Chapter 3

Operator Theory and
Semigroups

In this chapter we introduce some basic tools from operator and semigroup theory.
The class of sectorial operators is studied in detail, its functional calculus is intro-
duced, leading to analytic semigroups and complex powers. The classes BZP(X)
and H>°(X) are defined and elementary properties are shown. Via trace theory for
abstract Cauchy problems the connections to real interpolation are derived, and
the relation of complex interpolation to powers of operators is shown. The chapter
concludes with a first study of maximal L,-regularity.

3.1 Sectorial Operators

The concept of sectorial operators introduced in Definition 3.1.1 below is basic
in this book. Most closed linear operators appearing in applications have this
property, at least after translation and rotation. We will meet many examples of
such operators in later sections.

1.1 Sectorial Operators
We begin with the definition of sectorial operators.

Definition 3.1.1. Let X be a complex Banach space, and A a closed linear operator
in X. A is called sectorial if the following two conditions are satisfied.

(S1) BUA) = X, R(A) = X, (~00,0) C p(A):
(S2) [t(t+ A)~Y <M forallt >0, and some M < oo.

The class of sectorial operators in X will be denoted by S(X). If (—o0,0) C p(A)
and only (S2) holds then A is said to be pseudo-sectorial. The class of pseudo-
sectorial operators will be denoted by PS(X).
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Suppose that A is a linear operator in X which is pseudo-sectorial. Then
the operator family {A(t + A)~'};~0 € B(X) is uniformly bounded as well. For
x € D(A) we have

tt+A) e —x=—At+A) o= —(t+A)TAr = 0,

hence lim;_, o t(t + A)~lz = z for all x € D(A), by (S2). In particular, if D(A) is
dense in X then
lim t(t+ A) 'z =2 forallzc X.

t—o0

Similarly, for y = Az € R(A) we have
At + A "Ax — Az = —t(t + A)7 ' Az = —tA(t+ A) "tz =400,

hence lim;_,o A(t + A)~ly = y for all y € R(A), employing once more (S2). In
particular, if R(A) is dense in X then
lim At + A) 'z =2 forallzc X.

t—0

On the other hand, if # € N(A) then A(t + A)~'x = 0, and this shows that we
always have N(A)NR(A) = {0}.
If D(A) is dense in X, then its dual A* is well-defined. The relation

N(A*) = R(A)*

then shows that A € S(X) iff A € PS(X) and N(A*) =0
Next, let X be reflexive and A be pseudo-sectorial. Then any sequence (\,,) C
p(A), A, = oo contains a subsequence, which may depend on z, such that A, (A, +
A)~'x — y € X. This implies A\, (A, + A) 7N+ A)~te = (A + A)~ 'y, for any
A > 0. But by means of the resolvent equation
An
An — A

A +A) TN+ A) e = A+ -+ Az = A+ A) e,
hence (A + A) "tz = (A + A)~ly, by uniqueness of weak limits. This implies = = v,
hence A(A + A)~1z — 2 as A — o0o. As a consequence of this we see that D(A) is
weakly dense in X, hence also strongly dense, and then by what has been proved
before A(A + A)~lz — z as A — oo, for each z € X.

At A = 0 we proceed similarly. Fix € X and choose a sequence (\,,) C p(A4),
An — 0 such that A\, + A)"'z — y € X. Then AMA(\, + A)7'(A+ A)~ 1z —
A+ A)~ly € X, hence the resolvent equation yields

y— AN+ Ay =AM+ A e =2 - AN+ A) ",

for any A > 0. This identity shows x —y € N(A), in particular A\ + A)~la =
AN+ A)~y, hence A(\, + A)~ly — y as well. Writing

r=(x—y)+ AN, + Az + A\, + A) 7y
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and observing A, (A, + A) "1y — 0 the latter implies that N(A) + R(A) is weakly
dense in X, hence also strongly dense. But from what we already proved above
this implies A\ + A)"'z — Pz € X as A — 0, for each z € X. Here P € B(X),
by the Banach-Steinhaus theorem, and R(P) C R(A), as well as R(I — P) C N(A).
Finally, A\ + A)~'z = A\ + A)~!Px for all z € X implies P? = P, i.e., P is
the projection onto R(A) along N(A). We have proved in particular the direct sum
decomposition X = N(A) ® R(A). Thus in a reflexive space, R(A) is dense in X if
and only if N(A) = {0}.
Let us summarize what we have shown above in

Theorem 3.1.2. Let X be a Banach space and A a pseudo-sectorial operator in X.
Then

(i) N(A)NR(A) = {0}, and

tli)rn tt+A) e =2 for each x € D(A),

lim A(t+ A) 'z =x for each x € R(A). (3.1)

t—0+

(ii) If D(A) is dense in X, then A € S(X) if and only if N(A*) = 0.

(iii) If X is reflezive then limy_ oo t(t + A) "'z = x and limy_,o A(t + A)"la =
Px for each © € X, where P is the projection onto R(A) along N(A), and
X =N(A)®R(A). Thus, if X is reflexive then any pseudo-sectorial operator
A with N(A) = {0} is sectorial.

(iv) If X is a general Banach space and A is sectorial, then D(AF) N R(AF) is
dense in X, for each k € N.

Concerning the last assertion of Theorem 3.1.2, note that (1 +
ntA)"FAR(n~! 4 A)~* converges strongly to I as n — oo and has range in
D(AF) N R(AF).

Let ¥y C C denote the open sector with vertex 0, opening angle 26, which is
symmetric w.r.t. the positive half-axis R, i.e.,

Yo={AeC\{0}:|arg)| <6}
If A e PS(X) then p(—A) D 3y, for some 6 > 0, and
sup{|A(A + A)7!: Jarg \| < 0} < .
In fact, with (d/dt)*(t + A)~' = (=1)"n!(t + A)~*tD for t > 0 the Taylor

expansion
o]

A+ =D (=)A=t (t+ A~

n=0
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and (S2) yield the estimate

A+ AT <D A=t + )Y < (/1) Y (MIA—tl/t)"

This bound is finite provided |A/¢ — 1| < 1/M, which by minimization over ¢ > 0
yields |sin¢| < 1/M, where \ = re'?.
Therefore it makes sense to define the spectral angle ¢4 of A € PS(X) by

pa =inf{¢: p(=A) D Tr_y, sup |AA+A)7H < ool (3.2)
AES, 4

Evidently, we have ¢4 € [0,7) and
pa >sup{largA|: A € o(A)}. (3.3)

If A € PS(X) is bounded and 0 € p(A) then there is equality in (3.3). In fact,
by holomorphy of (A — A)~! on p(A), A(A — A)~! is bounded in B(X) on each
compact subset of p(A), and for all |A| > |A| we have

Al

M- A< 2

which is uniformly bounded, say for |A| > 2|A|. But this implies uniform bound-
edness of A(A + A)~! on each sector ¥,_4 with ¢ > sup{|arg(\)|: X € o(A)}.
For ¢ € (¢a,m) we frequently employ the notations

Moy = sip DOFA, Cog(A)= s [AQH A (3.4)
XGEW,¢ )\GEW,(b

It is not difficult to see that Cr_y(A) > 1 as well as M,_4(A) > 1, for all
¢ € (¢pa,7]. Observe the limiting case ¢ = m:

My(A) =sup|r(r+ A)7Y, Co(A) =sup|A(r+ A)7. (3.5)

>0 >0

1.2 Permanence Properties
The class of sectorial operators has a number of nice permanence properties which
are summarized in the following

Proposition 3.1.3. Let X be a complex Banach space. The class S(X) of sectorial
operators has the following permanence properties.
(i) AeS(X) iff N(A) = {0} and A= € S(X); then ¢4 = ¢a;
(if) A e S(X) impliesrA € S(X) and ¢ppa = ¢pa for all v > 0;
(iti) A € S(X) implies e™™ A € S(X) for allyy € [0,7—¢a), and Ge+iv 4 = pa+;
(iv) A € S(X) implies (u+ A) € S(X) forallp € Lr_yp,, and

Put+a < max{da,|argpul};
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(v) if D(A) is dense in X and D(A*) dense in X*, then A € §(X) iff A* € S(X*),
and g4 = Qax;
(vi) if Y denotes another Banach space and T € B(X,Y) is bijective, then A €
S(X) iff Ay =TAT—' € S(Y), and ¢ = b4,
Proof. Assertion (i) follows from the identity
AMA+AHTT =240+ 2P =A0 4 4)7 L
Similarly, (ii) is a consequence of
AA+rA) = O\/r)((Nr)+ A7 r>o0,

and (iii) follows from |(A+e?® A) 71| = [(Ae @+ A) L. If p € Xp_y,, | arg(p)| = ¢,
and A € ¥_g, then for (7 — ¢) + ¢ < 7 we have

|arg(A + )| < max{|arg(A)], | arg(u)[},
as well as
A+ | > e(|A] + |p]), where ¢ = cos((m — ¢ + 1) /2).
Therefore, ¢ > max{¢4, 1} implies

My—g(A) _ Mr_y(A)
A+ pl T e+ [ul)

(A +p+ A7 < for all A € ¥, g,

and this yields (iv). To prove (v) it is enough to observe that an operator T' € B(X)
is invertible if and ounly if T* € B(X™*) is invertible, and |T| = |T*|. Finally, to
prove (vi) we verify that the relation

A+A) =T+ ATt
is satisfied. O

Next we introduce approximations of a sectorial operator which are again
sectorial, but in addition bounded and invertible. This will be achieved as follows.
For a given pseudo-sectorial operator A and € > 0 set

Ac = (e+ A1 +eA)~. (3.6)
Then A, is bounded, invertible with inverse
ATl =(+ed) e+ A7 = ((1/0) + A1+ (1/2)A) 7! = Ay,
and, more generally,
(t+A) " =(t+(E+A)1A+ed)HH

=(1+cA)(t+e+ (1+et)A)!

1 t+e

- (1teA
Tra e

+ A7 te>o.
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This implies p(A:) D (—00,0], and as ¢ — 0, (t + A.)~! — (¢ + A)~! in B(X) for
each t > 0, A.x — Az for each x € D(A), AZ'z — A~1x for each z € R(A). Since

,1| < tMo(A) €tCO(A)

tt+ A
[t + Ac) P ot

< MO(A) + OO(A)7 t,e > 07

we have A, € S(X) for each € > 0, and there is a constant M for (S2) which is
independent of €. Replacing ¢ > 0 by A € X_; and observing that the functions
©e(A) = (e+)/(1+eA) are leaving all sectors X invariant, we obtain the following
result.

Proposition 3.1.4. Suppose A € PS(X), and let A, be defined according to (3.6).
Then Ac is bounded, sectorial, and invertible, for each € > 0. The spectral angle
of A satisfies pa. < ¢a, and the bounds Cr_y(Ac) and My_s(A.) are uniformly
bounded w.r.t. € > 0, for each fized ¢ > . Moreover,

lim (A + A)TP=(A+ A in B(X) for each A € $r_y,, (3.7)
E—
and in case A is sectorial,
lim Acx = Az for each x € D(A), (3.8)
e—0
lim A-'e = A7z for eachx € R(A).

e—=0
In later sections we shall frequently make use of the approximations A..

1.3 Perturbation Theory

In this section we consider the behaviour of the class S(X) w.r.t. perturbations.
For this purpose, suppose A € §(X), and let B be a closed linear operator in X
which is subordinate to A in the sense that D(A) C D(B) and

|Bz| < b|Ax|, for all x € D(A), (3.9)
with some constant b > 0. If b < 1 then A + B defined by
(A+ B)x = Az + Bz, x€D(A+ B)=D(A), (3.10)

is also closed, densely defined, and N(A + B) = {0}. In fact, if (A + B)z = 0 then
|Az| = |Bx| < blAz|, hence Ax = 0, which by injectivity of A in turn implies
x = 0. The operator K := BA~! with domain D(K) = R(A) is densely defined
and bounded by b < 1, hence by density of R(A) in X admits a unique bounded
extension to all of X which we again denote by K. Then A+ B can be factored as
A+ B = (I+K)A, and I + K is invertible, by b < 1. Therefore, if 2* 1 R(A+ B)
then (I +K*)z* L R(A), hence (I + K*)x* = 0 by density of R(A4) in X, and then
x* = 0, by invertibility of I + K*. This shows that R(A + B) is also dense in X.
Moreover, for » > 0 we have

r+A+B=(1+B@r+A)"Hr+ A,
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hence r + A + B is invertible, provided |B(r + A)~1| < 1, and then
(r+A+B) '=(r+A) 1+ Br+A)"Hh (3.11)

This implies that A + B is also sectorial, whenever bCy(A) < 1, where Cy(A) is
defined by (3.5), and then

Ir(r+A+B)7Y < Mo(4)

————— forall 12
S TT000(A) or all 7 > 0, (3.12)

with Mo(A) also given by (3.5). Replacing » > 0 by A € X,_, in the above
argument we also obtain an estimate for the spectral angle of A + B, namely

Gayrp < inf{p > ¢4 : bCr_4(A) < 1}. (3.13)

Thus the class of operators B satisfying (3.9) with b6Cy(A) < 1 forms an admissible
class of perturbations for A € S(X).

