Chapter 7

Generalized Stokes Problems

This chapter is devoted to maximal L,-regularity of one-phase linear generalized
Stokes problems on domains 2 C R™ which are either R", R, or domains with
compact boundary 0 of class C3, i.e., interior or exterior domains. Here we
only consider the physically natural boundary conditions no-slip, pure slip, out-
flow, and free. As in Chapter 6, our approach is based on vector-valued Fourier
multiplier theory, perturbation, and localization. It turns out that due to the di-
vergence condition (and the pressure), the analysis for the half-space as well as
the localization procedure are much more involved than in the previous chapter.
Nevertheless, besides some extra compatibility condition which comes from the
divergence condition, the main results will parallel those in Chapter 6.

7.1 The Generalized Stokes Problem on R"

1.1 Constant Coefficients
We consider the problem
Owu(t,z) + A(D)u(t,z) + Vr(t,z) = f(t,x) inR",
divu(t,z) = g(t,z) in R", (7.1)
u(0,2) =up(z) inR",

Here A(D) = 22,1:1 a*' Dy, D; denotes a differential operator with constant coeffi-

cient matrices a*! acting on C"-valued functions. We assume that A(D) is strongly
elliptic. As we have seen in the previous chapter, this implies that the problem

ou(t,x) + A(D)u(t,z) = f(t,z) in R™,

w(0,2) = up(x) in R™ (7.2)

has maximal L, , — Lqs-regularity, 1 < p,q < oo, p € (1/p,1]. We want to show
that the same assertion is valid for the generalized Stokes problem (7.1). More
precisely, we have the following result.
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Theorem 7.1.1. Let 1 < p,q < oo, p € (1/p,1], and assume that A(D) is strongly
elliptic.

Then (7.1) has mazimal Ly, , — Lq-regularity in the following sense. There is
a unique solution (u, ) of (7.1) with u € Ly joc(Ry; HZ(R™;C™)) such that

Oyug, 0;05uy, € Ly (Ry; Lg(R™)), 7 € Ly (Ry; H(}(Rn))v

if and only if the data (f,g,uo) satisfy the subsequent conditions.
() f € Lpu(Ry; Lg(R™;CM));
(b) 0ig € Lpu(Ry; HTH(R™)) and Vg € Ly u(Ry; Ly(R™ CM));
(¢) uo € B2V YP(Rn;C) and div up = g(0) in D'(R™).
The solution (u,7) depends continuously on the data in the corresponding spaces.

Proof. Necessity follows easily by trace theory. To prove sufficiency of the condi-
tions, note that by the open mapping theorem, the continuity assertion follows as
soon as the solvability assertion is proved. So let data (f, g, ug) be given which are
subject to conditions (a), (b), and (c). We first solve the parabolic problem

v+ A(D)v = f, v(0) = uy,

with maximal L, , — Ls-regularity, applying Theorem 6.1.8 and Theorem 4.4.4.
Then w = v — v must be a solution of the system

ow+ AD)w+ Vr =0, divw =gy, w(0)=0,

where gg = g — div v has the same regularity as g and trace 0 at time ¢ = 0.
Suppose the pressure 7 is already known. Taking Fourier transform in the
space variables and Laplace transform in the time variable we obtain the system

A+ A(§w = —ié,

7.3
i(l€) = do. (2
Solving for w this yields

= —i(A + A() ¢,
and inserting this relation into the second equation of (7.3) we obtain
o= (A + A©)) " ¢le).
Set n = (A +.A(£))71&. Then n # 0 unless € = 0, and
a(A, ) = (A + A(€)77€l€) = Anl* + (n]AE)n).-

Therefore, strong ellipticity of A(D) implies a(A, &) # 0 for all £ € R™, Re A > 0,
with €] + |A| # 0. We may now solve for 7 to the result

7}()‘a 5) = QO(Aa g)/Oé()" E)a
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and for w we get

—1
O e

Choose vy € Ly, joc(Ry; HZ (R™;C™)) such that

(A, ) = —i

6t’Uok, aiajv% S LP:N(R+; Lq(Rn», div vg = go-
This is possible by assumption (b) on the function g. In fact, setting
g1 = (=A)7 20,90 + (=2)?go € Ly u(Ry; Le(R™))

we obtain gg = —div R(9; — A)~'g1, where R denotes the Riesz transform defined
by the symbol i¢/|€], i.e., we may choose vy = —R(d; — A)~tg;. Therefore,

(8t - A)w == Tl(at - A)UO7 Vr = Tg(at - A)U(),
where T are defined by means of their Fourier-Laplace symbols

A+ A@Q)E®¢ §®¢
a(A, ) ’ (A+[€17)a(A, )

Thus, to prove the theorem, it is enough to show that the operators 7 with
symbols Tj (), €) are bounded in Ly, (Ry; Lg(R™;C™)).

This in turn will follow by an application of the Kalton-Weis theorem and R-
boundedness of families of Fourier multipliers. By the scaling u = A\/[£|?, ¢ = £/|¢],
we may rewrite the symbols as

(n+ A)'¢®¢ (®¢
o, ¢) ’ (14 w)alp, )

By strong ellipticity, we already know «(u,() # 0 for all { € R", [{| = 1,
and Rep > 0. As |u| — oo we have pa(p, () — 1, while a(p, () — «(0,¢) =
(A(¢)7I¢|¢) # 0 as u — 0. This shows that we may extend the range of u € C to
some sector g4, with ¢ > 7/2. Furthermore, by compactness, |(1 + p)a(w, ()| >
ap > 0 for all such ¢ and p, where ag denotes a constant. This implies bounded-
ness of the symbols T} (p|¢[2, €), uniformly in ¢ and u. Furthermore, Tj(ul€[?, €)

Ti(\ ) = Ty(N€) = -

Ti(\ €)= Ty(\,€) = —

are homogeneous in £ of degree 0, and so |§|‘6|D§Tj(u\§|2,§) are also uniformly
bounded in £ and p, for each multi-index S € N{. The Lizorkin multiplier the-
orem, Theorem 4.3.9, then implies that these symbols are Fourier multipliers
in Ly(R™; E;) w.r.t. & which yields a holomorphic R-bounded family of opera-
tors {Tj(i)}uex, C B(L4(R™; Ej)) for j = 1,2, where E; = C*, E; = C. By
canonical extension, it is also R-bounded in L, ,(R4; Ly(R™; E;)). Since the op-
erator L := 9y(—A)~! admits an H>-calculus in L, ,(R4; Ly(R™; E;)) of angle
m/2, the Kalton-Weis theorem, Theorem 4.5.6, implies boundedness of T;(L) in
L, . (R4; Ly(R™; E;)). This completes the proof of Theorem 7.1.1. O
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1.2 The Generalized Stokes Operator
Let A(D) be strongly elliptic as in the previous section and consider (7.1) with
(div f,g,u0) = 0. Then, according to Theorem 7.1.1, Problem (7.1) admits a
unique solution (u,7) with maximal L, , — L,-regularity, which means
u € Ly joc(Rys Hy (R™C")), 7 € Ly,u(Rys Hy (RY)),
Opuy, 0;0jur € Ly, (Ri; Le(R™)),
whenever f € L, ,(R4; Ly(R™;C™)).
Define the base space Xy by means of

Xo=LgoR") :={u € Ly(R";C") : divu = 0in D'(R")},

and let Py := I — R® R denote the Helmholtz projection from L,(R™; C™) onto X,
where R means the Riesz operator defined via its symbol R = /||, as before.
The generalized Stokes operator A associated to A(D) is defined according to

(Au)(z) == [Py A(D)ul(x), zeR", (7.4)
with domain
D(A) := HZ(R™;C") N Ly - (R™).
Then u € Ly j0c(Ry; Xo) is the unique solution of the evolution equation
w4+ Au=f, t>0, u(0)=muo, (7.5)

in the base space Xy. It belongs to the maximal regularity class dyu, Au €
L, ,.(Ry;Xo), ie., (7.5) has maximal L, ,-regularity. Then Theorem 4.4.4 and
Proposition 3.5.2 imply that A is R-sectorial with angle ¢4 < 7/2. But even more
is true.

Theorem 7.1.2. Let 1 < p,q < oo, p € (1/p,1], and assume that A(D) is strongly
elliptic. Let A be defined by (7.4) in Xo = Ly (R™).
Then A € H™(Xy) with H>®-angle ¢%¥ < ¢4, where

o4 < max{|arg (A(&)v|v)|: E€R™, v e C"} < 7/2.

In particular, A € RS(Xo) with R-angle ¢ < ¢4, and (7.5) has mazimal Ly, ;,—
Lg-regularity.

Proof. From the previous subsection we have for the resolvent (A + A)~! of A the
symbolic representation

FA+ATHE =T = A+ A©)) ' E@E/aN\ I+ A€)™, €€R™,

where a(X, &) = (A + A(£))7L€|€). We proceed as in the proof of Theorem 6.1.8.
So let h € Ho(Xy) with ¢ > ¢4 be given. Then the symbol of h(A) reads

Fh(A) ) = = / BAFO — A) N (€)dN, € R,

- 211
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where T' denotes the contour I' = (00, 0]e? U [0, 00)e™* with § € (¢4, ¢). Employ-
ing the scaling € = p(, p = [£], and A = pup?, we obtain

Fh(A)(E) = — /Fh(/)zu)(f—(u—A(C))’1C®C/a(u,0)(u—A(C))’ld/«u

T 2mi

As ng = Uj¢)=1n(A(¢)), where n denotes the numerical range, is compact and
contained in X4 ,, according to Cauchy’s theorem, we may deform the contour
within ¥y into a closed compact contour I'y surrounding ng counter-clockwise to
obtain the representation

Fh(A) () = — / h(oP) (1 — (1 — AQ) ¢ @ CJalins O)) (1 — AQ)) " d.

T 2mi

By compactness of I'g and S*~! this implies boundedness of the symbol Fh(A)(€)
in terms of |h\Hm(z¢). As in the proof of Theorem 6.1.8 we also obtain bounds

for the derivatives |€ \'”“|Dg‘]~" h(A)(&)|, hence by the classical Mikhlin multiplier
theorem we obtain

IM(A)B(Ly) < Clhla=(s,), h€ Ho(Xg).

Therefore, the generalized Stokes operator A admits a bounded H°°-calculus with
H>-angle ¢ < P a. O

We observe that for the trace spaces X, , of A we obtain
X = (X0,D(A))y—1/pp = (Lg(R™C™) N Xo, HZ(R™;C™) N Xo)
= (Lg(R™;C"), HZ(R™; C™))

w=1/p,p

u—1/p,p NXy= ng()'u_l/p) (Rn, (Cn) N Xo,

for 1 < p,q < oo and p € (1/p,1]. For the fractional power spaces we have
D(A%) = (X0,D(A))a = (Lg(R™;C") N X, H}(R™;C") N Xo)a
= (Ly(R™C™), HZ(R™;C™))o N Xo = HZ*(R™;C") N X,
for each « € (0,1), as A admits an H*°-calculus.

1.3 Variable Coeflicients

(i) We can easily extend Theorem 7.1.1 to the case of variable coefficients with
small deviation from constant ones. To see this, let A(z, D) = Ay(D) + A;(x, D),
where A (z, D) = >, a¥!(x) Dy D; with

sup{laf(@)| - k1 = 1,...n, © € R"} <.

Let S denote the solution operator of the generalized Stokes problem (7.1) from
Theorem 7.1.1 for Ay(D), and T that of the perturbed problem. Then we obtain
the identity

T =S—SBT, where B:{gll(x’D) 8}
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The norm of B as an operator from HZ(R™;C") into Ly(R™;C") is bounded by
Cn, where C' > 0 denotes a constant independent of 7. Let |S| stand for the norm
of the solution operator from the data space to the maximal regularity space. If
|S|Cn < 1, then a Neumann series argument shows that T = (I + SB)~1S in fact
exists and is bounded as a map from the data space to the maximal regularity
space as well. Let us state this as

Corollary 7.1.3. The assertions of Theorem 7.1.1 remain valid in the case of vari-
able coefficients A(x, D) = Ao(D) + Ay (x, D), provided the coefficients a¥!(z) of
A1 (D) are subject to

sup{|a¥!(z)| : k,1=1,...n, x € R"} <7,

for some sufficiently small 7 > 0, which only depends on p,q, 1, maxy lak!|, and
the ellipticity constant of Ao(D).

