Chapter 6

Elliptic and Parabolic Problems

In this chapter we prove maximal L,-regularity for various linear parabolic and
elliptic problems. These results will be crucial for our study of quasilinear parabolic
problems, including those introduced in Chapter 1. The proofs are based on the
vector-valued Fourier multiplier theorems and H*-calculi developed in Chapter 4,
as well as on arguments involving perturbations, domain transformations, and
localizations.

6.1 Elliptic and Parabolic Problems on R"

We begin with the constant coefficient case.

1.1 Kernel Estimates
Let A(€) denote a B(E)-valued polynomial on R™ which is homogeneous of degree
m € Nj ie.,

A(§) = Z a.f”, §eR”,

|a]=m

where we use multi-index notation, and a, € B(FE), E a Banach space. We want
to consider the vector-valued partial differential equation

Mu(z) + A(D)u(z) = f(z), =x€R", (6.1)

where the function f is given, A € C, and D = —i(d4,...,d,). The purpose of this
subsection is the derivation of a kernel representation for the solution u(z) of the
form

u(z) = /n =2 f(z')da’, xeR™, (6.2)

as well as estimates for the kernel v, .
Homogeneity of A of degree m implies that 7, must be of the form

(@) = A= (A ), @ e R”, arg(A) =6, A #0. (6.3)
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Here 7y denotes the fundamental solution of (6.1), i.e., it satisfies the equation
e"v9 + A(D)yo = do

in the sense of distributions.
In fact, a formal argument, which will become precise later, is as follows.
Taking Fourier transforms we obtain for the solution of (6.1) the expression

Fu(€) = (A +A€)T'Ff(E), EeR™

Taking inverse transforms this yields

n

u(z) = (2m)7" / (A A(©)) " FA(E)e ™ de.

By the convolution theorem we get

() = (2m)" / (A A(©) e € d,

n

which after the scaling & = |\|'/™¢ leads to the representation (6.3) with

79(1') _ (27‘()_"/ (ew +A(£/))—leix-£l d£/7 (64)
where 6 = arg(\).

For all this to make sense we surely must know that A+ .4(€) is invertible for
all £ € R™ and for all A in question. This naturally leads to the basic assumption
we make here, namely that of parameter-ellipticity.

Definition 6.1.1. The B(E)-valued polynomial A(&) is called parameter-elliptic if
there is an angle ¢ € [0,m) such that the spectrum o(A(E)) of A(E) satisfies

o(A&)) C Xy forall§ eR", | =1. (6.5)

We call
¢4 :=1inf{¢: (6.5) holds} = sup |argo(A(E))|
1€1=1
angle of ellipticity of A. A(€) is called normally elliptic if it is parameter-elliptic
with angle ¢4 < w/2. We then call the differential operator A(D) parameter-
elliptic resp. normally elliptic as well.

Some remarks are in order.

Remark 6.1.2. (i) It is easy to see that parameter-ellipticity as well as ¢4 are
invariant under orthogonal transformations, but even more is true. Consider a co-
ordinate transformation of the form Tu(x) = u(Qz) where Q € R™*" is invertible.
Then the transformed differential operator will be

Ag(D) :=T*A(D)T = A(Q"D).
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Hence with A(£) also Ag(§) = A(QTE) is parameter-elliptic, and ¢4, = ¢.

(ii) Note that m is necessarily even in case ¢4 < /2. Indeed,
A(=¢) = —A(6), £eR,
in case m is odd, and hence
o(A(§)) CZp N =% =0, [§=1,
which is impossible.

(iii) On the other hand, there are parameter-elliptic operators of odd order, e.g.
forn=1,m=1, A(D) =D is parameter-elliptic with ¢4 = 7/2.

(iv) Recall that the symbol A(&) = -, _,, @& is called elliptic if 0 ¢ o(A(¢))
for all £ € R™, £ # 0. Obviously, each parameter-elliptic symbol is also elliptic,
but not conversely. A famous counterexample is the Cauchy-Riemann operator
A(&) = & + i€ with n = 2, E = C; for this operator we have Uj¢|—10(A(¢)) = S*,
the unit sphere in C.

If F is a Hilbert space, there is another notion of ellipticity.
Definition 6.1.3. The B(FE)-valued polynomial A(§) is called strongly elliptic if
there is a constant ¢ > 0 such that
Re(A(€)vlv)p > cl¢|™[v]E, €€R", ve E.
The largest such ¢ will be called the ellipticity constant ¢4 of A(D). The differential
operator A(D) is then also called strongly elliptic.

Also for this notion of ellipticity some remarks are in order.

Remark 6.1.4. (i) Observe that also strong ellipticity as well as ¢4 are invariant
under orthogonal transformations. More generally, strong ellipticity is invariant
also under general coordinate transformations, but the constant ¢4 does not have
this property.

(ii) To understand the condition of strong ellipticity, recall that the numerical
range n(B) of an operator B € B(FE) is defined by

n(B):={z€C:z=(Bv|v)g for somev € E, |v|g =1}.

It is easy to see that o(B) C n(B), and that n(B) C Bc(0, |B]) holds. Therefore,
A is strongly elliptic if the numerical range of A(€) is contained in the half-space
Rez > ¢ > 0 for each £ € R™, || = 1. Consequently, if A is strongly elliptic then

a(A(€)) Cn(A(E)) C By, EeR”, ¢ =1,
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In particular, every strongly elliptic polynomial A is parameter-elliptic with
¢4 < supflarg(A(§)vv)pl: v € E, v[p =1, € R", [§]| =1} < /2,

hence even normally elliptic.

(iii) The class of strongly elliptic differential operators contains some of the most
common elliptic operators arising in applications.

Now assume that A is parameter-elliptic with angle of ellipticity ¢4 and let
@ > ¢4. We are going to justify the formal procedure from above for |0] < m — ¢.
For this purpose we consider the Fourier integral

Bil) = m " [ (@A) e e ag (6.6)

with ¢ > 0 fixed. Note that this integral is absolutely convergent due to the
additional exponential factor, in contrast to (6.4). For the moment we restrict
attention to the case n > 3. We will comment at the end of this section on n = 1, 2.
Fix x € R™, x # 0, and choose a rotation @ such that Qx = rey, where r = |z|
and e; means the first unit vector in R™. By means of the variable transformation

Q¢ =(n,5¢), neR, s>0,(eS"?

where S* denotes the k-dimensional unit sphere, we obtain the following represen-
tation of 5.

() = o / / / (€ + AQT (1, 5)))~lne=<*+* qpicds,
2m)™ Jo sn—2 JR

Next we employ the scaling n = (1 + s)z for n and observe that by homogeneity
of A we have

AQT(,5Q)) =D mmFsH > buc?
k=0 8=k

m = m— 1 k
— (145) ];)z (1) )
= (145)"P(z,¢1/(1+59)),
for some bg € B(E), be(C) = - 5= bs¢P. Then we set

H(z,(,0,0) = (271')_"(ewam + P(z,¢,0)),

and finally obtain the representation

-2

~NE(x) = /OOO uim [/S_ hs(s,ge,r)dg] ds, (6.7)
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with

hs(s7 ¢, 0, 7’) = / H(z’ ¢, 1/(1 + s), 0)71€iT(1+S)2676(1+8)[z2+(5/(1+8))2]1/2 .
R

The function H(z,(,0,0) is a B(E)-valued polynomial in z, with coefficients de-
pending continuously on p = (¢,0,0) € P := S* 2 x [0,1] x [-7 + ¢,7 — ¢], a
compact set.

By parameter-ellipticity, the set of z € C such that H(z,p) is not invertible
is compact and does not contain real values. This set is upper-semicontinuous in
p, hence the set of singularities of H(-,p)~! is a compact set not intersecting the
real line, uniformly for p € P. Since H~! is holomorphic in z we may therefore
deform the path of integration to a contour I' of the form

Fi={z=t+ic(1+]t]): t e R},

where k£ > 0 is small and independent of p € P. Then we obtain by Cauchy’s
theorem

ha(37 ¢, 0, 7-) = / H(Z, ¢, 1/(1 + S), 9)—1eir(l-‘rs)ze—s(l-‘rs)[z2+(s/(1+s))2]1/2 .
T

Since H! is bounded on T, and

|eir(1+s)z| _ e—HT(1+S)(1+|t‘)7
the integral defining h. is absolutely convergent and
|he (s, ¢, 0,7)] < Ce™ ™ H9) /[p(1 + 5)],

independently of € > 0. Hence we may pass to the limit € — 0 to the result

o Sn72
= 7 h 0,r)dC| d 6.8
Yo() /0 (1+s)m71{/gn72 (s,¢,0,7) (} s (6.8)
with
h(s,¢,0,r) = / H(z,¢,1/(1+4s),0) e (0+9)2 gz,
r
Contracting the contour I in the set {Im z > x} C C into a smooth Jordan curve

I’y surrounding the singularities of H~! in the upper half-plane, we finally get the
following representation for h.

h(s,C,0,r)= | H(z(1/(1+s),0) temr(T97 4z, (6.9)

To

This implies the estimate
|h(s,C,0,7)| < Ce T 550, CeS" 2 |9 <7m—0¢ (6.10)

for h. We summarize these considerations in
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Theorem 6.1.5. Let n,m € N, E a Banach space, a, € B(E), and suppose

A©) = D anf™, E€R,

|a]=m

is parameter-elliptic with angle of ellipticity ¢4 < m. Then for each ¢ > ¢4 there
is a constant Cy such that the solution vg(x) of

eu+ A(D)u = dy
satisfies the estimate
vo(z)| < Cypo(lz]), z€R", x#0, |§] <7 — ¢, (6.11)

where py is given by

[e'e] Sn—2
— s _K’T(H_S)d
r)= e s,
pO( ) /0 (1 5)m71

for some k > 0. The function pg : (0,00) — (0,00) is completely monotone, and
satisfies

/ " P po(r)dr < oo if and only if p > —m.
0

Note that we can estimate py further by

ce " if n<mg
po(r) < ¢ ce "log(2+1/r) if n=m;
e if n>m.

Together with (6.8) and (6.3), Theorem 6.1.5 leads to a Poisson estimate for the
kernel 7y from (6.2), i.e., for each ¢ > ¢4 there is a constant C, > 0 such that

(@) < ColA = po(IAY™a]), @ € R™, |arg Al < ™ — ¢, (6.12)

However, even more is true. Applying the differential operator D” to (6.6) and
employing the same arguments as above we obtain

Corollary 6.1.6. In the situation of Theorem 6.1.5 for each k € Ng, we have in
addition

|D6’)/9(I)| < Corpi(lz]), z€R™ x#0, 0| <7m—0, |B] =k,

where py, is given by

[ee] n—2
— s —kr(1+s) d
pk(r) /O (1 + s)m,k,]_ € S,

for some k > 0.
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Observe that this corollary implies the estimate
ntk _q

IDP(@)] < Coul A5 oA ™ 2l), z € R”, JargA[ <7 —¢,  (6.13)

for the derivatives of the fundamental solution 7y, with k = |3|. This yields D’y €
Li(R™; B(E)) if |B| < m.

Concluding, some remarks concerning the cases n = 1,2 have to be made.
For n = 1, instead of the rotation @@ we may use reflection; all above arguments
remain valid for this case, simply dropping the integrals over s and (. In that case
the functions py should be replaced by

Tt (1+5)
r) = e T (s,
pk( ) A (1 + S)m_k
For n = 2 the arguments are also valid if we interpret S° as the set consisting of
the two points 1. Therefore the above results are valid for all dimensions n € N.

1.2 L,-Realizations of Elliptic Differential Operators
Next we consider the L,-realizations of the differential operator A(D).

Theorem 6.1.7. Let n,m € N, E a Banach space, a, € B(E), 1 < q < oo,
and suppose A(D) = Z\a|=m ao D is parameter-elliptic with angle of ellipticity
¢4 < 7. Define the L,-realization A of A in Xo = Ly(R™; E) by means of A = Ay,
where

[Aou](z) = A(D)u(x), x€R", weD(A):=H,"(R";E).
Then A is sectorial with spectral angle ¢4 < ¢4, and
m n, m—1 n,
H"(R™; E) C D(A) C H" *(R"; E).

Proof. Obviously, A has dense domain. If f € Ly(R™; E), choose a sequence fj €
D(R™; E) such that f — f in Ly(R™ E). For A € Y,_4, ¢ > ¢, we obtain
up = Y * fr € H'(R"; E) as well as Auy, + A(D)uy, = fi, by uniqueness of the
Fourier transform. Since ur — u = vy * f in L,(R™; E) as k — 0o, we see that
u € D(A) and Au+ Au = f. This shows that A + A is invertible for each A € X
and (A + A)~1f = v, * f. Thus by Corollary 6.1.6 we obtain the inclusions

H"(R"; E) = D(4o) € D(A) € Hy' (R B),
and Theorem 6.1.5 yields —X,_4 C p(A), as well as
AN+ A)71|B(Lq(R";E)) < My_g, (6.14)

for each ¢ > ¢ 4.
For f € D(R™; E), supp f C B(0, R), we have by Theorem 6.1.5

o= £@I < [ ol = /A dy =0
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as A — 0, uniformly for bounded x. On the other hand, for |z| > 2R we have
|z —y| > |z| — |y| > |y|. Since po is non-increasing this yields

D # F(@)] < 1 floc / I/ p(AY ™ — y]) dy

Br(0

< flso / AP (A ™y dy
Br(0)

IAV™R
- |f|oo/ p(r)dr — 0
0

as A — 0. This implies |A\(A + A) 71 f|ooc — 0 for A — 0, for each f € D(R™; E),
but then by interpolation

% Flg < o £V 9+ F1L7 = 0.

Therefore, A\ + A)~' — I strongly as A — 0, i.e., R(A) is dense in L (R"; E)
and N(A) =0, for each 1 < ¢ < co. Thus A is sectorial and ¢4 < P 4. O

One can show that we even have
H"(R"; E) — D(A) — Hj(R™; E), for each s < m.
Nevertheless, we cannot prove the elliptic maximal L,-regularity
D(A) = H"(R"; E)

unless more is known on the geometry of E. Here harmonic analysis comes into
play.

1.3 H°°-Calculus for Elliptic Operators
If E is a Banach space of class HT, for differential operators with parameter-
elliptic symbols the following result is valid.

Theorem 6.1.8. Let E be a Banach space of class HT, n,m € N, and 1 < ¢ < oo.
Suppose A(D) = 3, aaD* with aq € B(E) is a homogeneous differential
operator of order m which is parameter-elliptic with angle of ellipticity ¢ 4. Let A
denote its realization in Xo = Ly(R™; E) with domain D(A) = H*(R"; E).

Then A € H>®(Xy) with H>®-angle ¢% < . In particular, A is R-sectorial
with ¢ < ¢ 4.

Proof. (i) Observe first that the symbol A(£) is homogeneous of degree m, i.e.,
A(€) = p™A(C), p = |£|. Parameter-ellipticity implies that A(¢) is invertible for
each || = 1 and |A(¢) Y| < My, where M is independent of ¢, by compactness of
the set |¢| = 1; this implies in particular |A(£)~!] < Mop~™. Hence £YA(£)7! =
¢*A(¢)~! is bounded for each |a| = m. But since A(¢) is holomorphic, (*A(¢)~!
is so as well, and since S"~! is compact, {£*A(£)7! : € € R™\ {0}} is R-bounded
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by Proposition 4.1.12. The same holds true for {|¢[*DP[¢* A(&)71] : € € R™\ {0}},
|8] = k € N, as a simple calculation shows. The vector-valued Mikhlin theorem,
Theorem 4.3.11, then implies that there is a constant C' > 0 such that

C'D%u|x, < |A(D)ulx,, forallue H*(R™E), |af =m,

holds. In particular, we have D(A) = H;"(R"; E), and by (6.14) A is sectorial with
spectral angle ¢4 < ¢ 4.

(ii) To show that A admits an H*-calculus such that the H*°-angle satisfies

4 < da,let ¢ > ¢y be fixed and choose a function h € Hyp(Xy). Let T denote
the contour I' = (00,0]e? U (0,00)e%, where ¢p4 < 0 < ¢. Then h(A) is well
defined as the Dunford integral

h(A) = ! /h(A)(A—A)_ldA.

T 2mi

For u € D(R™; E), we may take Fourier transforms, to the result

FIHANIE) = 3 [ B = A(©) ' Fu(e) ar
= A Fule),

hence the symbol of h(A) is given by h(A(£)). Therefore, it is enough to show that
this symbol is a Fourier multiplier for L,(R"; E), with norm < C|h|ge(s,). This
will be done employing the vector-valued Mikhlin theorem another time.

By means of the rescalings £ = p( and u = Ap~™ we obtain the representation

1 m _
WA©) = 5 [ ™) = A d.
™ Jr
Since o9 = Uj¢|=10(A(()) is compact and contained in X4,, we may deform the
contour I within Xy into a compact simple smooth closed path I'y surrounding o
counter-clockwise, and by Cauchy’s theorem

hM@D—liﬁh@WMu—AOYﬂw

T 2mi
By compactness of I'g and of S*~!, in virtue of Proposition 4.1.12, (u — A(¢))~!
is R-bounded on I'y x S*~1, hence this representation of h(A(£)) yields

R{R(A()) : € € R"} < (2m) " | oo (s,) UTo) R{ (1 — A(¢)) ™' : € To, C € 8" 71}

where [(T'g) denotes the length of T'y. Thus the symbol of h(A) is R-bounded.
To obtain appropriate bounds for the derivatives of h(A(£)), observe the
relation

P
Dg =iy + %(1—<®<)D<.



242 Chapter 6. Elliptic and Parabolic Problems
With Go(p,¢) = (2mi) 1 (u — A(¢)) ™! we have

B(A(E)) = / h(o™ )Gl (1, ) s,

hence differentiating this expression inductively we get

el

P D2 (A Z /F P )R (0 1) Gl i (1 ) i

where the functions G, x(u, () are analytic in a neighbourhood of Ty x S*~1.
Therefore we obtain

|ex|

R{II1IDER(A(E)) : £ € R} < Ca sup [2PhF) ()]

k=0 z€Xp

Finally, by the Cauchy estimates we have sup, s, |zFh(R) (2)] < cklhlgee(s,), and
so for each o € NjJ there is a constant C,, such that

R{IEI1IDER(A(E)) : € € R™, € # 0} < Calhlgoe(s,)

is satisfied. C,, is independent of h, it depends only on A(£), on the contour T'g, and
on ¢. By Theorem 4.3.11 we therefore obtain |h(A)|sL,®E) < Mglhlm=(s,),
which implies the assertion. O

In the situation of the last theorem, since A € H>°(X() we have, by Theo-
rem 3.3.7,
D(A%) = (Ly(R"; E),D(A))g = H"(R"; E)

for each 6 € [0,1], hence D? A=*/™ is bounded for each |3| = k < m. On the other
hand, for each v € (0,1) we have the representation

os} )\is )
MTVAY (A + AT :/ A" ds, ANEX,_ > ¢a. (6.15
(A+4) oo 2sinT(v +is) * o ¢>9a (615)
Convexity of R-bounds and the contraction principle then show that the sets
NTPAYA+ AT e D)

are R-bounded. As a consequence we obtain

Corollary 6.1.9. Let the assumptions of Theorem 6.1.7 be satisfied, and let a €
(0,1), g € (1,00), 7 € [1,00]. Then

(i) The set
AEmDBON 4 A) T N e Sy, 0< |8 =k <m}

is R-bounded in Xo = Ly(R™ E);
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(ii) D(A%) = (Xo,D(A))a = HZ™(R™; E);
(iii) Da(a,7) = (Xo,D(A))a,r = Bg™ (R"; E).

1.4 Elliptic Operators with Variable Coefficients
Let E be a Banach space of class H7T, and consider the differential operator with
variable B(FE)-valued coefficients

[Au](z) = A(x, D)u(z), = €R", ueD(A)=HR";E), (6.16)
where
A, D)= Y aa(z)D*. (6.17)
al<m

By means of the results on homogeneous parameter-elliptic operators with con-
stant coefficients from the previous sections, perturbation and localization, we will
prove the following result.

Theorem 6.1.10. Let E be a Banach space of class HT, n,m € N, and 1 < ¢ < 0.
Suppose A(x, D) =3, <, @a(x)D* with a(x) € B(E) is a differential operator
of order m with variable coefficients. Assume the following Condition (ra):

(ral) a, € Ci(R™; B(E)) for each |a| =m;

(ra2) Ay (z,€) =32 0 1=m @a(®)E” is parameter-elliptic
with angle of ellipticity < ¢4, for each x € R™ U {oc0};

(ra3) aq € [Ly, + Loo|(R™; B(E)) for each |a| = k < m,
with r, > q and m —k > n/ry.

