the library.

We align the library with current pose then select ξ ∗ = argminξ∈L J (ξ) as the
initial guess and optimize it through modified CHOMP. We keep discrete waypoint
parametrization ξ0, . . . , ξn of the path as in [19] instead of a continuous path to speed
up the optimization. An optimization example during turning is shown in Fig. 3b,
where the gradient pushes the path away from obstacles. Note that the end point
is freed for optimization, different from standard CHOMP algorithm because our
method is planning within a horizon and doesn’t directly search a path from start to
goal. A short horizon makes the optimization faster and more reactive.

3.2.2 Spline Fitting

After getting path waypoints ξ0, . . . , ξn , we fit a continuous spline ξ(t) through them.
It specifies the pose MAV should be at each time. The polynomial spline allows us to
analytically compute feedforward control input for quadrotor [20], which guarantees
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Fig. 3 a Initial path library. It is manually designed for the corridor environment where obstacles
usually lie on two sides. It includes straight line, turning arcs with different curvatures and lane
changing curves with parallel ending direction, corresponding to the three common flight patterns in
the corridor. b Path optimization in turning. The color grid represents the distance map, computed
from online 3D occupancy map [17]. The green curve represents the initial best path, blue curves
are the paths during optimization based on the gradient (yellow). The final optimized path is in red

exponential tracking stability of the controller while waypoint following or steering
angle methods cannot.

We represent the spline as 5 segments of 6th order polynomials. To find the optimal
polynomial coefficients, we formulate it as a quadratic programming (QP) problem
similar to [20, 21]. The cost function is to minimize the integration of L2 norm of
snap, namely the 4th order derivative (wrt. time). The constraints are passing through
waypoints and keeping derivative c1, . . . , c4 continuous. A closed form solution of
QP with equality constraint could be found using Lagrange multipliers. Tikhonov
regularization [22] is used in case of QP matrix ill-condition problem.

4 Experiments

4.1 System Setup

The platform we use for our experiment is a customizedMAV as shown in Fig. 4. It’s
mainly composed of two computation units. One unit is an ARM-based Quadcore
embedded computer (Odroid XU3), responsible for high-level task processing, such
as odometry estimation, localization and motion planning, etc. The other one is the
Pixhawk FCU which is used for multi-sensor data fusion and real-time control. A
forward-looking RGB-D camera is used for pose estimation and motion planning.
A downward-looking optical flow camera is used for velocity estimation and a point
laser is used for height estimation. Besides, a FLIR camera is used for fire detection.
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Fig. 4 Micro air vehicle
platform

We first conduct some experiments to validate the performance of our state esti-
mation and motion planning algorithms using the datasets recorded by carrying the
robot in the ship. Then, field experiments were performed on the ex-USS shadwell
to test the performance of the whole system. In the experiments, the RGB-D images
are streamed at frame rate of 15Hz with QVGA resolution. We create the offline 3D
maps by using LOAM system [23] and the map resolution is set to 4cm.

4.2 Pose Estimation Experiments

We test the odometry and localization algorithms by manually carrying our cus-
tomized MAV system. The experiment is conducted in a constrained and visually
degraded shipboard environment, which has a size of 16m × 25.6m × 4.04m. In
this environments, most of the time the RGB images are very dark as shown in Fig. 5,
while the depth images are still very good. There are also some challenging locations
where the depth camera can only see the ground plane, one wall or two parallel walls,
or even nothingwhen it is very close to thewall (minimum range>0.5m). In such sit-
uations, the depth-based odometry will suffer from the degeneration problem. In our
algorithm, we monitor the degeneration status. If the degeneration is too severe, the
odometry estimation method will not output motion estimation results, but a failure
indicator. Then, our localization algorithm will use the noise-driven motion model
to propagate the MCL particle set. In our experiment, we find that if the odometry
failure is relatively short in duration (less than 3s), it is possible for the localization
algorithm to overcome this failure entirely. The localization result is shown in Fig. 5.
From the experimental result, we can see that our robot can robustly localize its self
even the odometry is not good.
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Fig. 5 Localization in degraded visual environment: Pink Odometry, Red Localization. The center
plot shows the odometry, localization results with the 3D octomap. Pictures on both sides show the
RGB and depth images from onboard RGB-D camera

Fig. 6 An example trajectory calculated using path optimization with receding horizon control
through a simulated shipboard environment

4.3 Planning Experiments

Asimulated depth camera based on3Dpoint cloudmap is used to create an occupancy
grid. The mission planner then provides some goal points based on the prior map,
about 5m away from each other and local planner keeps replanning to reach them.
The pose history during simulation is shown as red curve in Fig. 6.

To demonstrate the quality of our method, we compare our path planning method
with RRT* and keep spline fitting part (minimizing snap) as the same. To bias RRT*,
the local goal points are set closer to each other (∼2m) to greatly decrease the search
space. The comparison is implemented on the embedded computer and the result is
shown in Table1. With bias, RRT* still needs more time than our method to generate
a valid path and the quality in terms of obstacle cost and snap cost is higher than
ours. This is mostly due to the fact that the corridor is a structured environment
where obstacles usually lie on two sides. So our path set method could quickly find
a smooth and safe path while RRT* needs many random samples in order to get a
valid and smooth path.

Table 1 Path planning comparison with RRT*. Dist stands for vehicle distance to the obstacle

Methods Time (ms) Mean dist (m) Min dist Mean snap (m/s4) Max snap

RRT* 70 0.46 0.16 1.46 14.02

Our 30 0.47 0.18 0.58 2.50
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An end-to-end offline path could also be computed from the prior map but blind-
ingly following it tends to cause a collision if there is big state estimation error.
Instead, the proposed online obstacle mapping and motion planning can guaran-
tee the safety. The goal points in our planner should be set properly so as to avoid
being trapped in local dead-ends. Though offline path with online modification could
relieve the problem, it is not applicable in other unknown environments.

4.4 Autonomous Flight Test Results

The mission of the completely autonomous flights is to search, detect and locate fire
using only onboard sensors and computation resources. In our tests, the MAV needs
to operate in a variety of environments:

Fig. 7 Map and RGB and depth images of each environment condition from onboard RGB-D
cameras. From left to right with lights on, with lights off, with fire and dense smoke
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1. Narrow passageways and doorways: The most common shipboard environment.
The space constraints limit the vehicles size.

2. Areaswith poor or no lighting: Become visually degraded. Performance of optical
flow sensor decreases.

3. Areas filledwith smoke and fire: Smoke density varieswith fuel source. It strongly
affects the depth image and optical flow sensor.

Figure7 shows the created offline point cloud map of the testing area and typical
sensor images in each environment. MAV is launched around the ‘start point’ and
flies autonomously in the 1 m wide, 20 m long corridor, with a tight doorway (66 cm
wide, 8 cm clearance) and reaches the ‘end point’, while detecting fires.

We performed 20 experiments in this testing area under the three environment
conditions. The vehicle pose of one experimental run is shown in Fig. 8. The success
ratio of 20 runs is shown in Table2. Failure cases are usually due to quadrotors being
slightly rotated and stuck in the tight doorway. It is difficult to cross the door in dense
smoke because the depth image is corrupted by smoke making it difficult for state
estimation and obstacle detection. Results show that our robot can work very well in
all the conditions except very dense smoke.

Runtime performance is also very important for MAVs since the onboard com-
putation abilities are limited. We record the performance including CPU usages of
some key algorithms on the Odroid system shown in Table3. We use 300 particles
forMCL localization.When all the systemmodules are running, the total CPU usage
is between 60 and 65%. The experiment result shows our navigation system can run
in real-time by only using the onboard computation resources.

For fire detection, we use a lightweight FLIR-tau thermal camera to measure the
temperature of the environment. We segment the appropriate range of temperature
for fire, people etc. based on the thermal images. Anything over 100 ◦C is considered
to have a high probability of being fire or close to fire. Similarly, segmented blobs

Fig. 8 Localization result from one autonomous flight

Table 2 Autonomous flight results

Environment Total run Succeeded Rate (%)

Normal 4 4 100

Dark 7 5 71.4

Smoky 9 5 55.5
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Table 3 Per-frame runtime performance on the embedded computer

Name Algorithm runtime

Mean (ms) Min (ms) Max (ms) StdDev (ms)

Odometry 18.3 8 25.8 5.2

Localization 65.8 45.8 97 16.5

Local planning 29.2 15.2 37.8 6.7

with temperature close to 30 ◦C is considered to belong to a human being. The video
of a field experiment at Shadwell in Nov 2014 can be found at https://www.youtube.
com/watch?v=g3dWQCECwlY.

5 Conclusion

In this paper we have shown the feasibility of an autonomous fire detection MAV
system in a GPS denied environment with tough visibility conditions. This was
achieved without the need of any additional infrastructure on the ship. We achieved
autonomous flight with fully online and onboard state estimation and planning
through 1m wide passages while crossing doorways with only 8cm clearance. We
demonstrated 10 consecutive runs where the vehicle crossed completely dark, light
smoky passageway respectively and ended by detecting wood and diesel fires.

The next challenges are to increase the robustness and safety of the vehicle while
increasing flight time. This will involve improvements in both hardware and soft-
ware. The current size of vehicle is a little large, resulting in a very tight fit through
the ship doorways. In future, we intend to move from a quadrotor design to a sin-
gle/coaxial ducted rotor design to decrease size but increase flight time efficiency.
Currently, our sensor suite loses reliability in dense smoke conditions. We plan on
adding sensors which extend the range of environments our robot can successfully
navigate and inspect. On the software side, one important goal is to decrease the
dependency on a prior map for state estimation to make the system more adapt-
able to changing or damaged environments. Pursuing exploration and mapping in a
damaged environment poses many interesting research challenges.
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Autonomous Exploration for Infrastructure
Modeling with a Micro Aerial Vehicle

Luke Yoder and Sebastian Scherer

Abstract Micro aerial vehicles (MAVs) are an exciting technology for mobile sens-
ing of infrastructure as they can easily position sensors in to hard to reach positions.
Although MAVs equipped with 3D sensing are starting to be used in industry, they
currently must be remotely controlled by a skilled pilot. In this paper we present an
exploration path planning approach for MAVs equipped with 3D range sensors like
lidar. The only user input that our approach requires is a 3D bounding box around the
structure. Our method incrementally plans a path for a MAV to scan all surfaces of
the structure up to a resolution and detects when exploration is finished. We demon-
strate our method by modeling a train bridge and show that our method builds 3D
models with the efficiency of a skilled pilot.

1 Introduction

The goal of this work is to use a MAV to rapidly model large outdoor structures
with arbitrary geometry. As-built 3D models are increasingly used in a number of
industries to detect structural problems, assess damage, design renovations, and to
organize other types of data. Although the industry standard ground-based lidar
are accurate, building models with them is slow and they suffer from occlusion
problems. Modeling large structures found in outdoor, open air environments is
an excellent application for MAV-based lidar which can reach almost any vantage
point. Compared to stationary ground-based lidar, MAV-based lidar output a model
with lower resolution and higher uncertainty as the vehicle must use lightweight
sensors and must estimate its position. The benefit of a MAV-based lidar is coverage
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and rapid deployment. In many environments flying scanners can reach the vantage
points required to achieve complete coverage, and do so very quickly. Rather than
competing with existing terrestrial lidar, we imagine such a system supporting new
applications that require low resolution and complete coverage point clouds.

A number of MAV systems are commercially available for building 3Dmodels of
outdoor environments. Acquiring data with these systems, however, is still a manual
process requiring a skilled pilot. Not only is safely piloting a MAV near a structure
difficult, scanning complex structures under manual control is prone to error as it is
difficult for a human pilot to remember what has and what has not been scanned.
We propose a practical solution where a user draws a 3D bounding box around a
structure, then a small flying vehicle autonomously scans all surfaces of the structure,
producing a 3D point cloud.

One challenge in 3D modeling infrastructure with an autonomous MAV is devel-
oping path planning algorithms. If a prior model of the infrastructure is available,
“inspection” or “coverage” planning could lead the MAV to efficiently scan all sur-
faces [2, 7]. In many applications, however, obtaining a prior model is impractical.
Requiring a prior map will limit the adoption of a robotic planning algorithm for
infrastructuremodeling.Without a priori models to use for path planning, the remain-
ing problem is one of choosing an exploration path through a partially observed
environment with the goal of maximizing exploration efficiency.

The contribution of this paper is a simple yet effective 3D path planning algorithm
for completely scanning complex 3D environments with a range sensor attached to a
MAV. Specifically, we present the surface frontier, a fundamental geometric aspect
of 3D surface exploration, and we present an incremental path planning algorithm
using surface frontiers to guide the observation of unknown surface until the surface
is completely observed. Finally,we present realworld results showing that our system
performs as well as or better than a skilled pilot (Fig. 1).

Fig. 1 A MAV autonomously modeling a structure (left) and the resulting point cloud (right)



Autonomous Exploration for Infrastructure Modeling … 429

2 Related Work

Work related to ours does not rely on a prior model of the environment but iteratively
plans exploration paths through a partially observed environment. Common to almost
all of the following approaches is discretizing the continuousworld into an occupancy
grid where cells in the occupancy grid are either occupied, free, or unknown to
the robot. The difference between most of the following methods is in how the
information in the occupancy grid is used to guide exploration.

Frontier exploration [16] is a simple 2D exploration algorithm used extensively on
ground robots. In frontier exploration, information is gained by traveling to frontiers,
a heuristic that has proven successful at guiding a robot to a vantage point where
unobserved cells can be observed. Extensions of frontier exploration to 3D without
reducing occupancy grid resolution are too computationally costly [5] to run in
real time on a computationally constrained MAV. Shade et al. [12] propose a 3D
frontier exploration and integrated path planning algorithm that runs in real time but is
designed for exploration of free space, notmodeling outdoor surfaces. Several groups
achieve outdoor exploration and 3D mapping using MAVs by limiting exploration
to 2D. Heng et al. [6] implement frontier based exploration and wall following
exploration,which theyvalidate in outdoor urban environments. Jain et al. [8] propose
a frontier shoreline exploration algorithm that they validate on a MAV exploring
rivers.

Somemethods estimate entropy reduction over a set of possible paths to determine
the best exploration path. Stachniss et al. [15] propose generating paths that lead to
frontiers and paths that lead to previously visited locations to improve localization.
The path that minimizes the sum of map entropy and pose entropy is chosen.

“Next best view” planning algorithms have been developed [9, 11] to incremen-
tally plan sensor views for modeling objects. Next best view algorithms generally
constrain the search space of views around the object and then find a view that max-
imizes some utility function. The utility function for evaluating views might include
unknown cells visible from the view and overlap with previously acquired data for
data registration.

To reduce computational cost, a number of techniques attempt to find exploration
goals without managing an occupancy grid. One method designed for indoor 3D
exploration [13] simulates particles expanding from free space according to New-
tonian dynamics. Exploration goals are set in regions of high expansion. This algo-
rithm is designed as a simplification of frontier exploration allowing the authors to
successfully explore indoor environments with a computationally constrained MAV.
Another simulated particle-based method [1] simulates liquid falling on a 3D out-
door scene and detects exploration goals by finding areas where the simulated liquid
leaks through the point cloud. This algorithm is limited to exploring 2.5D terrain
because the algorithm is not designed for detecting holes in vertical walls and under
overhangs.
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Our method is closely related to next best view techniques although it employs a
simpler utility function. Our utility function is based on the visibility of 2D frontiers
on the 2D surface of a 3D object, which are related to the frontiers used in frontier
exploration.

3 Problem Formulation

This section provides a representation for the state of aMAV and a partially observed
environment. In this section we also describe the problem that we solve in Sect. 5,
as well as some assumptions.

Since we are exploring outdoors with the ability to navigate in 3D, we start by
constraining exploration to a region of interest R ⊆ W where W ⊆ R

3 is the world.
The MAV’s position in W is defined by its state X = [x, y, z, ϕ, θ, ψ, c] where
(x, y, z) and (ϕ, θ, ψ) are position and orientation in world coordinates, respec-
tively. The variable c is the configuration of the sensors on the vehicle which can
be multidimensional. We will refer to proposed trajectories T which symbolize time
parametrized state such that Xi = T (ti ) for ti ∈ [

to, t f
]
.

We represent W as a 3D occupancy grid where cells C j can be unknown Cu , free
C f , or occupied Co. The goal of our exploration planning algorithm is to classify all
observable Co in R. Supporting this goal, we define surface information as

Is =
m∑

j=1

{
1, ifC j = Co andC j ⊆ R

0, otherwise
(1)

wherem is the number of cells in R. We define I ∗
s as the surface information when all

surfaces in the environment are observed. The problem that we would like to solve
is to find an optimal trajectory T ∗ from which the sensor observes all surfaces (i.e.
Is = I ∗

s ) in minimum time. Since an optimal coverage path in an environment that is
only partially observed may not be possible to compute, we are left with the goal of
achieving high exploration efficiency in terms of surface information gain per unit
time.

We need to make a few assumptions. First, we assume that free space in R is one
connected set reachable without leaving R. Second, we assume the vehicle’s state
estimation is accurate enough to not require active localization. Some exploration
methods [15] estimate theMAV’s ability to localize over proposed trajectories to help
maintain low uncertainty in the map. We find that localization accuracy around large
structures using our laser odometry approach [17] is accurate enough for exploration
using large occupancy grid cells. For this work, we assume that active localization
is not necessary.

We use the occupancy grid representation to describe our method in Sect. 5 but
first we describe the surface frontiers that guide our exploration approach.
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4 Surface Frontiers

Our goal is to sense a structure’s surface, not the free space around the structure.
Traditional frontier exploration would lead a MAV to explore free space in addition
to surface. Because of this, frontier exploration in an outdoor environment may be
inefficient. Ourmethod, proposed in Sect. 5, prioritizes surfacemodeling by using the
boundary between known and unknown surface to guide exploration. In this section
we describe topological properties of known and unknown space that motivate our
method. This section starts by introducing the concept of a surface frontier, then goes
on to discuss its benefit for exploration.

4.1 Definition

We consider W as topological space where all points p ∈ W are either occupied
po or free p f . All p are static and all po belong to one connected set Po = {po}.
Since W is either unobserved or partially observed a priori, points unknown to the
MAV are designated pu and known points pk . In this section we assume the MAV is
equipped with an ideal range sensor capable of classifying unoccluded volume in its
field of view as occupied or free. We define p∗

k as points that can be observed from
the free space connected set that theMAV navigates through. As described in Sect. 3,
we assume p∗

k ∩ R is one connected set. Since a range sensor can only observe the
surface of occupied space,

S∗
k = Po ∩ {p∗

k }

is a surface, which does not change during exploration. S∗
k is the object surface

observable from the free space connected set that theMAVnavigates through, though
not necessarily observable by the MAV if some free space is not reachable. During
exploration a subset of S∗

k are the known surfaces

Sk = Po ∩ {pk}

Since Sk is a subset of the surface S∗
k during exploration,weknow that the boundary

of known surface ∂Sk is also a boundary of unknown surface, where ∂ is the boundary
operator. In other words, an unobserved surface must be present just beyond the
known surface boundary. We call ∂Sk surface frontiers. During exploration, ∂Sk is
a set of one dimensional manifolds as shown in Fig. 2. If we can guide a robot to
observe surface frontiers, it is almost certain that we will observe unknown surface.
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Fig. 2 Surface frontiers at
the beginning of exploration

4.2 Surface Frontier Exploration

For practical purposes wewould like a simpleway to definewhat volume in theworld
should be explored. Then, given a volume to be explored, we would like to detect
when exploration is complete. This subsection introduces a region of interest bound-
ing the volume to be explored, then shows howwe can terminate explorationwhen all
surfaces in the volume are observed without exhaustively exploring unknown space.

We set a region of interest grouping points into the connected set R which is
the volume containing the structure to be modeled. As an example, R could be the
volume inside a cuboid defined by someone using the system. The goal is to observe
all surfaces inside the bounding box S∗

k ∩ R.
We define the region of interest boundary ∂ R intersecting the connected free space

{p∗
k } ∩ {p f } as the observable region of interest boundary

B = ∂ R ∩ {p∗
k } ∩ {p f }

Combining surface B with all object surfaces observable by the MAV gives us
the surface to be explored

E = B ∪ Sk ∩ R

If {pk ∈ R} = {p∗
k ∈ R} then E becomes a closed connected surface denoted

E∗. We can use this property to determine when exploration is complete. If, during
exploration, E is a set of connected surfaces instead of a closed connected surface,
exploration is not complete as there still may be unobserved surfaces in the bounding
box.

Alternatively, if we assume that S∗
k ∩ R is a single connected surface then explo-

ration is complete when ∂S∗
k ∩ R is an empty set. This assumption relieves the MAV

of having to exhaustively search B.
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Only using surface frontiers to guide exploration means we are not making any
assumptions about a structure’s geometry. Including a priori information about the
structure (e.g. max curvature) or other heuristics (e.g. number of Cu visible from a
view) could improve performance but would also increase algorithm complexity and
possibly reduce generality.

5 Method

In the following we formulate an exploration planning strategy for a MAV tasked
with the exploration problem introduced in Sect. 3. Unlike the frontier exploration
algorithm [16], we cannot directly navigate to surface frontiers as doing so might
lead to a collision. We also may not be able to observe frontiers if the MAV cannot
reach a state where the frontier is visible. To use surface frontiers for exploration,
we compute T (ti ) from which we can observe frontiers, and terminate exploration
when surface frontiers are not observable by the MAV. In this section we start by
describing how to detect surface frontiers in the occupancy grid. We then introduce
a utility function for estimating the utility of views for sensing surface frontiers.
Finally, we describe how we can plan exploration paths using an objective function
that trades off between a view’s utility and the path cost of navigating to the view.

5.1 Occupancy Grid Surface Frontiers

Given an occupancy grid with occupied, free, and unknown cells, surface frontiers
can be detected by finding connections between all three cell classes. An occupancy
grid surface frontier can be defined as a free cell C f with a known occupied neighbor
Co and an unknown neighbor Cu where Co and Cu are also neighbors. An example
of surface frontiers in the occupancy grid representation is shown as the blue cells
in Fig. 6.

5.2 View Utility

To guide the observation of surface frontiers we create an exploration utility function
that estimates the number of surface frontier observations that can be made at a given
view.

First we make a simplification based on our vehicle’s sensor configuration. Our
vehicle’s lidar is nearly omni-directional as shown in Fig. 3. Only a small blind spot
is present behind the vehicle. We assume that the lidar scans in a spherical pattern
sampling in a circular uniform distribution, which allows us to reduce the degrees of
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Fig. 3 lidar field of view (left) and camera field of view (right)

freedom of the sensor field of view. Assuming omni-directional sensing allows us to
simplify our MAV’s state to X = [x, y, z].

Assuming one complete scan is collected we can approximate the number of lidar
rays that will hit one unoccluded surface frontier cell. We also consider safe flying
distance from the structure ds and a maximum desired measurements per cell tm .
Given the cell height h, the distance from the sensor to the cell r , and the number of
points per scan N , the utility of a view for observing a single surface frontier is

f (r) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if r < ds

tm, if ds ≤ r < dm
Ac N

As
, if dm ≤ r

(2)

where dm =
√

h2N
4π tm

, Ac = h2 is the area of one face of the cell and As = 4πr2 is the
area of a sphere. Equation2 is plotted in Fig. 4 using our vehicle’s sensor parameters
and the thresholds.
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Fig. 4 Equation2 evaluated with h = 0.5m, N = 40000, ds = 2m, and tm = 50
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Fig. 5 Equation2 evaluated during a simulated exploration over the center line of a simple bridge-
like object. Red cells are occupied and blue cells are surface frontiers. The yellow sphere is a goal
that the robot has almost reached

For a given view we can evaluate Eq.2 for each unocculded surface frontier and
sum the results to give us a view utility. We can repeat this over a set of views to
create a 3D utility function. To demonstrate this utility function we evaluate Eq. 2
densely in Fig. 5 without thresholds (i.e. tm = ∞ and ds = 0).

Unfortunately, it is expensive to evaluate the utility function densely over the map
due to the ray tracing required. From Fig. 5, we observe that the surface frontier
observation utility decreases as distance from the surface increases. If our goal is to
maximize a view’s utility, the view can be offset from the surface between the safety
distance ds and dm .

5.3 View Planning

Our view planning approach offsets the occupied cells using a distance transform
then uniformly samples potential views on the offset surface. The interested reader is
invited to read more about the SPARTAN path planner [4] which details our distance
transform and view sampling approach. For each view found using SPARTAN, we
determine which surface frontiers are visible by ray tracing. For a given view we
sum Eq.2 evaluated for each visible surface frontier cell. This gives us a set of views
weighted by their utility as shown in Fig. 6. Given a robot position, partial map, and
exploration views, we plan to a views using SPARTAN.

If we want to consider the utility of a proposed path we could incrementally sum
the utility of views along a path, updating the map after summing each view by
simulating frontier observations. In particular, an approach such as [14] could be
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Fig. 6 Weighted views during exploration simulation. Red cells are occupied and blue cells are
surface frontiers. The yellow sphere is a goal that the robot is navigating towards

implemented. Unfortunately, such solutions are computationally expensive and may
quickly change due to new (real) observations. Instead of explicitly computing the
utility of paths, we focus on using path cost to trade off between nearby exploration
goals and distant exploration goals. We can then use Eq.3 to determine the highest
value exploration view. For a given map, the exploration value V of a view X f is

V (X f , Xo) = U (X f )

Umax
α − C(X f , Xo)

Cmax
(1 − α) (3)

where α is a tuning parameter, U (X f ) is a view utility, and C(X f , Xo) is the path
cost for navigating from the current state Xo to view X f . We can trade off between
path cost and view utility by tuning 0 ≤ α ≤ 1. In large environments setting α = 1
leads the MAV to inefficiently travel back and fourth across free space as it chooses
maximum utility views. Reducing α increases the value of local view utility leading
the robot to explore a region before travelling long distances to high utility views.

Once a view is chosen, the MAV replans paths at a fixed frequency until (a) the
view is reached, (b) the view utility is reduced to zero, (c) the view is deleted when
the distance transform is updated with new observations, or (d) the MAV cannot
reach the view after a reasonable amount of time. When one of these conditions is
met, a new view is chosen. If all samples are close to zero, the exploration planner
terminates. There may be surface frontiers left when the algorithm terminates, but
they will not be observable from reachable views.

To begin exploration the MAV could search the bounding box until a surface is
detected to begin exploration. In our current implementation we assume that the
MAV starts with the structures surface in the sensor field of view and we assume the
structures surface in the bounding box S∗

k ∩ R is one connected set. This speeds up
data collection by making searching the boundary unnecessary.
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Fig. 7 MAV platform

6 MAV Platform

The vehicle is built on top of an oct-rotor platform shown in Fig. 7. All processes are
run on an onboard flight computer using a Intel i7 dual core 2.5GHz processor. Our
mapping, planning, and controls processes communicate using the Robot operating
system [10]. The flight computer sends yaw, pitch, roll, and thrust commands to a
Mikrokopter flight controller. A cascaded PID controller is used to follow paths at a
fixed 0.5 m/s. The vehicle weighs 5kg and has a flight time of approximately 15min.

The range sensor used for mapping is a Hokuyo UTM-30LX-EW scanning lidar
with a custom gimbal that sweeps the laser in a spherical pattern. All lidar data is
stored for point cloud generation, but only measurements within 15m are added to
the occupancy grid. Upward and downward facing IDS imaging UI-1241LE-C-HQ
cameras using Sunex DSL215B 185◦ fisheye lenses give the vehicle a spherical field
of view. The cameras are downsampled to 480×480 pixels. The vehicle has a baro-
metric pressure sensor and Microstrain 3DM-GX3-35 IMU reporting readings at 20
and 50Hz respectively. All sensors are time synchronized using a time server micro-
controller. Depth enhanced visual odometry [17] is run online at 30Hz. An unscented
kalman filter [3] is used to fuse IMU,Visual odometry, barometric pressure, andGPS.

7 Results

We validate our algorithm by autonomously modeling a train bridge in Pittsburgh,
Pennsylvania. The bridge, shown in Fig. 9, is a 50m long steel and concrete struc-
ture. The environment is vegetated in some places and confined by bridge structural
members in others. Although there was little wind during the tests, the environment
was challenging for a MAV with intermittent GPS signal. In some areas the vehicle
only had a 2m margin between its position and the obstacles.
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Fig. 8 Autonomous and manual flight surface information gain

Fig. 9 MAV path and point cloud built during autonomous flights (blue, green) and manual flight
(red)

At the start of the trial, the MAV was initialized with the bridge in sensor range.
The bounding box parameters were loosely defined around the bridge and sent to the
MAV. For this trial, the MAV flew to next best views without considering path cost
(i.e. α = 1). After manual takeoff the MAV was switched into autonomous mode
and began exploration. Since all processes run on board, communication between
the MAV and a ground station is not used. The autonomous run lasted 6min and
resulted in a five million point model of the bridge, shown in Fig. 1.

We compare autonomous exploration against a manual flight by skilled pilot. The
pilot was instructed to scan all surfaces of the bridge using only a remote control to
guide the vehicle. Figure8 shows surface information versus time for the autonomous
andmanual trials. The results show that the autonomous exploration planner varies in
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performance by ±8000 observed occupied cells when compared to the performance
of the single flight by a skilled pilot.

Qualitatively, the MAV’s behavior during the autonomous trials was similar to
manually guided trial. During the autonomous trials the MAV maintained safe dis-
tance from bridge surface and obstacles like tree branches and tall grass. Figure9
shows that the MAV chose a exploration path that varied from the human operator’s
path, spending most of the mission flying along the sides of the bridge instead of
systematically weaving under the bridge like the human operator.

8 Conclusion and Future Work

In this work we demonstrate an exploration planning algorithm that requires simple
operator input to generate complex exploration paths for building a 3D model of an
arbitrary structure outdoors. We show that a prior map is not necessary for planning
paths for such a system. Finally, we demonstrate that autonomous vehicles using our
exploration algorithm can perform as well as a skilled pilot.

There are a number of limitations in our method that present challenges for future
work. The large 0.5m occupancy grid cell size used in this work limit the MAV’s
ability to detect small surface frontiers. If we can significantly decrease cell size
using a map representation like an octree we could ensure coverage up to a resolu-
tion defined by the user. This would allow the user to trade off between point cloud
resolution and flight time. In larger scale environments the travel cost between view
points will become significantly higher making the consideration of path cost more
important. Our system already supports trading off between view value versus path
cost, but thorough analysis is needed to justify this approach in larger scale environ-
ments. Finally, this work assumes that the vehicle’s position estimate is accurate. This
is a reasonable assumption considering the environment used in this paper and the
required map accuracy. A higher mapping accuracy would make the system useful in
more applications. To do this we would like to employ active localization techniques
as well as improved sensors in future work.
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Abstract This paper investigates and demonstrates the potential for very long
endurance autonomous aerial sensing and mapping applications with AtlantikSolar,
a small-sized, hand-launchable, solar-powered fixed-wing unmanned aerial vehi-
cle. The platform design as well as the on-board state estimation, control and
path-planning algorithms are overviewed. A versatile sensor payload integrating
a multi-camera sensing system, extended on-board processing and high-bandwidth
communication with the ground is developed. Extensive field experiments are pro-
vided including publicly demonstrated field-trials for search-and-rescue applications
and long-termmapping applications.An endurance analysis shows thatAtlantikSolar
can provide full-daylight operation and a minimum flight endurance of 8h through-
out the whole year with its full multi-camera mapping payload. An open dataset with
both raw and processed data is released and accompanies this paper contribution.

1 Introduction

The field of aerial robotics has seen rapid growth in the last decade. Prerequisite tech-
nologies have developed to the point that we are not far from the day when utilization
of aerial robots is prevalent in our society. With an application range that includes
infrastructure inspection [13], surveillance for security tasks [6], disaster relief [8,
25], crop monitoring [7], mapping [1], and more, Unmanned Aerial Vehicles (UAVs)
already provide added value to several critical andfinancially significant applications,
and are widely acknowledged for their potential to achieve a large impact in terms
of development and growth. Examples of compelling existing use-cases include the
mapping of the Colorado flood area in 2003 [4], the 3D reconstruction of the “Christ
the Redeemer” statue in Brazil and the Matterhorn mountain reconstruction [20],
and the live offshore flare inspection that took place in the North Sea [3].
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While these are impressive achievements, there are still major factors that limit
the applicability of UAVs. One such factor is their relatively low endurance. Indeed,
long-endurance flight capabilities are crucial for applications such as large-scale
Search-and-Rescue support, industrial pipeline monitoring, atmospheric research,
offshore inspection, precision agriculture and wildlife monitoring. This new class of
problems exposes a practical limitation in the majority of currently available aerial
robot configurations.

Solar-powered flight is a key enabling technology for long-endurance operations.
By harnessing the sun’s energy and storing solar power during the day, flight times
can be significantly prolonged. In cases of extreme designs, sustained flight can
even be achieved through night time and/or cloudy conditions. An existing example
of extreme endurance is the QinetiQ Zephyr UAV (22m wingspan), which broke
records, sustaining flight for 2weeks [24]. However, scaling down from the high-
altitude “pseudo satellite” class to more manageable, rapidly deployable and low-
altitude designs is not trivial.

Motivated by the increasing industrial, scientific and societal demand for persis-
tent automatic aerial sensing and surveillance, long-endurance, solar-powered fixed-
wing aircrafts have been a research priority in the Autonomous Systems Lab (ASL)
at ETH Zurich. With the most recent development being the AtlantikSolar UAV, our
aim is to extend the current technological state of the art with a robust and versatile
platform capable of significantly longer term sensing and mapping on the order of
days or even weeks. Figure1 depicts the AtlantikSolar UAV and its sensing capa-
bilities. The detailed design of this UAV platform has been described in [18]. This
paper extends our previous design-oriented work by investigating and characterizing
possible application scenarios for our platform. More specifically, we present a set

Fig. 1 The AtlantikSolar UAV is capable of very long-endurance operation in missions including
mapping, surveillance, victim detection and infrastructure inspection
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of field trials that are enabled by a diverse sensor payload recently integrated into
the UAV. This on-board sensor payload includes RGB and grayscale camera systems
and a thermal vision sensor in combination with a complete suite of sensors that
enable the vehicle to navigate autonomously.

The remainder of this paper is organized as follows: We present a description of
the AtlantikSolar vehicle in Sect. 2, its sensing and mapping capabilities in Sect. 3,
field experiment results in Sect. 4, and derived conclusions in Sect. 5.We also provide
a detailed discussion of our experiences from both search-and-rescue as well as map-
ping missions, and release a dataset containing raw as well as post-processed data.

2 AtlantikSolar Unmanned Aerial Vehicle

2.1 Platform Overview

The AtlantikSolar UAV (Fig. 2, Table1) is a small-sized, hand-launchable, low-
altitude long-endurance (LALE), solar-poweredUAVoptimized for large-scale aerial
mapping and inspection applications. A detailed overview of the conceptual design
ofAtlantikSolar is given in [18]. The designmethodology is based on thework in [10,
16] with extensions on optimizing solar-powered UAVs for a range of deteriorated
meteorological conditions (e.g. cloud obstruction of sun radiation) as given in [18].
The platform owes much of its configuration to the optimization of power consump-
tion. Lightweight composite materials are used in the fabrication of a torsionally
resistant cylindrical carbon fibre spar, tapered carbon fibre tail boom, and fibreglass
fuselage body. The AtlantikSolar prototype UAV used for the flight tests in this paper
features 88 SunPower E60 cells with an efficiency of ηsm = 0.23. Energy is stored
in 2.9kg of cylindrical high energy density Li-Ion batteries (Panasonic NCR18650b,

Fig. 2 AtlantikSolar system overview
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Table 1 Summary of AtlantikSolar design and performance characteristics

Specification Value/unit

Wing span 5.65m

Mass 7.5kg

Nominal cruise speed 9.7m s−1

Max. flight speed 20m s−1

Min. endurance (no payload)a 13h

Design endurance (no payload) 10days
aOn battery-power only

243Wh kg−1, 700Wh total) that are integrated into the wing spar for optimal weight
distribution. The two ailerons, the elevator and the rudder are driven by brushless
Volz DA-15N actuators with contactless position feedback. The propulsion system
consists of a foldable custom-built carbon-fibre propeller, a 5:1 reduction gearbox
and a 450 W brushless DC motor.

A Pixhawk PX4 Autopilot, an open source/open hardware project started at ETH
Zurich [21], is the centerpiece of the avionics system. It employs a Cortex M4F
microprocessor running at 168MHzwith 192kBRAM to perform autonomous flight
control and state estimation. Major hardware modifications include the integration
of the ADIS16448 IMU and the Sensirion SDP600 differential pressure as well as
re-writing of the estimation and control algorithms.

2.2 Operational Concept

AtlantikSolar is hand-launched to enable rapid deployment and operation in remote
or uneven terrain. It is operated by a two-person team consisting of the safety-
pilot and an operator for high-level mission management through the ground control
station (GCS) interface (QGroundControl [23]). The GCS allows automatic loitering
and autonomous waypoint following of user-defined or pre-computed paths. For
visual-line-of-sight operation, the primary (434MHz) telemetry link is sufficient,
but an Iridium satellite link is also integrated to act as a backup link in the event
of primary radio loss or beyond-visual-line-of-sight operation (Fig. 3). The UAV is
equipped with a wing-mounted sensor pod, but provides additional payload capacity
and versatility within its total payload budget ofm pld,max ≈ 800g. AtlantikSolar also
integrates four high-power LEDs for night operations.

2.3 Enabling Technologies for Autonomous Navigation

2.3.1 Robust Long-Term State Estimation

To provide reliable and drift-free long-term autonomous operation, a light-weight
EKF-based state estimator, as presented in [11], is implemented on the autopilot.
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Fig. 3 Communications and ground control

It fuses data from a 10-DoF Inertial Measurement Unit (IMU) with GPS-Position,
GPS-velocity and airspeed measurements in order to successively estimate position,
velocity, orientation (attitude and heading), QFF as well as accelerometer and gyro
biases. Robustness against temporal GPS losses is enhanced through the inclusion of
airspeed measurements from a differential barometer. To increase flight safety, the
algorithm estimates the local three-dimensional wind vector and employs an internal
aircraft aerodynamics model to estimate the current sideslip angle and Angle of
Attack (AoA), which can in turn be used by the flight controller to apply implicit
flight regime limits, as in the case of the authors’ previous work [17].

2.3.2 Flight Control

AtlantikSolar’s flight control system features automatic tracking of waypoints along
pre-defined paths, allows extended loitering around areas of interest and implements
safety-mechanisms such as automatic Return-To-Launch (RTL) in case of prolonged
remote control or telemetry signal losses. The baseline control is a set of cascaded
PID-controllers for inner-loop attitude control [2]. Output limiters are applied to
respect the aircraft flight envelope, dynamic pressure scaling of the control outputs
is used to adapt to the changing moment generation as a function of airspeed and
a coordinated-turn controller allows precise turning. Altitude control is based on
a Total Energy Control System that also allows potential energy gains in thermal
updraft while it implements safety mechanisms such as automatic spoiler deploy-
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Fig. 4 Summary of the employed 3D inspection path-planning algorithm

ment during violation of maximum altitude limits. Waypoint-following is performed
using an extended version of the L1-nonlinear guidance logic [19]. The detailed
implementation and verification of our autopilot is described in [18].

2.3.3 Inspection Path-Planner

An inspection path-planning algorithm is integrated into the system in order to enable
automated inspection and mapping of large scale 3D environments. The algorithm is
inherently tailored for structural inspection and computes full coverage and collision-
free paths subject to a model of the nonholonomic constraints of the vehicle. The
overall approach is illustrated in Fig. 4, while a detailed description is available in the
authors’ previous work [1]. It essentially corresponds to an explicit algorithm that
computes an inspection path based on a mesh-model representation of the desired
world. It iteratively tries to compute viewpoint configurations that provide full cov-
erage while at the same time employing the Lin-Kernighan heuristic [12] in the
search for the best route that visits all of them subject to the motion constraints of the
vehicle. Via a viewpoint resampling technique that employs randomized sampling,
the designed algorithm allows for an iterative improvement of the path cost while
always retaining complete coverage. Fast collision-free navigation is achieved via a
combination of a Boundary Value Solver for the considered vehicle model with the
RRT� [9] motion planner.
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Fig. 5 The sensor pod as it is currently used on the AtlantikSolar UAV. The pod’s fairing has been
omitted for better visibility of the components

3 Sensor Pod

The sensor pod (see Fig. 5) features a grayscale (Aptina MT9V034) camera with a
high dynamic range and a long-wavelength infrared (LWIR) camera (FLIR Tau 2)
for thermal imaging, both mounted with an oblique field of view (FOV), as well as
a nadir facing RGB camera (uEye XS 2). An IMU (Analog Devices ADIS16448) is
also included, measuring linear accelerations, angular velocities, and the magnetic
field in all three axes. All sensors are integrated with a Skybotix VI-sensor [27],
allowing tight hardware synchronization and timestamping of the acquired data [15].
Furthermore, a state of the art embedded computer (Kontron COMe-mBT10), with
an Intel AtomCPU (4 cores, 1.91GHz) and a thermal design power (TDP) of 10W, is
interfaced with the VI-sensor and the PX4 autopilot board of the UAV. The on-board
Atom computer further communicateswith the PX4 in order to receive all global pose
estimates and raw sensor data and transmit waypoints. The acquired data is processed
on-board and communication with the ground control station is achieved over Wi-
Fi. As shown in Fig. 5, all components are mounted on a lightweight aluminum
construction ensuring a rigid connection between the cameras and the IMU, thus
guaranteeing high quality extrinsic calibration of the sensors, a key element for
accurate visual-inertial localization.

The on-board computer runs a standard Ubuntu Linux operating system, allowing
quick adaptation to different kinds of missions. Furthermore, it enables rapid testing
of new algorithms, e.g. for localization and mapping. It has been utilized to evalu-
ate monocular localization [10] while the original stereo version of the VI-sensor is
actively used for localization of rotary-wing UAVs in possibly GPS-denied environ-
ments [14].Within the framework of the research projects ICARUS and SHERPA [8,
26], the described sensor pod is used for area mapping, victim detection, and situ-
ational awareness tasks. The data of the visible light cameras is combined with the
pose estimates and fed to post-processing software [20] to derive accurate 3D recon-
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structions of the environment. Active research is ongoing for aerial victim detection
at altitudes on the order of 100m.

4 Flight Experiments

AtlantikSolar is a key component of several research projects and has actively par-
ticipated in multiple large-scale demonstration events. Within this paper, indicative
results from the ICARUS project [8] public field-trials event at Marche-en-Famenne,
Belgium and a long-endurance mapping mission in Rothenthurm, Switzerland are
presented along with flight endurance related tests and evaluations. A dataset is
also released and documented to accompany this paper. It contains the vehicle state
estimates, IMU and GPS raw data, the camera frames from all the on-board mod-
ules as well as post-processed reconstructions of the environment for the field-trials
described in Sect. 4.2. This rich dataset is publicly available at [5].