Theorem 3.1.5. Suppose A € S(X), B linear with D(A) C D(B) such that (3.9)
holds, and let A+ B be defined by (3.10).

Then bCy(A) < 1 implies A+ B € S(X), and the spectral angle payp of
A+ B satisfies (3.13).

Let us next consider perturbations B which instead of (3.9) are subject to
|Bx| < b|Az| + alz|, for all z € D(A), (3.14)

where a,b > 0. Then even for small b one cannot expect that A € S(X) implies
A+ B € §(X), in general. For example Bx = —ax satisfies (3.14) with b = 0, but
A+ B ¢ S(X) unless 0(A) N [0,a) = 0. However, S(X) is invariant w.r.t. right
shifts, and therefore it is reasonable to ask whether 1+ A+ B is sectorial, for some
p > 0. Now (3.14) implies

1B+ A7 < al(u+ A)7H + 0] A(u + A) 7
My(A
< M) |y a), (3.15)
W
hence 1+ A+ B is invertible provided aMy(A)/pu+bCo(A) < 1, i.e., if bCH(A) < 1
and p > po := aMy(A)/(1 — bCy(A)), and then

_ My(4) 1
+A+B)7 Y < ,
G S TG = mo

for all p > po. (3.16)

This shows that g+ A+ B € S(X) if bCy(A) < 1 and p > pg.
Similarly, applying Theorem 3.1.5 to the pair (u+ A, B) instead of (A, B) we
obtain the following result.
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Corollary 3.1.6. Suppose A € PS(X), B linear with D(A) C D(B) such that (3.14)
holds, and let A+ B be defined by (3.10).

Then there are numbers by > 0 and po > 0 such that u+ A+ B € S(X),
whenever b < by and 1 > pyg.

It should be mentioned that the condition of lower order type
|Bz| < a|z| + b|A%z|, for all z € D(A), (3.17)
where a,b > 0 and « € [0,1), implies (3.14) via the moment inequality, see (3.55),
|A%2| < k|Az|*|z|' ™, 2 € D(A), (3.18)

for any b > 0. For the definition of A® as well as for (3.18) we refer to the next
subsections. In fact, (3.17) and (3.18) yield

|Bz| < a|z| + b|A%z| < a|z| + bk|Az|*|z|' ™,
hence by means of Young’s inequality
|Bz| < (a + bk(1 — a)e~/ =) |z| + abke|Az|, z € D(A).

Since € can be chosen arbitrarily small, Corollary 3.1.6 applies in particular to
perturbations satisfying (3.17) without restrictions on a and b, provided « € [0, 1).

Next we consider A-compact perturbations, i.e., operators B in X such that
B : X4 — X is compact. For such perturbations we have

Lemma 3.1.7. Let A € PS(X), B a linear operator in X such that B : X4 — X
is compact. Furthermore, assume either of the following two conditions

(i) B is closable in X,
(if) X is reflezive.
Then for each b > 0 there is a > 0 such that (3.14) is valid.

Proof. We may assume that A is invertible; replace A by A+ 1 otherwise. Suppose
the assertion does not hold. Then there is a constant by > 0 and a sequence
(x,) C D(A) with |Az,| = 1 such that

|Bxy,| > bol|Axy| + n|zy| = by + n|zs|, n €N

As B is A-compact, there is a convergent subsequence Bx,, — y in X, hence
Zn, — 0in X, and |y| > by > 0.

If (i) holds, then y = 0 as B is closable in X, which yields a contradiction to
y #0.

If (ii) holds, then there is a weakly-convergent subsequence Az, , its limit is
0 as zp,, — 0in X. Therefore (x,, ) converges to 0 weakly in X4, hence Bx,, —
y = 0 strongly in X by compactness, and so we again obtain a contradiction to

y # 0. O
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As another consequence of Theorem 3.1.5, let us consider multiplicative per-
turbations. So let A € S(X) and suppose C' € B(X); then the operator C'A with
domain D(CA) = D(A) is well- and densely defined, and it is closed if in addition
C is invertible. Moreover, the latter property of C shows also that R(C'A) is dense
in X. It is more difficult to obtain p(CA) D (—o0,0) and (S2) for CA. A very
simple case arises if we require C' to be such that |C — I| < 1/Cy(A). In fact,
then we may write CA = A+ (C —I)A, and B = (C — I)A is subject to the
assumption of Theorem 3.1.5. Note that this condition on C necessarily implies
that C is bounded but also invertible since Cy(A) > 1. Observing that S(X) is
invariant under dilations, as a second corollary to Theorem 3.1.5 we obtain

Corollary 3.1.8. Suppose A € §(X) and that C € B(X) satisfies the condition
|C —ro| <re/Co(A), for somerc > 0. (3.19)

Then CA and AC with natural domains D(CA) = D(A) and D(AC) = C~'D(A)
belong to S(X).

The assertion for AC follows by the similarity transform AC = C~}(CA)C
of CA.

1.4 The Dunford Functional Calculus

In this subsection we want to develop the functional calculus for pseudo-sectorial
operators. For this purpose we first introduce the following function algebras. Let
¢ € (0, 7] and define the algebra of holomorphic functions on 34

H(Xy) ={f: Xy — C is holomorphic}, (3.20)

and
H>*(X4) ={f:34s = C: fis holomorphic and bounded}. (3.21)

H>(X4) with norm

[flae(z,) = sup{|f(A)] : JargA| < ¢} (3.22)

is a Banach algebra. First we assume B € S(X) to be bounded and invertible, and
fix ¢ > ¢p. Then the well-known Dunford calculus for bounded linear operators
applies. In fact, in this situation the spectrum o(B) is a compact subset of X,
hence choosing a simple closed path I'p in ¥, surrounding o(B) counterclockwise

we define )
JB) =5 | JNO=B)ax feH(S,). (3.23)
e I's
Since I'g is compact there are no convergence problems with the integral in this
formula, and it defines an algebra homomorphism from H(X,) to B(X).
(3.23) can be used as a starting point to define the functional calculus for
arbitrary pseudo-sectorial operators A in X. To achieve this, a main idea is to
take B = A., the approximations of A introduced in (3.6), and to pass to the limit
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e — 0+. But then we first have to make the integration path I'p independent of
B. This can be done in several ways at the expense that we have to restrict the
function algebra H(34).

(i A natural approach is to deform the integration path I'p into I' defined by
I' = (00,0]e!¥ U[0,00)e™ ™, where ¢4 < ¥ < ¢. We will do this in two steps. First
we deform I'p into the path I', r defined by

I''r= e [r,R|U Rell=¥¥ly et [R,r]U re!lt =1, (3.24)

Here the numbers 0 < r < R should be chosen such that R > |B| and r < |B~1|71.
By means of Cauchy’s theorem we then obtain

fB)=5m [ FNO=B) T feH (). (3.25)

since ', g is also a simple compact Lipschitz curve surrounding o(B) counter-
clockwise. But we still have the dependence of the integration path in (3.25) on
the norms of B and B~!.

Next we let » — 0+ and R — oo. This cannot be done for arbitrary f €
H(Xy), but by means of Lebesgue’s convergence theorem it works for the subspace
Hy(24) defined according to

Ho(Sg) = ) Hap(Sg), where (3.26)
a,B<0
Hop(S) ={f € H(Sy): |f|S 5 < oo}, and (3.27)
12 5= sup [A*f(\)| + sup AP F(N)]. (3.28)
[A]<1 |AI>1

With I' = (00, 0]e®¥ U0, 0o)e ™™ this yields (3.23) with ' replaced by the contour
I" which is independent of r, R.

Now let A € PS(X) be arbitrary. Employing the approximations A, intro-
duced before, setting B = A, and using Proposition 3.1.4, we may pass to the
limit € — 04, to obtain the following result.

Proposition 3.1.9. Let A € PS(X), fix any ¢ € (¢4, 7], and let Hy(Xy) be defined
as above. Then, with T' = (co,0]e’¥ U [0,00)e™ ", the Dunford integral

f(A) = ﬁ /F FOYAN=A)"tdN,  fe Hy(Zy), (3.29)

defines via D A(f) = f(A) a functional calculus @ 4 : Hyo(Xy) — B(X) which is a
bounded algebra homomorphism. Moreover, we have

Jim f(Ae) = f(A) in B(X), (3.30)

and {f(A:)}eso C B(X) is uniformly bounded, for each f € Ho(Xy).
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JIN

Figure 3.1: Integration path for the Dunford integral.

Observe that boundedness of ®4 is understood in the sense of inductive
limits. This means that we have estimates of the form

[F(A < CIfIG 50 for | e Hap(Sy),

where C' depends only on A, ¢, v, and S. This follows directly from (3.29). In virtue
of Proposition 3.1.4, a similar estimate holds also for A., uniformly in & > 0.

Remark 3.1.10. Consider the map ¢(A) = 1/X which maps ¥, onto itself. Then
we have the identity

(f o @)(A) = f(A™Y), for cach f € Ho(Sy), (3.31)
in case N(A) = 0. In fact, the change of variable A — 1/ yields

2m/f L/AN)(A—A)~!
2m/f (1/X— A)~Ldr/\?

(fow)(4)

2m/f AT = X)TtAT AN/

3 [ V1A (A= A7) an = a7,

where the last equality follows from Cauchy’s theorem.

There is a simple but useful extensions of the Dunford calculus in Proposition
3.1.9. Namely, in case f € H(X4) is holomorphic in a neighbourhood of zero and
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such that A% f(X) € H>(X4) for some a > 0, then f belongs to Hy(Xy) if and only
if £(0) = 0. But in case f(0) # 0 we may write f(A) = fo(A)+ f(0)/(1+ X), where
fo € H§(34), hence the definition f(A4) := fo(A4) + f(0)(1 + A)~! is reasonable.
We want to derive a different representation formula for f(A) in such situations.
For this purpose we modify the integration path I's in the representation (3.23)
of f(B) into

['s = (00, d]e™ U e’ 2™ [, 00)e ™™,

and employing Cauchy’s theorem we obtain

1

1) =55 [ T B) " ay
1 _ 1 _ _
=5 fo( )\ —DB) 1dA+2—m_ 5 FO@+N" AN =B)"tadr
=5 fo YA=B)"tax+ f(0)(1+B)!
= fo(B ) fO+B)~
Setting again B = A. and passing to the limit ¢ — 04, we get
1 _
S = 5 [ S0 A7 (3:2)

where 0 is small enough but arbitrary otherwise. Define the corresponding space
by

H,(Zy)={f € U Hy g(2g) : f is holomorphic in a neighbourhood of 0}.
B<0

Then we have the following result.

Corollary 3.1.11. Let A € PS(X) with spectral angle ¢4, fix any ¢ > ¢4, and let
H,(Xy) be defined as above.

Then the Dunford map ® : H,(Xy) — B(X) defined via ®(f) = f(A), where
f(A) is given by the Dunford integral (3.32), is well-defined and an algebra homo-
morphism. It coincides with the Dunford map of Proposition 3.1.9, and we have
the relation

F(A) = fo(A) + F(0)(1 +A)~"

where fo(X) = f(A) — £(0)/(1+ A) belongs to Hy(Xy). In particular, for the func-
tions g, () = 1/ (A —p) with p € X we have g,(A) = (A—p)~1. The convergence
assertion (3.30) of Proposition 3.1.9 is also valid for Hq(34).

Remark 3.1.12. (a) A similar result can be obtained for functions f € H(X,)
which are holomorphic at infinity and decay polynomially at zero. With foo(\) =
F(A) = f(c0)A/(1 + X) we then have the relation

F(A) = foo(A) + fo0) A + A)7!



3.2. The Derivation Operator 101

and there is an integral representation corresponding to (3.32) which we do not
explicitly state here.
(b) If f € H(X,) is holomorphic at infinity and at zero we have correspond-
ingly
F(A) = fo,eo(A) + FO)I + A)™F + f(o00)A(I + A)~*

With § > 0 small and p > § large one obtains alternatively

1
27i

f(A) = f( (A= A)~hdn,

where
% = [p,d]e™ U e’V 2™ =¥ U [, ple™™ U pellPm =¥l
The proof of these facts is left to the reader.