Let A denote the realization of A(xz, D) in the base space Xo = L,(R™; E) with
domain D(A) = H*(R™; E).
Then for each ¢ > ¢4 there is pg > 0 such that py + A is R-sectorial with
Het+A = 7

Proof. (a) Freeze the coefficients a,, || = m, at an arbitrary o € R" U {o0}
and consider the homogeneous differential operator with constant coefficients
Ay (o, D); let Ay denote its L,-realization. Then we know from Theorem 6.1.8
that D(Ag) = H;"(R™; E) and that A, is R-sectorial with R-angle ¢%f < ¢..
By assumption (ral) the coefficients a, belong to a compact subset of B(E). By
Corollary 6.1.9(i) and the perturbation results from Section 4.4, we see that the
R-bounds of X' ~181/m DB (X 4+ Ag)~! are upper semi-continuous in the coefficients,
where A € ¥,_, for ¢ > ¢4 fixed. Therefore, they are uniform in zy € R™ U {oco}.

Applying the perturbation argument from Section 4.4 another time, we see
that there is a number 1 > 0 independent of z( such that the L,-realization Ag+A;
of Ap(D) + Ay (z, D) is again R-sectorial, whenever

Ai(z, D)= > al(z)D*

lor|=m
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has Lo-coefficients subject to |af,(z)|pe) < 7, uniformly in z, for each |o| = m.
The corresponding R-bounds are also uniform in x(, and the domain of Ay + A
equals H"(R™; ).

(b) Here we assume a, € Ly for || < m and Condition (ral). Choose a large
ball B(0,79) such that

|aa(2) — aa(00)|g(r) <n, forall x| > 10, |a] =m,

and set Up = R™ \ B(0,70). Cover B(0,rq) by finitely many balls U; = B(z;,7;)
such that

laa(2) = aalz))|BE) <1, forall |z —z;| <rj, [a|=m, j=1,...,N.
Define coeflicients of local operators A; e.g. by reflection, i.e.,

O(x){ az(‘x), ng(OaTO)

a (T%ﬁ), x € B(0,70)

and _
aa() x € B(xj,ry)

a(x) - T—xT; D
aa(a:j—ka-W), z & B(xj,rj)

for each j = 1,...,N. Then |a/,(z) — aa(2;)|pE) < 0, for each x € R™ and
j=0,...,N, hence by step (a) above the L,-realizations A; of

A;(z,D) = Z al,(x) D*
|a|=m
are R-sectorial and the R-bounds of the sets

MRmDBON 4 AT N e Dy, 1Bl =k <m}

are finite. Next we choose a partition of unity ¢; € D(R™) such that 0 < ¢;(z) <
1 and supp ¢; C U;. We may also choose 9; € D(R™) such that suppt; C
Uj and 1; = 1 on supp ;. Set B(z, D) = 3,/ da(z)D”. We then obtain a

representation of (A + A)~! as follows.
M+ Au=f iff I+ Ag(z,D)u= f— B(z, D)u.
Multiply by ¢; to obtain
AMpju) + Ag(z, D)(pju) = ¢ f + [Ag(z, D), p;lu — ¢;B(z, D)u.
Noting that A4 (z, D)(p;u) = Aj(pu), we employ the resolvent of A; to the result

piu= A+ A4;) 7 (i) + (A + A) TH{[Ag (@, D), ¢jlu — ¢;B(x, D)u}.
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Observing ; = 1 on supp ¢;, multiplying with ; and summing over j we finally
get

u_Z¢jA+A %f+zz/}jA+A) ¢;(x, D)u, (6.18)
where the differential operators
Cj(x, D) = [A#(fﬂ, D)v 90]] - QOjB(iE, D) = Z C%(CE)DB
[B]<m

are in fact operators of order < m — 1. Hence for each € > 0 there is C; > 0 such
that

IC;(x, D)v|q < e|D™v|q + Cclv|q, forallve D(A), j=0,...,N.

By a Neumann series argument, (6.18) implies existence of a left inverse Sy, which
is given by

Saf ==Y v\ 4;)7'Cj(z, D)) Zwmwn Yo; f,
J

for A € r_yp, |A| > Ao for some sufficiently large Ao, as well as
IASAflg +1D™Sxflg < Clflgy A€ Zrgy  [A = Ao.

This shows that p + A is sectorial for p1 > Ao, and ¢4 < ¢, provided A + A is
surjective, i.e., there is also a right inverse.
To show the latter we apply A + Ax(z, D) to u = Sy f which yields

A+ Ag(D))Sy = Z()\ + Ay (D)) (A + A;) " (@; + Cj(x, D)Sy)

=2 0i{es +Ci( D)Sx}+ D _[Aw (D) 5]+ A7)~ + €5, D)S1 )

Since ¢; = 1 on suppp; and > ;p; = 1, as well as 3 [Ax(z, D), ¢;] = 0, we
obtain

> wi{e; +Ci(x, D)SA} =Y {p; +Cj(w, D)Sx} = I — B(x, D)Sh.
J J
This yields the following identity
A+ A, D)Sx =1+ [Ag(x, D), ¢5](A + A)) " +Cj(w, D)Sr}. (6.19)
J

The commutators [A(z, D), ;] are differential operators of order m — 1, hence the
second term on the right-hand side of (6.19) will be small for large |A| which as
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above shows that (6.19) gives rise to a right inverse of A + A; in particular A + A
is surjective for large |A|.
Next, with

N N

Ro(N) =D (A +A4) ey, Ra(N) =M+ 4;)7'C(x, D),

=0 =0

the resolvent of A may be written as the Neumann series
A+ A)~ ZRl FRo(N), A€ Tag, A > o

For j,k =0,..., N we obtain by the contraction principle

R{C;(x, D)\ + Ap) ™t s A€ Xy, [N > Ao}

<Dl @ R{DP (A + Ap) ™"
|Bl<m (6.20)

< [lre@mmAe T RANTIFIMDE (A 4 A1) < Ce,
[B|<m

provided ) is sufficiently large. This then implies
R{ATI/mDEN 4 )7L N e By, A > Ao, |af < m)}

<(N+1)C i((N +1)Ce)f = (N+1)C/(1 = (N +1)Ce) < 00, (6.21)
k=0

in particular, u + A is R-sectorial for all © > Ag.

(c) Let us consider now the case where ag € L,, (R™; B(E)), with |8] =k <m
and 7 > ¢, m —k > n/ri. Then we estimate the terms ag(z)D?(\ + A4;)7! as
follows. With gr = r, 1/r + 1/r" = 1, the Gagliardo-Nirenberg inequality yields

‘ ZEjGﬂDB()\j + Al)_lfj‘

Lq(R™;E)

< laglL,, @ B(E))‘Z€J (A + A~ 1fj‘L /(R E))

< Clagl|p,, &5 E)){ Z ‘ZQ N+ A)TS;

lee|=

. ‘Zsj(xj + AT
J

’Lq(R";E))} '

1—a
’Lq(R";E)):|
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< Claple, sy | > \Zej O+ 407,

lel=

‘LQ(R";E))} .

1—a
')\a(l_w\/m)(l—a)Hzgj/\;—lﬂl/m()\j—|—Al)*1fj‘ } )
: Ly(R™;E))

where am—k = n/qr = n/ry, in particular a < 1 by assumption (ra 3). Integrating
over () this yields

‘ > ejagDP (N + A~ 1f1‘
J

J(QXR:E)

—(1— m)(l—a
< C)\O( 1B1/m) )|a5|LQT.(R";B(E))‘ E eifi L, (Rn:E)
j q )

Ly(R™E)

< Ce ‘ D oeifi
J
whenever )\ is sufficiently large, and consequently we have
Riag(@)DP (A + Ap) "L M ey, A > o} < Ce.

We now may proceed as in Step (b) to obtain the result in the general case. [

As a consequence of the results on maximal regularity from Section 4.5 we
obtain for the time-dependent parabolic equation

Ou+wu+Au=f, t>0, u(0)=uo, (6.22)

the following result.

Theorem 6.1.11. Let Condition (ra) hold, 1 < p,q < oo, p € (1/p, 1], let A(x, D)
be uniformly normally elliptic and, w > wg > s(—A) = supReo(—A4), the spectral
bound of —A.

Then (6.22) has mazimal regqularity of type L, ,, — Ly on Ry. More precisely,
(6.22) admits a solution u in the class

u€ H, ,(Ri; Ly(R"; E)) N Ly, (Ry; H (R E)) =: Eqy,
if and only if
f € LpuRi; Ly(R™ E)) =:Eoy  and g € Bl V/P(R™ E) = X, ..
Moreover, there is a constant C > 0 such that
lule,, + wlulg,, < Cluolx,,,. + [f]E,,);

for all (f,ug) € Eop x Xy, and all w > wy.
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We observe that via the exponential shifts u,, = e¢“'u and f, = e*'f, u is a
solution of (6.22) if and only if w,, solves

Opttyy + Auy = fuo, t>0, uy,(0) = up. (6.23)

This way the following result is obtained.

Corollary 6.1.12. Let Condition (ra) hold, 1 < p,q < oo, p € (1/p,1], and let
A(x, D) be uniformly normally elliptic and, w > s(—A).
Then (6.23) admits a unique solution u in the class

e why € H;H(R_‘_; L,R* E)NL,,(Ry; HqQ(R”; E))
if and only if
e “'f € Lyu(Ri; Ly(R™ E))  and ug € BRW—VP(R™ E).
Consequently, on finite intervals (6.22) has mazimal Ly, ,, — Lq-regularity, for each
weR.

1.5 Different Spatial Orders

Many times one is in need of maximal regularity results with different spatial
regularity. In this subsection we briefly discuss this topic. We assume below that
A(x, D) satisfies properties (ral), (ra2), (ra3).

(i) Higher Order Regularity

Here we want to replace the base space L,(R"; E) by Kj(R"; E) for s > 0 and
K € {H, W}, where s ¢ N in case K = W. For this purpose we fix any k € N and
consider the operator A(x, D) in H, (’;(R”; E). Differentiating the equations

AN+ w+ A(z,D))u= f in R",

or
(O +w+ A(z; D))u=f, t>0, u(0)=0, in R"

k times in space leads to the problems
(A +w + A(z, D))DPu — [A(x, D), DPlu = DPf in R",
or
(0r + w + A(z; D))DPu — [A(z, D), DPlu = D°f, t>0, DPu(0)=0, in R",

As the commutator [A(z, D), D] is of lower order, this yields with Proposi-
tion 4.4.3 the analogues of Theorems 6.1.10 and 6.1.11 with base space L,(R"; E)
replaced by HJ(R"; E), provided the coefficients of A(z, D) have enough regu-
larity. Computing the relevant commutator shows that Condition (ra3) must be
replaced by

(raldy)aq € Hffl (R”;B(E))JerO(R”;B(E)), la] =1<m, r > q, m+k—1>n/r.
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Then employing real or complex interpolation, we see that Theorems 6.1.10 and
6.1.11 are also valid for the base spaces K;(R"; E), for all 0 < s < k, s ¢ Np in
case K = W. Note that for the parabolic problem we first choose p = ¢, p =1 to
obtain R-sectoriality, and then use Theorems 4.4.4 and 3.5.4 for the general case.

(ii) Lower Order Regularity

Here we want to replace the base space Ly(R™; E) by K *(R"; E) where s > 0
and K € {H, W} s € Nin case K = W. Conmder first the space H?(R™"; E).
AsI—A: Ly(R™ E) — H;?(R"; E) is an isomorphism, it is reasonable to apply
(I —A)!to the equatlons under consideration to obtain problems in L,. This
yields equations for v = (I — A)7'u in L (R"; E),

A+ w+ A(z, D))o — [A(x, D), (I — A) Hu= (I - A)"'f in R,
or
(Or+w+A(x; D))w—[A(z, D), (I-A) Hu = (I-A)"f, t >0, u(0) =0, in R™
Looking at the commutator we find
[A(x, D), (I-A)"u = (I-A) A, A(z, D)|(I-A)"tu = (I-A) A, Az, D)]v.
Now we have

A, a,DY] = Z 82aa D% 4 2(9;a,)0; D%,
j=1

which implies that the commutator is of lower order in Ly(R"; E), provided the
coefficients a, are subject to (ra3z). Therefore, in this case Theorems 6.1.10 and
6.1.11 are also valid for the base space HJQ(R";E). Induction yields the same

result for H,?*(R"™; E) provided the coefficients satisfy (ra3gy), for all k € N.
Interpolation finally shows that Theorems 6.1.10 and 6.1.11 hold for the base space

K, *(R"; E), for all s € [0, 2k], provided (ra3zxk) holds; here s € Ny is excluded in

case K = W.

Remark 6.1.13. A more refined analysis shows that Theorems 6.1.10 and 6.1.11
are valid in K;tS(R”; E), s > 0, if the coefficients merely satisfy

(a3s) aq € H; (R"; B(E))+WZL(R";B(E)), |[a|=1<m, r > q, m+s—1>n/r.

However, this assertion is more elaborate, and so we refrain here from a proof.

6.2 Elliptic and Parabolic Systems on R’

Let E be a Banach space of class H7T, and consider the parabolic problem
Owu+wu+ A(z,D)u=f inRY,
Bj(xz,D)u=g; onodRY}, j=1,...,m, (6.24)
uw(0) =ug in RY.
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Here A(z, D) = 3|4/ <2m @a D™ is a differential operator of degree 2m, B;(z, D) =
Zlﬁlﬁmj bngB are differential operators of degree m; < 2m, and the data
(f,g;) and ug are given. This problem may be reduced to a homogeneous prob-
lem with inhomogeneous boundary conditions as follows. Extend the function
f € Ly (Ry; Ly(RY; E)) trivially to a function f € Ly, (Ri; Ly(R™ E)), the
coefficients of A(z, D) by symmetry to all of R, and extend the initial value
uy € ngl(”fl/p)(Ri;E) to some @y € Ban'“ /P)(Rn; E). Then we may apply
the results from the previous section, in particular Theorem 6.1.11, to obtain the
solution
€ Hy , (Ry; Lg(R™; E)) N Ly,u(Ry; HY™ (R E)))

of the full space problem
(6.25)

Then the function @ = u — @ satisfies (6.24) with (f,uo) = 0 and g, replaced by
G; = gj — Bj(xz,D)a. This way we have reduced the problem to a homogeneous
parabolic equation with trivial initial data, but inhomogeneous boundary data.
Note that the natural compatibility conditions

Bj($7D)u0:gj(0)7 j:]-,"'mv

become §;(0) = 0. Below we will therefore always consider the case (f,ug) = 0.
Similarly for the elliptic problem

A+ wu+ A(z, D)u= f inRY,

6.26
Bj(z,D)u=g; ondRY, j=1,...,m. (6:26)

We may assume f = 0, by Theorem 6.1.10 of the previous section.

2.1 The Boundary Symbol
We begin with the constant coefficient case, i.e., we consider

.A(D): Z aaDaa BJ(D): Z bJBDB

la|=2m 181=m;

with coefficients aq,bj3 € B(E). It is convenient to replace = by (z,y), where
x € R*! are tangential variables and y > 0 is the normal variable. Taking the
Laplace transform in time with covariable A and Fourier transform in the tangen-
tial direction with covariable ¢ € R"~!, with v = e,, we obtain the transformed
problem

A+ w)or(y) + A€ +vDy)vi(y) y >0,

:0)
6.27
By(¢ + vD, )01 (0) = by, j=1,....m. (6.27)
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This is a boundary value problem for an ordinary differential equation on R,
where the covariables A and £ are parameters. We may rewrite the differential
operators in the following form.

my

A(€+vD,) Zak )DZm=F - B;(€+vDy) Zbak Dk

Observe that ax(§) as well as bji(§) are homogeneous polynomials of degree k.

We shall assume from now on that A(D) is parameter-elliptic with angle ¢ 4.
Then ap = A(0,...,0,1) is invertible. For A € ¥,_4, ¢ > ¢4, we introduce the
new variables v = [v;], and the scaling parameter p = (w + A 4 |¢|>™)1/2m

viy) =p DT ui(y), J=1,....2m,
we may rewrite the differential equation in (6.27) as
dyv(y) = ipAo(b,o)u(y), y >0,

with o0 = (w+ \)/p*™, b= &/p and

0 I 0 0
0 0 1 e 0
Aobo) = | I
0 0 - 0 I
cam(byo) cam—1(b) ... ca(d) c1(b)

where ¢;(b) = —ag'a;(0), j = 1,...,2m — 1 and can(b,0) = —ay* (0 + agm (D).
Similarly, for homogeneity reasons the boundary conditions become

BY(b)v(0) = p~ ™ h; =: hj, j=1,...,m,
with BY(b) : E*™ — E defined by
BY(b) = (bjm, (b),-..,bjo(b),0,...,0), j=1,...,m.

This way the boundary value problem (6.27) is transformed to the first-order

system
Oyv(y) = ipAo(b,o)v(y), y >0,

BY(b)v(0) = hy, j=1,...,m (6.28)

To solve this boundary value problem we need some preparation.

Lemma 6.2.1. Let b,o and Ay(b,o) be defined as above. Then

a(Ag(b,0)) NR = 0.
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Proof. We first prove that o,(Ag(b, o)) NR is empty, where o,(Ao(b, o)) denotes
the point spectrum of Ag(b, o). To this end, suppose that n € R is an eigenvalue
of Ag(b, o) with eigenvector z = [z, ..., Zom_1]" # 0. Then

77$0 =T, e 77.T2m_2 = To2m—1, (629)

NTam—1 = 7%—1((0 + agm (b))zo + a2m—1(b)z1 + ... + a1(b)x2m—1).

This implies (o + Y77 ax (D)™ *)zo = 0. It follows from the first line of (6.29)
that z¢g # 0. Therefore, —o is an eigenvalue for A(b,n) with eigenvector . But
as A is parameter-elliptic this implies —o € ¥4, which contradicts the assumption
A E Zw,(b.

Next, assume that 17 € R belongs to the residual spectrum o, (A4o(b, c)). Then
n € o,(Ag(b, 7)), hence there is z* = (z§,...,25,,_1)T # 0 such that Aj(b,0)z* =
nz*. This implies as before x3,,_; # 0 and

2m

(0 + Y ar®) n*" Mg,y = 0.
k=0

This shows that —c is an eigenvalue of A*(b,n), hence belongs to o.(A(b,n)),
which is not possible.

Finally, assume that n € R is in the continuous spectrum o.(Ag(b, o)). Then
we find 2, = (Zn.05- -+, Tn2m—1)" With |2, |gzm = 1 such that Ag(b, o)z, = Nz, +
Yn, With y, — 0 as n — oco. As above this yields

(0 + Z ar(O)*™ )z, 0 — 0,
k=0

hence —o belongs to o.(A(b,n)) which yields a contradiction as before. O

This lemma shows that the spectrum of iAg(b,0) € B(E*™) splits into two
parts, s_(b,o) contained in the open left half-plane, and s (b, o) contained in the
open right half-plane. By compactness, there are constants c4 > 0 such that

supRes_(b,0) < —c_ <0 < cq <infResy(b,0),

for all relevant b, 0. Let Py(b,0) € B(E?>™) denote the associated spectral projec-
tions of iA(b, 0); these are holomorphic and bounded, uniformly in (b,0). The
boundary value problem (6.28) admits precisely one solution v € Cy(Ry; E?™) if
and only if the system

P,(byo)w=0

admits a unique solution w € E?™. The solution v of (6.28) is then given by

oly) = WAty y >0,
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To ensure this solvability property we assume the equivalent

Lopatinskii-Shapiro Condition (LS)
For each &,v € R", A € X,_, for some ¢ > ¢4, where (A, §) # (0,0), |v| = 1,
(&|lv) = 0, the problem

Au(y) + A +vDy)u(y) =0, y>0,
B +vDy)u(0) =g;, j=1,...,m,

has exactly one solution u € Cy(R4; E), for any given vectors g; € E, j =1,...,m.

Remark 6.2.2. (i) It is obvious that also the Lopatinskii-Shapiro condition is in-
variant under orthogonal transformations. But even more, it is invariant w.r.t.
general coordinate transformations as well. In fact, under the coordinate trans-
formation Tu(z) = uw(Qz) with invertible @ € R™*", the normal v transforms to
vg = Q™ Tv. Therefore,

Ag(€ +voDy) = AQTE +vDy) = A(é+ av +vD,),

where (£|v) = 0 and a = (£'|Qv). The same applies to the boundary operators
B;. The exponential shift v(y) = e’ w(y) then shows that we may assume a = 0.
This reduces (LS) for the transformed problem to (LS) for the original one.

(ii) The shift argument also shows that the condition (¢|v) = 0 in (LS) is redun-
dant, only |v| =1 is essential.

(iii) There are versions of the Lopatinskii-Shapiro condition for more refined
boundary value problems which also appear in applications. Each of the m bound-
ary operators may be split into finitely many ones of different order. More pre-
cisely, for fixed j € {1,...,m}, we let E = EBZ;OEjk, and replace the condition
B;(D)u = g; by

Bj (D)U:gjk, kZO,...,TL]‘,

where the coefficients of Bj,(D) satisfy bjrs € B(E, Ejx), and their orders are
mjr € {0,...,2m — 1}. Condition (LS) extends literally to such cases, and the
analysis presented here carries over.

(iv) If E ~ C¥ is finite-dimensional, then the kernel of P, has dimension mN,
hence if we prescribe mN scalar boundary conditions, it is enough to have unique-
ness in (LS), by a dimensional argument.