4.1 Search-and-Rescue Application Demonstration

During the ICARUS project field-trials in Marche-en-Famenne [8], the AtlantikSo-
lar UAVwas commanded to autonomously execute inspection paths that ensured the
complete coverage of a predefined area in order to assist the area monitoring, map-
ping, victim detection and situational awareness necessities of Search-and-Rescue
rapid response teams. Employing the path-planner overviewed in Sect. 2.3.3 and
based on the long-endurance capabilities of the UAV, the area was scanned repeat-
edly over multiple hours. An example inspection path is depicted in Fig. 6 and cor-
responds to an optimized solution for the case of the oblique-view mounted thermal
camera, FOV (56◦, 60◦) for the horizontal and vertical axes, respectively. Themount-
ing orientations of the grayscale and the thermal camera are identical, but the FOV
of the grayscale camera is larger in all directions (70◦, 100◦), thus the planned path
provides full coverage for both vision sensors.

During the execution of these inspection paths, the two camera-system and the
pose estimates of the aircraft were uniformly timestamped and recorded in a ROS
bag. Subsequently, post-processing of the grayscale images was conducted in order
to derive a dense point-cloud of the area using the Pix4D software [20]. An image
of the derived result is shown in Fig. 7, while additional results of autonomously
executed inspection paths may be found in our previous work [1].
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Fig. 6 Inspection path full area coverage using the oblique-view mounted thermal vision and
grayscale cameras of the AtlantikSolar sensor pod. The colored mosaic was derived using an
additional very large field of view nadir-facing camera (HDR-AS100VW)

Fig. 7 Reconstructed dense point cloud based on the combination of the oblique-view grayscale
camera imageswith the vehicle position estimates. The reconstructionwas achieved using the Pix4D
mapping software

4.2 Area Coverage Application Demonstration

In this specific field experiment, the AtlantikSolar UAV’s capabilities for long-term
area coverage, inspection andmappingwere evaluated.Within 6hofflight, the system
performedmultiple lawn-mowing and other paths like those presented in Fig. 8.With
a camera frame recording rate set at Fc = 1Hz, synchronizationwith the vehicle pose
estimates and properly designedwaypoint distances to ensure coverage and sufficient
overlap for all cameras, a solid reconstruction result was achieved. Within this flight,
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Fig. 8 The lawn-mowing path executed by the AtlantikSolar UAV overlayed on the reconstructed
mosaic of the environment, incorporated in Google maps

Fig. 9 The reconstructed point-cloud of theRothenthurm area based on the combination of theRGB
and grayscale camera data as well as the UAV pose estimates collected during the lawn-mowing
path and subsequently processed using the Pix4D software

all three cameras were employed and Fig. 9 depicts the reconstructed point cloud
using a combination of the geo-tagged nadir-facing RGB camera of the sensor pod
with the, likewise, geo-tagged oblique-view grayscale images, while Fig. 10 shows
false-colored thermal images that our team is currently aiming to employ for victim
detection, extending previous work [22] at ASL. An open dataset containing 1h of
raw data and post-processed results is released to accompany this paper and may be
found at [5].
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Fig. 10 False-colored thermal camera images recorded using the on-board sensor pod of the
AtlantikSolar UAV

4.3 Full-Payload Flight Endurance and Range

After having shown a flight endurance of more than 12h without payload in Summer
2014 [18], the area coverage demonstration in Rothenthurm on November 21st was
used to determine AtlantikSolar’s maximum flight endurance with the full sensor
pod payload of m payload = 610g during winter conditions. Figure11 shows the cor-
responding power income, output, and battery state. The average power consumption
during the flight is Paircra f t = 69.7W plus Ppayload = 15W for the sensor pod. After
take-off at 10:25 a.m. local time at 94% battery state-of-charge (SoC), the heavily
attitude-dependent solar power income increases but reaches only a maximum of
80W at noon due to the limited insolation in winter. Nevertheless, as indicated by
the SoC, the system power is mostly drawn from the solar panels for more than
3h of the flight. Power income decreases towards the afternoon: The solar panel
maximum power point trackers (MPPTs) are still operating, but the panel voltage
has decreased significantly and the MPPTs deliver currents below the measurement
threshold. However, the remaining SoC during landing shortly before sunset (4:28
p.m. local time) is still 52%. Extrapolating using the total power consumption of
Ptot = Paircra f t + Ppayload = 69.7W + 15W = 84.7W yields an additional 4.32h
of remaining flight endurance assuming zero-radiation conditions and thus a total
flight endurance of ca. 10h with full payload for the installed 700Wh battery during
these winter conditions.

The recorded power consumption of Ptot = 84.7W was taken as the input for the
flight endurance simulation in Fig. 12. Assuming launch of the airplane exactly at
sunrise, full-daylight flight endurance is provided throughout the full year includ-
ing winter under most atmospheric conditions. More specifically, full-daylight flight
capability is only lost when C L R = PSolar/PSolar,Clear Sky is smaller than ca. 0.3 in
summer and ca. 0.15 in winter, which corresponds to severe cloud coverage or fog
that may hinder flight operations independently of energy considerations. The max-
imum endurance of AtlantikSolar with the full payload is 22.4h on June 21st, which
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means that perpetual flight is not possible. Note that in all atmospheric conditions, a
minimum endurance of 8h can be guaranteed through battery-powered flight alone.
At the chosen airspeed of vair = 11.02m/s, AtlantikSolar can thus cover a ground
distance of 317km (min. endurance) to 888km (max. endurance). Note that this
airspeed provides the maximum range (optimal glide ratio), but is not the power-
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optimal airspeed (lowest rate of sink). Flying strictly at the power-optimal airspeed
found in [18] would e.g.increase the endurance to 23.9h on June 21st, with battery
energy depleting shortly before sunrise. This means that perpetual flight with the full
sensor payload can theoretically be achieved through minor aircraft optimizations,
e.g. through a slight increase of the available battery capacity. However, note increas-
ing endurance through power-optimal airspeed selection in the non-perpetual flight
endurance case comes at a cost of range, and should be considered per application.

5 Conclusions

In this work, we have demonstrated a significant leap in long-endurance, low-altitude
aerial sensing and mapping. Utilizing optimized solar aircraft design methodologies,
low power consumption electronics, a robust autonomous navigation framework, and
a versatile, modular, and self-contained sensor payload, the AtlantikSolar system, as
a whole, provides a baseline to address quickly approaching societal needs related
to long-term aerial robotic operations. Extensive field-trial experience indicates that
solar power is a promising solution towards providing long endurance to small-
sized, low-altitude UAVs, and integrated sensor suites, when used in tandem with
autonomous navigation and planning methods, can provide wealth of valuable infor-
mation to end users in an efficient manner. Still, there is great room for improvement,
especially in the directions of autonomous navigation close to terrain, where a com-
bination of advanced perception and planning algorithms have to be employed. Also
in terms of superior robustness, as required for multi-hour or even multi-day flight.
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Aerial Vehicle Path Planning for Monitoring
Wildfire Frontiers

Ryan C. Skeele and Geoffrey A. Hollinger

Abstract This paper explores the use of unmanned aerial vehicles (UAVs) in
wildfire monitoring. To begin establishing effective methods for autonomous mon-
itoring, a simulation (FLAME) is developed for algorithm testing. To simulate a
wildfire, the well established FARSITE fire simulator is used to generate realistic
fire behavior models. FARSITE is a wildfire simulator that is used in the field by Inci-
dent Commanders (IC’s) to predict the spread of the fire using topography, weather,
wind, moisture, and fuel data. The data obtained from FARSITE is imported into
FLAME and parsed into a dynamic frontier used for testing hotspot monitoring algo-
rithms. In this paper, points of interest along the frontier are established as points with
a fireline intensity (British-Thermal-Unit/feet/second) above a set threshold. These
interest points are refined into hotspots using the Mini-Batch K-means Clustering
technique. A distance threshold differentiates moving hotspot centers and newly de-
veloped hotspots. The proposed algorithm is compared to a baseline for minimizing
the sum of the max time untracked J (t). The results show that simply circling the fire
performs poorly (baseline), while a weighted-greedy metric (proposed) performs sig-
nificantly better. The algorithm was then run on a UAV to demonstrate the feasibility
of real world implementation.

1 Introduction

Recent developments in sensing technology have made possible low cost, reliable
unmanned aerial vehicles (UAVs). These field robots are being implemented in var-
ious application domains, but specifically show promise in applications hazardous
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for humans. Studying wildfires has an obvious benefit when considering the human
cost spent combating them. One of the main issues in combating wildfires is monitor-
ing the progression of the fire over time [13]. Live fire frontier monitoring can help
produce quicker decisions and result in better resource allocation and fire manage-
ment [12]. During wildfires, the information available to the Incident Commander
(IC) is critical. Current methods of tracking a fire involve a human pilot flying sev-
eral miles away from the fire and verbally reporting to the IC what trends they see
in the fire. Satellite imaging is also available but is often rendered useless by smoke.
In 2012, there were a total of 67,774 fires, destroying 9.3 million acres, and costing
over $1.9 billion to suppress in the U.S. alone [6]. Large aircraft can negatively affect
the fireline, for example if flown too low (below 1,000 ft), wake vortices from the
windtips produce wind gusts which can cause torching and spotting [9].

This paper presents tests of different hotspot monitoring algorithms to gather im-
portant information for the Incident Commander (IC) managing the wildfire. This
research aims to help improve a UAV’s effectiveness in gathering valuable infor-
mation for the IC. To simulate wildfires, a program developed by the Department
of Agriculture and Forest Service is used. FARSITE is a free program used by the
U.S. Forest Service, National Park Service, and more specifically ICs, to predict the
fire’s behavior using data on the topography, weather, wind, moisture, and fuel [8].
FARSITE exports various characteristics of the fire. While our simulation (FLAME)
uses fireline intensity data (BTU/ft/s), other fire metrics like flame length and rate of
spread also be incorporated. See Fig. 1 for a fireline intensity map of a simulated fire.

Fig. 1 Wildfire simulation example (red areas correspond to hotter areas of the fire). We propose a
weighted-greedy algorithm for optimizing the monitoring trajectories of aerial vehicles in wildfire
scenarios
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Robotic monitoring has become a hot research topic in recent years, due to robots
playing a more integral role in collecting environmental data. This has led to a variety
of monitoring algorithms [4, 14, 18–20]. Wildfires are highly unpredictable, acting
as a unique dynamic frontier. Dynamic monitoring has been explored [2, 18], but fire
frontier monitoring is a largely unexplored domain. Our simulator (FLAME) models
a dynamic fire frontier and uses techniques like Mini-Batch K-Means Clustering to
achieve a similar problem formulation as related monitoring research.

Tracking the most volatile locations on the fireline will give valuable informa-
tion for the IC. These hotspots will be intelligently monitored by the UAV, using
algorithms for minimizing the time hotspots are left unmonitored.

While wildfires were the chosen domain, this research is not limited to wildfires.
Similar application domains with dynamic frontiers include: algae blooms, pollution
spills, and military battles [16, 22]. These similar domains can also be analyzed using
the techniques developed in this paper.

The main novelties of this paper include: (1) a simulation (FLAME) which uses
realistic fire modeling software for accurate fire characteristics, (2) a novel fire track-
ing algorithm which outperforms existing methods, (3) the first investigation into
adaptive monitoring of hotspots along a dynamic frontier, and (4) hardware exper-
iments demonstrating the ability to implement our work with existing technology.
Taken together, these contributions provide a new approach to the general problem
of monitoring dynamic frontiers.

The remainder of this paper is organized as follows. First, we will establish the
current state of similar research (Sect. 2). Following that, we will overview the prob-
lem and assumptions we made during our investigation (Sect. 3). Next, we describe
the simulation and a novel approach to frontier monitoring (Sect. 4). Finally, the al-
gorithm is described in detail in (Sect. 5), and the simulation results are presented
(Sect. 6), and the hardware experiments are discussed (Sect. 7).

2 Related Work

Work on autonomous information gathering began with early work in sequential
hypothesis testing [23], which focused on determining which experiments could ef-
ficiently classify the characteristics of an unknown. This line of research developed
into more general approaches and evolved into the field of active perception [1].
Similar insights led to using optimization techniques on robotic information gather-
ing problems, and researchers later developed algorithms for minimizing long-term
information uncertainty [4, 5].

Robotic systems are becoming more commonly used as mass data-gathering tools
by scientists [7, 10, 18]. Robots are already collecting large datasets on environmental
change. Algae blooms, pollution, and other climate variables are application domains
for persistent monitoring techniques. Persistent/adaptive monitoring in robotics is
currently a growing research topic. Prior work has explored different approaches
to monitoring stationary and dynamic feature points. While these adaptive sampling
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techniques focus on optimizing uncertainty levels in static [4, 14, 19] and in dynamic
environments [18, 20], prior work often focuses on systems in obstacle-free envi-
ronments. Some research has examined collision avoidance [11, 21], but adaptive
sampling along dynamic frontiers remains an ongoing research problem.

In [3], fire frontier tracking was integrated into a simulation for determining UAV
tracking accuracy of the fire perimeter. Their UAVs follow a circular path around
the fire similar to our baseline. However, our metric is to track the most active parts
of the fire. We compare the baseline against our weighted-distance algorithm. Our
research presents the first investigation into adaptive monitoring of hotspots along a
dynamic frontier. We span the domains of hotspot monitoring and dynamic frontier
tracking to evaluate path planning techniques in our FLAME simulator. This line of
work allows us to test new algorithms in real-world scenarios.

3 Problem Formulation

We will now formally introduce the problem domain and the assumptions we made.
We will also introduce the metric we use to evaluate our algorithm against the base-
line.

We assume that GPS and communication between the IC and the vehicle are
always available. This means the UAV can always localize itself and never needs to
return to the starting location to transfer collected data. We assume the UAV always
has the simulated fire frontier in order to find the hotspot locations. Additionally, the
UAV is assumed, for comparison purposes, to have unlimited endurance.

Each hotspot has a corresponding time since last tracked by the UAV and the
maximum time its been left untracked (φ) in the past. The sum of φ of all hotspots
was chosen as the metric to evaluate the effectiveness of an algorithm. In this paper,
fireline intensity is used as the crucial information needed by the IC. The intensity
is monitored through the clustering into hotspots, directly relating to the goal of
providing the IC with up-to-date information about the fire progression.

J (t) =
hotspots∑

i=0

φi , (1)

where φ is max time untracked.
The goal is to minimize the metric J (t), which corresponds to timely hotspot

monitoring, through an optimized trajectory for the UAV.
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4 FLAME Simulation

We will now explain our simulation and how we developed each of the different
components. Figure 2 should be used as a reference of the state transitions in the
simulation. There are two aspects to the weighted-greedy algorithm, picking which
hotspot to go to, and how to get there.

Fire data is generated using FARSITE, the wildfire simulator currently used by
ICs during wildfire management [8]. The data is exported in the form of time of
arrival, and a measurable characteristic of the fire. In this work we use the fireline
intensity at each location. As stated above, the task is to minimize the sum of max
time untracked (φ) over all hotspots. At mission start, the UAV must first find the
fire and begin identifying the hotspot regions.

Tracking a hotspot is done by calculating the distance between a previous set of
hotspots relative to a new set. To determine when a hotspot moved as the fire pro-
gressed, a threshold is implemented. If a hotspot is not within the distance threshold
of any previous hotspots, it is then classified as a new hotspot. Even after careful
tuning, this approach can still lead to some untracked hotspots where the hotspot
existence is too short for any response by the UAV.

To identify hotspots, all points along the frontier with a fireline intensity above a
normalized threshold are parsed using a clustering technique called Mini-Batch K-
means [15]. K-means clustering was chosen because it directly relates the number of
interest points (how active the fire is) to the number of cluster centers (hotspots). The
desirable amount of clusters (K) changes as the fire evolves. We actively determine
the K value for adaptive hotspot extraction with the following formula. With K as

Fig. 2 State diagram of
FLAME

Fire Progressionstart Extract Frontier

Find Clusters

Track HotspotsFind Path CostAlgorithm

Update Pose Baseline Planner
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the number of centers, and N as the number of interest points,

K = √
N/2 (2)

FLAME uses A* path planning for generating paths from the UAV to hotspot
locations around the fire. This method works better for estimating path cost over a
simple Euclidean distance estimate due to the spherical tendency of the fire spread.
Other similar methods where explored to increase efficiency, such as Jump Point
Search. Jump Point Search gives respectable speed gains in environments with large
open spaces, while the UAVs path remained mostly along the fire frontier. Methods
like wall-following could provide faster simulation times, but lack expandability to
more complex frontiers, and provide less accurate path costs. Due to the shape of the
fire, any benefits of these alternatives were determined to be inconsequential. It was
therefore determined to use the A* search algorithm as the UAVs path planner.

A cost map is passed to the A* algorithm, and is generated by applying a blur to
the map of the fire up to that point in time and assigning a high cost to areas within
the fire. This helps ensure the path generated for the UAV is not within dangerous
proximity of the fire, but can still be navigated close enough to monitor the hotspots.
The algorithms were tested over seven different fires generated in FARSITE. The
baseline and proposed algorithm are described in pseudo code in Algorithms 1 and 2.
A state diagram of FLAME is provided in Fig. 2. The algorithm state is weighted,
but may be replaced with any tracking algorithm for testing.

5 Algorithms

The proposed algorithm is evaluated against a baseline in the following tests. The
following sections will describe each algorithm and how it was implemented in
the FLAME simulation. The first monitoring technique described is used as the
baseline comparison. It exemplifies current tactics utilized in real world wild fire
monitoring, and prior research UAV fire monitoring [3]. This is compared to our
proposed approach, a weighted-greedy algorithm that moves to the hotspot that has
remained untracked the longest with a tunable parameter of distance from the UAV.
Figure 3 should be used as a reference of the difference between the two algorithms
behaviors.

5.1 Baseline

Traveling parallel to the dynamic fire frontier is used as a baseline model. Calculating
a 90◦ transformation of the vector from the UAVs current location to the nearest
point on the fire frontier gives the travel vector of the UAV. Maximum and minimum
distance thresholds are imposed on the UAV so it can then move along the frontier
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(a) (b)

Fig. 3 a UAV monitoring the fire using proposed algorithm identifies and tracks the most important
part of the fire. b UAV monitoring the fire by constant circling will continue regardless of the state
of the fire

monitoring hotspots while maintaining a safe distance from the fire. We use this as
a baseline comparison based on the work of [3].

Algorithm 1 Baseline Algorithm
1: Inputs: UAV_Location, frontier
2: for all points in frontier do
3: points.distance =

√
(points.x - UAV_location.x)2 + (points.y - UAV_location.y)2

4: end for
5: closest_point = min(points.distance)
6: vector_to_nearest = ([UAV_location.x - closest.point.x], [UAV_location.y - closest.point.y])
7: normalized_vector = vector_to_nearest / distance_to_nearest
8: if dist_to_nearest > max_distance_to_fire then
9: travel_vector = vector_to_nearest
10: else if dist_to_nearest < min_distance_to_fire then
11: travel_vector = -vector_to_nearest
12: else
13: travel_vector = (-vector_to_nearest.x, vector_to_nearest.y)
14: end if
15: path = travel_vector

Algorithm 2 Weighted Algorithm
1: Inputs: hotspots{location, time_untracked}, α, UAV_location
2: for all h in hotspots do
3: h.path, h.path_cost = ASTAR(h.location, UAV_location)
4: h.score = h.time_untracked − α ∗ path_cost(h)
5: if hotspot.score > target_hotspot.score then
6: target_hotspot = h
7: end if
8: end for
9: path = target_hotspot.path
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(a)

Fig. 4 Wildfire simulation, where the comparison metric is J(t) or the sum of max time untracked
of all hotspots. Lower is better. The weighting parameter α is set at 0.5. The normalized threshold
β, for a spot along the fire to be considered an interest point, is set to 0.35. A lower β corresponds
to more hotspot locations. Error bars are one SEM

5.2 Weighted-Greedy

The weighted-greedy algorithm checks the time untracked of every live hotspot,
calculates the distance to it, and targets the one with the highest score. Unlike the
baseline, the weighted-greedy algorithm makes target decisions based on the current
state of the hotspots.

This is done using the following formula where H is the target hotspot, T is the
time untracked of each hotspot and C is the path cost to each hotspot:

H = argmin
h

Th − α ∗ Ch (3)

The proposed algorithm accounts for the distance to each hotspot when choosing
the targeted hotspot. The weighting factor α is a parameter evaluated in Figs. 4, 5,
and 6. The use of a weighting factor addresses some sub-optimality of using just a
greedy algorithm. The weighting parameter helps intelligently pick a hotspot that
may not be the longest untracked but is closer to the vehicle. A greedy algorithm
will immediately move towards the hotspot with the longest time left untracked,
disregarding any nearby hotspots that may not have been untracked for nearly quite
as long.
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(a)

Fig. 5 Wildfire simulation, where the comparison metric is J(t) or the sum of max time untracked
of all hotspots. Lower is better. The weighting parameter α is set at 0.5. The normalized threshold
β, for a spot along the fire to be considered an interest point, is set to 0.25. A lower β corresponds
to more hotspot locations. Error bars are one SEM

(a)

Fig. 6 Wildfire simulation, where the comparison metric is J(t) or the sum of max time untracked
of all hotspots. Lower is better. The weighting parameter α is set at 0.5. The normalized threshold
β, for a spot along the fire to be considered an interest point, is set to 0.45. A lower β corresponds
to more hotspot locations. Error bars are one SEM

6 Results

Using our FLAME simulator, we can compare our proposed weighted-greedy ap-
proach with traditional methods of monitoring of wildfires. The simulation was run
on an Intel i7-4702HQ processor with 8 gigabytes of RAM. The UAV’s decision and
planning methods took an average of 0.74 s to complete. This is fast enough for a
UAV to implement in the field (see Sect. 7).
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In comparison to the baseline, the weighted algorithm provided substantial im-
provement over the course of the trials. The plots in Figs. 4, 5, and 6 show the two
monitoring algorithms performance with different parameter settings. As previously
discussed, the weighting parameter (α) is multiplied by path cost to the hotspot loca-
tion. The hotspot cutoff β is the normalized threshold for a spot along the fire to be
considered an interest point. This directly affects the total number of hotspots. Tests
ran with a lower β will generate a higher number of hotspots for the UAV to track.
Time on the X axis begins at first cluster appearance during the simulation. The Y
axis shows the results of the comparison metric J (t).

The averaged score over the seven fires are depicted as the bold lines. Around each
line, the standard error of the mean is represented by the shading. Figure 4 shows
the simulation results with a hotspot threshold β = 0.35. The plot shows the results
with a corresponding α value of 0.5. Our proposed algorithm performs significantly
better than currently used approach.

In Fig. 5 the simulation is run with a β equal to 0.25. The β value (0.25) is the
lowest used and Fig. 5 shows the performance of both algorithms in an environment
with the corresponding large set of hotspots.

Figure 6 depicts the simulation results with a hotspot threshold β at 0.45. This
trial uses the highest β (fewest number of hotspots), and shows the plots performance
with α value at 0.5. The standard error of the mean (SEM) for both algorithms is
significantly higher in this test environment. The results demonstrate the algorithms
ability to outperform the baseline in environments with only few clusters, or many
clusters. In all cases presented here the proposed algorithm showed significant im-
provement over traditional wildfire monitoring methods. Our algorithm better tracks
the dynamic regions of a dynamic frontier, providing valuable data to better track
the frontier.

An interesting characteristic of the frontier monitoring is that it may be simplified
into a 1 dimensional problem. Each timestep the UAV must decide between two
options, if it wishes to move clockwise or counter-clockwise. It will be worth further
investigation into leveraging this characteristic.

7 Hardware Experiments

To demonstrate the feasibility of the proposed algorithm, we implemented the algo-
rithm on a live test. To test on hardware we set up the FLAME simulation as a ground
station that acted as live satellite data would for a real fire. The algorithm then sent
a live stream of coordinates to a UAV to monitor the fire. While a real fire was not
used for purpose of this test (for safety reasons), we are able to demonstrate that a
UAV can effectively perform these tasks.

We converted FLAME into a ROS package to use the MAVROS plugins [17].
MAVROS acted as a communication bridge between FLAME and the flight controller
on the UAV. This allowed us to update the UAVs path in time with the simulation.
We used a tethered IRIS+ quadcopter as the platform for these experiments Fig. 7.
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(a) A 3d view of our flight log in
Google Earth showing the flight
distance and trajectories. 

(b) Experiment set up, computer
running live simulation and IRIS+
flying autonomously (tethered).

Fig. 7 Experimental setup and flight log results

(a) The UAV first starts off a safe dis-
tance away from the fire and must
travel to the frontier.

(b) Upon reaching the frontier and
identifying a hotspot the UAV stays
outside the burn area as it grows.

(c) The UAV moves from one hotspot
to another to reduce the time untracked.

(d) Final fire size and flight log of our
field experiments.

Fig. 8 Four images demonstrating the algorithm path planning during field tests

We ran the experiment for over 10 min, about half the max flight time of the vehicle.
The experiment was performed outdoors in about a 60 ft×60 ft area. The simula-
tion coordinates were scaled and transformed to GPS degrees to support sending
waypoints. We present the path of the vehicle around the fire in Fig. 8.

The UAV successfully followed the trajectories generated in the simulation to the
best locations along the fire to monitor it as it spread. This illustrates our ability to
begin introducing robotic monitoring into these dynamic monitoring situations and
gather valuable data from it.
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8 Conclusion

In this paper, we have introduced FLAME, a simulation developed for testing moni-
toring techniques on a dynamic frontier, or more specifically a wildfire. The two al-
gorithms tested in the simulation have demonstrated that there is significant benefit in
a weighted-greedy over the baseline method of flying around the fire frontier. Using
Mini-Batch K-Means Clustering for identifying hotspots, our proposed weighted-
greedy algorithm optimized for J (t), the sum of max time untracked of all hotspots.
Three different normalized hotspot thresholds (β) (0.25, 0.35, 0.45) were used. Data
results showed the weighted-greedy algorithm with significant improvements over
the baseline.

These algorithms depend on global knowledge of the fire, or more specifically
where the hotspots are. Future work will include implementing a probabilistic model
of hotspot locations and studying the exploration/exploitation trade-off for tracking
and updating the model. In this paper we assume the UAVs have unlimited flight time.
However, the cost of flight with limited endurance is an important factor. Additionally,
hotspots are not all equal, and things such as risk to critical areas will need to be
considered. Continuation of the project will also focus on implementation of multiple
UAVs and the introduction of common fire monitoring challenges, including smoke
and adverse weather conditions.
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Multi-robot Mapping of Lava Tubes

X. Huang, J. Yang, M. Storrie-Lombardi, G. Lyzenga and C.M. Clark

Abstract Terrestrial planetary bodies such as Mars and the Moon are known to
harbor volcanic terrain with enclosed lava tube conduits and caves. The shielding
from cosmic radiation that they provide makes them a potentially hospitable habitat
for life. This motivates the need to explore such lava tubes and assess their potential
as locations for future human outposts. Such exploration will likely be conducted by
autonomous mobile robots before humans, and this paper proposes a novel mecha-
nism for constructing maps of lava tubes using a multi-robot platform. A key issue
in mapping lava tubes is the presence of fine sand that can be found at the bottom
of most tubes, as observed on earth. This fine sand makes robot odometry measure-
ments highly prone to errors. To address this issue, this work leverages the ability
of a multi-robot system to measure the relative motion of robots using laser range
finders. Mounted on each robot is a 2D laser range finder attached to a servo to enable
3D scanning. The lead robot has an easily recognized target panel that allows the
follower robot to measure both the relative distance and orientation between robots.
First, these measurements are used to enable 2D (SLAM) of a lava tube. Second, the
3D range measurements are fused with the 2D maps via ICP algorithms to construct
full 3D representations. This method of 3Dmapping does not require odometry mea-
surements or fine-scale environment features. It was validated in a building hallway
system, demonstrating successful loop closure and mapping errors on the order of
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0.63m over a 79.64m long loop. Error growth models were determined experimen-
tally that indicate the robot localization errors grow at a rate of 20mm per meter
travelled, although this is also dependent on the relative orientation of robots local-
izing each other. Finally, the system was deployed in a lava tube located at Pisgah
Crater in the Mojave Desert, CA. Data was collected to generate a full 3D map of
the lava tube. Comparison with known measurements taken between two ends of the
lava tube indicates the mapping errors were on the order of 1.03m after the robot
travelled 32m.

1 Introduction

It is understood that within our solar system, Mars shares an environment similar
in many respects to that of Earth, and it is possible that there might exist traces of
life. The surface of Mars is relatively inhospitable and is constantly bombarded by
cosmic radiation due to the thin atmosphere and lack of planetary magnetic field.
Furthermore, the surface temperature ranges from 215 to 160K from the equator to
the poles. The temperature also fluctuates greatly within a day. Despite these harsh
conditions, many scientists predict the existence of a saline groundwater system in
the shallow subsurface of the planet, and therefore the subsurface may provide or
may have provided a suitable environment for life. NASA’s Astrobiology Roadmap
objectives include investigating biosignatures in subsurface rocks, modeling sub-
surface habitable environments, and developing robotic drilling systems to access
subsurface environments on Mars [11].

Lava tubes on Mars have gained considerable interest in the astrobiological com-
munity because they offer protection from the harsh conditions experienced on the
planet’s surface. There have been many attempts to characterize these lava tubes to
determine the best sites for future exploration and to study the geomicrobiology in
lava tubes. To achieve these goals remote-sensing techniques are required [11]. The
lava tubes often have many openings, uneven terrain and variation in floor texture.
Therefore, while radar instruments have already been used to drill to the subsur-
face to detect such characteristics, existing sensing methods often lack the resolution
necessary to detect exact positions of interest in each individual lava tube.

These challenges motivate the goal of developing autonomous robots that can
explore lava tubes and conduct in-situ scientific measurements. Such robots would
need to construct 3D maps of the tubes to not only allow the robot to localize in-situ
sample measurements with respect to a coordinate frame fixed to the tube, but also to
enable the robot to localize itself with respect to the tube and carry out autonomous
robot navigation.

Constructing 3D maps with robots has been well studied in the Simultaneous
Localization and Mapping (SLAM) community. Many SLAM strategies have used a
single robot that fuses odometry and range measurements via filtering algorithms to
localize the robot andmap the environment [1, 14].While thesemethods are reliable,
they are limited by the conditions of the exploration environment. The susceptibility
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Fig. 1 Image of the Jaguar robot a at the entrance of a lava tube b on the sandy ground

of the encoder odometry measurements to error resulting from the fine sand found
on the lava tube floor further challenges the SLAM problem Fig. 1.

Proposed here is a multi-robot mapping framework that allows robots to cooper-
atively map lava tubes which (a) have poor odometry measurements due to the fine
sand of the tube floor, and (b) lack fine-scale features that reduce dead reckoning
errors. Section2 of this paper presents related work. A three-step solution called
Platoon SLAM is proposed in Sect. 3, where in the first two steps range finder mea-
surements of the relative distance and bearing-angle orientations between robots are
used to update their positions, and in the last step these updated positions are used
to seed ICP algorithm queries, that both localize the robot in 2D and construct maps
in 3D. Implementation of these techniques are documented in Sect. 4, where results
from hallway and lava tube mapping scenarios are presented. Finally, conclusions
from these results are drawn in Sect. 5 and possible future work is proposed in Sect. 6.

2 Background

The problem of Simultaneous Localization and Mapping (SLAM) involves con-
structing a map of an unknown environment while localizing the position of the
robot. SLAM is a maturing research area, with work most related to this project
including advancements made in the sub-disciplines of 3D SLAM, ICP, 3Dmapping
in tube like structures, and multi-robot 3D SLAM.

A variety of approaches to 3D mapping in SLAM have been implemented that
combine different localization andmapping techniques. Initially, 3Dmaps were built
usingmultiple 2D scannerswith different orientations to construct the 3Dmap. Thrun
et al. [19] used measurements from two laser scanners, oriented perpendicular with
respect to each other to form 3D point clouds. However other methods mentioned
below give higher resolution of the generated 3Dmap, including visual SLAM using
cameras or 3D range sensing methods are used in autonomous mapping [4, 9, 10,
14, 23, 24]. One popular 3D scanning method uses a pair of cameras with RGB-
D cameras in 3D sensing [9]. This method is not well suited for the low lighting
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environments and low power requirements encountered during the exploration. The
more common sensing method is to use 3D laser range finders. These laser range
finders are commonly made by spinning the 2D laser scanner to obtain 3D data
in the form of 3D point clouds [4, 14, 23, 24]. There are also several attempts
to combine a 3D sensor with a 6D localization method. Nuchter et al. used a 3D
scanner in combination with 6DOF IMU data to produce an error-minimized map
[14]. Borrmann et al. [3] provides a detailed summary of current advancements in
SLAM using 2D and 3D scanning mechanisms and explores 6D SLAM with scan
matching.

There exist different techniques to register the point clouds into a 3Dmap, includ-
ing 3D-FFT methods [12]. The registration currently used in this work, Iterative
Closest Point (ICP), is one of the most common ways to register point clouds to
represent maps in 3D space. Developed by Besyl et al. [2] and Chen et al. [6], it has
been used in many occasions to register 3D maps [14, 16, 19]. There have also been
findings on improvements for ICP in terms of processing, such as the 2D-NDT and
3D-NDT method [13], where the data is stored after computing in normal distribu-
tions. In addition, there are alternatives for ICP as described by Fischer et al. [8] and
Pathak et al. [15] for pose registration which are not as commonly used.

Single robot 3D SLAM demonstrating successful loop closure in underground
mine mapping started with Schedling [18]. These mines are similar to lava tubes
in that they are long, winding, and without line-of-sight to GPS satellites. Huber
et al. [10] used a high resolution 3D scanner on a cart to create an 3D map of
an underground mine without additional sensors. Nuchter et al. also used multiple
3D SICK scanners in a stop-and-go method on robots to localize the robot and
create a map of the environment through scan matching with ICP with point clouds
[14]. Zlot et al. used an iterative matching algorithm to first construct an open-loop
map of the mine tunnel, and then a closed loop model [24]. The method relies on
pose measurement data and uses a global registration algorithm instead of landmark
detection for localization.

Multi-robot systems offer increased spatio-temporal coverage which can be lever-
aged when exploring and mapping unknown environments [5, 7]. For example, Bur-
gard’s group had individual robots simultaneously explore different regions of an
unknown environment. The work employed a probabilistic approach for the coordi-
nation of multiple robots to reduce the overall exploration time. An algorithm for
multi-robot SLAMwith sparse extended information filters was presented in Thrun’s
work [20]. The alignment of local maps into a single global maps was achieved by a
tree-based algorithm that searches for similar-looking local landmark configurations.
More relevant to this project is the work done by Rekleitis, where a pair of robots
observe each other, and act in concert to reduce odometry errors [17]. However, this
method relies on video camera observations, which is not suitable for underground
lava tubes mapping.
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3 Platoon SLAM

The goal of this work is to map the 3D environment of a lava tube using two robots
equipped with 2D laser range finders. The lava tubes of interest are greater than
20m in length, and range in height between 0.30 and 3.0m. The tube walls are
unpredictable, lacking sharp distinct corners. The tube floor consists of fine sand
that causes encoder measurements to be highly unreliable due to slipping. Low light
conditions in themapping environment cause image processing techniques to require
structured lighting that may increase payload weight and power consumption. Due
to the shielding property of the lava tubes, no radiation communication such as GPS
can be established between the robots in the tubes and the outside world. Therefore,
a local-based SLAM solution is required.

Our core approach to this problem, called Platoon SLAM, uses two robots to
navigate through the lava tube in a lead-follower formation. Each robot is equipped
with a 2D laser range finder mounted on a servo to enable 3D range scanning. The
lead robot will also have an easily observed target panel that can be detected by the
follower robot’s laser range finder. The primary role of the lead robot is to take 3D
scans of the environment. The role of the follower robot is to measure the relative
position and orientation changes of the robots as they traverse the length of the tube.

3.1 Platoon Actions

The two robots are tightly synchronized to repeat a sequence of 3 actions depicted
in Fig. 2. In step 1, the lead robot moves forward a set distance and then the follower
robot takes a stationary laser scan to detect the target panel on the lead robot. This
scan measures the relative position of the lead robot. In step 2, the follower robot
moves forward to a location just behind the lead robot. The follower robot again
scans and detects the target panel to measure the relative position of the lead robot.
In step 3, the lead robot takes a stationary 3D scan of the environment Fig. 3.

Fig. 2 Three step sequence:
1 lead robot moves and its
state change is measured,
2 follower robot moves and
its state change is measured,
and 3 lead robot takes a 3D
scan
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Fig. 3 Image of a two-robot
system. The robots are
Dr. Robot Jaguar Lite
platforms. The lead robot is
equipped with a target panel

3.2 Robot Position Measurements

Steps 1 and 2 of the action sequence are used to obtain accurate measurements of
the robots as they move forward to explore the lava tube. The follower robot obtains
laser scans similar to that depicted in Fig. 4. The target panel is easily recognized
in the center of this scan and is detected by an algorithm that searches for similar
consecutive range measurements. The output of this algorithm is a series of range
and bearing tuples [ρi, αi] associated with reflections from the lead’s target panel.
Here ρi represents the relative distance between the two robots and αi represents the
relative bearing angle of the lead robot with respect to the follower robot, as shown
in Fig. 5. Each [ρi, αi] tuple is taken with respect to the follower robot’s coordinate
frame and can be converted to the relative position [Δxi,Δyi]within this local frame.

Fig. 4 A robot-obtained
laser scan taken from the
lava tube
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Fig. 5 Geometric
representations for steps 1
and 2 of one sequence

The mean relative position [Δ̄x, Δ̄y] can be calculated and used to determine a mean
relative range and bearing [ρ̄, ᾱ] from the follower to the lead robot.

To calculate the yaw angle θL of the lead robot in the global frame, the difference
in bearing angles between the two robots φ must first be extracted as the arctangent
of the slope of the line fit to the [Δxi,Δyi] tuples. Then, for the first step of the tth
action sequence, the lead robot’s state [xL yL θL]T

t can be updated from the follower
robot’s previous state [xF yF θF]T

t−1:

β = ᾱ + θF − π

2
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In Eqs. (1) and (2), β is the angle of the ray connecting the follower to the lead
robot, as calculated with respect to the global coordinate frame. Figure5 depicts the
geometry of these calculations.

For the second step of the tth action sequence, the follower robot’s state
[xF yF θF]T

t can be updated after its forward movement using its detection of the
lead robot’s target. In this case, the target data produces similar measurements to the
first step, but we denote the second step measurements with ′, i.e. ρ̄ ′, ᾱ′, β ′, φ′.

β ′ = ᾱ′ + θL − π

2
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The proposed solution assumes the lead robot’s target can always be detected by
the follower robot. This can be achieved by ensuring the lead robot takes relatively
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small steps forward and by subsequently modifying the pitch angle of the follower’s
2D laser range finder until the target is detected within a 2D scan.

3.3 Robot Localization

Once the robot state updates are calculated using inter-robot range and bearings as
described in Eqs. (2) and (4), the robot states are further refined using environment
range measurements. This refinement, or correction, is accomplished using a method
called Iterative Closest Point (ICP). ICP attempts to find the relative transformation
between two data sets. In this case, each data set corresponds to a single 3D scan
taken by the lead robot during step 3. The scan consists of 3D points indicating
the position of the lava tube contour with respect to the lead robot. Hence if the
ICP algorithm is applied to two consecutive 3D scans taken by the lead robot, the
algorithm will output a transformation that represents the lead robot’s movement
between the consecutive scans.

To initialize the ICP algorithm, an estimate of the transformation between lead
robot scans is required. In this case, the relative movements calculated in Sect. 3.2,
e.g. xL,t − xL,t−1, are used to initialize the ICP algorithm. To reduce the run time
complexity, ICP is conducted only on the range data points that lie within some
threshold of the horizontal plane that intersects with the robot sensor, as the elevation
change between two consecutive scan positions is relatively small. To determine the
horizontal plane, IMU data is used to calculate the roll and pitch angles of the robot
relative to the initial pose of the robot to which the origin of the global coordinate
frame is anchored.

The effect of running the 2D ICP implementation is illustrated in Fig. 6a, b, where
the points clouds (blue) from two scans are plotted. The red and pink dots indicate
the points determined to be within the 2D horizontal plane of two consecutive 3D
scans. It is clear that running ICP to refine the position of the two 3D scans in Fig. 6a
improves the alignment of the two subsequent scans in Fig. 6b, with pink dots and
red dots overlapping.

3.4 Lava Tube Mapping

As described in the previous two sections, the first two steps in the 3 step sequence
are used to estimate the lead robot’s state at every 3D scan location with respect to a
global coordinate frame. In last step, where the lead robot obtains a 3D scan of the
environment, data is collected for constructing the 3D map of the lava tube. Each
3D scan produces a 3D point cloud that is added to the map to create a single global
point cloud map representing the entire lava tube. After each scan, the positions of
two robots are updated according to point registration results by ICP.
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Fig. 6 Two consecutive point clouds a before registration b after registration
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4 Experiments

In this section, experimental results are presented that validate the ability of Platoon
SLAM to demonstrate loop closurewhilemapping a hallway systemof known dimen-
sions, allow for modeling error growth using the Platoon SLAM methodology in
environments with sandy terrain, and demonstrate the ability of a robot pair to map
a lava tube located at Pisgah Crater in the Mojave Desert, CA.

All experiments were conducted using two Dr. Robot Jaguar Lite platforms (see
Fig. 3). The Jaguar Lite Platform is a differential drive tracked vehicle equipped with
a 5Hz GPS, wheel encoders, a color camera (640× 480, 30 fps), two header lights,
a 9DOF IMU from Razor and a Hokuyo laser scanner (20–4000mmwith 3% error).
The laser scanner is attached to a servo so that it could be tilted to obtain 3D laser
data. It is designed for both indoor and outdoor navigation and is able to navigate
through various terrains such as sand, rock, concrete, grass and gravel. Each platform
is powered by a 6-cell LiPo battery with a maximum operating time of 4h.

4.1 Structured Environment Mapping

The first set of experiments was used to assess mapping ability in a controlled and
structured environment. Two robots travelled around a rectangular hallway, the total
length ofwhich is 79.64mwith 21.96m inwidth and 17.86m in height. The lead robot
took a total of 85 scans, with approximately 1m travelled between consecutive scans,
and returned to its starting point at the end of the experiment. Sample maps produced
with the logged data set are shown in Fig. 7a. After 80m travel, the error associated
with the final lead robot position was approximately 5m when ICP was not used to
refine the state estimate. When the ICP was applied to improve the localization error,
the end position estimation error was reduced to 0.63m. The hallway map created by
ICP has a mean estimated width and height of 22.59 and 17.91m respectively. Image

Fig. 7 Hallway map a created with multi-robot SLAM b after corrected by ICP. The robots started
at blue arrow and stopped at red arrow
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of the 2D localization conducted with ICP is shown in Fig. 7b. It can be observed
that using ICP allows for loop closure. The loop closure occurs when a new point
cloud, after being registered to its previous scan, finds a second matched point cloud
among the earlier recorded point clouds.

4.2 Error Model and Lava Tube Mapping

Tomodel the error growth as a function of distance travelled by the platoon, the actual
and measured relative positions between two robots were logged. Two robots were
placed in a sand pit located near Harvey Mudd College. The lead robot was fixed
at a stationary location, and the follower robot was placed (and replaced 4 times) at
49 different positions in the sand pit. The measurement error, calculated by taking
the difference between estimated and real distances for each position, is shown in
Fig. 8, where a 4th order function has been used to model the estimation error as a
function of the follower robot’s relative position and angle. It can be seen that the
error remains low (on the order of 0.02m) when the relative distance is less than
2.5m and the relative angle is less than 30◦ between two robots.