(ii) Below we will need a certain decomposition of the solution operator. For this
purpose observe that from the proof of Theorem 7.1.1 we have the representations

a=[— A+ AWE) €@ aN O+ AE) (] + o) —ia” (A + A€) 1€,

and .
= —ia” (A +A©) T (f + @0)l) + g/
Let us have a closer look at the term 1/a(A,&). We may write

1

D) ((1+ AQ) I
1

(1 + 1) ((p+ AQ)1CIC)
(4 D[+ AQ) = (1 + D+ AC) <1
(1 + 1) (1 + A(C)~KC[C)

([AQ) = 1k + 1) (1 + A(€)~¢IC)
(1 + 1)((1 + A(C)1CI0)
= MIEP + 1+ Man(X, ),

1
ang WU

=p+1+(p+1)

,]_]

=p+1+

=pu+1+

where we used again the notation g = M\/[£]|? and ¢ = &/[¢]. As in the proof
of Theorem 7.1.1, £ — Moo (p|€]?,€) is homogeneous of degree 0 and bounded,
uniformly in £ € R™ and A € 4. The arguments given there apply again to the
result that there is an L, , (R ; Ly(R™;C™)))-bounded operator Seo with symbol

S99 = Msy. In a similar way we decompose

—ia” A+ A(€))TIE = —i/I€1 + (A + [€1) THEIM (N, 6),

where Mo, is the symbol of an L,, , — Ls-bounded operator Sa;, as well as

—i((A+A©)) - [€)/alN,€) = —i(¢/IEP]) + (A + [€*) THEI M2 (A, €),
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and M3 is the symbol of an L, , — Lg-bounded operator Si3. Last but not least,
in the same way we obtain the decomposition

[ = (A +A@€)T'E@E/aN I+ AE) T = A+ )T - /(A +[€)
+ A+ €)M ),

with M;j; the symbol of an L, , — Lg-bounded operator Si;. Thus the solution
operator S of the generalized Stokes problem splits as S = Sy + S1, where the
symbols of S; are given by

Al I —coe/ At e —ig/lel?
SO‘{sz/W <A+|§|2>/|5|2}’ (7.6)

and
o [ ORI (A [ elMaa(€)
o= [ A+ [EP)THEMar (A €)  Maz(A,€) } : (7.7)

It is interesting to note that Sy is independent of the coefficients of A(D), in fact,
it is the solution of the classical Stokes problem where A(D) = —A. The operator
S1 factors as

& Py w0 My Mo L)
Sy = | Al [ ] A+ .
0 6] My Moo 0 €]

Here M = [M;;] is the symbol of an L, , — Ls-bounded operator matrix.

It is a remarkable fact that such a decomposition remains valid in the vari-
able coefficient case of Corollary 7.1.3. This can be seen as follows. We have the
Neumann series for T" which reads

T=S8+) (SB)"S=S+ S+ (SB)"S.

n>1 n>1

By induction we obtain

n (S11AL)™ 0 ]
SB)" =
(SB) [ So1 A1 (S1 )™t 0 |7
and
(SB)"S = [ ) s (S11.41)" 512 ]
So1 A1(S11. A1) 1811 So1 A1 (S11 A1) 1S |
In symbolic notation, using the factorization of S this yields for the first entry
(S11A41)"S11
1 €2 1 €% €17
= 1 Mi1)(A1(D)S11)" A 1 M .
)\_|_|£|2( + Xt 2 11)(A1(D)S11) (O + TP 11)/\+|§|2
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Similarly, for the second entry we get

(S11A1)"S12
_ 1 1% n-1 —ig ¢
= /\+|§|2(1+ o |€|2M11)(A1(D)511) A1 (O)( i€ + /\+|§|2M12)|§|-
In the same way the third entry becomes
Sa1(A1S11)"
_ 1 =g €17 n—1 1% €%
= ‘5|( €] )\+|§|2M21)(A1(D)511) A (1 + ppn |€|2M11))\_|_|§‘2,
and finally the last entry is
Sa1.A1(S11A41)" " S1o
1 —ie g 1 —ig |
= —(— Mi2)(A1(D)S A — + ———=M .

This proves the assertion.

(iif) It is very useful to consider also the shifted Stokes problem
div u(t,x) = g(t,z) inR", (7.8)
U

for t > 0, where w > 0 is fixed. One should note that the substitutions u,, = e “*u,
fo=evf and g, = e “'g transform the system (7.1) into (7.8). The advantage
lies in the fact that we also obtain estimates for the L, , — Ls-norm. In fact, we
get the following estimates for the solution u of (7.8). Setting

Bop = Lpu(Ry; Lg(R™;C)), - Gy = H;,[L(RJF; Hq_l(Rn)) N Ly, (R H;(Rn))v
and X, = Bg,(fhl/p) (R™; C™), there is a constant C' > 0 such that

wlulg,, + [Bpulzy, + [V2ulg,, + V7, (7.9)
< C(luolx, . + | flro,. +19l61, +wlglr, 1))

for all (f,g,u0) € Eo,, x Gi, x X, such that divug = g(0) in D'(R™). Here the
constant C' depends only on p, ¢, u and on the symbol A(¢). This result follows
directly from the representation of the symbol of S, one only has to observe that
the exponential shift replaces A by A 4+ w.

(iv) At several places it will be convenient to reduce the full Stokes problem to a
problem for the Stokes operator. This can be achieved as follows. We first solve
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the problem
ow+wv+ ADw+Vr=f inR"
divve =g in R™, (7.10)
v(0)=vy inR",

for t > 0, with w sufficiently large. Then w = u — v must satisfy
w+Aw=wv, t>0, w(0)=0.

This reduction will be useful in several situations.

1.4 Localization
Now we are in position for the general case, i.e., we consider the problem

ov+wv+ Az, D)v+Vg=f inR",
divv=y¢g inR", (7.11)
v(0) = vy in R™.

As before the data (f, g, vo) are given, and we assume that the differential operator
A(x,D) =3, a*!(x) Dy, D; has coefficients a*! € C;(R"™; B(C")) and that A(z, D)
is uniformly strongly elliptic, i.e.,

Re(A(z,&)v|v) > col¢*[v]?, £€R™, veC", xR,

with some constant ¢y > 0. The parameter w > 0 will be chosen later. Observe
that maximal regularity on finite intervals does not depend on w.

First, we reduce the problem as above to the case (f,ug) = 0, employing the
results of Chapter 6. To solve the remaining problem we employ the method of
localization. Choose a large ball B(0, R) such that

supfJa(z) — a(oc)| : |2l = R} < n.
Cover the ball B(0, R) by finitely many balls B(zx,7), k= 1,..., N, such that
sup{la(z) — a(xg)| : = € Blag,r)} <.

Fix a C*-partition of unity ¢z which is subordinate to the covering B(0, R)¢ U
UN_, B(xk,7) of R™. The index k = 0 corresponds to the chart at infinity. De-
fine local operators Ay (D) = A(z, D) for each chart B(xy,r), k =1,...,N, and
Ao(D) = A(zx, D), extend these coefficients to all of R™, say by reflection at the
boundary of the corresponding ball. Corollary 7.1.3 shows that each of these oper-
ators has maximal regularity, provided n > 0 is sufficiently small, but independent
of k.

Suppose (v, q) is a solution of (7.11) (with (f,v9) = 0). In the sequel we
normalize the pressure by fB(OQR)q(t,x) dr = 0. Setting vy = ¢V, @ = P4,
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gr = ¢rg we obtain the following problem for the functions vy and gy.

OyUg + wug + Ak(D)Uk + Vi, = (V(bk)q + [A, ¢k]v in R",
div g = g + (Vi |v) in R, (7.12)
Uk(()) =0 in Rn,

where [A(x, D), ¢plv = Az, D)(¢rv) — ¢ A(z, D)v means the commutator of

A(z, D) and ¢. Denote the solution operator of the generalized Stokes problem
for w + Ay, by S*. Then we have the representation

(3]s [ Sm)

Summing over all charts k£ we deduce

i]-3

0

[ o } s { (Vér)a+ [A, dulo ] |
ak

pors g + (Vor|v)

We decompose this representation of the solution as
Y 0
{U}:ZS’“{ ]+T{q}+m,
q 9k v
k=0
where
N N
_ k _ k| A o
T_,;OSVW and R_;OS {0 }

We estimate T" and R separately. For this purpose, we define the maximal regu-
larity space

By = [H) , (Ry; Lg(R™;C™) N Ly Ry HY(R™C))] X Ly (R Hy (R™)),

and recall the definition of the spaces Eg, and G;, from above. To begin with T,
recall that each S* splits into S* = Sy + SF, with the same Sy for each k, since
the latter does not depend on the coefficients of Aj. Hence

N N N N
T=3 5Vop=) SiVor+SVY ¢x=) SV,

k=0 k=0 k=0 k=0

since ¢y forms a partition of unity. Let us decompose T into its components,
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employing the factorization of S; obtained in Section 7.1.3. We have

Tug= (0 +w—-A ZSM )0 +w—A)"H(qVer),
Tng = (- UQZSk A) (0 +w = A)H(qVer),
Tiov = (8 + w — ZSk AV2(V v,

Toov = (— 1/2ZSk A2 (Vo).

Since V¢, has compact support also for k = 0, we see that (V¢ )gq belongs to
Lyu(Ry; Hy(R™)), and

(=A)2(qV )5, < C|Vdlg,,

holds with some constant C > 0; recall the normalization of the pressure
/ B(0.2R) q(t,x) dx = 0, hence Poincaré’s inequality is valid. Therefore,

C
[(=8) (0 +w = D) gV g, . < EIVCJIEO,“-

Similarly, there is a constant C' > 0 such that

|(=2)V2(V o), < f\

(O +w = A)vlg,,-
As a consequence, the operator 1" satisfies
C
LI, oL, = e, Il
Y 11E,, v g, ~ VW 7 |lg,, q
Next, R is given by
wlp]=ss ]

The commutator [A(z, D), ¢x] is a differential operator of first order, hence

Sl e B IR [ A B [

]Eou
The above arguments show that, choosing first > 0 small and then w > 0 large
enough, there is a constant C' > 0 such that the estimate

Eop

wlvlg,, + [VlE,,, + V7, < C(lgle,, +wlglz, ,7) (7.13)

:DlL
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holds. Therefore, the operator L defined by the first two lines of the left-hand side
of (7.11) is injective and has closed range, hence it is semi-Fredholm, for each set
of coefficients which are continuous on R”, admit uniform limits as |z| — oo, and
are uniformly strongly elliptic. Define the family A, = 1A+ (1 — 7)(—=A). By
strong ellipticity, we then may conclude that for each 7 € [0, 1], the corresponding
operator L, is injective and has closed range. By the continuity of the Fredholm
index, it must be constant, i.e., the index is zero for all 7 € [0,1] since Lg is
bijective by Theorem 7.1.1. This shows that L = L; is also surjective.
Summarizing, for the problem with variable coefficients

v+ wv+ Az, D)v+Vr=f inR"
divv=g inR", (7.14)
v(0) =vp in R,

we have proved the following result.

Theorem 7.1.4. Let 1 < p,q < oo, p € (1/p,1], and assume that A(x,D) is a
second-order differential operator with coefficients a*' € C;(R™; B(C™)) which is
uniformly strongly elliptic.

Then there is wo € R such that for all w > wo, (7.14) has mazimal Ly, ,,—Lg-
regularity in the following sense. There is a unique solution (u,m) of (7.14) with

we H) ,(Ry; Ly(R™C™) N Ly (R HZ(R™CY)), 7w € Ly (R Hy (R™)),
if and only if the data f, g, ug satisfy the subsequent conditions.
(@) f € Lpu(Ry; Lo(R™ CM));
(b) g € Hy, (Ry; H'(R™) N Ly (Rys Hy (R));
(¢) up € B2V YP(Rn;C") and div ug = g(0) in D'(R™).

The solution (u, ) depends continuously on the data in the corresponding spaces.
Moreover, the estimate (7.9) is valid.

We may now define the generalized Stokes operator A in the case of variable
coefficients as in Section 1.2, to the result that w + A € MR,(Xy) for w > wo.
The lower bound for wy is easily seen to be s(—A), the spectral bound of —A.

7.2 Generalized Stokes Problems in a Half-Space

In this section we consider the generalized Stokes problem in R} = R ! x Ry
with either one of the four boundary conditions explained below. Thus we consider
the problem
(O +w)u+ AD)u+ Vr = f(t,z) inRY,
divu =g(t,z) inRY, (7.15)
u(0,2) = up(x) in RY,
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with ¢t > 0. Here, as in Section 7.1, A(D) = ZZ,[=1 a*' Dy, D; denotes a strongly el-
liptic differential operator with constant coefficients acting on C™-valued functions,
J=R,, and w > 0.

In the sequel, Pyx; denotes the projection onto the tangent bundle of ¥; more
precisely, Px(p) means the orthogonal projection onto the tangent space T,%.

With v = —e,, the n-th unit vector in R", the boundary conditions are either
(i) no slip
u=hy ondRY, (7.16)
(ii) pure slip
(ulv) = hoy, Psvga™ Dyu = hs, on ORY, (7.17)
(iii) outflow
Psu = hos, (vga" Dyulv) +ir =h, on ORT, (7.18)
(iv) free
vpa™ Dyuv +imv = h  on OR'. (7.19)

Of course, appropriate compatibility conditions have to be satisfied. Assuming
normal strong ellipticity, as in Section 6.2.5, it is easily verified that the parabolic
problem without pressure and divergence condition satisfies the Lopatinskii-
Shapiro condition for these boundary conditions, hence is well-posed and has
maximal L,-regularity for 1 < p < oo. The main result of this section states
that these properties carry over to the generalized Stokes problem.