The Lopatinskii-Shapiro condition implies the following result.

Proposition 6.2.3. Suppose that A(D) is parameter-elliptic with angle ¢4, and
assume the Lopatinskii-Shapiro Condition for some ¢ > ¢ 4. Then for each h =
[h;] € E™, j =1,...,m, problem (6.30) admits a unique solution w € E*™. This
solution is represented as w = My(b, O')iL, where the map My : U — B(E™, E*™)

is holomorphic on a neighbourhood U C C™*1 of {(b,0) : (A, ) € Xp_p x R?1},
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Proof. Existence, uniqueness and linearity are clear, so we need to show holomor-
phy of My. For this purpose set z = (b,0) € U and B(z) = (BY(2),...,BY (2)).
Then u(z) = My(z)g defines the unique solution of the system

P.(z)u=0, B(zu=g.

Let D denote a compact subset of U. By means of the closed graph theorem, we
obtain uniform boundedness of the maps My(z) € B(E™, E*™). In fact, the map
g+ u(z) is a closed linear map from E™ into B(D; E*™), the space of bounded
functions from D to E?™, hence bounded, i.e., sup,cp [Mo(z)| =t Cp < co. By
compactness and continuity this also holds on an open neighbourhood — which we
again call U — of D.

Next we use the fact that P, (z) as well as B(z) are holomorphic on U. Fix
any z € U, h € C™ and let 0 # ¢t € C be small. Then for fixed g € E™ we have

P, (z+th)w(z +th) =0 = Pr(z)w(z),

and
B(z + th)w(z 4+ th) = g = B(2)w(z),
hence
P, (z+th)[w(z + th) —w(z)] = =[P+ (2 + th) — Py(2)|w(2)
B(z + th)[w(z + th) — w(z)] = —[B(z + th) — B(2)]w(z).

Now, P, (2)? = P, (z) implies

P, (z +th) — Py(2) = Py (2 +th)*> — P, (2)?
= Py (2 + th)[Py(z + th) — P (2)] + [P (2 + th) — Py (2)| Py (2),

which by Py (2)w(z) = 0 yields
[Py (2 + th) — Py (2)Jw(z) = Py (= + th) [P (= + th) — Py (=)]u(2).
From this identity we obtain
Py (2 + th)[w(z + th) — w(z) + (Py(z + th) — Py (2))w(z) =0,
and

B(z + th)[w(z + th) — w(z) + (P+(z + th) — Py (2))w(2)]
= B(z + th)[Py (2 + th) — Py (2)lw(z) — [B(z + th) — B(z)]w(z),

which implies

w(z 4+ th) — w(z) + [Py(z + th) — P(2)|w(z) (6.31)
= Moy(z + th)[B(z + th)(Py(z + th) — Pr(2))w(z) — (B(z + th) — B(2))w(z)].
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By continuity of P, and B as well as boundedness of M, this shows continuity
of w on complex lines. Thus My(z) has this property as well. Dividing (6.31) by ¢
we get

w(z + th) —w(z) _ _ Py(z+1th) - P(z)w(z)

t t
+ Moz + th)B(s + th) -G F tht) — P4 (2)

B(z +th) — B(z)

— Moy(z +th)

w(z),

which shows that w(z) is complex differentiable on U, thanks to holomorphy of
P, and B. Therefore, My is also holomorphic on U. (]

2.2 Harmonic Analysis
The last subsection shows that the unique solution v of (6.28) is given by

v = VP9 V(b o).

To invert the Laplace and Fourier transforms in the right regularity class, we
rewrite this equation as

P> = M(y, p,b,a)pe” P p*™ ' h = M(y, p, b, )3, (6.32)
where 1 > 0 is small,
My, p,0,b) = eiypAo(b,U)-ﬁ-nprO(b, o)

and

g — pe—nyprm—liL'
Here we need a result on analytic Cy-semigroups and the vector-valued Triebel-
Lizorkin spaces Fy, ,, which we state now. Define Ly = (w + 9 + (—=A,;)™) in the
space Xo = L, ,(Ry; Ly(R"™!; E)) with domain

D(Lo) = OH;,M(M; Ly(R" Y E)) N Ly (R H(R S E)).

This operator, by the Dore-Venni theorem, belongs to the class S(Xj) with angle

7 /2. Therefore, its root L(l)/Qm is also in this class, with angle w/4m < w/2. This
implies that L(l)/ ™ is the negative generator of an analytic Cy-semigroup e
In the sequel, we denote by L the canonical extension of Ly to the space Eg, =

Ly, (Ry;Ly(RY; E)). We are here interested in the question for which boundary

. /2m .
values g € X the extension u(y) = e=vL""" g satisfies L1/2my € Eo,. The result
is surprising; it is the content of the following proposition.
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Proposition 6.2.4. Let 1 < p,q < oo, p € (1/p,1], and E be a Banach space
with property HT (). Moreover, let Ly and L be defined as above, and let u(y) =

1/2m

e vk g ge Xy, y>0.
Then the following assertions are equivalent.

(i) u € oHy/ 2" (Ry; Ly(Ry x R*™Y B)) N Ly u(Ry; HE (R, x R*™Y E));
(i) LY?™u € Ly, (Ry; Ly(Ry x R*™5 E)) = Eoy;

(iii) g € OFllyé,Q:ﬁL_l/qu(R-H Ly(R*™ 1 E)) N Ly, (R Bt}qil/q(Rn_% E)) =: oFq,.

Similar statements are valid on R; replace the symbols L, ,(Ry;-) and oK, ,(Ry;-)
by L,(R;-) and K,(R;-), respectively.

Proof. (1)=-(iii). As the trace operator (tru)(t,z) := wu(¢,0,2) maps the
space Hj(Ry x R"'; E) boundedly into Bag VUR" 1L, E) we sce that g €
Ly, (Ry; B,}q_l/q(]Rnfl;E)). To obtain the time regularity of g we may concen-
trate on the variables (t,y), and hide = in E = L,(R"~'; F) which belongs to the
class HT as E € HT. Then with a = 1/2m, we have

w € oy = oHy (R Lg(Ry; E)n Lp Ry H;(RJH E)).

Define an operator A in Eq,, = L, ,(Ry; Ly(Ry; E)) by means of Au = d,u with
domain D(A) = Ly, , (R ;0Hy (Ry; E)) and B by means of Bu = (w + 8;)%u with
domain D(B) = oH,',,(Ry; Ly(Ry; E)). Both operators are in H> with H>-angles
m/2, arw /2, respectively, and B is invertible. They commute in the resolvent sense
and ¢% +¢% = (14+a)n/2 < m. Therefore, by Corollary 4.5.11, A+ B with domain
D(A+ B) = D(A) N D(B) = E4, belongs to the class H>, as well. Next we solve
the problem Av + Bv = dyu + Bu € Eg, with maximal regularity to obtain a
unique solution v € D(A + B) = E,,. Then w = u — v satisfies dyw = —Bw
hence w = e~ P%g € E,,, C D(B). Therefore, Lemma 6.7.5 in the Appendix to this

section yields g € oF},, ,(Ry; E), which proves (iii).

(1)< (ii). We know that L = w+ ¢ + (—A,)™ belongs to H™ with H>°-angle /2.
Its domain is given by
D(L) = oHp ,u(Rss Lg(Ry; Lg(R" ™ E))) N Ly (R Lo(Rys HY™(R™Y; E)))
=D(B*")ND((—A,)™).

Then by complex interpolation we have

D(L'*™) = D(B) N D((~A.)"?)
= oH} ,(Ri; Lg(Ry; Ly(R" ™Y E))) N Ly u(Ry; Lo (Ry; Hy (R B))),

hence L'/?™y € Ey,, if and only if u € D(L'/?™). Furthermore, the representation

L[l)/27

u=e" nyg implies also dyu € Eg,. This proves the equivalence in question.



6.2. Elliptic and Parabolic Systems on R’} 257

(iii)=-(ii). Suppose

g € oF 2P R Ly(R"Y E)) N Ly u(Ry s BL VIR E)) =1 oF,.
Set Ag = (=A;)"Y/? with D(Ag) = Ly (Ry; HY(R" 1 E)) and By = (w + 0;)*
with domain D(By) = oHj ,(Ry; Ly(R"™'; E)). These operators are of class >
in the base space Xo = L, ,(Ry; Ly(R"; E)), with H> angles 0 and am/2,
respectively, and they commute in the resolvent sense. Then by Lemma 6.7.5 we
see that e~ Bovg € D(B) = oy, (Ry; Ly(R%; E)). On the other hand, e~ Aovg ¢
Ly (Ry; HY(R™; E)). Define v = e~ 1At B0)v g then (A + By)v € By, as e~ Ao
and e~ Bo¥ act boundedly in Eq ,.

Ap + By is equivalent to Lé/Zm as D(L(l)/zm) = D(Ap) N D(By). Moreover, by
perturbation, L(l)/Qm —n(Ao + Bp) is R-sectorial with R-angle am/2, provided
1 > 0 is sufficiently small. By means of Fourier multipliers it is not difficult to see
that e~ (Lo =n(Ao+Bo))y aets boundedly on Eo,,.

In fact, we show that the symbol

M\ €, y) = e=YOHHER™) Y2 (w4 2) /27 g])

is a Fourier multiplier for Eo,. To prove this, we first observe that m is uniformly
bounded and holomorphic in (A, &) € ¥, /51 x (¥ U—%)", provided 5, > 0 are
small. This implies the Mikhlin-condition w.r.t. £, uniformly in (A, y), hence we first
invert the Fourier transform, to obtain an R-bounded family of operators T (A, y)
on L,(R"™1; E), provided E is of class HT and has property («). Uniformity then
shows that the family 75, (A) = T (A, -) is also R-bounded in L, (R’ ; E) and then
trivially also in Eq,. Finally, by the Kalton-Weis theorem, T'(0; + w) is bounded
in EO/L'
Therefore

1/2m

LV/2m =L My g — p1/2m (g 4 B)7167(L[1/2"”7n(Ao+Bo))y - (Ao + Bo)v € Eq .,

which proves the implication (iii) = (ii). O

Now we may continue the argumentation preceding Proposition 6.2.4. As h;
is the transform of a function in

OF e = 0F it "M R Ly (R B)) 0 Ly u(Res By =0 /1(R" 1 )

we see that p>~1h; = p>™~™i~1h; is the transform of a function in oFo,, for each
7 =1,...,m. Proposition 6.2.4 then implies that pe*”yprm’llsz is the transform
a function g; € Eo, := Ly ,(R4; Ly (R E)).

Therefore, we need to know that M (y, p,b, o) is a Fourier multiplier for Xj.
To prove this, we first observe that M is uniformly bounded and holomorphic in
(X, §). This implies the Mikhlin-condition w.r.t. £, hence we first invert the Fourier
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transform, to obtain an R-bounded family of operators T(),y) on L,(R"™1; E),
provided E is of class HT and has property («). Uniformity then shows that the
family T'(A\) = T(A,) is also R-bounded in L,(R’; E) and then trivially also in
Xo. Finally, by the Kalton-Weis theorem, T'(0; + w) is bounded in X.

Summarizing we have proved the sufficiency part of the following result for
the original parabolic half-space problem (6.24).

Theorem 6.2.5. Let 1 < p,q < oo, w >0, p € (1/p,1], and E be a Banach space
of class HT («). Assume that A(D) is a normally elliptic differential operator of

order 2m, let B;(D), j = 1,...,m, denote differential operators of order m; < 2m,
and suppose the Lopatinskii-Shapiro condition (LS) is satisfied, for some angle
P <m/2.

Then (6.24) admits a unique solution u in the class
we By = H),(Re: Ly(RY: ) 0 Ly (Rys B2 (R E)),
if and only if the data are subject to the following conditions.
(a) f € Eop = Lyu(Ros Ly(RY: B)), wo € X0 = By ™7 (RY; B);
(b) 95 € Fjy = Fpfu(Ros Ly(R™™H B) N Ly u(Ry Byg™ (R*H E));

(¢) By(Dyug = g;(0) if w; > 1/p+1—p1, j = L,...,m.

Here kj = 1—m;/2m —1/2mq. The solution depends continuously on the data in
the corresponding spaces.

Remark 6.2.6. (i) Note that x; > 1/p+1—p if and only m; < 2m(p—1/p)—1/q.
(i) In the case p = ¢ we have Fji, = By, = Wy, as well as Bap'™ = W™

Proof. Necessity. We still need to prove the necessity part of Theorem 6.2.5.
Suppose u € H} ,(Ry;Ly(R%; E)) N Ly u(Ry; HX™ (R E)) is a solution of

Db
(6.24). Then inserting u into (6.24) we clearly have f € L, ,(Ri;Le(R%; E)).
To obtain the regularity of the time trace wg of u at time ¢ = 0, we ex-

tend v in space by means of a usual extension operator to obtain a function
u € H;’M(]RJF;Lq(R";E))mﬁ Ly, (Ry; HZ™(R™; E)). Applying the trace theorem
for the semigroup e~ (=)™ with base space L,(R"™; F) this yields

i),y € (L(R™ E), Hy™ (R™; ) = By VPR B),

p—=1/p,p

which implies by restriction ug € Bg;” (u=1/p) (R} ; E). Next we consider the lateral
traces at y = 0. For this purpose we first replace u by v = t'7#u and extend
v in time by symmetry to R. Then v € H}(R; Ly(R'}; E)) N Ly (R; HX™(R™; E)),
hence w = (w + 0;)*8%5 DZu belongs to Hy"™(R; LR} E)) N Ly(R; Hy (R} E))
if 2ma + k 4 |B] = 2m — 1. Next we solve the problem

By + Ly *™ i = 8w + Ly *™w, y > 0, w(0) =0,
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with maximal regularity, which shows that w has the same regularity as w, hence
w—Ww = e*yLé/2mw|y:0 has as well. Then Proposition 6.2.4 implies that the trace
of w at y = 0 belongs to Fpd ™~ /*™(R; L,(R"1; E)) N L,(R; Byy 4 (R"~1; E)).

By the definition of w and proper choices of 5 and k, this yields
t'rg; = Bj(D)t' " v € o Fi (Rys Le(R"™ E)) N Ly(Ry; B (R E)),

by restriction to ¢ > 0; therefore we finally obtain g; € Fpg (R4 ; Ly(R"™1 E)) N
Ly, (Ry; ngm]- (R"~1; E)). This proves the necessity of the conditions in Theo-
rem 6.2.5. O

It is of importance to have estimates on the solution which are also uniform
in w. This is the content of

Corollary 6.2.7. Let the assumptions of Theorem 6.2.5 be satisfied, and fix any
wo > 0. Then there is a constant C' > 0 such that the solution of (6.24) satisfies
the estimate

[ules,, + wluley, < C(luolx, , + 11z, (6.33)

m
+ Z('gthju + Wl—’mj/2m|e—yngj|1EOH))7
j=1

for allw > wo, (f,g;,u0) € Eop xFj,, x Xy 0, j=1,...,m. Here L,, is defined by
L, = (0 +w+ (—A)™)1/2m,

Proof. To derive the inequality (6.33) we proceed in a similar way as in the proof
of Theorem 6.2.5. We again work in frequency domain. Recall that the symbol
of Ly, is p = (A 4w+ [£]™)1/?2™ and set pg = (A + wo + [£]*™)1/?™. Here we
decompose as

om. . —nypo 2m—mji—1,
p“"v =M - My - ppe 20 h;

+ M - Mow'—mi/2me=mep

with

2m—m;;

M, = iAo tnupo N[ o), M,y = p

2m—mg;

2% _|_w1—mj/2m.

By the arguments at the end of the proof of Theorem 6.2.5, M as well as M; and
My are bounded Fourier multipliers for Eg,, uniformly for w > wp > 0, hence the
result follows by the same arguments. ([

Estimate (6.33) is sharp for the half-space case. However, the last term in-
volves a norm which is specific for a half-space. Observing that with some § > 0,

—yL., _swlt/2m _
e gy, < Cle™™ " Ygjlg,, < Cw™ 2™ gilL (1)
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we obtain the slightly weaker estimate

lulg,, +wlulg, < C(Juolx,, + ||k, + Z(|gj|1m +wg5lL, (L)) (6.34)
j=1

The advantage of (6.34) lies in the fact that it only involves the norms of the
boundary data. It is not good enough to cover boundary perturbations of highest
order, but it is well suited to handle such of lower order, and is in particular useful
for the localization process in domains.

2.3 Perturbed Coefficients
To consider the case of variable coefficients, on the boundary we have to work
in Besov spaces. Here a result on pointwise multipliers is essential. Therefore we
begin with this topic.
Lemma 6.2.8. Let 1 < p,q < o0, s >0, E a Banach space, and assume

a € B (R"; B(E)) + B3,,(R"; B(E)), (6.35)

with r > p and s > n/r.
Then the multiplication operator v — av is bounded in By, (R™; E). Moreover,
there are constants o € [0,1) and C > 0 such that

avlsy, < lale_lolss, +Clols, o], (6.36)
for all v € B;Q(R”; E). The constant C' depends linearly on the norm of the space
of multipliers defined by (6.35).

Proof. We concentrate on the case s € (0, 1], as the general case can be reduced
to this one by differentiation.
We will use the following norm on B, (R"; E):

lvlBs, = IvlL, + [V]sp.q:

where
s 2\ 174
ena = ([ (b lmo =l dn/ ) 1< g <o
[r|<1

and
[V]s,p,00 = sUp |h|”%|Tv — 0|,
|n|<1
Here {7 }nern denotes the group of translations defined by
(tho)(z) =v(z+h), z,heR"

Obviously we have |av|r, < |a|p_|v|L,, so we concentrate on the estimation of
[av]s p.q. The identity

7h(av) — av = Tha(tpv — v) + (Tha — a)v
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yields with Holder’s inequality and Remark 6.2.9(ii)

[@v)s.p.q < ol [vlsp.q + [als,ralvlL,,

where r = pp, 1/p+1/p’ =1, and s — n/p > —n/pp’. The Gagliardo-Nirenberg
inequality implies
vle,, <Clv

«@ l—o
s |U
Bpq ILP ’

with some constants C' > 0 and « € [0,1). Alternatively, we may estimate like
[(w}sm,q < |a|Lm[v}87p7q + [a]S,m,q‘vle'
In both cases (6.36) follows. O

Remark 6.2.9. (i) This lemma shows that B, (R") is a Banach algebra w.r.t.
pointwise multiplication, provided s > n/p, i.e., provided it embeds into Lu.

(ii) Observe that the multiplier space defined in (6.35) embeds into the uniform
Holder spaces le_"/r(R"; B(E)).

We now consider problem (6.24) with variable coefficients, applying pertur-
bation arguments. Thus we look at the case

A(z,D) = A°(D) + A'(z, D), Bj(x, D) = B)(D)+ B}(z,D),

where the system (A°(D),BY(D),...,B% (D)) is normally elliptic and subject to
the Lopatinskii-Shapiro condition.

For perturbations of A°(D) the arguments of Section 6.1.4 apply again, so
we require

ay € L (R B(E)) + Lo (R} B(E)), ol =k <2m, 1, > q, 2m —k > n/ry,
and in addition the smallness condition
lag|.. <m, la| =2m.

The essential perturbations to be considered here are the boundary perturbations.
In the sequel we assume

by € B (RN B(E)) + By (R B(B)
|B| =k S mij, Tjk Z q, QmK’j > (TL - 1)/Tjk7
and the smallness condition
|b}ﬁ|Lm <mn, |fl=m;, j=1,...,m.
Recall the definition x; = 1 —m;/2m — 1/2mg, and observe that

2mk;—(n—1)/Tjm .

bjs € C, TRLB(E)), 18] =m;.
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We estimate the boundary perturbations as follows, employing Lemma 6.2.8. For
the highest order terms we get
b ﬁDﬁu\ 2mr; < |D] B\Lw|D5u| 2m; + C|D5u|am | Dl
< 2nfufgzm + Cn|U|Lq-
This implies

Blale, Dyl o ) < 2nfule,, + Cluls,,

In a similar way we can dominate the lower order terms, without any smallness
condition.

Next we need to estimate the terms |e‘Lwyb}5D5v|Lq(Rn71), where v = u,_,
denotes the trace of u on the boundary. For this purpose we write

_w1/2'm ° _w1/2m s
e yb}BDﬂv = —/O 0s(e (w+ )bjl-BDﬁu(s)) ds
:/O wl/Zme—‘*’l/2m(y+s)b;ﬂDﬁu(s) ds
o0 1/2m N1
—w_l/Qm/ wl/Fme=w (y+a)bj688D5u(s) ds.
0

This implies

ds
y+s’

_w1/2m

e I DR, < Ol [ (D% u(o)le, + 0.0 1,
0

and as the scalar Hilbert transform is bounded in L,(Ry),

|e_w1/2m

"5 D7l L, =) < Clbjglr (1D ulp, gy +w™/2™10: D ulL, ry)),

which yields by the Gagliardo-Nirenberg inequality

s _l/2m .
Wl mj/2m|e w vp 5DBU|L &) < C|b]5\L Z (w|u|L &2 )) —n
i=1,2
with some constants C' > 0 and 4; € [0, 1]. As the coefficients blﬁ do not depend

on time, this estimate implies

—m; _wl/2m
wl mJ/2m|e w

yle'#v‘Eou < CﬂHUhEm +W|U|]]§0#].