This model can be propagated over a series of scans to determine error growth as
a function of distance travelled. In the same sand pit, the lead and follower robots
were driven to follow a rectangular path. The real error growth and model predicted
error growth have been plotted in Fig. 9. It can be seen that the actual error growth
modeled by a linear fit is predicted by the error propagation function.

Fig. 8 Estimation error as a function of relative position and relative angle between two robots on
the sand pit
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Fig. 9 Predicted error growth and actual error growth versus distance travelled. The actual error
growth is modeled by a linear fit (red line)

4.3 Lava Tube Mapping

Final experiments were conducted in lava tubes located at Pisgah Center in the
Mojave Dessert, CA. The tubes are shielded from external radiation by thick walls
of lava rock. The main tube explored is 0.30–3m high, 2–4m wide, 32m long, and
6m down to the dessert surface. The elevation change of the tube ground is no more
than 0.5m. The temperature inside the tube during summer is about 25 ◦C while the
surface temperature is 40 ◦C. There is almost no light in the tube. The ceiling consists
of near vertical rocks with irregular features that are difficult to characterize. The
floor is covered with fine silica sand and rocks, which makes it easy for the tread
wheeled robot to slip. In this tube, two robots started at one end of the tube and
navigated to the other end. The robot camera could not see anything with the header
lights on due to the poor lighting conditions. The maximum pitch change relative to
horizontal plane was no larger than 20◦. The lead robot took 37 scans in 40min to
construct the map shown in Fig. 10. Using the map, the total length of the tube is
30.97m which is just over 1m less than the actual length measured by GPS data.

4.4 Lessons Learned

Several lessons were learned from the lava tube deployment. First, it is important
to protect the robot platform against sand. During the experiment, it was found
that the fine sand penetrated the robot parts as well as accumulated on the tracks.
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Fig. 10 Top view of the lava tube ceiling model in a top isometric view

Fig. 11 Odometry
estimation error as a function
of distance travelled on the
sand pit

In consequence, the robot track had increased slipping, slower movement and fast
odometry error growth, as shown in Fig. 11. Thus it is suggested that all holes on the
robots and laptops should be covered, all screws should be tightened, and the track
should be cleaned up before each experiment. As well, in order to reduce slip and
increase travel speed, a track spoke with larger diameter is recommended, since it
will add more contacting area between the track surface and ground.

The battery life is a crucial resource during the experiment, as it is hard to charge
the battery in the middle of the dessert or onMars. Therefore, in order to save battery
life, efficient and faster algorithms are recommended for the robot control system.
The team used 2D ICP instead of 3D ICP to register point clouds for this reason.
Also, it was mentioned earlier that the team tilted the 2D laser scanner to obtaining
3D point clouds. The tilt step size was determined to be 5◦. A smaller step size will
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take longer time to obtain data and thus require more battery source, and a larger
step size will lose information when constructing the map. Therefore, the step size
needs to be carefully selected.

5 Conclusions

Presented in this paper is a multi-robot approach to mapping lava tube environments
on sandy floors that yield inaccurate robot odometry measurements without fine
scale features. The approach, termed Platoon SLAM, involves an iterative 3 step
process where robots coordinate their actions to allow them to capture 3D range
scans and measure the relative transformations between scans. These transformation
measurements are refinedwith an ICP algorithm. To construct 3Dmaps, the 3D scans
are translated to point clouds that are added to a global map. The maps created with
this systemdemonstrate error growth on the order of 3%permeter travelled.Mapping
loop closure was successfully demonstrated in a hallway system of approximately
80m in length. A map of a lava tube located in Mojave Desert was created and the
tube length was estimated to be 30.97m when the actual length was 32m.

6 Future Work

Future work involves implementing autonomous path planning. One important
assumption in our solution is that the lead robot’s target can always be detected by
the follower robot. This requires a path planning algorithm that ensures the relative
position and orientation between two robots are within some threshold to minimize
error growth. The function calculated in Sect. 4 suggests using movements with less
than 2.5m in distance and less than 30 in degrees relative orientation between robots.
The height of the lava tube along the planned path should also be considered in the
algorithm so that both robots can pass through the tube. This can be achieved by
analyzing the 3D map generated by the lead robot.

Additional work includes occupancy grid map generation. Currently a mesh file
is created as the 3D map. This can be helpful for determining the shape and size
of the lava tube. However, with an occupancy grid map, control parameters such as
resolution,memory, aswell as complexity can be controlled somaps can be generated
according to different circumstances and restrictions. Additionally, as many off-
the-shelf algorithms use an occupancy grid map representation, it will give future
researchers more leverage after they map the environment.

The current work can be easily extended to more than two robots. The follower
robots in the platoon will be able to provide more 3D scans and thus produce a more
accurate map by advancing through the lava tube in the platoon manner. Specifically,
point clouds generated from each robot can be matched and then merged together to
increase map accuracy.
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The ultimate goal for this project will be moving towards autonomous multi-
robot 6DOF SLAM in lava tubes. For the robot system to be able to navigate on
steep slopes, the follower robot should have 3D scanning capabilities to detect the
target panel on the lead robot on terrains with significant changes in slope. To be able
to localize with a 6DOF state, IMU data will likely be needed to further integrated
to the state estimation of the robot system.
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Admittance Control for Robotic Loading:
Underground Field Trials with an LHD

Andrew A. Dobson, Joshua A. Marshall and Johan Larsson

Abstract In this paper we describe field trials of an admittance-based Autonomous
Loading Controller (ALC) applied to a robotic Load-Haul-Dump (LHD) machine
at an underground mine near Örebro, Sweden. The ALC was tuned and field tested
by using a 14-tonne capacity Atlas Copco ST14 LHD mining machine in piles of
fragmented rock, similar to those found in operational mines. Several relationships
between the ALC parameters and our performance metrics were discovered through
the described field tests. During these tests, the tuned ALC took 61 % less time to
load 39 % more payload when compared to a manual operator. The results presented
in this paper suggest that the ALC is more consistent than manual operators, and is
also robust to uncertainties in the unstructured mine environment.

1 Introduction

In this paper we document the tuning and evaluation of an admittance-based
Autonomous Loading Controller (ALC) by using the Atlas Copco ST14 Load-Haul-
Dump (LHD) machine in the underground mine shown in Fig. 1a. A smaller 1-tonne
robotic loader was initially used for ALC development prior to the work reported
in this paper. Diesel-hydraulic LHDs are used in underground mines to move frag-
mented rock (in mining muck) from draw points to ore passes or trucks, so the rock can
be removed from the mine. Current robotic LHDs can haul and dump autonomously
[1], but require an operator to load rock manually (usually by tele-remote). The ALC
test results presented in Sect. 4 show a 39 % increase in payload mass and a 61 %
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Boom actuator

Bucket 
actuator

(a) (b)

Automated Atlas Copco ST14 LHD Common hydraulic loading mechanism

Fig. 1 The ALC has been tested on a 1-tonne wheel loader (not shown), and a 14-tonne Atlas
Copco ST14 LHD (a). Both vehicles use a boom and a bucket actuator to hoist and curl the
bucket respectively (b). The ST14 field experiments described in this paper were carried out in an
underground mine on a roadway consisting of a gravel and clay over a limestone subsurface

reduction in dig time compared to an expert operator loading from the ST14 cab.
The greater efficiency of the ALC over manual loading has implications for increas-
ing mine productivity, and for decreasing costs by moving operators farther from
potentially hazardous and remote mines [2].

Both the 1-tonne loader and the ST14 have similar hoisting and curling mecha-
nisms as shown in Fig. 1b. Hoisting (vertical bucket motion) is controlled by altering
the extension of the boom actuator, while curling (rocking the bucket forward and
back) is controlled by altering the extension of the bucket actuator. The ALC admit-
tance controller uses the forces sensed in the boom actuator to control the extension
of the bucket actuator, and consequently, the curl of the bucket.

Others have proposed using scripted dig paths, lookup tables, Artificial Intelli-
gence (AI), and impedance control to automate the digging process. Many of these
methods were tested in homogeneous materials (e.g., soil, sand, and gravel, but not
fragmented rock) by using sub-scale excavators. The scripted and lookup table meth-
ods [3–6] require pre-defined dig paths or bucket velocity targets, and did not perform
well when sub-surface obstacles were encountered. The AI methods [7–11] attempt
to overcome this deficiency by using heuristically-derived digging rules, but these
rules are generally difficult to develop and reproduce. These methods were also less
efficient and consistent than human operators.

Impedance control [12–15] is well-suited to tasks like trenching and landscaping,
where the final target shape is more important than filling the bucket efficiently.
This realization led Marshall in [16] to propose adapting Seraji’s general admittance
controller [17] for loading by controlling the admittance between the robot and
the muck pile. Marshall’s proposed admittance controller for loading was never
tested, but was ultimately used as the starting point for the ALC presented in this
paper. It is worth noting that despite a long history of research and development in
robotic excavation, at the time of writing, there exists no widely-available commercial
technology for autonomous digging in mining applications.



Admittance Control for Robotic Loading: Underground Field Trials with an LHD 489

2 Admittance-Based Autonomous Loading
Controller (ALC)

The proposed admittance controller modulates the error e f between a preselected
target force fT and the sensed forces fS by altering the velocity vA of the bucket
actuator, and consequently the bucket curl rate. In this way, the controller seeks to
control the mechanical admittance Y between the bucket and the muck pile, where

Y = vA

fT − fS
= vA

e f
. (1)

Intuitively, this approach is believed suitable for robotic loading in fragmented rock
because a typical muck pile contains irregular rocks, having a range of sizes, with
varying cohesion due to moisture content and other factors, which cause force vari-
ations as the bucket is moved through the pile. These conditions are not as suitable,
for example, for path-tracking controllers where these disturbance cause large devi-
ations from the desired path. Also, the muck pile itself is expected to comply during
the excavation process unlike in impedance control where the robot complies to the
target. For example, a window washing robot must comply to its target to prevent
breaking the uncompliant glass. Hence the widow washing problem is better solved
by using an impendence controller. When loading rock the opposite situation occurs
since the target rock must comply to the motion of the bucket. This inverse compli-
ance relationship makes the loading problem better suited to admittance control.

The admittance controller is implemented in one of the four states of the ALC
finite state machine. Each state in the ALC is executed in order, as follows:

State 0—Go to entry pose
State 1—Drive into pile until entry forces are above entry force target
State 2—Activate admittance controller until bucket has curled to breakout
State 3—Go to the weighing pose and terminate

Note that breakout occurs when the bucket curls past the point where additional
material can easily enter the bucket, and is accompanied by a drop in digging forces
[18]. In State 0, the ALC moves the boom and bucket to an appropriate entry pose
before switching to State 1. In State 1, the LHD is commanded to drive forward
until the bucket encounters enough resistance (as measured by the boom hydraulic
cylinder pressures) to activate the admittance controller, at which point it switches
to State 2. In State 2, the admittance controller controls admittance by referencing
a target actuator force fT . A high-level block diagram for this admittance control
scheme is shown in Fig. 2. While any controller C could be used to map the force error
e f to the actuator velocities, a simple proportional-type (P) admittance relationship
was evaluated in the field experiments presented in this paper. In this instance, the
constant admittance relationship is given by

vA = kA · e f , (2)
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Fig. 2 The admittance controller uses any suitable controller C to map the error between the desired
and sensed actuator forces to the range of possible actuator velocities

where vA is the actuator velocity, kA > 0 is the (admittance) gain, and the force error
e f is given by e f = fT − fS .

The bucket motion direction depends on both the reaction forces fS , and the
element used to sense fS . The ALC admittance controller alters the bucket actuator
velocity by using the boom actuator to measure fS . In a conventional admittance
controller the actuator velocity is controlled by using the forces sensed in the same
actuator. We use the forces sensed in the boom actuator because (1) the actuator
loading in Fig. 3 shows that the boom actuator will tend to sense increasing forces
as the bucket is curled up, (2) the boom stops on the ST14 tend to unload the boom
actuator, which biases the ALC toward the breakout condition, and (3) the boom
forces were generally cleaner than the bucket forces (see Figs. 5, 6, and 8).

In Fig. 3a, curling up tends to decrease the forces sensed in the bucket actuator,
while increasing the forces sensed in the boom actuator. When fS decreases e f

increases, which causes the admittance controller in Eq. (2) to respond by increasing
vA until the bucket actuator velocity limit is reached. Reaching the velocity limit
saturates the ALC, which means the ALC can no longer control the admittance
between the bucket and muck pile. Hence it is better to sense fS in the boom actuator

(a) (b)

Curl up Curl down

Fig. 3 When the bucket actuator extends in (a) P1 goes up and the bucket curls back. The pile resists
by putting the boom actuator in compression, which increases P1 and the sensed reaction force.
When the bucket curls down in (b) the inverse load case occurs and the boom actuator experiences
tension. This tension manifests as a force drop because P2 increases relative to P1
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since curling up increases boom loading, which decreases e f and hence vA. However,
reducing e f to zero is also not desirable since this condition will result in no bucket
velocity and no breakout. This situation is prevented in part by selecting an fT above
the highest fS , which ensures that e f > 0 as discussed in Sect. 4.1. Stalling is also
prevented because the boom arms tend to be driven downwards as the bucket fills.
This downward motion is eventually arrested by two boom stops. Once these stops
are encountered part of the load flowing through the boom actuator is redirected
through the boom stops, which tends to decrease fS , and increase e f and vA right at
the end of the dig when it is most beneficial for ensuring breakout.

The digging forces are generated by both the bucket motion and the forward
thrust of the LHD. When the forces sensed in the boom actuator are below fT the
admittance controller will increase fS by curling up. Curling up increases the sensed
forces in the boom because the boom actuator experiences compression in addition
to the compression caused by the load in the bucket. Curling down tends to relieve
this compression, which reduces fS .

State 2 terminates when the bucket has curled passed the point where rock can
easily enter the bucket (i.e., the breakout condition). Once breakout has occurred,
the controller switches to State 3 where the LHD stops thrusting into the pile, raises
the boom to the weighing pose, and finishes curling the bucket to settle the load.
Once the dig cycle is complete, the dig time, total actuator work, and final payload
are computed to determine dig efficiency.

2.1 Dig Efficiency

We define overall dig efficiency εd as

εd (td , Wd , Md) , (3)

which is a combination of three parameters: (1) the dig time td ; (2) the actuator work
expended while digging Wd ; and (3) the mass of rock in the bucket at the end of
the dig attempt Md . Together these three parameters define a point in 3D-space with
time, work and mass axes (e.g., as shown in two 2D-space plots in Fig. 7).

The payload mass Md was calculated by using a proprietary load weighing system
described by Grahn [19]. This load weighing system calculates Md by

Md = k · (PC − PR) , (4)

where PC and PR are the boom actuator cylinder and rod pressures, and k is a
calibration constant for a specific weighing pose. According to Grahn, the load
weighing system is calibrated to a precision of ±0.5 t. The average ALC payload
was 14.47 ± 1.09 t, and the rated payload limit for the ST14 is 14 t.

Work and dig time are calculated between entry (after the entry force target is
reached), and breakout. Let n be the total number of sensor readings and let the
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subscript i denote the time index associated with each sensor reading. Thus, the total
work Wd was estimated by

Wd = 1

2

n−1∑

i=1

[(
Fh,i + Fh,i+1

) · |dh,i − dh,i+1| + (
Fc,i + Fc,i+1

) · |dc,i − dc,i+1|
]
,

(5)
where Fh and Fc are the hoist and curl forces in the boom and bucket actuators
respectively, and dh and dc are the displacements for each actuator. Note that this
work estimate includes only the work done by the actuators, and not the drive train,
which thrusts the loader into the pile.

3 Apparatus and Methodology

This section introduces the operating environment and test equipment used at the
Kvarntorp Mine near Örebro, Sweden. Kvarntorp is an underground limestone room-
and-pillar mine that is no longer in production. The test area is located approximately
30 m below surface, where the tunnels (called mine drifts) are approximately 10–12 m
wide and 6 m tall. Over 200 t of fragmented granite was added to the end of Drift 165
while the pile in Drift 159 consisted of several hundred tonnes of limestone from
previous blasts in the mine. Drift 159 was primarily used for controller development
and preliminary tuning, while Drift 165 was used for all manual digs and all final
ALC digs. Figure 4a, b show the muck piles along the wall of Drift 159 and at the
end of Drift 165 respectively. The largest visible dimension of the muck in Drift 159
(±1σ ) was 0.20 ± 0.09 m. The muck in Drift 165 was over twice as large, with
double the standard deviation (0.48 ± 0.19 m).

The Atlas Copco Scooptram ST14 is a 38 t vehicle with a 14 t, 6.4 m3 bucket.
The nominal dimensions of the vehicle are 10.8 m long, 2.6 m tall, and 2.8 m wide
[20]. The ST14 used for these tests was equipped for teleoperation [21]. However,
the ALC only uses the actuator extension and pressure measurement sensors that
are available on the stock ST14. The pressure measurements are taken on the rod
and cylinder sides of the boom actuator. These pressures combined with the rod and
cylinder areas (AR and AC respectively) can be used to calculate fS by

fS = PC · AC − PR · AR . (6)

Both the manual and final ALC dig trials were conducted at the end of Drift 165
in the granite muck pile. The actuator pressure and extension measurements were
logged for both manual and autonomous operating modes, and were used to generate
the digging histograms in Sect. 4. The vehicle was warmed up for 10 to 20 min at the
beginning of each test day. Each dig began by positioning the vehicle in front of
the muck pile as shown in Fig. 4c. For the manual dig trials, our expert operator
“Frank” was instructed to dig (1) normally by using both boom and bucket actuators;
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ST14 Muck pile 

Additional 
lights 

Camera

Existing 
lights 

Wireless 
antenna

Video 
feed

LIDAR
overhead 

view

(a) (b)

(c) (d)Drift 159 Drift 165

Manual and ALC tests in Drift 165 Automation office control station

Fig. 4 The limestone muck pile along the wall of Drift 159 (a) was used for all preliminary logic
tests and tuning, while the manual tests, final tuning, and ALC evaluation tests were conducted in
the granite muck pile at the end of Drift 165 (b). The mean ± one standard deviation rock size
distribution estimates were 0.20 ± 0.09 m in Drift 159 and 0.48 ± 0.19 m in Drift 165. (c) The
ST14 began each dig in the start position, which was approximately 11 m from the toe of the pile.
(d) The ST14 was moved into position by using the operator station within the automation office.
Following automated loading, the operator weighed and dumped the material manually

(2) in a manor similar to the ALC using only the bucket actuator; and (3) by using
50 % throttle. The 50 % throttle setting was selected to determine if there were any
advantages to digging at lower throttle. The manual dig efficiency results shown in
Fig. 7 indicate that digging at lower throttle should be avoided and hence the ALC
throttle setting was set to 100 % to better match the bucket only and both actuator
manual digging methods. Similarly, the entry velocity was also selected to match the
manual dig attempts and averaged 5.0 km/hr. This velocity corresponds to 100 %
throttle, first gear, and 0 % brake.

In all tests, Frank controlled the vehicle from inside the ST14. The ALC digs began
by switching the ST14 to “automation mode”. The operator then left the vehicle, and
entered the automation office shown in Fig. 4d. After uploading the desired tuning
parameters to the ST14, the ALC was initiated. When the ALC reached its final state,
the ST14 was switched to teleremote mode so that the bucket could be lifted, weighed,
and dumped. The same weighing and dumping procedure was also performed by
Frank following his dig attempts. After dumping, the ST14 was driven back to the
approximate start position.
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4 Field Experiments Results

The Autonomous Loading Controller (ALC) tuning tests were used to find final values
for the ALC parameters, which were then held constant for all performance tests.
These performance tests were conducted to compare the ALC to manual digging.
The ALC parameters that were tuned were fT , kA, the breakout condition, as well
as the entry and weighing poses. Additionally, field tuning revealed key information
about controller saturation, ground detection, and ALC performance.

4.1 Force Target fT

Figure 5 shows the ALC digging response as fT was reduced from 11 MN to 9 MN.
An initial guess for kA was 0.001, which was selected by using

kA ≈ r · vAmax

fSmax
(7)

where r = 1
8 , vAmax is the maximum bucket actuator velocity (0.08 m/s), and fSmax

is the maximum force sensed in the boom actuator (10, MN). r is an arbitrary scalar
that sets the minimum increment between no gain and a gain that results in complete
actuator saturation. Initial tuning results (in Sect. 4.2) indicated that the controller was
unacceptably saturated when kA was increased to 0.002. Saturation should be avoided
because it means the admittance controller is no longer maintaining the desired
admittance dictated by Eq. (2). The manual results (in Sect. 4.4 and specifically
Fig. 8) show that digging without compensating for the digging forces tends to result
in less overall payload and more payload variability.

Decreasing the dig target increased dig time, decreased bucket velocity, and
decreased bucket actuator control valve saturation. When fT dropped to 9.5 MN,
the dig time increased from 8 to 30 s, the bucket velocity was much slower, and the
sensed forces were barely high enough to bias the admittance controller toward the
breakout condition. At fT = 9.0 MN these effects became so severe that the dig
failed because the ALC could then reduce the force error e f close to zero. Figure 5a,
b also illustrate that more controller saturation leads to higher, more irregular forces.
The 11-MN and 10-MN test results indicate that these irregular forces generated
higher payloads, but also more payload variability. It should also be noted that for
the 11-MN and 10-MN tests the bucket curls down (see between 10 and 15 s) when
the boom forces exceed their respective fT values. While curling down may seem
counter productive, it allows the bucket to circumvent force concentrations and dig
deeper into the pile. We believe that this results in increased payload and less payload
variability because the admittance between the bucket and muck pile is maintained,
and hence each dig trajectory is tailored to the unique force environment encountered
within the pile.
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Fig. 5 Finding a dig force target—At 11 MN (a) the ALC was more saturated than in the 10 MN
digs (b), but both completed successfully. The 10 MN digs took twice as long as the 11 MN digs,
and the 9.5 MN digs (c) took three times longer than the 11 MN digs. At 9 MN (d), the dig failed
because the ALC was able to reduce the error to 0.0 and the curl rate dropped too low for the ALC
to finish in a reasonable time

4.2 Admittance Gain kA

Figure 6 shows the ALC responses when the admittance gain kA was raised from
0.001 to 0.002 while fT was maintained at 10 MN. kA = 0.002 was too high since
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Fig. 6 ALC gain selection—The ALC gain at 0.001 (a) issues excellent valve commands with
little saturation compared to the 0.002 gain (b), which was almost always saturated

the ALC valve commands were almost always saturated. kA = 0.001 was used for
both the 10-MN and 11-MN performance tests, and was high enough to cover both
positive and negative valve command ranges without saturation.

4.3 Weighing Pose Entry Pose and Breakout Condition

The weighing pose was set by eye such that the bucket was in free space above the
pile. The entry pose was also set by eye such that the bucket was tilted downwards at
approximately 15◦ and scraping the floor. The breakout condition was set to 0.500 m
of bucket actuator extension because the bucket is prevented from curling further by
stops on the boom arms. However, as the boom rises these stops move further back.
Midway through the tuning process, the bucket breakout extension was increased
from 0.500 to 0.520 m, which increased payload to 12.50 t from 10.13 t. This increase
occurred because the bucket curled back farther as soon as the boom started to lift,
which kicked more material into the bucket. Only a few tests were performed at each
breakout setting in the muck pile in Drift 159, before moving to the ALC performance
tests. These performance tests were conducted in Drift 165, which contained the
larger, higher density rock fragments. Several runs were made at both 10-MN and
11-MN dig targets and all other ALC parameters were kept constant so that the ALC
could be compared to a manual operator.
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4.4 ALC Performance

The dig efficiency results from the 26 autonomous and 28 manual digs are shown in
Fig. 7. The number of tests was dictated by the availability of the apparatus, operator,
and test site. The manual digs with the highest dig efficiencies were Frank’s bucket-
only, and low-throttle digs. The autonomous digs with the highest efficiencies were
the 11-MN digs. While the 10-MN autonomous digs were also excellent, six of these
digs failed. The likely cause of these failures was low entry force due to striking the
ground or spillage before entry.

Figure 7a shows the payload and dig times for the 54 dig attempts. While the
autonomous dig attempts were tightly clustered, there was much more variability in
the manual dig times and payloads. Figure 7b shows the payload and work expended
for the same 54 dig attempts. The autonomous dig attempts were again tightly clus-
tered, while there was much more variability in the manual digs. Work also increased
as payload increased. All dig efficiency results are summarized in Table 1.
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Fig. 7 The payload versus dig time (a) and the payload versus work (b) dig efficiency plots show
that the only autonomous dig attempts that were less than 12 t were the six 10 MN dig target
digs that failed due to insufficient entry force to trigger the admittance controller. The manual dig
attempts had much greater variability in payload mass, dig time, and actuator work than the tightly
clustered autonomous dig attempts. There is also a clear trend towards increasing work as payload
increases (b)

Table 1 The ALC loaded 39 % more payload in 61 % less time, but required 68 % more work than
the best expert operator digs

εd Manual Autonomous Difference (%)

td [s] 20.03 ± 4.10 7.82 ± 0.26 −61

Wd [MN m] 2.59 ± 1.17 4.36 ± 0.43 +68

Md [t] 10.41 ± 1.77 14.47 ± 1.09 +39

The ALC was also much more consistent
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Fig. 8 In (a) Frank gave the bucket regular oscillating command signals that resulted in a jagged
force profile, and severe valve position oscillations between 1 and 0. The ALC in (b) sent much
smoother commands that used partial valve positions to regulate the speed of the bucket. As a result,
the forces were much smoother than the manual dig attempts. Additionally the bucket curled down
at 12 s to reduce the forces below the dig target. This behaviour caused the bucket to dig deeper into
the pile, and ultimately increased the final payload

Figure 8 shows the results for an excellent manual, and typical autonomous dig
attempt. In both digs only the bucket was actuated either by Frank or by the ALC.
Frank oscillated the bucket rhythmically while the ALC only oscillated when the
forces were below the 11 MN target force. This reduced oscillation resulted in
smoother force and valve command profiles, and ultimately greater bucket veloc-
ity control, and more payload in less time.

Tests were conducted in both a settled and an unsettled muck pile, as well as the
two muck piles with different rock types and size distributions. The average payload
dropped from 14.47 ± 1.09 t in the unsettled pile (11-MN autonomous tests), to
12.50 t in the settled pile. Only one test was performed in the settled pile since due
to the time it takes for the pile to settle. The rock type and size distribution had little
effect on the ALC because the force profiles resulting from digging in the two piles
were nearly identical. The resulting payload change was slight, going from 11.40 t
in the lower density 0.20 ± 0.09 m limestone rock in Drift 159, to an average of
12.93 ± 0.55 t in the higher density 0.48 ± 0.19 m granite rock in Drift 165.
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5 Conclusion

An Autonomous Loading Controller (ALC) based on constant admittance control was
tuned and compared to manual dig trials at the Kvarntorp underground mine by using
an Atlas Copco ST14 LHD, and various limestone and granite muck piles. In this
paper, the admittance controller within the ALC prescribed a constant admittance
relationship that used the forces sensed in the boom to alter the bucket velocity.
Preliminary ALC tuning tests revealed that the dig target and admittance gain must
be set such that the admittance controller can never fully reduce the force error to
zero, which ensures that the ALC is biased toward breaking out of the muck pile.
Biasing the ALC toward breakout made the ALC surprisingly robust to disturbances
caused by changing much pile conditions. The performance comparisons between
admittance-based and manual (expert operator) digs are the most important outcomes
from these field experiments. However, vital insight was also gained into the digging
process, as well as how to tune the ALC to match the machine to the test environment.
The ALC had 61 % better dig time and 39 % greater payload, but required 68 % more
actuator work. The ALC dig efficiency variability was greatly reduced compared to
the manual digs, which should make mass flow rates out of the mine easier to predict.
Some 10-MN digs failed due to the uneven roadway. Ideally this variability in the
roadway should be compensated for by maintaining a bucket hight relative to the
ground.
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From ImageNet to Mining: Adapting Visual
Object Detection with Minimal Supervision

Alex Bewley and Ben Upcroft

Abstract This paper presents visual detection and classification of light vehicles
and personnel on a mine site. We capitalise on the rapid advances of ConvNet based
object recognition but highlight that a naive black box approach results in a significant
number of false positives. In particular, the lack of domain specific training data and
the unique landscape in a mine site causes a high rate of errors. We exploit the
abundance of background-only images to train a k-means classifier to complement
the ConvNet. Furthermore, localisation of objects of interest and a reduction in
computation is enabled through region proposals. Our system is tested on over 10km
of real mine site data and we were able to detect both light vehicles and personnel.
We show that the introduction of our background model can reduce the false positive
rate by an order of magnitude.

1 Introduction

While the mining industry pushes for greater autonomy, there still remains a need for
human presence on many existing mine sites. This places significant importance on
the safe interaction between human occupied and remotely operated or autonomous
vehicles. In this work, we investigate a vision based technique for detecting other
vehicles and personnel in the workspace of heavy vehicles such as haul trucks.

Traditionally, methods for detecting light vehicles and personnel from heavymin-
ing equipment have relied on radio transponder based technologies.Despite transpon-
der based sensors being mature and reliable for ideal conditions, in practice their
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reliability is circumvented by practical issues around their two way active nature,
portable power requirements, limited spatial resolution and human error. Using com-
puter vision offers a unique alternative that is passive and readily available on existing
remotely operated vehicles.

Vision based object recognition has made tremendous progress as measured by
standard benchmarks [4, 16]. The major advancements in this area can be attributed
to both the availability of huge annotated datasets [4, 7, 16, 26] and developments in
data driven models such as deep convolutional networks (ConvNets) [13, 24]. In this
work we utilise the ConvNet of [13] which has shown astonishing performance on
the ImageNet recognition benchmark [4] and extend it to data collected from mine
sites with minimal training.

Using ConvNets in different domains requires a large training set relevant to the
target task [29]. When the amount of training data is small, data driven approaches
tend to over-fit the training samples and not generalise to unseen images. In this
work we utilise a pre-trained ConvNet using millions of images from ImageNet and
address how to map the original ImageNet classes to mining classes with minimal
training effort.

Another consideration regarding this application is that cameras are rigidly cou-
pled to the vehicles orientation and configured with a fixed focal length. This distin-
guishes it from the ImageNet recognition problem where typical images collected
were implicitly pointed at regions of interest and appropriately zoomed. Addition-
ally, due to the wide field of view the majority of the images are background with
zero to potentially multiple objects of interest visible in any given frame. To locate
the objects, we follow a similar strategy to [10] and apply an initial step for finding
likely object locations through a region proposal process before performing object
recognition with the ConvNet.

Given that the majority of the images collected in a mine site dataset have zero
objects of interest in them, we can provide a standard classifier with a huge amount
of labelled background data. Using this newly trained classifier in conjunction with
the ConvNet ensures robustness and drastically reduces spurious detections. This
classifier is based on k-means clustering offering a convenient way to partition the
background data into different categories. This approach accurately captures the
characteristics of the background, enabling the discovery of novel non-background
objects.

The contributions of this paper are:

• adapting ConvNets to new scenes in a mining context,
• complementing the powerful classification provided by ConvNets with a simple
classifier trained on background mine data for increased robustness,

• a novelty detector using ConvNet feature clustering.

This paper is organised with a short review of related literature before describing
the proposed method in greater detail. We then analyse the performance of the pro-
posed method on a challenging set of mining videos and conclude with a discussion
of the learnt outcomes and avenues for future improvement.
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2 Related Work

Here we briefly review object detection methods that are not reliant on two way
communication before covering some related work using ConvNets for generic
object detection. Early work has focused on range based techniques such as LiDAR
[17, 22] commonly used for mapping fixed obstacles such as buildings or under-
ground tunnel walls. Applying these sensors to detecting personnel and vehicles
fitted with retro-reflectors, is found to be sensitive to the dynamics of the sensor
platform [20]. In this work we focus specifically on detecting potentially dynamic
obstacles including vehicles and particularly people from vision based data. To this
end, the more relevant prior work is that of [18] which exploits the standardised
requirement for personnel on mine sites to wear high-visibility clothing equipped
with retro-reflector strips. This enables a single IR camera with active flash to high-
light personnel in view which can then be used for tracking [19].

Recent popularity of big data and deep learning have dominated the object recog-
nition problem. Among these data driven approaches, deep convolutional neural net-
works (ConvNets) with recognition performance quickly approaching human levels
[5, 13, 21, 23] are selected for use in this work. ConvNets themselves have been used
for over 20 years [14] for tasks such as character recognition. Over recent years Con-
vNets have made an astonishing impact on the computer vision community [5, 6, 10,
13, 21] thanks to the availability of huge labelled image sets such as ImageNet [3].

Recognising what objects are in an image is only half of the object detection
problem. The other half is locating the objects within the image. Sermanet et al.
[23] sample over multiple scales and exploit the inherently spatially dense nature of
the convolutions within ConvNets to identify regions with high responses. Similarly,
[6] also perform convolutions over multiple scales and combine the responses over
superpixel segmentation [9]. Another popular approach and the one that we base this
work off is the region convolutional neural network (RCNN) of [10]. The RCNN
framework efficiently combines the ConvNet of [13] with an object proposal method:
selective search [27]. Generic object proposal methods aim to efficiently scan the
entire image at different scales and aspect ratios to reduce potentially millions of
search windows down to hundreds [11] of the most likely candidates. In this work
we use edge box object proposals [30] as the accuracy is higher while also running
at an order of magnitude faster [11].

3 Methodology

In this section we outline our detection pipeline and how it differs from [10]. Our
method consists of three key phases: (1) Region proposals with non-maximum sup-
pression (NMS), (2) ConvNet recognition and finally, (3) Detections are validated
by checking for novelty against the background model. See Fig. 1 for a high-level
overview of this pipeline. We bypass the problem of over-fitting on a small dataset
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Fig. 1 An illustration of the detection pipeline used in this work. The system parameters are
highlighted in blue and green which are learnt offline from an off-the-shelf network and background
only images respectively. Note the red output layer of the ConvNet outputs are ImageNet classes
(200 different). Any car or person is suppressed if it alsomatches the backgroundmodel tominimise
the number of false positives

by using a pre-training ConvNet and map its output to mining relevant classes. This
method is then extended with our proposed background modelling technique to sig-
nificantly reduce the number of false positives generated by the system.

3.1 Region Proposals

The aim of region proposals is to efficiently scan the image to eliminate millions of
potential windows, keeping only the regions that are likely to contain an object of
interest.We use theEdgeBoxes region proposalmethod [30] over theselective
search [27] used in the original RCNN work as this method is orders of magni-
tude faster with comparable accuracy. For a detailed comparison of region proposal
methods we refer the reader to [11].

The default parameters for EdgeBoxes were adjusted to return a fixed 1000
proposals. These region proposals are then further reduced to approximately 100
regions through a process of non-maximum suppression (NMS). The NMS process
considers the score produced by the EdgeBoxes method and the overlap with
other bounding boxes. As the name suggests it then greedily suppresses all but the
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maximum scoring proposal for all adjacent regions overlapping by 30% or more.
In contrast to applying NMS after the ConvNet [10], this way we can speed up the
detection pipeline by reducing the number of proposals going into the ConvNet while
maintaining comparable coverage over the image.

3.2 Region Classification

Having selected regions of the image that have the general characteristics of an object,
we now perform object recognition to distinguish the object category. For this we
apply the ConvNet from RCNN [10] which is based on the winning architecture [13]
for the ImageNet Large Scale Recognition challenge in 2012. For this work, we used
the RCNN implementation provided with the Convolutional Architecture for Fast
Feature Embedded (caffe) [12] framework out-of-the-box.

The original detection task for RCNN was to predict one of 200 classes that rep-
resent common objects found in images taken from the internet. For this application
we are only interested in distinguishing between three high level categories, namely:
background, person and light vehicles(LV). Using this model in a
mining context raises several issues that need addressing:

1. Most of the 200 classes are irrelevant, e.g. jellyfish, miniskirt, unicycle etc.
2. How to associate mining classes with ImageNet classes?
3. Semantically the background is significantly different from many of the exist-

ing object specific classes.

To gain some insight, we use a small validation set of 200 images to investigate
the output of the ConvNet out-of-the-box. This set is made up of cropped mine-
site images containing the classes person and LV along with 90 interesting region
proposals extracted from background only images. We also included a few heavy
vehicles (HV) images in this set but keep them as a separate class to identify
any correlations. In Fig. 2 we show the results of naively applying the pre-trained
RCNN model to this image set. To better visualise the output we applied a soft-max
transform to approximate the output class prediction as a probabilistic estimate.1

Not surprisingly, the person and LV classes are well represented and can be
directly mapped from the person and car ImageNet classes used to train the
original ConvNet. On the other hand, the background closely resembles uniform
random sampling of classes as there are no relevant classes in the existingmodel such
as trees, buildings, or road signs etc. Similarly, the HV class prediction also mostly
resembles a uniformly random distribution with a slight bias towards the ImageNet
classes snowplow, cart and bus. As for this application, we are only concerned
with distinguishing person and LV from the background, we simply assign all 198
non person or car outputs as background.

1It is important to note that this is for visualisation purposes only and that the y-axis does not
represent the true probability since the final SVM layer of RCNNwas not calibrated for probabilistic
outputs.
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Fig. 2 The average class estimate for a set of mining related images. Notice that person (class 123)
and light vehicle/car (class 36) are existing classes for the pre-trained network and can be used
directly. The background and the heavy vehicle classes are novel and show a wider spread as they
are not modelled with the pre-train ConvNet

With this simple class mapping approach and assuming that falsely picking one of
the positive classes is in fact uniformly random, we expect to eliminate 99% of all the
proposed background regions. However, when processing around 100 proposals per
frame, the expected false positive rate is once per frame. Next we propose a simple
background model that reuses the ConvNet computation to provide a background
likelihood estimate for reducing this false positive rate.

3.3 Background Modelling

While on a mine-site the landscape is constantly changing from a geometric perspec-
tive, the bleak visual appearance of the background is generally constant. For this, we
model the background regions as belonging to one of an arbitrary set of categories,
such as the semantic categories of rock, sky, tree etc. If a sample differs significantly
from any of these background classes then we can assume it is an object of interest.

Rather than using supervised techniques that require a set of manually annotated
images, we instead partition the background data without explicit semantic labels.
To do this, we exploit the assumption that intra-category samples generally appear
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visually similar to each other, yet may be distinctively different to other background
categories. Put another way, the background regions form natural clusters enabling
us to employ unsupervised techniques to model their visual appearance. See Fig. 3
for an illustration of the natural background clusters found by applying this method
to a mining dataset.

To describe the visual appearance of each region, the intermediate layers of the
ConvNet provide a free and compact representation suitable for this task. Addition-
ally, these features have been shown to be robust against lighting and viewpoint

Fig. 3 An illustration showing six of the most common types of background region proposals. The
rows represent different clusters while the columns show a random background region which is a
member of the associated cluster. Each cluster gathers samples with similar visual appearance such
as centred on a tree (top row) or centred on sky with an adjacent vertical structure (second row)
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changes without any re-training [25]. We refer the interested reader to [13] for an
illustration of the ConvNet’s inner workings. In general, the first layer of a ConvNet
extracts simple colour and texture features in the first layer, and through subsequent
layers, these features eventually transition to the learnt specific task [29] such as
classifying the 200 ImageNet classes. Along the way irrelevant visual information
for the original task (e.g. features describing sky) are lost once it reaches the final
layer. With this intuition we reuse the transformed data from one of the ConvNet’s
intermediate layers as an input to our background model.

To learn this cluster based model, a reservoir of negative samples is required.
Gathering background data is a relatively simple task since only inspection for the
presence of target objects is necessary. Specifically any image sequence not con-
taining any of the target objects can be used to build an extremely large reservoir
by extracting proposals from each frame. Furthermore, we only focus on difficult
regions by perform hard-negative-mining [8] of background samples by running the
ConvNet detection pipeline over these sequences. By lowering the confidence thresh-
old, near false positive background regions can also be added to build a sufficiently
large reservoir.

After extracting an intermediate layer of the ConvNet for each background patch,
we then cluster these samples using k-means clustering. At test time, each person
or LV predicted patch is verified by measuring the Euclidean distance between its
intermediate feature and each cluster centre. If the nearest background cluster is
close in this feature space, i.e. is visually similar, then we suppress the detection and
regard it as background.

In building this background model the following choices are to be made: Which
layer from the ConvNet? How many clusters? At what distance should a sample be
considered background? In the following section we address these design choices
through experimental validation.

4 Experiments

4.1 Mining Dataset

The dataset we use for evaluating this work was collected from a light vehicle
mounted camera operating in an active mine-site, see Fig. 4. While the motivation
is to put vision based sensing on a heavy vehicle, a light vehicle is more practical
for gathering a diverse set of visual sequences. The dataset contains both static and
dynamic instances of a person, LV or HV.

Continuous video was gathered with and without the camera in motion and on
various haul roads and a few light vehicle only zones to capture variation in the
environment. This video data was captured at 10 fps and partitioned into various
sequences. In this work we use 5 sequences where no people or vehicles are visible
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Fig. 4 The experimental dataset gathering vehicle with cameras mounted to the bullbar. Note all
images used in this paper were captured from the camera on the left hand side of the vehicle

to build our background model. Collectively these background sequences make up
8952 frames in total (approximately 14km).

To evaluate the performance we use another 5 sequences with several instances
of person, LV or HV, that we personally annotated using the tool developed by
Vondrick et al. [28]. These annotated sequences contain 9405 frames in total (approx-
imately 10km). In addition to these sequences we made a small validation set of 200
using other images collected on a mine site from various sources including a few
captured at night. This set was used to generate Fig. 2.

4.2 Background Model Validation

Here we describe the experiments performed to design our background modelling
system explained in the previous section. From the 5 background sequences, we
applied the region proposal and ConvNet detection framework to find challenging
region proposals from every tenth frame. While some of the false objects may be
observed in multiple frames, the time difference is sufficient to capture a variety
of view points for these distracting objects. We lowered the detection threshold to
collect region proposals if the ConvNet predicted either a person or car in the
top 5 out of 200 class responses. With this configuration we collect around 8000
hard negatives for our background reservoir. We held out 90 of the most interesting
background regions and added them to the validation set.
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To address the design decisions for this model, we perform an empirical study
using the reservoir containing only negatives and the validation set with both negative
and positives. We jointly test different combinations of ConvNet layer features and
number of clusters by evaluating their performance on the validation set. For the
distance threshold we set this to the distance corresponding to a 95% recall on the
positive set. With the recall fixed, the overall performance of the background model
is measured by the precision at which it can identify a true negative.

Figure5 shows the relative performance of sweeping the number of clusters for
different ConvNet layers. While fc6 layer with 2048 clusters achieved the highest
precision of 90% we instead opted to use only 128 clusters with a precision of 89%
which is significantly faster to compute. A detailed view of the distances between
the validation samples and the cluster centres can be seen in Fig. 6.