For this we need some notation. If Q@ € R” is a C!' domain, ¥ C 9 open,
1 < g < o0, we define
HNQ) = {w € L110.(Q) : Vw € Ly(Q)}.

q

By means of standard arguments in the theory of function spaces, H, (}(Q) embeds
into H} (2 NB(0,R)), for each R > 0. This shows that traces of functions in

qu (Q) are well defined, and that in this space localization is possible. In fact,
if x is D(R™), then by the Poincaré-Wirtinger inequality, yu € H; (Q) for each
u € HY(Q). In the case of Q = R™ it is true that

HIR™) = {ue S'(R"): Vue Ly(R™)}.
We next define
H) 5(9Q) = {w € L110c(Q) : Vw € Ly(Q), w =0 on T}

in particular, H;7®(Q) = H}(Q). Then Hq_é(Q) is defined as

Hq_-é(m = [H;',aa\x(g)]*~
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Especially,
. . L1 .
H Y Q) =H_;(Q), oH, () =H, 5,(9).

Observe that Hq’l(Q) consists solely of distributions in 2, but OH;l(Q) does
not have this property.

Assume that (7.15) admits a solution (u, ) in the regularity class
w€ Hy ,(J;Ly(Q))" N Ly u(J; Ho(Q)", 7€ Ly u(J; Hy ().

By trace theory, the conditions for the right-hand side f and for the initial value
ug are the same as in the previous section. They are collected in condition (D)

(2) f € Lp,u(Ry; Ly(RE;CM), uo € Bay ™ */P(R7;C).

For g, trace theory yields
(b) g€ H,,(Ry; Hy'(RY)) N Lp,u(Ry; Hy (RY)), divug = g(0).

p,p

The boundary data must satisfy

(d0) for no-slip (Dirichlet) boundary conditions:
ho € Fyau’ *1(Ry; Lg(R™15C)) N L, (Ry; Bgg /(R"1;C")) and
for p > 3/2p in addition h(0) = up.

Similarly, we have

(ds) for pure slip boundary conditions:

how € Fpg* (R Ly(R™™)) N Ly, (Res By IR 1);

hy € Fpgo 1Ry Ly(R" ™€) 1 Ly, (Ras By 7(R*.C" 1)) and
Psvra* Diug = hx(0) for u > 3/p;

(do) for outflow boundary conditions:

hos € Fpat/* (Ry; L(R™,C" ) N L Ry Bag /(R C71);
b € Fpfi 2 (R Lo(R" ) 0 Ly (R Bag /! (R"1) and

Psug = hox(0) for p > 3/2p;

(dn) for free (Neumann) boundary conditions:
h € Fpgg ?1(Ras Ly(R"715C™) 0 Ly (R Byg //(R"5C™) and
Psvpaf Dyug = Psh(0) for u > 3/p.

In case of outflow or Neumann conditions these are all requirements needed.
In case of slip or Dirichlet conditions we have the additional property

() (9,hoy) € HL,(Ry;0H, (R2)) and ho, (0) = (v|uo).
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Observe that the last condition is a compatibility condition which comes from
the divergence equation, as the identity

g

U~V¢d(ﬂf,y):/

R

/
shows. Here ¢ € H (R").
After these preliminaries we can state the main result of this section.

divuqﬁd(x,y)f/ u-vodr

n n —1
¥ i R

g6d(z,y) — / hov dx =: {(g, ho,)|)

n -1
n Rn

Theorem 7.2.1. Let 1 < p,g < oo, 1 > u > 1/p, u # 3/2p,3/p, and assume
that A(D) = Y"1, a"' Dy, Dy is normally strongly elliptic. Then for each w > 0,
(7.15) with boundary conditions (7.16) or (7.17) or (7.18) or (7.19) has mazimal
Ly . — Lq-regularity in the following sense. There is a unique solution (u,m) of
(7.15) in the class

we H) ,(J;Lg(R};C")) N Ly (J HZ (R €M), m € Ly (J; HY(RT)),
satisfying the corresponding boundary condition, and in addition
™€ F)/2124( ] Ly(0RY))

in case of outflow or Neumann boundary condition, if and only if the data
(f,9,h,up) satisfy the conditions (D). The solution u depends continuously on
the data in the corresponding spaces.

The next subsections are devoted to the proof of this result.

2.1 Reductions

According to the discussion above, we only need to show the sufficiency part.
Let data (f,g,uo) and boundary data h with the corresponding regularity be
given. Without loss of generality we may assume (f,g,uo) = 0 and trace 0 of
h at t = 0 in case it exists. This can be seen as follows. Firstly, extend the
initial value to all of R™ in the class 335_2/19(]1%”)”, and extend f trivially to f €
Ly ,.(J; Lg(R™))™. Solving the parabolic initial-boundary value problem without
pressure and divergence condition on all of R™ yields a function u; in the right
regularity class. Then us := u — u; and 7y := 7 should solve the problem with
(f,up) = 0 and g replaced by ¢ := g—div uy, which belongs to the same regularity
class but has trace 0 at ¢ = 0. Extend g¢; evenly in x,, to all of J x R™, and solve
the full-space generalized Stokes problem (7.1) with (f,ug) = 0 to obtain a pair
(us,73) in the right regularity class. Then the pair (ug4, 74) defined by ug := ug—us,
74 := mo — w3 should solve (7.15) with the boundary condition in question, where
(f,g,u0) = 0 and hy = h — B(D)(uy + us,m3); here B(D) denotes the boundary
operator under consideration. Note that the new boundary datum h belongs to the
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right regularity class and has trace 0 at ¢ = 0 whenever it exists. The compatibility
condition (e) becomes now

how € oH,, ,(J; W IR H).

So we have to solve the homogeneous problem (7.15) with one of the inhomo-
geneous boundary conditions. It is convenient to replace the spatial variables by
(x,y), where * € R"~! and y > 0; recall that v = —e,,. Similarly we decompose
u = (v,w), with v € R""! the tangential and w € R the normal velocity.

2.2 Fourier-Laplace Transform
Taking Fourier transform in the tangential space directions, Laplace transform in
t we obtain the parameter dependent ODE-problem
A+ A1+ e, D))o+ Aa(§+ e, D) + i =0, y>0,
A21(§+ €nDy)0 + (A + An({ + enDy))w + 9yt =0,  y >0,
i€T0+iDyb =0, y>0,  (7.20)
Bi1 (€ + enDy)8(0) + Bia (€ + e, Dy )ib(0) = ha,

Ba1 (€ + e, Dy)0(0) + Baz (€ + €,D,)1w(0) + Baz#(0) = Ry,

where B is defined by one of the boundary conditions (7.16), (7.17), (7.18) or
(7.19). The parameters ¢ and A satisfy (£, \) € R x X, for some ¢ > /2 and
&, = 0. Here and below we identify ¢ € R"~! with (£,0) € R™. Introducing the
vector

x = [0,10, 00, Oy, 7] T,

we rewrite this problem as the first-order system
Edyx+ Ax=0, y>0, Bx(0)=nh, (7.21)

where the dependence on (A, &) has been dropped. Here the (2n + 1)-dimensional
square matrix E is defined as

1 0 O 0 0

01 0 0 0

E=10 0 A}, A% o0

0 0 A9 A%, —1

01 0 0 0

and A by

0 0 -1 0 0
0 0 0 -1 0
A= _(>\+A%1) _A%2 A%l A%z —i§
—A3, —(A+A43,) Ay Ap 0

it 0 0 0 0
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We used the abbreviations
A? = (d"¢8), Al =i(d"vg +d ), AY = (dFu)

recalling the summation convention. Observe that A* are homogeneous in ¢ of
order k; in particular A° is constant and invertible by ellipticity. Also note that E
does neither depend on A nor on £. The boundary matrices B are

10 0 0 O
B= { 01 0 0O }
in case of Dirchlet conditions,

B = Bl, Bi, BY B} 0
0 1 0 0 0

for slip conditions,

B_{1 0 0 0 0}
By Bj By B3 -1

for outflow conditions, and

Bl, Bi, B}y B}, 0
B=1pi pU po pBO 1
21 22 21 22

in the case of Neumann conditions. Here ij are homogeneous of order k in £, and
BY = A% Recall that the Lopatinskii-Shapiro condition means that system (7.21)
admits at most one solution x € Cy(Ry; C2"1), for each h € C" and £ € R" L,
ReA > 0, £ # 0. This follows from normal strong ellipticity as in Section 6.2.5,
as the crucial identity (6.39) holds also in the Stokes cases for the four boundary
conditions under consideration

2.3 The DAE-System
It is our purpose to derive a representation formula of the function x in terms
of the given data fz, which is accessible to inversion of the Fourier and Laplace
transform.

So, assume that x € Cy(Ry;C?"*1) is a solution of (7.21). Taking Laplace
transform £ in y, this yields

(2E+ A)Lx(z) = BX", Rez>0, Bx’=h,

where x° = x(0) denotes the initial value of x. To obtain a representation of x we
have to study the operator pencil zE + A. To this end note that F is not invertible
but its kernel N(E) is one-dimensional, and N(E?) = N(E), hence N(E) ® R(E) =
C?nt1 Therefore, (7.21) is a differential-algebraic system of index > 1. This implies
that the characteristic polynomial p(z) = det (zFE + A) has at most order 2n. Let
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us show that it is precisely of order 2n, i.e., that the index is 1. This can be seen
as follows. Expand det (zF + A) first w.r.t. the last column and the last row and
then w.r.t. the second row. This yields up to a sign

2 z —1
p(2) = 2 det [ —(A+A43) z2AY 4+ AL ] +alz),

where ¢(z) is of order less than 2n. Asymptotically this yields for large z

z 0

2
p(2) ~ z*det { 0 240,

] = z*"det AV,

and det AY, # 0 by strong ellipticity. Therefore, p(z) is of order 2n. Ellipticity
shows also that p(z) has no zeros on the imaginary axis, for £ # 0. Now consider
the case & = 0. Then we see by the same procedure that p(z) is in fact a function
of 22, i.e., if 2y is a zero of p then —z; is one as well. Unfortunately, z = 0 is a
solution in case & = 0, here the degeneracy of the Stokes problem shows up. We
have to look at this zero more closely.

The eigenvalue problem for these small zeros z(€) for small £ (or large \)

becomes
X1
X2

aeo-n[ 2= %] e rs=o

where

A(z,€) = 22 A% + 2AN(€) — A%(9).
Since by A # 0 we have invertibility of A(z,&) — A, this implies the condition

([ e0-n[£])=s

for the small eigenvalues. Writing (A(z,&) — A\)~! as a Neumann series, this con-
dition becomes
22— [€[* + O((l¢] + |2)*) = 0,

which shows that z = £[¢[4+0(|¢[?) near & = 0. Therefore, the double zero z(0) = 0
for £ = 0 splits into two simple real zeros which behave like zi5(€) ~ =£|¢| near
£=0.

Varying now £ we may conclude that p(z) has exactly n roots with positive
real parts, counting with multiplicity, for each ¢ € R*™!, Re X > 0, £ # 0, since
none of them can cross the imaginary axis by ellipticity.

We may now write

Lx(z) = (zE+ A)7'EX?, Bx" = h,

for the Laplace transform of x. The initial value x° thus must be chosen in such a
way that £x(z) has no poles in the right half-plane, and Bx" = h holds.
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Define the projection P* by means of

Pt = (zE+ A)"'Edz,

21 r.

where I'; denotes a closed simple contour in the right half-plane surrounding
the poles of (zE + A)~!, i.e., the zeros of p(z) in the right half-plane. Let zy,
k=1,...,m", denote the zeros of p(z) in the right and for k = —m™,...,—1 in
the left half-plane. Set

1
Py=— (zE+ A)"'Edz.

271'2 |Z—Zk ‘:7.

These operators are mutually disjoint projections and by Cauchy’s theorem we

have
m+
Pt =>"P.
k=1

It can be seen e.g. by Cramer’s rule that (zF + A)~! is a rational function which
is bounded at co, hence admits a limit as |z| — co. Therefore

2(2E+ A 'E=1-(zE+ A A
is bounded at oo as well and admits the limit
Qo= lim z(zE+ A)'E,
Z—> 00

which is a projection, too. We set Py = I — Qy. Obviously, Qox = 0 for each
x € N(E), and on the other hand, we have
EQo = lim 2E(:E+ A)™'E = lim (E — A(zE+ A)"'E) = E.
zZ—00

zZ—00

This implies that Py projects onto the kernel of E. Moreover,

1
ZPk = Py+ lim —/ (zE+A)"'Edz=Py+ Qo =1,
x R—o0 271 |z|=R
which also shows that PyP, = PyPy = 0 for all £ # 0. Linear algebra implies
further that the dimension of the range of P is my, hence PT has dimension n.
Since
0 _ _ 1 _ _ 1 —17,0 _ 0
x> =x(0) = t1_1>r51+ x(t) = ]Rallrgoo 2Lx(z) = z1l>n<}o z2(zE+ A)” Ex’ = Qox,
we must have Pyx? = 0. It is not difficult to compute the projection Py, it is given
by
0
Pyx = xa 4 (16x1) (i€l ) A01 [ 0 :| )
(67} -1
1
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(4] [2])

is nonzero by ellipticity. Observe that

where

PxX’=0 & x§+ (i) =0.