(c) The functions ¢, (A) = (e +A)/(1 +eX) map X, into itself, and ¢(0) =
¢(00) = 1/e. This means that f. = f o ¢. belongs to H(X,) and is holomorphic
at infinity and at zero, for any f € H(X,). Therefore, (b) of this Remark applies
and we obtain

(f © 906)(‘4) = f(AE)
In fact, the identity
A=—A) ' =0+eA)N—e—(1-Ar)A)!

A—¢
—A)?
1—el )

(1+eA)(1—eX)Y

o 1-g? ()\—5 I 5
(1 =N —eX 1—eA

and the variable transformation z = (A —€)/(1 — e)), i.e.,, A = ¢ (2) yield

flA) = = [, 70— 407

21

1 A—e o, 1-¢?
i F{?f()\)(l_SA_ ) m
~ L F@e(2))(z = A) "Lz = (f 0 9e)(A),

211 Jo. (rR)

dX

employing once more Cauchy’s theorem.

3.2 The Derivation Operator

This section is devoted to the most elementary operator in analysis, the derivation
operator d/dt. We will consider this operator on intervals J =R, J = R, and on
J = (0,a), in various spaces.



102 Chapter 3. Operator Theory and Semigroups

2.1. The Whole Line Case

Let J = R. In the sequel we will use the notation Y,(R) = L,(R;Y"), where YV’
denotes a Banach space and p € [1,00], Y3(R) = Cp(R;Y), Yip(R) = Cup(R; Y),
and Yy(R) = Cyp(R;Y). Define B, in Y,(R) by means of

(Bpu)(t) = u(t), t€R, weD(B,)=H)RY), (3.33)

for p € [1,00] and D(B,) = Cp(R;Y) for p € {0,b,ub}. It is easy to see that B,
is closed, and B, is densely defined except for p € {co,b}. Since u(t) = 0 for all
t € R implies that u is constant, we have N(B,) = {0} for all p € [1,00) U {0},
while N(Bp) = N(Buw) = N(Bs) =Y.

Next consider the range of B, for p € (1,00) U {0}. If f € C(R;Y) has
compact support and mean value M f = ffooo f(s)ds = 0, then the solution u of

i = f on R belongs to C'(R;Y) and has compact support as well. Since the set of
such functions f is dense in Y,(R) for 1 < p < oo and for p = 0, by the following
lemma, we see that R(B,) is dense in Y,(R), 1 < p < co and p = 0.

Lemma 3.2.1. Let Y be a Banach space, ¢ € Li(R) N Cy(R) such that ¢ > 0,
Jre(t)dt =1, and define p.(t) = ep(et), t € R, € > 0.

Then for f € Y1(R)+Yoo (R) the approzimations f. of [ defined by fo = pexf
have the following properties.
(i) fo 2enoo fin Y,(R), for each f € Y,(R), p € [1,00) U {0, ub};
(i) fo: —emot 0 in Y,(R), for each f € Y,(R), p € (1,00) U{0}.

Proof. (i) Let T(t) denote the translation group defined by
[T f1(s) = f(t+s), t.seR.

Then for p € [1,00) U {0,ub} we have T'(t)f — f in Y,(R) as t — 0, for each
[ € Y,(R). Therefore with [, ¢(t) dt = 1 we obtain

o=t =1 [ eI = ) s,
< /lSSR%(SNT(—s)f—flpds—i—/ e ($)(IT(=5)flp + | flp) ds

ls|>R

< sup [T(=)f — fl, +2If], | el

|s|<R

Now, given an arbitrary number n > 0, choose first R > 0 such that |T'(s)f —
flp < n/2 for all |s| < R, and then for this fixed R a number ¢, > 0 such that
2|flp f‘8|>35" ©(s)|ds < n/2|f|p- Then |f. — f|, < n for all £ > ¢, which implies

assertion (i).

(ii) To prove the second assertion, note that by Young’s inequality |fz|p, < |flp,
for each f € Y,(R). On the other hand, |f:|oo < €|®|oc|f|1. This implies |fe|oo — 0
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as € = 0+, for each f € Y1(R), hence also

felp S VLS YPIL07P < plooe] Y7 fl1 — 0+

as ¢ — 0+, for each f € Y1(R) N Yp(R). By (i) and a cut off procedure such
functions are dense in Y, (R), p € (1,00) U {0}, and so assertion (ii) follows. O

For p =1, Mf = 0 is a necessary condition for f € R(By), hence R(B;) C
N(M) and because M is bounded, N(M) # Y;(R) is closed and so R(B;) is not
dense in Y7 (R).

The kernel N(B,) consists of the constant functions for p € {b, ub, co}, hence
dimN(B,) =1, and B, is pseudo-sectorial as we shall see below, so R(B),) cannot
be dense for these p, by Theorem 3.1.2.

To compute the spectrum of B, we consider the equation

Xu(t) +a(t) = f(t), teR. (3.34)

For Re A > 0 a solution is given by

up(t) = /000 e Mf(t—s)ds = /t e M= f(s)ds, teR,

—0oo
and we have the estimate

luxlp < |flp/ReA, ReX>0.

On the other hand, for Re A\ < 0 a solution is

0 oo
up(t) = 7/ e Mf(t—s)ds = —/ e M= f(s)ds, teR,

—0o0 t

and
lualp < |flp/IRe A, Re < 0.

Since the general solution of (3.34) is given by u(t) = ux(t) + ce”*, and for
Re A # 0 the function e~*! is not in Y, (R), we have N(A+ B,,) = 0 for all Re A # 0.

Summarizing we have

Proposition 3.2.2. Let J = R. Then the operators B, and —B, defined above
are pseudo-sectorial in Y,(R) with spectral angles ¢p, = ¢_p, = ©/2, for all
p € [1,00] U{0,b,ub}. The domains of B, are dense for all p € [1,00) U {0, ub},
their kernels are trivial for all p € [1,00) U {0}, and R(B,) is dense for all p €
(1,00) U{0}. Consequently, B, and —B,, are sectorial iff p € (1,00) U{0}.

2.2 The Half-Line Case
Next we consider the operator B, on J = Ry. This time we let Y,(R}) =
Ly(Ry;Y) for p € [1,00], Y (Ry) = ¢Cp(R4;Y) for p € {0,b,ub}, where the
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subscript 0 indicates zero trace at t = 0. Define
(Bpu)(t) =u(t), t € J, u € D(B,) = oH,(R;Y), (3.35)

for p € [1,00] and D(B,) = ¢Cp,(Ry4;Y) N CLH(R,;Y) for p € {0,b,ub}. As in the
case of J =R, it is easy to see that B, is closed, and that B, is densely defined
except for p € {oo,b}. Since u(t) = 0 for all ¢ € Ry implies that u is constant
hence u(t) = u(0) = 0, we have N(B,) = 0 for all p € [1,00] U {0, b, ub}.

To compute the spectrum of B, for J = R, consider the problem

Au(t) +a(t) = f(t), t >0, u(0)=0.

For all A € C its solution is given by

t
up(t) = / e Mf(t—s)ds, teRy,
0
and we have the estimate
luxlp < |flp/ReA, ReX>0.

Concerning the range of By, note that necessarily (B, ' f)(t) = fg f(s) ds whenever
f € R(Bp). Since the set of continuous functions f with compact support in (0, co)
and mean value M f = [ f(s) ds = 0 is dense in Y},(R.) for each p € (1,00)U{0},
we see that the range of B, for such p is dense. On the other hand, as in the case
of J = R we see that R(B) is not dense, and this is also the case for p € {0, b}. In
fact, consider a Hahn-Banach extension of the limit functional (I| f) := lim;—, o0 f(t)
from the closed subspace C;(R;;Y) of Y,5(R;) to Y3(Ry). Then for f € R(B,),
p € {bub}, f € C;(Ry;Y) we must necessarily have (I|f) = 0, which means
R(Bp) C N(I). From these considerations we obtain

Proposition 3.2.3. Let J = R,. Then the operator B, defined by (3.35) is injective
and pseudo-sectorial in Y, (R ) with spectral angle ¢, = 7/2, for all p € [1,00]U
{0,b,ub}. The domain of B, is dense for all p € [1,00) U {0,ub}, and R(B,) is
dense for all p € (1,00) U{0}. Consequently, B, is sectorial iff p € (1,00) U{0}.
2.3 Finite Interval

Here we consider the operator B, on the finite interval J = (0, a). This time we
let Y,(J) = Ly(J;Y) for p € [1,00], Y, (J) = ¢Cp,(J;Y) for p € {0,b,ub}, where as
before the subscript 0 indicates trace zero at t = 0. Define

(Byu)(t) = 1), £ € J, u e D(By) = oH(J:Y), (3.36)
for p € [1,00] and D(B,) = oC,(J;Y)NC(J;Y) for p € {0,b, ub}. As in the case

of J = R4, it is easy to see that B, is closed, injective, and that B, is densely
defined except for p = co.
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This time the spectrum of B, is empty for each p, in fact we have the relation

(A By) () = up(t) = /te_’\sf(t —s)ds, te€J, AeC,
0

lurlp < [flp(1 —e ) /Re ), Rel #0,

and
luxlp < |flpa, ReA=0.

Therefore, although o(B),) = 0, B, still has spectral angle 7/2. More precisely we
have

Proposition 3.2.4. Let J = (0,a). Then the operator B, defined by (3.36) is
invertible and pseudo-sectorial in Y,(J) with spectral angle ¢p, = /2, for all
p € [1,00] U{0,b,ub}. The domain of B, is dense for all p € [1,00) U {0, b, ub},
hence, By, is sectorial iff p # oo.

It is instructive to have a look at the functional calculus for B,. Since the
resolvent of B, admits the kernel representation

(A= Bp) tw(t) = —/Je)\(t —s)w(s)ds, teJ,

where ey (t) = eM for t > 0, ex(t) = 0 for t < 0, for a function f € Ho(Zy),
¢ > /2, the operators f(B,) admit a kernel representation as well, namely

[f(Bp)w](t) = /Jk:f(t —s)w(s)ds, te.J

The kernel ky(¢) is obtained as the contour integral

1

27

ke(t) = 5 [ Fer)

in particular k(t) = 0 for ¢ < 0. The contour I' is chosen as in Section 3.1.4.
This is precisely the inversion formula for the Laplace transform, i.e., f and ky
are related by Ef(/\) = f(A\), for A > 0, say.

The approximations (Bp). of B, introduced in Section 3.1.2 also admit a
kernel representation. In fact, the functions f.(\) = (¢ + X)/(1 + €)\) are the
Laplace transforms of k. (t) = 6o(t)/e + (1 —1/2)et/%ny(t), where 7y denotes the
Heaviside function, and dy its derivative, the Dirac measure. This implies

t

[(Bp)ew](t) = e tw(t) + (1 — 672)\/0 w(t —s)e */5ds, teJ, e>0,

the kernel representation of (B,)e.
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2.4 Weighted L,-Spaces
Let Y be a Banach space and assume that p € (1,00) and 1/p < p < 1. We set

LyyRyY)i={f: Ry =»Y: t'""fe L,(RyY)}
and equip it with the norm |f|,, @,y = (f;~ [t' 7 f(t)[P dt)'/P. We also define
Hp (R Y) = {u € Lyu(Ri; Y) VH) 1oo(Ry3Y) + @ € Ly u(Ry5Y) )

H) ,(Ry;Y) will always be given the norm

. 1
‘u|H11w = ‘UVEP‘M(R%}/) + |u|ip,M(R+;Y)) /pa

which turns it into a Banach space.

Lemma 3.2.5. Suppose p € (1,00) and 1/p < u < 1. Then
(@) Lpu(Ry;Y) = Lyjoc(Ry;Y);

(b) Hy ,(Ry;Y) = W (Ry;Y);

(c) Every function u € H} ,(Ry;Y) has a well-defined trace, that is, u(0) is well-
defined in'Y .

Proof. (a) The first assertion follows from
T T T
|l ([ e[ orant < s, w0
0 0 0

which is valid provided that p > 1/p.
(b) This follows from the definition of H} ,(R;;Y) and from (a).

(¢) We conclude from (b) that every function u € H} ,(R;Y’) is locally absolutely
continuous, and this yields the assertion in (c). O

In the following we set
oH, ,(Ry;Y) :={u€ H, ,(Ry;Y):u(0) =0}
Then the derivation operator

By jult) = it) = %u(t), >0, D(By,) =oH),(RyY)  (337)

is well-defined on Ly, ,(R4;Y). It is natural to introduce the mapping
@, Ly (R Y) = Ly(Ry;Y),  (@,u)(t) :=t""Fu(t), t>0.