(L —bwl/2m)

Finally, as e Y is bounded in Eg,, for some § > 0, this implies

w2 e b By, < Cnlluls,, + wluls,,].
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We now turn to the perturbed initial-boundary value problem. Without loss of
generality, we may assume ug = 0, solving a whole-space problem. We write the
half-space problem in abstract form as

Lou + Llu = F‘7
where
Lou = (8yu + wu + A°(D)u, BY(D)u, ..., B (D)u)
defines an isomorphism between the spaces oE; , and Eg,, x II7.;oF;,,
Liu = (A'(z, D)u, B*(x, D)u, ..., B} (z, D)u),

and F = (f,g91,...,9m) € Eo . X 1 0Fj,- If p > 0 is small enough, choosing w >
0 large enough, we see by the above estimates that Ly+ L is also an isomorphism.
This way we obtain the following result on (6.24).

Theorem 6.2.10. Let E be a Banach space of class HT (a). Assume that A°(D) is
a normally elliptic differential operator of order 2m, let BJQ(D), 7=1,...,m, de-
note differential operators of order m; < 2m, and suppose the Lopatinskii-Shapiro
condition for (A°(D), BY(D)) is satisfied, with some angle ¢ < /2. Let

A(z, D) = A°(D) + A'(z, D),  Bj(x, D) = B} + Bj(x, D),
where the coefficients al(z), bjlﬁ (x) satisfy the following conditions.

b oy isloe <m, ol =2m, Bl =my, j=1,....,m;

ay € Ly, (R B(E)) + Loo(R; B(E)),  |af =k <2m, 1, > q, 2m —k > n/ry;
bjg € Bried (R"™H B(E)) + By™ (R B(E)),

1Bl =k, rjr > q, 2mk; > (n— 1) /7).

Then there is ng > 0 such that the assertions of Theorem 6.2.5 and estimate (6.33)
remain valid for the perturbed problem, provided n < nq.

2.4 Localization

Here we assume that the top order coefficients a, with |a| = 2m, and b;g with || =
m; are continuous, with limits at infinity. This replaces the smallness condition of
the previous subsection. Choose a large ball B(0, R) C R" such that

|aa(2) — an(o0)| <n, x€R}\ B(0,R), |a| = 2m,
|bjg(z) —bjg(c0)| <n, z€ R |z| > R, |8l =m;, j=1,...,m.

Observe that R > 0 exists, as the top order coefficients are continuous and
have limits at infinity. Next we cover the boundary B(0, R) N R"~! by N; balls
B(zy,r/2) C R™ such that
\aa(w) - a’a(mk)‘ S m, T e B(xka2T)7 |a| = 2m7
‘bjﬁ(x) - ]ﬂ(‘rk)‘ < n, Te€ B(xkaQT) ﬂRnil? |B| = my, ] = 13 sy M.
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Finally, we cover the compact set B(0, R)\ (Uff:l1 B(xg,r/2)) by balls B(z,7/2),
k= Ny +1,...,Nao. We then set Uy = R" \ B(0,R), and Uy = B(z,r), for
k=1,...,Ny. Then {Uk}ivio, forms an open covering of R’}r. Fix a partition of
unity {gok}kN:O of class C'*° subordinate to this open covering, and let ¢, € C>°(R"™)
be such that ¥ = 1 on supp ¢, and supp ¢, C Uy.

We assume in the sequel that the operator Ax(zg, D) is normally elliptic,
for each xg € R” U {oo}, and that the system (Ax(xo, D), Bjx(wo, D)) satisfies
the Lopatinskii-Shapiro Condition (LS), for each zp € R"~! U {co}, with angle
@(xg) < m/2. Then the maximal regularity constants for the problems with frozen
coefficients will be uniform in zg € ]R’}r U {oo}, by continuity and compactness,
hence 79 in Theorem 6.2.10 will be uniform in z as well. Now we fix any 1 € (0, 7o].

Next we define for each k local operators Ay (z, D) on the half-space R’} and
Bjk(x, D) on the boundary R"~! in the following way. Choose a function y € D(R)
such that x(s) =1 for all |s| < 1,0 < x(s) <1 and x(s) =0 for |s| > 2. Then we
set

af (2) = an(zp + x(|z — 212 /1)) (@ — 23)), z € RY, |a| =2m, k=1,...,Na,
bis(x) = bjg(xy, + x(|o — 2 */r®) (@ — 21)), = € R"', |B] = my,
j=1,...,m, and
ag () = aa(00) + x(R*/[2|*)(aa(2) — aa(o0)), xR}, |a| =2m,
bis(x) = bjg(00) + X (R?/|z|*(bjs(x) — bjp(00)), = € R, |B] = my.

Here we set a®(0) = an(c0) and bgﬁ(O) = b?ﬁ(oo). Then we define the local oper-
ators by means of

AMz, D)= > ak(z)D*, Bi(x,D)= Y bhy(z)D”.
lal=2m |Bl=m;

By solving a full space problem, by Theorem 6.1.11, extending all coefficients of
A(z, D) by symmetry to all of R”, we may assume uo = 0. Now let the data g; be
given and let u € oE;,, be a solution of (6.24) in R}. We set uf = ppu, f¥=orf,
and g;-“ = ¢1g;. Then we obtain the following localized problems. For the interior

charts k = Ny + 1,..., N, the functions u* satisfy
o + wuk + A (x, D)u* = f* + [Ag(z, D), prlu — orAy (z, D)u in R",
uF(0) =0,
where A;(z, D) = A(z, D) — Ax(z, D) denotes the lower order part of A(x, D).
Note that A*(x,D)pr = Ag(z, D)) by construction, and observe that the

commutators [Ax(z, D), i) are of lower order as well. The boundary charts
k=0,..., Ny lead to the following half-space problems.

atuk+wuk+Ak(sz)uk :kaF[A#(QfaD)a@k}U*(PkAl(m,D)u in RTJ,L-’
B;'C(va)uk :g;c+ [Bj#(an)aQOk}U*@kle(va)u on Rnilv
u*(0) = 0,



6.2. Elliptic and Parabolic Systems on R’} 265

where B;i(x, D) = Bj(z, D)—Bj#(x, D) as well as the commutator [B;4(z, D), ]
are of order m; — 1, these are trivial in case m; = 0. We write these problems
abstractly as

Lk =Guu+Fy, k=0,...,Ns,

where the operators Ly are defined by the left-hand sides of the localized equations,
Gu are the lower order perturbations on the right-hand side, and F}, collects the
data coming from the inhomogeneities (f, g;). More precisely,

Gru = ([Ay(z, D), orlu — oA (x, D)u, [Bjn(z, D), orlu — prBj1(x, D)u)

and F, = o F' = ¢i(f,g;). By Theorem 6.2.10, the operators L; are invertible
for w large, hence we obtain

b = L F 4+ L Gru, k=0,..., Ny, (6.37)

and so the following representation of the solution u. We first write

No No N3
w=> oru=> vroru= Y put,
k=0 k=0 k=0
and then
Nz N2
w=Y L B (Y el Gy .
k=0 k=0

We estimate in the following way, employing Theorem 6.1.11 for the interior charts
and (6.34) for the boundary charts.

[YkLy ' Gruls,, +wlrLy ' Grulg,,

m
] b i b
< C(\G?CUIIEW + Y (G uls,, +w" ‘iju|pru(Lq)>'
j=1

Here the boundary terms are absent for the interior charts k = Ny + 1,..., Ns.
For the interior operators G} defined by

Glu = [Ag(z, D), prlu — orAi(z, D)u,
we obtain by the Gagliardo-Nirenberg inequality
. 1
Grulg,, < Clulg,,lulg,

with some constants C' > 0 and v € (0,1), hence

- C
‘G;quhEUM < F(MEM +w|u"Eo;L)'
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The boundary terms are of the form

szu = [Bj#(x, D), @k]u — (,Okle(a?, D)u.

Therefore, as in the previous subsection

1—r; C;
u|]EOJJ < wljw (\uhgm —|—w|u|E0M),

|G2ju|ﬁ“ < Cj|u|%iH

jn —

with constants C; > 0 and v; € (0, 1). Finally, applying once more arguments of
the previous subsection, we also obtain

ald
wm]|iju|Lp,u(Lq) S (|U|E1u +w|u‘ﬂi0u)7

J
wl=7
with possibly different constants C; > 0 and ~; € [0, 1).

Summarizing, we see that for w sufficiently large, the operator G¥ :=

Zivio kagle on o, satisfies the estimate

C
|G ulg,, +w|G ulg,, < F(W‘Em + wlug,, )

with appropriate constants C' and v that do not depend on w. Equipping oE,,,
with the parameter-dependent norm [ulg, = |ulg,, + w|ulg,, we conclude that
the operator I — G¥ is invertible in (0E1y, |- |ﬁ§1“), provided w is sufficiently large.
This yields a left inverse S of (6.24), which is given by

N
S(f,9;) = (I =G L enl(f 95)-

k=0

In particular, the operator L defined by the left-hand side of (6.24) is injective
and has closed range. So it remains to prove that L is also surjective. To show this
we construct a right inverse which then by algebra equals its left inverse.

For this purpose we apply Ly := (0 +w+ Ax(z, D), Bjx(z, D)) tou = SF,
observing Ly = Ly in Uj. This yields with (6.37)

No No No
L#u = L# Z'@/}kuk = Z[L#,wk}ngl(Fk + Gku) -+ Z’l[)k(Fk + Gku)
k=0 k=0 k=0

Next, as ¥, = 1 on the support of ¢y, we may drop vy, in the second term, which
implies in the interior

Ny
Z¢k(Fk + Gru)' = Z(fk + [Ax(z, D), ppJu — ppA1(z, D)u) = f — Ay (x, D)u,
k=0 k
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and on the boundary

N3
ZM(FkJerU)b = Zgjk +[Bjg(x, D), prlu—ppBji(z, D)u = g — Bj1(z, D)u.
k=0 k

Replacing u = SF, this yields

N» No
LS =1+ (;[L#7wk]Lk1gok) + (kZ_O[L#, UL Gr) S =i T+ GR.

As the commutator [Ly, ¢¥x] = ([Ax(z, D), Y], [Bjx(x, D), ¥x]) is lower order, we
see as above that the norm of G in Eo,, is smaller than 1, provided w is chosen
large. Therefore I + G is invertible, and so R := S(I + GF)~1! is a right inverse
of L. This implies the following result for the half-space.

Theorem 6.2.11. Let 1 < p,q < o0, u € (1/p,1] and E be a Banach space of class
HT (o). Assume that A(x, D) is a differential operator of order 2m, let B?(D),
j =1,...,m, denote differential operators of order m; < 2m. Suppose that the
coefficients aq(x), bjg(x) satisfy the following conditions.

ao € CREB(E)),  bjsg € GR"LB(E)) al=2m, |8 =my, j=1,...,m;
aq € Ly, (R} B(E)) + Loo (R} B(E)), |af =k <2m, 1, > q, 2m —k > n/ry;
by € B (BY1B(E)) + B (R B(E),

Tikq

1Bl =k <my, mjk > q, 2mk; > (n—1)/7j%.

Assume that Ay (x, D) is normally elliptic for each x € R’_f_ U {oo}, and that
(Ag(z, D), Bjx(x, D)) satisfies the Lopatinskii-Shapiro Condition (LS) with some
angle ¢(z) < 7/2, for each x € R"~1 U {o0}.

Then the assertions of Theorem 6.2.5 and Corollary 6.2.7 remain valid for
the half-space problem with variable coefficients.

2.5 Normal Strong Ellipticity
We now consider the special case of strongly elliptic second-order operators in a
Hilbert space E with so-called natural boundary conditions. This means, we con-
sider A(D) = a" D;D;, where a*/ = a/%, with boundary operator either of Dirichlet
type, i.e., B(D) = I, or of co-normal (Neumann) type B(D) = v;a" Dj; here we
employ the Einstein summation convention. Assuming that A(D) is strongly el-
liptic, what more conditions are needed for the Lopatinskii-Shapiro condition to
be valid for these natural boundary operators?

To answer this question, let u € Lo(R4;E) be a solution of the ODE-
boundary value problem

Au(y) + A +vDy)u(y) =0, y >0, (6.38)
B(§ + vDy)u(0) = 0.
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Here Re X > 0, &, v € R™ are fixed, with (X, &) # (0,0), |v| = 1, ({]v) = 0. Take
the inner product with u in F, integrate over R, and take real parts. By means
of the natural boundary conditions this yields the identity

Re Alul2 + / Re(a’ (& + v, D, )ul (& + viDy)u)dy = 0. (6.39)
0

To be able to conclude from this identity that u = 0, the following condition is

natural.

Definition 6.2.12. A differential operator A(D) = a" D;D;, with o™ = a’" € B(E),
is called normally strongly elliptic, if its is strongly elliptic and there is a constant
¢ > 0 such that

Re(a® (€ + vj0) & + vv) > clim(ulo)|, w0 € F,
for all €,v € R, [¢ = [v] = 1, (€]v) = 0.
From this condition we may then conclude Im(u(y)|Dyu(y)) = 0 for ally > 0,
which implies

d
leylu(y)l2 = 2Re(u(y)|9yu(y)) = 2Im(u(y)| Dyu(y)) = 0,
hence |u| is constant on Ry, and so must be 0 as u € Ly(R4; E).

In case F is finite-dimensional, we are finished, as by strong ellipticity the
dimension of the space of solutions of the homogeneous differential equation (6.38)
has dimension dim E. The map T : u — B({+vD,)u(0) is injective, hence also sur-
jective, and so the Lopatinskii-Shapiro condition holds. If F is infinite-dimensional
we have to work a little harder to obtain this result.

For this purpose observe first that the operator T defined above is injective,
but also has dense range, as with A(D) also A*(D) is normally strongly elliptic.
Therefore we need to show that the range of T is closed. So let u € Ly(R4; E) be
a solution of the ODE-problem

Au(y) + A(E +vDy)u(y) =0, y >0, (6.40)
B(§ +vDy)u(0) =g € E.
(i) We first consider the Neumann case. Multiplying the equation for u in (6.40)

with u(y), integrating over R4 and integrating by parts, we get by normal strong
ellipticity

cluol? < ¢ / 19, lu(y) 2| dy < 2lglluol,
0

where uy = ©(0). This implies |ug| < C|g|. Hence we may restrict our attention
to the Dirichlet case, and the goal is to prove that there is a constant C' > 0 such
that |ula < Clugl, for each Lo-solution u of the homogeneous problem

Au(y) + A(§ +vDy)u(y) =0, y>0.
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(ii) We begin estimating the Lo-norm of u/(y) := d,u(y) as follows, employing an
integration by parts.

'3 = —(ua|uo) — (ulu”)2 < fur|Juo| + |ul2|u|2
< fur||uo| + Clulz(Julz + [u']2).
Here u; = v/(0) and we used the equation for u, as well as the fact that the
operator a* v;v; is invertible in E, by strong ellipticity. This implies by Young’s
inequality
|u'|3 < 2Juq ||uo| + C1lul3. (6.41)
(iii) Next we write

ua? = —2Re / " W () () dy,

to obtain
lur[? < 200 [2]u” ]2 < Clu/|o(Julz + [u']2),

hence by Young’s inequality and (6.41)
[ur]? < Co(lul3 + |uol?). (6.42)

(iv) Now we employ once more normal strong ellipticity, to obtain as in (i) the
estimate

[u(y)* < Cluo|(Juol + |ua]) < (Celuol + efus)?, (6.43)

again using Young’s inequality.
The final estimate comes from strong ellipticity. Taking the Laplace transform
of Mu(y) + A(§ + vDy)u(y) = 0 w.r.t. the variable y we obtain

Lu(z) = —(A + A& —iz2v)) " H(aM v (zuo + ur) + 2ia* Epvyug).

As u € Ly(Ry; E), by strong ellipticity, the function Lu(z) has only singularities
in a compact subset of the negative half-plane, which only depends on (A, ¢&,v).
So choosing a contour I'_ surrounding these singularities and lying entirely in the
left half-plane, we obtain the representation

1
u(y) = 2—/ eV Lu(z)dz, y>0.
™ Jr

This implies
e“YNu(y)] < Cs(|uol + |ual), (6.44)

with some fixed constants w > 0 and C3 > 0 independent of . Interpolating (6.43)
and (6.44) and integrating over y > 0, this implies

C
Jul3 < f(\w)\ + |ua[)(Celuo| + efual)

Q

< S (Clluol? + 2l ?),



270 Chapter 6. Elliptic and Parabolic Problems

applying once more Young’s inequality. Finally, choosing ¢ > 0 small enough,
combining the last estimate with (6.42) yields |u|3 < Cl|ug|?, which is what we
wanted to prove.

(v) Finally we consider mized boundary conditions which are also important in
applications. For this purpose let P € B(FE) be an orthogonal projection, i.e.,
P = P* = P?, and consider the boundary conditions

Pu(0) = go, (I —=P)B(D)u(0) = g1.
Then the energy argument yields an estimate of the form
cluo|? < Clgo| (Juo| + [usl) + [g1]luol,
which implies
luol* < Cllgol* + |g1l?) + elur [,

and so by (6.42)
[uol® < Clgol* + lgal?) + elul3,

and finally
[ul3 < C(lgol* + 1911%)-

This shows that also the case of mixed boundary conditions is covered.
We summarize the result obtained above.

Proposition 6.2.13. Let E be a Hilbert space and suppose that A(D) is a second-
order, normally strongly elliptic differential operator in E.

Then the Lopatinskii-Shapiro condition is satisfied for the natural boundary
conditions, i.e., for Dirichlet, Neumann, or mized conditions.

The following proposition deals with a very special case which, however, is
frequently met in applications.

Proposition 6.2.14. Let a*/ = a¥b, where the matriz [a] is real, symmetric, and
positive definite, and b € B(FE) is strongly accretive in the Hilbert space E, i.e.,

Re(bulu) > clu|®>, u€E,

for some positive constant ¢ > 0.
Then A(D) is normally strongly elliptic.

We leave the proof of this proposition to the interested reader, as it only
involves the Cauchy-Schwarz inequality.

Remark. (i) For E = C" there is another stronger concept of ellipticity. We say
that a € B(E)™*" satisfies the strong Legendre condition, if there is a constant
C > 0 such that -

Reay)did} > C|d|3, for all d € B(C").
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This condition means that a is strongly accretive on B(C™).
Obviously, the strong Legendre condition implies normal strong ellipticity, as
ford=¢(®u+v®uv with £ - v =0 we have

|5 = 1§17 ul® + [v*of* > 2[¢]lv||(ulv)].

(ii) For many applications, however, the strong Legendre condition is too strong.
This comes from the fact that the tensor a usually has symmetries like
ij Kl il kj

ag = a5 = ag; = az -
These symmetries are called hyperelastic and mean that a only acts on the sym-
metric part of a matrix and yields again a symmetric matrix. This is quite common
in elasticity theory and also in compressible fluids, as there a represents stress-
strain relations like S = aD, where D means the symmetric part of a deformation
gradient, or of a velocity gradient. Then the stress S will also be symmetric. In this
case the operator @ maps the space of symmetric matrices Sym(C™) into itself. For
this situation, the appropriate condition — which we call the Legendre condition —
reads B

Reajjelel > Clel3, for all e € Sym(C™).

K3
This means that a is strongly accretive on Sym(C™), and it will be even selfadjoint

; ([
in case ay; = ay.

Obviously, the Legendre condition implies strong ellipticity, but also normal
strong ellipticity. In fact, for d = ¢ @ u + v ®@ v and e = (d + d")/2 we have with
gl =lvl=1,¢-v=0,and

u= e+ wpr)v+ur, v=@EE+ wr)v+vy, ui,v L&,
the identity

el = %{|UL|2 + L + 2/(ul€)]? + 2/(vl)] + [ (ulv) + (v]§)*}-

This shows e = 0 if and only if u; = v; =0, (u|f) = (v|v) =0, (u|lv) = —(v|¢),
which implies u = (u|v)v, v = (v|§)¢, in particular (u|v) = 0. In other words, if
€l = |v] =1, £-v =0, and Im(u|v) # 0, then e # 0. Therefore, the Legendre
condition implies normal strong ellipticity.

(iii) In summary, we‘z‘have the folloxying implications for a second-order differential
operator A(D) = a" D;D;, with a* = a’* € B(C"):
A(D) satisfies the strong Legendre condition
= A(D) satisfies the Legendre condition
= A(D) is normally strongly elliptic
= A(D) is strongly elliptic
= A(D) is normally elliptic.
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(iv) As an example we consider the well-known Lamé operator L, which is defined
by

Lu := — div[ps(Vu 4+ Vu") + wy(divu)I]
= — psAu — (Hs + Hb)VdiV U,

which yields
[Lul, = —a},0:0;u;,  with af, = ws(0:j0m + 6udjr) + Hedirdii.