For later purposes we also compute the projection Pli corresponding to the small
eigenvalue zi (€) ~ =[¢| for small £&. The analysis of zi© given above shows that an
eigenvector is given by

= lacH-N | ]t -n | £ L~ | 6 o

For a dual eigenvector we get similarly

= = (A ATACHT- N | [aehTon | K]

hence )
* _Zg T
e; ~ 10, - ,—1]°.
0y [ Tl } ]
The projections are then Px = ((if‘ﬁlEEX))eli. Note that (e *|Eef) ~ +2[¢|/\ for
€1 €1

small £, and the asymptotics of zli, eljE and e’{i do not depend on the coefficients
afj. Note also that

PIxX'=0 & (eFEXX) =0,

which asymptotically yields the condition
A ({iﬁ/lﬁl]’ {XO}
0 0 0| X3
Xp — —Xg ~ A )
Tkl L X

2.4 The Boundary Value Problem for the DAE-System
To determine the initial value 2° we therefore have to solve the linear system

B =h, P™’=0, Px’=0. (7.22)

The Lopatinskii-Shapiro condition is equivalent to the uniqueness of the solution
x0 of this system, for & # 0. To see that it is solvable for each h e C™, observe
that the kernel N of PT + Py has dimension n. B : N — C" is injective, hence
the rank theorem implies that it is also surjective. Thus there is a linear operator
My(X, €) such that xX* = My(\, €)h gives the unique solution of (7.22). We have
the explicit representation

X" = (B*B+ (PT)*P* + P{P,)"'B*h,
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which shows that My(), ) is holomorphic as B, Py, and PT have this property.
By homogeneity, A can even be taken from a sector L, for some ¢ > /2, but
& # 0, in general.

Therefore, we have to look more closely at & = 0. Note that the projections
PZ are not holomorphic at ¢ = 0. However, P? := P;" + P does have this
property. A simple calculation shows that for £ = 0 we have

Px = %y + (x5 — A% x3 — AJoxq)

oo o~ O
_— O O O O

Therefore, it is convenient to decompose x° = y’ +ae;, with o € C and P y? = 0.
Setting P = Py + Pt + P, we therefore have to solve the system

By" + aBe] = il, Py’ =0.

From Py® = 0 we obtain yJ = 0, yJ = 0 and y? = AY,yJ. Solving the system
(2E + A)x = Ex°, we obtain with e; = [0,0,0,0,1]T and x3 =yJ =x§ =y{ =0
the relations xo = x4 = 0 and

(22AY, — Nxq = AL 08+ 2xX0), x3=2x1 =X, x5 = AYyx3 + /2,
since xJ — A9 x§ = a +yY — AY,y] = a. By strong ellipticity, A}, is invertible and
has spectrum in the open right half-plane. Hence we may compute further

() = 52+ VAAD) )78 + (4023
+ 5= VA Y ) - (A0 28V,

Now, x1(z) must be holomorphic in the right half-plane, which means that nec-

essarily we have y§ = —v/A(A9;)~/2y?. The boundary condition yields in the
Dirichlet and outflow cases x} = y? = hy, and in the slip or Neumann case
xJ = y3 = (AY,)7'hs. Note that in the outflow and Neumann cases, o = —hy

is uniquely determined, in contrast to the Dirichlet or slip case, where « is not
unique. In fact, the function a(),€) is discontinuous at £ = 0 for the latter, but
holomorphic in the outflow and Neumann case.

Now, for £ # 0 small, we may parameterize the kernel of P by a holomorphic
map

y = RNy = [y, 0, —VA(AY)) 712y, 0, =AY VA(AL) 2] T + RY(N, ©)y,

where R! = O(|¢]) near £ = 0, with y € C"~!. Then we have to solve the equation

BRy + aBe] = h. For the outflow and Neumann cases it then follows that y
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and « are uniquely determined and holomorphic near £& = 0, hence My(\,§) is
holomorphic also at & = 0.

However, in the other cases things are more involved. We begin with the
Dirichlet case. Then the system becomes

y —ia&/A = hi+O(|€)y + O(&[*)a,  alé]/A = ha+ O(I&])y + O(€*)e,

hence

an~ Ao/lE], y~ D+ Izéilz-

In the case of slip conditions we have similarly

— VA, Py — @Ay ie VX = s + O(€])y + O(I€*)ar,
al€l/A = ha + O(€])y + O(I&)a,

and so

e N/t y =A% (4 ¢ ) (VA

Thus there are holomorphic functions Myo(A, €) and ag(A, §) such that

Mo, €)h = Moo, )b+ [ o+ (o3, €)[)] e

€l

where hs denotes the normal component of 4 at the boundary OR"} = Rr1,

2.5 Harmonic Analysis
We may now write the following representation of the solution x(y) = x(y, A, §) of
(7.21).

x(y, A, &) = Qjm/r Y (2E 4+ A\ €) P EMy(\, €)h(\, €) dz, (7.23)

where I'_ denotes a closed simple contour in the open left half-plane surrounding
the zeros of p(z) = p(z, A, §) in the left half-plane. Employing residue calculus this
representation can be rewritten as

x(y, A\, §) = Z Res.— zk(AE)[ (ZE—l—A()\,5))_1E]M0(>\,§)]A7,(>\,§),
Rezg <0

hence it is an exponential polynomial in y.

Note that the zeros zi of p(z) = p(z, A, €) depend on £ and A, hence the inte-
gration path in (7.23) cannot be chosen independently of £ and A. To remove this
defect a scaling argument will help. With p = /A + |£]2, the standard parabolic
symbol, and o = \/p?, ( = &/p, the pair (o,¢) belongs to a compact subset of
C™\ {0}. Replace #(y) by #(py)/p, x(y) by x(py), Neumann data hy by hi/p, and
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leave Dirichlet data unchanged. Then homogeneity of A and B yield the modified
representation formula

x(y, A, €) = / e”Y(2E + A(o,¢)) " EMy(o, )h(X, €) dz. (7.24)

27i

Since the poles of (2E + A(o,¢))~! stay in a compact set in the left half-plane, we
may now choose the contour I'_ independently of (o, (). This argument parallels
the scaling employed in Section 6.2 for the parabolic case.

Observe that the scaling of h induces

h € oFy, = oF )/ 2(J; Ly(R"™Y,C™) N Ly, (J; B2 Y9(R™ 1 C™)),

which is independent of the choice of the boundary conditions. Let
= (O +w—Ag)2, D(L) = oH,/2(J; Lg(R" " C™)N Ly (J; HE(R™H C™)).

Then by Lemma 6.2.4 with m = 1, h € Y implies 9(y) := L?e~Lh € Eo,. The
symbol of L is \/A + |£|? which is precisely p. By means of the identity

o o0 N 2 o0 _
h z/ 2pe 2PV ] dy = 7/ e PY0(y) dy,
0 P Jo

we may rewrite the representation of x(y) in the following way.

1 1
ya)‘ E dlag |:a7a7 :| / ky y7/\ § ya/\vg dga 7.25
8 )= P2’ p* p?" p?7 pl¢] o ) (7.25)
where the Fourier-Laplace transform of k is given by
. 1 _
ky.5.0,6) = — / e’V D(p, [€)) (2B + A0, Q)" EMo(o, () dz,  (7.26)
r_

where D(p, [¢]) = diag|p, p, p, p, [€]].

It remains to be shown that the integral operator K(A) with operator-
valued kernel k(y,y,\,D;) is R-bounded from L,(Ry;L,(R"1;C")) to
Ly(Ry; LR, C?1) | where the symbol of K (y,7, A, D.) is k(y,7, A, €) from
(7.26). This will imply that u belongs to the maximal regularity space, and the
remaining regularity statements concerning the pressure w follow from the equa-
tions.

2.6 Large Frequencies

However, due to the presence of the small eigenvalues zli(f) introduced above,
there are difficulties at ¢ = 0. We have to deal with the cases [(| < n and |{| > 7
for some small n > 0 separately. For this purpose we introduce a cut-off function
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x([¢]?), where x belongs to C*°, is 1 in B(0,7), 0 outside of B(0,2n) and between
0 and 1 elsewhere. Then we may decompose k(y,7, A, &) as k = ks + kg, where

. B 1 . _
kr(y,9, A, &) = %/r (1= x(O))D(p, [€))e? =P (2E + A(0,¢)) " EMo(0,¢) dz.

(7.27)
Let us first deal with kg and invert the Fourier transform via Mikhlin’s theorem.
Since I'_ is compact and contained in the open left half-plane, for || > 7, (o, ()
runs through a compact subset of C", and

Rep < |p| < cgRep,

we obtain

. . c
|kR(y7g7 )‘vg)| S C|p|efc|p|(y+y) S =) Y, g > 07
y+y

where C,c > 0 are independent of y, 7, A and £. This is already sufficient in case
p = 2, by Plancherel’s theorem. For the case of general p € (1,00), note first that

1
|§||;5£kp| = [Ellen/ ) < 1€ /0 <1,

and similarly we have by induction | \'“‘\D?m < M,, for each multiindex a €
Nt Next,
1€110¢,Gj| = €110/ p — ¢, p/p?| < M,

and similarly for higher derivatives, by induction. The relation o = 1 — |¢|?/p?
shows that also |£|!*l |D¢'o| is uniformly bounded for each . Next

. I _ h_ C
€110, "= 9| < [€]10e, 0/ 2|10 (yz — §)e? V=D | < ClplecIPIH9) < -

and similarly by induction also for all higher derivatives. Therefore we may con-
clude that

R M,
N Dgkr(y, 5, 1,6 < —, 3.7>0,
|1 D kr( <7

for each multi-index «, where M, is independent of y, 4, and of A and &.

2.7 Small Frequencies .

Now we deal with the other part of k. Since we have enough information about the
small eigenvalue z1(£) we may use residue calculus to decompose ks = kgo + ks1,
where

ksi(y, 9, A, €) = i/F X(Qe” W=D D(p, [€])(zE+A(0,¢)) T E(I =Py ) Mo(, ()dz,

T

with a fixed contour I'_ contained in the open left half-plane. The part kg1 can
then be treated as above.
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The essential part is l%sg, which is given by

kso(y, 7,2, &) = x(Q)e”*r @v=0D(p, [€)) P (0, () Mo(0,C).

Using the decomposition z° = 4% + ae; as above, this yields

]ACSO(:% g? )‘7 6) = X(C)K‘ep(ZI (07C)y—ﬂ)D(p/|£|7 1)6;(A7 5) ® O[()\,é-)

In the outflow and Neumann cases, « is holomorphic and

D(p/I€], ey (A,€) = [0,0,—i& p/X, ~[€|p/A,1]T

is bounded and satisfies the Mikhlin condition. Since z; ~ —|£| we obtain as above
an estimate of the form
Mo

—

y+y

|§|\a| |D?I%SO(ya g? )‘a §)| S

where M, is independent of y, 7y, £ and A.
The argument is more involved in the case of Dirichlet or slip conditions. It is
here where the extra time regularity of the normal velocity ho comes in. As shown

above, a decomposes as
A0
a()‘vf):aO(Aag)—i—E |: 1 :| y

where ag(A,€) is holomorphic. Since the term containing «g can be treated as
before, we concentrate on the extra term. This yields the kernel kgqg, defined by

Fso0(y, 5 A €) = X(O)JEle”E @OU=9D(p/ ], Vet (A, %{0}

Since by assumption hy is the Fourier-Laplace transform of a function of class
OH u (R W_l/q(R" 1)), we see that Ahy/|¢| is the Fourier-Laplace transform of

a function in Ly (Ry; Wy ™ /9(R7=1)). Thus we obtain gy € Ly, (Ry; Ly(R™))
such that

90(7, A\, €) = [€le T NRL (N, ) /€]
Writing

V1D = 2 / €]e 2417\, /€] dg = 2 / e ¥17g0(5) dy,
0 0
we have

|€leP*1 Y D(p/€, 1)ey Mo /|€] = /0 |€ler v D (p /€, Ve Go (g, A, €) dy
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and the kernel of this representation can be estimated as before.

2.8 End of the Proof
Summarizing, we have obtained kernels k(y, g, A, §) € B(C™) such that the family
{k(y,7,M\,€) : E€R" Ly, 5> 0,\ € Ey} satisfies the uniform Mikhlin condition

a ) — Ma _ n—
€Dy, 7. A Ol < ==, 5,7>0, R, A ey
y+y
The Lizorkin Fourier multiplier theorem, Theorem 4.3.9, implies that the family
of operators

{(y+ Dk, 5\ Dz) : 4,5 >0, X € By} C B(Ly(R* 15 C™); Ly(R™ 1 C?H)

is R-bounded. As the Hilbert transform with kernel ko(y,y) = 1/(y + 9)
is bounded on L4(Ry), Proposition 4.1.5 shows that the family of inte-
gral operators {K(X) : X € X4} C B(Lg(R%;C"); Ly(R%; C** 1)) with
kernels k(\,y,7) is also R-bounded, hence by canonical extension also in
B(Lpu(Ry; Ly(R%;C™)), Ly, o (Ry; Lg(R%; C** 1)), In addition, this operator
family is holomorphic on 34, and as L,(R? ) is of class H T, the Kalton-Weis the-
orem, Theorem 4.5.6, implies that K(0; + w) is bounded in Eg,. This completes
the proof of Theorem 7.2.1.