Next we show that the operator ®, also maps oH} ,(Ry;Y) into o H}(Ry;Y),
provided p > 1/p.
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Proposition 3.2.6. Let p € (1,00) and let 1/p < u < 1. Then
(a) @, : Ly u(R1;Y) = Ly(Ry;Y) ds an isometric isomorphism.

(b) @, :0H, ,(Ry;Y) = oH)(R;Y) is a (topological) isomorphism.

Proof. (a) The assertion in (a) is clear.

(b) (i) We will first show that ®,;' maps oH}(R;Y) into oH ,(Ry;Y). In order
to see this, let v € OH (R+,Y) be given. An easy computation shows that the
function t#~1v is in H 1OC(R+, Y) and that

i[tl‘*lv](t) =0(t) — (1 — u)@, t>0. (3.38)

thor
dt t

By means of Hardy’s inequality (see Proposition 3.4.5 below) we can verify that
the function v/t belongs to L,(R4+;Y"). Indeed, we infer from v( fo s) ds that

o0
(/O Lo ()| db) l/p—/ t—l/ (s)ds|P dt) 1/p<p(/0 10(s)|Pds) /7.

(3.39)
We conclude from (3.38)(3.39) that @, 'v belongs to H, ,(Ry;Y), and also that
the mapping <I>;1 is linear and bounded between the indicated spaces.

(ii) Next we show that u = @, *v has trace zero. Observing that

w(t) =t Lo(t) = 41 ti)s s
(1) =t Yo(t) = t /O“d

we obtain by Holder’s inequality that |u(t)| < t#~1/P( f |9(s)[P ds)'/P. This shows
that u(t) — 0 as t — 0+.

(ili) Similar arguments show that ®, maps oH ,(Ry;Y) into oH,(Ry;Y), and
that the mapping is bounded and linear. O

We will now consider the derivation operator By, ,, defined in (3.37). Thanks
to Proposition 3.2.6 the operator

By i=9,B,,®,', D(Bp,):=oH)(R.;Y), (3.40)

which acts on the function space L,(Ry;Y"), is well-defined. It follows from (3.38)
that

By, = Bp1+ By, where (Byv)(t):=—(1— p)v(t)/t. (3.41)

Observe that B, , and B,, coincide if 4 = 1. Moreover, note that B, , in
Ly, (Ry;Y) is similar to By, 1 + By in L,(Ry;Y). It follows from equation (3.39)
that By is relatively bounded with respect to B 1, with bound smaller than 1,
provided (l—u)p’ < 1,ie., for1 > p > 1/p. It is now easy to see that the operators
B, , and B, , share the following properties.
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Proposition 3.2.7. Suppose 1 < p < 0o and 1/p < u < 1. Then

(i) By is closed and densely defined in L,(Ry;Y). Moreover, N(By,,) = 0, and
R(Bp, ) ts dense in L,(R4;Y).

(ii) By, is closed and densely defined in L, ,,(R;Y). Moreover, N(B, ,) = 0,
and R(By ) is dense in L, ,(R4;Y).

Proof. (i) It has been proved above that B 1 has all the properties listed in the
proposition. Since By is relatively bounded with respect to B, ; with relative
bound strictly smaller than 1, we obtain from (3.41) that Bp’# enjoys the same
properties, see Section 3.1.3.

(ii) The assertions in (ii) follow from (i) by employing the isomorphism ®,. O

In the sequel we take the liberty to work with B, ,, and B, , interchangeably,
that is, we will use the representation that is the most convenient one.

Lemma 3.2.8. Let 1/p < p < 1 and suppose that k € L1(R;B(X,Y)) satisfies
|k(t)] < k(t), where k € Li(Ry) is nonnegative and nonincreasing, and where
X,Y are Banach spaces. Then we have

o/ k(L= )1/ 0(5) ds| < ey lihloly forv € LR X),
0 p

where ¢, = 21 7H[1+ (1 — p/(1 — p))~P/P /P,

(if) The convolution operator K := kx belongs to B(Ly ,(Ry;X), L, ,,(Ry;Y))
and |K| < ¢, ulK]1.

Proof. (i) Let v € L,(R4; X) be given. Then Holder’s inequality implies

‘/0 k(tfs)(t/s)l’”v(s)dspg/o [/O ﬁ(tfs)(t/s)17”|v(s)|ds} dt
= ' —p'(1—p p/?’ p(l—p ' _ P
S/O [/0 Kt —r)r P )dr} P )/0 K(t — 8)|v(s)|P dsdt

:/000 |v(s)|p{/:otp<1%(t_s)[/t n(t_r)r*p’ﬂ*#)drr/p/ dt} ds

0

<c

s LA o8

as the following estimates show. On the one hand, we have

o) t , /v’
/ PO g (t — s) [/ Kkt —r)r ? “"”dr}p Tt

s t/2
o0 ¢ p/p'
< gp(l=n) / K(t —$) {/ K(t — T)d?‘} dt
s t/2
< 2p(17u)‘,€|1+P/P' = (=) | P,
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Since k(t) is nonincreasing and (1 — pu)p’ < 1 we have, on the other hand,

o t/2 , /'
/ P gt — s) [/ Kkt —r)r7? (1_“)drr "t
s 0
0o t/2 , /p’
< / PP g(t — s) [/{(t/Q)/ rP (1_“)drr T
s 0

=(1-p'(1- u))*p/p'Qp(lfu) /OO ot — s)[n(t/Q)(t/Q)]p/p/ dt
<(1—-p'(1- u))—p/p@p(l—u)‘,ﬂ?

Note that the last inequality follows from

t/2

t/2
/@(t/2)(t/2):/0 m(t/2)d7§/ w(r) dr < |a|s,

0
where we have once more used that x is nonincreasing.
(ii) We conclude from (i) that

e 1/p
Kol = ( / 1= Kot dt)
0

_ (/Ooo’ /Ot k(t — s)(t/s) "5 Fo(s) ds

< Cp,u"f|1|51_uv‘p = Cp7u|’<°'|1|v‘llp,u )

pdt) 1/p

and the proof of Lemma 3.2.8 is complete. (]

We already know that the operator —B,, ; generates a positive Cy-semigroup
{T'(t) : t € R4} of contractions on L,(Ry;Y") which is given by

u(s—t) ifs>t,

3.42
0 if s <t. ( )

[T(t)ul(s) := {
This implies the resolvent estimate

_ 1
A+ Bp1) B, @) < roy ReA>0.

However, note that this semigroup is not of class Cp in L, ,(R4+;Y) for p < 1, as
T'(t) does not map L, ,(R4;Y) into Ly, ,(R4;Y) for ¢ > 0. Nevertheless, we now
prove a resolvent estimate for B, ,, which is best possible.

Proposition 3.2.9. Let 1/p < p < 1. Then the resolvent set p(Bp ) contains the

open negative half-plane C_ = =3 /5, and there is a constant c, , > 1 such that
-1 Cp,
I(/\ + B 7M) |B(Lp,u(R+§Y)) < 1{16};\7 Re X > 0, (343)

holds. In particular, By, is sectorial in Ly ,,(Ry;Y) with ¢p, , = 7/2.

Dy
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Proof. (i) Let A € C with Re A > 0 be fixed and set

t
(K f) (1) == /0 A f(s)ds, | € Lyu(Ry;Y).

Moreover, let k(t) := e *R¢* Then K, satisfies the assertions of Lemma 3.2.8,
with |s|; = 1/ReA. Consequently, Lemma 3.2.8 shows that K is a bounded
linear operator in L, ,(R;;Y"), and that

c
K ) < =B 3.44
\KA|B(L, (R y)) < Ro (3.44)
(i) We verify that (A + B, ) : D(Bp,.) = Ly ,(R4;Y) is invertible for Re A > 0,
with

¢

(A Bp) Ut = / e M) f(s)ds, fe Ly (Ry;Y). (3.45)
0

Indeed, let f € L, ,(R4+;Y) be given and recall that L, ,(Ry;Y") is embedded into

L1 10c(Ry;Y). It is then not difficult to see that the differential equation

O+ Tyu=7, u) =0
has a unique solution u = uy in H{ ;. (Ry;Y). It is given by the right-hand side of
equation (3.45). It remains to show uy € D(B, ). For this we note that uy = K f
and 4y = f — MK uy. Hence we obtain from (i) that u, as well as @) belong to
the space L, ,(R4+;Y"). Since ux(0) = 0 we conclude uy € D(B,,,), and this estab-
lishes equation (3.45). We have shown that p(Bp,,,) contains C_, and the resolvent
estimate (3.43) is now a direct consequence of (3.44)—(3.45).

(iii) It follows from (3.43) that ¢p, , < 7/2. On the other hand, ¢p, , cannot be
strictly smaller than 7/2, as this would imply that B, , generates a (strongly con-
tinuous analytic) semigroup on L, ,(Ry;Y), which is not possible. The assertion
follows now from Proposition 3.2.7. O

3.3 Analytic Semigroups and Fractional Powers

3.1 Holomorphic Semigroups

Typical examples of functions in H,(X4) with ¢ < 7/2 are the functions e;(z) =
e~ for each ¢ > 0. Provided ¢4 < 7/2, the Dunford calculus from Section 3.1.4
gives rise to the family of operators e;(A) =: e~*4, ¢t > 0, which because of the
multiplicativity of the the calculus yields the semigroup property

e AlFs) — o= A= As 4 g5 (.

Therefore it is called a semigroup of operators.
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Definition 3.3.1. A family of operators {T'(t)}+>0 C B(X) in a Banach space X is
called a semigroup, if

Tt+s)=T@t)T(s), t,s>0, T(0)=1,
is satisfied. The semigroup is called of class Cy, if in addition

lim T(t)x =2, ze€X,
t—0+

holds.

We prove the following result which is basic in semigroup theory and for
parabolic partial differential equations.

Theorem 3.3.2. Let A be a closed densely defined operator in a Banach space X .
Then the following assertions are equivalent.

(a) A is pseudo-sectorial with spectral angle less than 7/2;

(b) —A generates a Cy-semigroup T (t) which admits a bounded and holomorphic
extension to a sector Xy ;

(c) —A generates a Cy-semigroup T(t) such that R(T'(t)) C D(A), and there is a
constant My > 0 such that |T(t)| + [tAT(t)| < My, for each t > 0.

Proof. (c) = (b). Suppose —A generates a Cp-semigroup such that the conditions
of (c) are satisfied. Define T'(z) by means of the power series

T(t+2z) = i %TTW (t).

n=0
Because of T (t) = A™T(t) = [AT(t/n)]" we obtain [T (t)| < [Mon/t]", for all
t > 0 and n € Ny. These estimates imply

o0

[n]2|Mo]"
IT(t+2)| < ZW < o0,
n=0
provided o
Tim,, o0 [(12] 2| Mo)™ /t"n!]V/™ = My|zle/t < 1,
which means |z| < t/Mpe or |argz| < ¢ := arcsin(l/Mpe). On each smaller

sector Xy, ¥ < ¢p, T(z) is then holomorphic, bounded, and has the semigroup
property T'(z1)T(z2) = T(z1 + 22), and |T'(2)| < M.

(b) = (a). Now let T'(z) be holomorphic on X, and bounded on each smaller
sector Xy. Then for each A > 0, Cauchy’s theorem applied to the closed contour
I'r = [0, R] U Re'®¥] U ¢¥[R, 0] implies with R — oo

A+ A= / e MT(t) dt = / e M T (te) dt, (3.46)
0 0



112 Chapter 3. Operator Theory and Semigroups
for each || < ¥p, by virtue of
P ) i ] P
’ / T(Re'?)e R Re'? dg@‘ < MwR/ e Ao e i, 0
0 0

as R — 0o. Because of the estimate

‘ / e*’\tewT(te“/’)dt‘ <M, / e~ tRe(Ae™) gy (3.47)
0 0

My
<
~ |\l cos(yp + arg A)’

formula (3.46) allows for holomorphic extension of the resolvent of A to the sector
—Y 5 /2447, and implies o(A) C iﬂ/g,wT, and (3.46) holds for all A € ¥, /544,
Moreover, estimate (3.47) yields supyey INA+A)"Y < oo forall ¢ > 7w/2—r,
and therefore A € PS(X) and ¢4 < 7/2 — 9.