The tensor a is easily checked to be hyperelastic and selfadjoint, and the Legendre
condition is equivalent to

s >0, 2ps +npp > 0.
On the other hand, a is strongly elliptic if and only if
us >0, 2us+u, >0,
and a is normally strongly elliptic if and only if
ps >0, ps+pp > 0.

This can be shown by elementary linear algebra.

6.3 General Domains

Let 2 C R™ be a domain with compact boundary 09 of class C?™. So Q may be
an interior or an exterior domain. In this section we consider the following general
parabolic initial-boundary problem which is completely inhomogeneous. Let E be
a Banach space of class HT, and consider the parabolic problem

ou+wu+ Az, D)u=f inQ,
Bj(x,D)u=g; ondf, j=1,...,m, (6.45)
w(0) =wug in Q.

Here A(z,D) = 3} ,<2m @a(z)D® is a differential operator of order 2m,
Bj(z,D) = Zlﬁlémj bjs(x)DP are differential operators of order m; < 2m, w € R,

and the data (f, g;, uo) are given. We are interested in maximal L,, ,,— L4-regularity
of (6.45).

3.1 The Main Result
We formulate the assumptions of the main theorem in the following way. The most
essential is the ellipticity assumption.
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Definition 6.3.1. We call the system (A(zx, D), B1(z, D), ..., By (x, D)) uniformly
normally elliptic if

(i) A(z, D) is normally elliptic, for each x € QU {c0};
(ii) The Lopatinskii-Shapiro condition (LS) holds, for each x € 0N).

This assumption is crucial, and even necessary, for the main result stated
below; see the Bibliographical Comments.
Next we state the regularity assumptions on the coefficients.

Condition (rA)

(rAl) a, € Ci(Q;B(E)) for each |a| = 2m;

(rA2) ay € Ly (5 B(E)) + Lo (2; B(E)) for each |a] =k < 2m,
with i > ¢ and 2m — k > n/ry.

For the regularity of the coefficients on the boundary we recall the definition
kj=1—m;/2m —1/2mq.
Condition (rB)
(tB) b5 € Brwai (99 B(E)) for each |8] = k < mj,

with rj, > ¢, and 2me; > (n — 1) /rjk.
With these assumptions we can state the main theorem of this section.
Theorem 6.3.2. Let Q C R” be open with compact boundary 0Q of class C*™,
1<pqg<oo, € (1/p,1], and let E be a Banach space of class HT (a). Assume
that (A(z, D), Bi(x, D), ... Bn(x, D)) is uniformly normally elliptic, and satisfies
the regularity conditions (rA) and (rB). Let x; # 1/p+1 — p for all j.

Then there is wg € R such that for each w > wyg, equation (6.45) admits a
unique solution u in the class

u€ By :=H, ,(Ry; Ly(5 E)) N Ly (R HY™ (S E)),
if and only if the data are subject to the following conditions.
(a) f € Bop = Ly (R Ly(% B)), uo € X, = Boy 7 (@ B);
(b) 95 € Fju = Fypin(Ry; Lo(09 B) N Ly u(Ros Bag"™ (0% E)), j=1,....m.
(c) Bj(D)up =g;0) if s; >1/p+1—p, j=1,...,m.
The solution depends continuously on the data in the corresponding spaces.
The proof of this result is given in the next subsections.

3.2 Coordinate Transformations
(a) Let ® € C™(R";R™) be such that

c < |detd®(x)| < ', xR,
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for some constant ¢ > 0, and 0®(x) — I as |z| — oo. Define the coordinate
transform 7" by means of

(Tv)(z) = v(®(x)), =xe€R™

Then T : HE(R™; E) — HF(R™; E) is an isomorphism for each 0 < k < 2m. For
the derivative D = (Dy,- -+, D,,) we obtain the transformation law

DTw(z) = 99" (x)(Dv)(®(z)),

hence the differential operator A(z, D) tranforms to A®(y, D), given by

A*(y, D) =T ' A@,D)T = Y ag(y)D= Y aa(® '(y))(02T (& (y))D)".

lal<2m lal<2m

Therefore, the coefficients a® enjoy the same regularity conditions as a,, and the
principal symbol of A® is given by

AG(y, ) = Ag(27(y), 02T (271 ()€), y. £ €R™

This shows that parameter-ellipticity of A® is equivalent to that of A, with the
same angle of ellipticity.

(b) We consider now the situation of a bent half-space. Replacing the variable
z € R by (z,y) € R"' x Ry, a bent half-space is defined by a coordinate
transformation of the form ®(x,y) = (z,y + h(z)), with

he CZ™(R"5R), lim Oh(x) =0. (6.46)

|z|—o00

Note that the boundary of the transformed domain is the graph (z, h(z)). Clearly,
¢ € C™(R";R™), and with

o= [y 1] oweor'=[ o ]

satisfies lim|;|4|y| 00 0P (2, y) = I. Moreover, det 0®(z,y) = 1. Hence we see that
(a) applies. In a similar way, the boundary operators B;(z, D) are transformed to
B®(-,D) = T~'B;(-,D)T, hence their principal parts become

Blu(y,€) = Bi(27' (1), 00T (27 (1)), y,§ ER™.
Note that the normal of R"} at (x,y) transforms to

_ -T
00 en _ L [Vauh(z), 1",

T 00 Ten|  /1FVLhI

14
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This shows, by the remarks following the definition of the Lopatinskii-
Shapiro Condition (LS), that (LS) holds for the transformed problem
(A®(x, D), B¢ (x,D),...,B2(z,D)) if and only it holds for the original problem.

(c) As the boundary spaces for the half-space are transformed to the corresponding
boundary spaces on the bent half-space, these considerations show that the main
result for the half-space, Theorem 6.2.11 as well as the estimate (6.34) remain
valid for bent half-spaces.

3.3 Localization

If © C R™ is unbounded, i.e., an exterior domain, we choose a large ball B(0, R) D
Q¢ and define Uy = R™ \ B(0, R). If Q is bounded then Uy = ). We cover the
compact set 9Q C R™ by balls B(xzy,r/2) with 2, € 0Q, k =1,..., Ny, such that
each part 0Q N B(xy, 2r) of the boundary 9 can be parameterized by a function
hi € C?™ as a C?™-graph over the tangent space T}, 0. We extend this function
hy to a global function on T}, 02 by a cut-off procedure, and denote the resulting
bent half-space by Hj,. This is possible by the regularity assumption 9Q € C?™ as
well as by compactness of Q. We set U, = B(xg,r)NQ, k=1,..., N;. We cover
the compact set Q\Ufcv:lon by finitely many balls B(xg,r/2), k = N1+1,..., No,
and set Uy = B(xg,r). Then {Uk}kNiO is a finite open covering of Q. Fix a C>-
partition of unity {(pk}kNil subordinate to the open covering {Uk}gio of Q, and
let ¢y, denote C'*°-functions with ¢, = 1 on supp ¢k, supp ¥y C Uk.

To define local operators A*(x, D) and Bé? (z, D) we proceed as follows. For
the interior charts k = 0, k = Ny +1,..., Ny, we define the coefficients of A*(x, D)
by reflection of the top order coefficients at the boundary of Uj. This is the same
trick as in Section 6.1.4. For the boundary charts k = 1,..., N7 we first transform
the top order coefficients of A(x, D) and B;(z, D) in Uy to a half-space, extend
them as in the Section 6.2.4, and then transform them back to the bent half space
Hy.

Having defined the local differential operators, we may proceed as in Section
6.2.4, introducing local problems for the functions u* = ¢ u, which for the interior
charts k =0, and k = Ny + 1,..., Ny are problems on R™, and for the boundary
charts £k = 1,..., Ny are problems on the bent half-spaces Hj. For the latter,
instead of using Theorem 6.2.10 we employ the extension of Theorem 6.2.11 to
bent half-spaces. This completes the proof of Theorem 6.3.2.

3.4 The Semigroup
To define the semigroup associated with (6.45), we introduce the base space X :=
L4(; E), as well as the operator A by means of

(Au)(z) := A(z, D)u(z), =€,
u€D(A) :={uec H™(LE); Bj(x,D)u=00n 0%, j=1,...,m},

and we set X7 = D(A) equipped with the graph norm. Then the problem
u+Au=f, t>0, u(0)=muo,
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has maximal L,-regularity, by Theorem 6.3.2, hence wo+A € MR, (Xy), for some
wp > 0, and so — A generates an analytic Cy-semigroup in Xy, by Proposition 3.5.2.
This implies that w + A is R-sectorial for all w > s(—A), the spectral bound of
—A. We note that the time-trace space X, , is given by

Xyp={ue ng‘(“_l/”)(ﬂ;E); Bj(z,D)u=0, if k; > 1/p+1—p, j=1,...,m},

where we exclude the degenerate cases k; =1/p+1— p.

To determine the smallest value wg in Theorem 6.3.2, we fix some large
number w; and solve (6.45) with w replaced by w; which results in some function
4 € Eq,. Setting @ = u — u, the new function @ must solve the problem

Ot + wi + A(x, D)u (w1 —w)i in Q,
Bj(x,D)u ondN, j=1,...,m,
4(0) in €,

for ¢ > 0. But this means
U+ wi + Al = (w; —w)a, t>0, u(0)=0,

and so we see that w > s(—A) is sufficient, i.e., wy = s(—A).

3.5 Higher Order Space Regularity

In many problems maximal L,-regularity in H;(€; E) is required, where s > 0. In
this subsection we consider the case s = 1, and comment later on other values of s.
By localization, coordinate transformation and perturbation, it is again enough to
restrict to the half-space case with constant coefficients. We have to distinguish
two cases, namely (i) m; > 1 for all j, and (ii) m; = 0 for at least one j. We begin
with the first case.

(i) mj >1forallj=1,...,m.
This case is the easy one. So suppose that we have a solution of (6.24) in the class

u€ Hy,,(Ry; Hy (R E)) N Ly (Ros HY™ (R B)). (6.47)
Then necessarily
f €Ly (Ri; HYRY E)), g € B2M=YPTHRY B,
and
DPu e Hy MR R Ly(RY; B)) N Ly Ry Ho™ U H (R E)),
for | 8] = k; hence

€ i V2m (R Ly(R™™ E)) 0 Ly (R B (R B)),
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and the compatibility conditions
Bj(D)Uozgj(O), /ﬁj>1/p+1—,u—1/2m,j:L...,m,

are satisfied.

Conversely, let data (f,g;,uo) with these properties be given, and let
A(D) be normally elliptic and assume that (A(D), By (D),...,B(D)) satisfies the
Lopatinskii-Shapiro condition. Then we can show that (6.24) admits a unique so-
lution in the class (6.47). In fact, extending f and ug to all of R™, we obtain a
solution of the full-space problem in the right class. Thus we may restrict attention
to the case (f,ug) = 0. Looking at the crucial equation for the half-space (6.32),
we see that the solution in this case has regularity (6.47), as we may multiply ¢
in (6.32) by p.

Obviously, for variable coefficients and general domains with compact bound-
ary we need to require additional smoothness of the coefficients and 2. These turn
out to be

(rA1+4) an € C)(; B(E)) for each |a| = 2m;
(rA2+4) aq € H} (4 B(E)) + WL (% B(E)) for each o = k < 2m,
with 7, > g and 2m + 1 — k > n/rg;
(tB+) b € BIa T (99; B(E)) for each |8| = k < m;,
with 7 > ¢, and 2mk; +1 > (n— 1) /7).
With these assumptions, we have the following result which parallels Theo-
rem 6.3.2.

Theorem 6.3.3. Let Q C R™ be open with compact boundary 0Q of class C*™+1,
1<p,g<oo, u€(1/p,1], and let E be a Banach space of class HT («). Assume
that (A(z, D), By (xz, D), ... B (x, D)) is uniformly normally elliptic, and satisfies
(rAl+4), (rA2+) (rB+). Let k; #1/p+1—p—1/2m for all j, and m; > 1.

Then there is wg € R such that for each w > wyg, equation (6.45) admits a
unique solution u in the class

uwe Ry, :=H) ,(Ri;Hy( E)) N Ly (R HY™HH(Q E)),
if and only if the data are subject to the following conditions.
(@) f € Ly u(Ry; HE(Q; B)), uo € By~ /PN (0 B);
(b) g5 € Fygn " (Rys Ly(992 B)) 0 Ly u(Rys By ™ (09 B));
(c) Bij(D)ug = g;(0) if k; >1/p+1—p—1/2m, j=1,...,m.
The solution depends continuously on the data in the corresponding spaces.

(if) m,; = 0, for some j.
So let for simplicity B1 (D) = I, a Dirichlet condition, and m; > 1for j =2,...,m.
This case is more involved than (i), as an additional compatibility condition shows
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up. In fact, we have k1 +1/2m = 1+ (1 — 1/¢q)/2m > 1, hence d;u has a time
trace on the boundary, which by taking the time derivative of the first boundary
condition yields

Orgr = Opu = f|0sz - ["4<D)u]

loc*

This suggests

g1 € H ,(Ry; Bl VIR B)) 1 L, (R B~ 1/2(RY Y E)).
On the other hand, we have

A(D)u € Hyl?™(Ry; Ly(R; E)) N Ly u(Ry; Hy (R E)),
which yields for its trace on 02
LA(D)u) € Fig /D72 (R s Ly(R™™ B)) 0 Ly u(Ry; By /IR E)).
This implies the additional regularity
D91 = flon € FLLLV DM (Ry; Ly(R™™Y E)) N Ly (R BAH-1/4(R1 E)),

and the additional compatibility condition

9191(0) + [A(D)uoljpo = ()1, i (1 =1/q)/2m>1/p+1—p.

The regularity and compatibility of g; for j > 2 is the same as in (i), and ¢1(0) = ug
on 0f2 must be satisfied, as well.

Having worked out these higher order compatibilities, we now may proceed
as in (i) to see that these conditions yield also sufficiency for solutions of (6.24)
in the class (6.47).

Theorem 6.3.4. Let Q C R™ be open with compact boundary O of class C*™+1,
1<p,g<oo, u€ (1/p,1], and let E be a Banach space of class HT (a). Assume
that (A(z, D), Bi(x, D), ... Bun(x, D)) is uniformly normally elliptic, and satisfies
(rAl+4), (rA2+), (rB1+), for j = 2,...,m. Let k; # 1/p+1—p—1/2m for
all j > 1. Further assume that Bi(x,D)u = u, i.e., By is a Dirichlet boundary
condition.

Then there is wy € R such that for each w > wy, equation (6.45) admits a
unique solution u in the class

W€ By, = HY (Rt HY (5 B)) 1 Ly (Res H2 (9 ),
if and only if the data are subject to the following conditions.
(8) f € Lpu(Rys Hy( E)), uo € By~ (0 B);
(b) g5 € Fpi i ™" (R Ly (9 B)) 0 Ly (R Bag ™ (00 B));
(c) Bj(D)ugp =g¢;(0) ifr; >1/p+1—p—1/2m, j=1,...,m;
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(@) D191~ fion € Fpaz /™" (Res Lg(R" ™5 ) N Ly (Re; Byg (R B));
(f) atgl(o) + ['A<D>u0]|asz = f(0)|897 if (1 - l/q)/Qm > l/p +1—p
The solution depends continuously on the data in the corresponding spaces.

(iii) General s > 0.
Extending the observations in (i) and (ii), we are able to study solutions in the
class

€ Hy  (Ry; Hy(RY; ) N Ly u(Rys H™ (RY; E)), (6.48)

for any s > 0 excluding the special values s; = m; +1/q, and imposing the natural
additional regularities 9Q € C?™*5, as well as

aq € HY (Q)+ H(Q), 7m>q, 2m+s—k>n/rg, 0< |af =k <2m,
and

bjs € BE;:?“(&Q),TM >q, 2mkj+s>(n—1)/rjk, 0< |8l =k <my,
and imposing the higher order compatibilities as explained above. More precisely,
let m{ < md < ... <m)  be defined by the different orders m;. Then for
0 < s < m{ + 1/q we have no higher order compatibilities, for m{ + 1/¢ < s <
mY + 1/q we have first (time-) order compatibilities, and with increasing s the
number and the order of these higher compatibilities increases, whenever s crosses
one the exceptional numbers s;. So if s is large, this leads to a very complicated
set of higher order compatibilities, which one clearly would like to avoid.

As a summary, in parabolic problems, such higher order compatibilities do
not occur if s < min{m;} + 1/q, i.e., if the time derivatives of the boundary
conditions do not have a space trace. For second-order problems this means in the
Dirichlet case if s < 1/g, and in the Neumann case if s <1+ 1/q.

(iv) The elliptic case.
Finally, we note that for elliptic problems this phenomenon does not occur. If
feH;(Q)and g; € Bg;mﬁs(@()), then the solution of the elliptic problem

(w+ A, D)u=finQ, Bj(z,Du=gjond, j=1,...,m

has a unique solution in H;*?"(Q), provided A(z, D) is normally elliptic, the
Lopatinskii-Shapiro condition holds, w > s(—A), 92 € C?*™*s and the coefficients
satisfy the regularity conditions in (iii).

3.6 Lower Order Space Regularity

In many problems, maximal L,-regularity in Hy(Q; E) is required, where s < 0.
In this subsection we consider the case s = —1, i.e., we want to consider weak
solutions. By localization, coordinate transformation and perturbation, it is again
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enough to prove the results for the half-space case with constant coefficients. For
all of this, we make the structural assumption

A(z,D) = =i ¥ 9pA(z, D) = —idivA(z, D),
(=1

where Ag(2, D) = 3, <om—1 (@) D* are differential operators of order 2m — 1.
We have to distinguish two cases:

(i)mj <2m—2foralj=1,...,m.

(ii) my <2m—2forall j =1,...,m—1, but m,, = 2m—1; in this case we require
B (x, D) =iv - A(z, D).

We begin with the first case.

(i) mj <2m—-2forallj=1,...,m.
We assume that A is normally elliptic, and that the system (A, By, ..., B;,) satisfies
the Lopatinskii-Shapiro condition. The operator

Gradg : oH}, (Q) = Ly (Q;C"),  Gradg ¢ := Vo,
is well-defined, linear, bounded, and injective. Therefore, its dual
Divy = —Gradg : Ly(;,C") — oH,, ()" =: H; '(Q)

is also well-defined, bounded and has dense range. Note that in case {2 is bounded,
by the Poincaré inequality R(Grady) is closed, and hence Divy is surjective. Prob-
lem (6.45) can now be rewritten as

O (u|p)a + w(ulp)q + i(A(z, D)u|Ve)a = (f|¢)9’ ¢ € oHL ()
Bj(z, D)u = ondQ, j=1,....,m, (6.49)
u(0) = in Q.

Abstractly, the first equation in (6.49) can be written as
dyu+wu — iDivo(A(z,D)u) = f in H;'(Q;E).
So we are looking for solutions in the class
uwe Hy ,(Ry; H (S E)) N Ly (R HY™ N E)). (6.50)

This implies the following necessary regularity conditions for the data.
(a) f € Lyu(Res Hy (% B)). o € B ™01 B);
(b) ;€ Fpi' ™" (Ra Lg(0% ) N Ly (R Big™ (O B)),
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for all j = 1,...,m. Here we require 1 > p > 1/p + 1/2m. The compatibility
conditions now read

Bj(iU,D)U():gj(O), nj>1/p+1—,u+1/2m,j:L...,m.

The assumptions on the coefficients are changed slightly, they read

(rAl-) ape € Ci(;B(E)), £=1,...,n, |a| =2m —1;

(rA2-) ago € [Lr, + Lo (G B(E)), £=1,...,n, k=la] <2m —1,
with r, > ¢, 2m — k > n/rg;

(tB-) bjs € BELY (09 B(E)), |6 =k < mj,
with 7, > ¢, and 2mk; —1 > (n — 1) /rjk.

Finally, in this situation we only need to require 92 € C?™~1 (in case m > 1
it is even enough to require 92 € C?m=1-),

Theorem 6.3.5. Let QO C R™ be open with compact boundary 0Q of class C*™~1,
1 <p,qg< oo, ue (1/p,1], and let E be a Banach space of class HT («). As-
sume that (A(z, D), Bi(z, D), ... By (z,D)), with A(z,D) = —iy_,_, e Ai(z, D),
is uniformly normally elliptic, and (rAl-), (rA2-) and (rB-). Let m; < 2m—2 and
ki #1/p+1—p+1/2m for all j.

Then there is wg € R such that for each w > wyg, equation (6.45) admits a
unique solution u in the class

we Bry = HL(Rys Hy (@5 ) 0 Ly, (Rys H2 Q1 B)),
if and only if the data are subject to the following conditions.
(a) f € Eop = Ly, (Ry; HYY (L E)), ug € Bay ™" VP Y (Q; B);
(b) g; € Fjp = Fyiia ™" (Ryes Ly(09 B)) N LRy Big™ (9% B));
(c) Bj(D)up =g¢;(0) ifk; >1/p+1—p—1/2m, j=1,...,m.
The solution depends continuously on the data in the corresponding spaces.