Fig. 5 Cross-validation
precision at 95% recall for
different ConvNet layers and
the number of clusters used
to represent the background.
Each point shows average of
5 trials

Fig. 6 Detailed view of the
distribution of the validation
images distance to their
nearest background cluster
centre. The grey line marks
the 95% recall distance
threshold
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Implementation Detail

The first 5 ConvNet layers produce dense tensor representations which gradu-
ally reduce in size. Then there are two fully connected layers fc6 and
fc7 before the final prediction layer. Again we refer the interested reader to
[13] for details of the ConvNet structure. Due to the density of data and the
computational complexity of computing distances in such high dimensional
feature spaces we only evaluate the ConvNet layers 3–7 and compress convo-
lutional layers 3–5 by pooling all filter responses across the feature map for
each tensor in [15] this is referred to global average pooling. In Fig. 5 these are
marked as pool{3–5}_gap.

The false negatives and some of the false positives are also shown in Fig. 7. The
false negatives are mostly night images which can be put down to the fact that similar
images are rare if not non-existent in the ImageNet samples used to train theConvNet.
For the false positives, these are mostly signs which make up a minority of the scene.
From these samples we can describe our background model as a form of novelty
detection where interesting parts of the scene such as signs are distinguished from
the general background. This finding along with the unsupervised clustering shown
in Fig. 3 are a testament to the ConvNet’s expressive capabilities in representing
visual similarity.

Fig. 7 Validation samples where the background model failed. Images are shown in their warped
form, representing the ConvNet input. The four right false negatives were collected at night
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Table 1 System comparison before and after background suppression (BGS) on mining sequences

Sequence
(frames)

F1 scorea (Precision, Recall) Mostly hitb Mostly missedb False positives

Baseline With BGSc – BGS – BGS – BGS

1 (1462) 0.38 (0.57, 0.29) 0.40 (0.77, 0.27) 2 2 16 16 242 87

2 (2950) 0.94 (0.96,0.91) 0.93 (0.97, 0.89) 3 3 6 6 73 47

3 (599) 0.02 (0.01, 0.09) 0.06 (1.00, 0.03) 0 0 2 2 349 0

4 (2826) 0.64 (0.56, 0.74) 0.80 (0.95, 0.69) 2 1 4 5 186 9

5 (1568) 0.68 (0.78, 0.61) 0.43 (0.92, 0.28) 4 1 3 6 177 24

Total 11 7 31 35 1027 167
aF1, Precision and Recall is computed treating each frame as independent
bMostly indicates where a single object instance was detected or missed 50% of the time
cThe proposed background suppression (BGS) is applied to the baseline EdgeBox and ConvNet
detector

4.3 Detection Evaluation

We now evaluate the system on the set of 5 sequences with person or LVwhere the
task is to locate objects of interest. In this evaluation we consider a true detection if
at least 50% of the detection region is covered by a single ground truth object. This
differs from the intersection-over-union (IOU) definition of overlap, as we accept
detecting a person’s head and shoulders without their whole body while IOU
would count this as both a miss detection and a false positive. It should be also noted
that any detection ormiss detection of a person or LV labelled as partially occluded
in the ground truth is ignored in this evaluation. While the system is not designed to
detect HV we consider any detections which overlap with HV objects as neither true
or false and are excluded from the evaluation. Additionally, if multiple detections
overlap a single ground truth instance, we count this as a single true positive and
neither of the overlapping detections are false. An example would be if a person’s
head is covered by a single detection and their body another.

Table1 shows the performance of the systembefore and after applying background
suppression. From these results we can see that while there is a slight drop in recall
our method for suppressing background regions reduces the false positive rate by an
order of magnitude.

5 Conclusions and Future Work

In this paper we presented a vision only system that takes advantage of recent devel-
opments in computer vision and machine learning to detect both personnel and light
vehicles. We circumvented the problem of ConvNet over-fitting on small datasets
by reusing a pretrained model directly and mapping its output to mining classes.
We further presented a method for exploiting the abundance of background only
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images to learn a background cluster model leading to a significant reduction in
false positives. This sensing approach was evaluated in an active open-pit mine
site environment. The experiments show that the in-pit environment is suitable for
object proposals along with background modelling techniques such as the one pre-
sented here.

While this work is only concerned with single camera based sensor data we see
many opportunities to combine techniques incorporating stereo [2] or range-based
sensors [20] for improved robustness.As an initial investigation of vision as a possible
sensor on aminewe seemany opportunities to further improve on the results. Asmore
labelled mining image data becomes available we expect to be able to design and
fine-tune a ConvNet that performs better in this domain than the existing network.We
also plan to extend this work to fuse information frommultiple frames by combining
the ConvNet appearance model with recent motion segmentation techniques [1].
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Building, Curating, and Querying
Large-Scale Data Repositories for Field
Robotics Applications

Peter Nelson, Chris Linegar and Paul Newman

Abstract Field robotics applications have some unique and unusual data
requirements—the curating, organisation and management of which are often over-
looked. An emerging theme is the use of large corpora of spatiotemporally indexed
sensor data which must be searched and leveraged both offline and online. Increas-
ingly we build systems that must never stop learning. Every sortie requires swift,
intelligent read-access to gigabytes of memories and the ability to augment the total-
ity of stored experiences by writing new memories. This however leads to vast quan-
tities of data which quickly become unmanageable, especially when we want to find
what is relevant to our needs. The current paradigm of collecting data for specific
purposes and storing them in ad-hocwayswill not scale tomeet this challenge. In this
paper we present the design and implementation of a data management framework
that is capable of dealing with large datasets and provides functionality required by
many offline and online robotics applications. We systematically identify the data
requirements of these applications and design a relational database that is capable
of meeting their demands. We describe and demonstrate how we use the system to
manage over 50TB of data collected over a period of 4 years.

1 Introduction

Lifelong learning for robotic systems requires large quantities of data to be col-
lected and stored over long periods of time. As these data accumulate, they become
increasingly difficult tomanage and query.Without a scalable system in place, finding
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useful data becomes ever more complex and this undermines our goal of achieving
long-term autonomy.

Many publications focus on the mechanics of lifelong autonomy but very few
explicitly deal with the problem of storing and accessing the required data in a way
designed to aid long-term, large-scale mobile autonomy. Given the need for field
roboticists to build coherent systems, it is time for this subject to be addressed.

Mobile robotics applications have some unusual data needs that cannot always
be anticipated in advance. An example is illustrative. We often want to evaluate
the efficacy of a new feature detector for visual odometry and thus testing under
differing lighting conditions is vital. What we actually want to do is automatically
collate image sequences that satisfy complicated compound queries such as ‘find
sequences >50 m of stereo images, captured while driving into the sun over wet
ground in the absense of dynamic obstacles’. This should run over all data ever
collected and return a pristine dataset as if this had been the sole purpose of our
experimentation over the past 4 years.

As another example, we need images of traffic lights to train a new state-of-the-art
traffic light detector. Instead of wasting time collecting a whole new set of data for
this specific purpose, we should first look to our existing data. It is probably the
case that we inadvertently have images of traffic lights from previous data collection
missions, and therefore we would like the ability to search for them.

To aid in solving this problem, we have designed and implemented a relational
database framework that is applicable to a wide range of robotics applications. A
data and query model is presented which cleanly distinguishes between sensor data
and user-defined metadata. This makes it trivial for a user to decorate the database
with their own contributions, and makes those contributions accessible to other users
in a consistent way. For example, if someone builds the aforementioned traffic light
detector and runs it over 100,000 images, they are then able (and encouraged) to add
those results to the database for others to use in the future.

Our framework not only makes offline batch processing tasks easier, but also
supports the needs of online tasks, for example the storage and retrieval of maps used
by a robot’s navigation system at runtime. This massively reduces the overhead of
implementing and testing new navigation systems as data back-ends do not need to be
written from scratch. A motivating use case that demonstrates this is our Experience
Based Navigation (EBN) system [1], a visual navigation framework designed to deal
with vast maps that grow continuously over a robot’s entire lifetime (see Fig. 1). EBN
utilises our database framework in order to fulfil these challenging data storage and
retrieval demands.

In the following sections we present the design and implementation of this frame-
work. We analyse the performance of the system and demonstrate its real-world use
by EBN.
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Fig. 1 Experience Based Navigation (EBN) [1] is a state-of-the art visual navigation framework
for autonomous robots. Maps, in the form of ‘experiences’ with associated graph structure, camera
images, and landmarks accumulate over many years. This paper aims to answer the question: ‘how
do we store and retrieve this kind of data in a flexible and efficient way?’

2 Related Work

In the context of lifelong learning for autonomous robots, very little work has so far
addressed the problem of organising, maintaining, and utilising the vast amounts of
data that will accumulate over long periods of time. Traditionally, (relatively) small
datasets are collected for specific purposes and are often discarded or forgotten about
once they have served their purpose.

Various datasets have been released to the community along with associated tools
and documentation. Some of these have been widely referenced in other publica-
tions and serve as convenient benchmarks for comparing performances of related
techniques. Examples include the New College Vision and Laser dataset [2] and the
DARPA Urban Challenge dataset [3]. Although these resources are invaluable to the
robotics and computer vision communities, they are also utterly static—the data are
a snapshot of a single period in time and adding to them in a way that is accessible
for others to use is difficult. Additionally, as these datasets are often formatted dif-
ferently and require non-standard tools to use, it is cumbersome to mine data from
several at once. To be useful in the context of lifelong learning, we wish to move
away from the idea of disjoint, immutable datasets and towards a living, growing
repository of everything we record and have ever recorded.

RoboEarth [4] is an ambitious project that proposes to solve some of these prob-
lems by building a ‘WorldWideWeb’ for robots. A distributed cloud database is used
to store machine-readable semantic data about environments, objects, and actions.
Generic robots can access this prior knowledge to help complete a task and can
upload their own knowledge once they succeed. A modular software architecture
enables generic actions (e.g. moving, grasping) to be realised on specific hardware.
A subset of RoboEarth’s vision is close in spirit to what we want to achieve, how-
ever it places more of an emphasis on the storage, retrieval, and reconciliation of
knowledge required for high-level planning and reasoning tasks.
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3 Requirements

Our own condition serves as motivation for what is to follow, and we suspect these
requirements are not unique to us. Figure2 shows how our data have accumulated
exponentially over the past 4 years. As of March 2015 we have amassed over 50
TB of data, comprising of more than 500 million ‘individual’ records, and more are
added on a daily basis. It is now intractable to manage all of this by hand.

Firstly there is the problem of reuse. In a previous time, data were collected for a
specific purpose, used by one or twopeople, then forgotten about.Almost no semantic
information about the data was stored and when it was, it was usually done so in a
non-standard ad-hoc way (such as in notes on a wiki, or in a readme). Information
andmetadata (annotations) extracted from processed datasets suffered from the same
problems. When gigabytes of data are collected and processed like this it becomes
increasingly difficult to reuse what is considered useful and instead is easier to collect
and process new data for each new purpose. To address this problem, we require that
existing useful data can be found effectively and we therefore need a way to index it,
as well as efficient ways to add new data when necessary. We also require a standard
method for data annotation and require that these annotations can be easily traced to
their underlying data.

Next, we have the problem of retrieval. Once we know a dataset contains relevant
data, we must somehow retrieve them. For batch tasks, this would have been done by
manually inspecting the dataset, chopping out the required parts and discarding the
rest—a time-consuming and boring process. For online tasks, data would typically
be accessed through a custom-written ad-hoc back-end, leading to bugs and time
wasted on re-implementing common components.

Lastly, we have the problem of physical storage and organisation of data. Previ-
ously, datasets were organised only by directory structure and filename. This reliance
on physical location presents many problems when datasets must be moved. Users
should not need to care which machines their data physically reside on and so aim
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to build a modular system that is platform and tool agnostic. Users should be able
to issue queries and access data using any programming language on any operat-
ing system. Ideally, queries should run online on robotic platforms with little or no
modification.

4 Data and Query Models

Here we describe the main data and query models that underpin our framework.
At the lowest level is raw sensor data: typically recorded directly from physical
hardware and subjected to minimal, if any, processing. Annotations exist as a layer
above this and are related directly to the data they annotate. Data that do not fall
neatly into either of these two categories follow the standard relational model.

In many ways these categories are arbitrary and some data can fall into multiple
categories depending on context. However, they help us identify common types of
queries which we take advantage of to reduce complexity. Returning to our traffic
light example: raw data include images captured by a camera during a data collection
mission. Annotations include the output of a traffic light detector on these images
(perhaps bounding boxes and labels). Other data include everything else that isn’t
directly causally related, for example an OpenStreetMap [5] road network map.

The following subsections make some use of relational algebra, a comprehensive
introduction to which is available in [6].

4.1 Raw Sensor Data

Raw sensor data form the bedrock of our data model and many of our subsequent
processing needs. As the collection of sensor data is such a fundamental part of our
workflow, it seems appropriate that they be given special consideration.

Raw data are characterised by the fact that they represent part of the state of
the world, as observed by some robotic platform, at a particular moment in time.
A fundamental query we wish to support is to find the entire state of the world, as
observed by a platform, at a particular moment in time. For example, our detector
finds a traffic light in some camera image that was captured at time t. We therefore
may want to find, from our collection of raw data, the corresponding GPS reading
giving the location of the robot at time t′ ≈ t. This will be the first and most coarse
step in many applications’ processing pipelines.

Consider a robotic platform r ∈ R representing an entity equipped with a set of
sensors S(r). The output datum of sensor si ∈ S(r) at time t is denoted si

t . We assume
that a single sensor can be mounted on more than one platform, though not at the
same time. We also assume that, by definition and without loss of generality, sensors
cannot produce multiple data at the same time (i.e. in cases such as stereo cameras,
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we treat both images as a single datum). Given these constraints, it can be seen that
〈platform, sensor, timestamp〉 tuples map to individual data via Ω̄:

si
t′ ← Ω̄(r, si, t) (1)

where t′ is the nearest1 discretised timestamp for which a sensor reading exists. It
follows that 〈platform, timestamp〉 tuples map to the state of the world as observed
by the entire platform via Ω:

{si
ti} ← Ω(r, t) (2)

where ti is the nearest discretized timestamp for which an output from si exists.
These observations give rise to three relations (tables) whose rows respectively

represent individual robotic platforms, individual sensors, and individual data:

Platforms(platform_id, . . . )

Sensors(sensor_id, . . . )

Data(data_id, platform_id, sensor_id, timestamp, data, . . . )

Expressed in relational algebra, Eq. (1) becomes a simple selection over rows in
the Data relation:

σplatform_id= r ∧ sensor_id= si ∧ timestamp≈ t(Data)

Equation (2) is given by:

σtimestamp≈ t(Dr,s1 	
T . . . 	
T Dr,sN )

where {s1, . . . , sN } = S(r), Dr,si = σplatform_id= r ∧ sensor_id= si(Data) and 	
T is a tem-
poral join operator that associates records whose timestamps are close together.

4.2 Annotations

Annotations are characterised by the fact that they mandatorily relate to other data—
whether raw data, other annotations, or otherwise. In other words, they are ‘mean-
ingless’ without context. To expand on our traffic light example: one detector may
create annotations consisting of bounding boxes that identify the locations of traffic

1The definition of ‘nearest’ may differ between queries but note that it is beyond the scope of the
system to, for example, interpolate between records or verify annotation correctness—how that is
handled is up to individual client applications.
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Fig. 3 Visualisation of some raw GPS, laser, and camera data and the relative times they were
captured. An example annotation hierarchy for a single image datum is shown—note that the ‘Car’
annotation has a child that contains the detected registration number. Links between data records
that are temporally joined at times t1, t2, and t3 are shown as dashed lines

lights in camera images. Another detector might annotate these annotations, indicat-
ing the state of the traffic lights, or other higher-level properties. Metadata, such as
the version of the algorithm used to generate the labels, might also be included.

Annotations for raw data are stored in their own recursive relations:

Annotations(annotation_id, data_id, parent_id, annotation_data, . . . )

The data_id field references a row in the Data relation, and the parent_id field ref-
erences a lower-level annotation. One and only one of these fieldsmust be non-empty.
Queries such as ‘find all raw data with a particular annotation θ ’ are simply a selec-
tion over the join of the Data and Annotations relations (more complex compound
queries can have any number of conditions chained together):

σannotation_data= θ (Data 	
 Annotations)

Figure3 shows graphically how annotations and raw data are related.

4.3 Other Data

This class encompasses any other arbitrary data that do not fall neatly into the two
aformentioned categories. For example, it includes completely standalone data, such
as OpenStreetMap maps and sensor calibration information. Harnessing the power
of the relational model, these data can still link to raw sensor data and annotations
if the need arises. For example, one of our traffic light annotations could link to the
OpenStreetMap intersection ID representing where the light is located.
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Fig. 4 Example GraphDB structure representing a metric map, topological map, and loop closures.
Example annotations linked to a single edge are shown

4.3.1 Multigraph Maps

One ubiquitous pattern that we have explicitly considered is the use of a directed
multigraph structure (GraphDB) to represent maps for use by localisation and nav-
igation systems, for example EBN. The graph is defined by two relations and is
encoded in an edge-list representation. Two additional relations store links between
nodes, edges, and annotations:

Nodes(node_id)

Edges(edge_id, node_from_id, node_to_id)

NodeAnnotations(node_id, annotation_id)

EdgeAnnotations(edge_id, annotation_id)

An example of how a map might be represented using this structure is shown in
Fig. 4.

5 Implementation

5.1 How Do We Store Data?

We have standardized the way raw sensor data are stored in an attempt to eliminate
fragmentation of our tools and methods. A monolithic file contains a sequence of
atomic data records. Each record consists of an XML header and a binary blob
containing a serialised Google Protocol Buffer2 message. The XML header contains
sensor-agnostic metadata about the message such as a timestamp indicating when it

2https://developers.google.com/protocol-buffers/.

https://developers.google.com/protocol-buffers/
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was collected, its length in bytes, and the name of the correspondingmessage format.
As sensor data are being collected, monolithic files are constructed on the fly. Raw
sensor data are streamed through a driver which converts them into messages of
the appropriate format and both the message and header are appended to the output
monolithic. As they are simply an unlinked sequence of distinct and atomic records,
monolithics can be constructed, split, and concatenated easily, and their length is
limited only by the underlying file system.

Raw sensor data are stored in monolithic files in a well-defined directory structure
that is organised by the platform and sensors used to collect them, and time of
collection. The top-level directory is located on a network drive that allows users to
mount it to anywhere in their own filesystem.

5.2 Relational Data and Query Framework

We use a relational database management system (DBMS)—either PostgreSQL3 or
SQLite,4 depending on our particular use case. PostgreSQL is designed for a multi-
user environment and has full transactional and locking abilities, allowing many
concurrent connections to the database without the risk of data corruption. These
guarantees come at the cost of performance—queries must be sent over pipe or
network to the PostgreSQL server process which executes them and returns results
over the samemedium. For real-time, online applications, we therefore prefer SQLite
which stores all necessary data in a singlefile.Applications access this file via a shared
library so no costly inter-process or network communication is required.

As SQL is a concrete superset of relational algebra, the schemas and queries
described in Sect. 4 can be translated trivially (see [6] for an overview) into appro-
priate SELECT statements. In particular, any ‘linking’ of data is done using foreign
key constraints. Compound queries are implemented using joins or subqueries.

As raw data are kept in monolithic files, we only store references to them in the
DBMS. They do not contain a built-in index, meaning searching them for specific
data requires a slow linear scan. Therefore, we store an index in an SQL table which
holds offsets into monolithic files for every record. This table corresponds to the
Data relation described in Sect. 4.1.

Annotations are stored in one global table which corresponds to the Annotation
relation described in Sect. 4.2. This encodes the annotation hierarchy. Annotation-
specific data (for example, the bounding boxes from our traffic light detector) are
then stored in their own tables. Records in these tables link to their corresponding
records in the global table. Annotations can then be created, updated, and deleted
using SQL INSERT, UPDATE, and DELETE statements, respectively.

The GraphDB structure is implemented as tables which correspond to the rela-
tions described in Sect. 4.3.1. A dedicated API is provided that handles graph-based

3http://www.postgresql.org/.
4http://www.sqlite.org/.

http://www.postgresql.org/
http://www.sqlite.org/
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Fig. 5 Overview of the concrete data model structure. At the lowest level, raw data are stored in
sequential records in flat ‘monolithic’ files. An index table in the DBMS holds offsets that point
to these records (represented by black arrows). Annotations exist in separate tables with each
individual annotation pointing to some record in the index (red arrow) and optionally to any other
data—in this example, to locations in OpenStreetMap (blue arrows)

operations such as creating, querying, and deleting nodes, edges, and their respective
annotations.

In addition, we keep a subset of OpenStreetMap [5] consisting of all roads and
regions in England. This is stored locally in our centralised PostgreSQL instance
using the PostGIS5 extension, allowing us to perform geospatial queries very effi-
ciently.

Figure5 shows an example of how the aforementioned components of the database
interact.

6 Performance

The importance we ascribe to run-time performance of the database system depends
on the specific use case in question. For example, batch tasks that process our entire
50TB of data have very different performance expectations to those of navigation
systems running on live robots.

Both PostgreSQL and SQLite support indexes on data tables which we use to
improve the performance of certain queries. These are implemented usingwell known
B-Tree [7], R-Tree [8], and hash table data structures. For example, we create a B-
Tree index on the data_id field in the Data table. This reduces the search for a record

5http://postgis.refractions.net/.

http://postgis.refractions.net/
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Table 1 Measured execution times for some example queries

Query Execution time

Insert approx. 250,000,000 index records 12 h approx.

Select single datum by ID 0.06 ms

Select single datum by platform, sensor, and timestamp 0.06 ms

Temporal join to select data by platform and timestamp 7.5 ms

Temporal join for every record in an approx. 60 GB dataset 14.7 s

Performed using a test PostgreSQL instance containing a 250,000,000-record subset of our data
(approximately 20TB)

identified by a specific data_id from O(n) to O(log n). For most long-running batch
tasks, the speedups afforded by these indexes are sufficient. Table1 shows measured
execution times for some example queries of this nature.

In the rest of this section we analyse some of the performance characteristics of
PostgreSQL and SQLite under particular configurations.

6.1 PostgreSQL Versus SQLite

PostgreSQL is a server-basedDBMS,meaning queries are issued via relatively costly
interprocess communication or network calls. In return it provides full transactional
and fault-tolerant behaviour and therefore allows many users to read and write data
simultaneously without interfering with each other.

For real-time use cases, we instead prefer SQLite. It is linked statically and stores
all of its data, metadata, and indexes in a single file which vastly reduces the overhead
of its API calls.

Here we give performance results for the creation and traversal of a ‘worst case’
linked list graph structure. Although somewhat contrived, this example allows us
to identify certain bottlenecks and observe how different configurations perform
relative to one another. In the real world, access patterns and disk speed should also
be major considerations.

Experiments were performed on an early 2011-eraMacBook pro with 8 GBRAM
and a 500 GB hard drive, with a PostgreSQL server running locally.

6.1.1 Experiments and Analysis

To test write performance, we create linear chains (successive nodes connected by
single edges) of varying lengths n in theGraphDB. PostgreSQL and SQLite are tested
in both synchronous (every write is fully flushed to disk) and buffered (writes are
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buffered in memory by the host operating system) modes. In the synchronous case,
a write-ahead log is also used. In addition, we compare the creation of all nodes and
edges in one operation (batch) versus creating them individually. The former case
is more likely to be the behaviour of an offline batch task that has all data already
available to it, whereas the latter behaviour is more likely to be exhibited by an online
task that is constantly processing new data from its environment.

Timing results for write operations are shown in Fig. 6. Unsurprisingly, buffering
individual writes is faster for both PostgreSQL and SQLite, although much more
dramatically for the latter. Buffering batch writes makes virtually no difference.
Batch writes of more than about 10–100 nodes are significantly faster than writing
them individually. This is likely due to the overhead of API calls which begins to
dominate in longer chains, particularly for PostgreSQL.

To test read performance, we load the previously created linear chains. Again we
test how reading the whole graph in one operation (batch) compares with traversing
the chain one node at a time.

Timing results for read operations are shown in Fig. 7. Similarly we see that read-
ing in batch is far quicker than traversing nodes individually. Additionally, SQLite
is faster than PostgreSQL by almost 1–2 orders of magnitude in all cases.

Overall SQLite consistently outperforms PostgreSQL, although the difference is
less marked in batch than individual cases.We believe this is because of the overhead
associated with interprocess communication return trips, of which there are O(1) in
the batch case compared with O(n) individually. We use this as justification for our
use of PostgreSQL as our centralised DBMS, suitable for use with long-running
offline tasks—where the multi-user and fault tolerance properties outweigh slight
performance gains—and SQLite for real-time tasks.
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Fig. 6 Log-logplots showing time taken to create linear chains of various lengths inPostgreSQLand
SQLite, in both synchronous and buffered modes. On the left nodes were all created individually—
i.e. n calls to a CreateNode API function. On the right nodes were created in batch using a single
API call
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7 Use Case: Experience Based Navigation

Experience-Based Navigation (EBN) [1] is a general-purpose framework for vast-
scale, lifelong visual navigation. Outdoor environments exhibit challenging appear-
ance change as the result of variation in lighting, weather, and season. EBN models
the world using a series of overlapping ‘experiences’, where each experience models
the world under particular conditions. New experiences are added in real-time when
the robot is unable to sufficiently localise live camera images in the map of experi-
ences. Additionally, the robot learns from its previous use of the experience map in
order to more accurately retrieve relevant experiences from memory at runtime. The
system has been tested on datasets totalling 206Km of travel, successfully running
in real-time at 20Hz [9].

Since EBN must operate over vast distances and throughout the lifetime of a
robot, it is essential that the map of experiences is persisted in long-term storage. In
order to maintain reasonable memory requirements, the system needs to be able to
selectively load relevant portions of the map into memory, while leaving others on
disk. To meet real-time constraints, these data must also be efficiently accessible.

The map of experiences is represented as a graph. Nodes describe the appearance
of the environment at particular times and poses, while edges specify topological
and metric links between these places (see Fig. 1).

The GraphDB meets these requirements and therefore provides the mechanism
for storing and retrieving data. Raw sensor data (e.g. images) and processed data
(e.g. visual landmarks) are linked to corresponding nodes as annotations. Edges
are annotated with 6DOF relative transformations, giving the graph a local metric
structure.

The pipeline for localisation is shown in Fig. 8. The breadth-first search enables
EBN to load relevant portions of the map (nodes nearby the robot) into memory at
runtime. Since this search may require a large number of read requests, the SQLite
implementation of the GraphDB is used in buffered mode to maintain real-time
performance.
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Fig. 8 Overview of the EBN localisation pipeline. This process is strictly required to run at 20Hz—
the system has 50 ms to complete, including data access tasks (highlighted in blue)

Fig. 9 Overview of the EBN experience creation pipeline. This process has less strict runtime
requirements and runs in a background thread. Writes to the database are highlighted in red
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Fig. 10 Sampled timingmeasurements for the localisation and experience creation pipelines. Dom-
inant database access periods are shown in blue. It can be seen that during localisation, these accesses
comfortably meet the 50 ms target. Experience creation takes in general longer however still runs
under 50 ms for majority of the time. For this task, occasional spikes in disk access latency do not
impact on real-time performance as it is handled in an independent thread

A core feature of EBN is the ability to add new experiences to the map in real-
time (pipeline shown in Fig. 9). These experience creation tasks are processed in
an independent thread so that slow disk write speeds do not impact on real-time
performance. Figure10 shows timing measurements for both the localisation and
experience creation pipelines.
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8 Conclusion

In this work we have motivated the need to move away from privileged datasets and
ad-hoc data storage and annotation. These habits do not allow us to fully utilise our
resources. Data take valuable time to collect and annotate and we make the case
that it is impossible to predict which will be useful as they are collected. It is often
only after the fact—weeks or months later—that we realise the full potential of some
data. Without a consistent framework like ours in place, we would likely forget these
useful data, not to mention waste time reimplementing separate storage and retrieval
back-ends. We firmly believe that a system like this is the way forward for robotics
applications—text files, readmes and wikis are no longer sufficient for many of our
data management needs.
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Search and Retrieval of Human Casualties
in Outdoor Environments with Unmanned
Ground Systems—System Overview
and Lessons Learned from ELROB 2014

Bernd Brüggemann, Dennis Wildermuth and Frank E. Schneider

Abstract The European Land Robot Trail (ELROB) is a robot competition running
for nearly 10years now. Its focus changes between military and civilian applica-
tions every other year. Although the ELROB is now one of the most established
competition events in Europe, there have been changes in the tasks over the years.
In 2014, for the first time, a search and rescue scenario was provided. This paper
addresses this Medical Evacuation (MedEvac) scenario and describes our system
design to approach the challenge, especially our innovative control mechanism for
the manipulator. Comparing our solution with the other teams’ approaches we will
show advantages which, finally, enabled us to achieve the first place in this trial.

1 Introduction

Rescuing of a wounded person is an important but also dangerous task not only
in military scenarios but also in civil disasters. In any case the rescue of a victim
results in high risks for the rescuers themselves or, if these risks are reduced, in an
unacceptably long duration until the wounded person can be brought to emergency
treatment. Here robots can help not only to locate wounded persons in the first place
but also to bring them into safety. Exactly this evacuation task was addressed in
ELROB 2014 for the first time. Localization of the wounded person was only a
minor part of the scenario because in the organizers’ view transporting a wounded
person was already novel and a hard enough task to be tackled in a trial.

Since new things often have a strong attraction, there were nine teams altogether
trying to accomplish the so-calledMedEvac scenario.As, on theonehand, Fraunhofer
FKIE acts as scientific advisor for the ELROB competition and, on the other hand,
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sent a team inside the competition, this paper will present the design of the scenario
as well as a system to solve the task. Whereas FKIE’s organizing team and the team
participating in ELROBwere strictly separated before and during the competition the
authors can now combine both insights to present results and some lessons learned.

The remainder of the paper is organised as follows: In Sect. 2 we present current
system designs to address medical evacuation tasks in general as well as compe-
titions of particular interest for the Search & Rescue (SAR) community. Section3
will present the MedEvac scenario in detail, describing the scenario design and its
realisation during ELROB. Our approach to the MedEvac scenario, the combination
of hardware and software, is described in Sect. 4. The performance of our system,
also in comparison to other participants, is the topic of Sect. 5. Finally, we close the
paper with lessons learned and some conclusions.

2 Related Work

It is generally a problematic task to compare approaches and methods in the field of
outdoor robotics [5]. In the majority of cases results are reported only for a specific
robotic system. All tasks are carried out in a static and often specially defined envi-
ronment, making it hard to compare the outcome with results from other research
groups, other approaches, and other robots. As one possible solution, robot com-
petitions have been proposed for benchmarking real robot systems [2]. Of course,
the difficulties of repeatability and controlled experimentation remain. In outdoor
trials, for instance, weather and lighting conditions can dramatically change even for
consecutive runs. Starting positions differ and obstacles are not always accurately
placed, as exemplarily mentioned in [1]. The authors also notice that new kinds
of problems arise. Participants often tend to exploit rules or create special-purpose
solutions related only to a specific trial instead of developing adaptive and flexible
approaches.

When looking at the Search&Rescue (SAR) domain the very large field of robotic
competitions dramatically decreases. Regarding Urban Search and Rescue (USAR)
aspects one of the more sophisticated events is the RoboCup Rescue competition,
which is part of the annually organizedworldwideRoboCup.However, although very
well established this competition is far fromworking in realistic environments. More
real-world related is the ongoing DARPA Robotic Challenge (DRC) which is cur-
rently in progress. Looking at Europe, one can find the newly founded EURATHLON
and, of course, the European Land Robot Trial (ELROB) with its user-centred tasks
and real world scenarios. These four competitions will be described in more detail
in the following paragraphs.

The RoboCup Rescue is a special part of the worldwide RoboCup competition.
The intention ofRoboCupRescue is to promote research and development in interdis-
ciplinary research themes around robot aided search and rescue. The majority of the
teams are built by students. The environment used in the competition is constructed
based on standard test methods for emergency response robots developed by the U.S.
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National Institute of Standards and Technology (NIST). The greatest advantage of
these so-called arenas is that they allow repeatable tests in an environment anybody
can build [11]. There are color-coded arenas with different levels of difficulty avail-
able. In all arenas, the robots have to find simulated victims and generate a map,
which helps rescuing personnel to locate and rescue the victims.

The DARPA challenges started with the Grand Challenge in 2004. Initially, the
goal was to travel autonomously, first in a desert-like area, later in an urban envi-
ronment. Especially in the context of USAR the new DARPA Robotics Challenge
(DRC) is of relevance. The DRC looks for robots capable of assisting humans in
response to natural and man-made disasters. After some preliminary decisions, 16
teams have been elected to participate in the semi-finals in December 2013. Details
and results can be found at [17]. The finals will take place in June 2015.

Funded by the European Commission, EURATHLON is an international compe-
tition that welcomes university, industry or independent teams from any EU coun-
try. EURATHLON provides real-world robotics challenges for outdoor robots in
demanding scenarios. The focus of the first EURATHLON competition in 2013
was land robots, and had five scenarios covering a number of the key competencies
needed in outdoor disaster response, including mapping the disaster site, searching
for objects of potential interest (e.g. survivors), turning off valves (i.e. a gas leak),
finding hazardous materials and securing them, and navigating autonomously from
one place to another [18]. The focus of EURATHLON 2014 was underwater robots,
and EURATHLON 2015 will finally add flying robots. Inspired by the Fukushima
accident of 2011, this grand challenge will require cooperating groups of land, sea
and flying robots to investigate the scene, collect environmental data, then identify
and stabilise critical hazards.

The ELROB trials have been started in 2006 as an annual competition, which
alternates its key aspect between military and civilian tasks [16]. In contrast to the
DARPA challenges, the teams can choose different scenarios. Among these scenar-
ios are different kinds of reconnaissance and surveillance missions combined with
the detection of special objects, or transportation, which can be carried out with a
single vehicle or in form of a convoy with at least two vehicles. In the recent years
several scenarios from the Search&Rescue domain have been added, e.g. the inspec-
tion of partially wrecked urban and semi-urban structures or the search for injured
persons [15]. The ELROB 2014 competition and especially the Medical Evacuation
(MedEvac) trial are subject of this work and are described in more detail in Sect. 3.

Robotic systems for medical support have been discussed in literature for a couple
of years now. Apart from victim transportation, other applications include search and
localization of injured persons, direct medical support (e.g. providing water or estab-
lishing an audio connection) or even life sign detection [13] (e.g. through infrared
cameras or pulse measurement). In [8] a Cognitive Task Analysis (CTA) is used to
identify requirements and preconditions for using robots in such medical applica-
tions. Although in [13] Robin Murphy describes a payload for medical assessment
and very limited support for the victim, for most authors the idea of using a robot for
helping injured persons is more or less a long-term vision. Only in the recent years
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a couple of large research projects, e.g. the European ICARUS project [4], address
victim search and support from a more practical side.

In the context of medical evacuation and victim transport only very few robot
systems have been actually built. In [12] a small platform for use in fire-fighting
situations has been developed. It can be thrown into a fire site to gather environmental
information, search displaced people, and show them the best way out. Of course, this
approach requires that the persons can still move on their own. For several years the
USArmy has sponsored research in themilitary aspects of robotic casualty extraction
and evacuation but this research mainly produced concepts [6] and did not lead to a
working system. Among others the problem of safely picking up an injured person
was not even conceptually solved.

Other authors addressed partialmovement andmanipulation of the body of injured
persons [10, 19], e.g. to bring their head into a better position for breathing. This task
allows using smaller robots and, thus, lowers the risk of further injuring a victim.
Since this task only solves a partial problem in rescuing the person, Iwano et al.
also discussed using a group of such smaller robots for victim transportation [10].
In [9] the same group developed a completely different approach. Instead of using
an intelligent robot, they addressed the vehicle design first and improved a normal
rescue support stretcher system, allowing a single rescuer to pick up and transport a
victim even on difficult terrain like stairs.

3 Task Description

Before describing our approach to the ELROB 2014 MedEvac scenario we will
briefly introduce the general idea of ELROB and the ELROB 2014 competition from
the organizers’ point of view. Afterwards, the newly created MedEvac scenario in
which unmanned ground systems (UGV) had to rescue a wounded person out of a
hazardous environment is described in detail.

3.1 The European Land Robot Trial and the 2014 Event

The organizers see the European Land Robot Trial (ELROB) as an opportunity to
provide an overview of the current state of the art in European unmanned systems
technology. ELROB enables participants and visitors to get a glance at the latest
research and development in the area of outdoor unmanned ground vehicles (UGV).
For participants from industry ELROB allows to evaluate their commercial products
in realistic scenarios dealing with dangerous and hazardous environments. Addition-
ally, participants from universities and research institutes guarantee that also cutting
edge methods in robotics can be seen. This mixed field of participants results in a
community creating process bringing together developers and users.
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ELROB 2014 was hosted by the Warsaw Military University of Technology and
co-organized by Fraunhofer FKIE. The tasks have been developed in close co-
operation with the potential end users and reflect the up-to-date requirements of
military forces as well as civil first-responders. Altogether, participating teams could
choose from five scenarios:

• Reconnaissance and surveillance in non-urban environments: A specified target
area had to be searched for particular markers passing a number of given way-
points.

• Mule: A vehicle had to shuttle between the two camps carrying as much payload
as possible. The vehicle had to learn the position of the second camp and the route
how to get there by following a human guide (teach-in).

• Reconnoitring of structures: An area of interest with a number of small buildings
had to be inspected. The robot had to enter the building, partially using stairs, and
search for particular markers.

• Medical evacuation: Twowounded persons were lying at two roughly known posi-
tions. A vehicle had to approach these positions, locate the dummy and transport
it back to the starting point.

• Reconnaissance and disposal of bombs and explosive devices: An area of interest,
indoor and outdoor, had to be explored and searched for suspicious objects.

3.2 The MedEvac Scenario

The rescue ofwounded persons is an important yet often difficult task in civil catastro-
phes as well as in military scenarios. During military operations the retrieval of casu-
alties usually takes place in hostile environments, thus leading to severe dangers
for the involved soldiers. The use of robotic vehicles, first, to find injured persons
and, second, to autonomously pick them up and transport them back to safe areas
obviously is a great improvement (see Fig. 1).

In theMedEvac scenario, aswell as in all otherELROBscenarios, oneoperator and
on technician are allowed during the run.While the operator has only the information
heor shegets from the control station (and e.g. nodirect line-of-sight) the technician is
allowed to follow the robot. Thus the technician is able to perform an emergency stop
to prevent the robot from damage or free the robot if it gets stuck. All interventions
by the technician were measured and resulted in penalties.

During the scenario the wounded persons were represented by dummies. Depend-
ing on what the robot was capable to transport, participants could choose between
10, 35 or 74kg dummies. While the 10kg dummy was only a black bag, both other
dummies were in a human-like shape. Additionally, the dummy had a pull strap or
loop for easier transportation. In the scenario two wounded persons were hidden at
two roughly known positions (named with P1 and P2). The participant had to first
approach P1, search and locate the dummy, and then transport it back to the starting
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Fig. 1 The MedEvac scenario in an overview: Starting from the marked position on the bottom
left corner, the participants have to go to each of the marked way-points and search the area for the
dummy. After locating the dummy and acquiring a GPS coordinate of it, the robot is supposed to
bring the dummy back to the starting position. The whole scenario takes place in a 150m×150m
area with a distance from the dummies to the controller’s tent of about 75m

point e.g. by dragging it at the special strap, by pushing it, or by completely lifting
it. Afterwards, the same had to be done for the area around P2.

The environment was characterized as a typical non-urban terrain with obstacles
like high grass, ditches, trees and bushes. In the actual scenario the environment
appeared as a large grassy area.Most of the grass was waist-high, thus, the organizers
decided to cut down some parts to enable participants to use autonomous functions
and smaller robots. Nevertheless, one of the two dummies could only be found by
entering the high grass area.

In addition to the main task, the rescuing of the wounded persons, participants
could gain extra points for additional tasks:

• acquired imagery and exact GPS positions of both dummies,
• transmission of all data to the control station, online or offline after having returned
to the starting point,

• transmission of live position and video imagery.

The scenario ended with manoeuvring both imitated wounded persons back to
the starting point or with reaching the time limit of 45min. Transferring any result
data had to be done within the scenario time.

4 System Description

In this sectionwe describe the idea how to solve theMedEvac task as it is described in
Sect. 3. This includes the question ‘How to transport the dummy?’ aswell as technical
decisions and the control method for the robot and especially the manipulator. All
decisions were made not only having the task in mind, but also with a focus to
perform best in that scenario. This includes to respect the score sheet in a way that
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bonus points should be achieved and aspects which are not relevant for the points
system can be postponed.

4.1 Our Scenario Approach

To optimize the scoring three different aspects had to be considered. Firstly, as
ELROB always wants to foster autonomy, more points can be achieved with semi-
autonomous and autonomous robots than with simple tele-operation. Secondly, the
time needed to complete the task is important, and, thirdly, the weight of the dummy
that is handled. Additionally there are no penalties for being rude to the dummy.
In fact, as this was the first time MedEvac was offered as an ELROB scenario, the
possible solutions should not be narrowed by too much restrictions.

Dealing autonomously or semi-autonomously with the scenario was not possible
for us because the preparation time between announcement of the scenario and the
actual competition was too short. Thus, we had to focus on speed and power of the
resulting system. We agreed that the scenario was not solvable without some kind
of manipulation. As we have no manipulator able to handle the 74kg of the heaviest
dummy but a robot which is capable of moving such weights, we realized that the
manipulator should be best used to link the wounded person with the robot, and
afterwards the robot itself should actually move the dummy. This resulted in a towing
approach. The manipulator was used to attach a hook to the gear of the wounded
person. This hook was attached with a steel rope to the robot. Thus, after hooking
the dummy, the robot was able to tow the dummy back to the starting position.

4.2 The Mobile Platform

Our vehicle is the prototype GARM built by RUAG in Switzerland in collaboration
with FKIE’s engineers. It is a robot in the 500kg class with a long-lasting lithium-
ion-battery and a tracked drive. In this class it is one of only few robots that have
a closed-loop controller for the engines, which allows sending velocities from the
computer to the robot and makes autonomous navigation a lot easier. This is quite
unique because most other robots of this size are built solely for tele-operated EOD
missions and just let the operators control the power of the engines directly. Usually
they are not equipped with any odometry sensors at all. The top speed of our robot
is roughly 20km/h and the possible payload is about 200kg. The chassis is water-
resistant, but should not be submerged completely.

We use a payload box developed by FKIE that is equipped with a 7 degrees-of-
freedom (DOF)manipulator taken from a telerob telemaxEOD robot. It has a parallel
gripper that can be opened and closed. The third joint from the base is a prismatic
joint that enables the manipulator to extend the upper arm for about 30cm. Thus,
the manipulator has a range of around 1.7m. For communication freely available
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WiFi components where used which are able to cope with distances of up to several
hundred metres, so fully sufficient for the described MedEvac scenario. We used
standard IEEE 802.11n with flexible channel planning at 2.4 and 5GHz frequencies.

4.3 Robot Control

The robot control was designed mainly to deal with the task as fast as possible. It
consists of three different aspects: fast set-up of the system, easymanipulator control,
and robustness against connection failures.