(a) = (c). Suppose A € PS(X) satisfies ¢4 < T, and let ¢4 < ¢ < F. Then for
z € Xy, the functions e,(\) = e™** are holomorphic in C and belong to H,(Xy),
as long as ¥ < 7w/2 — ¢. Therefore, the functional calculus for pseudo-sectorial
operators yields bounded linear operators T'(z) = e, (A) = e~*#, which satisfy the
semigroup property

T(Zl + 22) = T(Zl)T(Zg), 21,29 € Z%—¢'

Since the map z + f is holomorphic on ¥z 4 with derivative 0.e,(A) = —Xez(A)
which even belongs to Hy(X4), we may conclude that the family {T(z)}zeg%_d) C
B(X) is holomorphic and %T(z) = —AT(z). In particular, —A is the generator of
T'(2) and the operators T'(z) have ranges contained in D(A), for each z € Xz .

Let us next derive bounds for |T'(z)|. For this purpose we take the representation
of e,(A) from (3.32).

1

T(z) = 5

/ e A — A"t
s
With |argz| < ¢ < 7/2 — ¢ a straightforward estimate yields

Vr-sld) [ oion [N
T2)| < —F—— e Re(zV 120
7)< =R 5

Mw—¢(A) [/oo e—|z|rcos(¢+w)@ + /ﬂ e|z|6 d@} < KO (A)
™ 5 r » - k4 ’

IA

by the choice § = 1/|z|. This shows that the semigroup 7T'(z) is uniformly bounded
on Y. Similarly, choosing § = 0 we obtain
oo Kl(A
‘AT(Z)I < Mﬁf¢(A)/ ef\z\rcos(¢+¢)dr — Uf(|)’ = 2%7 .
0 z
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To see that T'(z) — I strongly as z — 0, let x € D(A) and fix § > 0. Then the
identity (A — A) "'z = z/XA 4+ (A — A) "1 Az /) yields

T() = /Fe*z’\[er()\fA)*le]

T 2mi

dX
1
By means of residue calculus the first part of this integral can be evaluated to the

result

_ L —zA —1y AA
T(z)z =z + 57 F’Se (AN=A)" Az 3

and passing to the limit z — 0, contracting the contour in —X,_4 we conclude

a

T(z)x =z + L (A= A) Az

: T
2mi Jr, ’

by Cauchy’s theorem. Since D(A) is dense in X and T'(z) is uniformly bounded
we obtain T'(z) — I strongly as z — 0. The theorem is proved. O

3.2 Extended Functional Calculus

We consider now a method to define f(A) for all A € PS(X) and all functions
f € H(Xy4) which grow at most polynomially at infinity and zero. More precisely,
suppose f € Hy o(Xy) for some a € R, Define 1(\) = A/(1 + X)?; this function
is rational and belongs to Hy(Xy). Contracting the contour I', by residue calculus
we obtain 1(A) = A(I + A)~2. This operator is bounded and injective, its range
equals D(A) NR(A) and its inverse is given by ¢(A4)"! =2+ A+ A~L If k € Nis
such that k > « then ¥ f € Hy(X4) and so the Dunford calculus of Proposition
3.1.9 applies and yields a bounded operator (¥ f)(A). We then set

FA) =(A) " (@*F)(4), and

3.48
D(f(4)) = {w € X : (" f)(A)r € D(A*) NR(AM)}. (3:45)

This definition of f(A) is independent of k > «; in fact, if I > k > « then
Yf = R f, hence (! f)(A) = Y175 (A)(FF)(A) since $F and also ¢ f
belong to Hy(X4). Therefore we may always choose k = [a]+1, the smallest integer
larger than «. f(A) defined this way is closed and densely defined. Moreover, we
have

Theorem 3.3.3. Let X be a complex Banach space and A € PS(X). Then the
functional calculus ® 4 defined by ®4(f) = f(A) with f(A) given by (3.48) is well-
defined for all functions in J,cg Ha,a(Xg). For a >0 and f € Hqo(Xg), f(A)
is a closed linear operator in X with domain

D(f(A) = {r € X : (f*)(A)x € D(A") NR(A")},
where k > a. The inclusion D(f(A)) D D(A¥) N R(A¥) is valid, and
F(A)a = (fOM) (A~ (A)r, @€ D(A*) NR(A").
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In particular, f(A) is densely defined if A is sectorial. ® 4 is an algebra homomor-
phism in the sense that

(af +bg)(A)z = af (A)z+bg(A)z, for all f,g € Hya(Sy), @ € D(AF)NR(AP),
and all a,b € C, with k > «, and

(f9)(A)z = f(A)g(A)z, [ €Haal(Ss) g€ Hpp(Ss), v € D(A*) NR(AY),
for k > a+ B. The approrimations A. of A satisfy
lim f(A)z = f(A)z, for all f € Hyo(Ze), = € D(AY) NR(AY), & > a.

e—0+

It is useful to have a representation of f(A)x as a contour integral, for f €
H, 5(3y) and z € D(A*)NR(AY), with k > o and [ > . To this aim we use again
(3.25) for a bounded and invertible B € S(X). Split the contour as I, g = TTTUT,
where
M = e ™[, RJU R T¥ Y U™ (R, 1], T%=[1,7]e" Ure® ¥ ulr 1]e ™
(3.49)
Fix any [ € Ng. On I'f we write
l
A=B)' =) AIB T 4 A' (A= B)'B,
Jj=1

and then we have

fON=B)"tdx = /FR AP (A= B)" 1Bl ax

l
+Z/ FOOATIBITL .,
j=1/If

Deforming the contour T'f into Ty = e’l=%¥! in Y4, we may employ Cauchy’s
theorem to see that the contributions from the terms A\'~7B7~! are independent
of R.

The integral over I'; can be treated similarly. On this path we replace the
resolvent (A — B)~! according to the identity

rf

A=B) ' =XO\-B)'B7F ZAJ 1B,

to the result

/T fO)N=B)tdx= / MFON(N=B)'B7Fd\

k
=Y [ fOONTIBTdA.
j=17T1%
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Again by Cauchy’s theorem we may deform the contributions from the terms
M~1B~J into an integral over I'y which is independent of r > 0.
This way, we obtain the following representation formula for f(B).

£B) = o [ A0 - B) By
rp

T 2mi

1 k _ p\-1p—k
+ 5 /F)\ FO)A—B)"'B~*dx (3.50)
1 k l

= j—1p—J —jipji—1

+ 5 /FO f(A)[;A B +;A B/ d),

where the contours T'4?, T's are defined by (3.49), and T'y = €'l=%:%]. Observe that
the last integral is of the form

-1

> ci(f)B?,  with (3.51)
j=—k
c—i(f) = ;m/r ATUED N AN, ¢(f) = ;m/r A~GFD F(N) dA.

This shows that the coefficients ¢;(f) depend on f linearly and boundedly, in fact
we have

lei ()] < 26 sup{|f(e")]: [t < ¢}, forall j € Z.
For functions f € H(X,) which grow at most polynomially at infinity and at zero
we may now pass to the limits R — oo and r — 0+.

£B) = 5 [ A0 - B) B
27 Jr,
+ L MFONA=B)'B % adx + li cj(f)B? (3.52)
2i Jr, = '
where k,l € Ny denote any numbers such that a < k and 8 < [.
Now consider an arbitrary operator A € S(X) such that ¢ > ¢4. Then for any

e > 0 welet A, denote the approximations of A introduced in Section 3.1.2, and we
may set B = A, in formula (3.52). With Proposition 3.1.4 we have (A — A.)~! —
(A—A)"tase — 0+ in B(X), as well as Alz — Az for all z € D(A!), 0 < j <1,
and AZ7x — A7z for all z € R(A¥), 0 < j < k. Since the function |A~(+1) f()\)]
is integrable over 'y, |[\*~! f(\)| has this property on I'y, we may pass to the limit
¢ — 0+ to the result

f(Az = i AFO)N = A) 7T Az dA
271 Ty
-1

NN = AT A wdh+ Y oi(f) A, (3.53)

+ —
271 T =k
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for any o € D(A!) N R(AF). This is the representation formula of f(A)x we have
been looking for.

3.3 Complex Powers of Sectorial Operators
For z € C the functions h,(A) = A\* are holomorphic on ¥, the sliced complex
plane and the estimate

|hz(>\)| _ |ezlog)\| _ eRezlogM\fImzarg/\ < |)\|Reze¢|1mz|, = Eqb»

shows that h, belongs to H, o(24) for o = Rez. Therefore, we may apply the
extended functional calculus for sectorial operators to obtain the following result.

Proposition 3.3.4. Suppose A € S(X), let A* be defined by A* = h,(A), and
|[Rez| < k, k € N. Then

(i) A%z is holomorphic on the strip |Rez| < k, for each x € D(AF) NR(AF);
(i) A* is closed for each z € C;

(iii) A**vx = A*AYzx for all z,w € C, x € D(AF) N R(AF), where k >

[Re z|, [Rew|, |Re (z + w)|;

(iv) A%z =lim. o A%z, = € D(A*) NR(AF), |Rez| < k.

Because of Proposition 3.3.4, the operators A* are linear, closed, densely
defined and, because of A*A~*x = x = A~ *A%x for x in a dense subset of X,
have also dense ranges and trivial kernels. If A € S(X) is invertible then {A™7,
Re z > 0} forms a bounded holomorphic Cy-semigroup on X /5. This can be seen
from formula (3.53) with { = 0 and k¥ = 1 which in this case makes sense for all
reX.

It turns out that for real a with |a| < 7/¢4 the powers A% are sectorial as
well, and the power law (A%)*z = A**z is valid.

Theorem 3.3.5. Let A € S(X) and a € R be such that || < w/¢a. Then A% is
also sectorial and e < |a|pa. If z € C and k > |Re z||af, then

(A%)?x = Az, for all z € D(AF) N R(A"). (3.54)

For any real numbers o < 8 < v with vy — «a < /¢, the moment inequality

~

|APz| < k|A%z|3=|AVz| =5, z € D(A%)ND(A), (3.55)

is valid, where k denotes a constant depending only on «, 3,7~ and A.

Proof. Since A=® = (A71)® it is enough to consider positive a. So let a €
(0,7/¢4) be fixed. We want to show that the operators u + A% are invertible
for u € ¥r_ag., and that the resolvent estimate

sup [u(p + A%) 7 < My, < o0
HEX
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is valid for each ¢, < m™— ¢ a. For this purpose we consider the functions g, (\) =
w/(p 4+ A%), which are holomorphic and bounded on X4, uniformly w.r.t. u, as
long as ¢ € ¥y, and ¢ + a¢ < m. By means of the extended functional calculus
we have g, (A) = u(u + A%)~!, the problem is to show that these operators are
bounded with a bound which is uniform in g € g, . Observe that although the
functions g,,(\) are uniformly bounded, they are neither holomorphic at zero nor
at infinity, due to the presence of the power \“.

As a starting point we use formula (3.29) for the approximations A, of A
which are bounded and invertible. Contract the contour I' by means of Cauchy’s
theorem and by residue calculus to the halfray T'y = [0,00)e?, with 7 > 6 >
¢ > ¢4, where the branch cut of \* is put on this ray. This is possible if the
function g + A% has no zeros on this ray, which means that with ¢ = argpu we
have ¢ — af # (2k + 1)m and ¢ + 2am — af # (2k + 1)7, for all k € Z. Let \j,
j=1,...,n denote the zeros of u + A%; note that there are only finitely many of
them, and n = 0 means that there are none. n is bounded from above in terms of
« and ¢ 4. Then we obtain

i(0—2m) 0

o+ raeio(0—2m) - w4+ roeiad

+ MZ /\;_O‘()\j —A) Y a
j=1

6 0 i(0a) _ Li(0—27)c )
— pne . / |: e - e - :|7"a(7'619 _ Ag)_l dr
211 0 (N’ + rOtg’LOé(Q*Qﬂ'))(M + Taezoze)

+pY AT — AT e
j=1

gu(Aa)_ L OO[

= iQ_AE -1
o ; }(re )" dr

Estimating this expression we get

re=ldr

e—tab 4 po ‘ |N6ia(27r70) + T.a|

o0 dr
< < (C.
<ofis || gt ) <€

Therefore we have uniform bounds on g, (A.), hence with ¢ — 0+ also on g,(A),
in virtue of g,(A:)zr — g.(A)x as € — 0+ on a dense subset of X, and of the
Banach-Steinhaus theorem. This proves that A% is sectorial and ¢ < agy if
a<m/y.

The identity (A%)* = A2* is obviously valid, hence passing to the limit we
obtain (3.54).