2.9 Estimates for the Solution

As in the whole space case it is useful to have estimates for the solution in terms
of the data which are uniform in the parameter w > wg > 0. These follow directly
from the proof of Theorem 7.2.1 but are more elaborate than those for the case
Q) = R", as they depend on the boundary conditions in question. For this purpose
we fix some function spaces as follows.

Eou := Lpu(Ry; Lg(RY)™),  Eiyi= Hy ,(Rys Lg(R})™) N Ly (R Hy (RE)™),
Gop = Lpu(Ry; Hy '(RY)),  Gupi= Hy ,(Ry; Hy ' (RE)) N ,u(R+; Hy(RY)),
Gy = Lp,u(RJmoH 'RY), GLi=HL,(RysoH, (RD)),

Fop := Fyg i /1Ry Ly(R™™1)) 0 Ly u(Rys By VIR,

Fiy: = Fog /2Ry Ly(R" 1)) N Ly, u(Ry; By V4(R™Y),

and X7 = BQ(“ 1/p) (R};C™). The estimates read as follows. For each wy > 0
there is a constant C' > 0 such that for all w > wy and all data subject to the
corresponding compatibility conditions, the solution (u, ) satisfies

(i) no-slip

lulgy, + lules, + [Vley, < Clluolx, , + [flgo, + (916, +@lglen)  (7.28)
+ (holeg, +wle™"Vhols,,) + (I(g. how)les +wl(g: hos)les)}-
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(ii) pure slip

wlulg,y, + |ulg,, + V7|, < C{luolx, ,, + |fle,, + (|9lc,, +wlglc,,.) (7.29)
+ (|hov ey, +wle " hoy |k, ) + (Ihsley, +w'/?le"Yhsg,, )

+ ((g, how) s, + (g how)len)}-

(iii) outflow

wlulg,, + [ulg,, + [V7lr,, < C{luolx,,, +1flko, + (9l6:, +wlgle,,.) (7.30)
+ (|Pulr, + @' 2le™ YRy |k, ) + (Ihoslrp, + wle™ Y hoslg,, )}

(iv) free

wluhEou + |U|E1u + ‘leEou < C{|UO|X~,,H + |f|IEoH + (|g|G1“ +W|Q|G0u)
+ (|bleg, +w'/?le ¥ hlg,, )} (7.31)

We recall that L, = (0; +w — A)~/2. As in the previous chapter, we may
estimate
—L, —1/2
|€ ythOu S w / q|h|Lp,u(Lq)’

which has the advantage that only norms of the boundary data are involved, but
slightly loosing sharpness. For perturbations of highest order we have to use the
sharp estimates, but for localization the weaker version is sufficient.

7.3 General Domains

In this section we state and prove the main result of this chapter, which is
maximal L, , — Ls-regularity of the generalized Stokes problem on interior and
exterior domains. To state the result, let 2 C R™ be a domain with compact
boundary ¥ := 99 of class C3~, and assume that the coefficients a*! of the nor-
mally strongly elliptic differential operator A(x, D) = 271:1 Dy.a* (x)D; belong
to C1=(Q; B(C™)). Consider the Stokes problem

(O +w)u+ A(x,D)u+ V= f(t,x) inQ,
divu=g(t,z) in Q, (7.32)
u(0,x) =up(xz) in £,
for ¢ > 0, with the following types of natural boundary conditions
(i) no-slip
u=hg on Xg;
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(ii) pure slip
u-v = hoy, sz/kakl(x)Dlu =hy on Xg;
(iii) outflow
Psu = hos, (vpa(z)Djulv) +im = h, on By;
(iv) free
ukakl(x)Dlu +imv=h onX,.

Here we assume that ¥ decomposes disjointly into four parts, i.e.,
Y=3Y3UX,UX,UX,,

where each set ¥; is open and closed in 3. Note that up to three of these sets may
be empty. As before, Py, denotes the orthogonal projection onto the tangent bundle
of ¥. By trace theory, the necessary conditions for solvability of this problems are
the following conditions (Dg).

(2) f € Lp,u(Ry; Ly(CM)), up € Bas /P (;C™).
(b) g€ H! (R H7HQ) N Ly Ry HA()), divug = g(0).

(d0) for no-slip (Dirichlet) boundary conditions:
ho € Fpqu'* (R Ly(Sa;C™) N Ly (R Big /"(£4;€)) and
for p > 3/2p in addition hg(0) = ug on 3.

(ds) for pure slip boundary conditions:
1-1/2 2
how € Fpg'* (R Lg(£4)) N Lpu(Res Big '/ (2,);
hs € Fogor *U(Ry; Ly(S4; TE) N Ly (R Bag /4(S4; TT)) and
Psvpak Dyug = hs(0) for u > 3/p;

(do) for outflow boundary conditions:

hos € Fpg* (Ry; Lo(S6; TS)) N Ly u(Rys By /(3 TS));
hy € Fpgg 2 (Ry5 Lo(S0)) N Ly u(Rys Byg /4(3,)) and
Psug = hox(0) for p > 3/2p;

(dn) for free (Neumann) boundary conditions:
h € Fpg % (R Lg(%n; €)1 Ly u(Ros Byg /(3 €")) and
Psviaf Djug = Psh(0) for u > 3/p.

In addition,
(e) (g,hov) € H;u(RJr;H;Zl?dUES () and hg,(0) = (v|up) on Xy U ;.

After these preliminaries we can state the main result of this section.
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Theorem 7.3.1. Let Q C R™ be a domain with compact boundary ¥ := 0 of class
C37,1<pqg<oo,1>p>1/p, n# 3/2p,3/p, and assume that A(z, D) =
227121 Dy.a"(z)D; is uniformly normally strongly elliptic with coefficients

a* e C17(Q; B(C™))) N Cy(€2; B(CM)).

Then there is wy € R such that for each w > wy, (7.32) with the boundary con-
ditions explained above has mazimal Ly, — Ly-reqularity in the following sense.
There is a unique solution (u,m) of (7.32) in the class

we Hy (J;Lg(Q,C™) N Ly (J HZ(Q:CY), 7w € Ly (T Hy (Q)),
satisfying the corresponding boundary condition, and in addition with
m € Fy/2 12 ] Ly(S, U Sy)),

if and only if the data (f,g,hj,uo) satisfy the conditions (Dq). The solution u
depends continuously on the data in the corresponding spaces.

Observe that the pressure 7 is unique for ¥, U X, # @, but otherwise only
unique up to a constant.

By means of this result we can introduce the generalized Stokes operator for
the four natural boundary conditions. For this, we employ the Helmholtz- Weyl
projection on Ly(Q;C™) w.r.t. the given decomposition of X, cf. Corollary 7.4.4
below. It is defined in the following way. Given f € L,(2; C"), solve the following
weak mixed Dirichlet-Neumann problem according to Theorem 7.4.3.

A¢ =div f in Q,
oo=f-v onXgUX,, (7.33)
0=0 on X, UX,,

and set Pyw f = f — V¢. This is a bounded projection in L, (2; C™) along the
gradients onto Xo := {u € Ly(;C") : V*u = 0}, where

V : H(;/,EOUZH, — Lq’(Q, (C’I’L).
Thus Xy = N(V*), which formally reads
Xo={u e Ly(;C");diveu=0inQ, u-v=0o0n X5 UX,}.

Then we define
Au = Pgw A(z,D)u, u € D(A),

with

D(A) = {u € H}(Q;C")NX, : Pgu =0 on $qU,, Prrra™ Diu =0 on ¥,US,}.
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Problem (7.32) with trivial data except for f and wg is equivalent to the abstract
evolution equation

ttwu+Au=f, t>0, u(0)=uo. (7.34)

In fact, one implication is obvious. To obtain the reverse one, we have to recover
the pressure w from the weak mixed Dirichlet-Neumann problem

Am = div(f — Opu — wu — Alz, D)u) in Q,
oym = (f — Ou—wu— A(z,D)u) -v on LqUZ,, (7.35)
m = (v-aVulv) on X, UZX,.

By Theorem 7.4.3 this problem admits a unique solution 7 € H +(Q). By Theo-
rem 7.3.1 it follows that (7.34) has the property of maximal L,-regularity, hence
the generalized Stokes operators A is the negative generator of an analytic Cp-
semigroup in Xgy. More precisely we have

Theorem 7.3.2. Let Q@ C R™ a domain with compact boundary ¥ := 02 of class
C37,1<p,q<oo, ue (1/p,1], and assume that A(x, D) is uniformly normally
strongly elliptic with coefficients in the class

a*' € Gy~ (4 B(C™))) N Ci(&; B(C™)),

and let the Stokes operator A be defined as above in Xj.
Then (7.34) has mazimal L, ;,—Lq-reqularity; hence w+ A € MR, (Xo), for
any w > wg :=s(—A).

Consequently the minimal wy in Theorem 7.3.1 is the spectral bound s(—A).
The next subsections are devoted to the proof of Theorem 7.3.1.

3.1 Half-Space: Variable Coefficients

We can easily extend Theorem 7.2.1 to the case of variable coefficients with small
deviation from constant ones. To see this, let A(z, D) = Ay(D) + A1 (z, D), where
akl € O}~ (R%; B(C™)) and

sup{|a¥!| : k,l=1,...n,2 € R"} <.

Let S denote the solution operator of the generalized Stokes problem (7.15) from
Theorem 7.2.1 for Ay (D) with one of the boundary conditions under consideration,
and let T be that of the perturbed problem. Then we obtain the identity

—Ai(z,D) 0
T=S5+SBT, where B= 0 0
—By(z,D) 0

Here B; has the obvious meaning of the corresponding boundary operator gener-
ated by the perturbation 4;. The norm of the first component of B as an operator
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from the maximal regularity space E,, into Eg, is bounded by Cn, where C' > 0
denotes a constant independent of 1, and the norm of its third component in the
boundary space Fo, is estimated as in Section 6.2 to the result

1—y

B1(:, D)ulgo, < nlulg,, + Claile:-lulg, , [ulg,,,

for some v € (0, 1].

Therefore, as in Section 6.2, a Neumann series argument shows that T =
(I — SB)™'S in fact exists, is bounded as a map from the data space to the
maximal regularity space as well, and the estimates from Section 7.2.9 remain
valid. Let us state this as

Corollary 7.3.3. The assertions of Theorem 7.2.1 as well as the estimates (7.28),
(7.29), (7.30), (7.31) remain valid in the case of variable coefficients

A(z, D) = Ay(D) + Ay (z, D),
provided
af' € O} (R} B(C™)  and sup{|af'(z)|: k,l=1,...n,2 e R"} <1,

uniformly for 0 < n < ng.

3.2 Bent Half-Spaces

In contrast to the parabolic case, we only are able to consider bent half-spaces
which are tangentially close to a planar boundary. This comes from the fact that
the Stokes-problem has no invariance properties except for the trivial ones, i.e.,
translation and rotation. As before, replacing the variable 2 € R by (z,y), the
bent half-space is defined by the mapping

®(z,y) = [z,y+ 6(z)]", zeR" y>0.

Then @ = ®(R?%) and I' := 9Q = ®(R"! x {0}) = ®(X), where ¥ = R™"~! x {0}.
For the normal of I' we obtain

vr (e, 6(x)) = B(@)[Vo(@), -], B(z) = (1+ |Vo(@)2) ™2 2 e ™.
We employ the transformation to the domain R"~! by means of
W(@(w,y) = ale,y), T(®(x,y) = F(z,y), @R, y>0.
This implies the relations
Vro®(z,y) = (MV)T, Vuod(z,y)=(MV)a,

where
M) = 09) o) = | Ty | =M@
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Similarly,
divu o ®(z,y) = tr(M(z)Viu(z,y)).
In more explicit form, these identities read
Vrod =Vr—V¢d,7, divuo® =diva — V¢ yu.

Using these transformation laws, the problem on a bent half-space transforms to
a problem on a half-space, which reads as follows, dropping the bars.

(0 + w)yu + A*(D)u+ Vr = f + A;(D)u+ Bym  in RY,
divu =g+ Bou in RY}, (7.36)
u(0) = uy in RY,

for t > 0. Here A? is defined by its coefficients ap = d® (a0 ®)dd ', and A,
is lower order, but contains second-order derivatives of ¢. The natural boundary
conditions are perturbed in the following way.
(i) no-slip

u=hyg on Xg;

(ii) pure slip
u-vs = ho, /B + Bsu, Psvsae(x)Du = Pshy + Byu on Xg;
(iif) outflow
Psu = Pshos + Bsu, (vsae(z)Du|vs) 4+ im = h, + Bgu  on X,;
(iv) free
Psvsag(x)Du = Psh + Byu, (vsae(x)Dul|vs) +im = h, + Beu on %,,.