(ii) m; <2m—2forall j=1,...,m—1, my, =2m—1.
In this case, as has been said before, we only consider 5,, = iv - A. Here we set

Grad : H)(Q) — Ly (QC"), Grad¢ = Vg,
where H means factorization over the constants, and we define
—Div := Grad” : Ly (% C") = oH, " (Q) := H},(Q)".

As Grad is bounded, linear, injective, its dual Div is bounded, linear, and has
dense range. Note that in case (2 is bounded, by the Poincaré-Wirtinger inequality
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R(Grad) is closed, and hence Div is surjective. Problem (6.45) with f replaced by
fo can now be rewritten as

3u(ulp)a +w(ulp)o +i(Alz, D)ulVe)o = (fl9), ¢ € Hy(S),
Bij(x,D)u=g; ond%Q, j=1,...,m—1, (6.51)
u(0) = ug in §,

with the function f € LP7H(R+;OH;1(Q; E)) defined by

(flo) == (fol®)a + (gm|d)aq-

Abstractly, the first equation in (6.49) can be written as
dyu+ wu — i Div(A(z,D)u) = f in oH,'(Q).
So we are looking for solutions in the class

1
u€H,,

(Ry;0H (5 E)) N Ly u(Ry; HZ™ (S B)). (6.52)

The necessary regularity conditions on the data (g;, uo) as well as the compatibility
and regularity conditions on the coefficients are the same as in (i), where here
j=1,...,m —1. The condition for f changes in an obvious way.

Theorem 6.3.6. Let QO C R™ be open with compact boundary 0Q of class C?>™1,
1< pgqg<oo, ue (1/p1], and let E a Banach space of class HT (). Assume
that (A(z, D), Bi(z, D), ...By(z, D)), with A(z,D) = —iy., , 0pAi(z,D) and
By (z, D) =iv-A(x, D), is uniformly normally elliptic, and (rAl-), (rA2-), (rB-),
m; <2m—2, k; #1/p+1—p+1/2m forj=1,...,m—1.

Then there is wg € R such that for each w > wy, equation (6.45) admits a
unique solution u in the class

u€ By, =H) ,(Ry;0H, (% E)) N Ly (R H™ Qs E)),
if and only if the data are subject to the following conditions.
(@) f € Lypu(RisoH, (% E)), up € Boy ™" /P Y B);
(b) g € Fyif " *" (Reps Lg(0: ) N Ly (R Byy™ (0 ), j = 1,....m —1;
(¢) Bj(D)ug =g;(0) if k; >1/p—1—p+1/2m, j=1,...,m—1.
The solution depends continuously on the data in the corresponding spaces.

(iii) Sufficiency of the conditions in Theorems 6.3.5 and 6.3.6 for the half-space
case with constant coeflicients.

We first reduce to the case (f,ug) = 0 in the usual way: extend uy €
B to all of R™ and f trivially by zero in case (i) and symmet-
rically in case (ii). Solve the resulting problem in R™ in the proper class, and
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subtract this function from u. Then we consider the central identity (6.32) in the
form

P> v = M(y,p,b,0)d/p,

to see that the solution has regularity (6.50) in case (i) and (6.52) for (ii). As a
result, A(D)u € Ly, (Ry; Lg(R’ ; E™)), hence by construction

dyu = idivA(D)u = i DivoA(D)u € Ly ,(Ry; H, ' (R E)),
in case (i), and similarly in case (ii) we have

dyu = idivA(D)u = iDivA(D)u € L, ,(Ry;0H, (R E)).

(iv) The corresponding analytic Cy-semigroups.

Having maximal L,-regularity of the problems (6.49) and (6.51) at our disposal,
we may now argue as in Section 6.3.4 to derive the corresponding analytic Cp-
semigroups in Hq_l(Q;E) resp. in OHq_l(Q;E). We omit the details here, how-
ever, note that these semigroups yield also corresponding semigroups in L, (€; E),
defining Ag as the part of A in L,(Q; E). Note that D(4) c HZ™ (% E),
but D(Ap) is not explicitly known. Therefore it is an interesting question how
the spectra of these extensions change, in particular the spectral bound. Then
as Ly(% E) C H' (5 E), it is easy to see that p(A) C p(Ao). But the con-
verse is also true. In fact, suppose f € H; '(Q; E) is given and X € p(Ap). Set
Jo = (I +€A)™!; then f. = J.f € HZ™ (G E) and fo — f in H Y E) as
e — 0. Let u. = (A — Ag) "' f., and choose w large. Then we have

Ue = (W + AO)_l[_fs + (w + )‘)us]
= —(W+A)) T e+ (WH A= Ag) T (w+ Ag) T e
= (WH+A e F (WA= Ag) Hw+ AT,

as (w+ A)71f. = (w+ Ag) " f.. But this implies

e = u = (=1 + (W + N\ — Ag) H(w+ A)7f.
Since D(Ag) C D(A), we obtain u € D(A) and then (A— A)u = f. Hence X € p(A4).
Therefore p(A) = p(Ap) in case (i), and by the same argument also in case (ii).
6.4 Elliptic and Parabolic Problems on Hypersurfaces
Suppose that ¥ is a compact hypersurface without boundary in R™ of class C*. It

is the purpose of this section to derive solvability results for elliptic and parabolic
problems on .
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Let A: C™(%; E) — C(%; E) be a linear operator, where E denotes a Ba-
nach space of class H7. Then A is a differential operator of order m on ¥ if all
representations of A in local coordinates (U, ¢) are given by

pudu = A (z, D)psu:= Y aly ,\(x)Dp.u, (6.53)

laf<m

where the coefficients ay; ) are defined on the open set ¢(U) in R and p,v =
vop ! Ais said to be of class C* if all coefficients are in this class. We may
assume that the charts are normalized in such a way that ¢(U) = Bgn-1(0,1).
The typical examples we have in mind, and which are used below, are the
negative Laplace-Beltrami operator —Ay; and A%; see Section 2.1. A more involved
operator is
A= —divg(a(z)Vy), a€CYHZ;B(TE® E)).

By using the language of covariant derivatives one can show that a differential
operator defined on ¥ is completely determined by the local representations (6.53).

Definition 6.4.1. A differential operator A of order m on X is called parameter-
elliptic if all local representations Ay, have this property. This means that for
any local representation Ay, there is ¢ < such that

o(Af,(2.€) C Ty (2,€) € Bana(0,1) x 877, (6.54)
where
U@( &)=Y aly (@), (2,€) € Bra—1(0,1) x "7,
la]=m
By compactness, we then obtain

¢4 = sup inf{¢ € (0,7) : (6.54) holds} < .
Usp)

¢4 is called the angle of ellipticity of A. Finally, A is called normally elliptic if it
is parameter-elliptic with angle ¢4 < 7/2.

It is not difficult to show that the definition of the angle of ellipticity ¢4 is
independent of the local representations. Moreover, A(y,,)(z,§) is continuous and
invertible, hence by compactness of X, Ay, (2,€) as well as Ay ) (z,£) "1 are
uniformly bounded on Bgn-1(0,1) x S*~1.

By compactness of ¥ we find a family of charts {(U;,¢;):1 < j < N} such
that {U;}72, covers ¥. Let {r; : 1 <j < N} € CY(Z) be a family of functions on
¥ such that {(U;, ]) 1 < j < N} is a partition of unity subordinate to the open
cover {U; : 1< j < N}, ie,

supp(m;) C Uj, Zﬂ' =1 onX. (6.55)
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Then we call {(U;,¢;,m;) : 1 < j < N} a localization system for 2.
Definition 6.4.2. Given a localization system {(Uj, p;,7;) : 1 < j < N} for I, let

R°: Li(SE) —» Li(R™ Y E)Y,  Ru:= (¢](m;u)),

1. N N (6.56)
R: LR E)YN = Li(SiE),  R((w))) =Y m5u;,
j=1
where piv :=vop and ;= gp]l. Moreover, we set
Aj = A(ijj)(iE,D), 1<j5<N. (6.57)

We extend the coefficients in the usual way (e.g. as in Section 6.2) to obtain
an extension of A; to all of R"~! with coefficients which have a limit at infinity,
so that we may apply the results of Section 6.1.

It follows that R is a retraction with R a co-retraction, i.e., we have

RRu=wu, wue€Li(3%;E). (6.58)
In the sequel, we set u = R°u, so Ru = u. Moreover,
Z/J;AUZAﬂ/)j% ISJSNa

and
YimjAu = Ajimiu+ i[my, Alu = Ajpimiu+ Bju.

Set A = diag[A;] and B = [B; R]; then we obtain with (6.58)
RA+w+Au=N+w+A+B)u. (6.59)

By Theorem 6.1.10, w + A; is R-sectorial in L,(R"~1; E) for w sufficiently large,
j=1,...,N, and w+ A is R-sectorial for such w as well. As B; are of lower order,
it follows by perturbation arguments (choosing w even larger) that

Atw+A+B:HMR"SE)N = LR EN, Ae s,

is invertible, and A(A+w+A+B) ™! is R-bounded in L,(R"~; E)Y, where ¢ > ¢4
is fixed. Therefore, the operators

Lyw=RA+w+A+B) 'R : Ly(3;E) » HI"(SE), AeXy,  (6.60)
are well-defined, and with (6.58) and (6.59) we obtain
Ly +w+ Au=RRu=u, ueH(%E),

i.e., Ly is a left-inverse for (A +w + A) and in addition, the family {L . }xex,
is R-bounded in Ly(X).
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On the other hand, we also have
A(mjpiug) = mipi Ajug + o[ Az pimjluy =: mipi Aju; + Ciu;

and this yields

N
A+w+ARu=RA+w+A+CQu, Cu:=R"> Cju;. (6.61)

j=1
For w sufficiently large, we can again conclude that
Atw+A+CHMRHE)Y = LR EN, X e s,

is invertible, and hence

Ryw=RA+w+A+C)'R°
is well-defined. It follows from (6.58) and (6.61) that

A+tw+ ARy wu=RRu=u, ue€H"(%E),

and this shows that R, is a right-inverse for A + w + A. This implies

Ryw=1Lxrw=A+w+A)",

and {XA+w+ A"t : X e By} C B(L,(X)) is R-bounded. Therefore w + A
is R-sectorial, which in case ¢4 < m/2 implies, by Theorems 4.4.4 and 3.5.4,
Ae MR, ,(Ly(X)) for all p,g € (1,00), I/p<p <1

Replacing in the above arguments the base space L,(¥; E) by K (X; E) and
the regularity space H;"(X; E) by K;“'m(E;E), where K = H or K = W, we
obtain the same result, provided we have the corresponding result in R*~!. Em-
ploying Section 6.1.5, this yields the following maximal regularity result.

Theorem 6.4.3. Let ¥ be a compact hypersurface of class C' without boundary in
R, 3<i<o0, E€HT, and let p,q € (1,00), u € (1/p,1]. Suppose that A is a
differential operator on ¥ of order m € N with coefficients in C?*, where k € N,
2k +m <. Define the realization A of A in Kj(¥; E) by means of

Au:=Au on ¥, ueD(A):= Kzﬂn(E;E)a

where K € {H, W}, |s| <2k, s € Ng for K =W. Then we have

(i) Suppose that A is parameter-elliptic. Then there is wy > 0 such that the equa-
tion
Atw+Au=f in K5 FE)

admits a unique solution u € K;*m(E; E) for eachw > wo and each f € Kj(3%; E).
For any ¢ > ¢4 there is a constant My such that the resolvent estimate

MO+ W+ A) ks ey < Mg, A EXg, w>wo, |s| < 2K,
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is valid. In addition, we have wo + A € RS(K:(%; E)) with ¢5 < ¢a.
(ii) Suppose that A is normally elliptic. Then there iswy > 0 such that the equation

O +w+Au=f, t>0, u(0)=0,

admits a unique solution u € H) ,(RyK3(3; E))N Ly, (Ry; K3 (35 E)) for each
w > wo and each f € Ly, (Ry; K3 (X; E)). Moreover, there is a constant C' > 0
independent of w and s such that

W‘U|Lp,u(K3) + |atu|LP,u(K[;) + |u|Lp1M(K§+"L) < C|U|LPYM(K;;);

forall f € L, ,(K3(3; E)). In particular, wo + A € MR, (K;(3; E)).

This result will be used frequently below, to understand moving boundaries
analytically via the Hanzawa transform, and to handle dynamics on moving inter-
faces.

6.5 Transmission Problems

Elliptic and parabolic transmission conditions are present everywhere in mathe-
matical physics, but one hardly finds citable references on this topic in the liter-
ature. For this reason, and also since we need results on transmission problems
below, we consider such problems here, restricting to the second-order but vector-
valued case.

Suppose that Q C R” is a bounded domain with C?-boundary, consisting of
two parts 1 and s which are also open and such that that 2; is separated from
the boundary of Q. Then we call 25 the continuous phase and §2; the disperse
phase. Let ¥ = 01 be the interface separating €2, and 5 such that Q = Q; U
3 U Qq. This is the typical two-phase situation. We consider in this section the
following transmission problem.

O +w+ Az, Vy))u=f inQ\3%,
B(z,Vz)u=0 on 09,
[u] =95, [B(x,Vi)ul=9g onZ,
u(0) =ug on Q

(6.62)

for t > 0. Here u lives in a finite-dimensional Hilbert space F and
A(z,V,) = =div(a(x)V,), B(z,V.)=—(v(z)|a(x)V,),

where v(x) denotes the outer unit normal at 2 € ¥ directed into the interior of Qs
(resp. the outer unit normal of  at x € 9Q) and a € C},(Q\ X; B(E))"*". The
data (f,gs,g,up) are given.

The purpose of this section is to prove the following result.
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Theorem 6.5.1. Let 1 < p,q < 0o and 1> u > 1/p, let E be a finite-dimensional
Hilbert space, and assume that a € CL,(Q\ T;B(E))™ "™ is uniformly normally
strongly elliptic.

Then there is wg € R such that for each w > wy, problem (6.62) admits
ezactly one solution u in the class

u € Hy , (Ry; Lg(Q E)) N Ly,u(Ry; H(Q\ 25 B)),

if and only if
(@) f € Lpu(Ry; Le(2 E));
(b) g5 € Fpga ™ (Ros Ly (3 B) N Lyu(Ras Wy~ 7(S3 E));
(€) 9 € Fppyi (R Ly (S B)) 0 Ly (R Wy /7 (23 B));
(d) ug € B2\ ©, E);
(e) [uo] = g=(0) for u > 3/2p, and [B(z, V)uo] = ¢g(0) for p > 1/2+ 3/2p.
The solution map is continuous between the corresponding spaces.

The next subsections deal with the proof of this result.

5.1 The Model Problem

We consider the constant coefficient case with flat interface ¥ = R"~1 x {0} =
R"~1 and 2 = R™ \ X. As before, it is convenient to replace the variable z € R™
by (z,y) € R"~! x R. Then the problem reads

O +w+ A(Ve +vdy))u=f, y#0,
[[u]] =95, [[B(vr + Vay)uﬂ =9 y=0, (663)
U,(O) =Uo, Y 7& 07

for ¢ > 0, with v = e, the outer unit normal of ; = R”. We first verify the
Lopatinskii-Shapiro condition for this case. For this purpose let u € Lo(R; E) be
a solution of the ode-problem

u(y) + A( + voy)u(y) =0, y #0,

such that
[u] =0, [B(i+voy)u] =0 fory=0.

Here ReX > 0, £ € R™ and ({|v) = 0. Taking the inner product with u(y),
integrating over R, and employing an integration by parts we obtain

0= Aul3 + A > (@ (Guly) — indyuly)|(Exuly) — irdyu(y))s dy,
k=1

as the boundary terms disappear by the jump conditions. Taking real parts, by
normal strong ellipticity this yields

Re(a® (&u(y) — ividyu(y)|(Eruly) — ivedyu(y))e =0, y #0.
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Using normal strong ellipticity once more we obtain

9y lu(y)|E = 2Re(dyu(y)lu(y))p =0, y#0,

hence u is constant on (0,00) and also on (—o0,0) which implies u = 0 as u €
Ly (R; E) by assumption. Thus the Lopatinskii-Shapiro condition for the two-phase
problem is valid.

To obtain solvability of the problem in the right regularity class, perform a
transformation to the half-space case as follows. Set

ﬂ(t,x,y) = [u(t,x,y),u(t,x, _y)]T’ ﬂo(l‘,y) = [uo(x,y),uo(x, _y)]T’
f(t7may) = [f(t,x,y), f(t“’l?, _y)]T7 for t € (0’00)’ T € Rn_lv y e (0700)7

and consider the problem

(O +w+ A(vl +vdy))u

= in R?,
@(0) =iy on R"H

(6.64)

with ¢t > 0, where A(V, + vd,) = diag[As(V, + vd,), A1 (V. — vd,)], with sub-
scripts 2,1 referring to the coefficients in the upper resp. lower half-plane. The
boundary conditions now become

ts(t,x,0) — U1 (t, z,0) = gs(t, ),
Ba(Vy + v0y)ta(t, z,0) + B (Ve + v0y)t (¢, 2,0) = g(t, ).

Then with these boundary conditions, (6.64) is normally strongly elliptic and
satisfies the Lopatinskii-Shapiro condition for the half-space. By the results of the
previous section this problem is uniquely solvable in the right class, hence the
transmission problem (6.63) has this property as well. This proves Theorem 6.5.1
for the constant coefficient case with flat interface.

5.2 Proof of Theorem 6.5.1
To complete the proof of Theorem 6.5.1, we may now proceed as in the one-phase
case.

1. By perturbation, the result for the flat interface with constant coefficients
remains valid for variable coefficients with small deviation from constant
ones.

2. By another perturbation argument, a proper coordinate transformation
transfers the result to the case of a bent interface.

3. The localization technique finally yields the result for the case of general
domains and general coefficients.

One may then employ perturbation arguments another time to include lower order
terms, at the expense of possibly enlarging wg.



290 Chapter 6. Elliptic and Parabolic Problems

5.3 The Steady Case
A result like Theorem 6.5.1 also holds for the steady case, i.e., for elliptic trans-
mission problems. We consider here the corresponding result for the problem

(w+ A, Vo))u=f inQ\X%,
B(z,V)u=0 on 09, (6.65)
[u] = g2, [B(z,V)u]=g onX.

Here the data (f, gs, g) are given. For this problem we have

Theorem 6.5.2. Let 1 < p < oo, let E be a finite-dimensional Hilbert space, and
assume that a € CL, (Q\ X; B(E))"*" is uniformly normally strongly elliptic.

Then there is wg € R such that for each w > wp, problem (6.65) admits
ezxactly one solution u in the class

u€ H(Q\ S E),

if and only if (f,9%,9) € L,(; E) X W,?*l/”(z:; E) x W,}fl/p(E; E). The solution
map is continuous between the corresponding spaces.

Remark 6.5.3. Higher regularity can be obtained for transmission problems in the
same way as in Section 6.3.5 for the one-phase case, whereas lower regularity is
obtained in the same way as in Section 6.3.6.

A natural question which arises is to determine the minimal value of wg. For
this purpose, we first solve (6.65) for a large value w = @, to obtain a function 4.
Then we set 4 = w — u; u then must satisfy the problem

(w+ Az, V)i = (w—w)a inQ\Z,
B(z,V)au=0 on 9N\ X, (6.66)
[a] =0, [B(z,V)a]=0 on X.

This means that —w should belong to the resolvent set of the operator A in
L,(£; E) defined by

Au(z) = Az, Vy)u(z), =€ Q\X, (6.67)
D(A) ={u€ H2(Q\ % E) : [u] = [B(z,Vs)u] =0 on ¥, B(z, Vy)u =0 on 9Q}.
In virtue of Theorem 6.5.1, this operator has maximal L,-regularity, hence —A

generates an analytic Cp-semigroup. Therefore, wy is the spectral bound s(—A) of
—A. By a similar argument, the same is valid for the number wy in Theorem 6.5.1.

5.4 Dirichlet-to-Neumann Operators
Dirichlet-to-Neumann operators appear frequently in mathematical physics and
also at several places in this book. Such operators map Dirichlet boundary data



6.5. Transmission Problems 291

to Neumann boundary data in several possible ways, and the goal is to obtain
properties of such maps. In this subsection we assume throughout that A(z, V)
is uniformly normally strongly elliptic and that B is the corresponding co-normal
derivative, as in the previous subsections.

(i) We begin with the elliptic case. Here there are two types of Dirichlet-to-
Neumann operators, namely one- and two-phase operators. In the following, we
always consider the elliptic problem

(w+ Az, Vy)u=0 inQ\ZX,

6.68
B(z,Vz)u=0 on dQ, (6.68)

where at first w > 0 is sufficiently large. We may now assign Dirichlet data on the
interface.
[ul =0, u=g on%, (6.69)

to obtain a unique solution v € H}(2\ ¥; E) provided g € W2 '?(3; E). These
are actually two one-phase problems, one in ; and one in 5. We then may
compute the Neumann-boundary values B(z,V,)u on either side of ¥. We set
up = ulg, for k=1,2 in the following definition.

Definition 6.5.4. We call the maps Sy, : Wg_l/p(E; E)— Wg‘l/”(z; E) defined by

the one-sided traces of the conormal derivative at X
S19:= —B(x,V)uils, Sog:=B(z,V)usls,

the one-phase Dirichlet-to-Neumann operators of (6.68)—(6.69).