To prove the moment inequality, let us observe that it is enough to consider
the case @« = 0 and v = 1; in fact, replace = by A%, 8 by (8 — a)/(y — «), A
by A7~% to see this; observe that by the restriction v — a < 7/¢ 4, the operator

+C

l9u(A0)] < Clul / |
0 M
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A7~¢ is again sectorial, by the first part of this proof. Contracting the contour "
in the representation of A?~! to the negative half-axis we obtain

SO [ e g,
€ T o €
Application of this formula to Az for x € D(A) and passing to the limit e — 0+

leads to
sin(Bm)
T

APy = AP Ax = / P (r + A) 7L Az drr;
0

observe that this integral is absolutely convergent. We split the range of integration
at § > 0 and estimate as follows.

é 0
|APz| < C’/ =L dr|z) + C/ =2 dr| Az|
0 s

= Clz[6" /B + C|Az[6771 /(1 = B) = Cla|'~7| Ax]”,
by the choice § = |Ax|/|z|. This completes the proof of Theorem 3.3.5. O

3.4 Operators with Bounded Imaginary Powers
Proposition 3.3.4 shows that the following definition makes sense.

Definition 3.3.6. Suppose A € S(X). Then A is said to admit bounded imaginary
powers if A" € B(X) for each s € R, and there is a constant C > 0 such that
|A%] < C for |s| < 1. The class of such operators will be denoted by BLP(X).

Since by Proposition 3.3.4, A* has the group property, it is clear that A
admits bounded imaginary powers if and only if {A* : s € R} forms a strongly
continuous group of bounded linear operators in X. The growth bound 64 of this
group, i.e., )

5] log |A™| (3.56)

04 = hm|s\—>oo

will be called the power angle of A. Then for each w > 64 there is a constant
M > 1 such that
|Ait|B(X) < M@wlt‘, teR.

It is in general not easy to verify that a given A € S(X) belongs to BZP(X),
although quite a few classes of operators are known for which the answer is positive;
cf. the next subsections.

For a first application of the class BZP(X), consider the fractional power
spaces

Xo = Xae = (D(A%), | |), [ala = |2 +]4%2], 0<a<1,
where A € §(X); the embeddings
Xa—=Xg=Xog—=X, 1>8>a>0,

are well-known. If A belongs to BZP(X), a characterization of X, in terms of
complex interpolation spaces can be derived.
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Theorem 3.3.7. Suppose A € BIP(X). Then
Xg = (Xa XA)@a RS (05 1)7 (357)

where (X, X a)g denotes the complex interpolation space between X and X4 — X
of order 6.

We recall the definition of the complex interpolation space (X, Xa)g, 0 €
(0,1). Consider the strip S C C given by S:= {2z € C:0 < Rez < 1}. Then z €
(X, X 4)p iff there is an f € H®(S; X) N C(S; X) with sup,eg |f(1 +it)|x, < oo,
such that f(0) = . The norm in (X, X4)p is defined in the canonical way. More
precisely,

|$|(X,XA)9 = inf{\h(i'”Lw(R;X) +[h(1 +i')\Lm(R;XA) :h € H*(S;X), h(0) = z}.

The spaces (X, X4)p are well-known to be Banach spaces such that X, —
(X, X4)p — X, with both embeddings dense if D(A) is dense in X.

Proof. We may assume w.l.o.g. that A € BZP(X) is invertible. In fact, the func-
tions hq(z) = (14 2)*(1 + 2%)~t — 1 and ha(2) = (1 + 2%)/(1 + 2)® — 1 both
belong to Hy(Xy), for any ¢ < m. This implies that (1 + 4)*(1 + A*)~! and
(14+ A*)(1+ A)~> are bounded, and so D(A%) = D((A + 1)%).

Let x € D(A) and let

f(z) = eZQ*GQA*ZWx, z€S.
Then f is continuous on S, holomorphic in S and bounded in X, since
1f(o +it)| < Mer0 ewltl=1* | A= 3 < | Az,

with some constant C' > 0, as by assumption A € BZP(X) is invertible, and
employing the moment inequality. Moreover, for ¢ = 0,1 we have

|[f(it)lx < ClA%|,  |Af(L+it)| < O|A%],

hence
|$|(X,XA)9 < C|A0:E|’

by definition of the complex interpolation spaces. As D(A) is dense in D(A?) as
well as in (X, X 4)g, this yields the embedding D(A?) — (X, X ).

To obtain the converse inclusion, fix € D(A), and let f : S — X be
bounded, continuous, and holomorphic in S, f() = z, and such that

|f(z>|007 |Af(1 + Z)'oo < 2|x|(X,XA)9‘
Set ge(2) = e =0 A*(1 + £A)~1f(2), z € S. Then

9:(0) = A%(1 +A)1f(0) = A% +cA) "z — A%z ase — 0,
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as AY is closed and commutes with the resolvent of A. Obviously, ge is continuous
and bounded on S, holomorphic in S and

l9e(it)] < MV |(1+ )£ (i) < Clalx x.0000
as well as
19-(1 +it)] < Me eI~ |(1+ e A) Y| AF(1 +it)| < Clz|x,x.4),-
Hadamard’s three lines theorem then implies
[A%(1 4+ eA) " a| = 19 (0)] < 1g-(i)150 7 1g-(1 + ) % < Clalx, x40,

Passing to the limit & — 0, this yields the inclusion (X, X4)y < D(AY), using
once more density of D(A) in D(AY) and in (X, X4)s- O

The importance of Theorem 3.3.7 is twofold. It shows on one hand that
X, is largely independent of A; for instance if A, B € BZP(X) are such that
D(A) = D(B) then D(A%*) = D(B®) for all a € (0,1). On the other hand, (3.57)
makes the tools of complex interpolation theory available for fractional power
spaces and it becomes possible to characterize X, in many cases. For example,
the reiteration theorem yields the relation

(Xa,Xp)o = Xoa—g)4op, forall0<a<p <1, 60€e(0,1),

for complex interpolation of fractional power spaces of operators A € BZP(X).
Some permanence properties for the class BZP(X) are collected in the next

proposition.

Proposition 3.3.8. Let X be a complex Banach space. The class BIP(X) has the

following permanence properties.

(i) A€ BIP(X) iff A=t € BIP(X); then 041 = 04;

(if) A e BIP(X) implies rA € BIP(X) and 0,4 = 04 for allr > 0;

(iii) A € BIP(X) implies et A € BIP(X) for all 1 € [0,7 —04), and Opziv 4 <
9A + T/J;'

(iv) A e BIP(X) implies (u+ A) € BIP(X) for all p € ¥r_y,, and
0.+ < max{0a,|arg ul};

(v) if D(A*) is dense in X*, then A € BIP(X) iff A* € BIP(X™*), and 04 = 0a~;

(vi) if Y denotes another Banach space and T € B(X,Y) is bijective, then A €
BIP(X) iff Ay =TAT ' € BIP(Y), and 04 = 04,.

Proof. Using the extended functional calculus and suitable variable transforma-
tions these permanence properties are abtained as in the proof of Proposition 3.1.3,
except for (iv) which is a little more tricky. In fact, (iv) is very much related to the
perturbation theory for the class BZP(X), it follows from our next proposition
with B = p and h(z) = 2%. O
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Proposition 3.3.9. Suppose A € S(X), B is a linear operator in X with D(B) D
D(A%), and
|Bz| < a|z| +blA%x|, x € D(A%),

holds with constants a,b > 0 and o € [0,1). Assume that A+ B is sectorial and
invertible.

Then h(A) € B(X) implies h(A+ B) € B(X), for any h € H>*(Xy), where
¢ > oA, 0a+p. In particular, if A € BIP(X) then A+ B € BIP(X), and

Oarp <max{0a,dat+p}

Proof. Fix h according to the assumptions of this proposition and let f = ¥h with
1 as in Section 3.2.2. Then

h(A+B)=¢ YA+ B)f(A+B)=2+(A+B)"' + A+ B)f(A+ B),
and with B = B(1+ A)~!(1 + A) this gives
h(A+B)=2+(A+B) ' +B1+A)'+(1+B(1+A) 1A f(A+B).

Now, (A + B)~! and B(1 + A)~! are bounded by assumption and f(A + B) is
bounded since f € Hy(X), hence we only need to show that Af(A+B) is bounded.
Choosing a standard contour I', the resolvent equation implies

Af(A+ B) = Af(A) + %/Ff(A)A(A—A)—lB(/\ —(A+B))"ta.

Since by assumption h(A) is bounded, Af(A) = Ay (A)h(A) is bounded as well,
and the integral is absolutely convergent since B is of lower order. O

In connection with operators with bounded imaginary powers another func-
tional calculus is very useful and will be crucial. For this purpose recall the Mellin
transform defined by

Plz) = /0 T e,

Mellin’s inversion formula reads

ct+ioco
£(1) 1/ F(2)t=* ds.

27T'L —ioo

The inverse Mellin transform can be used to define a functional calculus for A €
BIP(X) as follows. Set

My(R) = {1 € Mo(R) - [plo := 5~ / 19| dy(s)| < oo},

where My(R) denotes the space of all finite complex Borel measures on R. My(R)
becomes a Banach algebra with unit, the convolution of measures, scaled by the
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factor 1/27 as multiplication. Evidently the Dirac masses J; with unit mass in
s € R belong to My(R), and 27d is the unit. For measures p € My(R) we define

1 4
E/Rz_”du(s), z € Xg.

This yields an algebra homomorphism from My(R) into the Banach algebra
H®>(Xp), and it gives rise to the algebra homomorphism from My(R) to B(X)

defined by the formula
1 .
— 5 [ AT duts)
2 R

for any operator A € BZP(X) with 04 < 6. In fact, this formula is precisely the
Phillips calculus for the Cy-group A~*. We summarize these observations as

Theorem 3.3.10. Let A € BIP(X) and 0 > 04. Then the formula

£4) = 3= [ A7 duty

2

f(z) =

defines an algebra homomorphism from My(R) to B(X), where f and p are related
by

1) = 5= [ =7 duto).

In particular, f(z) = 27 is mapped to A=%, for each s € R. Moreover, there is
a constant K > 0 such that

|f(A)|Bx) < Klulo, for all p € Mg(R),
where K = sup,cp 6_9‘5||Ai5|3(x).

Proof. The only thing left to prove is the multiplication property. Here we

need to recall the convolution theorem for the Mellin transform, i.e., if f;(t) =
= [0t dp;(s), then

27 J—

fit) fa(t) = % /oo d(py * po)(s), t>0.

This identity implies

(hF(A) = 3= [ A7 dg = )5

1 —is
_W/A /d,ul(s—T)dug(T)
/A zsd,ul /A “—d/i
27r
= f1(A
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It is not obvious how to get the resolvent of an operator A from its imaginary
powers. This is due to the fact that the Mellin transform of the function 1/(1 +
t) has poles at 0 and 1. However, since such representations are useful and in
particular show that the functional calculus from Theorem 3.3.10 is consistent
with the Dunford calculus, we comment on this.

For this purpose observe that

1 c+ico dz
1467 1== t? , t>0,
(1+) 2i sin(7z)

c—100
where 0 < ¢ < 1 is arbitrary. Therefore,

1 c+ioco d
Te = — A %x i
21

c—100 Sin(TFZ)

is well-defined since the integral is absolutely convergent for x € D(A) N R(A). By
Cauchy’s theorem, the integral is independent of c. Using again Cauchy’s theorem,
we obtain by an easy computation 7' = (1 + A)~!. In fact, apply 1+ A to Tz to
the result

1 c+1i00 d 1 c+1i00 d
1+ ATz Aizl".ﬂ'iz + 7/ A7y .7T c .
T 2mi e—ioo sin(mz) = 27w Jo_i00 sin(mz)
Deforming the contour in the first integral to
Ty = (—ioco, —ie] Ueel=™/27/21 U [ig, ico)

and the second one to
[y = (1 —ioo,1—ig] U (1 —ee’m/27/2y U [1 4 ie, 1 + ico),

observing that the contributions on the straight lines cancel, and passing to the
limit ¢ — 0+ there follows (1 + A)Tx = x for each z € D(A) N R(A). Since by
assumption A is sectorial this implies Tx = (14 A) 'z for each x € D(A) NR(A).