Here the perturbation operators are defined as follows.

Bi¢p = Vo, Byu = V¢ - 0yu,
Bgu =Uu- (VE — Vp/ﬂ), B4u = Pz(PZ — Pp)uEmqu,
Bsu = Px(Ps — Pr)u, Bsu = vsaeVu(vs —vr).

Observe that

vs — v =[-8V, Vo[ /(14 B)],
Pe—Pr=vr®ur —vs Qus.

Both are analytic in V¢ and of order V¢ if the latter is close to zero, hence all
perturbation operators B; are of order V.

This is a perturbation of the half-space problem. The estimates for the right-
hand sides are the same as in Section 6, they are small if |V¢|r__ is small. The
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exception is that we need to consider Bou in Ly, ,(Ry; H) (R7)), as well as the
pair (Byu, Bsu) in H} (R ; H; ' (R )). We easily obtain

| Baulp, , a3y +w|Bouly, oty < VOlLLluln, a2y + V20l ulr, )

C
< (IVolr.. +n+ wl%)ﬂumm + wlulg,, )-

Further, as

/

it is also clear that

Bouyd(z, y) — /

Rn—1

n n
+ RZ

|(Bau, B3U)|H;)M(H;1) +W‘(B2U733u)‘L,,),‘,(H;1) < Vol llule,, +wlulg,,]-
Therefore, by perturbation, the half-space result Theorem 7.2.1 is also true in bent
half-spaces, provided ¢ € C;~ (R"!) and |V¢|z_ is small enough.

Corollary 7.3.4. The assertions of Theorem 7.2.1 as well as the estimates (7.28),
(7.29), (7.30), (7.31) remain valid in the case of variable coefficients

A(xz,D) = Ao(D) + Ay (z, D)
in bent half-spaces provided
af' € O (R B(C™)  and sup{laf(z)| : k,l=1,...n,2 € R}} <,

and
peC(R™Y) and |Vo|r. <,
uniformly for 0 < n < ng.

3.3 Pressure Regularity
The pressure 7 has in general no time regularity. But in special situations we do
have regularity in time.

Proposition 7.3.5. In the situation of Theorem 7.3.1, assume further
up=0, ¢g=0, divf=0 in{,
hoyzo, fl/:O OHE()UES.

Then
(i) If Q is bounded, Pow € Hy ,(Ry;Ly(Q)), for a € (0,1/2 —1/2q),
and for any fized s > 1/q

|P07T|LZJ‘;A'(Lq) < C(|hV|LP‘u(Lq(E)) + ‘u|Lp,u(H;+s(Q)))’
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where Py = I in case ¥, U, # 0, and Pyw denotes the mean zero part of m
otherwise.

(i) If Q is unbounded, with Qr = Q N B(0,R), R large, then Pyrm €
o, (Ry; Ly(Qr) for a < 1/2 —1/2q, and for s > 1/q

|POR7T‘LPH(Lq(QR) < CR(|h”‘Lp,u(Lq(Z)) + |u|Lp7“(H;+S(Q)))’

where Pogr = I in case ¥, UX,, # 0, and Pyrm denotes the mean zero part of ®
w.r.t. Qg otherwise.

Proof. (i) First we assume that 2 is bounded. In case ¥, UX,, = ) we normalize
the pressure by zero mean value. Fix any ¢ € Ly () with mean zero and solve

the elliptic problem
AY=¢ in,

0, =0 onXyUZX;,
=0 on X,UX,,

to obtain a unique solution ¢ € H q2(Q) with mean zero, according to Corollary
7.4.5. Then we obtain with two integrations by parts

(7)o = (7|AY)a = (x]0,9)x — (V7|Vi)a
= (70, 0)s + (Opu 4+ wu — f|VY)q — (Ora®18u|Vip)q
= (7|0,)s,us, + (@O VOkp)a — (vea™ Ou| Vi) s
= (h|0,)s,0s, + (@™ Ou|VORY) o — (ka™ Ou|Vsi)s

as (f-v,div f,g,ho) = 0. As ugp = 0 we may apply the fractional time derivative
0 to the result

(08 m|p)a = (0970 Y) s, us,, + (a¥ 0108 u|V ) q — (vka™ 010 u| V)5,

which shows that m € H, (Ry; Ly(2)) provided 0 < o < 1/2 —1/2q. This also
implies the claimed estimate.

(i) If Q is an exterior domain, we choose any ball B(0, R) C R™ such that ¥ C
B(0,R), and let Qg = QN B(0, R). Take any function ¢ € Ly(Qr), with mean
value 0 in case XgUX,, = (). Then ¢ € Hq_édmxs (Q), by Poincaré’s inequality. This
implies by Theorem 7.4.3 that there is a solution 1 of the elliptic problem
A =6 inQ,
0, =0 onXzUZX;,
=0 onX,UX,,

where ¢ is extended trivially to all of Q. % is unique in case ¥, U X, # (), but
Viy e H ;, (Q) is always unique, and there is a constant C' > 0 such that

VYl < Cl9lL, @n)-
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Now we can perform the same computation as in (i), to the result
(7lP)ar = (h|0u¥)s,us, + (a"0u[VIY)a — (a™ du|Vsy)s.

This implies m € oH,(Ry; Ly(2r)) for each R sufficiently large, and also the
asserted estimate. (]

To be able to apply Proposition 7.3.5, it is convenient to reduce the case of
general data to such data for which the assumptions of Proposition 7.3.5 are valid.
This will be achieved in two steps. First we extend ug to some globally defined

ug € B?,é”fl/p) (R™; C)™ and solve the whole space problem

8tu1 +WU1 + A(l’,D)ul = f7 t> 07 Ul(o) = Ug-

This removes the initial condition and trivializes the compatibility conditions at
t = 0, while the regularity of the data remains unchanged. So we may assume
ug = 0. In the second step we remove g and hg,, as well as the compatibility
condition (e). For this purpose, by Corollary 7.4.5 we solve the elliptic problem

Ap=g in €,
Oy¢ = hg, on XgU3g,
¢=0 on X, U>,.

Then we set ug = u— V¢ and mo = 7+ (0 +w)p+ 1, where, using Theorem 7.4.3,
1) solves the problem

Ay = div(A(z, D)Vg) in Q,
oY =v- (A(m, D)V¢) on Y4z U Xy,
=0 on %, UX,.

Then (ug, m2) satisfies (7.32) with the boundary conditions in question, with data
subject to
(f ' V,din,g,hoy,Uo) = 07

hence 7y has the time regularity asserted in Proposition 7.3.5. So the only remain-
ing data are

(1) f € Lpu(Ry; Xo);

(ii) hos € 0F by /2Ry Ly(S5TE)) N Ly (Rys Wy~ 4 TE));

(i) h € o Fp2 21 (R Lo(S5R™)) N Ly (R Wy~ 9(S5R)).

Here we have set hgss =0 on X,UY,, and h = 0 on X4 U X, for convenience.
We remark, that in case A = —A, we can even achieve f = 0. Indeed, as V
commutes with A = —A we may choose 1o = 7 + (0 + w)¢p — A¢.

3.4 Localization
Here we employ the notation of Sections 6.2.4 and 6.3.3, to introduce the charts
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and the local operators A*. If & C R™ is unbounded, i.e., an exterior domain,
we choose a large ball B(0,R) D 9Q and define Uy = R™ \ B(0, R); otherwise
Uy is void. We cover the compact set ¥ := 02 C R"™ by balls B(xy,r/2) with
xp € 0, k=1,..., Ny, such that each part 9QN B(zy, 2r) of the boundary ¥ can
be parameterized by a function py € C3~ as a graph over the tangent space T}, 3.
We extend this function py to a global function by a cut-off procedure, and denote
the resulting bent half-space by Hy. This is possible by the regularity assumption
¥ € C3~ as well as by compactness of X. Define Uy = B(xy,r)NQ, k=1,...,Np.
We cover the compact set Q \ UkN:lOUk by finitely many balls B(xzg,r/2), k =
Ny +1,...,Na, and set Uy, = B(z,r). Then {Uk}ivio is a finite open covering of
Q. Fix a C>-partition of unity {90/6}221 subordinate to this open covering of 2,
and let xj denote C'°°-functions with xx = 1 on supp @i, supp xx C Uk.

We assume in the sequel that the operator A(zg, D) is strongly elliptic, for
each 79 € Q U {oo}, and normally strongly elliptic for each 2y € 3. Then the
maximal regularity constants for the problems with frozen coefficients will be
uniform in 9 € QU {oc}, by continuity and compactness, hence 1y in Corollaries
7.3.3 and 7.3.4 will be uniform in z( as well. Now we fix any 1 € (0, 7], and choose
the radius of the chart r > 0 so small that the assumptions of these corollaries are
met, and each chart only intersects one of the boundary parts ;. According to
the previous subsection, we may also assume

(div f,g,u0) =0 inQ, ho,=f-v=0 onTquly, h,=0 onl,Ul,.

Therefore Proposition 7.3.5 is available.

To define local operators A*(x, D) and B¥(x, D) we proceed as follows. For
the interior charts k = 0, k = Ny +1,..., N, we define the coefficients of A¥(z, D)
by reflection of the coefficients at the boundary of Uy. This is the same trick as
in Section 6.1.4. For the boundary charts K = 1,..., N7 we first transform the
coefficients of A(x,D) and B;(xz,D) in Uy to a half-space, extend them as in
Section 6.2.4, and then transform them back to the bent half-space Hj. Having
defined the local differential operators, we may proceed as in Section 6.2.4, intro-
ducing local problems for the functions u* = @,u, which for the interior charts
k=0,and k= N; +1,..., Ny are problems on R”, and for the boundary charts
k=1,..., Ny are problems on the bent half-spaces Hj with boundary dHy. This
yields the following problems. For £k = 0 and k = N1 +1,..., Ny we have the whole
space problems

opu® 4+ wuk + A (x, D)yu* + Vi = fi. + Fp(u,7) in R,
divu® = u -V in R™,
u*(0) =0 in R",

for t > 0, where fr = fpr and Fi(u, ) = [A(z, D), prJu+7Vpg. For the boundary
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charts k = 1,..., N; we have the problems
o + wuk + A (x, DYu* + Vr* = fi, + Fp(u,m) in Hy,

divuf = Vo, - u in Hy,
uF(0) =0 in H,,

for t > 0, together with the following boundary conditions

Pow, u* = h, on OHy, it Uy N (SqUXo) # 0;

(u*|v) =0 on OHy, if UpN(ZqUX,) # 0;

Psva: VuF = hE + Hyp(u) on 0Hy, if UpN (S, UN,) # 0;

—va : Vurv + 7% = H,p(u) on OHy, if UpN (X, UX,) # 0.

Here hfs, = hosr, h% = hspr, Hsru = PsvaVegu, and Hy(u) = —vaVpguv.
In short-hand notation we may write this problem as

Lyzi = gr + [L, ¢rlz,

where z = (u,7), 2z = wrz, g = wr(f,0,h), and the notations L and Lj are
obvious.

Unfortunately, the commutator [L, ¢x] in this case is not lower order, so we
cannot continue as in Section 6.2.2 and some additional arguments are needed. It
turns out that all perturbation terms on the right-hand sides of these equations
are lower order, hence can be estimated as in Section 6.2.2, except for Vg, - u in
the divergence equation. In fact, as in Section 6.2.2 we have

A, orlulgy, @1, < Cw™ 2 (wlulg,, @) + [ulg,, @) (7.37)

as well as

| Hi gy 0my) + "2 Hi|L, , (L, (0m0) < Co™? (Wlulgy, @) + [uls,,.@)-  (7.38)
Further, by Proposition 7.3.5,

[TV kg, (11,) < Cw ™ (wlulg,, @) + [ulg,, @), (7.39)

for some v > 0, here the additional pressure regularity comes in.

Next we remove the inhomogeneous part g[f,0,h] by solving the corre-
sponding bent half-space problems to obtain z,g = (ug, wg) in the right regularity
classes.

To remove the inhomogeneity u - Vyy in the divergence equation, we decom-
pose uF = ud + Gy, + Vi, where ¢y, solves the elliptic problem

A =u- Vi = div (upg) in Hy,
Oy =0 on OHl, if UpxN (24U ES> #* 0, (740)
or =0 on OHy, if Ukﬂ(ZOUEn)#@

b
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where Hy, = R" for k =0, N1 +1,..., No. By Corollary 7.4.2, this problem admits
a solution ¢ such that V¢ is unique, with regularity

Vi € oH,, ,(Ry; Hy (Hy)) N Ly, (Ry; HY (Hy)).
Moreover, we have the estimates

IVonlL, (@) < Clulz, )
IV érley, 0) + [V20klE,, @10) < Clule,, ), (7.41)
VOl gz gy T IVORIL, 2080) < Cow™ 2 (wlulg,, ) + |ulg,, @))-

Next we employ the Helmholtz projection in case Up N (g U X;) # 0 resp. the
Weyl projection in case U N (2, UX,) # 0, denoted by Py, to decompose

Fy(u, ) == Fi.(u,7) — A*V ey, = Vi, + PuFy(u, ).
Introducing a new pressure 73 by means of
Ty =7+ (O +w)bk — Yk — 7
we arrive at the modified problems

Oty + witg + A¥(z, D)iy + Vi = PiFy(u, ) in Hg,
div ﬂk =0 in Hk,
W, (0) =0 in H.