4.3.1 Driving and GUI

As most other research groups we are using the Robot Operating System (ROS)
framework. In our solution the robot and the control station are two physically divided
systems. This causes problems in ROS if the connection between robot and control
station is unreliable. As a solution we use the FKIEMulti-Master extension for ROS,
giving us an improved robustness against temporary connection failures. Within the
multi-master the existing ROS master is unchanged and executed independently on
each robot. To enable the ROS nodes which are registered at different ROS masters
to communicate with each other, each node has to be registered at each ROS master.
Therefore, the ROS master provides a XML-RPC-interface, so we do not have to
change the source code of the ROS master. A so-called sync-node is responsible
to register all discovered remote nodes at local ROS masters. Since only the local
ROS master is changed by the sync-nodes losses of connection do not result in
inconsistent states. To reduce the configuration overhead, a discovery node discovers
other discovery nodes by steadily broadcast and received heartbeat messages. The
discovery node also monitors the local ROS master and announces the timestamp
of last change using heartbeat-messages. So the remote sync-node can detect the
changes and update its synchronization. Additionally, the Multi-Master comes with
a graphical user interface for managing launch files, greatly helping us to build a
quick set-up system. The code of the ROS Multi-Master is published with BSD
license at github and the documentary can be found at [14].

The robot GUI is built of rqt widgets. Beside pictures of the three cameras (manip-
ulator hand and turret; overviewcamera)wedisplay amapof the area,which displays,
for example, the given way-points for the scenario. As we expected an environment
very difficult for autonomous driving, we included two kinds of driving control:
autonomous driving via way-points set in the map, and a simple joystick control.
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Fig. 2 Directly coupledman-manipulator control. Using several IMUs (right) the operator’s move-
ment is measured and transferred to the manipulator (left)

4.3.2 Manipulator Control

Although the chosen method to pull the wounded person out of the dangerous area
looks simple, it yet results in a difficult manipulation task. The hook has to be safely
placed at the gear of the dummy but it is not known in advance where a suitable strap
will be located. Additionally, the exact position of the dummy is unknown. Thus, we
decided to solve the manipulation task purely tele-operated. Whereas typical solu-
tions to manipulator tele-operation include at least a joystick and some combination
of direct joint control and tool-center-point control, we introduce a novel system for
controlling the manipulator directly by the movement of the operator’s arm.

The operator is equipped with a jacket in which an inertial measurement unit
(IMU) is placed at each part of the arm (see Fig. 2). By measuring the current orien-
tation of each of those sensors the actual arm position can be calculated. Using also
the velocity readings an automatic calibration can be done (see [7]). This enables
the operator to wear the jacket during the competition run, access the manipula-
tor control if necessary and switch to other control mechanism without time delay.
Additionally, this manipulator control method enables the operator to conduct even
complex manipulation tasks in a very intuitive manner, as described in detail in [3].

5 MedEvac at ELROB 2014—The Competition

5.1 Solutions of Other Competitors

As stated before, theMedEvac scenario was part of the ELROB competition and new
things are appealing to people for the first time. Thus, nine out of the twelve teams
participating in ELROB 2014 took part in this scenario. Two types of solutions were
presented: towing/pulling—as FKIE did—and lifting.

Two of the industry teams, Cobham and ELP, also chose to tow the dummy back
to the starting point (see Fig. 3). As both robots originally are designed for bomb
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Fig. 3 Two other competitors using a similar strategy to our approach: towing the dummy back to
the starting point. Due to the size of the robots only the 10kg dummy (black bag) could be moved

disposal, they are small and not able to move high weights. Although they both
managed to pull the dummies back to the starting position in time, they were only
able to move the small 10kg dummy.

Lifting the dummy obviously has the advantage that it is much more convenient
for thewounded person. TheUniversity ofOulu and the teamMarek from theWarsaw
MilitaryUniversity of Technology (WAT) tried this solution.While Oulu built a pick-
upmechanism (see Fig. 4, left) teamMarek performed the taskwith pure power. They
tried to use a fork lifter originally designed formoving around heavy loads (see Fig. 4,
right). Unfortunately, as they had no GPS localization and visualisation they were
not able to locate the dummy. Also Oulu could not evaluate their lifting mechanism
because the robot was not able to pull the lifting mechanism over the dummy.

Altogether only three teams were capable of locating the dummies and moving
them both back to the starting position within the time limit. All three teams had
a tele-operated robot. While two teams used small bomb disposal robots and could
only move the small 10kg dummy, our team successfully moved the heavy (74kg)
one.

Fig. 4 Two teams presented lifting strategies without using a robot arm. While the University of
Oulu constructed a lifting mechanism, team Marek used sheer force in form of a large fork lifter
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5.2 Our Own Run

Our actual run was preponed due to the withdraw of other teams. Thus, preparations
had to be done in a hurry, but within less than ten minutes the control station was set
up and the robot was ready to enter the scenario (see Fig. 5, left). First, a dummy in
approximately 75m distance had to be retrieved. Due to the high grass, we decided
to operate fully tele-operated and drive the robot directly to the given way-point.
Although the GARM is capable of driving with up to 20km/h, we could only go with
a maximum speed of 10km/h as the vibration heavily disturbed the camera image.

The imitated victim was placed in high grass (see Fig. 5, right), but due to the
high viewpoint of the camera (approx. 1.4m from ground) the dummy could be
located already during the approach and no time was needed to search for it. To
gain all extra points a camera picture had to be stored at which the dummy could be
clearly seen and also the exact GPS coordinates had to be recorded. This could be
done manually because the manipulator control jacket still allowed using keyboard
and mouse. Nevertheless, an automatic function would have saved another minute.
After acquiring the picture we manoeuvred the robot to the left side of the dummy
and started the manipulation task. Standing beside the dummy seemed not to be the
best position and the hook was released from the manipulator without being tightly
secured. To make sure that the hook held during towing the operator picked up the
hook once again and moved it to a better position. This was done without any manual
intervention from the technician. The dummywas towed back to the starting position
with a speed of approximately 3.6km/h.

When arriving back at the starting position the technician removed the hook from
the dummy and attached it back to the manipulator. Although this was done at the
starting position and was thought to be in accordance to the rules, the judges counted
this action as manual intervention. The second dummy was also immediately seen in
the video stream but, as it was surrounded by ditches on three sides, the robot could
not easily access it. After acquiring the picture and GPS coordinate, the robot moved
to the opening in the ditches and was now located directly at the head of the dummy.

Fig. 5 Left The FKIE robot at the starting position. Here the dummy had to be brought back to.
Right The robot arriving at the first dummy. From here the manipulation task was to hook up the
gear
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This position was more beneficial and, thus, the hook could be placed securely at the
dummy within less then one minute. Towing the dummy back past the ditches took
some time but the total run could be finished within 21min.

5.3 Results

The final scoring sheet ranked our team first with team ELP and Cobham as second
respectively third. These teams were the only teams able to finish the task in time.
Also all of these three teams presented a tele-operated solution. Our team was the
only team with penalty for manual intervention, as the judges counted the removal
of the hook from the gear of the dummy as manual intervention even though this
happened in the save area, were in a real task medical assistance will wait for the
wounded person.

Comparing to the second and third place we reached more points due to the fact
that wewere able to complete themission in less than half of themaximum time. ELP
as runner-up was able to solve the mission in 28min while Cobham needed more
than 34min to transport both dummies to the starting point. Using a robot which was
able to tow the 74kg dummy equalled out the given penalty for manual intervention.
Additionally, it turned out to be important to get the extra points for pictures and
GPS positions as this was done by all competitors.

6 Lessons Learned

Competitions are great opportunities to benchmark different systems against each
other but they measure always a complete system including hardware, software and
the operator. Therefore, some aspects like the robustness of the hardware have a
big influence on the overall performance while others, like cutting-edge algorithms,
only have an effect if everything else works well. Nevertheless, taking part in a
competition is always valuable for the participant to learn interesting lessons about
the own system.

One of the main aspects is in our opinion the robustness of the whole system.
This includes hardware, software but also an operator who is familiar with the whole
system and also the scenario which has to be solved. In the ELROB 2014 MedE-
vac scenario two participants were not able to present their approaches because of
hardware failures. From the retrospective of the last ELROB events this seems to be
especially a problem of universities, which are not able to afford expensive hardware
platforms. FKIE’s cooperationwithRUAG resulted in a very robust and sophisticated
platform in a robot class (up to 500kg) which is not really supported by the industry
at themoment. Additionally, we use ROS together with the FKIEmulti-master exten-
sion, a technically mature solution which comes with a graphical user interface for
easier system launch management. Especially this graphical user interface results
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in a robust and fast way to start a complex system with many different software
components (ROS nodes).

Our scenario solution, to tow the dummy out of the dangerous area, was a good
decision regarding the used scoring system. Nevertheless, in real operation a method
has to be found tomove awounded personmuch gentler. Even if someof the attending
relief unit members told us, that there is nothing worse than leavingwounded persons
where they are, we expect serious additional injuries by towing the wounded persons
over other surfaces than the grass in this scenario.

In our view the novel direct control method for the manipulation task made the
real difference to the other teams. Placing the hook at the gear of the dummies was
not an easy task, which took a considerable amount of time even for the trained oper-
ators of the commercial teams. Having gained a seven minute margin over the other
competitors indicates that our control method is feasible for complex tele-operated
manipulation with only camera pictures available. It also showed how valuable assis-
tance functions are for the operator in stressful and complex missions. While having
such assistance functions for the main tasks (steering the system, controlling the
robot and the manipulator), the lack of such automatisms for the bonus tasks (acquir-
ing pictures and GPS coordinates of the victims) was a burden for the operator. The
bonus tasks had to be donemanually using a lot of different tools and outside themain
control architecture. This required a lot of additional concentration and therefore was
quite error-prone.

In summary, the authors believe that a successful robot for a competition has
to be designed in an easy-to-use way, including the robustness of the hardware, a
fast set-up of the system and intelligent assistance functions to reduce the operator’s
workload. Altogether such a design reduces the error-proneness of the system and
increases the chance to present what is unique in your system during the one-shot
chance in such a competition.

7 Conclusion

Search and retrieval of human casualties in outdoor environments with unmanned
ground systems or, in short, MedEvac was a new and successful scenario in ELROB
2014. Nine teams tried to compete and presented different approaches. Of those nine
teams three were able to solve the task. All of those teams used a towing technique to
move the simulated wounded person back to a medical care point. Here the fact that
there were no penalties for a rough handling of the dummies influenced the solutions.
More realistic requirements regarding the victim care will make the scenario more
demanding, maybe already in the next ELROB 2016.

Our focus on a robust system together with an intuitive control for the demanding
manipulator task not only resulted inwinning the scenario but also gave us the special
jury award for the “best scientific solution”.
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Monocular Visual Teach and Repeat Aided
by Local Ground Planarity

Lee Clement, Jonathan Kelly and Timothy D. Barfoot

Abstract Visual Teach and Repeat (VT&R) allows an autonomous vehicle to repeat
a previously traversed route without a global positioning system. Existing implemen-
tations of VT&R typically rely on 3D sensors such as stereo cameras formapping and
localization, but many mobile robots are equipped with only 2D monocular vision
for tasks such as teleoperated bomb disposal. While simultaneous localization and
mapping (SLAM) algorithms exist that can recover 3D structure and motion from
monocular images, the scale ambiguity inherent in these methods complicates the
estimation and control of lateral path-tracking error, which is essential for achiev-
ing high-accuracy path following. In this paper, we propose a monocular vision
pipeline that enables kilometre-scale route repetition with centimetre-level accuracy
by approximating the ground surface near the vehicle as planar (with some uncer-
tainty) and recovering absolute scale from the known position and orientation of
the camera relative to the vehicle. This system provides added value to many exist-
ing robots by allowing for high-accuracy autonomous route repetition with a simple
software upgrade and no additional sensors. We validate our system over 4.3km
of autonomous navigation and demonstrate accuracy on par with the conventional
stereo pipeline, even in highly non-planar terrain.

1 Introduction

Visual Teach and Repeat (VT&R) is an effective tool for autonomously navigating
previously traversed paths using only on-board visual sensors. In an initial teach pass,
a human operator manually drives an autonomous vehicle along a desired route while
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the VT&R system uses imagery from a camera to build a map of the route. In the
subsequent repeat pass, the system localizes against the stored map to autonomously
repeat the route, sometimes combining map-based localization with visual odometry
(VO) to estimate relativemotion in caseswheremap-based localization is temporarily
unavailable (Fig. 1). VT&R is well-suited to repetitive navigation tasks where GPS
is unavailable or insufficiently accurate, and has found applications in autonomous
tramming for mining operations [14] and sample return missions [8].

The map representation in a VT&R system may be purely topological, purely
metric, or a mixture of the two (sometimes called topometric). Purely topological
VT&R [9, 15, 20] uses a network of reference images (keyframes) where the naviga-
tion goal is to match the current image to the nearest keyframe using a visual homing
procedure. These systems are restricted to heading-based control, which only loosely
bounds lateral path-tracking error. Purely metric maps are uncommon in VT&R sys-
tems due to the high computational cost of creating globally consistent maps for long
routes, but successful applications do exist [11, 21]. Topometric systems [8, 14, 22,
23] reap the benefits of both mapping strategies by decoupling map size from path
length while still retaining metric information.

Furgale andBarfoot [8] developed thefirstVT&Rsystemcapable of autonomously
repeating multi-kilometre routes in unstructured outdoor terrain using only a stereo
camera. Their system creates a topometric map of metric keyframes connected by
6DOF VO estimates, which are combined via local bundle adjustment into locally
consistent metric submaps for localization in the repeat pass.

Furgale and Barfoot’s system has been extended to other 3D sensors such as lidar
[16] andRGB-Dcameras, but amonocular implementation has not been forthcoming.
Whilemonocular cameras are appealing in terms of size, cost, and simplicity, perhaps
themost compellingmotivation for usingmonocular vision for VT&R is the plethora
of existing mobile robots that would benefit from it. Indeed, vehicles equipped with
monocular vision, typically for teleoperation, run the gamut of robotics applications,

Fig. 1 Our field robot during a 140m autonomous traverse in the UTIAS MarsDome indoor rover
testing environment, with the path overlaid for illustration. In order to compare the performance of
stereo and monocular VT&R with the same hardware, we equipped our rover with a stereo camera
and used only the left image stream for our monocular traverses
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and in many cases—search and rescue, mining, construction, and personal assistive
robotics, to name a few—would benefit from accurate autonomous route-repetition,
especially if it were achievable with existing sensors.

Several techniques exist for accomplishing online 3D simultaneous localization
and mapping (SLAM) with monocular vision, ranging from filter-based approaches
[4, 5] to online batch techniques that make use of local bundle adjustment [10, 12,
25]. Such algorithms are capable of producing accurate 3D maps, but only up to
an unknown scale factor. This scale ambiguity complicates threshold-based outlier
rejection, as well as the estimation and control of lateral path-tracking error during
the repeat pass, which are essential for achieving high-accuracy route-following.

In this paper, we extend Furgale and Barfoot’s VT&R system to monocular vision
by using the approximately known position and orientation of a camera mounted
on a rover to estimate the 3D positions of keypoints near the ground with absolute
scale. Similar techniques have succeeded in computing VOwith amonocular camera
using both sparse feature tracking [3, 6, 24] and dense image alignment [13], but
have not considered the problem of map construction. We show that by treating the
ground surface near the vehicle as approximately planar and applying an appropriate
uncertainty model, we can generate local metric maps that are accurate enough to
achieve centimetre-level accuracy during the repeat pass, even on highly non-planar
terrain. Although the flat-ground assumption is not globally valid, it is sufficient for
our purposes since VT&R uses metric information only locally.

Themain contribution of this paper is an extensive comparison of the performance
of monocular and stereo VT&R in a variety of conditions, including an evaluation of
their robustness to common failure cases. To this end, we present experimental results
comparing the two systems over 4.3km of autonomous navigation. While our results
show that both systems achieve similar path-tracking accuracy when functioning
normally, the monocular system suffers a reduction in robustness compared to its
stereo counterpart in certain conditions. We argue that, for many applications, the
benefit of deployingVT&Rwithout a potentially costly sensor upgrade far outweighs
the associated reduction in robustness.

2 Monocular Depth Estimation

We estimate the 3D coordinates of features observed by a camera pointed downward,
but not directly at the ground surface, by approximating the local ground surface
near the vehicle as planar and recovering absolute scale from the known position and
orientation of the camera relative to the vehicle. We account for variations in terrain
shape by applying an appropriate uncertainty model. In what follows, zi

j denotes the
3D coordinates of feature i expressed in coordinate frameF j .
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(a) (b)

Fig. 2 Geometry and uncertainty model of our monocular depth estimation scheme. a Coordinate
frames in our monocular depth estimation scheme. The local ground frame Fg is defined relative
to the vehicle frameFv and travels with the vehicle. b Evenly-spaced synthetic image features (top
right) and estimated D coordinates with 1σ uncertainity ellipses for the experimental configuration
described in Sect. 4

2.1 Locally Planar Ground Surfaces

For a monocular camera observing the ground, we can estimate the 3D coordinates
of features near the ground by making the following assumptions (see Fig. 2a):

1. all features of interest lie in the xy-plane of a local ground frame Fg defined
such that its z-axis is normal to the ground and always intersects the origin of the
vehicle coordinate frameFv (for a ground vehicle, this is the vehicle’s footprint);

2. the transformation Tc,v ∈ SE(3) fromFv to the camera-centric coordinate frame
Fc is known; and

3. the transformation Tv,g ∈ SE(3) fromFg toFv is known.

Assuming that incoming images have been de-warped and rectified in a pre-
processing step, we can model the camera as an ideal pinhole camera with calibrated
camera matrix K such that the image coordinates yi of zi

c are given by

yi := [
ui vi 1

]T = Kpi , (1)

where

pi := [
pi

x pi
y 1

]T = 1

zi
c

[
xi

c yi
c zi

c

]T
(2)

represents the (unitless) normalized coordinates of zi
c on the image plane. Note that

although ui , vi represent pixel coordinates, they are not necessarily integer-valued.
By assumption 1, zi

g = 0,∀i , so we can write

zi
c := [

xi
c yi

c zi
c 1

]T = Tc,g
[
xi

g yi
g 0 1

]T
, (3)
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where Tc,g = Tc,vTv,g . We can therefore obtain the feature depth zi
c as a function

of pi by substituting xi
c = zi

c pi
x and yi

c = zi
c pi

y according to Eq. (2), and solving the
third component of Eq. (3) for zi

c, yielding

zi
c = k1

k2 + k3 pi
x + k4 pi

y

, (4)

where, using Tmn as shorthand for the mth row and nth column of Tc,g ,

k1 = T11 (T22T34 − T24T32) k2 = T11T22 − T12T21

+ T12 (T24T31 − T21T34) k3 = T21T32 − T22T31

+ T14 (T21T32 − T22T31) k4 = T12T31 − T11T32 .

Finally, using Eqs. (1) and (2) with zi
c as in Eq. (4), we can express the Cartesian

coordinates of zi
c in terms of yi as

zi
c = zi

cK−1yi . (5)

2.2 Uncertainty Considerations

A crucial component of enabling monocular VT&R using this depth estimation
scheme is an appropriatemodel of the uncertainty in each observation zi

c .We consider
two important factors: uncertainty in image coordinates yi , and uncertainty in ground
shape far from the vehicle. In early experiments, we found that image coordinate
uncertainty alone did not permit reliable feature tracking since therewas little overlap
in 3D feature coordinate estimates across multiple frames.

Wemodel feature coordinates in image space as Gaussian distributions centred on
yi with covarianceRyi := diag{(σ i

u)
2, (σ i

v )
2}.WeuseSURF features [2] in our system

and determine σ i
u, σ

i
v from the image pyramid level at which each feature is detected.

To incorporate uncertainty in ground shape far from the vehicle, we represent the
ground-to-vehicle transformation as a Gaussian distribution on SE(3) with mean
Tv,g and covariance RTv,g := diag{σ 2

1 , σ 2
2 , σ 2

3 , σ 2
4 , σ 2

5 , σ 2
6 }, where σ1 . . . σ6 are tun-

able parameters corresponding to the six generators of SE(3). Together these factors
form an 8-dimensional Gaussian distributionwith covarianceRi := diag{Ryi , RTv,g },
which we propagate via the combined Jacobian

Gi :=
[
∂zi

c

∂yi

∂zi
c

∂Tv,g

]

to approximate zi
c as a Gaussian in 3D space with covariance Qi = Gi Ri GT

i .



552 L. Clement et al.

Using the Cartesian coordinates of zi
c and yi to compute the Jacobian, we have

∂zi
c

∂yi
= zi

c

k1

⎡

⎣

(
k1 + k3xi

c

)
/ fu k4xi

c/ fv

k3yi
c/ fu

(
k1 + k4yi

c

)
/ fv

k3zi
c/ fu k4zi

c/ fv

⎤

⎦ (6)

and

∂zi
c

∂Tv,g
= ∂zi

c

∂Tc,g

∂Tc,g

∂Tv,g
= [

1 (−zi
c)

×]
Ad(Tc,v) . (7)

In the above, we adopt the notation of [1]: 1 denotes the (3 × 3) identity matrix,
Ad(·) the adjoint in SE(3), and (·)× the skew-symmetric cross-product matrix.

Figure2b shows 1σ uncertainty ellipses for a number of evenly spaced synthetic
image features resulting from a camera configuration similar to that used in the
experiments described in Sect. 4.

3 System Overview

This section provides an overview of the VT&R system as it pertains to the methods
of the previous section. In particular, we discuss the generic localization pipeline
used for both online mapping in the teach pass and local map construction in the
repeat pass. Figure3 shows the stereo and monocular versions of the pipeline, which
differ mainly in the front-end image processing used to generate 3D keypoints.

Fig. 3 Themajor processing blocks of the stereo andmonocular localization pipelines. Themonoc-
ular pipeline shares most of the same processing blocks as its stereo counterpart, differing mainly
in the front-end image processing used to generate 3D keypoints. The “Current Local Map” block
is only used for keypoint tracking during the repeat pass
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3.1 Keypoint Generation

Raw images entering the pipeline first pass through a pre-processing step that uses
a calibrated camera model to make them appear as though they were produced by
an ideal pinhole camera. A GPU implementation of the SURF detector [2] then
identifies keypoints in the de-warped and rectified images. The pipeline estimates
the 3D coordinates of each keypoint in the camera frame using a matching procedure
in the stereo case or the technique of Sect. 2 in the monocular case. The subsequent
behavior of the pipeline differs slightly between the teach pass and the repeat pass.

3.2 Teach Pass

In the teach pass, the system constructs a pose graph whose vertices store lists of
3D keypoints with associated uncertainty and SURF descriptors, and whose edges
store lists of matched keypoints and 6DOF pose change estimates. The system first
tracks 3D keypoints in the current image against those in the most recent keyframe
to generate a list of keypoint matches. These matches form the input to a 3-point
RANSAC algorithm [7] that generates hypotheses for the 6DOF interframe pose
change and rejects outlying feature tracks. In the context of monocular VT&R, this
procedure typically rejects features far from the local ground surface (e.g., walls)
since their motion is not adequately captured by the uncertainty model described in
Sect. 2.2. The resulting pose change estimate serves as the initial guess in an iterative
Gauss-Newton that refines the estimate based on inlying tracks.

3.3 Repeat Pass

The repeat pass begins with a manual initialization at some vertex in the pose graph,
and the specification of a destination vertex. The system then reconstructs the vehi-
cle’s path from the appropriate chain of relative transformations.

At every timestep, the system identifies the nearest keyframe in the path and
performs a local bundle adjustment over a user-specified number of topologically
adjacent keyframes, generating a local metric map in the reference frame of the
nearest keyframe. The system then forms an augmented keyframe from the adjusted
map keypoints against which freshly detected features may be matched. As in the
teach pass, the system performs frame-to-frame VO to obtain an initial 6DOF pose
estimate at each time step, which it uses as an initial guess to localize against the
current local map and refine its pose estimate.

If the system fails to localize against the map, it may rely purely on VO until
either a successful localization occurs or the vehicle exceeds some preset distance
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threshold since the last successful localization. In the latter case, the system will halt
the traverse and enter a search mode until it relocalizes or the operator intervenes.

4 Experiments

We conducted two sets of experiments at the University of Toronto Institute for
Aerospace Studies (UTIAS), the first outdoors on relatively flat terrain, and the sec-
ond on the highly non-planar terrain of the UTIAS MarsDome indoor rover testing
environment. We compare the performance of our monocular VT&R system to that
of the established stereo system [8] over 4.3km of autonomous navigation. Table1
reports path lengths, repeat speeds, start times, and autonomy rates for each experi-
ment. We repeated each route using the monocular pipeline first, and conducted each
experiment between roughly 10:00 and 14:00 when the sun was highest in the sky
to minimize the effects of lighting changes and shadows.

4.1 Hardware

We used a four-wheeled skid-steered Clearpath Husky A200 rover equipped with a
PointGrey Bumblebee XB3 stereo camera, which outputs 512 × 384 pixel greyscale
images at 15 frames per second. The camera is mounted 1.0m above the ground and
is angled downwards at 47◦ to the horizontal (Fig. 4). These values were measured
by hand since our system functions well even without an especially accurate estimate
of Tc,v. Small errors in Tc,v are simply absorbed by the uncertainty in Tv,g .

Table 1 Summary of experimental results

Trial Route Path
length (m)

Repeat
speed (m/s)

Local start time (UTC-4) Autonomy rate

Teach Mono Stereo Mono
(%)

Stereo
(%)

1 Outdoor 1370 0.6 09:56:46 10:35:10 12:08:30 99.71a 100.00

2 Outdoor 1360 0.6 11:45:40 12:22:26 13:43:49 99.88 100.00

3 Outdoor 1361 0.6 13:26:41 14:00:12 15:20:12 99.74 100.00

4 Indoor 126 0.3 13:32:23 13:40:53 14:02:46 96.28 100.00

5 Indoor 140 0.3 12:18:57 12:32:20 12:59:11 91.60 100.00

Mono Stereo
Total distance driven 4298 ma 4357 m

Total distance autonomously traversed 99.41% 100.00%
aDuring the monocular repeat pass of Trial 1, a parked vehicle on the path forced manual driving
for 59m before successful relocalization. We exclude this segment in our analysis and report the
monocular autonomy rate for Trial 1 based on a reduced path length of 1311 m
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Fig. 4 Clearpath Husky
A200 rover equipped with
PointGrey Bumblebee XB3
stereo camera, DGPS
receiver, Leica Nova MS50
MultiStation prism, 1 kW
gas generator, and Linux
laptop running ROS [19]

During the teach pass, we recorded stereo images and used them to teach identical
paths using both the monocular and stereo pipelines. For the monocular pipeline, we
used imagery from the left camera of the stereo pair only. The system detects 600
SURF keypoints in each incoming image and creates new keyframes every 25cm
in translation or 2.5◦ in rotation. For the monocular pipeline, we assigned standard
deviations of 10cm to the translational components of Tv,g and 10◦ to its rotational
components as these values generally worked well in practice.

4.2 Outdoor Experiments

To evaluate the performance of the monocular VT&R system over long distances,
we taught three 1.4km paths through the parking lots and driveways of UTIAS.
While these paths consisted mostly of flat pavement, they included many non-planar
features such as speed bumps, side slopes, deep puddles, and rough shoulders, as
well as other terrain types including gravel, sand, and grass.

We equipped the rover with an Ashtech DG14 Differential GPS unit used in
tandem with a second stationary DG14 unit to obtain centimetre-accuracy RTK-
corrected GPS data during the outdoor experiments. We used these data purely for
ground-truthing purposes; they had no bearing on the behaviour of either pipeline.
Figure5 shows GPS tracks of the teach and repeat passes of one outdoor route.

Figure6 shows estimated and measured lateral path-tracking errors during the
monocular and stereo repeat passes. Both pipelines achieved centimetre-level accu-
racy in their respective repeat passes and produced similar estimates of lateral path-
tracking error. In cases of map localization failure (i.e., when the system relied on
pure VO), the monocular pipeline’s estimated lateral path-tracking error diverged
from ground truth more quickly than that of the stereo pipeline since keypoint posi-
tion uncertainties are poorly constrained by only two measurements. Note, however,
that the vehicle remained within about 20cm of the taught path at all times.

Figure7 compares the number of successful feature matches for frame-to-frame
VO and map-based localization for both pipelines. Both pipelines track similar num-
bers of features from frame to frame, but the monocular pipeline generally tracks
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Fig. 5 Comparison of RTK-corrected GPS tracks of the teach pass, stereo repeat pass, and monoc-
ular repeat pass of a 1.4km outdoor route (Trial 3 in Table1). The zoomed-in section highlights the
centimetre-level accuracy of both pipelines (Map data: Google, DigitalGlobe.)
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Fig. 6 Estimated and measured lateral path-tracking error during the monocular and stereo repeat
passes of the 1.4km outdoor route shown in Fig. 5 (Trial 3 in Table1). GPS tracking shows that
both monocular and stereo VT&R achieve centimetre-level accuracy, although estimated lateral
path-tracking error tends to diverge from the true value in cases of localization failure. a Monocular
repeat pass. b Stereo repeat pass

twice as many map features as its stereo counterpart. This result is most likely due to
bad data association during local map construction in the monocular pipeline, which
stems from the comparatively large positional uncertainties of distant keypoints.

Bad data association is especially problematic in regions of highly self-similar
terrain (e.g., Fig. 11a) since large positional uncertainties exacerbate ambiguity in
feature matches. With fewer correctly associated measurements, the bundle adjust-
ment procedure will not maximally constrain the positions of map keypoints, which
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Fig. 7 Keypoint matches during the monocular and stereo repeat passes of the 1.4km outdoor route
shown in Fig. 5 (Trial 3 in Table1), with localization failures highlighted. A localization failure is
defined as less than 10 feature matches. There were no VO failures during either repeat pass. For
clarity, we have applied a 20-point sliding-windowmean filter to the raw data. aVO featurematches.
b Map feature matches

we would expect to increase the risk of localization failures. Indeed, Fig. 7b shows
that the monocular pipeline suffered more serious map localization failures than the
stereo pipeline, although these forced manual intervention only once.

4.3 Indoor Experiments

The second set of experiments took place in the more challenging terrain of the
UTIAS MarsDome. These routes included a number of highly non-planar features
such as hills, large bumps, valleys, and slopes of a similar scale to the vehicle.

Since the MarsDome is an enclosed facility, GPS tracking was not available, and
we instead made use of a Leica Nova MS50 MultiStation to track the position of
the rover with millimetre-level accuracy. Similarly to the outdoor experiments, we
used these data for ground-truthing purposes only. Figure8 shows MultiStation data
of the teach and repeat passes of a 140m route through the MarsDome, along with
images of some of the more challenging terrain features on the route.

Figure9 shows estimated andmeasured lateral path-tracking errors for themonoc-
ular and stereo repeat passes. As in the outdoor case, both pipelines achieved
centimetre-level accuracy, even in difficult terrain. Again, note that although the
monocular pipeline’s estimated lateral path-tracking error diverged significantly from
ground-truth during localization failures, the MultiStation tracks show that the vehi-
cle remained within a few centimetres of the path throughout the traverse.

Figure10 shows VO and map feature matches for both repeat passes. The monoc-
ular pipeline suffered map localization failures more often than the stereo pipeline,
theworst failure occurring in the valley and hill regions (see Fig. 8) where the lighting
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Fig. 8 Comparison of MultiStation tracks of the teach pass, stereo repeat pass, and monocular
repeat pass of a 140m indoor route (Trial 5 in Table1), with some interesting segments highlighted
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Fig. 9 Estimated and measured lateral path-tracking error during the monocular and stereo repeat
passes of the 140m indoor route shown in Fig. 8 (Trial 5 in Table1). MultiStation tracking shows
that both monocular and stereo VT&R achieve centimetre-level accuracy in highly non-planar
terrain, although estimated lateral path-tracking error tends to diverge from the true value in cases
of localization failure. Note the difference in scale between the two plots. a Monocular repeat pass.
b Stereo repeat pass

was especially poor. This led to increased motion blur (see Fig. 11b) and poor feature
matching due to greater uncertainty in keypoint positions. Both failures necessitated
manual intervention over a few metres, however, the system successfully relocalized
once the lighting improved.
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Fig. 10 Keypoint matches during the monocular and stereo repeat passes of the 140m indoor route
shown in Fig. 8 (Trial 5 in Table1), with localization failures highlighted. A localization failure is
defined as less than 10 feature matches. There were no VO failures during either repeat pass. For
clarity, we have applied a 5-point sliding-windowmean filter to the raw data. a VO feature matches.
b Map feature matches

Fig. 11 Themost common causes of localization failurewere highly self-similar terrain andmotion
blur. Neither stereo nor monocular VT&R is immune to these conditions, but their effects were
exacerbated by high spatial uncertainty in the monocular case. a Self-similar terrain. b Motion blur

5 Lessons Learned and Future Work

Experiments with our systems led to several useful lessons and possible extensions:

1. With sufficient spatial uncertainty, the flat-ground assumption seems to be usable
even in rough driving conditions, provided the scene is well-lit and reasonably
textured. Steep hills were problematic for monocular VT&R since the camera
would observe features mainly on the horizon or on walls during the ascent.

2. The performance our systems depends on a search (often manual) through a high-
dimensional space of tuning parameters, and it is difficult to be certain that an
optimal configuration has been found. Iterative learning algorithms such as [17]
may present a solution by learning optimal parameters from experience.

3. Data association quality is not a monotonic function of observation uncertainty.
Too little uncertainty and good feature matches get rejected; too much and all
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matches are equally good (or bad). Both cases result in tracking failure. This
reinforces the need for an accurate model of a system’s noise properties.

4. Experimenting with camera orientation could improve the accuracy of monocular
VT&R, particularly on hills. For example, orienting the camera perpendicular to
the direction of travel has been shown to improve the accuracy of stereo visual
odometry [18].

5. By using stereo vision in the teach pass and monocular vision in the repeat pass,
we could forgo the flat-ground assumption for mapping, which should result in
fewer localization failures in the repeat pass.

6 Conclusions

This paper has described a Visual Teach and Repeat (VT&R) system capable of
autonomously repeating kilometre-scale routes in rough terrain using only monocu-
lar vision. By constraining features of interest to lie on a manifold of uncertain local
ground planes, we relax the requirement for true 3D sensing that had prevented the
deployment of Furgale and Barfoot’s VT&R system [8] on a wide range of vehi-
cles equipped with monocular cameras. Extensive field tests have demonstrated that
this system is capable of achieving centimetre-level accuracy on par with its stereo
counterpart, but that there is an associated trade-off in robustness. Nevertheless, we
believe that the benefit of deploying VT&R on existing vehicles without requir-
ing the installation of additional sensors far outweighs the associated reduction in
robustness.
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In the Dead of Winter: Challenging
Vision-Based Path Following in Extreme
Conditions

Michael Paton, François Pomerleau and Timothy D. Barfoot

Abstract In order for vision-based navigation algorithms to extend to long-term
autonomy applications, they must have the ability to reliably associate images across
time. This ability is challenged in unstructured and outdoor environments, where
appearance is highly variable. This is especially true in temperate winter climates,
where snowfall and low sun elevation rapidly change the appearance of the scene.
While there have been proposed techniques to perform localization across extreme
appearance changes, they are not suitable for many navigation algorithms such as
autonomous path following, which requires constant, accurate, metric localization
during the robot traverse. Furthermore, recent methods that mitigate the effects of
lighting change for vision algorithms do not perform well in the contrast-limited
environments associated with winter. In this paper, we highlight the successes and
failures of two state-of-the-art path-following algorithms in this challenging envi-
ronment. From harsh lighting conditions to deep snow, we show through a series of
field trials that there remain serious issues with navigation in these environments,
which must be addressed in order for long-term, vision-based navigation to succeed.

1 Introduction

Appearance-based localization and mapping algorithms have enabled mobile robots
to navigate autonomously through their environments using inexpensive, commercial
sensors. This is appealing in that it opens the door for many exciting applications such
as autonomous motor vehicles, search-and-rescue robots, and hazardous exploration
robots. However, in order for these applications to succeed, robots must have the
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ability to navigate reliably through their environments over long periods of time.
This poses a serious problem in outdoor environments where lighting, weather, and
seasonal changes quickly alter the appearance of the scene.

This problem is exacerbated in winter and polar environments where the appear-
ance of the scene has the potential to change on a daily basis. The low elevation of
the sun and short time between sunrise and sunset cause drastic changes in light-
ing. Light snow forms small patches of texture that melt on sunny days, while
heavy snow blankets the environment in a featureless landscape as well as causing
issues for path-tracking controllers. Some of these difficulties were recently observed
during a field trial in the Canadian High Arctic. In August 2014, our autonomous
path-following code was deployed to Alert (Nunavut, Canada) in collaboration with
Defence Research and Development Canada (DRDC) (Fig. 1). Results were unsat-
isfactory due in part to the difficult environment.

Environments with highly variable appearance are especially difficult for applica-
tions that require vision-in-the-loop navigation. This specific task requires the vision
system to provide constant, accurate, metric localization to the control loop to keep
the robot driving. An example of a such a system is Stereo Visual Teach & Repeat
(VT&R) [4], an autonomous path-following algorithm that navigates using vision.
Proposed solutions for localization across appearance change either provide only
topological localization [10, 11], require offline collection of the scene in multiple
appearances [2, 9], or have under-performed in winter environments [14]. In this
paper, we classify some of the difficulties associated with autonomous path follow-
ing in winter environments and test the limits of two of our VT&R algorithms [14,
15] in two challenging winter field trials. We also discuss issues that need to be
overcome to provide reliable, long-term, outdoor navigation using vision.

The remainder of this paper is outlined as follows. Work related to vision in
feature-limited environments and localization across appearance changes is pre-
sented in Sect. 2. Brief details of the two tested VT&R systems are discussed in
Sect. 3. Field trials, environmental information, and evaluation metrics are described
in Sect. 4. Results are presented in Sect. 5. Lessons learned and challenges related to
winter field deployments are discussed in Sect. 6 before concluding the paper.

Fig. 1 Multi-Agent Tactical
Sentry (MATS) vehicle
performing autonomous path
following in Alert (Nunavut,
Canada). Polar environments
cause issues for vision-based
systems such as ice, snow,
and 24-h sunlight with a peak
elevation of 12◦. This leads
to unsatisfactory results for
current vision-based systems
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2 Related Work

This paper presents the performance of autonomous path-following techniques in
winter environments that are especially difficult for vision algorithms. These envi-
ronments are difficult for a variety of reasons: snow accumulates and melts at a rapid
pace, visual feature detectors do not fire on contrast-free snow, and low sun-elevation
accelerates the effects of lighting change, to name a few.

Motion estimation through Visual Odometry (VO) is typically not affected by
appearance change, but can suffer in these feature-limited environments. Williams
and Howard [17] apply Contrast Limited Adaptive Histogram Equalization (CLAHE)
to increase feature matches in images with snowy foregrounds. They show an increase
in feature match count by an order of magnitude. Operating in feature-limited, vol-
canic fields, Otsu et al. [13] extract and track different features depending on the
terrain, they show an improvement in feature count and computation speed.

Lighting change is typically the first issue seen by vision-based localization sys-
tem with regard to appearance change. Color-constant images, which are partially
invariant to lighting conditions [16], have recently been used to great success in vision
algorithms. Corke et al. [3] show an improvement in place recognition across light-
ing changes using these images. McManus et al. [7] localize by switching between
greyscale and color-constant images. They show improved results on a challenging
dataset with significantly different lighting conditions.

While these techniques help overcome issues with lighting, general appearance
change over time remains an issue. Naseer et al. [11] align sequences of images
through a probabilistic network flow problem. Churchill and Newman [2] treat local-
ization failures as new experiences and build a system of parallel localizers. Neubert
et al. [12] build a dictionary that encodes the transformation of a scene between
winter and summer. McManus et al. [9] train custom features that describe a specific
element of the scene. While these methods are capable of localizing across appear-
ance changes, they are not suitable for applications that require vision-in-the-loop
navigation, such as autonomous path following. Some methods only provide topo-
logical localization [11], while others require that examples of the scene in multiple
appearances are manually collected prior to reliable operation [2, 9, 12].

The autonomous path-following algorithms presented in this paper are built upon
the Stereo VT&R work presented by Furgale and Barfoot [4]. Because this system
navigates by comparing visual features from greyscale images, it is highly susceptible
to lighting change. This can be overcome by using an active sensor. McManus et al.
[8] perform VT&R using keypoints formed from lidar-generated intensity images
and range data. While it is invariant to lighting conditions, it suffers from motion
distortion issues. Krüsi et al. [6] perform autonomous path following through dense,
point-cloud registration at the cost of potential failure cases in open spaces that lack
geometric information. Vision-based path-following algorithms do not share these
limitations, but are less stable in terms of appearance change. This paper examines
the performance of the legacy system [4] as well as two improvements to the VT&R
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algorithm [14, 15] that attempt to mitigate the effects of appearance change. These
are presented in further detail in the following section.

3 VT&R Solutions

As an application context for visual navigation, we selected three previously pub-
lished variants of VT&R solutions labeled here: Legacy [4], Color-Constant [14],
and Multi-Stereo [15]. The details of these solutions are fully described and eval-
uated in their respective publications. Therefore, we only introduce them at a high
level and point out the main differences. Figure 2 overviews the processing pipeline
for each solution. A key element to compare is the number of images required for
each pipeline, which gives an idea of the computation power required to track the
robot position. The color-constant solution is the most expensive with three inputs,
but remains within the range of real-time computation [14].

Legacy:

Color-Constant:

Multi-Stereo:

Conversion
greyscale

Keypoints
Extraction

Stereo 
Matching

Pose 
Estimation

Front Stereo
Image
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Frame

Map
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Tracking

Frame
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Tracking
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greyscale
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greyscale

Tracking

Tracking
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greyscale

Conversion
invariant 1

TrackingConversion
invariant 2

Pose 
Estimation

Frame
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Front Stereo
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Rear Stereo
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Pose 
Estimation

Pose 
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Fig. 2 Localization pipelines for the different stereo VT&R systems under investigation. The input
to the system is a left/right RGB stereo image pair. The output is a pose estimate relative to a small
subsection of the map (localization) and a pose estimate relative to the last image (VO). Incoming
stereo images are first converted to different sources (i.e., greyscale, Invariant 1, and/or Invariant
2). Keypoints are extracted from each image source independently. Those keypoints are matched
left-to-right for each respective image source to obtain depth for each feature. The 3D keypoints are
then matched to a small subsection of the map to obtain feature correspondences between the live
keyframe and the map keyframe. The grey box named Tracking is the same for all three solutions
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(1) Legacy VT&R: This appearance-based path-following system is built upon
the generation and tracking of keypoints, SURF [1] features with 3D position and
uncertainty. Keypoints calculated from a stereo pair are organized into a keyframe.
In the teaching phase, a robot is manually driven along a path while building a pose
graph of keyframes connected by relative transformations. To repeat the path, the live
keyframe, the collection of keypoints observed from the live stereo pair is matched
to a map keyframe, a small subset of keyframes from the teach map relaxed into
a single privileged coordinate frame. Data associations found between the live and
map keyframe are used to obtain an estimate of the pose relative to the path, which
is used to control the robot. The localization pipeline for this algorithm is illustrated
in the upper section of Fig. 2.