Replacing A by sA, s > 0, and shifting the contour to the imaginary axis we
get the formula

d
(1+sA) e 7x+ PV/ bmh(pﬂp) 5> 0, (3.58)

where PV means the principal value.
To deduce the second formula, recall the identity

1 1 1 [ i (€7 —1)

= — t) ™
vk et Tl B

sinh(mp) ap,



124 Chapter 3. Operator Theory and Semigroups

where A\ = re’?, |¢| < 7. Since the measure with density (e!*? — 1)r~%/sinh(7p)
belongs to My (R), provided |¢| < m — 6, we get by Theorem 3.3.10 the identity

o (e —
L+~ =1+ M~ +%/ A4y =D

— 00

sinh(mp) dp, (3:59)

whenever ¢ = arg(\) € (—m + 6,7 — ). As a consequence we have
Corollary 3.3.11. Suppose A € BIP(X), 04 <. Then ¢4 < 04.

3.5 Operators with Bounded #°°-Calculus
There is another important concept related to the Dunford calculus for a sectorial
operator.

Definition 3.3.12. A sectorial operator A is said to admit a bounded H°-calculus
if there are ¢ > ¢4 and a constant Ky < oo such that

|f(A)] < Kol fluo(s,), forall f € Ho(Xy). (3.60)

The class of sectorial operators A which admit an H*>®-calculus will be denoted by
H>®(X). The H-angle of A is defined by

d% =1inf{d > ¢4 : (3.60) is valid}. (3.61)

If this is the case, then the functional calculus for A on Hy(X,) extends
uniquely to H*°(X4). This can be seen by formula (3.53) with k¥ = = 1, which
is valid for z € D(A) NR(A). If f € H>®(Xy4) and (f,) C Ho(X,) is uniformly
bounded and converges to f, uniformly on compact subsets of X4, then (3.53)
for f, and Lebesgue’s dominated convergence theorem show f,,(A)x — f(A)zx as
n — oo, for each € D(A) N R(A). Since D(A) N R(A) is dense in X, (3.53) and
the Banach-Steinhaus theorem then yield f,(4) — f(A) in the strong operator
topology. This is a special case of the so-called convergence lemma.

Lemma 3.3.13. Let A € S(X) and ¢ > ¢pa. Suppose (fn)n>0 C H>®(Xy) is such
that fn, — fo uniformly on compact subsets of 3.

Then sup,,>1 | fn(A)|x) < 0o implies frn(A) — fo(A) strongly. In particular,
this assertion holds if | fn| e (s,) < M < 00 and A admits a bounded H> -calculus
on .

Well-known examples for general classes of sectorial operators with bounded
‘H>-calculus are

(a) normal sectorial operators in Hilbert spaces;

)
(b) m-accretive operators in Hilbert spaces;
(c) generators of bounded Cy-groups on L,-spaces;
)

(d) negative generators of positive contraction semigroups in L,-spaces.
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Here (a) follows from the functional calculus for normal operators in Hilbert spaces,
see e.g. Dunford-Schwartz [91], while by the Cayley transform, (b) is a consequence
of the Foias-Nagy calculus for contractions in Hilbert spaces; see Foias-Nagy [273].
(¢) and (d) and some vector-valued extensions are implied by the theory of Coifman
and Weiss [69].

Since the functions fs(z) = 2% belong to H*(%,), for any s € R and ¢ €
(0, 7), we obviously have the inclusions

H*(X) C BIP(X) C S(X), (3.62)
and the inequalities
O%X > 04> s >sup{larg)|: A€ a(A)}. (3.63)

The permanence properties of the class H>°(X) are like those for general sectorial
operators.

Proposition 3.3.14. Let X be a complex Banach space. The class H*°(X) has the

following permanence properties.

(i) AeH>™(X) iff A=t € H®(X); then o5, = ¢%;

(if) A € H™®(X) implies A € H™®(X) and ¢S = ¢ for all v > 0;

(iii) A € H®(X) implies eV A € H>®(X) for all € [0,7 — ¢%), and ¢ 2., 4 =
X + s

(iv) A e H>®(X) implies (u+ A) € H®(X) forallp € X5y, , and
Ppia < max{o}, |arg pl};

(v) if D(A*) is dense in X*, then A € H>®(X) iff A* € H™(X*), and ¢ = ¢%;

(vi) if Y denotes another Banach space and T € B(X,Y) is bijective, then A €
H>(X) iff Ay =TAT e H®(Y), and ¢ = 63,

Following the lines of the proof of Proposition 3.1.3, the proof of this result is
evident. Concerning perturbations, we have the following result which is a direct
consequence of Proposition 3.3.9.

Corollary 3.3.15. Suppose A € H*(X), B is a linear operator in X with D(B) D
D(A%), and

|Ba| < alz| +b[A%|, = € D(A%),

holds with constants a,b > 0 and o € [0,1). Assume that A+ B is sectorial and
invertible.

Then A+ B € H™(X), and ¢, g < max{d¥, dayB}-
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3.4 Trace Spaces: Real Interpolation

4.1 Trace Spaces of L,-Type
Consider the homogeneous Cauchy problem

4+ Au=0, t>0, u(0)=uz, (3.64)

in a Banach space X, where A is a densely defined pseudo-sectorial operator
with spectral angle ¢4 < 7/2. Then —A generates a bounded holomorphic Cy-
semigroup in X and the solution wu(t) of (3.64) is given by w(t) = T(t)z, for
all t > 0, where T(t) = e~ denotes the semigroup generated by —A. In this
subsection, we study again regularity properties of u(t). More specifically, we ask
for which initial values x the solution wu(¢) is such that u(t) € D(A) for a.a. t > 0
and Au € L, ,(Ry;X), p € (1/p,1]. In virtue of (3.64) this is equivalent to
ue Wy, (Ry; X) and @ € Ly, (Ry; X).

Suppose that u has this property. Then the initial value z € X satisfies
JoT AT (t)z[PtP=1) dt < 0o. Let us introduce the following trace spaces.

Definition 3.4.1. Let A be a densely defined pseudo-sectorial operator in X with
spectral angle o < /2, let a € (0,1) and p € [1,00). The spaces D4(c,p) are
defined by means of

Da(a,p) = {x €X: [2]ay = (/OOO |10 AT (t)z|P dt/t)l/p < oo}.

When equipped with the norm
Z|ap == |2] + [z]ap, = € Dala,p),

D 4(a, p) becomes a Banach space. For k € N the spaces Da(k + o, p) are defined

by
Da(k+a,p) :={x € D(A*): A*z € Da(a,p)}.

We can now give a complete answer to the question raised at the beginning
of this subsection.

Proposition 3.4.2. Suppose A is a densely defined invertible sectorial operator in
X with spectral angle ¢4 < 7/2, p € (1,00) and p € (1/p,1].
Then for the solution u of (3.64) the following assertions are equivalent.

(a) u(t) € D(A) for a.a. t >0, and u € Ly ;,(Ry; Xa);

(b) we HL,(R: X);

(c) € Da(n—1/p,p)

In this case there is a constant Cp ,, > 0 depending only on A, p and p, such that

4lL, &) + AU, & x) < Cppullu-1/pps

for all x € Da(p—1/p,p).
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Proof. By assumption, —A generates the holomorphic semigroup T'(t) = e~ 4t

which is bounded on Ry, satisfies T'(t) X C D(A) and, with some w > 0,
IT(t)] + t|AT(t)| < Me™*, t>0.

Let © € X and u(t) = T(¢t)x. Then u(t) € D(A) for ¢ > 0. By definition, z €
Da(p — 1/p,p) implies Au € Ly ,,(Ry; X), hence (c) implies (a). Since T'(t) is
holomorphic and T'(t) = AT (¢) for t > 0, (a) implies (b). On the other hand, (b)
yields Au = —4 € Ly, ,(Ry; X), hence

[x]/ﬁ—l/p,p - |Au|€p,u(R+;X)

shows that (b) implies (c). O

We will also use frequently the following result which extends the previous
proposition to fractional orders.

Proposition 3.4.3. Suppose A is a densely defined invertible sectorial operator in
X with spectral angle 4 < w/2, p € (1,00), u € (1/p,1], anda—14+p—1/p > 0.
Then for the solution u of (3.64) the following assertions are equivalent.

(a) ue L, ,(Ry;Da(a,p));
(b) x € Dyl =14 pu—1/p,p).
In this case, we have in addition
(¢) we W, (Rei X) N HS, (Rs X) N Ly, (Ry D(AY)),
and there is a constant Cp , > 0 depending only on A, p and p, such that

lulwg ,@4ix) + Ul @1ix) + UL, @4 Dacap) + UL, @4 00)

< Cp,#‘x|a—l+u—1/p,pa fO’f‘ all x € DA(Oé -1+ n—= 1/p7p)

Note that for o — 1+ 1 — 1/p < 0 assertions (a) and (c) hold for all x € X.
The spaces W and H® are defined via interpolation; see Section 3.4.5 below.

Proof. Observe that (a) holds if and only if I := fooo |u(t) %A(a p)tp(l_“) dt < oo.
We have by Fubini’s theorem

/ / 1 @ Ao~ AT ()l tp(l u)dt

:/ / |A€7A(‘r+t z|PtP (1=p) gpp(1=a)=1 4

/ / x|p )p(lfu) dSTp(lfa)*ldT,
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therefore applying Fubini another time

I:/ |Ae_A5x|p/ (S—T)p(l_“)Tp(l_a)_ldes
0 0

= Calapp) [ Ae salrarti-anion g
0

< CO (O(, 122 p) |$‘pDA(a—1+,u,—1/p7p)7
with Co(a, pt,p) = B(p(1 — ), p(1 — p) + 1), where B denotes the Beta function.

The assertions in (¢) will be proved in Section 3.4.6. O

4.2 Trace Spaces and Real Interpolation
We present now some other characterizations of the trace spaces Da(a, p).

For this, we first recall the definition of the real interpolation spaces
(X,X4)a,p of order a € (0,1) and exponent p € [1,00). z € (X, X4)q,p iff there
exist a function w € C([0, 1]; X)NC((0,1]; X4)NC1((0, 1]; X) with w(0) = x, such
that

(o= [ [ 10 an] "+ [ e awop ] <. @65

The norm in (X, X4)ap is then defined as [z|(x x,), , = |z| + inf[[w]]4,p, where
the infimum is taken over all functions w with the described properties.

Proposition 3.4.4. Let A be a densely defined pseudo-sectorial operator in a Banach
space X with spectral angle ¢4 < 7/2, let a € (0,1), and p € [1,00). Then for
x € X the following assertions are equivalent.

(a) = € Da(a,p);

(b) [a]l, = [[o [t (T(t)x — 2)]P dt/t]"/P < oo;
(c) [z]n, = [fooo INAN 4+ A)~Lz|P dNJAVP < oo;
(d) z€ (X, Xa)ap-

The norms

| o [ lap =114 Hap [ lap =1 T4 Hap Tl X000
are equivalent.
To prove this result we need some preparation. Firstly, Note that (d) in the
proposition makes sense for all closed linear operators in X, while (c) is well-
defined if A is pseudo-sectorial, in contrast to (a) which requires ¢4 < /2, and

(b) where —A must be the generator of a bounded Cy-semigroup.
Secondly, recall Jensen’s inequality

o( [ s)du@) < [ ola)dute). (3.66)
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which is valid for each probability measure p on €2, for each integrable function g
on 2, and ¢ : R — R convex.
Thirdly, we shall need Hardy’s inequality.

Lemma 3.4.5 (Hardy’s inequality). Let p € [1,00), 0 < T < o0, and f: Ry — X
be measurable and such that fOT [tPf(t)|Pdt < oo, for some B < 1/p' =1—1/p.
Then

/0 ' 191 / t F)ds|" e < e(8.p)" / R at < oo,

where ¢(8,p) = (1/p' = B)~".

Proof. The change of variables t = €7, s = €7 yields

T t p log(T) T p
/ ‘tﬁ_l/f(é’)ds‘ dt:/ ]e“’—”f/ f(eg)e”da’ eTdr
0 0 - e

log(T) T p
g/ [/ |f(eo)|e(5+1/p)0.e(B—1+1/p)(T—U)dJ} ir,

hence by Young’s inequality for convolutions

T t 00 , log(T)
/ o=t / Flapas| e < | / =17qg)" | / £ ]
0 0 0

=am-p[ [ R

which proves the lemma. O

Proof of Proposition 3.4.4.
(a) = (b). Let & € D4(c,p); then the identity

t
T(t)x —x = —/ AT (s)x ds
0
and Lemma 3.4.5 with =1 —a — 1/p yield

/O = (T (1) — )P dtJt = /O 19| /0 AT () ds|

oz_p/ sPP|AT (s)x|P ds
0

IN

orp/ [t1= AT (t)x|P dt/t
0
= ofp[x]g,p.