For the boundary charts k = 1,..., N7 these problems are complemented by the
boundary conditions

Pom, it = —Vu¢p on dHy, iU, N(EUL,) #0;

(iglv) =0 on OHy, if Uy N (XqUXy) # 0

Pom, vaViy = Hsp(u) on OHy, if Uy N (2, US,) # 0;
—vaVugy + 7y, :fl,,k(u) on 0Hy, if UpN (T, UX,) # 0.

Here ﬁgk(u) = Hspi(u) — Psvap V3¢, and ﬁyk(u) = H,i(u) + vaiV2¢,v. Note
that Fk, P.F), and Hj, are subject to the same estimates as Fy and Hy, with
probably larger constants C, thanks to (7.41).

Next, we introduce the operators

Thz = (V(bk, (Bt + w)(;ﬁk - ’t/Jk)
With this notation we can rewrite the localized solution as

O ~
2 =2 + 2k + Tz,
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where Zj, solves the problem
Lizy = Gyz,

with

sz = [L, gOk]Z - Lkaz
= [Pu([A, prlu + 7Vpr — APV 1., 0, [B, oiJu — B*V ey,
where B* denotes the appropriate boundary operator. More precisely, [, Blu = 0
if Uy N (2, UX,) =0 and [pg, Blu = vaV2piu, otherwise.

It is useful to introduce norms for the solutions and for the data which depend
on w. We set

Izl = wlun g, ) + [uklE,y, @) + VTR, ()

and similarly we define ||z|| on 2. For the data we set
gl = 1 fxlzo, () + w2 N0E L, (Lo @8)) T [BEIEL, (010
+ WP L g ome) + 1R s om0

and similarly for g on 2. Then we obtain by maximal regularity on a bent half-
space

120l < Cligell < Cllgll,  1Z]] < Cw™]zll,

with a constant C' > 0 independent of w and k. Here we employed estimates (7.37),
(7.38), (7.39), and (7.41).
To estimate T}z, we employ again (7.37), (7.38), (7.39), and (7.41) to obtain

IVor|L, (i) + IVUklg,, @) < Cw™7|2].

Finally, it remains to estimate (9; + w)V¢y. For this purpose, we employ the
identity

(8¢ + w) oy = T, — Tk + Pi — Ty
Applying Poincaré’s inequality to 7y and v, and Proposition 7.3.5 to m and 7y,
we obtain
1% + @)kl (Lo @) < |TklLy o)+ [TlL, o @iy + TR+ YklL, 2, @0)

< |7kl (2B (0,R)) T+ ITE[E., (2B (0, R))

+ OVl () + VU

< C(llgll +w211)-

By interpolation with (7.41) this yields

]EO;L (Hk ))

|8 + W) Vérley, we) < Cllgll + Cwo™72|2]].
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Summing over k yields the a priori estimate for z = ), xx2k, which reads

=l < >~ Ixwzell < Cllgll + Cw™ 2],
k

for some vy > 0, and a constant C' > 0 which is independent of w. Choosing w > 2C
this implies
lI2]l < 2C|g-

Therefore, the operator L on 2 is injective and has closed range. We even can
write down a left inverse S as follows. From the identity

z = ZXka = ZXk(Z;g + Zp + Tiz)
k k
= Z xkLy forg + Z Xk(Ly ' Gi +Ti)z
2 k
= Z xkLy torg + Gz,
k

we obtain

Z = S I GL ZXkLkr ka

as |G| < 1 for w large.
So it remains to prove surjectivity of L. For this purpose, we assume f = 0
for the moment. Set z = Sg as just defined, i.e.,

z= Z xkLy forg + Z Xk(Ly ' G +Ti)z
e k
=> XLy 'eg+ Gz,
ke

and apply L, to the result

L(z— G 2) = > xaLiLy 'org + Y L. xklLy 'org
k k

=g+ Z GrLy ' org + szk%g,
k K

where @k = [L,xx] — LTk and Tk is defined in the same way as Ty, replacing ¢y
by xx. This implies

L(z—G"z - Zﬂ%g) =g+ Z GrLy'vrg = (I+GR)g.
k k

To conclude the argument, we only have to show that the operator G in the data
space has norm smaller than 1, as this implies surjectivity of L, and then

(S—G"S = Thpr)(I+ G
k
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is a right inverse of L. Now G}, can be estimated in the same way as Gy, as f = 0,
hence we have surjectivity in this case.

To deal with general f, we employ a homotopy argument. Replacing A by
TA— (1—7)A, we see that the corresponding operators L are injective and have
closed ranges for all 7 € [0, 1], as these operators are uniformly normally strongly
elliptc, uniformly w.r.t. 7. Therefore the Fredholm index of L” is constant, and
this shows that L' is surjective if and only if L° is surjective. For 7 = 0 we have
the classical case A = —A, and as we have noted above, we may then assume
f = 0. This completes the proof of Theorem 7.3.1.

7.4 Boundary Value Problems for the Laplacian
Here we state and prove some results for the Laplace equation which have been
employed in Section 7.3.

4.1 Whole Space
We begin with the case 2 = R". By the very definition of the homogeneous Bessel
potential spaces H;(R™), namely

H:(R") :={u e S'(R") : F L[5 Fu e Ly(R™)},

q

where 1 < ¢ < oo and s € R, it is clear that A is an isomorphism between the
spaces H;T?(R") and H;(R™).

4.2 Half Space
The half-space case 2 = R’} is a little more involved.

(i) We first consider the Dirichlet problem
Au=0 in R}, u=h on ORY =R" L
Defining the Poisson semigroup P(y) by means of
P(y)h = F~ e vIEl Fh,
u = P(y)h is the unique solution of the Dirichlet problem. This shows that u €
HE(R™) if and only if i € Wy~ /*(R"1), for all ¢ € (1,00) and k > 0.

(ii) In the next step we consider the Neumann problem
Au=0 in R}, —-0yu=g on JORY.

Denoting the generator of the Poisson semigroup by D, the unique solution of the
Neumann problem is given by u = P(y)D~'g. As D has symbol [£], it is clear that
D is an isomorphism from H;t'(R"™') to H;(R"™'), for all ¢ € (1,00), s € R.
Therefore the solution u of the Neumann problem belongs to the class H, R(RY) if
and only if g € Wf_l_l/q(Rnfl), for all ¢ € (1,00), k > 0.
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(iif) Now we consider the inhomogeneous Dirichlet problem
—Au=f in R}, u=0 on JR}.

The unique solution of this problem is given by

UZGDf =

; /OOO (P(ly = s) = P(y +5)) f(s) ds.

This representation shows u € H; (R7}) if and only if f € L,(R?).

(iv) Similarly, the solution of the inhomogeneous Neumann problem
—Au=f in R}, Jyu=0 on IR}.

is given by

u=Gnf =

; /000 (P(ly = s|) + Py +s)) f(s) ds.

This representation shows u € Hg (R7}) if and only if f € L,(R").

(v) Higher order regularity.

If f € Hy(R%}) then differentiating the equations (or the solution formulas) first
tangentially we obtain V,u € HqQ (R%), and then normally, we find u € HS’(RQ‘_)
g1 € W VIR,

In the Dirichlet case we also use (i) with g = f

(vi) Weak solutions.
Finally, we consider the weak Dirichlet problem

Au=divf in R}, u=0 on ORY,
where f = [fs, fy]T € Ly(R%;C"). In this case the solution u is given by
uw=Vy- Gpfs+ 0yGnfy,
hence u € H, ; (R™%). Similarly, for the weak Neumann problem
Au=divf in R}, O9yu=f, on ORY,

we have

u= vm ' GNfz + ayGnya
and so also in this case u € H; (R%).

4.3 Bent Half Spaces
In the next step we extend the results from the previous subsection to the case of
certain bent half-spaces.
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(a) Coordinate Transformations.

Let Q C R” be a domain with boundary of class C!, such that 9Q =: ¥ decomposes
disjointly as 3 = ¢ U 3 with X; open and closed in ¥. Suppose ® : Q= R"is
bijective, of class C'! such that

0<c<|detd®(z)| <1/c, z€Q,

and assume ®(%) = 9®(2). We set Q% = &(Q) and E;P =®(%;), j=0,1.
Consider the weak Dirichlet-Neumann problem

(Vu|Vo)gs = (f|V0)gs, ve H;,’Zg(m’), (7.42)
u=h on X

By means of the transformation ®, this problem can be reformulated as a weak
problem on €2 in the following way. By means of the pull backs

u(z) = u(®(x)), 7(x) = v(2(x)), h(z) = h(®()),

and with
V,i(r) = Vau(®(x)) = 08(2)TV,u 0 B(x),

the transformation rule yields for a weak solution u on Q%

0= (Vu— f|Vv)ge = / (Vyuly) — F)) - Vyoly) dy

?(Q)
= /Q (Vyu(®(x)) — f(@(2))) - Vyu(®(x))|det 0D (x)]| da

= [ (et 2(0)j00(0) 00 (0) T Vss) — o) - Vo) o

where -
f(z) = |det 0®(2)|0®(2) " f(®(x)), =€
This shows that Problem (7.42) becomes
0= (AVa— f|Vo), @€ H 5 (Q), (7.43)
h on Y.

U
Here the coefficient matrix A(x) is defined by
A(x) = |det 08 (x)|0®(z) 10D (x)~

hence A is continuous and bounded.
Note that by the assumptions on ®, the map T defined by Tyu := @ is an

isomorphism from Ly (Q®) to L,(2) and from H;,Z;f Q%) to I-'I;’EO(Q), hence by

interpolation also from H;)Eg) Q%) to H;EU(Q), s € [0,1], and from H;,zg’ Q%)
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to H; 5 (), s € [0,1]. As Tg respects boundary traces by assumption, we also
see that h € W;il/q(Eg’)iif and only if h € W;*”q(zo). Finally, we have f €
L,(Q%;R™) if and only if f € L,(Q;R").

These arguments show that (7.42) is well-posed in Q® if and only if (7.43) is
well-posed in 2.

(b) Perturbed Half-Spaces

Now we consider the special case where Q = R and ®(z,y) = [z,y + h(z)]" with
r € R" ! and y > 0, as well as h € C}(R"™!). This means that Q% is a bent
half-space. Easy computations show det 0®(z,y) = 1, as well as

I —V.h(z)

_ -1 T _

hence A(z,y) = I — B(z), where |B(z)| < C|Vzh|s. So, dropping the bars, the
transformed problem can be rewritten as the problem

-1
(VulVo)rn = (f|VV)rr + (BVu|VU)Rr, v € oH 5 (RY),

(7.44)

u=~h onJdRY,

in the Dirichlet case, i.e., X1 = @), and
(VulVo)en = (f|Vo)rs + (BVu|Vo)rn, v e Hy(RY), (7.45)
in the Neumann case, i.e., X9 = (. These are perturbations of the half-space

problems in Section 7.4.2, provided |V h|s is small.

More precisely, let Lp : Lg(R7;R™) x W, VR o H}(R?) denote
the bounded solution map from Section 7.4.2 for the Dirichlet problem and Ly :
L,(R};R™) — H +(R'}) that for the Neumann problem in the half-space. Then the
perturbed problems can rewritten abstractly as

u=Lp(f,h)+ Lp(BVu,0), w=Lnf+ LyBVu,

respectively. Thus by a Neumann series argument, there is a number 79 > 0
such that whenever |V h|s < 79, then the perturbed equations are also uniquely
solvable.

Note that this number 7y > 0 is universal for the Laplacian, it only depends
on ¢q. Bent half-spaces will be called perturbed half-spaces if the corresponding
height function A is subject to |Vih|e < 1. If in addition the support of h is
compact, then we use the term compactly perturbed half-space.

Let us summarize.

Theorem 7.4.1. Let Q) = H denote a perturbed half-space, and q € (1,00). Then

(i) Neumann problem
For each f € Ly(H) there is a unique solution of

(Vu|Vo)g = (f|Vv)u, v€ H,(H). (7.46)
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There is a constant ¢ > 0 such that

c|Vulg < |[flg: [ € Lo(H),

and
c|Vulg < sup{|(Vu|Vv)m : v € H;,(H), Vvl <1}

(ii) Dirichlet problem
For each f € Ly(H) and h € W;_l/q(aH), there is a unique solution of

(Vu|Vo)g = (f|IVo)m, veE OH;(H), u="h on OH.
There is a constant ¢ > 0 such that
c|Vuly < [flg + hlyi-1a,  f € Lg(H), h e Wy~ /9(0H).
Furthermore, in case h =0,

c|Vuly < sup{|(Vu|Vv)m: v € OH;,(H), Vol <1}

355

(7.47)

(7.48)

(7.49)

For the proof of the variational inequalities note that (7.46) is equivalent
to V;,Vyu = V7, f, and the right-hand side of (7.47) is precisely the norm of

this quantity in o H q_l(H). A similar argument is valid for the Dirichlet problem,

provided h = 0.