The operators Sy for k = 1,2 are well-defined whenever the corresponding
boundary value problem (6.68) with Dirichlet condition on ¥ is well-posed. Clearly,
Sy, only depends on {2, so that these operators are really one-phase. Considering
(6.68) in Q) with Neumann condition B(z,V,)u = h on ¥, it becomes apparent
that each Sk, k = 1,2, is invertible if the corresponding boundary value problem
with Neumann condition on ¥ is well-posed. So in this situation S; and Sy are
isomorphisms.

On the other hand, there are two typical two-phase Dirichlet-to-Neumann
operators for (6.68). The first one, called Sy, is obtained by solving the transmission
problem

(w+ Az, Vz)u=0 inQ\3,
B(x,V,)u=0 on 04, (6.70)
[u] =0, u=g onX,

and setting Sqg := [B(z, V)u]. Actually we have Sq = S1 + So, as the normals
of Q on X have opposite directions. To obtain the inverse of Sy, one has to solve
problem (6.68) with transmission conditions

[u] =0, [B(z,Vz)u]=h onX,
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yielding g = u;, = Sd_lh. Hence Sy is an isomorphism as well.
To define the second two-phase Dirichlet-to-Neumann operator .S, we solve
the transmission problem

(w+A(z,Vy)u=0 inQ\X%,
B(z,V,)u=0 on 09, (6.71)
[u] =g, [B(z,Vz)u] =0 onX,

and set Shg := B(z, V;)u. To obtain the inverse of S, we have to solve (6.68) with
boundary condition

B(z,Vy)ul =0, B(z,Vz)u=h onkX,
yielding g = [u] = S, 'h. An easy computation shows the relation
Sn =515 = 855, S1.
The two-phase Dirichlet-to-Neumann operators
Sa, Sn: W2THP(S,E) — Wa—VP (S5 E)

are well-defined and at the same time isomorphisms if w is large enough. Observe
that Sg, k € {1,2,d,n}, are pseudo-differential operators of order 1, while S,;l
typically are integral operators on ¥ with weakly singular kernels.

(ii) In the parabolic case one proceeds similarly. We begin with the problem in the

bulk
(O +w+ Az, Vy)u=0 inQ\X,

B(z,Vz)u=0 on 09, (6.72)
w(0) =0 in Q,
with ¢ > 0. Here we have to distinguish the case of a finite interval J = [0, a],

from that of the half-line J = R,. We concentrate on the case of the half-line and
assume w > 0 to be sufficiently large. For a finite interval J = [0, a], no restrictions
on w € R are necessary. To avoid compatibility conditions here, we assume initial
value u(0) = 0.

Imposing conditions on ¥ as for the elliptic case in (i), we obtain the corre-
sponding parabolic Dirichlet-to-Neumann operators, which we call again Sy, for
k € {1,2,d,n}. The same assertions as in (i) are valid, but now the spaces are of
course also time-dependent. We have isomorphisms

Skt oW MNP (R Ly (S5 E)) N Ly, (Ry; W22 (S E))
- OW;{j*/?P(&; Ly(%5E)) N Ly u(Ry; Wy —H/2(S E))

for k € {1,2,d,n}, provided w is sufficiently large. Note that in this case Sy are
pseudo-differential operators jointly in time and space, of order 1/2 in time and
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order 1 in space. These assertions remain valid if A and B are perturbed by lower
order operators, at the expense that one possibly has to enlarge w.

(iii) We now look closer at the possible values of w. If A(z,V,) = —8;a"(x)0;
and B(z,V;) = —v;(x)a" (2)9; such that A(z,V,) is normally strongly elliptic,
uniformly in z € Q and a¥ € C},(Q\ ¥; B(E)), then w > 0 is sufficient. This
follows from the fact that, as F is finite-dimensional, A(x,V,) with Neumann
condition on 9 and with each of the interface conditions (6.69), (6.70), (6.71)
has compact resolvent, hence its spectrum consists only of discrete eigenvalues
of finite multiplicity, and is independent of p € (1,00). By the standard energy
argument it follows that the corresponding spectral bounds are in each case 0.
The case w = 0 is more involved, as 0 is an eigenvalue. We postpone this case to
Chapter 10, where w = 0 is essential.

6.6 Linearized Stefan Problems

The following linear problem is essential for the understanding of Problems (P1),
(P3), (P5) and many other problems with moving interface. For its formulation,
let  C R™ be a bounded domain with boundary 9 of class C2. As before, we
assume that € consists of two parts, €27 and 5 such that ¥ = 9Q2; does not touch
09Q. We assume that the hypersurface ¥ is a C3-manifold in R™. Note that in this
section E = C. Consider

(Ot +w+ Az, Vo ))u=f, inQ\X,
B(z,V,)u=0 on 09,
[ul =0, w—C(z,Vx)h=g on, (6.73)

(O +w)h + [B(z,Vy)u] = fr on X,
u(0) =wup in, h(0)=hy onX.
for t > 0. Here w > 0,
Az, V,)=—div(a(z)V), B(z,V,)=—v(z) a(z)V,, C(z,Vs)=—divs(c(z)Vyg).

We assume that the coefficients a € C},(Q\ %;B(R™)) and ¢ € C3(3;B(TY))
are symmetric and uniformly positive definite. Note that the coefficients of A are
allowed to jump across the interface ¥. The unit normal v(z) at « € ¥ is pointing
from 27 into .

For Problems (P1), (P3), and (P5), the prototype operators will be A = —A,
B = —0, and C = —Ay. The main result for this problem in the L,-setting,
3 < p < 00, is the following.

Theorem 6.6.1. Letp >3 and 1 > > 1/2+ 3/2p. There exists wg € R such that
for each w > wqy, Problem (6.73) admits exactly one solution (u,h) in the class

we H) (R Ly(Q) N Ly u(Ry; HY(Q\ X)) =: Ey,
he W2V (R Ly(2) N W 2P (Ry s HA()) N Ly u(Ry s Wi H/P(8)) =: By,
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if and only if the data (fu, g, fn, w0, ho) are subject to the following conditions:

(@) fu € Lpu(Ry; Ly(Q)) =: Fy;

(b) 9 € Wy (R Ly(2)) N Lypu(Ros Wy /7 (8)) = F;

(€) fu € Wpl ™/ (R Ly(2)) N L u(Ras Wy~ /7 (8)) =: Fi

(d) up € W 2/P(Q\ %), hy € W37 (5));

(e) uo — C(x, Vi )ho = 9(0), [B(z, Vo )uol — f2(0) € Wy 2707 (5),
B(xz,Vz)up =0 on 0.

The solution map is continuous between the corresponding spaces.

6.1 Solution Spaces

To show necessity of the conditions in Theorem 6.6.1 and to explain the choice of
the space for h which is illustrated in Figure 6.1, we begin with the regularity of u,
which is the desired regularity in the bulk phases Q\ X. So let (u,h) € E,, x Ep, be
a solution of (6.73). Then f, € F, and the trace theory for second-order parabolic

problems yields ug € W,?””/p(Q \ ), and
Uy € W;},;l/Qp(RJr? Lp(3)) N Lp (R Wﬁ_l/p(z)) =T,
YV, € WHZU2(R S L(S)" 1 Ly (R WEVP(S))" = FY.

This implies (a), and it is natural to assume C(Vx)h € F as well, which then
implies (b) and suggests

he Wy MPP(Ro H2(S)) N Ly (R WP (R)).
Example 3.4.9(iii) then yields hg € W132+2’L73/p(§]). Looking at the equation for h
this implies fj, € Fp, hence (c¢), and suggests
he WH12(R, S 1(5)) N HL, (Ry; W V7(5)).
By Example 4.5.16(ii) we have
WZT 2P (R Ly (2) N W 2P Ry Hy (X)) — Hyy |, (Ry; Wp2/P(8)), (6.74)

and we arrive at the natural space Ej, for h.

The first compatibility condition in (e) is obviously necessary if the corre-
sponding traces exist, i.e., if 2u > 3/p. The second compatibility condition is
somewhat hidden, coming from the trace of dih. In fact we have by (6.74) and
Example 3.4.9(ii)

W2 2 (R Ly () N Wy, 2 (R HR (R) < Cpp (R W 279/7(3)),

p,p p.p

hence the trace of d:h at t = 0 exists if u > 1/2 + 3/2p. This yields the second
compatibility condition in (e). Note that the time trace of the class Fj, merely
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Figure 6.1: Regularity diagram for the Stefan problem.

belongs to Wﬁ”_l_g/p(E), as follows from Example 3.4.9(i). We remark that later
on for the nonlinear problems we even have to require u > 1/2+ (n+2)/2p, hence
we cannot avoid this compatibility condition. The next subsections deal with the
proof of sufficiency in Theorem 6.6.1.

6.2 Reductions

It is convenient to reduce problem (6.73) to the homogeneous conditions
(uo, ho, fu,g) = 0 and f, € (¢Fy, to simplify the problem and in particular
to trivialize the compatibility conditions. For this purpose we define the operators
A =14w—Ay and B = 1+w+A%; these are negative generators of exponentially
stable analytic Cy-semigroups with maximal L,-regularity on L,(X), hence also
on H; (%) and on W (¥). We then define

E(t) _ (2671415 _ 672At)h0 + (eth _ 672Bt)B71h1,

where hg € W2 73/P() and hy = £,(0) — [B(z, Vi )uo] —who € Wyt 2707 (%),
Obviously we have

h(O) = ho, (815 + W)B(O) = hy + why,

hence h = h — h has vanishing traces at t = 0.
We have to show that h belongs to E,. For this purpose we only need to
consider the functions e=4'hy and e~ Bthy.

(i) Choosing as a base space Xo = HZ(X), Proposition 3.4.3 yields
e Mho € Wy V2P (Rys HA(E)) N Ly, (Ry; W —HP(S)) & ho € WiT2H73/7(3).
This then implies

Oe Mhg = —Ae Mhg € W, V2P (Ry; Ly()),
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which yields e=4thy € E.
(ii) Next we look at e"B*B~'h; in the base space Xy = L,(3). Proposition 3.4.3
yields

e Bthy € WAZY (R Ly(8)) N Ly u (R W2T2/2(S)) & hy € WiH—275/7(x),

This implies
P B hy € WP (R () N HY (R W2/ (2)) 0 Ly (R WS 2/7(3)),
which is easily seen to embed into Ey.
Having the function h at our disposal, we solve the problem
O +w+ Az, Vy))a=f, inQ\X,
B(z,V,)u=0 on 09,
[a] =0, @—C(x,Vs)h
u(0)

in the class E,. Then the pair (i, h) = (u— 1, h— h) must satisfy (6.73) with data
(fu,9,u0,ho) =0 and f, replaced by fy, defined by

fr=fu = [B(x,Va))a] — (0 + w)h € oF.

g on X,
ug in £,

6.3 The Boundary Symbol
In this subsection we consider the constant coefficient case in 2 = R™ with flat
interface ¥ = R"~! x {0} = R"~!. This means that we consider the problem
(8 +w+ AVy))u=f, inR"
[ul =0, u—C(Vs)h=g onR",
(O +w)h + [B(Vz)ul = fr on R",
u(0) = ug in R, h(0) = hy on R" L.

(6.75)

Here once more we use the notation R” = R"~! x R. As explained in the previous
subsection, we may assume (fy, g, uo, ho) = 0. We want to show that this problem
admits a unique solution h € E; once we have f;, € ¢FF;,; then u is determined by
its boundary value uy; = C(V,)h as explained in the previous subsection. It is also
convenient to replace the variable € R™ by (z,y) € R"~! x R, which means that
we split into the tangential variable z and the normal variable y.

Taking Laplace transforms in time and Fourier transforms in the tangential
variables we obtain the problem

A+ a(&,€))u — 2ia(&, v)0ya — a(v, 1/)8511 =0, y>0,
[a] =0, @—C()h=0, y=0, (6.76)
N = [a(v, )8y + a6, V)il = Fa 4 =0,
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where the tilde indicates Laplace transform in ¢ with A the co-variable of 0; +w and
Fourier transform in the tangential variable x with co-variable £. Here we employed
the notation v = e, for the normal at the interface; observe that £ 1 v. Note that
the coefficients of A(V,) may jump across the interface. As the forms ay, k = 1,2
defining A(V,) are real symmetric and positive-definite, given usx, = C(£)h, we
may solve the equations in the region y # 0 to the result

a(y) = e ¥ yug, Yy >0,

and
a(y) = eym(/\f) s, y<0.

The symbols riare defined by r1.(\, €) = ax(v|v) (A, &)+ (—1)*iax (&, v)], with

ne(N€) = VN + ar(€ 0)ar(v,v) — an(§,v)2, k=1,2.
This implies

—la(v,v)0yt +ia(¢, v)a] = (n1(A &) + n2(X, €))us
For the equation on the boundary this yields

sNER = fr, with s(\&) =X +C(&)(n(\, &) +na(\,€)). (6.77)

So the main task is to show that this boundary symbol is invertible, and to obtain
lower bounds of the form

s O = (Al + EPVAFERD), A€, EeR™L

Observe that a multiple of the lower bound in the line above yields trivially also an
upper bound for s(\,€). Actually, as |ax(&,v)|* < ar(€, €)ak(v,v), with equality
only if £ and v are linearly dependent - which is not possible as £ L v - this is very
easy since the second and third terms in the definition of s(X, &) lie in the sector
Yr/a if X € By o, and C(€) is positive and scales like [¢[?. As a consequence, the

symbol
A+ €2/ X+ €2
m(A,§) = |£s()\ 3 €l

is bounded from above and below even on a larger set

AEX,  ope, E€XtU-—XITY

and it is a holomorphic function in A and £. Therefore, m satisfies the scalar
Mikhlin-condition w.r.t. £, uniformly w.r.t. A € ¥./5,.. Inverting the Fourier
transform, we obtain a holomorphic family of operators M ()) on L,(R"~!), hence
also on W3 (R"~!) for any real number s. The Kalton-Weis Theorem implies that

M0 + w) is bounded in each space oH,', (Ry; W3 (R*™"), m > 0, hence by real
interpolation also on (W7}, | (Ry; W (R"’ )), r > 0, and so Theorem 6.6.1 is valid
for this model problem.
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Remark 6.6.2. The argument given above shows that the boundary symbol s(}, &)
is equivalent to the essential symbol of the problem which is given by

Sess(ME) = A+ [EPVA+[E2, ReA >0, (e R

The essential symbol is responsible for the ‘strange’ solution space of h. The symbol
does not come from an evolution equation, but from an evolutionary integral
equation. In fact, sess(A, &) is the symbol of the pseudo-differential operator

Less = at + (_A;E) V at - A$7

which in different form may be written as
Less - at + (_AL)(at - Aw)kt*7

where k; denotes the heat kernel and x convolution in space and time.

6.4 General Coefficients and Domains
To complete the proof of Theorem 6.6.1, we may now proceed as before.

1. By perturbation, the result for the flat interface with constant coefficients
remains valid for variable coefficients with the required regularity and small
deviation from constant ones.

2. By another perturbation argument, the usual coordinate transformation
transfers the result to the case of a bent interface.

3. The localization technique yields the case of general domains and general
coefficients.

4. Employing perturbation arguments another time, we may include lower order
terms, at the expense of possibly enlarging wy.

We refrain here from working out details, this is left to the interested reader.

6.5 The Stefan Semigroup

As problem (6.73) is a linear well-posed system of differential equations, there
should be an underlying semigroup. However, it is not straightforward to formulate
this, and to show that its negative generator has maximal regularity. To extract the
semigroup, we indeed need another type of maximal regularity. For this purpose
observe that by (6.74)

W2 PP (R Ly (2) N Wy V2P (Ry HY (S) < Hy (R W 2/P(S)).
Therefore it makes sense to consider as the base space

(u,h) € Xo = Lp u(Ry5 Lp(82)) x Lp 1 (Ry; W572/p(2))’
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and to ask for solutions
(u,h) € By x EpY,  with ByY = H) |, (Ry; W2 ™2/P(2)) N Ly, (Ry; W —HP(3)).

This means that, given (fy, g, uo, ho) = 0, but now with fj, € L, ,(Ry; VV2 2/p(2))
instead of fj € IE‘;“ we want to find a unique solution (u, h) € E,, x E}? satisfying
(6.73). Clearly, if such a solution exists then the extra condition

[B(z, Va)u] € Ly u(Ry; Wﬁ_Z/p(Z)) (6.78)

must be satisfied. As we also have [B(x, V;)u] € W;,L271/2P(R+; L,(%)), by Exam-
ple 3.4.9(ii) we obtain the compatibility condition [B(z, V,)uo] € W;“_Q_Ei/p(E).
This property allows again reduction to the case ( fy, g, uo, ho) = 0, by first solving
(6.73) by means of Theorem 6.6.1 with f;, = 0 and (f,, g, ug, ho) satisfying the
assumptions of the theorem, to obtain functions (, h) € E, x Ey. The residual
functions (i, h) = (u — @, h — h) must then satisfy (6.73) with (f.,g,uo,ho) = 0,
as contemplated. Note that @ has the property (6.78), hence @ will also have this

property if h € E;? and f, € Ly u(Ry; Wy 2/p(E)). Thus we need to show that
for such fy, problem (6.73) admits a unique solution in E, x E;?. Actually, this
follows immediately from the mapping properties of the symbol s(},&) for the
constant coefficient case with flat interface, and by perturbation and localization
in general, as in the previous subsections. As a result we obtain

Theorem 6.6.3. Letp >3 and 1 > > 1/2+ 3/2p. There exists wy € R such that

for each w > wp, Problem (6.73) admits exactly one solution (u,h) in the class

uwe Hy (R Ly(Q2) N Ly (R H2(Q\ ) =: Ey,

[[B<337 Vw)u]] € LP:N<R+; Wﬁ_z/”(z)),
heH, (R W2 2P(S)) N W, /2P (R H2(S)) N Ly (R WP (R)),

if and only if the data (fu,g, fn, w0, ho) are subject to the following conditions:
( ) fu € L;D #(R+;L (Q)) =:Fy;
(b) g € Wy /P (Ry5 L (3) N Ly u (R Wy~ P (S)) = F;
(€) fn € Lyu(Ry; Wy~ /7(2)) = F;
(d) up € W2 2P(Q\ D), hg € W2TH73/P(5);
(e) uo — C(w, V)ho = 9(0), [B(x, Va)uol € Wy ~*~*/7(),
B(xz,Vz)up =0 on 09.
The solution map is continuous between the corresponding spaces.

By means of Theorem 6.6.3, we may define the Stefan semigroup in Xy in
the following way. We set z = [u, h]T, X1 = HZ(Q\ ¥) x W;_l/p(E), and define
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an operator A in X = L,(Q) x Wﬁ‘z/f’(z) by means of

L[ A@v.) o
- L [B=, V)l 0]
D(A)={z€e X, :B(x,Vz)u=0o0n 99, u—C(x,Vs)h =0o0n X, (6.79)
[B(z, V,)u] € W22/2(2)}.
Problem (6.73) for g = 0 is equivalent to the abstract evolution equation
i+ Az=f, t>0, 2z(0)=z, (6.80)
where we employed the abbreviations zg = [ug,ho]" and f = [fu, fa]". Then

maximal L,-regularity of (6.80) is equivalent to maximal L,-regularity of (6.73)
for g = 0 in the modified setting. Theorem 6.6.3 and Proposition 3.5.2 imply that
—A is the generator of an analytic Cp-semigroup with maximal L,-regularity. This
completes the construction of the semigroup.

Again we are interested in the smallest possible value of w in Theorem 6.6.3.
For this purpose we first solve the problem for a large value of w, say w, to obtain
a solution (@, h) € E, x E;?, and we set @ = u — 1, h = h — h. Then we obtain the
reduced system for these new functions

O +w+ Az, V)i = (w—w)a in O\,
B(xz,Vz)u=0 on 09,
[l =0, w—C(z,Vs)h=0 on X, (6.81)
(0 +w)h + [B(z, V.)il] = @ —w)h on %,
@(0)=0 inQ, h(0)=0 on X.

Employing the semigroup this yields
F4wi+Az=f,t>0, 2(0)=0,

with Z = [@,h)T and f = (@ — w)[@, h]T. Therefore, the lower bound of w is the
spectral bound wy = s(—A). We are going to discuss this number in more detail
in Chapter 10.

6.6 The Linearized Mullins-Sekerka Problem
In this subsection we consider the quasi-steady problem

(1+ A, V.))u=fu nQ\3,
B(z,Vz)u=0 on 01,
[ul =0, u—C(z,Vx)h=¢g onX, (6.82)
(O +w)h + [B(z,Vy)u] = f5, on %,
h(0) =ho on X.
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Here w,n > 0, A(z,V,) = —div(a(z)Vs), B(x,V,) = —(v(x)]a(z)Vs) and
C(z,Vs) = —divs(c(x)Vy) are differential operators with a € C, (2 \ &; B(R")),
c € C3(3; B(TX)), with both a and ¢ symmetric and uniformly positive definite.
Note that the coefficients of A are allowed to jump across the interface ¥. Here
the unit normal v(z) at € ¥ is pointing from 2 into Qs.