(2) Color-Constant VT&R: Inspired by recent developments in the research area
of color constancy, this stereo VT&R algorithm aims at increasing robustness against
changes in lighting conditions. Color constancy is the ability to perceive the color of
objects as constant under varying illuminations. Changes in the lighting of a scene is
a major problem for appearance-based, localization algorithms that use passive sen-
sors. This stereo VT&R pipeline is an autonomous path-following algorithm that is
capable of handling significant lighting changes in a variety of outdoor environments.
By expanding on the idea introduced by McManus et al. [7], the algorithm combines
the accuracy of greyscale images with the robustness of color-constant images to
achieve superior localization. This algorithm is identical to the Legacy system, with
the exception of the generation of a set of two color-constant images that are partially
invariant to lighting conditions. The localization pipeline is depicted in the middle
section of Fig. 2. Note that tracked keypoints from each image source are fused to a
single pose estimate.

(3) Multi-Stereo VT&R: Through multiple field deployments of Color-Constant
VT&R, it was observed that failure situations were primarily due to a lack of success-
fully matched visual features in the environment. In the Alert field trial, we observed
the camera pointing directly at the sun, causing glare. The probability of sun glares
augments during the winter as the sun stays low on the horizon. The Multi-Stereo
solution uses a second camera pointing behind the robot in order to augment the gen-
eral number of matches and reduce the impact of glare. This pipeline is very similar
to the Color-Constant solution, with the exception that image sources are coming
from different cameras instead of multiple versions of the same image. Point clouds
from all cameras are transformed into one common coordinate frame to obtain a
single pose estimate. The localization pipeline is presented in the lower section of
Fig. 2.

4 Methodology

As the goal of this paper is to quantify difficulties in harsh conditions, and not
to introduce new algorithms, we describe here the datasets and evaluation metrics
we explored to quantify the impact of extreme environments on visual navigation.
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Throughout all the experiments, two components were kept stable: (1) the hard-
ware and (2) the sky condition. The robot used is the Grizzly RUV from Clearpath
Robotics, displayed in different environments in Fig. 3. The Grizzly is equipped
with a payload that includes a suite of interoceptive and exteroceptive sensors. For
the purpose of this evaluation, only the stereo cameras were used. More precisely,
localization and mapping relied solely on forward and/or rear facing PGR Bumble-
bee XB3 stereo cameras. All experiments were executed outdoors under clear sky
conditions (i.e., few or no clouds with the sun casting hash shadows on the ground).

4.1 Datasets

Three datasets demonstrate the impact of winter on visual navigation systems. As a
nominal scenario, we included a summer experiment recorded at the Canadian Space
Agency (CSA) on the Mars Emulation Terrain. We also conducted a set of trials in
a Meadow and a field covered by Snow surrounding the campus of the University
of Toronto Institute for Aerospace Studies (UTIAS) with the purpose of testing the
limits of vision-based navigation algorithms in challenging winter environments.
Displayed in Fig. 3, the two winter environments consisted of open fields with trees
and buildings on the horizon, with and without the presence of heavy snowfall.

(1) Canadian Space Agency (CSA): This kilometer-long dataset was recorded
during the summer of 2014 in the CSA Mars Emulation Terrain and its surrounding
forest. Key components of the environment include a balance of desert, marsh and
forest. A continuous trajectory was recorded through those different biomes and auto-
nomously repeated 26 times over the period of four days between sunrise and sunset
in late May. We consider this dataset as our nominal scenario in terms of environment
complexity and use it for comparison against winter scenarios. More details about
this dataset can be found in the work of Paton et al. [14].

Fig. 3 Examples of winter environments that are challenging for vision-based navigation systems.
Left Winter meadow consisting of dead vegetation, sparse snow patches, and trees at the horizon.
Right Open field with deep snow cover
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(2) Winter Meadow: This dataset was designed to test our system’s robustness
against lighting change and sun-stare in a challenging environment. The recording
occurred in the early winter, before large snow storms covered the entire landscape.
Displayed in Fig. 3-Left, this environment consists of a large field containing dead
vegetation and sparse snow patches surrounded by trees and buildings in the back-
ground. This environment is difficult for vision systems for a number of reasons:
(i) the dead vegetation is uniform in color and often matted to the ground, producing
little contrast, (ii) tall grass moves with the wind, resulting in feature matches that
are inconsistent to the movement of the robot, (iii) small patches of snow shrink
and change shape as they melt, (iv) the low elevation of the sun accelerates lighting
change between traverses and is often directly in the camera’s field of view, which
significantly changes the exposure of the image. This field trial proceeded by teach-
ing an approximately 100 m loop through this environment. The path was taught
when the sun was at its highest elevation point. The robot autonomously repeated
the path six times between 15:20 and 16:50 when the sun was setting (i.e., sunset
happens much earlier during winter).

(3) Snowy Landscape: This dataset was designed to test our system’s robustness
against autonomous navigation through snowy environments. Snow is an especially
difficult environment for vision-based systems as it is practically contrast free, caus-
ing a lack of visual features in most of the scene. Snow cover changes shape quickly
as well. It accumulates, melts, turns to ice and can be blown by the wind changing
the shape of the ground within minutes. Snow is also highly reflective; on sunny
days this can lead a camera’s autoexposure to generate images that are overexposed.
An example of this environment can be seen in Fig. 3-Right, where the Grizzly is
traversing through a snow covered field. A 250 m path was manually driven through
a large field with fresh snow cover as a teaching pass. During the teach, the sun
was at its highest point in the sky, causing significant overexposure of the camera.
The path was autonomously repeated approximately 3 h later, when the elevation of
the sun was significantly different. The complexity of the deployment and hardware
limitations during this cold and windy day lead to a smaller number of repeats com-
pared to the other dataset. Nonetheless, it is enough to draw a comparison with other
environments and initial conclusions about winter deployments.

4.2 Evaluation Metrics

To evaluate the impact of extreme conditions on visual navigation, we selected three
quantitative metrics: Feature Quantity, Feature Uncertainty, and Feature Sparsity.
In this section, we describe these metrics and analyze examples from a nominal
scenario (i.e., CSA dataset), which will be used as foundations for the discussion of
results in Sect. 5.

(1) Feature Quantity: This is a notion of the amount of total inlier matches observed
at any point in time between the live keyframe and the map keyframe during an
autonomous traverse. Over the course of a day, this number is guaranteed to decrease
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Fig. 4 Illustration of the evolution of the number of inlier feature matches through a nominal day.
Time zero corresponds to when the reference images are collected (teaching phase) and the blue
line represent the typical slow degradation of the number of matches when matching current images
to the teaching phase. The difference between a sunny day (solid line) and an overcast day (dashed
line) is also included. The red line represents the number of features used during VO, which stays
constant up to the limit of the sensor. Yellow annotations refer to time events and black annotations
refer to the main causes of inlier decreases or increases

with time. If the number of inlier matches drops too low, the system will be forced
to rely on VO, and eventually fail at following the taught trajectory. Figure 4 shows
an illustration of the trend associated with the number of inlier matches typically
observed over the course of a day. This figure sums up the experience collected during
prior field tests, as reported in [14]. On overcast days, there is a gradual decline in
feature matches, because the appearance of the scene is generally constant. This is not
true on sunny days, where an early drop is caused by the sun changing position and
creating sharp, moving shadows on the ground. Feature quantity begins to rise again
at the beginning of twilight, when the light from the sun is not directly observable,
generating a shadowless environment similar to an overcast day.

(2) Feature Uncertainty: Only considering the number of features is insufficient
to ensure precise trajectory following. 3D landmarks measured with a stereo camera
have an uncertainty in their depth associated with the disparity between the left and
right feature matches. As this disparity decreases, the uncertainty associated with the
depth reconstruction increases. High uncertainty is correlated to features observed
far from the camera (i.e., in the background of the image). A reliance on background
features leads to a pose estimation that is inaccurate in translation.

An example of the typical distribution of inlier matches observed between the live
keyframe and map keyframe during an autonomous traverse with respect to depth
uncertainty and measurement location is displayed in Fig. 5. This feature distribution
is typical for a forward-looking camera on a moving robot. When moving forward,
features close to the lower image border are typically not in the field of view of
both the live keyframe and the map keyframe, leading to a skewed distribution of
points on the vertical axis. In addition, the platform moves through the environment,
generating changes in the re-observed images. On soft ground, a heavy vehicle will
generate ruts that modify the deployment area over time.

(3) Feature Sparsity: Lastly, features can be distributed unevenly through a
given trajectory. The previously mentioned metrics (i.e., feature quantity and feature
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Fig. 5 Matched features
with respect to the pixel
coordinates aggregated
through a full trajectory
during the CSA field
deployment. Side histograms
represent the distributions of
matches projected on the
vertical (v-axis) and
horizontal (u-axis) fields of
views. All matches are
colored by their depth
accuracy with dark red being
poor (>50 cm) and dark blue
being optimal. Key elements
are labeled in black environment

forward
motion

background foreground

stereo

uncertainty) aggregate the data through a full repeat trajectory, limiting the analy-
sis on consecutive successful localizations. We can indirectly observe this metric
using the distance the robot relied on VO before being able to localize within its
taught images. A short distance relying on VO is sign of a robust solution against the
environment traversed. A system relying entirely on VO for a long period of time
will increase its position uncertainty and will drift away from its reference trajectory
leading to a mission failure.

5 Results

This section provides an overview of the results of our field trials with respect to
the metrics defined in Sect. 4. We first perform a dataset comparison, where we
look at the quantity and quality of inlier visual feature matches observed during
autonomous traversals of each dataset. Results from the CSA dataset were obtained
with the Color-Constant VT&R algorithm, and results from the winter trials were
obtained with the Multi-Stereo VT&R algorithm. We note that color-constant images
are underperforming in winter environments, and multi-stereo produces better results.
We then analyze the performance of our VT&R algorithms with respect to the sparsity
of successful localization matches to the map.

Figure 6 shows the rate of feature loss with respect to time since map creation. For
each data set, we show the rate of feature degradation from map creation to sunset.
The black horizontal line denotes our threshold match count where we can safely
localize. It can be seen that when compared to the baseline dataset, the winter datasets
have an accelerated decay rate. This can be primarily contributed to lighting having
a much higher effect on localization, due to the low elevation of the sun and the poor
performance of the color-constant images in these environments. Further reasons



572 M. Paton et al.

Fig. 6 Feature degradation
over time. In outdoor
environments, the quantity of
visual feature matches
between the live view and
map begins declining
immediately after map
creation. It can be seen that
the rate of decline varies
between data sets. Note log
scale on the y-axis

for the accelerated decay rate include featureless snowy foregrounds, overexposed
images, melting snow, and dead matted vegetation.

Related to feature loss, we also observe an accelerated migration of the distrib-
ution of observed feature matches towards the horizon as time passes in the winter
environments. This is displayed in Fig. 7, where the distribution of inlier matches
with respect to their vertical pixel coordinates over three repeats is shown for all
three datasets. The green line shows this distribution when the map is compared to
images collected during map creation. This is the upper limit on feature quantity as
well as quality. For each data set, this distribution is nearly uniform. The blue line
shows the distribution when the map is compared to the autonomous traversal taken
as soon to map creation as possible, and the red line shows when the map is compared
to an autonomous traversal several hours after map creation.

The distribution of our baseline comparison, the CSA data set, shows a slight
migration towards the horizon after 5.2 h, yet retains a fair amount of foreground
matches. In contrast, the winter data sets both show a fast shift to horizon matches
only. Looking at the red lines of Fig. 7b,c, there is a significant positive skew of
the distribution of matches. This means that after only a few hours in this environ-
ment, the majority of matches were obtained from the background of the image. The
ramification of this is an increase in uncertainty in our localization estimate.

(a) (b) (c)

Fig. 7 Vertical distribution of the matched inlier features in the image coordinate frame. On the
v-axis, 0 corresponds to a feature at top of the image and 360 at the bottom of the image. All
distributions are normalized and represented over a time period of several hours for different datasets.
a CSA, b Snow, c Meadow
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Fig. 8 Median uncertainty
of inlier matches over a
period of several hours for all
data sets. This demonstrates
that the migration of inlier
matches to the upper part of
the image leads to an
increased uncertainty in the
estimation of the feature’s
depth, which can lead to an
inaccurate state estimation

This is confirmed in Fig. 8, where we plot the median uncertainty in our depth
estimates for all of the inlier features observed during autonomous traversals of
each data set. As expected, the CSA data set maintains a low uncertainty, while the
uncertainty seen in matches during the winter data sets quickly rise. The CSA data
set maintains a median uncertainty less than 20 cm after 5 h, while in a fraction of
the time, the Snow and Meadow data sets reach a median uncertainty level of 40 cm
and 1.4 m, respectively.

If the count of inlier feature matches at a specific time step is below our threshold
of six features, we discard the localization results and rely on VO for navigation. If
navigation relies on dead reckoning for too long, the drift in error will cause the robot
to stray from its path. We analyze the distance the robot would have driven on VO
using the various VT&R methods detailed in Sect. 3. For results on the baseline CSA
dataset, we refer the reader to [14]. Results with respect to sparsity are displayed
in Fig. 9. These figures show the Cumulative Distribution Function (CDF) of the
distance the robot would have driven on VO during the most difficult traverse of
each trial. For the Snowy Landscape, this was the repeat that occurred 2.2 h after
map creation, for the Winter Meadow the repeat at 4.0 h was chosen. The figure
reads as: “for Y% of the traverse, the robot drove less than X m on VO”. The black
dashed vertical line denotes the mission failure point of 20 m.

(a) (b)

Fig. 9 Cumulative distribution of the distance the robot would have driven on VO for various
algorithms on both winter datasets. Left Results from the second repeat of the Snow dataset, which
occured 2.2 h after map creation. Right Results from the fourth repeat of the Meadow dataset, which
occured 4.0 h after map creation. Note log scale on the x-axis. a Snow, b Meadow



574 M. Paton et al.

For both environments, we see the trend for multi-stereo to outperform color-
constant, and color-constant to outperform the legacy system. This comes as no sur-
prise, as color-constant images were shown to underperform in these environments.
This is possibly due to a lack in color information in the snow and dead vegetation.
The multi-stereo system is based on greyscale images only, but has a wider field of
view, having the ability to acquire more stable visual features.

6 Challenges/Lessons Learned

Snow: During the teaching phase of the Snowy Landscape data set, it was bright
and sunny. Due to the high reflectivity of the snow, this caused unforeseen issues for
our stereo cameras. The brightness of the scene brought the factory settings of the
autoexposure algorithm of the Point Grey Research (PGR) Bumblebee XB3 to the
limit. The result was saturated images, which reduced details in the foreground.

The Snowy Landscape data set was collected when there was light snow cover.
We also attempted to perform autonomous path following in deep snow conditions
with unsatisfactory results. In light snow, small vegetation is often visible in the
foreground, providing visual features with high contrast. In deep snow, these features
are gone and what remains in the foreground is nearly featureless. The only usable
matched features were on the horizon not only for localization, but also for VO. This
caused frequent inaccurate pose estimates, which caused issues for the path tracker.
Figure 10 shows the vertical distribution of features only 0.1 h between the teach and
the repeat phase, for deep snow, light snow, and meadow. The majority of matched
features in the Deep Snow trial are concentrated on the upper part of the images
explaining the poor performance.

Fig. 10 Figures from the Deep Snow attempt. A lack of visual features in the foreground resulted
in poor localization and VO estimates. Left Distribution of inlier feature matches with respect to
vertical pixel location. The distribution is seen after 0.1 h for all data sets. Right Grizzly robot
autonomously traversing in the deep snow before the failing point
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Glare: An initial hypothesis motivating those field deployments was the assump-
tion that the low elevation of the sun would case glare in the camera, making local-
ization impossible. Due in part to the attitude of the stereo cameras, glare was never
an issue. With the cameras tilted to the ground by 20◦, the sun was in the worst case
only at the top of the image. We even observed cases where sun glare increased the
contrast of horizon features, providing a significant boost in feature count. However,
glare would be an issue if the cameras were pointed at the horizon.

Color-Constancy: The color-constant images are designed to remove the effects
of lighting from the scene. These images were used to great success in the CSA field
trials presented in [14]. In these trials, the robot repeated a 1 km route 26 times with an
autonomy rate of 99.9 % of distance travelled in nearly every daylight condition. With
this prior knowledge, the color transformations were expected to boost performance
in the winter field trials presented here, but this was not the case. A hypothesis is that
the color-constant images were tuned to perform in green vegetation and red-rocks-
and-sand. It is possible that the dead vegetation and snowy landscapes lack the color
information to remove the effects of lighting from the images.

Feature-Migration: As explained in Sect. 5, we found that the distribution of fea-
tures with respect to vertical pixel location migrates to the horizon as time passes. We
found that this process is accelerated in winter environments encountered in these
trials. This migration results in an increase in the uncertainty of the robot’s pose esti-
mate during autonomous navigation. As the depth of observed features increase, the
scale estimate becomes only loosely observable, degenerating the problem to local-
ization based on a mono-camera. Further investigation will be required to account
for this unforeseen consequence.

7 Conclusion/Future-Work

This paper presented the results of conducting a series of field trials that tested
autonomous path-following algorithms in challenging winter environments. When
compared to a summer dataset, we show a significant decrease in the quantity and
quality of visual features matched over time. Furthermore, color-constant images that
increase robustness to changes in lighting conditions have shown to be ineffective
in these environments. In order for vision-based navigation to reliably navigate in
these environments, we must address some of these difficult issues.

Future avenues of research may involve further classification of appearance-based
matching performance in varying environments, variations in camera configurations
to mitigate the issue of pose uncertainty as features migrate to the horizon, and the
use of image pre-processing [17] and intelligent exposure techniques [5] to increase
foreground matching in snowy environments.
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Non-Field-of-View Acoustic Target
Estimation in Complex Indoor Environment

Kuya Takami, Tomonari Furukawa, Makoto Kumon
and Gamini Dissanayake

Abstract This paper presents a new approach which acoustically localizes a mobile
target outside the Field-of-View (FOV), or the Non-Field-of-View (NFOV), of an
optical sensor, and its implementation to complex indoor environments. In this
approach, microphones are fixed sparsely in the indoor environment of concern.
In a prior process, the Interaural Level Difference IID of observations acquired by
each set of twomicrophones is derived for different sound target positions and stored
as an acoustic cue.When a new sound is observed in the environment, a joint acoustic
observation likelihood is derived by fusing likelihoods computed from the correla-
tion of the IID of the new observation to the stored acoustic cues. The location of the
NFOV target is finally estimatedwithin the recursiveBayesian estimation framework.
After the experimental parametric studies, the potential of the proposed approach for
practical implementation has been demonstrated by the successful tracking of an
elderly person needing health care service in a home environment.

1 Introduction

Target localization and tracking, or mobile target estimation, in indoor environments
has been a research challenge over several decades due to the existence of a variety
of applications in addition to the significance and the difficulty of each application.
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It is significant in applications such as home security, home health care, and urban
search-and-rescue, but its usefulness is limited by the complexity of indoor structures
[7, 13]. Complex indoor structures make estimation problems challenging as they
can introduce large unobservable regions when an optical sensor such as a camera is
deployed. This is because optical sensors’ FOV is determined by the Line Of Sight
(LOS) and range of the optical sensor, which could be small in highly constrained
environments. In addition, there are environments such as personal homes where
privacy concerns do not allow for the use of cameras. These limitations on optical
sensors give rise to a need for NFOV mobile target estimation.

Recentwork forNFOVmobile target estimation has been tackled in three different
ways. The first approach deploys target mounted radio-frequency (RF) transmitters
and fixed receivers in the environment. In one arrangement, RS receivers form a
wireless sensor network (WSN), and numerical techniques are used to localize a
NFOV target by processing information of received signals such as signal intensity
[3, 6]. An improved arrangement with minimal infrastructure uses “fingerprints”
[1, 10]. There is a unique fingerprint at each location in a static environment. A target
can thus be localized by feature-matching the fingerprints. Whilst this arrangement
can achieve higher accuracy, the critical problem inherent in the RS based approach
is its applicability only to near-NFOV target estimation [13, 15].

In the second approach, acoustic sensors are used for target estimation. Since
sound signals are reflected by structures, it is possible to localize a NFOV target
unlike the RS based approach provided that the sound signals contain information on
the target location. The most common approach utilizes the Time-of- Arrival (TOA)/
Time-Difference-of-Arrival (TDOA) information of acoustic signals [2, 11, 18]. The
existing acoustic techniques, however, have not achieved trueNFOV target estimation
to the best of our knowledge. Themajority of sound localization challenges have been
focused on the direction of sound rather than its position due to the complexity of
sound wave propagation [16, 17].

The final approach enhances NFOV target estimation by including a sensor
with a limited FOV, such as an optical sensor, by applying a numerical technique.
Mauler [12] stated the NFOV estimation problem mathematically, and Furukawa et
al. [4, 5] developed a generalized numerical solution. In this technique, the event of
“no detection” is converted into an observation likelihood and utilized to positively
update probabilistic belief on the target. This belief is dynamically maintained by the
recursive Bayesian estimation (RBE). The technique, however, has been found to fail
in target estimation unless the target is re-discovered within a short period after being
lost. Kumon et al. [9], incorporated an acoustic sensor tomaintain belief with no opti-
cal detection more reliably. Nevertheless, the technique performed poorly unless the
target re-entered the optical FOV since the acoustic sensing is only conducted in an
assistive capacity.

This paper presents a new acoustic approach to estimate a NFOV mobile tar-
get, and its application and implementation to complex indoor environments. In the
approach, microphones are sparsely installed in an indoor environment. In a prior
process to the estimation, the IID of observations acquired by a combination of stereo
microphone pairs is derived for different target positions and stored as the “finger-
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prints”, or acoustic cues. This a priori data collection process is accelerated by a
speaker localization device. With the acquisition of a new sound from the target,
an acoustic observation likelihood is computed for dominant pair of microphones
by quantifying the correlation of the IID of the new observation to the stored IIDs.
The joint likelihood is then created by fusing the acoustic observation likelihoods,
and the NFOV target is estimated by recursively updating the belief within the RBE
framework using the joint likelihood.

2 Recursive Bayesian Estimation

Consider the motion of a target t , which is discretely given by

xt
k+1 = f t

(
xt

k, ut
k, wt

k

)
(1)

where xt
k ∈ X t is the target state at time step k, ut

k ∈ U t is the set of control inputs,
and wt

k ∈ W t is the “system noise”. For simplicity, the target state describes the
two-dimensional position.

FOV and NFOV are defined by physical properties of a camera sc where the
global state of the optical sensor is assumed to be known as x̃s ∈ X s . Note that (̃) is
an instance of (). The FOV of the optical sensor can be expressed by the probability
of detecting the target Pd

(
xt

k |x̃sc
)
as scX t

o = {
xt

k |0 < Pd
(
xt

k |x̃sc
) ≤ 1

}
. Accordingly,

the target position observed from the optical sensor, sc zt
k ∈ X t , is given by

sc zt
k =

{
sc ht

(
xt

k, x̃s, sc vt
k

)
, if xt

k ∈ scX t
o

∅, otherwise
(2)

where sc ht is the optical sensor model, sc vt
k is the observation noise, and∅ represents

an “empty element”, indicating that the optical observation contains no information
on the target or that the target is unobservable when it is not within the observable
region. The acoustic sensor can, on the other hand, observe a target on the Non-Line-
of-Sight (NLOS) or even in the NFOV with limited accuracy due to the complex
behavior of sound signals including reflection, refraction and diffraction. Because
of its broad range, the observation region of the acoustic sensor could be considered
unlimited when compared to that of the optical sensor. The acoustic sensor model
sa ht can be then constructed without defining an observable region unlike the optical
sensor model:

sa zt
k = sa ht

(
xt

k, x̃s, sa vt
k

)
(3)

The RBE updates belief on a dynamical system, given by a probability den-
sity, in both time and observation. Let a sequence of observations of a mov-
ing target t by a stationary sensor system s from time step 1 to time step k be
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s z̃t
1:k ≡ {

s z̃t
κ|∀κ ∈ {1, ..., k}}. Given the initial belief p

(
xt
0

)
, the sensor platform state

x̃s and a sequence of observations s z̃t
1:k , the belief on the target at any time step k,

p
(
xt

k |s z̃t
1:k, x̃s

)
can be estimated recursively through the two stage equations. The

prediction may be expressed as

p
(
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k |s z̃t
1:k−1, x̃s
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)
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)
dxt
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whereas the correction takes the form

p
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)
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, (5)

where l
(
xt

k |s z̃t
k, x̃s

)
represents the likelihood of xt

k given s z̃t
k and x̃s , which is a

probabilistic version of the sensor model; i.e., Eq. (2) if the sensor is optical. It is
to be noted that the likelihood does not need to be a probability density since the
normalization in Eq. (5) makes the output belief a probability density regardless of
the formulation of the likelihood.

3 NFOV Acoustic Target Estimation

3.1 Indoor Installation

Figure1 shows a schematic for the hardware installation necessary for the proposed
acoustic target estimation approach. As shown in the figure, microphones are placed
with some distance in the indoor environment. This is a complex environment where
optical sensors could not be used effectively as a large number of optical sensors
would need to be placed to cover the entire space. Microphones, on the other hand,
can collect information on the NFOV. A much lower number of inexpensive sensors
need to be installed, for this reason, making the installation efficient in both time and
cost.

3.2 Modeling of Acoustic Observation Likelihood

In accordance with the preliminary investigations of the authors [8], the theoret-
ical approach proposed in this paper constructs acoustic cues of the target in the
environment of concern a priori to create an acoustic observation likelihood. The
assumption of two-dimensional (2D) space and a use of a data collection device in
the proposed method reduce the time consumed by a priori data collection. First,
the three-dimensional (3D) complex environment can be simplified by assuming the
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Fig. 1 Schematic of
hardware installation for
proposed approach where
circles indicate microphones

omni-directional sound source belongs in the 2D planar domain depicted in Fig. 2.
This assumption is realized by placing a sound source at a foot level which generally
kept at constant height throughout movement of a human. Second, a priori sound
data is collected automatically using a speaker with range finders, which measures
the distance to the walls to locate the speaker and emits a white noise when the data
collection button is pressed.

Having the data collected into the ILD database in the prior process, Fig. 3 shows
a schematic diagram of the main process of the proposed approach. Given the target
sound, The acoustic observation likelihood is created for each microphone pair by
correlating the observation with IID vectors in the database. The collection of obser-
vation likelihood finally yields a joint acoustic observation likelihood. This fusion
process only considers a few dominant microphone pairs above the signal-to-noise
ratio (SNR) threshold for scalability of the system.

Mathematically, let the estimation of the a priori i th data collection position be(
x̃t

k

)
i . When a target sound is observed by jm-th microphone at x̃s

k , the sound is con-
sidered “detected” if the SNR of the microphone is greater than the SNR threshold:

Fig. 2 Data collection and localization
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Fig. 3 Schematic diagram of proposed approach within the RBE framework

sSjm ≡ s jm

(
ω| (x̃t

k

)
i

)

s jm (ω)ambient
> δS (6)

where ω is the sound frequency. Stereo microphone pairs increase with combination
of form

(n
r

) = n!
r !(n−r)! by choosing stereo pair r = 2 from n possible microphones.

Figure4 shows the detectable region of red and yellow microphone as the j th micro-
phone pair { j1, j2}. When the target is located within union of those regions, the ILD
of the microphone pair is constructed:

xt ∈ Xsa t
d(γ, δS) = Xsaj1 t

d(γ j1 , δS) ∩ Xsaj2 t
d(γ j2 , δS). (7)

where γ is acoustic and environmental characteristics. It is reasonable to sort and
choose the microphones with largest sS values. The maximum microphone pair is
set to be jmax. Following the above selection process, the IID of the j th microphone
pair { j1, j2} for the i th position

(
x̃t

k

)
i , ΔS j

i (ω), is then given by

ΔS j
i (ω) = 20 log

∣
∣s j1

(
ω| (x̃t

k

)
i

)∣
∣ − 20 log

∣
∣s j2

(
ω| (x̃t

k

)
i

)∣
∣ . (8)

If the IID is sampled at N frequencies � = [ω1, . . . ,ωN ]�, the IID vector can be
described as

S j
i (�) =

[
a j
1ΔS j

i (ω1) , . . . , a j
N ΔS j

i (ωN )
]�

, (9)
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Fig. 4 Detectable region
indicated by lines for each
microphone location

where
a j

i = 〈
min{∣∣s j1

(
ωN | (x̃t

k

)
i

)∣
∣ ,

∣
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(
ωN | (x̃t
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)∣
∣} − ε

〉
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In the equation, 〈·〉 is Macaulay brackets, and min{·, ·} returns the smaller value
of the two entities. The acoustic observation likelihood modeling results in the IID
vectors for n target positions, i.e., S j∗

i (�) ,∀i ∈ {1, . . . , n}. They are essentially the
acoustic cues to be prepared in advance and used to create the acoustic observa-
tion likelihood. The selection of microphone pairs S j∗

i (�) ∀ j ∈ {1, . . . , jmax} must
satisfy the conditions sSj > δS.

Given the IID vector S j
(
�|xt

k

)
created from s z̃t

k with the unknown target position
xt

k , the proposed technique quantifies its degree of correlation to the i th IID vector as

X
(

S j
(
�|xt

k

)
, S j∗

i (�)
)

= 1

2

⎧
⎨

⎩

S j
(
�|xt

k

)�
S j∗

i (�)
∣
∣S j

(
�|xt

k

)∣
∣
∣
∣
∣S j∗

i (�)

∣
∣
∣

+ 1

⎫
⎬

⎭
. (11)

where 0 ≤ X (·) ≤ 1. The acoustic observation likelihood with the particular
Sm

(
�|xt

k

)
can be finally calculated as

la
j

(
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k |s z̃t
k, x̃s

k

) =
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i=1

μ
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(
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)
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)
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)
, (12)

where μ
j
i

(
xt

k

)
is a basis function developed by adjacent measurements. One of the

suited basis function is a T-spline basis function where μ
j
i

(
xt

k

)
in a T-mesh in para-

meter space (s, t) can be represented as



584 K. Takami et al.

μim(s, t) = g(s)g(t) (13)

where g(s), and g(t) are the cubic B-spline basis functions. Further detailed formu-
lations are found in [14]. Similarly to X (·), la

j (·) is also bounded as 0 ≤ la
m (·) ≤ 1

due to the use of the shape function.
Finally, the joint likelihood is derived by the canonical data fusion formula:

la
(
xt

k |s z̃t
k, x̃s

k

) =
∏

j

la
j

(
xt

k |s z̃t
k, x̃s

k

)
. (14)

4 Numerical and Experimental Analysis

The efficacy of the proposed approach was examined experimentally in two steps.
The first step was aimed at studying the capabilities and limitations of the proposed
acoustic sensing technique by parametrically changing the complexity of the test
environment. This was accomplished with an experimental system consisting of a
speaker array and a movable/replaceable wall developed specifically for this study.
After verifying the feasibility of the acoustic sensing technique for NLOS target
localization, the applicability of the proposed approach in a practical indoor scenario
was investigated. The investigation looked into not only the performance of the
proposed approach but also compared it to a conventional approach.

4.1 Acoustic Observation of NLOS Target

Figure5a shows the design of the experimental system that changed the complexity
of the environment for the evaluation of the proposed approach. The number of
microphones was fixed at two to investigate the environmental complexity, and they
were located next to an outer wall and faced open space where a speaker array and
movable/replaceable wall(s) were placed. The complexity of the environment was
changed by varying two parameters of the movable/replaceable wall: the distance of
the wall to the edge of speaker array Ld and the length of the wall Lw. The shorter
the distance and/or the larger the length, the more complex the environment due to
the increased number of reflections of the sound signal.

Speaker locations are shown in Fig. 5a as blue crosses. A microcontroller con-
trolled speakers so that each speaker sequentially emitted white noise for a pro-
grammed period. A set of IIDs for a wall setting were thus collected automatically.
Once the IIDs were collected, the ability of the proposed approach was evaluated by
emitting sound from a speaker at some location within the area of the speaker array
and identifying the location in the form of an observation likelihood. This location
was different than that of the speakers of the speaker array to demonstrate the ability
of the proposed technique to identify the target at an arbitrary position.
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Fig. 5 Experimental system for investigating environmental complexity. a Schematic desgin.
b Developed system

Table 1 Dimensions and other parameters in the experiments

Parameter Value Parameter Value

x̃t single wall [42, 34] [cm, cm] L 90cm

x̃t double wall [22, 56] [cm, cm] Height 0cm

ω1 0Hz Lm 50cm

ωN 22 kHz Ls 10cm

N 8,192 Ld {0, 10, 20, 30} cm
ε 0.01 Lw {50, 60, 70} cm
n 54 nw {1, 2}

Figure5b shows the developed experimental system and the dimensions and other
parameters used in the experiments are listed in Table1. The sound was sampled at
8,192 frequency bins within the audible range to capture its behavior accurately. 54
speakers were aligned to cover the open space. The distance and the length of thewall
were varied to introduce both lightly NLOS and heavily NLOS environments. The
case of two walls (nw = 2) was tested in addition to the single wall case to increase
environmental complexity. Only the distance of the wall closer to the acoustic sensor
was varied.

Figure6 shows the resulting acoustic observation likelihoods when the sound
target was at position [42, 34] and [22, 56] for the single wall and double wall cases,
respectively. The former two cases were with a single wall at different distances.
The latter two cases were with two walls with different wall length. The result first
indicates that the target location is well estimated when the distance is short or when
the length is small. The target is closer to LOS in these conditions since sound reaches
the acoustic sensor with a small number of reflections. The identification of the target
location in the remaining two cases is difficult due to the number of sound reflections.
The identification with two walls is seen to be significantly harder than that with a
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Fig. 6 Acoustic likelihoods for different environmental complexity. a {Ld , Lw, nw} = {0, 70, 1},
b {Ld , Lw, nw} = {30, 70, 1}, c {Ld , Lw, nw} = {20, 50, 2}, d {Ld , Lw, nw} = {20, 70, 2}

single wall for the same reason. While the acoustic observation likelihood is heavily
multi-modal with these cases, the target location is still captured by the highest peak
or at least by one of the peaks as shown in Fig. 6d. This demonstrates the ability
of the proposed approach to identify the location of the NFOV target though with
limited accuracy.

Figure7a, b show the mean error of the acoustic observation likelihood when the
distance and the length were varied for single and double wall cases. The mean error
is the distance of the nearest peak of the acoustic observation likelihood to the true
target location. The result of the mean error shows that the proposed technique could
locate the target to within 2 cm error in 11 of the 12 cases for single wall case. The
estimation was particularly good when the wall length was small. Figure7c shows
the uncertainty comparison for the two cases, using the differential entropy derived
at a point within the normalized likelihood is used as the uncertainty. The mean
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Fig. 7 Mean error and differential entropy of the acoustic observation likelihood with a single and
double wall. a Single wall mean error. b Double wall mean error. c Differential entropy for single
and double wall

entropies for the two cases show that uncertainty increases with increase in a number
of walls for all wall lengths as expected. For the double wall case, the uncertainty
is higher with less success in target identification, but the proposed approach could
still be used to identify the target location.

4.2 Applicability to Practical Indoor Scenario

4.2.1 Practical Indoor Scenario

Having validated the ability of the proposed acoustic sensing technique, the applica-
bility of the proposed approach in NFOV target estimation to a practical indoor
scenario was investigated. Figure8 shows the actual indoor environment used for the
investigation: the apartment of an elderly personwho needs home health care service.
As shown in the figure, the environment with five separate rooms is so complicated
that it is difficult to cover the entire area by cameras. In addition, this is personal
home, so cameras are not to be installed. The approximate dimensions of the apart-
ment are 7.1m in width, 10.4 m in length and 2.5 m in height. Six microphones,
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Fig. 8 Map of the test environment dimensions[m] and other details

Table 2 Dimensions and other parameters in the experiments

Parameter Value Parameter Value

ω1 0 [Hz] Height 5 [cm]

ωN 2.7 [kHz] k n 255

N 2,000 ε 0.01

δS 2

shown as red dots, were fixed to cover the entire space. The target person carried a
small speaker which emitted sound with white noise. Parameters used for acoustic
target estimation are listed in Table2.

4.2.2 Results

Figure9 shows the acoustic observation likelihoods created by microphone pairs
when the target person walked in Room 3. The square dot indicates the true target
position. Only the likelihoods with microphones 1–4 are shown since those with
microphones 5 and 6 did not meet the δSN R . Identified best of the combinations
are pairs 2, 3 and 1, 3. Microphones 1–3 have the most direct LOS to Room 3,
so the result matched well with the expected observable region. Figure10 shows
the resulting joint likelihood. The target location is accurately identified by filtering
uncertainties (Fig. 11).

The result of RBE when the target person walked around is shown in Fig. 12 with
the true position again indicated by a square dot. It is seen that the proposed approach
accurately tracks the target. The estimated position was less than 15cm from the true
target position in 83% of the time. Cameras and RF receivers/transmitters cannot be
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Fig. 9 Acoustic likelihood in room 3 from multiple sensor combinations. a microphone pair
{#1, #2}, b microphone pair {#1, #3}, c microphone pair {#1, #4}, d microphone pair {#2, #3},
e microphone pair {#2, #4}, f microphone pair {#3, #4}

Fig. 10 Joint acoustic
observation likelihood

used for such a highly constrained environment, so the conventional acoustic sensing
technique based on two microphones was tested as the only comparable approach.
As shown in Fig. 11, the conventional approach was not able to identify the target
location once it had failed in the localization.
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Fig. 11 Acoustic observation likelihood in room 3with onemicrophone pair. a k = 1, [1.96, 1.13],
b k = 11, [0.27, 1.82], c k = 21, [0.78, 0.96], d k = 29, [1.63, 0.79]

Fig. 12 Proposed Joint acoustic observation likelihood in room 3 with RBE. a k = 1, [1.96, 1.13],
b k = 11, [0.27, 1.82], c k = 21, [0.78, 0.96], d k = 29, [1.63, 0.79]
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5 Conclusions

This paper has presented a new approach which uses a set of microphones to localize
and track amobile NFOV target, and its applicability and implementation in complex
indoor environments. The proposed approach derives the IID of observations from
a selected set of microphones for different target positions and stores the IIDs as
acoustic cues. Given a new sound, an acoustic observation likelihood is computed for
each pair of microphones by correlating IIDs. The joint likelihood is then created by
fusing the acoustic observation likelihoods, and the NFOVmobile target is estimated
by the RBE. Following the experimental parametric studies, the proposed approach
was applied to track an elderly person needing home health care service, yielding an
estimation which was successful to within 15cm accuracy at 83% of all the tested
positions. These results have conclusively demonstrated the potential of the proposed
approach for practical target localization.

The paper has demonstrated the new concept, and many challenges are still open
for future study. The issues of immediate interest include the enhancement of acoustic
sensing using the Interaural Time Difference (ITD) and the Interaural Phase Differ-
ence (IPD) as well as the use of non-white noise sound with sound separation/speech
recognition techniques, so that the approach could be used for various applications.
For the IID database in a dynamic environment, automated update needs further
investigation.
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Novel Assistive Device for Teaching Crawling
Skills to Infants

Mustafa A. Ghazi, Michael D. Nash, Andrew H. Fagg, Lei Ding,
Thubi H.A. Kolobe and David P. Miller

Abstract Crawling is a fundamental skill linked to development far beyond simple
mobility. Infants who have cerebral palsy and similar conditions learn to crawl late,
if at all, pushing back other elements of their development. This paper describes
the development of a robot (the Self-Initiated Prone Progression Crawler V3, or
SIPPC3) that assists infants in learning to crawl. When an infant is placed onboard,
the robot senses contact forces generated by the limbs interacting with the ground.
The robot then moves or raises the infant’s trunk accordingly. The robot responses
are adjustable such that even infants lacking the muscle strength to crawl can initiate
movement. The novel idea that this paper presents is the use of a force augmenting
motion mechanism to help infants learn how to crawl.

1 Introduction

Cerebral Palsy (CP) is a common physically disabling condition for children in the
United States. It is a lifelong physical disability caused by damage of the developing
brain and it affects muscle function, postural control, and coordination of skilled
movements. According to the Cerebral Palsy International Research Foundation,
globally, 17 million people have CP. Among these, 1 in 3 is unable to walk. The US
Centers for Disease Control and Prevention has estimated that the cost to care for an
individual with CP over their lifetime is nearly $1 million. Children with CP attain
developmentalmilestones, such as independent crawling andwalking, late in life, if at
all. There is no known cure for CP. Treatments such as physical therapy, medication,
and surgery have shown inconsistent improvement in the children’s functional status
and capabilities. Generally the consensus is that the earlier the treatment is initiated,
the better the chances for improvement.

Research shows that the effects of CP are apparent within the first year of life [1,
2]. Common early milestones that are delayed are independent sitting and crawling.
Inability to crawl has implications beyond locomotion as it is associated with other
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domains of child development that are crucial for learning, such as spatial cognition
[3, 4]. Consequently, failure by infants with CP to attain crawling during the first year
of life may negatively impact the development in other cognitive and perceptual-
motor areas. Crawling also develops during the period of rapid brain growth [5],
making it a crucial target for early mobility interventions.

This research aims to develop a device intended to serve two purposes: (1) Facil-
itate crawling in infants at risk of CP and (2) Measure the learning strategies that
these infants use when they learn to crawl. To that end, we have created a robotic
system, the SIPPC3 (see Fig. 1), which can move an infant by sensing its intentions,
regardless of whether the infant is strong enough to move or not. The system con-
sists of the robot and an operator’s laptop for control and datalogging. An infant is
placed in the SIPPC3 in a prone position. The robot supports the infant at a pre-set
height or can vary the height based on the forces exerted by the infant against the
floor. Forces exerted in the horizontal plane are used to generate motions of the robot
in the appropriate direction. The effect of these forces can be amplified for weaker
infants, if desired.

Our approach capitalizes on the neuronal group selection theory [6] by assisting
the infant to crawl early before the crawling-age (experience dependent plasticity).By
bypassing some of the constraints experienced by infants with CP, such as decreased
muscle strength and incoordination, and rewarding the infant’s every effort to move,
our device can potentially ameliorate or eliminate the negative consequences caused
by the inability to crawl. Other benefits may be improvement in postural control,
muscle strength, coordination, and understanding spatial relationships. The use of
this device has the potential to improve development, particularly crawling, in a
similar way as infants without CP.

Section2describes requirements, constraints, and relatedwork. Sections3 through
5 detail the SIPPC3 robot’s mechanical and electrical systems, and control laws.
Section6 describes some preliminary testing of the robot. Finally, conclusions and
future work are discussed in Sect. 7.

Fig. 1 SIPPC3 in action. Photo credit Sooner Magazine/Hugh Scott
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2 Motivating Factors for the SIPPC3 Design

2.1 Previous Approaches

There has been a number of robotic approaches to assist infants with Cerebral Palsy
to obtain mobility. Some researchers have created robots that the infant can ride,
[7], which, while potentially giving the child some sense of independent mobility,
does not develop any motor skills or have any of the other benefits of physical
activity. Schoepflin [8], workingwith somewhat older children (3–4 years) developed
an assistive device more similar in action to a robotic pedal cart. Children in a
sitting position could activate and control the cart (a seat mounted on a Pioneer robot
platform) by using a pedaling-likemotion. Kolobe [9], describes some earlier, related
work in prone locomotion. This work drew from lessons learned fromSIPPC1, which
was a passive platform with no assistance in movement. SIPPC2 [9], could amplify
some of the movements initiated by the children, but the fixed height put them in an
advanced crawling position, regardless of their age or crawling developmental stage.