Concerning higher regularity, the results for perturbed half-spaces are not as
precise as those for the half-space case, as lower order terms occur. However, the
assertions in the next corollary follow from the corresponding half-space results,

again by Neumann series arguments.

Corollary 7.4.2. Let QQ = H denote a perturbed half-space, q € (1,0), s € {0,1},

and h € CH9) ™ (Rn1),

(i) Neumann problem

If fe Hj(H), g € W;+S_1/q(8H) such that (f,g) € OH;I(H)), then the problem

Au=f inH, J,u=g ondH

has a unique solution u such that Vu € H})"*(H).

(ii) Dirichlet problem

If fe Hi(H), h € W¢12+871/q(8H) such that f € Hq_l(H)), then the problem

Au=f inH, w=h ondH

has a unique solution u such that Vu € H)**(H).
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4.4 General Domains
Now we are ready to consider domains with compact boundary, which means
domains which are either bounded or exterior.

Theorem 7.4.3. Suppose that Q is domain in R™ with compact boundary 02 := %
of class C', and suppose that ¥ decomposes disjointly into ¥ = Yo U X1, where %

are open and closed in X. Let f € Ly(Q), h € qu_l/q(Zg), with ¢ € (1, 00).
Then the problem

(Vu|Vo)a = (f|[Vo)a, v € Hy s, (),

(7.50)
u=nh on X,
admits a unique solution u € H;(Q) There is a constant C > 0 such that
IVulr, < C(IflL, + |hly1-1/4) (7.51)

holds for all f € Ly(Q) and h € Wy~ ().

Recall quyq)(Q) = H}(Q)/constants, hence uniqueness in H] y, (€2) means
uniqueness up to a constant in case ¥y = 0, and even uniqueness otherwise. If
Yo = (), we normalize the solution by mean value zero if Q is bounded, and by
mean zero on )N B(0, R), for some large fixed ball B(0, R) which contains X.

Proof. The proof consists of several steps. The first step concerns uniqueness.

(a) Uniqueness
Suppose .
(Vu|lVu)a =0, wve H;,,EO(Q), u=0 on Xg.

We show that this implies © = 0 in H;,EO (Q). For this purpose, we prove two
assertions, namely
(i) For each x¢ € Q there is a ball B(xg,7) such that Vu € Lo(B(w0,7)).
(ii) There is a ball B(0,r) D X, such that Vu € Lo(R™ \ B(0,r)).
Here (ii) is void in case € is bounded.

Assuming (i) and (ii), by compactness we obtain Vu € Ly(£2) and so we may
use v = u as a test function to obtain |Vu|3 = 0, which yields the assertion.

(i) If ¢ > 2 this is obvious, as Ly(B(zo,7)) C La(B(xo,7)), for each r > 0. So let
€ (1,2). Set go = g and define inductively g; by

1 1 1

_ 1
q; qj—1 n q

)

J.
n

clearly g, > 2 if k > n(2 — q)/2q. Choose a radius r¢ > 0 small enough so that
B(zg,r0) C Qin case g € © — then we set H,, = R™ —, and if ¢ € 09, such that
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QN B(xg,70) is part of the boundary of a perturbed half-space H,,,. Below we will
be using the inequalities (7.47) and (7.49) for perurbed half-spaces as well as for
the whole space.

Next we choose cut-off functions x; with suppx; C B(zo,7j), x; = 1
on B(zg,7j+1). We proceed by induction. By assumption we know Vu €
Ly, (B(20,70)). Assume Vu € Ly, (B(z0,70)), and consider V(x;u). We have

IV(xjw)lg 0 < esup{(V(x;u)|VO)m,, : [Vulg, <1},

where we may normalize v by mean value zero on B(xzg,r;), in case z¢g € QU X;.
hence with

(Vxjuw)|Vo)m,, = (VulV(x;0)n,, — (VuloVxj)m,, + (@Vx;[Vo)u,,
= —(Vul[oVx;)n,, + (@Vx; Vo),

L1 .
by assumption, as x;v belorlgs tooH , (Hy, ) if o € o, and to H;, (Hg, ) otherwise.
Since Vy; has support in B(z,7;) \ B(xo,rj+1), we obtain

((VuloVxg)m,, | < CIVulL, (Bor)|V]L, B@o.r)),

and also
|(UVXJ|VU)HwO‘ < C|u|qu (B(Io-ﬂ“j))|V'U|Lq/(B(10»Tj))'

Consequently, by Poincaré’s inequlity we have
VGl < Clulag, (B(l’o,’l‘j))|U‘H;§(B(:Eg,7‘j))
< O|U|H;j(B(wo7rj))|vv|Lq;_ (B(zo,r;))
< Clulny, o) [VVIL,, @) < Clulty 5o,
and as x; = 1 on B(zg,7;41) this yields
Vulr,,,, (B@or) < Clulay (B@o.r))-

This proves (i).

(ii) We have to distinguish the cases ¢ > 2 and 1 < g < 2. If ¢ > 2, choose a ball
B(0,7¢) such that ¥ C B(0,79 — 1), and fix a cut-off function xo which equals 0
in B(0,79 — 1) and equals one outside the ball B(0,rg). Then we have

| V(xou)| Lo mny < sup{(V(xouw)|Vv)rn : |Vv|p,@mny < 1}

As above
(V(xouw)[Vv)rn = —(Vul[vVxo)rn + (uVx0|VV)Rn,
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hence

[(V(xow)[Vo)re | < Clulgzag) v a1 a0)
< Clulm ag) [0l m3(A0)»
where Ag = B(0,r¢) \ B(0,79 — 1). As we may normalize v by mean value zero
over Ag, and xo =1 on R™ \ B(0, rg) this shows Vu € Lo(R™ \ B(0,r9)).

On the other hand, if 1 < ¢ < 2 then we set r; = jrg, and choose cut-offs
such that supp x; C R™\ B(0,7;), and x; = 1 on R™\ B(0,7,4+1). Then by

AVxWlgs e < sup{(Vxjuw)|[Volen : [Volg <1},

we obtain as before

[(VOGu)IVo)en| < Clulmyaylvlaya,)
< Clulmp(aylvlmy(a,),
and so the same argument as in (i) implies Vu € Lo (R™ \ B(0, 7)), by induction.
As a consequence, we obtain u € Lo(R™ \ B(0,r)) for some r > 0.

(b) Lower Bound
(i) Suppose that the inequality (with h = 0)

c|Vulg <sup{|(Vu|Vv)q|: |Vu|y <1}

does not hold. Then there is a sequence (uy) C H(},EO (Q) with |Vug|q = 1 such
that
e = sup{|(Vug|Vv)a| : [Vouly <1} -0 ask — oco.

Since Ly(12) is reflexive, there is a subsequence (w.l.o.g. the whole sequence) such
that Vup — Vu in Lg(€). This implies with e, — 0

(Vup|Vv)g — (Vu|Vu)g =0, for allv € Hy, 5 (Q).

Then (a) implies v = 0.

(if) Next we localize as e.g. in Section 6.3.3; below we use the notation from there.
Then by the previous subsection we know

|V (pjur)lg < sup{|(V(pjur)[Vo)u, | : [Volg <1} =: dy;

on each perturbed half-space or whole space H;, j = 0,...,N. We want to prove
dr; — 0 as k — oo, for each j. If this is true, then

N N N
Vugly =1 Vigun)lg <D IV(pjun)lg < CY dij — 0
j=0

Jj=0 Jj=0
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as k — 0o, a contradiction as |Vui|q; = 1 by assumption.
(iii) For a fixed j € {0,..., N} choose v; € H(}/ (H;) normalized by |Vugjley = 1,

and by mean value zero over U; in case U; N ¥ = 0, such that

1
dij < z T (V(pjur)|Vor;)m,-
We have

(V(pjur)[Vor)m; = (Vur|V(ojor)m; — (Vur| Voo )u, + (urVeji|veg )u;,

hence
1
drj < & +ex|V(vjoe)lg + [(Vur|Vojuk)m, | + [(ux Vi Vg )u, |-

Clearly the first two terms on the right-hand side of this inequality converge to
zero as k — oo. The third term tends to zero, as Vui — 0 in Ly(2) and by
Poincaré’s inequality and compact embedding, the set {V;vi;}i>o is relatively
compact in Ly (). Finally, the last term converges also to zero, as uyVg; — 0 as
k — oo by compact embedding, and Vvy; is bounded in Ly, by construction.

(c) The Isomorphism
Let
Vg :H s, () = Ly(Q)

be defined by (Vou)(z) = (Vu)(z), x € Q. This operator is bounded, linear,
injective, and has closed range. Therefore its dual

Vit Ly (Q) — [HE

q q,%0

Q" =H, %, (9)
is linear, bounded, and surjective. Define

Ag:t Hy 5, (Q) — qugl Q)

by means of Agu =V, V; then A4, is bounded linear, and A7 = A,. We have

Au=f < (VulVu)g = (f|Vv)q forallve H;,,ZO(Q), u =0 on Y.

By (a) we see that A, is injective, for ¢ € (1,00), and (b) implies that A, has
closed range. Therefore, as A} = A, is also injective, it is bijective, i.e., A, is an
isomorphism for each ¢q € (1, 00).

(d) Inhomogeneous Dirichlet Data
Finally we consider the case f = 0 but h ## 0. For this purpose we first solve

ug — Aug =0in 2, Jdyup =0o0n Xy, wug=h on X.
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Section 6.3.6 yields a unique ug € Hy(Q). Then u; = u — up must solve
Aguy = Aug € H 3, (),

which by (c) admits a unique solution u; € H;ZO(Q). This completes the proof.
O

As a first consequence we obtain the Helmholtz-Weyl projection.

Corollary 7.4.4. Let 1 < q < oo, Q be either the whole space R™, or a perturbed half-
space, or a domain with compact C*-boundary 02 =: X. Suppose that ¥ = LoUX,
with disjoint parts X; which are open and closed in 3.

Then given f € Lqg(Q;C™), there are unique functions ¢ € H!

2.5 (8) and w €
N(V;/) such that

f=Vo+w,

and there is a constant such that
jw]r, < Clfle,, for all f € Ly(€).

The bounded linear operator Ppw € B(L4(Q)) defined by Pywf = w is a
projection, called the Helmholtz-Weyl projection associated to the decomposition
¥ =30 U3 of the boundary 3 = 99 of .

This result follows by solving the problem A,¢ = V7, f according to Theorem
7.4.3. Then obviously w = f — V¢ € N(V},).

The final result concerns higher regularity.

Corollary 7.4.5. Suppose that Q) is a domain in R™ with compact boundary 02 := X
of class C?t9)~ s = 0,1, and suppose that ¥ decomposes disjointly into ¥ =
Yo UXy, where 3; are open and closed in 3. Let f € H (), g € WqHS_l/q(El),

he W,12+571/q(20), and assume (f,g) € Hq_él(ﬂ)
Then the problem
Au=f inQ,
O,u=g¢g on Xy, (7.52)
u=~h on X,

admits a unique solution u with Vu € H;‘*‘S(Q). There is a constant C > 0 such
that

|V'LL|H;+S < C(‘(f, g)‘H;gl + |f|H(; + |g|qu+sfl/q + |h|W(12+571/q) (753)

holds for all (f,g,h) € HZ () x Wy 7 19(51) x Wi 719(5), s = 0, 1.
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Proof. First we may reduce to the case (g, h) = 0, solving the problem

ug — Aug =0 in Q,
Oyug =g on X,
ug = h on X,
as in (d) above. )
Let H; and ¢;, j = 0,..., N, be as above. Let v € H;,(Hj) ifx; € QU

and v € OH;, (H;) otherwise. Then we have

(V(pu)| Vo), = (Vu|V(pv))n, — (VuVe;|v)a, + (uVe;[ Vo),
VulV(p;v))m; — (VuVeilv)a, — (div(uVe;)|v)m,

= —(fej +2VuVp; +ulp;lv)m, = —(filv)m;,

= (
= (

with f; == fo; + 2VuVe,; + ulAp,; € Ly(H;). This shows that ¢,u is the weak
solution in H; with right-hand side f; € Ly(H,). The results in Section 7.4.3 show
that V(p;u) € Hy"*(H;), hence summing over j we obtain the assertion. O

Remark. In all of this section we restricted our analysis to the Laplacian. How-
ever, A can be replaced by any uniformly strongly elliptic operator div(A(z)V)
with coefficients A € Cj(Q;R™ ") for weak solutions, and additionally A €
Wlts(Q;R"*") for higher regularity. This extension is straightforward, and its
implementation is left for the curious reader as well as to researchers who are in

need of such results.
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