The main result for this problem in the L,-setting, 1 < p < oo, is the
following.

Theorem 6.6.4. Letp € (1,00) and 1 > p > 1/p. There exists wg,no € R such that
for each w > wqy, n > no, problem (6.82) admits exactly one solution (u,h) in the
class

u € Lpu(Ry; H,?(Q \ X)) =: E,,
he Hy (R Wy P(8)) N Ly (Rys W™ /P(2)) =:

if and only if the data (fu,g, frn, ho) are subject to the following conditions:
(@) fu € Lpu(Ry; Lp(Q)) =: Fu;

(b) 9 € Lyu(Rys Wy~ /7(2)) = F;

(©) fn € Ly (R; Wy HP(2)) = Fy;

(d) ho € W T3P (x),

The solution map is continuous between the corresponding spaces.

This result is proved in the same way as Theorem 6.6.1. As the bulk problem
is stationary, the proof is even simpler, so we skip the details here.

We are interested in the parameters 1 and w. For this purpose we define an
operator A in X = L,(€) by means of

Au(z) = A(z, Vy)u(z), z€Q\Z, (6.83)

D(A) ={u€ H(Q\X): u=0on¥, B(z,V,)u=0on dQ}.
As A is uniformly strongly elliptic by assumption, Theorem 6.5.1 shows that — A is
the generator of an analytic Cp-semigroup with maximal L,-regularity. Moreover,
as Q is bounded and X and 99 are of class C? and do not intersect, the semigroup
as well as the resolvent of A are compact. Therefore, the spectrum of A consist
only of eigenvalues of finite algebraic multiplicity, and is independent of p. So we

only need to consider p = 2. If z is an eigenvalue of A with eigenfunction u # 0,
the usual energy argument yields

zluly, = / a9;u dyu dz,
Q
we see that z must be real, and employing uniform strong ellipticity,

zluli, > ¢[Vul,,
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hence z > 0. If z = 0 then Vu = 0 in  hence u is constant, as {2 is connected,
and v has no jump across ¥, and so u = 0. This shows that 0 € p(A).
We now may proceed as follows. Solve the problem

n+ Az, V) u=0 in Q\X,
B(x,V,)u=0 on 99,
[ul =0, u=g onZX,
and denote the solution by w, = Tjg. The Dirichlet-to-Neumann operator for
this problem is given by Sg,9 = [B(x,V,;)T,g]. Then we define A, in Xy :=
W;_l/p(E) by means of

Aph = S4,C(x,Vs)h, Xi:=D(A,) =Wi /(D). (6.84)

It is clear that (6.82) with n = 0, and (fy,,g) = 0 is equivalent to the evolution
equation
5’th+wh+A0h:fh, t>0, h(O) = hyp.

We can easily show that —A( generates an analytic Cyp-semigroup with maximal
L,-regularity, the Mullins-Sekerka semigroup. In fact, for this purpose note that
by Theorem 6.6.4, A, has maximal L,-regularity for n large. Now we have the
identity

Tog = Tyg +n(n + A)~ ' Tog,

which follows from

n+A) " Tog — Aln+ A) "' Tog

(n+A) " A(Tog — Tpg) — Aln+ A)~'Toyg
=Tog+ (n+A) " Az, V,)Thg — Aln+ A) "' Tyyg
(n+A)(n+ A)~'Tyg.

3
)
+
=
S3
NS

|
<)
+
2

Hence,
Ag = Sd,OC(fv Vs) = An + 77[[8(% Vr)ﬂ(n + A)ilTOC(xv Vaz).

As the second term is a compact perturbation of the first one, the claim follows.
We summarize these considerations.

Corollary 6.6.5. The Mullins-Sekerka operator Ag defined above is the megative
generator of an analytic Cy-semigroup e~ “ot, the Mullins-Sekerka semigroup, with

mazimal Ly-regularity in the base space Xo = Wpl*l/p(Z) and domain X1 =
D(Ao) = W, /7 (2).

We note that Ay is a pseudo-differential operator of order three. The spectrum
of this operator will be considered in Chapter 12.
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6.7 The Linearized Verigin Problem

The following linear problem arises as the linearization of the Verigin problem. It
can be treated analytically in the same way as the linearized Stefan problem with
surface tension. Therefore we will keep this section quite short. For the formulation,
as in the previous section, let 2 C R™ be a bounded domain with boundary 92 of
class C2. §) consists of two parts, ; and Qs such that ¥ = 9Q; does not touch
09Q. We assume that the hypersurface ¥ is a C3-manifold in R™. Consider

(8t+w+A(:EV)) =fu. inQ\X,
B(z,Vz,)u=0 on 09,

[u] +C(z, Vs)h = on X%,
[B(z,Vy)u] = on X, (6.85)
(0 + w)h — B(z,V,)u=fr, onX,
u(0) =wup in, h(0)=hy on.
Here w > 0, A(x,V,) = —div(a(z)V), B(z,Vy) = —(v(z)la(z)V,) and

C(z,Vs) = —divs(c(z)Vy) are differential operators with a € C}, (2 \ X; B(R")),
c € C3(%; B(TY)), where a and ¢ are both symmetric and uniformly positive def-
inite. The coefficients of A are allowed to jump across the interface ¥. The unit
normal v(z) at € ¥ is pointing from 2 into Q.

The main result for this problem in the L,-setting, 3 < p < oo, is the
following.

Theorem 6.7.1. Let p >3 and 1 > > 1/2+ 3/2p. There exists wy € R such that
for each w > wq, problem (6.85) admits exactly one solution (u,h) in the class

u € H;H(R% Ly(2)) N Ly (Ry; Hj(Q \ %)) =: E,,
h e WZT2(R 5 Ly(2)) N W, V2P Ry HA(E)) N Ly u(Ry; Wi~ /P(S)) =: Ea,

if and only if the data (fu, g, fn, w0, ho) are subject to the following conditions:

a) fu S L;f,ul(ﬂf-i-;[/p(g)) =:TF,; -
b) g € Wy /P (Ry; Ly(2)) N Ly, (Ry; W2~ P(8)) =: F;

(

(

(©) fn € Wyl VP (Rys Ly(%)) N Ly o (Rys Wy~ /P(2)) =t s

(d) up € W2'2P(Q\ %), hg € W2T2H73/P(x);

(e) [uol + C(a, V)ho = 9(0), B, Vo )uo + f1(0) € Wy 277 (),
[B(x,Vz)u] =0, B(z,Vy)ug =0 on 99.

The solution map is continuous between the corresponding spaces.

There is no need to discuss the solution spaces, as they are the same as in the
previous section, similar reductions are available, and the process of localization
will also be the same. Therefore we will concentrate on the model problem.
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7.1 The Boundary Symbol

In this subsection we consider the constant coefficient case in 2 = R™ with flat
interface ¥ = R"~! x {0} = R"~!, for short. This means that we consider the
problem which is already in reduced form

(O +w+AVy)u=0 inR",
[u] +C(Vs)h =0 on R™!
[B(Vo)u] =0 on R, (6.86)
(0 +w)h —B(Vy)u = f, onR"™H
)

uw(0) =0 inR", h(0)=0 onR""

As in the previous section, it is convenient to replace the variable x € R™ by
(z,y) € R:=R"1x ]R, which means that we split into the tangential variables z
and the normal variable y.

Taking Laplace transform in time and Fourier transform in the tangential
variables we obtain the problem

(A +a(§,6))a — 2ia(g,v)0ya — a(v, 1/)8511 =0, y>0,
[a] +C(h =0, y=0,

(v, )0y +iae, il =0, y=0, %
)‘];’+(a(l/a l/)ayﬂ+la(§7l/)ﬂ) :]Eha y:()a

where, as before, the tilde indicates Laplace transform in ¢ with co-variable T,
A = 7 4+ w, and Fourier transform in the tangential variable x with co-variable
&, and v = e, is the normal at the interface. Note that the coefficients of A(V,)
may jump across the interface. As the forms ay, k = 1,2, defining A(V,) are real
symmetric and positive definite, and given uy, = C(§ )i~L, we may solve the equations
in the region y # 0 to the result

a(y) = e_y”(’\’é)u%, y>0, and a(y) = ey”(’\’g)ulz, y <0,

where u% denote the unknown boundary values of u in ). The symbols ry, k =
1,2, are defined as in Section 6.6.3. The interface conditions imply

ug; —ugy = —C(€)h,
and with the notation

(A, €) = VA + an (€, ©)ar(v,v) — ar(é,v)?,

the second interface condition reads
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For the equation on the boundary this yields

nq ()‘7 f)ﬂq()\, g)

SO =fu, with s(0,6) = A+C(O) =5 .

(6.88)

As the harmonic mean niny/(ny + n2) = 1/(1/n1 + 1/n2) is leaving each sector
Y9, 6 < 7/2, invariant we may conclude as in Section 6.6.3 that the symbol

A+ EPVA+ (€2
5(A,€)

m(\, &) :=

is bounded from above and below even on a larger set A € X, /5,., § € 22*1 U
—¥7~1 and as in Section 6.6.3 this proves the assertion for the case of constant
coefficients and flat interface. Note that the essential symbol of the Verigin problem
is the same as that for the Stefan problem considered in the previous section.

7.2 The Verigin Semigroup

As problem (6.85) is a linear well-posed system of differential equations there
should be an underlying semigroup. This semigroup can be constructed in a similar
way as the Stefan semigroup in the previous section.

Theorem 6.7.2. Letp >3 and 1 > p > 1/2+ 3/2p. There exists wg € R such that
for each w > wp, Problem (6.85) admits exactly one solution (u,h) in the class

u € Hp ,(Ri; Lp(Q)) N Lyu(Ry; Hy (Q\ X)) =: Ey,

B(x,Va)u € Ly, (Rys Wy—2/2(5)),

heH) (R W22P(8) AW V2P (R HA(S)) N Ly (R Wa—HP(R)),

if and only if the data (fu, g, fn, w0, ho) are subject to the following conditions:
(@) fu € Lpu(Ry; Lp(2)) =: Fu;

(b) g € Wyi' /P (Ry5 Ly(2) N Ly (R Wi~ P(8)) =:

(©) fn € Lpu(Ry; Wy 2/P(2)) = Fy;

(d) uo € Wp""P(Q\ D), hy € WP (2);

(e) [uo] +C(z, Vs)ho = 9(0).

The solution map is continuous between the corresponding spaces.

Proof. The proof of this result involves similar ideas as the proof of Theorem 6.6.1
and we will hence skip the details. ([l

By means of Theorem 6.7.2, we may define the Verigin semigroup in Xy in
the following way. We set z = [u, h]T, X1 = HZ(Q\ ¥) x W;_l/p(E), and define
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an operator A in X = L,(Q) x Wﬁ‘z/f’(z) by means of
A= [ “g((jjgz)) 8 } , (6.89)
D(A) ={z€ X1 :B(z,Vy)u=0o0n 909, [u] +C(z,Vg)h =0on %,
B(z,V,)u € W22/P(%)}.
Then (6.85) for g = 0 is equivalent to the abstract evolution equation
2+ Az=f, t>0, 2(0)=z, (6.90)

where we employed the abbreviations zy = [ug, ho]" and f = [fu, f]". Maximal
L,-regularity of (6.90) is equivalent to maximal L,-regularity of (6.85) for g =0
in the modified setting. Theorem 6.7.2 and Proposition 3.5.2 then imply that —A
is the generator of an analytic Cy-semigroup with maximal L,-regularity. This
completes the construction of the Verigin semigroup.

In the same way as in the previous section, employing the semigroup this
yields that the lower bound of w is the spectral bound wy = s(—A).

7.3 The Linearized Muskat Problem
In this subsection we consider the quasi-steady problem
m+ Az, Vy)u=f, nQ\X,
B(z,Vz)u=0  on 0%,
[u] +C(z,Ve)h=9g onX,
[B(z,Vz)ul=0 onX,
(O +w)h —B(z,V)u=fr, onx,
h(0) =hy on X.

(6.91)

The main result for this problem in the L,-setting, 3 < p < oo, is the
following.

Theorem 6.7.3. Letp € (1,00) and 1 > p > 1/p. There exists wg,no € R such that
for each w > wy, n > ng, Problem (6.91) admits exactly one solution (u,h) in the
class

w€ Ly Ry HX(Q\ X)) =: By,
he HY (R W) —7(2)) 1) Ly (R Wi /9(3)) = By,
if and only if the data (fu, g, fn,ho) are subject to the following conditions:

(@) fu € Ly u(Ry; Ly(Q) =: F;
(b) g € L, (Ry; W2 HP(X)) =: F;

(©) fn € Ly (Ry; Wy /P (2)) = .
(d) ho € Wy ™ 7HP(%);

The solution map is continuous between the corresponding spaces.
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Proof. This result is proved in the same way as Theorem 6.7.1. (]

We are interested in the parameters n and w. For this purpose we define the
operator A in X = L,(€2) by means of

Au(z) = Az, V) u(z), z€Q\X, (6.92)
D(A)={ue Hg(Q \X): B(z,Vy)u=0on 909, [B(x,V)u] = [u] =0 on X}.

As A is uniformly strongly elliptic by assumption, Theorem 6.5.1 shows that —A is
the generator of an analytic Cp-semigroup e~4? with maximal L,-regularity. The
semigroup as well as the resolvent of A are compact. Therefore the spectrum of
A consists only of eigenvalues of finite algebraic multiplicity, which do not depend
on p. By the energy argument, we obtain o(A) C Ry. However, in contrast to the
case of the linearized Mullins-Sekerka problem, here 0 is an eigenvalue of A, it is
algebraically simple and spanned by the function e which is constant 1, e 1. R(A)
as the divergence theorem shows. To circumvent this difficulty in the construction
of the Muskat semigroup, we observe that in Theorem 6.7.3 the solution u has
mean value 0 if f, has this property. So instead of X = L,(Q) we employ

X =L,0(Q) ={ue Ly,(Q) : (ule)q =0}.

This removes 0 from the spectrum of A. Then we proceed as in Section 6.6.6 to
construct the Muskat operator as follows.

Define the Muskat operator Ay in Xy = W,}fl/p(E) with help of the
Dirichlet-to-Neumann operator S,, by means of

Aoh = SnC(z,Vs)h, X1 :=D(Ag) = Wi /(D). (6.93)

Then it is obvious that (6.91) with n = 0, and (f,,g9) = 0 is equivalent to the
evolution equation

Oth + wh + Agh = fh, t >0, h(O) = ho.
As for the Mullins-Sekerka case, we can show that —Ay generates an analytic
Co-semigroup with maximal L,-regularity.

Corollary 6.7.4. The Muskat operator Ay defined above is the negative gener-
ator of an analytic Cy-semigroup e~ o, the Muskat semigroup, with mazimal

L, -regularity in Xo = Wplfl/p(Z) and domain X1 = D(Ag) = W;lfl/p(Z).

The spectrum of this operator will be considered in Chapter 12.

Appendix
The Triebel-Lizorkin spaces Fp,(R; E) and oF,

Pe, 1
and 1/p < u <1 can be characterized as follows.

(Ry; E) for a € (0,1), p,q € (1,00),
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Lemma 6.7.5. Let 1 < p,qg < o0, 1/p < u <1, a € (0,1), and suppose E is a Banach
space of class HT . Define B = (0;)® in Ly (R4; Lq((0,1); E)) with domain D(B) =
oy . (Rys Lg((0,1); E)).

Then, for any g € Ly .(R4; E),

wi=e Vg e oHy (R Le((0,1); E))

if and only if g € oFps /) (Ry; E).
The same result is valid for the whole line case, i.e.,

w € Hy (R; Ly((0,1);E)) & g€ Fpl' V(R E).
These results hold for Ry instead of (0,1) if we replace 95 by (w+ 0¢)®, for some w > 0.

Actually, we might have taken the assertion of this lemma for the whole line case
as a definition for the vector-valued spaces Fyy(R; E). However, to draw the connection

with the definition of Fjy given in Triebel [284], we add a proof. Observe that

u€oFy (R E) &  titue Fo(R E),

where ti__“ = max{t'7#,0}. Therefore we may concentrate on the whole line case, and
we restrict to the case w = 0.

Proof. For E = C, Theorem 2.4.1 of [284] proves Lemma 6.7.5 with the choices
o(x) = (iz)%e % and ¢o(z) = 1, so = 0, s1 = . The proof given there car-
ries over to the vector-valued case since E is assumed to be of class H7T, provided
a > a > 1/min{p, q}. For general p,q € (1,00) Theorem 2.4.1 of [284] does not apply
since the moment condition (8) in that reference does not hold.

To see sufficiency of the condition in the general case, assume that wo := Be
L,(R; Lg((0,1); E)). Using maximal regularity we solve successively the problems

,Byg c

8ywk + Bwr = Bwg—1, wk|y:0 =0,

to obtain
Buwy, = y*B" e ¥Pg e L,(R; L,((0,1); E)), k € No.

Now we have with the variable transformation y = 7%

1 1
_ _ _ (e d
/ yF BF e yBg|%dy:a/ Fae(=1/a)| (zo gyktl = (" B) g0 TT
0 0

1
=a [ 70 eyl T
0

T

where we used the notation in [284], Section 2.4.1, with ¢(&) = (i€)*F Ve~ (O It is
not difficult to check that the relevant conditions (7) and (9) are valid for all k € Ny with
so = 0. On the other hand, (8) holds in case ak > 1. In fact, the inverse Fourier transform
pFTL(t) of ¢(i€), with contour T' = e~ (00, 0]Ue’ [0, 00), 8 € (7/2,7), af < 7/2, becomes

1 _a
PP = —_/zo‘k'He eftdz, t>0.
2wt Jr
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Note that the support of p** is contained in R, thanks to holomorphy. This formula
is valid for all a(k + 1) > —1, and it implies that p***(t) is bounded and behaves
asymptotically like ¢~ (T**+1) a5 ¢ 5 0. Therefore (1 + t*)pF*! € Li(Ry) if and
only if a < a(k + 1). Choosing s; = « and 1/min{p,q} < a < 1, and k > 1/a, the
vector-valued version of Theorem 2.4.1 of [284] implies g € Fp' =9 (R; E).

For the converse statement we need to choose k = 0. Since the critical condition
(8) does not hold, we have to modify Steps 1 and 4 of the proof of Theorem 2.4.1 of
[284], the only places where (8) is used. We concentrate on the modification of Step 1,
and employ the notation used there. Let s = a(1 — 1/¢) and fix a resolution of unity
{p;j}jen, in the sense of [284] Section 2.3.1. Then by definition, g € oF;,(R; E) if and
only if ,

(2p;(D)g)ierg € Lp(R;l(No; E)).

Now we have as in [284], proof of Theorem 2.4.1, Step 1

ofs = lﬁp 2=7; OF = Z I8 F lﬁp 277 i) piyi (§)Fg.

l=—c0

Here £ denotes the Laplace transform. Splitting the sum into two parts, we have to
estimate in Step 1 the part running from | = —oo to | = k. We write

2 F T Lp' (2778 piys (€) F g
=2V FT Lp®(277€) - (27U Vig) x (27U e) - 270 py i F,

where x(r) denotes a cut off function which is 1 on |r| < 2. Since Zf:_oo 204 < oo, it
suffices to estimate

Frop27ig) - (27U (27 e) - 270 Fy
in L,(R;14(No; E)), uniformly w.r.t. I. By assumption we have
(29 F 01 Fg)izol i, =ity (ioim) < 191m5, 42,

hence its is enough to show that the sequences (£p°(277i€))jen, and
(27UHDie) x(27UFDE)) jen, define Fourier multipliers for L, (R;l,(No; E)) with
bounds independent of [.

For the first sequence, observe that llpo()\) =e M is completely monotonic, hence
po(t) is nonnegative and integrable with integral equal to 1, i.e., p° is a probability
density. Therefore, the operator defined by the first sequence is given by

(Tuf);(t) = 27p°(2) = f;(), >0, j €No.
Thus we obtain

(T2 f)i(D)e < M|fjle(t), >0, j € No,

where M denotes the usual maximal operator. Since M is bounded in L, (R;{;(No)), the
assertion follows for the first sequence, i.e., T1 is bounded in L,(R;1;(No; E)).
The second sequence is treated in a similar way. We write

@ _(9° (i)' (2 +i€)
(1+ig)?  (1+1ig)? (1+i)?

(1) x(§) = (x(€) -1+ x(&)-
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The first term belongs to the Hardy space #°°(C.) and its derivative belongs to H'(Cx.),
therefore by Hardy’s inequality it is the Laplace transform of a function k1 € Li(R4). The
second and the third terms belong to L2(R) as well as their derivatives, hence by means
of Bernstein’s theorem they are Fourier transforms of functions k; € L1(R), j = 2,3.
This shows that (i§)*x(§) = Fk(&), for some k € Li(R). Now we may argue as before
to see that also the second sequence defines a bounded operator T in L, (R;[4(No; E)),
with bound independent of [. This completes the proof of Lemma 6.7.5. g
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