2.2 Requirements and Constraints

Children learn to crawl in stages. They start in a prone position close to or on the
ground. As they develop, they lift more of their body off the ground and eventually
move to an alternating pattern on their hands and knees. Orientation of the head
is important, especially during the transition in development from lying flat on the
ground to the point where the head is lifted above the shoulders [10]. Infants are
very interested in their surroundings and will grab at near objects that are within
view. Children with or at risk of CP may have reduced muscle strength. If they are
interested in objects in their surroundings, they may not be able to generate the force
required to mobilize the body during crawling.

Our robotic assistant needs to allow children to be in the prone position, and be as
close to the ground as possible, while still providing adequate support for breathing.
The robot should be able to assist the child in weight bearing. A crawling infant
may use just their arms, legs or coordinated action amongst all four of their limbs
when moving, and so the robot should be able to move the child in any direction and
rotate around any point. The robot should also be able to constrain those movements
and points of rotation in order to encourage more productive crawling behavior. The
robot also needs to be able to handle children of different sizes and weights. Finally
the robot needs to give an infant a clear view of where he/she is headed, and to give
access to objects (e.g., toys) in front of the infant, so that he/she can plan and execute
goal-driven movements [11].
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3 SIPPC3 Crawler Mechanical Design

The key requirements for the mechanical design of the robot are support for infant
movement in any direction along the floor and in the vertical direction. Accordingly,
we have developed a system with 4 DOF motion, of which 3DOF along the floor
are achieved by using omni-wheels (see Fig. 2). All this needs to be done using a
minimum possible number of wheels and supporting structure while giving an infant
a wide view of the surroundings.

The mechanical structure of the robot is designed around an infant support plat-
form (see Fig. 3). This platform is mounted to a Y-shaped central frame (see Figs. 3
and 4) with three motion control modules or “legs”. We have selected a Y-shape
because it allows for 3 legs, which is the smallest number of legs we can use to
support the infant. The Y-shape is helpful since having the front two legs spread to
the sides gives the infant a reasonably sized, unobstructed view. The infant support
platform is a frame with a padded base on which an infant can lie down in a prone
position. The padded base is tilted up by 7° to assist infant breathing. A 6 DOF FT
sensor with integrated electronics [12, 13] is the mechanical interface between the
infant support platform and the central frame (see Fig. 5). This ensures that all forces
exerted by the infant below will be transferred to the robot through the FT sensor.

The legs are mounted at the ends of the central frame. Together, the legs provide
4 DOF motion for the infant support platform: one for raising the platform off the
floor, and three for moving it in x, y, and yaw around the z-axis (see Fig. 9). Each
of the legs contains a linear actuator (see Fig. 5) that can extend to raise the infant
support platform. Built-in potentiometers in each actuator provide position feedback.
The actuators are not backdrivable so they do not consume power to maintain a given
height, nor will they suddenly move if there is an unexpected power loss.

Fig. 2 Omni-wheel drive for holonomic motion
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Fig. 3 Overview of the mechanical system

Fig. 4 Relative angles between the Y-frame
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Fig. 5 CAD model of SIPPC3 with leg detail exposed

For motion across the floor, each leg has a 131:1 geared DC motor driving an
omni-wheel (see Fig. 2). Omni-wheels were used to allow variability in movement
patterns. Built-in quadrature encoders provide rotation feedback of the wheels. Each
omni-wheel is oriented such that the axis of rotation passes through the center of the
robot. This forms aholonomic drive configuration.Our configuration is different from
the typical three-wheel holonomic configuration where all the wheels are positioned
120° apart and at the same radial distance from the center. Instead, the angle between
the two front wheels has been widened to 130° (see Fig. 4). The central frame has
the front wheels closer to the center than the rear wheel. The wider angle is to allow
the infant to have a wider unobstructed field view. The front wheels are closer to the

Fig. 6 Overhead view showing typical arm and head positioning
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center, making the robot smaller andmoremaneuverable in homeswhilemaintaining
adequate workspace for the subject’s arms (Fig. 6).

To protect the baby from the mechanical and electrical parts, the “legs” have been
surrounded by aluminum sheet metal enclosures. The sheet metal (as are most of
the hard surfaces in the SIPPC3) are covered by soft, brightly colored padding (see
Fig. 3).

4 Control Electronics

The electronic subsystems comprise an onboard WiFi hub, an Interface Server, a
Control Server, Motion Control “leg” Modules, and the FT sensor (see Fig. 7). These
communicate over three different physical layers: ethernet (using TCP-IP), I2C, and
Controller Area Network (CAN [14]). Ethernet connects the Interface Server and the
Control Server to the WiFi hub. An I2C bus links the three Motion Control Modules
and Control Server. The CAN bus connects the Control Server to the FT sensor.

The Interface Server is an ARM® Cortex™-A8 processor (BeagleBone Black
[15]) running a stripped-down version of the Ubuntu operating system. The Control
Server is an ARM® Cortex™-M3 micro-controller (mbed LPC1768 [16]). Each
Motion Control Module is made up of a Cortex™-M4 micro-controller (Teensy 3.1
[17]), a 2-channel motor driver, a linear actuator, and DC motor.

Fig. 7 Overview of the control electronics
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The Interface Server receives commands from the operator’s laptop over WiFi.
It transmits back system health, sensor, and odometry data. The Interface Server
generates synchronization signals for external recording devices.

The Control Server is central to the functioning of the robot. It receives commands
from the Interface Server and relays back systemhealth and odometry data. It receives
the FT data from the 6 DOF FT sensor and computes wheel velocity and actuator
height set points for the three legs. These set points are then transmitted to theMotion
ControlModules. EachMotion ControlModule runs a feedback control loop through
the motor driver. Position for the linear actuator is controlled using the potentiometer
feedback. Wheel velocity is controlled using quadrature encoders and a movement
to omni-wheel speed transformation similar to [18].

The entire system is designed to be portable and fully self-contained. It is powered
by a 4-cell LiPo battery pack with a 5000mAh capacity.

Multiple levels of safety features for the infant have been built into the system. At
the software level, the operator can issue software emergency E-stop commands over
the laptop. An E-stop command issues a stop command for all motors and actuators.
If communication with the Control Server is lost, the Motion Control Modules are
programmed to stop driving the motors. At the hardware level, a physical E-stop
button on the robot cuts power to the motors, causing them to decelerate to an almost
immediate stop.

5 Control Laws

The mapping of infant actions onto robot motion has been defined by control laws
for driving along the floor, and for raising the infant’s trunk off the floor (see Fig. 8).

Fig. 8 Control laws defining how the infant interacts with the robot
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There are four drive control modes for motion along the floor. These are force
mode, operator assist mode, power steering mode and suit assist mode. The force
mode and power steering modes allow control through interactions between the
infant and the ground. Suit assist is available for gesture-based control for very weak
infants using a motion capture system [19] and a novel gesture-recognition system.
The operator assist mode allows the operator to intervene in case the infant drives
the robot into a spot that is difficult for the infant to extricate themselves from on
their own.

These four drive modes can be activated independently, and they work together
to generate global robot velocity commands. A generalized equation mapping infant
action to global drive velocity commands is provided below; it is used for linear
velocities in the x and y directions, and the angular velocity about the z-axis:

VD = KDFD + VA(t) (1)

where VD is the commanded global robot velocity to drive along the floor, KD is the
gain for the force mode, FD is the driving force or torque induced by the infant, and
VA(t) is the velocity contribution of an “assist event” triggered by the operator assist,
power steering, or suit assist modes. VA(t) is a function of time, and provides a small,
short-term motion in a specified direction. Figure9 illustrates the axes used.

Fig. 9 Robot frame of reference for control kinematics. The x axis points towards the front of the
robot. The z-axis is into the plane of the page
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In the force mode, a force or torque generated by the infant generates a compo-
nent of the global robot velocity. The other three modes compete with each other
to generate the other component of the global velocity. This is done by triggering
“assist events.” In the operator assist mode, an assist event is triggered by the care-
giver through the operator laptop. In power steering mode, a force beyond a certain
threshold triggers an assist event. In suit assist mode, a gesture recognized by the
wearable motion capture system [19] triggers an assist event.

Once an assist event is triggered, a third order minimum jerk velocity profile is
generated for a preset period of time δtA over a preset distance δsA. It is followed
by a preset refractory period δtR. During the time (δtA + δtR), other assist events
are ignored. For example, if the power steering mode triggers an assist event, a
subsequent assist event triggered by the suit assist mode will be ignored.

For lifting the infant off the ground, there is only one mode, which is called the
gravity mode. When active, the upward force can trigger an upward movement for
the linear actuators. The operator sets a desired lifting force, a force deadband, and
a minimum height. If the last δtL milliseconds have an average lifting force greater
than the top end of the band, the linear actuators lift the infant. If the average lifting
force is within the deadband, the actuators maintain the current height. If the average
lifting force is below the bottom end of the deadband, then the linear actuators settle
down towards the preset height.

When gravity mode is deactivated, the preset minimum height is maintained. It
can be adjusted at any time through the operator laptop. Currently, the infant’s torso
can be placed 3–10 cm from the floor. The minimum height is the limit imposed by
the padding placed under the infant.

6 Testing

We have measured the minimum magnitude of three different forces that an infant
could use to triggermotion in the SIPPC3 (see Table1). These are based on the thresh-
olds that we have selected to filter out FT sensor noise and undesirable oscillations
caused by the dynamics of the robot structure. The uncertainty quoted for each of the
forces is based on the measurement bias error and the random error using Student’s
t-distribution (95% confidence interval). For the moment arm measurements, only
the bias error is quoted, since these were not repeated. The x and y axes are shown
on Fig. 9.

The first of these is the force Fx applied in the forward direction through the
center of the robot. This is a force that an infant could use to propel himself or
herself forward. The load was applied to the frame by pulling on straps used to
attach infants onto the padding. The robot was placed on top of a table and a string
was attached to the straps. The other end of the string was run over a smooth pivot
over the edge of the table and attached to an empty container. Water was gradually
poured into the container to apply an increasing steady force. Once the robot started
to move, the container was taken off the string and was weighed on a weighing scale
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with 1 g resolution. The mean threshold force Fx was calculated using acceleration
due to gravity as 9.81m/s2.

The second force is also a force in x but the line of action is offset from the center.
This is similar to a force that an infant could use to propel himself or herself forward
using one hand on the floor. From video recordings of infants on the SIPPC3, one
line of action of this force is close to the shoulder. For this test, we took the line of
action of this force to be one hand breadth away from an infant’s shoulder in the y
direction. Using mean shoulder breadth and hand breadth data for 6–8 month old
infants [20] gave a moment arm of 0.118± 0.063 m. Force was applied in a similar
manner as above. To provide a rigid offset point for force application, a metal plate
with holes was clamped onto the padding such that one of the holes lined up with
the desired line of action of the force.

The third force is a force in y with the line of action offset from the center of
the robot. This is similar to a force that an infant could use to push against the floor
to turn away. From video recordings, one line of action of such a force is slightly
above shoulder level. For this test, we took it to be half the length of the upper arm of
6–8 month old infants. Using anthropometric data from [20], the moment arm about
the center of the robot is 0.229± 0.63 m. Force was applied in a similar manner as
the Fx,offset force above.

We also performed some tests to evaluate smoothness and response time. The
motion from an assist event is smooth because the controller uses a minimum-jerk
trajectory to generate smoothmotion profiles (see Sect. 5). Themotion resulting from
the force mode is approximately as smooth as the force applied. For the force mode,
we have verified smooth response when applying continuous forces. With infants,
however, the motion is not as smooth and continuous. This is because crawling is
not a continuous process and infants do not apply continuous, smooth forces. We
measured the response time of the robot using video footage. The response time is
defined as the time interval between the instant the force is applied, and the instant
that the robot starts to move. The response time was 120± 18 ms.

In all the above tests, and in all the experimental sessions with infants, there has
been no instance of the robot tipping over. The wheels are placed far enough apart
and the center of gravity is low enough that an infant cannot tip over the robot.

The robot is currently in use in a study which is planned to test 30 typically
developing infants and 20 infants at risk for CP over the next twelve months. Three

Table 1 Force thresholds required to activate the SIPPC3 under force control

Fx Fx,offset Fy,offset

Mean force (N) 2.26 2.86 1.78

Error (N) 0.120 0.080 0.061

Standard deviation (N) 0.168 0.126 0.085

Samples 10 12 10

Fx is a simulated forward push, Fx,offset is a simulated forward push using one hand, and Fy,offset is
a simulated turning force applied sideways
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typically developing infants have completed the study so far using this robot. Subjects
start at four to five months of age and have multiple sessions per week with the robot
for the subsequent eight weeks. The subjects are able to learn how to engage the
robot in order to reach toys that have been placed for them on the ground. The robot
has been approved by IRB as safe for testing with typically developing infants and
infants with CP (IRB number 3755).

7 Conclusions and Future Work

Wehavedescribed an assistive crawler robot to supplement the efforts of childrenwho
have CP or similar conditions. This robot allows shared and dynamically changing
weight bearing and it can adjust the height of the baby from approximately 3 cm
(the thickness of the infant support pad) to 10 cm. Together, these features enable
the robot to accommodate infants of wide range in height and weight, and let them
develop their crawling capabilities in a close-to-natural pose from scooting along the
ground to advanced crawling. The holonomic motion capability allows the robot to
accommodate turns and motions that are generated by the subjects. These are new
capabilities for assistive crawler robots and allow the subjects to learn and develop
their prone locomotion skills more naturally.

In addition to traditionalmethods formonitoring infant development, we are using
electroencephalography (EEG)-based neuro-imaging and awearablemotion-capture
system (kinematic suit) developed in-house [19]. The kinematic suit can also be used
as an interaction interface where an infant’s limb motions are used to trigger the
robot response. The neuro-imaging with the SIPPC3 is giving additional indications
of goal-directed movement [21]. The SIPPC3 body also serves as an advantageous
mounting point for cameras to record head, arm and foot movements.
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Abstract We present an ample description of a socially compliant mobile robotic
platform, which is developed in the EU-funded project SPENCER. The purpose of
this robot is to assist, inform and guide passengers in large and busy airports. One
particular aim is to bring travellers of connecting flights conveniently and efficiently
from their arrival gate to the passport control. The uniqueness of the project stems
from the strong demand of service robots for this application with a large potential
impact for the aviation industry on one side, and on the other side from the scientific
advancements in social robotics, brought forward and achieved in SPENCER. The
main contributions of SPENCER are novel methods to perceive, learn, and model
human social behavior and to use this knowledge to plan appropriate actions in real-
time for mobile platforms. In this paper, we describe how the project advances the
fields of detection and tracking of individuals and groups, recognition of human
social relations and activities, normative human behavior learning, socially-aware
task and motion planning, learning socially annotated maps, and conducting empir-
ical experiments to assess socio-psychological effects of normative robot behaviors.
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1 Introduction

The immenselygrowingpassenger volume in air trafficworldwideposes an enormous
challenge for all air carriers and airport operators. With the increasing number of
passengers arriving and departing at an airport, the probability of delays and missed
connection flights grows accordingly. Furthermore, busy hubs such as the airport
of Amsterdam Schiphol are particularly challenging for the growing numbers of
first-time air passengers, people with little knowledge of foreign languages or those
who need any kind of special attendance. For them and for others, finding a fast
and efficient way from an arrival gate to a departure gate for connection can be
very difficult, especially if the first, incoming flight was delayed. For air carriers
such as the Dutch KLM, missed connecting flights often result in additional cost for
rebooking and baggage reloading, while for the passengers it means further delays
and the inconveniences associated with them.

This is the main motivation for the launch of the EU-funded project SPENCER,
which we present in this paper. In SPENCER, we develop a mobile robotic platform
that efficiently guides oversea passengers at Schiphol airport from their arrival gate
to the passport control point for further, inner-European connections, the so-called
“Schengen barrier”. The project is unique in at least two major aspects: First, it
addresses a highly relevant business case with a large potential impact for the entire
aviation industry, motivated by a growing need for passenger assistance and the
decrease of missed connecting flights. And second, in contrast to earlier tour-guide
robot systems (e.g. [4, 31]), it addresses topics in social robotics by developing
new methods to perceive, learn and model human social behavior and to use this
knowledge to plan appropriate actions in real-time for a mobile robotic platform. In
doing so, SPENCER generates novel scientific contributions in the fields of

• detection, tracking and multi-person analysis of individuals and groups of people,
• recognition of human social relations, social hierarchies and social activities,
• normative human behavior learning and modeling,
• socially-aware task, motion and interaction planning,
• learning socially annotated maps in highly dynamic environments,
• empirically evaluating socio-psychological effects of normative robot behaviors.

In SPENCER, we address these problems jointly and in a multi-disciplinary project
team, which enables us to exploit synergies between social science and robot engi-
neering for the implementation of an effective cognitive system that operates robustly
and safely among humans. In this paper, we present first encouraging results in all
mentioned fields, as well as the insights gained from integrating all relevant system
components onto the same common platform.

The paper is organized as follows: First, we present an overall view on the system
regarding the platform design and the system architecture. Then, we show results
of our socially aware localization and mapping module. In Sect. 4 we describe our
people and group tracking component, a major building block for social analysis
tools. Section 5 introduces the human-aware task and motion planning module of
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SPENCER. Then, we develop important tools to analyse human social behavior
and discuss the two main approaches we pursue to implement social behavior on
the robot. Finally, Sect. 8 briefly describes the integrated system and concludes the
paper.

2 Platform Design and System Architecture

A key element of a socially acting and interacting robot is its physical appearance,
because even if the robot’s behavior fully complies with socially normative rules, it
is of little use if the platform itself appears unfriendly or even threatening. Therefore,
a human- or animal-like appearance is often chosen for robots that operate in human
environments. However, a completely antropomorphic design has the disadvantage
that it implicitly raises expectations regarding certain cognitive capabilities of the
platform,which cannot be accomplishedwith current systems. This can lead to disap-
pointments or to refusal of the system. To avoid this, we decided to use a human-like
but abstract appearance, which combines friendliness with believability. The result is
a human-size platform (see Fig. 1a, b), where the body resembles the functionality of
an information desk, and the head serves as a device for a comprehensible but simpli-
fied non-verbal communication (e.g. nodding or orientation towards spokesperson).
For physical interaction with the user, the platform has a touchscreen and a boarding
pass reader. The sensors consist of two SICK LMS 500 2D laser scanners covering
360◦ range in total at 0.65m height, two front and two rear RGB-D cameras, and
a stereo camera system at shoulder height. A schematic view of the architecture is
given in Fig. 1c. We use the Robot Operating System (ROS, see http://www.ros.org)
as a middleware for the software components.

Fig. 1 a and b Design view and actual appearance of the robot platform. c System architecture

http://www.ros.org
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3 SLAM and Socially Annotated Mapping

Airports are very dynamic environments, and this poses a big challenge for the
localisation andmappingmodule.Often, large parts of the range sensors’ field of view
are occluded by people or semi-static objects such as carts or trolleys. When these
large semi-static obstacles are placed close to walls they can cause major problems
in measuring the true distance to the walls. To build consistent maps in environments
with high dynamics, we recently introduced the Normal Distributions Transform
Occupancy Map (NDT-OM) [30] and the NDT-OM Fusion algorithm [32]. We have
also developed a data structure called the Conditional Transition Map (CTMap) to
model typical motion patterns. Here, we present a novel extension of the CTmap,
the Temporal CTMap, which can additionally represent motion speeds. CTMaps are
very useful for “social” motion planning, as they enable to plan paths that interfere
less likely with the flow of passengers.

3.1 Normal Distributions Transform Occupancy Map

NDT-OM [30] combines two established mapping approaches: Normal Distribution
Transform (NDT)maps [3, 20] and occupancy gridmaps [23]. It has been shown that
theNDT-OMFusion algorithm [32] produces consistentmaps in large-scale dynamic
environments in real time, and it can handle dynamic changes and provide a set of
multi-resolution maps. For map building, the vehicle pose is tracked using a frame-
to-model registration, and the sensor data are fused into the NDT-OM, by updating
distributions with newly obtained and aligned points. By using submap indexing the
system can represent large-scale environments at combined registration and fusion
times between 100ms and 2s. Evaluations on the public FORD data set [28] yield
absolute trajectory errors (ATE) of 1.7m after 1.5km (see Fig. 2). Further evaluations
on a 10-h data set in a large industrial environment resulted in ATEs of under 0.1m
and update rates of 510Hz.

3.2 Conditional Transition Maps

NDT-OM can compactly represent dynamic environments, but for social interaction
we also need to distinguish directions of motion. For that, we have developed the
Conditional Transition Map (CTMap [15]), a grid-based representation that models
transitions of dynamic objects in the environment. For each cell x, CTMap learns the
probability distribution of an object leaving to each neighboring cell, given the cell
from which it entered into x. Based on these learned patterns, motion directions can
then be predicted, which is a very important feature for socially aware navigation.We
evaluated the CTMap approach on data from a Velodyne-HDL64 3D laser scanner
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Fig. 2 Mapping and tracking results on the FORD data set. Left Maps produced by the system
while tracking a top view, b zoomed view of the start in point, c overview. The ellipsoids represent
height-coded scaled covariance matrices in each map cell from a map at 1m resolution. Right
trajectory plots, at the top x-y trajectory for the 100 and 150m cutoff settings, bottom estimated z
position over time. Note the zoomed-in detail and the re-entry into a previously mapped area

Fig. 3 Visualization of CTMap using data from a roundabout. a Overhead view of the environment.
b Pattern of movement on the roundabout, extracted with CTMap, using a cell size of 2 × 2m. As
a simple denoising step we have removed edges with less than 10 exit events. For clarity, the entry
directions are not shown. The colors refer to the orientation of the vectors

that was placed at the center of a roundabout during rush-hour (see Fig. 3a). The
obtained CTMap after 1.5h of observation is shown in Fig. 3b. The arrows show the
most likely exit directions from each cell. They are distributed along highly dynamic
areas and closely correspond to the shape of the roads. We also see that the map is
able to capture correct motion patterns of pedestrians on the sidewalks.

As an extension toCTMap,we introduce here the Temporal CTMap. In addition to
the set of conditional probabilities of exit directions stored for each entry direction of
a cell, the T-CTMap stores a bivariate normal distribution to model the dependencies
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between entry and exit times. This allows us to not only learn the average motion
directions and speeds, but also the variations of speed. Thus, in contrast to Pomerleau
et al. [29], who average velocities of neighboring points over consecutive frames,
the T-CTMap represents a complete distribution of velocities.

4 People and Group Tracking

Another crucial component for a socially compliant robot is a reliable detection and
tracking of humans in the environment. As described in Sect. 2, our robot uses 2D
laser and RGB-D sensors, and each has benefits and drawbacks. While 2D laser data
is more robust against illumination changes and provides a large field of view, it is
sparse and has no appearance information. Therefore, we use multiple detection and
tracking algorithms that operate on different sensors, as described next.

4.1 2D Range-Based Detection and Tracking

To detect people from 2D laser data, we first segment the data points using agglom-
erative hierarchical clustering. Then we compute 17 different features for each seg-
ment and apply a boosted classifier that was previously trained on 9535 frames of
hand-labelled data. The resulting detections are tracked using a multi-hypothesis
tracker (MHT), which generates hypotheses by considering all feasible assignments
between measurements and tracks, all possible interpretations of measurements as
new tracks or errors, and all tracks as being matched, occluded or deleted (see [2]).
Each hypothesis represents one possible set of assignments between measurements
and track labels. Given a parent hypothesis and new detections, the MHT generates
a number of assignment sets, where each produces a new child hypothesis branching
off from the parent. To prune the exponentially growing hypothesis tree, a probabil-
ity is computed recursively for each hypothesis using the measurement likelihood,
the assignment set probability and the probability of the parent hypothesis. We use
multi-parent k-best branching according to Murty [25] and N -scan back pruning
[5]. A Kalman filter with a constant-velocity motion model then predicts the state of
tracked people.

We extend this MHT approach in Luber and Arras [19] for the detection and
learning of socio-spatial relations and to track social groupings. To do this, layerswith
group formation hypotheses are interleaved with regular data association hypotheses
(see Fig. 4a), each leading to a social network graph (see Fig. 4b). We reason about
social groupings recursively to achieve real-time tracking performance. The resulting
group information can be fed back into person-level tracking to predict humanmotion
from intra-group constraints and to aid data association with track-specific occlusion
probabilities. This leads to an improved occlusion handling and a better trade-off
between false negative and false positive tracks. In experiments on large outdoor
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(a) (b)

Fig. 4 a In our multi-model MHT approach, group formation hypotheses are interleaved between
regular data association hypotheses. bA social network graph, based on the output of a probabilistic
SVM trained on coherent motion indicator features (relative velocity, orientation and distance)

Fig. 5 a Person- and group-tracking experiments during a SPENCER integration meeting. The
robot tracks and guides a group of people to the other end of a corridor. b Group affiliations are
displayed as green lines connecting the group members. The group is tracked robustly even if
individuals are occluded temporarily. c The groundHOG detector most likely detects persons in the
distance. d People near the robot, often partly visible, are detected by the upperbody detector

data sets, we obtain an improved person tracking by a significant reduction of track
identifier switches (TIS) and false negative tracks. In Linder and Arras [18], we
extend this to RGB-D data, and we show that the approach can track groups with
varying sizes over long distances with few TIS. Some results of the combined people
and group detection and tracking method are shown in Fig. 5.

4.2 Tracking Based on RGB-D Data

For close-range, appearance-based people detection and tracking we developed a
real-time RGB-D based multi-person tracker [10], which aims at making maximal
use of the depth information from the RGB-D sensors to speed up computation. It
classifies the observed 3D points into object candidates, ground, and fixed structures,
e.g. walls.Ground points are used to estimate the ground plane, and object candidates
are passed to an efficient upper-body detector [22], which uses a learned normalized-
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depth template to find head-shoulder regions. It operates on depth only and is thus
limited to the depth range of the RGB-D sensors, i.e. up to 5m. To obtain also
far-range detections for pedestrians, we combine the upper-body detector with a
full-body HOG based detector. This second detector runs efficiently on the GPU and
uses the estimated ground plane to restrict the search for geometrically valid object
regions [33]. Finally, we use the estimated camera motion, the ground plane and the
detections from both detectors for tracking based on Leibe et al. [16] (see Fig. 5c, d).

5 Human-Aware Task and Motion Planning

In SPENCER, there are three main components responsible for planning actions,
interactions and the motion of the platform: the supervision system, the task and
action planner, and the motion planning module. All three operate human-aware,
e.g. by aiming for legibility of the paths and collaborative planning, as detailed next.

5.1 The Supervision System

The supervision system (SUP) interacts with the user and generates and executes
action plans. For interaction, we use the devices ‘lights’, ‘head’, ‘screen’, and ‘micro-
phone’ and provide three interaction modes: Engaging with potential users before
guiding, giving information to guided users, and asking other people to clear the pas-
sage. The SUP also receives safety-critical information, e.g. about planning failures
or potential dangers for humans, and reacts accordingly. Using the work of Fiore
et al. [7], the SUP was built and sucessfully tested in a simplified scenario.

5.2 Action Planning with Human Collaboration

Action planning and execution alone is not sufficient for a socially aware robot,
because it also needs to consider actions performed by the users. For example, while
guiding, the robot has to deal with situations where some members of the guided
grouppurposely don’t follow the robot. Therefore,we represent the human’s intention
as a hidden variable and formulate the problem as a Mixed Observability Markov
Decision Process (MOMDP [26]), where in contrast to standard POMDPs some
state components are fully observable and others only partially. MOMDPs can be
solved much more efficiently than general POMDPs. For cooperation with humans
in different tasks we associate to each task a collaboration planner (CP) represented
as a MOMDP. To reduce complexity we use a simplified state space, focusing on
the intention estimation problem, and let the SUP adapt the MOMDP plans to the
current situation.When executing a cooperative actionwith a human, the SUPgathers



616 R. Triebel et al.

observations about the human and updates the corresponding CP, resulting in a high-
level action adapted to the situation. In our system, we use a CP for the guiding
action and tested it successfully with a single person following the robot. For groups,
we currently regard the “most cooperative” behavior, i.e. we consider the group as
following as long as a single member follows the robot.

5.3 Socially Compliant Motion Planning

The motion planning module is the system component for which the benefit of com-
plying with social rules is most obvious. Whereas standard planning algorithms
mainly aim to find shortest feasible paths, social motion planning trades the short-
est path off with the cost of breaking social rules, e.g. when crossing through a
group of people instead of deviating it. Therefore, our motion planner extends stan-
dard kinodynamic planning in the following ways. First, for global planning we use a
human-aware cost map that ensures a path around the detected people, which humans
consider as safe. Second, our planning algorithm produces legible paths by avoiding
abrupt motion changes in presence of dynamic obstacles and by anticipating future
collisions and adapting the velocity accordingly. The improved legibility of the pro-
duced paths has been experimentally validated in a user study with a robot platform
similar to the SPENCER robot (see [14]).

As a further extension to standard motion planning, we investigate RRT*-
based planning [13] using low-level vehicle constraints in combination with high-
level socially compliant cost maps. Our planner uses a novel extent function for
differential-drive robots, which improves the smoothness of the paths and overcomes
some limitations of other existing control laws (see [27]). To reduce planning time,
we use a learning approach based on a nonlinear parametric model that infers the
distance metric for selecting the nearest vertex in RRT*. Results of our improved
RRT* planner using a cost map learned with inverse reinforcement learning (IRL,
see Sect. 7.2) are shown in Fig. 6a.

Fig. 6 a An example tree generated by the RRT* motion planner on IRL cost maps, when a single
relation is in the scene. Red branches are high cost actions, low cost actions are displayed in blue.
b and c Learning to approach a person using IRL. The light blue line is the result of the discretized
position and the green line is the smoothed path used by the planner
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6 Perception of Human Social Attributes

We have shown how information about social human relations is obtained from
basic cues such as tracked groups, and how social rules are used to perform human-
aware actions and motions. However, for a deeper analysis and recognition of social
relations and attributes, more detailed information must be extracted from the sensor
data. Therefore, in SPENCER we develop tools for automatic estimation of body
postures, classification of human attributes such as gender and age, estimation of
head poses, spokesperson detection, and the classification of important objects in the
environment. For the latter three, we present details in the following.

6.1 Head Pose Estimation

An important cue for human social interactions is the head orientation. Groups of
people can often be recognized as either standing in a circular formation facing
towards the centre, or walking next to each other while looking into the same direc-
tion. This suggests that the head orientation can be used to support tasks such as
group detection and tracking. To estimate the head orientation, we classify a given
upper-body detection as looking left, right, front, back or being a false-positive. Our
approach computes a feature covariance matrix of the image’s Lab colors and applies
a Difference of oriented Gaussians (DooG) filter. The result is split into a regular,
overlapping grid and a kernel-SVM is trained on a Riemannian approximation to
the geodesic distance between covariance matrices in each cell of the grid. We have
evaluated various such approximations, which can trade off computational speed for
accuracy, with either an accuracy of up to 93.5% or a two orders of magnitude faster
computation than the current state of the art (see [34]).

6.2 Spokesperson Detection

Another key element of analysing social behaviour is the detection of a spokesperson,
i.e. a groupmember who is available for interaction and canmake decisions on behalf
of the group. Examples include parents in a family and teachers in a school class.
For the guiding scenario in SPENCER, determining a spokesperson is particularly
useful, because other group members will more likely follow the robot when the
spokesperson does. Thus, even if some members are not tracked due to occlusions,
the robot can still guide the group as long as the spokesperson is following.

To determine a spokesperson, one can use heuristics such as people’s height (this
excludes children as a spokesperson) or their position relative to the robot. Another
approach is to use people’s speech patterns to determine dominance in multi-party
meetings (see [9]). However, audio-related cues can not be extracted reliably in
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airports. Cristani et al. [6] use body behavior and gestures to classify a video of four
participants having a conversation into intervals of speech or non-speech. Themethod
achieves 72% accuracy, but the setting is static. However, in an airport people usually
move. Also, from our investigations on the same data the movements associated with
speech are much shorter-lived than the gesture itself, i.e. different metrics to quantify
gesturing are needed. Furthermore, gestures can indicate both speaking and “active
listening” behavior. In further experiments with three different implementations of
speaker detection using the above data and recordings from speed datings [38], we
found that gesturing alone is not a good indication for speech (up to half of the
observed speech was not accompanied by strong gesturing), and that the relationship
between gesturing and speaking is person-specific.We are therefore investigating the
relation of gestures and the length of the subsequent speech period for a more reliable
speaker detection. Meanwhile, we use the above mentioned heuristics to determine
the spokesperson.

6.3 Efficient Object Classification Using Online Learning

Apart from people and their attributes, the robot must also be aware of relevant
objects in the environment. In an airport, these include moving objects such as carts
and trolleys, which can be dangerous for the robot. However, instead of employing
standard offline learning from previously obtained training data, we develop online
learning methods for object classification. Particularly, we focus on autonomous
learning methods, which have the two major advantages that they are adaptive to
new situations, i.e. they can incorporate new information by updating their learned
models, and they require less user interaction by selectively choosing the data that
is particularly useful for training. Based on the work of Triebel et al. [35, 36], we
developed in Mund et al. [24] an efficient online multi-class classifier, that generates
less label queries but better classification results than previous methods. This is
particularly useful for classifying and learning many different objects online and
with only little user interaction, as it is given for the application in SPENCER.

7 Analysis and Learning of Socially Normative Behaviors

So far,wehave showncues to analyse human social behavior, and howsocial rules can
be used to perform a socially compliant robot behavior, particularly during path plan-
ning. But how can we obtain these social rules? In principle, there are two different
approaches. Either the rules are provided manually by human experts and converted
into machine-understandable representations, or they are learned automatically from
sensor observations. In SPENCER, we pursue both approaches: High-level, complex
rules are established using empirical user studies, and low-level rules are learned
automatically from demonstrations. Here, we give two examples.
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7.1 User Studies and Contextual Analysis

Airport environments are naturally populated by people frommany different cultures.
Thus,many different social rulesmay be required here.One examplewe investigate is
proxemics [8], i.e. the distance the robot should keep from a group when interacting.
We consider this in the exemplified scenario of a robot approaching a small group of
people. The results of an online survey (N= 181), which was distributed to people in
China, the U.S.A. and Argentina (see Fig. 7a), show that participants prefer a robot
that stays out of their intimate space zone just like a human would be expected to do
[11]. However, Chinese participants accepted closer approaches than people from
the U.S.A. and Argentinia. This suggests a culturally dependent application of social
rules also for SPENCER.

Furthermore, we conducted a contextual analysis at Schiphol Airport to analyze
human behavior and to identify observable social rules that the SPENCER robot
must be aware of [12]. From video data collected during two consecutive days,
we established several typical, highly relevant human behaviors. For example, one
such behavior is that groups of people tend to walk in pairs or triads behind each
other. Another one is the typical avoidance of areas close to information monitors
(see Fig. 7b). These findings have direct implications both for the perception and
the planning module of the system, because they potentially lead to a more reliable
group tracking and to a more socially appropriate motion of the robot.

7.2 Behavior Learning via Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL [1]) aims at recovering an objective function
that encodes a given behavior from an input reward signal. This is more robust than
policy search, because rewards are better generalizable and more succinct (see [37]).
We use Bayesian IRL [21] to learn a distribution over the rewards and select the

(a) (b) (c) (d)

Fig. 7 a Results of a survey distributed to Chinese, Argentinian and U.S. participants convey
cultural different preferences for human-robot spacing. b Context analysis at Schiphol Airport
showing that passengers keep a distance from information monitors. Socially normative behavior
here means to not pass in front of the passengers. c Example of a social navigation setup. The robot
needs to move efficiently from the bottom to the goal (green circle), with minimal disturbance for
the people and social groupings indicated by dotted lines. d A costmap learned with IRL for the
setup. Areas around people have high cost, but also the ‘social’ links between individuals
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best reward as the MAP estimate. For experiments we use a custom-made pedestrian
simulator based on models from computational social sciences to perform behav-
ior tests with arbitrarily large crowds, because testing on the real robot with large
crowds is too costly. Figure7c shows a typical social navigation setup in a crowded
environment. The learned costmap using IRL is shown in Fig. 7d. Such a costmap is
then used by the RRT-based motion planner (see Sect. 5.3) to find the desired path
for the setup.

Furthermore,we aim at learning relevant social normswhen approaching a person.
These norms involve a comfortable speed, an appropriate approaching direction and
social relations within groups if the person is in a group. Currently, however, we
focus on approaching only one person. Again we use IRL, and in particular Gaussian
Process IRL [17] to learn a policy from a set of demonstrations given by an expert.
In our MDP formulation the states are given by distance and orientation in a human-
centered frame, and actions are those performed by the motion planner. Two paths
learned from 11 demonstrations are shown in Fig. 6b, c.

8 System Integration and Conclusion

All presented system components are developed independently and simultaneously.
However, to also achieve a steady progress of the entire system, all components are
integrated and attuned to each other in regular meetings every 6months. As a result,
the platform in its current state already combines the map representation presented
in Sect. 3, the laser-based people and group tracker (Sect. 4), and the task and motion
planner (Sect. 5). Experiments with the complete system have shown that the robot
is able to approach and engage with a person, receive a goal position and guide the
person or a group to the goal while keeping track of the following person(s). If a
failure of cooperation is detected when the person does not follow any more, it stops
and waits for re-engagement. Encouraged by these results, a first deployment of the
platform at the Schiphol airport is planned for the near future.
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Easy Estimation of Wheel Lift and
Suspension Force for a Novel High-Speed
Robot on Rough Terrain

Jayoung Kim, Bongsoo Jeon and Jihong Lee

Abstract In operation of high-speed wheeled robots on rough terrain, it is important
to predict or measure the interaction between wheel and ground in order to maintain
optimal maneuverability. Therefore, this paper proposes an easy way to estimate
wheel lift and suspension force of a high-speed wheeled robot on uneven surfaces.
First, a high-speed robot with six wheels with individual steer motors was developed,
and with the body of the robot connected to each wheel by semi-active suspensions.
In a sensor system, potentiometers, which can measure angle of arms, are mounted
at the end of arms and have a critical role in estimating wheel lift and suspension
force. A simple dynamic equation of the spring-damper system is used to estimate the
suspension force, and the equation is calculated in terms of the suspension displace-
ment by measured angle of arms because the suspension displacement is a function
of arm angle in the boundary of the kinematic model of the body–wheel connection.
In addition, wheel lift can be estimated using the arm angle. When the robot keeps its
initial state without normal force, the arm angle is set as zero point. When the wheels
receive the normal force, the link angle is changed to a value higher than zero point.
If a wheel does not contact to a ground, then the suspension force goes toward the
negative direction as a value. Therefore, if wheel lift happens while driving, the arm
angle will follow the zero point or the suspension force will indicate a negative value.
The proposed method was validated in ADAM simulations. In addition, the results
of the performance were verified through outdoor experiments in an environment
with an obstacle using a high-speed robot developed for this purpose.
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1 Introduction

Research on outdoor robotic vehicles has received significant attention for important
tasks involving exploration, reconnaissance, rescue, and so on. In actual applications
on outdoor environments, especially rough terrains, it is hard to automatically operate
outdoor vehicles or robots because there are many elements that can put them in
dangerous situations, such as overturn or stuck wheel. Accordingly, it is a big issue
to optimize wheel traction [1, 2] and stability [3, 4] of vehicles on rough terrains
and to estimate suspension force of vehicles for achieving the aims, since suspension
force is a variable used in order to control traction and to evaluate stability of vehicles
[1–10]. Suspension force can be expressed as normal force acting onwheel and body.
In previous studies, fully dynamicmodels of vehicles or robots are applied to estimate
the normal force [2–10]. However, it is not easy to derive the dynamic models and it
is a laborious task to acquire accurate values of normal force in estimation systems
based on the dynamic models since the dynamic models include model uncertainty
by complex terrain conditions, and, thus, robot states cannot be correctly estimated
in real-time. In addition, when a wheel is taken off the ground (wheel lift) in case
of high-speed driving on rough terrains, it is impossible to predict robot states and
it may be confronted with a hazardous situation. Therefore, this paper proposes an
easy way to estimate wheel lift and suspension force of a high-speed wheeled robot
on uneven surfaces. In this paper, only an inexpensive potentiometer was employed
to measure angle of arms, which is sufficient to estimate wheel lift and suspension
force in this simple method.

2 Estimation of Suspension Force and Wheel Lift

2.1 Caleb9; Omnidirectional High-Speed Rough Terrain
Robot

In this paper, an outdoor wheeled robot called Caleb9 was developed, as shown in
Fig. 1. Caleb9 has six in-wheel motors for driving and six BLDCmotors for steering.
Semi-active suspensions that can automatically adjust damping force aremounted for
connection between wheel and body, independently. Arms of Caleb9 were designed
as a structure of four-bar linkage in order to overcome surface obstacles effectively.
Brake modules are attached to each wheel for rapid breaking of wheels. Caleb9
controls each drivingmotor to optimizewheel traction (Terrain-adaptive Slip Control
[1]), steeringmotor to keep the desired steering angle (Position Control), semi- active
suspension to adjust damping force (Position Control), and brakemodule to maintain
safety driving (Force Control). Caleb9 can move omnidirectionaly on rough terrains
by six driving motors, six steering motors, and six semi-active suspensions. Detailed
specification is depicted in Table1.
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Fig. 1 Design of Caleb9 and mounted potentiometer at the end of each arm

Table 1 Specification of Caleb9

Max velocity 10 m/s(40 km/h) Total weight 800 kg

Max slope 20◦ Operating time 1h 30min

Steering angle –90◦–90◦ Battery Li-ion 48 V, 24 V

Arm displacement 25 cm Main board O/S Linux

Robot size (mm) 1460 × 2180 × 990 Communication CAN

In a sensor system of caleb9, rotational velocity, torque, and steered position of
wheel are acquired from feedback data of motor controllers. Three-dimensional po-
sition, velocity, acceleration, and angle of the robot can be estimated by commercial
INS/GPS system on the top of the robot. Arm angles can be measured by poten-
tiometers mounted at the end of each arm, as shown in Fig. 1. The potentiometer has
a critical role in estimating suspension force and wheel lift by observing changed
angle of arms.

2.2 Easy Method for Estimation of Suspension Force
and Wheel Lift

Suspension force andwheel lift can be estimated from the kinematic relation between
arm and suspension in Fig. 2. Simply, when the wheel is raised by a force from the
ground (LD), angle of the arm is changed (θ ) and at the same time, the suspension is
compressed (x) depending on the angle of the arm θ . Once the displacement x of the
suspension is known, then suspension force can be easily estimated using (1). In (1),
Fs represents suspension force, K is spring coefficient, C is damper coefficient, and
ẋ denotes derivative term of the displacement x with respect to sampling time �x.

Fs = Kx + Cẋ (1)
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Fig. 2 Kinematic relation between arm and suspension

The displacement x of the suspension can be expressed as a function of angle of the
arm, θ . In (1), LSI denotes initial total length of the suspension without compression,
and LSP represents subsequent total length of the suspension with compression.
Accordingly, the displacement of the suspension is calculated by

x = LSI − LSP (2)

Initial total length of the suspension, LSI, is given as a constant. Subsequent total
length of the suspension LSP is changed depending on the starting position PS(xs, ys)
of the suspension which is a function of angle θ of the arm. In Fig. 2, PF(xF, yF) is
the end position of the suspension, PL (xL, xL) represents the end position of arm, LL

denotes length of arm, and a is the distance in the x−direction between PL and PS.
b represents the distance in the y−direction between PL and PS. PF and LL are given
as constant from design parameters a and b of caleb9, respectively. x-y elements of
PLcan be substituted into x-y elements of PS by a and b as follows

PS(xs, ys) = PL(xL − a, xL − b) (3)

In addition, x-y elements of PL are variables to be calculated according to angle θ of
the arm as below

PL(xL, yL); xL = LL cos(θ), yL = LL sin(θ) (4)

For the displacement x of the suspension in (2), LSPcan be found by calculating the
length between PF and PS as
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LSP =
√

(xF − xs)2 + (yF − ys)2 (5)

Therefore, suspension force can be estimated by (1) based on measurement of angle
θ of the arm.

From estimated suspension force, wheel lift can be easily checked. In Fig. 3, the
left-side figure describes total forces acting on suspension in the case of contact
between wheel and ground (wheel contact). The right-side figure shows total forces
acting on suspension in the case of wheel lift. F ′

B is the gross force from robot
body, FG expresses the force from ground, F ′

G denotes the rotated force of FG in
the direction of suspension, FW is the force from wheel part, and F ′

W denotes the
rotated force of FW in the direction of suspension. In the case of wheel contact, the
suspension makes compressed motion and the suspension force can be expressed as
the sum of F ′

G and F ′
B. Suspension force Fs is positive by keeping the compressed

motion while driving. In the case of wheel lift, the suspension makes extension
movement and the suspension force can be represented as the sumofF ′

W andF ′
B in the

reverse direction to the suspension force; thereby, the suspension forceFs is negative.
Additionally, suspension force, Fs, can be zero in case that the displacement x of
the suspension becomes zero by kinematical constraints since x cannot be changed
toward the negative direction. This situation happens when angle of arm is zero due
to wheel lift. Therefore, it is easy to check the wheel lift by observing negative value
and zero value of the suspension force as follow, respectively.

Fs = F ′
G + F ′

B, (Fs > 0) (6)

Fs = −F ′
W − F ′

B, (Fs ≤ 0) (7)

Fig. 3 Total forces acting on suspension of caleb9 in case of wheel contact and wheel lift
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3 Validation of Estimation Method on ADAMS Simulations

The purpose of this simulation is to observe the performance of estimating suspension
force and wheel lift in comparison between the proposed theory and simulation data
on an environment similar to real conditions. The ADAMS simulator was used to
validate the proposed method on two types of terrains: (1) Hill climbing (30◦) (2)
Overcoming obstacles (height 10 and 5 cm, width 5cm), as shown in Fig. 4. Terrain
types 1 and 2were selected to observe estimation performance in case ofmild changes
and rapid changes of suspension force, respectively. In simulations, the velocity of
the robotwas controlled at 1, 2, and 3m/s in the longitudinal direction, and the friction
coefficient on the surface was set as 1 to prevent wheel from slippage. The design
parameters of virtual robot in the simulation such as size or weight were set as those
of the real robot. The spring coefficient and damper coefficient were designated as
K = 8000N/m and C = 2200Ns/m, respectively. The needed variables to be acquired
on simulations are actual angle, θ , of arm and ideal suspension force while driving
on such terrains, and the variables were extracted from simulation data.

3.1 Simulation Results in Case of Hill Climbing

Figure5 describes actual angles of right-side arms while climbing a hill at 1 m/s.
the arm angles are the same as those of of left-side arms because the robot moves
in the longitudinal direction and the right-side surface shape the same as the left-
side surface shape. At 0 s, the suspension of the robot takes initial posture without
compression. After that time, the robot accelerates to meet desired velocity from
around 0 to 5 s. Therefore, the rear wheel gains more normal force than other wheels
and the front wheel gets the lowest normal force among them. From the end of the
acceleration area, the robot moves with uniform velocity until 15 s. From about 15
to 29 s, the robot encounters a hill with 30◦ and the angle of arms are significantly
changed during hill climbing. The angle of the right-middle arm is slightly different
from that when the robot does not climb the hill, except for the start and end of the

Fig. 4 Simulation environments on ADAMS: (1) Hill climbing and (2) Overcoming obstacles
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Fig. 5 Measured angles of right-side arms while climbing the hill at 1 m/s

hill. In the vicinity of the start point of the hill, the angle of the right-middle arm
reached zero point as the initial state of the suspension. This can be explained by the
wheel being taken off from ground, because zero angle of the armmeans that normal
force was exerted to the wheel. The angle of right-front arm was also reached to zero
point during hill climbing. Accordingly, the right-front wheel was lifted off from the
surface.

From the angle data in Fig. 5, the suspension force can be estimated by using
(1)–(5). Figure6 shows the estimated data of suspension force in comparison to ideal
data of suspension force. Thick lines express the ideal suspension force of right-side
arms and thin dot lines represent the estimated suspension force. Figure6 shows that
the estimated suspension forces are well matched with the ideal suspension forces. In
case of right-front wheel, the ideal suspension force indicates negative values during

Fig. 6 Estimated suspension forces of right-side wheels while climbing the hill at 1 m/s
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hill climbing. However, in the actual situation, the angle of the arm is not changed
in the negative direction of the angle, as depicted in Fig. 5. The suspension force
of the right-front and middle wheels are momentarily displayed as negative values
because of the term related to the damper in (1), especially ẋ. Nevertheless, the forces
returned soon to the zero line, as shown in A of Fig. 6. Wheel lift happened at the
right-front and the right-middle wheel, as shown by the suspensions having negative
and zero force values during hill climbing. In comparison to actual motion of the
right-front wheel, region A expresses the wheel motion in the vicinity of start point
of the hill as described in (a) of Fig. 7, and region B indicates the wheel motion in
the vicinity of end point of the hill as depicted in (b) of Fig. 7. In A, at around 15
s, the right-middle wheel has wheel lift since the front wheel is faced with the hill
and the rear wheel supports the robot against pitch motion of the body. After 1 s, the
right-front wheel has wheel lift until around the end of the hill, as shown by the angle
of the arm having zero value after about 16.58 s in (a) of Fig. 7. The right-front wheel
contacts to the ground at 29.02 s in Fig. 6. The result shows the same performance
in (b) of Fig. 7.

3.2 Simulation Results in Case of Overcoming Obstacles

Another simulation was performed to validate the proposed method in a flat surface
with obstacles at the robot speed 3 m/s. Figure8 shows the angle of right-side arms
while getting over the obstacles. The robot encounters the obstacles with different
heights (10 and 5cm). In Fig. 8, during the initial 7 s, the arm motion is similar to
previous motion of arms in Fig. 5 because of the accelerationmovement. The RR arm
gets the highest angle value among them, and the RF arm has the lowest. After 7 s, the
robot meets the high obstacles four times and then, after 11 s, the robot collides with
low obstacles seven times. From the front wheel, the arm angle increases in order of
position. The change of the RM arm is the smallest among them. In contrast with the

Fig. 7 Motion analysis of wheel lift of the right-front wheel while climbing the hill at 1 m/s
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Fig. 8 Measured angles of right-side arms while overcoming obstacle at 3 m/s

angles of RF and RM arms in Fig. 5, all arm angles of the robot were not converged
to zero line in this simulation. From the angle data in Fig. 8, the suspension force of
all arms can be also calculated by using (1)–(5), as shown in Fig. 9. Although the
angle of arms did not reach zero line, the estimated suspension forces of all arms are
sometimes changed as negative values in both cases of being faced with high and
low obstacles. As a result, wheel lift is shown to occur almost eleven times (i.e., on
all obstacles) in order to overcome the obstacles.

For evaluation of validation of measured suspension forces, the wheel motions
while the robot leaps and bounds over the obstaclewere analyzed. Figure10 describes
the result of comparison between measured suspension force and ideal suspension
force of RF wheel. The measured suspension force is well fitted with the ideal one

Fig. 9 Estimated suspension forces of right-side wheels while overcoming obstacles at 3 m/s
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Fig. 10 Estimated suspension force of right-front wheel while overcoming obstacles at 3 m/s

Fig. 11 Motion analysis of wheel lift of the RF wheel while overcoming obstacles at 3 m/s

across the board. Figure11 depicts the RF wheel motion at the analogous moment
to C in Fig. 10. The wheel collides with a high obstacle at 9.13 s and the wheel is
taken off from the obstacle at 9.21 s. The wheel reaches the flat surface at 9.48 s.
The duration of wheel lift is from 9.21 to 9.48 s and, in Fig. 11, the wheel was
lifted off for the similar period to the duration. As the results of the simulations
on the hill and the flat surface with obstacles, the proposed method is validated to
estimate suspension force and wheel lift of high-speed robot on rough terrain. In
the simulations, it was assumed that the angles of all arms, as the key variable for
this method, can be accurately measured by a potentiometer mounted at the end of
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each arm, and it resulted in such performances as mentioned in the sections for the
simulation. For an actual verification in outdoor environments, Caleb9 was applied
for getting data of suspension force and wheel lift in real time on types of surface
similar to the simulated environments.

4 Actual Application of Caleb9 in Outdoor Environments

4.1 Experimental Study for Nonlinear Spring and Damper
Coefficients

For an actual application of the proposed method, firstly, spring and damper charac-
teristics should be analyzed to set the coefficients of spring and damper because the
suspension system is nonlinear, unlike conditions in the simulation. For the analysis, a
force sensor was installed at the end of the suspension on the RRwheel to acquire ex-
act data of suspension force in the same direction to the suspension motion, as shown
in Fig. 12. The suspensions mounted on Caleb9 are customized products from a com-
pany named “J5 Suspension”. Accordingly, the data related to spring and damper
characteristics are as obtained from the company. Figures13 and 14 describe the
data of spring and damping force depending on the displacement x and the damping
velocity ẋ, respectively. From the data of Figs. 13 and 14, the spring-damper equa-
tions can be derived by a nonlinear regression technique using polynomial equations
of (9)–(11). Equation (9) represents the spring force as a function of the displace-
ment x, and Eqs. (10)–(11) indicate the damping force as functions of the damping
velocity ẋ. In (10)–(11), the damping force is divided into two cases of compression
(Cext) and extension (Ccom) of the suspension and it can be determined by observing

Fig. 12 Suspension test to determine spring and damper coefficients on the RR wheel
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Fig. 13 The spring force depending on the displacement x of the suspension

Fig. 14 The damping force depending on damping velocity ẋ of the suspension

the positive and negative sign of the damping velocityẋ. In (9)–(11), the polynomial
constants are K1 = 5.9694e + 5, K2 = –3.5295e + 6, K3 = 1.1493e + 6, K4 = 0.0531e
+ 6, K5 = 0.0011e + 6, Ccom1 = 6000, Ccom2 = 2.89e + 3, Ccom3 = –1.0875e + 3, Ccom4

= 0.7289e + 3, Ccom5 = 0.0509e + 3, Cext1 = 17000, Cext2 = 0.6463e + 3, Cext3 =
–2.5403e + 3, Cext4 = 4.4513e + 3, Cext5 = 0.1142e + 3. Therefore, the suspension
force can be estimated by (8).

Fs = Fspring + Fdamper (8)

Fspring = K1x, if x < 0.0021 [m]
Fspring = K2x3 + K3x2 + K4x + K5, if x ≥ 0.0021 [m] (9)

if ẋ ≥ 0

{
Fdamping = Ccom1ẋ, if ẋ < 0.01 [m/s]
Fdamping = Ccom2ẋ3 + Ccom3ẋ2 + Ccom4ẋ + Ccom5, if ẋ ≥ 0.01 [m/s]

(10)

if ẋ < 0

{
Fdamping = Cext1ẋ, if |ẋ| < 0.01 [m/s]
Fdamping = Cext2ẋ3 + Cext3ẋ2 + Cext4ẋ + Cext5, if |ẋ| ≥ 0.01 [m/s] (11)

For verifying the validity of the equations related to the suspension force, two types
of tests were performed; a changing force test (the right-side figure in Fig. 12) and a
jump test (the left-side figure in Fig. 12). The changing force test is for reviewing only
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Fig. 15 The arm angle of the right-side wheels under normal force on the RR wheel

Fig. 16 Comparison between estimated and ideal suspension force using the data in Fig. 13

Fig. 17 Verification of estimated suspension force through the jump test

spring characteristics, without a damper effect, by slowly changing the displacement
x of the suspension. Figure15 shows the arm angle of the right-side wheels. The
angle of the RM and RF arms are zero since the RM and RF wheel were lifted off
from the surface. However, the angle of the RR arm is gradually changed four times
(cases 1–4) by concentrated weight of the robot on the rear-side wheels while tilting
the body by a crane. Figure16 depicts the estimated suspension force of the right-
side wheels in comparison to the ideal suspension force by the force sensor on the
RR wheel. In Fig. 16, the estimated FS is well matched with the ideal FS in spite of
changing cases from 1 to 4, and it shows that the RM and RF wheels were taken
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off from the ground. The jump test is for comprehensively reviewing spring-damper
characteristics by periodically jumping on the rear of the robot body. Figure17 shows
that the actual FS is closely estimated to the ideal FS throughout the test, despite
rapidly changing the force by jump.

4.2 Experimental Results of Estimation of Suspension Force
and Wheel Lift

In order to verify the performance in an actual environment, an outdoor experiment
was conducted using Caleb9 on a surface with an obstacle (inclined surface with
25◦) as shown in the left-bottom figure of Fig. 18. The robot was moved backward

Fig. 18 An experimental environment to verify the performance of the proposed method

Fig. 19 Measured angles of the right-side arms while overcoming an obstacle at 3 m/s
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Fig. 20 Estimated suspension force of the right-rear wheel under the experimental conditions

at almost 3m/s and the wheels move as from A step to B step while overcoming the
obstacle. In A step, firstly, the RR wheel encountered the obstacle and, secondly, the
RM wheel was lifted off by the effect of the surface shape, although the RR and RF
wheels remained in contact with the surface. Finally, the RM wheel was reached on
the ground. Then, /in B step, the RR wheel was also taken off by the force on the RM
wheel supported by the robot weight at the surface of the obstacle. The process of
the motion fromA step to B step is described as the measured data of the angle of the
right-side arms as depicted in Fig. 19. In A step of Fig. 19, the angle of the RR and
RF arms increased by the collision with the obstacle; thereby, the angle of the RM
arm was converged to the zero point, which means wheel lift. In B step of Fig. 19,
the RMwheel was colliding with the obstacle and the angle of the RM arm increased
sharply at that time, during which the angle of the RR and RF arms reached the zero
line for about 0.3 s. The validity of the results can be verified in Fig. 20. In Fig. 20,
the estimated FS of the RR wheel increases until 3000 N (collision) and decreases
until 0 N (wheel lift). After overcoming the obstacle, the estimated FS returns to
the initial suspension force. Comparison between the estimated and the ideal FS in
Fig. 20 shows that the estimated physical phenomenon is quite analogous to the ideal
one. In addition, these motions of the wheel and the arms are considerably similar
to the simulations of the hill climbing in Figs. 5, 6 and 7.

5 Conclusion

For actual applications of rough terrain robots, it is important to know the present
state of wheels, especially wheel lift and suspension force related to wheel traction
and body stability, to maintain optimized maneuverability. For this reason, this paper
proposed an easy way to estimate wheel lift and suspension force of a high-speed
wheeled robot (Caleb9) on uneven surfaces. For the achievement of this goal, inex-
pensive potentiometers were applied to estimate wheel lift and suspension force by
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measuring the angle of each arm in real-time. In addition, the simple spring-damper
system was employed, and the equations related the suspension was derived based
on the data provided by the manufacturing company. The proposed method was
validated through two types of simulations on the environments: hill climbing and
overcoming obstacles. It was also verified through actual experiments of overcoming
the inclined surface.

As future works, in the outdoor mobile robotics, it is of great importance to
predict stabilities for traction of wheel and rollover of body. Such the studies are
closely related to the research measuring the normal force or the suspension force.
Therefore, the proposed method in this paper can be employed in dynamical outdoor
environments in order to evaluate the stability based on the more exact force data
from this method than estimating actual force using dynamic models.

Acknowledgments The authors gratefully acknowledge the support from Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2015R1D1A3A03020805).

References

1. Kim, J., Lee, J.: Intelligent slip-optimization control with traction-energy trade-off for wheeled
robots on rough terrain. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (2014)

2. Krebs, A., Risch, F., Thueer, T., Maye, J., Pradalier, C., Siegwart, R.: Rover control based on
an optimal torque distribution—application to 6 motorized wheels passive rover. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (2010)

3. Bouton, N., Lenain, R., Thuilot, B., Martinet, P.: A new device dedicated to autonomous
mobile robot dynamic stability: application to an off-road mobile robot. In: IEEE International
Conference on Robotics and Automation (ICRA) (2010)

4. Peters, S.C., Iagnemma, K.: Stability measurement of high-speed vehicles. J. Veh. Syst. Dyn.
47(6), 701–720 (2009)

5. Mann, M., Shiller, Z.: Dynamic stability of off-road vehicles: quasi-3D analysis. In: IEEE
International Conference on Robotics and Automation (ICRA) (2008)

6. Doumiati, M., Charara, A., Victorino, A., Lechner, D.: Vehicle Dynamics Estimation using
Kalman Filtering. Automation—Control and Industrial Engineering Series (2013)

7. Ishigami, G., Kewlani, G., Iagnemma, K.: Statistical mobility prediction for planetary surface
exploration rovers in uncertain terrain. In: IEEE International Conference on Robotics and
Automation (ICRA) (2010)

8. Joo, S.H., Lee, J.H., Park, Y.W., Yoo, W.S., Lee, J.: Real time traversability analysis to enhance
rough terrain navigation for an 6 × 6 autonomous vehicle. J. Mech. Sci. Technol. 4(27), 1125–
1134 (2013)

9. Matthew, S., Yoji, K., Steven, D., Karl, L.: Hazard avoidance for high-speed mobile robots in
rough terrain. J. Field Robot. 5(23), 311–331 (2006)

10. Krid, M., Benamar, F.: Design and control of an active anti-roll system for a fast rover. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2011)



Application of Multi-Robot Systems
to Disaster-Relief Scenarios with Limited
Communication

Jason Gregory, Jonathan Fink, Ethan Stump, Jeffrey Twigg,
John Rogers, David Baran, Nicholas Fung and Stuart Young

Abstract In this systems description paper, we present a multi-robot solution for
intelligence-gathering tasks in disaster-relief scenarioswhere communication quality
is uncertain. First, we propose a formal problem statement in the context of operations
research.Thehardware configuration of twoheterogeneous robotic platforms capable
of performing experiments in a relevant field environment and a suite of autonomy-
enabled behaviors that support operation in a communication-limited setting are
described. We also highlight a custom user interface designed specifically for task
allocation amongst a group of robots towards completing a central mission. Finally,
we provide an experimental design and extensive, preliminary results for studying
the effectiveness of our system.

1 Introduction

Humanitarian assistance and disaster relief (HA/DR) has long been appreciated as
one of the most compelling applications of robotics technology, giving responders
tools to sense and act in dangerous environments [24]. For example, the use of robots
in the aftermath of the FukushimaDaiichi nuclear disaster has been well documented
[19, 25], and analysis of the response suggests that action at one of several “inflection
points” of the crisis would have probably averted further catastrophe [31] if those
actions had not been deemed too dangerous at the time. Partly inspired by these
implications, the DARPA Robotics Challenge was conceived to catalyze the focused
development of solutions for solving the myriad of challenges related to locomotion,
manipulation, perception, and human interface that are needed to build a robot that
can act as a stand-in for humans at such “inflection points” in the future.

Though this “avatar” concept inspires the imagination, wewould argue that robot-
ics has an even more important role to play in the broader HA/DR mission as the
backbone for the required information-gathering activities that lie at the heart of
any coordinated response. As an illustration, the Foreign Humanitarian Assistance
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manual published by the U.S. Department of Defense [35] identifies that the
military will primarily assist in a few ways to a disaster requiring government
response:with thefirst-responderCrisisActionTeam tasked as the immediate respon-
der and assessor for the regional commander; and with the Humanitarian Assistance
Survey Team whose primary responsibility is assessment, such as dislocated popu-
lations, degree of property damage, and remaining communications infrastructure.
These are all activities that feed into the planning phase that must happen before any
larger action can be carried out. Though not quite as exciting as a humanoid robot
that wades through a flooded disaster site to extinguish a critical fire, we believe a
heterogeneous, multi-robot team that can quickly navigate through an environment
to quantify an emerging situation is more important to the timeliness and success of
the larger response.

Two important focal points of multi-robot systems deployed in a primarily
information-gathering sense have been the Robocup Rescue League [14] and the
MAGIC 2010 competition [15, 26]. From these activities, we learn that, although
physical platform capabilities play a role, the majority of the system complexity is
derived from the overarching operational problems of team management and com-
munication.

Toward this end, this work establishes a preliminary formal problem descrip-
tion that places an HA/DR-inspired, information-gathering mission in an operations
research context (Sect. 2). The primary contribution of this work is to provide docu-
mentation and analysis of a multi-robot system capable of performing intelligence-
gathering tasks in communications-limited, disaster-relief scenarios. We present the
design of such a system (Sect. 3), a set of autonomy-enabled behaviors that can be
used to address the HA/DR mission in a relevant environment (Sect. 4), and a user
interface that allows a human operator to task the system (Sect. 5). Finally, we report
extensive experimental results, which address the current capabilities of our system
with respect to the implementation of a solution to the HA/DR mission (Sect. 6).

2 Problem Statement

Within the scope of information-gathering activities required for planning a response
to a HA/DR scenario, we focus on simultaneously solving two specific problems:
the evaluation of damage to infrastructure in the environment, e.g., traversability of
roads; and localizing particular targets of interest, e.g., a potentially injured “very
important person” (VIP) who we discover through sensing a radio signal, such as
a cell phone. This problem statement contains both a priori goals (key assessment
sites established from prior maps) and dynamic goals (the existence and possible
locations of targets), and a solution must focus on effectively balancing between
these two types of goals.Moreover, we address the issues of unreliable autonomy and
limited communications through incorporation of dynamically uncovered costs, and
we cast the entire problem as a dynamic variant of the Capacitated TeamOrienteering
Problem with details discussed below.
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If we considered only the problem of efficiently visiting a set of locations derived
from prior maps of the environment, a classical formulation would suffice. Initially
it could be as a well-studied Vehicle Routing Problem (VRP): with known travel
costs between sites, find paths for multiple vehicles to visit all sites that minimize
total travel costs. However, since we may assume that the mission is time-critical
and some sites are likely to be more interesting than others, we could instead for-
mulate it as a Team Orienteering Problem (TOP): with known travel costs between
sites and known rewards for visitation, find paths that maximize the total gathered
reward with a fixed cost bound [36]. The environment limitations suggest one final
modification.

Because the environment is communications-limited, we conjecture that as we
send robots to visit sites and gather information, we need them to eventually return
to communications range in order to offload their information before it becomes too
outdated. This is most closely modeled as a Capacitated Team Orienteering Problem
(CTOP): as a TOP but with a constraint on the total reward that any individual vehicle
may gather on a single trip [13].

A key component of the problem is the dynamic goals that arrive because of
detecting unknown targets. We model these as dynamically-updated rewards avail-
able at the visitation sites of the CTOP, and we assign the value of these rewards
according to the expected information gain about the target location using the avail-
able sensing, similar to information-guided exploration strategies [30]. If we assign
a distribution to these rewards initially or as the mission progresses, there is prior
work on solving TOPs with stochastic rewards [32] that could apply.

The last challenge is to incorporate the effects of unreliable autonomy, which we
model as unknown travel costs between visitation sites: we may have some intuition
about how likely it is for a given site-to-site navigation to be successful, but ultimately
we build a navigation risk model during operation in the environment. It is important
to note that failed navigation is not necessarily fatal because we assume we have
backup behaviors to return to a known safe location. If we assign a distribution to
these costs, there is prior work on solving TOPs with stochastic costs [16] that could
apply.

Our preliminary formal problem formulation is thus as a Capacitated Team Ori-
enteering Problem with stochastic (unknown) costs and rewards. We ask: what value
is it to have such a formal problem given that we are not developing an online planner
to demonstrate through these experiments? The answer is that having the solution for
any specific mission instance gives us an upper-bound on how well any autonomy
or human could perform at the task and therefore gives us a metric to know when
the system is improving. Even for the case of unknown costs and rewards, we can
solve the plan as if the costs/rewards were known up front or solving it in a receding-
horizon fashion as information is uncovered. Developing these upper-bounds for this
experiment remains future work.
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3 Experimental Multi-robot System

We present a heterogeneous, multi-robot system with a rich sensor suite, composed
of hardware and software components for autonomous operations in relevant envi-
ronments. In particular, our focus is on moving from small-scale systems operating
in controlled laboratory environments to the study of interacting systems and the
development of algorithms that can robustly operate in real-world scenarios.

3.1 Hardware

Two robotic platforms are used in this work: an iRobot PackBot [8] and a Clearpath
Robotics Husky [3]. The PackBot, seen in Fig. 1a, is a military-grade, tracked plat-
form capable of speeds up to 2m/s and traversing both indoor and outdoor terrains.
To enable autonomous operation, the PackBot is outfitted with a processing payload
containing a Quad-Core Intel i7 ICOM express board and a 256 GB solid-state drive
(SSD). The PackBot collects 3D point cloud data by nodding a Hokuyo UTM-30LX-
EW LiDAR [5] with a Dynamixel servo. This Hokuyo LiDAR has a 270◦ field of
view, 30m range, and 1mm resolution. Accurate state information is achieved using
a MicroStrain 3DM-GX3-25 inertial measurement unit (IMU) [6] mounted on a
custom-made vibration isolator. Additionally, a Garmin 18x PC GPS sensor [4] is
elevated on amast in an effort to receive better GPSmeasurements. Finally, an ASUS
Xtion Pro Live provided RGB data [1].

The second robot used in thiswork, theClearpathHusky seen in Fig. 1b, is a larger,
wheeled platform that is limited to a maximum velocity of 1m/s and is best suited
for outdoor operations. Similar to the PackBot, the Husky employs a MicroStrain
3DM-GX3-25 IMU and a Garmin 18x PC GPS. The Husky is equipped with two
Quad-Core Intel i7 Mini-ITX processing payloads, each with a 256GB SSD. The
Husky has a Velodyne HDL-32E LiDAR [12], which generates a 360◦ point cloud

Fig. 1 The hardware configurations of a the iRobot PackBot and b the Clearpath Husky
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of 700,000 points per second at a range of 70m and an accuracy of up to ±2cm.
Finally, the Husky collects imagery data using a Prosilica GT2750C, 6 megapixel
CCD color camera [9].

Both robots use Ubuntu 14.04 (Trusty) and leverage the open-source Robotics
Operating System (ROS) Indigo [27] to support higher-level algorithms for mapping,
navigation, and autonomous capabilities.

To provide the necessary wireless connectivity, we utilize off-the-shelf IEEE
802.11.g radios operating in the 2.4GHz frequency band and capable of 28dBm
transmit power. The PackBot and Husky are equipped with Ubiquiti RouterStation
Pro and PicoStation2HP respectively [11]. Each wireless radio operates in AdHoc
mode and runs of the open-source embedded Linux distribution OpenWRT [7] with
end-to-end connectivity supported by the B.A.T.M.A.N. mesh routing protocol [2].
Since the focus of these experiments was not on teaming or inter-robot communica-
tion, we allocated each robotic platform with a unique frequency for communication
and placed the “base station” in an advantaged location, i.e., a tower approximately
20m above the ground [10]. The placement of the “base station,” environment com-
plexity, and the fact that each robot’s radio was placed very close to the ground
induced a communication environment within our experimental facility that clearly
exhibited regions of high-bandwidth reliable communication, intermittent unreliable
communication, and no communication at all. While the B.A.T.M.A.N. routing pro-
tocol supports multi-hop communication, we restricted all communication in this
experiment to be over a single wireless link in order to simplify the modeling of
communication capabilities.

The search for an injured VIP can be represented by localizing a radio frequency
beacon, e.g., a cell phone. In fact, a variety of spatial information-gathering tasks,
including chemical and radiation analysis, can be emulated with radio signal propa-
gation from one or more beacons. We use a low-power IEEE 802.15.4 XBee radio,
shown in Fig. 2, to broadcast a beacon once per second at 2.4GHz. Each robot also
carries a XBee radio and records radio signal-strength when it successfully receives
packets from the beacon while traversing the environment in pursuit of the other
data-collection tasks.

Fig. 2 XBee “beacon signal” transmitter with protective case
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3.2 Mapping

The simultaneous localization andmapping (SLAM) problem focuses on the require-
ment for precise, consistent knowledge of the robot’s trajectory as it gathers sensor
measurements and has been studied for some time in the robotics literature [22,
33]. We adopt a modern graph-based solution to the SLAM problem based on the
square-root smoothing and mapping (

√
SAM) technique [17] and the GTSAM soft-

ware library developed at the Georgia Institute of Technology [18]. Our technique
leverages the Generalized Iterative Closet Point (ICP) algorithm [29] for dense inter-
framematching of point cloud data and loop closure constraints. GPSmeasurements,
when available, are robustly incorporated into our solution based on the techniques
described in our previous work [28].

We refer to our SLAM system asOmniMapper due to its ability to integrate sensor
data from a variety of sensor sources including laser scanners and 3D cameras.
We divide the components of this system into a backend, the OmniGraph, which
is responsible for solving the factor graph representation of the SLAM problem,
and a frontend, the OmniCache, which is responsible for managing sensor data and
performing computations that yield the probabilistic factors connecting nodes in
the factor graph. The OmniGraph solves for the robot’s optimal trajectory using
the GTSAM library; the frontend tasks of data association and generating relevant
measurements is handled by the OmniCache. The point-cloud OmniCache used in
this work receives local point-cloud data aggregated over small time windows based
on the odometry of the robot and serves two primary purposes. First, it can respond to
queries about the relative pose of two local point-clouds via ICP algorithms in order
to generate measurement factors. Second, it acts as a pipeline for generating a series
of data products based on the underlying local point-cloud data. This includes a set
of intrinsic products, i.e., ones that are invariant to the global pose of a local point-
cloud, such as per-cloud terrain classification, occupancy grid rendering, and terrain
height estimation. Other products are extrinsic, i.e., ones that must be recomputed
after optimization of the factor graph yields a new optimal trajectory for the robot,
including an aggregated point cloud and composite occupancy grid map. A block
diagram of the relevant components of the OmniMapper can be seen in Fig. 3. Once
an optimized trajectory is computed, each robot broadcasts its current location in a
GPS-based reference frame to all clients. This broadcast is at a low enough rate so
that it does not significantly impact the bandwidth available to other services on the
network. The position data of other agents are inserted as obstacles into the robot’s
costmap, which is later used for planning and trajectory generation.

3.3 Navigation

We use a three-stage architecture, consisting of a global motion planner, a local plan-
ner, and a local controller, to drive our software design within the ROS framework.
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Global Planner
(SBPL)

Local Planner
(Trajectory Generation)

Local Controller

Navigation Manager

Fig. 3 Architecture for autonomous mapping and navigation

Each stage of the navigation system depicted in Fig. 3 is implemented as a node,
or independent software process, which provides an ActionServer interface that
responds to an abstraction of the navigation problem. ActionServer interfaces are
a ROS construct used to deal with long-running tasks and include an internal state
machine to manage the setting of goals, task feedback, and eventual completion
state, i.e., success or failure. For instance, the global planner provides aComputePlan
action,which takes as input a starting and goal pose—given the currentmap, it returns
an optimal, kinematically feasible path. The local planner provides a ComputeLo-
calPlan action, which takes a global plan as input and uses the robot’s current pose
and a local map of dynamic obstacles to find a short-term high-resolution path that
follows the global plan. In this formulation, the local planner is capable of generat-
ing high-resolution plans over a short time-horizon while the global planner helps
prevent the system from being trapped in local minima caused by non-convex envi-
ronments. Finally, the local controller provides a ControlToPlan action, which takes
the current local plan and the current state of the robot to compute control inputs,
which can be sent to the underlying platform.

Sequencing of the actions is performed by a NavigationManager process, which
presents an external interface to the user or application. The software architecture
presented above is designed to maximize flexibility in implementing different solu-
tions to not only each component of the navigation system, but also provide flexibility
in how the external interface to navigation is presented.

For this experiment, we rely on the Search-Based Planning Library (SBPL) [23]
to perform global planning actions. We generate a custom set of motion primitives
based on our platform’s kinematics and use of 0.2 and 0.3m occupancy grids for
the PackBot and Husky, respectively. We use the ARA* planner algorithm and com-
pute reverse plans so that computations can be reused as the robot drives for fast
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re-planning actions. Re-planning allows the system to quickly correct its path in the
event of errors in platform control or updates of the occupancy grid map. Feasible
solutions to most initial planning queries are found in less than a second with optimal
solutions being found in a few seconds for most scenarios.

Local planning and control actions are currently provided by a single process,
which performs optimal trajectory generation over the space of time-varying control
inputs. Based on prior work in trajectory generation [20], we formulate a parameteri-
zation of the control input for a differential-drive platform such that a relatively small
number of variables, 4 in our current instantiation, provide an expressive description
of the possible trajectories available to the robot over a short time horizon of T = 3s.
An objective function is devised that performs a weighted minimization of the error
between the robot’s path and the desired global path coupled with some curvature
minimization terms to prevent overly aggressive trajectories. The final optimization
problem, including bounds on the parameterization of the control input, can be solved
with a variety of algorithms implemented in theNLOPT library [21].We are typically
able to solve the trajectory generation optimization for a time horizon of T = 3s in
5–10ms, allowing for a control frequency of 10Hz. We are able to directly execute
the optimized time-varying control inputs, thus simultaneously addressing the local
planning and control problems.

4 Behaviors Supporting Autonomy

In this section, we describe how we build automata to sequence basic capabilities
of our multi-robot system in order to provide higher-level autonomous actions and
begin to address the data-collectionmission described in Sect. 2.While the behaviors
described here are fairly simplistic, the underlying architecture allows for complex
collections of actions.

For the purposes of this work, all of our navigation behaviors build on the canoni-
cal GotoRegion action in which the robot plans and drives to an arbitrary pose within
a defined region of the environment. The design decision to rely on region-based
navigation is based on the observation that navigation to a precise pose in the envi-
ronment leads to brittle solutions and that many data-collection problems can in fact
be satisfied with large degrees of flexibility. Take for example, the image collection
problem—there aremanyviewpoints fromwhich to obtain a suitable image of a target
in R

3. While the complexity of solving this viewpoint problem is beyond the scope
of this work, we believe many future data-collection problems can be generalized to
a desired region in the environment.

At their core, the behaviors generated by sequencing basic capabilities are meant
to aid the operator in tasking the robot when it must go outside the area of reliable
communication. Thus, we begin by defining the GuardedNavigation behavior to be
one where a goal region and safe region are defined. If execution of navigation to
the goal fails, the robot navigates back to the safe region where communication is
known to be reliable and the operator can continue to task the robot. Clearly, the
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GuardedNavigation behavior can be extended to support sequences of goal regions
such that a failure at any point in the sequence results in returning to the safe region.

With the addition of a simple Collect action that causes the robot to capture and
store an image, the operator can immediately begin to address the data-collection
mission from Sect. 2. By specifying a sequence of goal regions with accompanying
Collect actions, the operator instructs the robot to visit a number of sites at which
it will record high-resolution images. When it completes visiting the sequence of
goal regions or deems a leg of the task to be infeasible, the robot returns to the safe
region with its known reliable communication and transmits all of the images to the
operator. For now, the operator selects safe regions based on previous locations from
which the robot has successfully transmitted data.

5 Operator Interface

We rely on a simple graphical user interface (GUI) that enables a human operator to
task one or more robots. Our GUI is based on the RViz application that is included
in ROS for 3D rendering of sensor-data visualizations, tools for on-screen interac-
tions, and an extensible plugin architecture. In addition to software components that
allow for visualization of experiment-specific data, we developed tools for creating
and interacting with generic graph-embeddings on R

2, which are used to specify
autonomous behaviors. It should be noted that our design and implementation of an
operator interface is driven by necessity in order to evaluate our system in appro-
priately relevant scenarios rather than as an example of best practices in terms of
human-robot interaction.

For this work, we used RViz to display a top-down orthographic view of satellite
imagery of our experimental facility, predefined GPS locations throughout the site,
the occupancy grid produced by the 3D mapping techniques described in Sect. 3.2,
and the current positions of all the robots during a mission. We rely on a generic
graph structure because it presents an intuitive representation for a variety of tasks
including patrol, exploration, and data-collection. For the purposes of this work, we
focus on the data-collection task and implicitly add edges to create linear topologies
along a sequence of nodes, which are defined by a disk with a center position and
radius. After the operator has annotated each node as safe or goal, we can easily map
a graph onto the behaviors described in Sect. 4. After defining a graph in RViz, the
system runs a verification to ensure that there are one or more goal regions and only
one safe region for each task. The mission definition is then communicated to each
robot where the resulting state machine is executed (Fig. 4).

As each robot drives near the radio beacon marking the location of an injured VIP,
it will successfully receive transmissions and be able to record the signal strength.
Aggregating the signal-strength measurements from multiple robots in many loca-
tions across the environment, the operator can infer an estimate of the beacon loca-
tion from the maximum of the signal-strength field. This task is complicated by the
fact that radio-signal propagation is notoriously challenging to model in complex
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Goal Nodes

Safe Node

Bound on the 
desired sampling 
trajectory created 
by series of Goal 
and Safe Nodes

Fig. 4 An example of the user interface for a single data-collection task in a trial. The map is
overlaid on top of a satellite image with small pink disks representing the predefined GPS mission
nodes. The blue disks indicate that the robot has measured poor received signal strength data thus
far. The large orange and green disks are the goal and safe nodes, respectively, as set by the operator.
Note, the red lines, white text, and yellow dotted lines have been manually added for clarity

urban environments due to the phenomena of shadowing and multi-path. Further-
more, a high frequency beacon transmission may make complete reconstruction of
the signal-strength measurements at the operating station impractical. We employ a
segmentation-based approach for modeling that allows each robot to maintain effi-
cient models of the received signal strength [34]. These compressed models can
be transmitted to the operator and visualized to allow adaptive exploration of the
environment with the goal of accurately localizing the VIP beacon.

6 Experimental Results

We conducted a series of experimental trials using the 175 × 175m environment
pictured in Fig. 5 to evaluate the capability of our system to address missions defined
according to the problem statement in Sect. 2. Each experiment consisted of one or
two robotic platforms and mission operators tasked with the mission of capturing
an image at as many of the defined collection sites as possible within the time limit
of 20min. Experiments were designed such that the visitation of some collection
sites require traversal over a variety of terrain complexities and that robots must
travel outside of communication to motivate the use of autonomy. While collecting
images, each robot monitors the received signal strength from a radio beacon carried
by a mock VIP that is hidden in a static location for the duration of an experimental
trial. Localization of the VIP through received signal strength at the end of each
20min experiment is an auxiliary intelligence-gathering task that further guides the
exploration strategies employed by the mission operator.
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Fig. 5 A satellite overview of the experimental facility overlaid with a experiment annotations
(green operating center, purple elevated base station antenna, orange mission-specified sites, red
VIP location for each trial) and b the aggregated paths driven by robots over all trials

While we envision a multi-robot system capable of autonomous traversal of the
complete mission with high degrees of reliability, i.e., suitable for tasking by an
autonomous agent that dynamically optimizes vehicle routes; this is beyond the scope
of state-of-the art algorithms when implemented in a realistic field environment. The
use of a safety operator not constrained by unreliable communication, i.e., following
the robot through the environment, who is able to intermittently intervene and control
the robot’s actions, drastically improves our ability to collect information on the
system performance across an entire mission execution. As such, evaluation of the
frequency and duration of these interventions serves as a primary benchmark in terms
of rating current autonomous capability.

We report on the results of 9 experimental trials with respect to the number of
sites visited andmockVIP localization accuracy in Table1. The trajectories traversed
by both robots across all experiments are overlaid in Fig. 5b to depict the breadth of
experiments conducted. In most experimental trials, the robots drove more than 90%
of their total distance while autonomously executing GuardedNavigation-based sub-
missions designed by the human operators to gather high-resolution images and VIP
signal strength data.

Figure6 depicts the trajectories of both robots, sites visited, and measured VIP
signal strength for two specific examples of experimental trials. Note that in both of
these trials, in addition to visiting a number of sites and collecting images, signal-
strength data were collected that provide good estimates of the VIP beacon location.
Indeed, in trial 11 an image of the VIP was captured, providing the system operator
with direct evidence as to the VIP’s location and well-being.

Figure6c, d depict the reliability of operator communication with each robot dur-
ing experiments as measured by analysis of the reception of periodic diagnostic
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Fig. 6 Experimental trials 11 (a) and 12 (b). Robot trajectories are shown for the PackBot (blue)
and Husky (red). The colormap indicates interpolated signal strength from the VIP beacon (red
indicates high signal strength). The communication reliability for trials 11 and 12 are depicted
in (c) and (d), respectively, where background colors indicate teleoperation (green), command
(yellow), and position-only (red) communication thresholds

packets sent by each robot to the operating center. For the purposes of these experi-
ments, we define three levels of communication—reliability exceeding 95% allows
for teleoperation, within 85–95% robot sub-missions can be commanded and map
data are updated after some delay, and below 85% provides no guarantee on useful
communication but robot position data may occasionally be available. In all exper-
imental trials, the use of sub-mission specifications using the GuardedNavigation
capability allowed operators to task robots routinely into regions of the environment
with 85–95% reliable communication and, in several cases, enabled collection of
data in the 0–85% reliability regime.
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7 Conclusion

We have presented a series of field experiments that explore the capability of a
heterogeneous multi-robot system when applied to intelligence-gathering tasks in a
post-disaster scenario. Our results demonstrate autonomy-enabled operation when
communication reliability is not sufficient for teleoperation. Furthermore, by allow-
ing the operators to on-the-fly compose behaviors and define sub-missions that
respond to new conditions such as navigation failure, we enable safe operation com-
pletely outside the range of reliable communication.

It should be noted that there is a subtle increase in the reliability of our system
afforded by the operator’s ability to incorporate a priori knowledge, e.g., the road
network, and intuitive uncertainty management to specify region-based navigation
as seen in Fig. 4. Encoding the intelligence that goes into incorporating this a priori
knowledge will be key to the application of autonomous planners that schedule
the collection mission specifications for multiple robots operating in challenging
environments. The experiments presented here lay the groundwork for future systems
that allow a minimal set of human operators to intelligently task large numbers of
robotic platforms for intelligence-gathering tasks in disaster-relief scenarios.
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