This implies [z], , < a™[z]a,p-
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(b) = (c). To prove this implication we employ the identity
AN+ A e =x - XA+ A) e = /000 e Mz — T(t)z]dt, X>0,
which yields by Jensen’s inequality (3.66) and Fubini’s theorem
/OOO DA + A) " LzfP dA/A = /OOO AOP /OOO(T(t)x — e M dt’p AN/
< /Ooo xoP [/OOO IT(t)x — [P re= N dt} AN/

:/ |T(t)x—x|p[/ NP AL dx} dt
0 0

(o)
= / |T(t)x — z|PT(ap + 1)t~ P~ L dt
0

where I'(z) denotes the Gamma function. This yields [z]; , < (I'(ap + 1))P[z]}, -

( ) (d). Suppose [z]); , < co. Define u(t) = (1 +tA)~'x for t € [0,1]; then

C([0,1]; X)NC((0,1]; X 4)NC*((0,1]; X), u(0) = x, and u(t) = —A(1+tA)
for t € (0,1]. The variable transformation ¢t = 1/X gives

()] :[ |t1*°‘A(1+tA) |pdt/t /\tl CA(L +tA)~! \pdt/t]

C / [t1 A1 +tA)~ x\Pdt/t}

/p

_ c[/loo INCA+ A)"Lg|P d>\/>\]

This proves z € (X, Xa)ap and [2|(x x,)., < Clzls,

o, p —

(d) = (a). Let z € (X, X4)a,p and w € C([0,1]; X) NC((0,1]; X 4) N C*((0,1]; X)
with w(0) = z, be such that

= /|t1“ |pdt/t /|t1 o Ay )|pdt/t} < .
Then the identity

z =w(0) = w(t) _/0 w(s)ds
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implies by Lemma 3.4.5 with 8 =1/p’ — «
! 1/p
/ 1 AT (1)l 1]

[/ |t1—aT(t)Aw(t)\Pdt/t} Py [/1 [t AT (1) /Otw(s)ds‘pdt/t} v

<C /|t1 “ Aw )|Pdt/t p /‘t “/ s)ds dt/tr/p

SC / |t1_aAw(t)|pdt/t} +Ca_” / |t1_a_1/pw(t)\pdtr/p
0

<c[/01 |t1’0‘Aw(t)|pdt/t]1/p+C[/ 1o ()|pdt/t}

Because of boundedness of tAT'(t) on R, we also have

/ [t AT (t)x|P dt/t < C|x|”/ t=oP~1dt = C|x|P /ap,
1 1

hence we obtain [z]n, < C(|z] + [[w]]a,p), and since w has been arbitrary it is
also clear that [r]a, < Cl|z|x x,),, holds, for some constant C independent of
x. The proof is complete. O

4.3 Embeddings
We continue the study of the trace spaces D 4(a, p) with some essential embedding
results. For this purpose we extend the definition of D 4(«, p) to the cases p = 00, 0.

Da(a,00) :={z € X : [2]p,(a,00) = SUp A“|A(X + A)*laz\ < oo},
A>0

and
D4(e,0) :={x € Dy(a,0) : /\lim ANAN+ A) "tz =0}
—00

These definitions make sense for any pseudo-sectorial operator A in X. The norm
in these spaces are

|x|DA(a,OO) = |.Z“ + [x]DA(a;OO)'

Obviously the continuous interpolation space Da(a,0) is a closed subspace of
DA (Oé, OO)

Proposition 3.4.6. Let A be a pseudo-sectorial operator in X with dense domain.
Then for all0 < a<f<1,1<p<qg<oo, re€l[loo]U{0}, we have

(i) D(A) — DA(ﬂaT) — DA(aaT) — X;
(if) Da(B,00) — Da(a,1);
(iii) Da(cr,1) = Da(a,p) — Da(a,q) = Da(a,0) = Da(a,00);
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(iv) Da(a,1) = D(A®) < Da(e,0);
(v) D(A) € Da(a,r) is dense for each r # oco;

(vi) if —A generates a bounded Cy-semigroup in X, then its restriction to D a(a, r)
is also a bounded Cy-semigroup, for each r # co.

Proof. (i) Since for x € D(A), t > 0, we have
t*|A(t + A) "tz < Ot Azl

so the first inclusion is obvious. The second one follows from assertion (ii) and
(iii), while the third one is trivial by definition of D 4(«, p).

(ii) Let z € Da(B,0), 8 > «a; then

>~ « —1 dt >~ a—pB—1 |x‘500
114G+ A2 2 <l [ e ap = 2l
1 t N B—a

which implies assertion (ii).
(iii) Let p € [1,00), « € D 4(a, p); then choosing a standard contour we obtain

1 toNt—« dX

For p > 1, by means of Holder’s inequality this gives

[T 8] foesa-arr

Next observe that from the resolvent equation

ta}\l—a P’

t+ A

tY| At + A) " ta] < S A

A

r/p

A=A =AM+ -1+ A+ AN =47
we obtain
[AN = A) | < (14 2AN = A)THIA(A + A) 2] < CIA(A + A) el

Since by the variable transformation A = tz
HEs sl
r A r

[tYA(t + A) " tz| < Clz|ap,

P’ 1 p’
z —Q

142

ta/\lfa

AT dz
t+ A

z

< 00,

we conclude

which yields the embedding D 4(a,p) < Da(e,00) in case p > 1. For p = 1 we
use boundedness of t*|\|1=%/|t + A| instead.
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For ¢ > p we have from this

dt

([z]n ) = /OOO [t A(t + A)*1x|q?

< sup [t*A(t + A)*1m|qu/ [t* At + A)*%V’@
t>0 0 t
< [@)57 oy (2] )P < Clald,

which yields D4(a,p) — Da(a, q).
Finally, since D4(c,0) C Da(a,00) is closed, the embedding D4(a,p) C
D 4(a,0) follows from (v).

(iv) Let « € D(A); then we know from Section 3.3.3

Aal‘ _ Sln(aﬂ-)/ TQA(T_i_A)—lxﬁ.
™ 0 T
This easily implies the first inclusion in (iv), as D(A) is dense in D(A®).
On the other hand, for z € D(A%) and r > 0 we have by the moment
inequality

rA(r + A) 7| = e AV (r + A) T A% < ¥ Or T A%2).
This proves the second embedding in (iv), by density of D(A) in D4 («,0) .

(v) Since D(A) C X is dense by assumption, we have x. := (1 +eA)"lx — = as
e — 0, for each x € X. Therefore t*A(t + A)~!(z — z.) — 0 for each ¢t > 0. Since

[tYA(t + A) N — x)| < CH*A(t + A) "Lzl

for x € Dy(a, p), Lebesgue’s theorem implies . — x also in D4 («, p), i.e., D(A)
is dense in D 4(«, p). To prove density of D(A) in D4(a,0), observe that the set
{t*A(t + A)~tx : t > 0} is relatively compact in X, in case # € Da(«,0). But
this implies

At + A) . = (1 +eA) At + A) 7l > YAt + A) e
uniformly in ¢ > 0, which shows z. — x also in D 4(«, 0).

(vi) If —A generates a bounded Cp-semigroup in X, it follows from the definition
of the spaces D 4(«, r) that T'(¢) is also bounded in D 4(«, p). Since T'(-)z is contin-
uous in D(A) for each & € D(A), the density of the embedding D(A) < D(a, 1)
for r # oo implies that T'(¢) is strongly continuous also in Da(a,r), r £oco. O
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4.4 Interpolation of Intersections
The following result on real interpolation of intersections is very useful.

Theorem 3.4.7. Let A, B € PS(X) be densely defined and resolvent-commuting,
a€(0,1), 1 <p<oo.
Then (X, D(A) ND(B))ap 2 (X,D(A))ap N (X, D(B))ap.
In particular, if A+ B with natural domain D(A+ B) = D(A) N D(B) is pseudo-
sectorial then
Daip(a,p) 2 Da(a,p) N Dp(a, p).

Proof. We may assume that A, B are sectorial and invertible. The inclusion “ C”
is trivial. To prove the converse inclusion, let z € (X,D(A))q,p N (X,D(B))a,p
be given. Define u(t) = (I +tA)~Y(I + tB)~'z. As the resolvents of A and B
commute, it is clear that v € C([0,1]; X) N C((0,1]; D(A) N D(B)), and

[tV Au(t) |, = |t VP(I +tB) TP A(T + tA) " al, < M2l b, (ap),
as well as
|t1*°‘*1/”Bu(t)|p = |t1*°‘71/1’(1 + tA)*lB(InL tB)*lx\p < MA|:L'|DB(a7p).

Next we have @(t) = —(I+tB) (I +tA) Y (A(I +tA) "tz + B(I +tB)~'z), hence
in the same way as above we obtain

=P (#)],, < MaMp(12] s (p) + 121 Ds (cm)-

This shows the converse inclusion. O

4.5 Vector-Valued Fractional Sobolev, Besov and Bessel-Potential Spaces

(i) Let Y be a Banach space and 1 < p < oo, w > 0. Then B, is sectorial
in Xog := L,(Ry;Y) with domain X; = OH;(RJF;Y), and spectral angle /2,
according to Section 3.2.3. Then we define the vector-valued Besov spaces by

0By, (R1;Y) :== Dp, (a,q) = (X0, X1)aq, a€(0,1), g € [1,00]U{0}, (3.67)
and the vector-valued fractional Sobolev spaces by
oW{?(R+;Y) = ()ng(RJr?Y) = Dp,(a,p) = (X0, X1)ap, «€(0,1). (3.68)

(ii) This definition extends to the weighted spaces Xo , = L, ,(Ry;Y) for 1/p <
w <1, as By, is also sectorial in this space, with domain X; , = OH;W(R% Y),
by Proposition 3.2.9. So we set

0Bpgu(Ri;Y) := Dp, , (2,q) = (Xo,us X115 (3.69)
for a € (0,1), g € [1,00] U {0}, and

oWy R Y) = 0By, ,(Ry;Y) = Dp, , (a,p) = (Xo.u X1,)ap (3.70)

pp, 1



3.4. Trace Spaces: Real Interpolation 135

for o € (0,1). We recall the isomorphism @, from Section 3.2.4 defined by
®,,(u)(t) = t'~Fu(t) which maps X, , onto X, for j = 0,1, by Proposition 3.2.6.
Interpolating these isomorphisms by the real method implies that

Dy 0By (R3Y) = 0By (Ry5Y)

pa,p

is an isomorphism as well, hence we have the characterizations

ue By, (RyY) & t'Fue B (RY),

pq,p

and
ue Ws , (RyY) & t'Hue Wy(RyY),
for all a € (0,1), g € [1,00] U {0}.

(iif) Similarly, as B, is also sectorial in L,(R;Y"), we define
By, (R;Y) := (LP(R;Y),H;(R;Y))OW, WHR;Y) := By, (R;Y),

forp € (1,00), a € (0,1), and ¢ € [1,00]U{0}. Next we let By, (R;Y) be defined
by
By, y(R3Y) = (Lpu(Rs Y ), Hp (R Y) ) g-

pq,p

(iv) The vector-valued Bessel-potential spaces Hy (R;Y), Hy(Ry;Y), as well as
oH,(Ry;Y) and oH) ,(Ry;Y) are defined in an analogous way, employing the
complex interpolation method. From the isomorphism ®,, we deduce

ueoHy (R;Y) & 7 ue Hy(RyY),

for all p € (1,00) and « € (0,1).

(v) Sobolev Embeddings. Consider the operator B = —d/dt in Xo = L, ,(R4;Y)
with maximal domain

X, =D(B) = H, ,(Ry;Y).
Here we take p € (1,00), p € (1/p,1], @« € (0,1] and set § :=a—1+p—1/p. Then
for B > 0 the Sobolev embedding D(B®) — Co(R,;Y) is valid. More precisely,
there a is constant C' > 0 such that

lu(t)]y < C|U|D(Ba), t>0, wueD(BY).

By Section 3.4.3 and general interpolation theory, this shows that K/, Ry Y) —
Co(Ry;Y) for K € {W, H}, as long as 3 > 0.
In fact, it is easy to verify the identity

o] S — a—1
u(t) = /t e(St)(F(Z)(B + D)%u(s)ds, s>0,
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for, say, u € D(B). Applying Holder’s inequality, this relation implies

lu(®)ly < o(®)|(B+1)%ulx, < Cpo(t)|ulpse),
where -
wo(t) = [F(a)*l/ e*p’(sft)(s _ t)p’(afl)sp’(ufl) ds]l/pl.
t
In case 8 > 0, an easy estimate yields

sup(1 + )Mo (t) < oo,
>0

which proves the assertion, by density of D(B) in D(B®), and the embedding
Hy(R;Y) = Co(Ry;Y).

We note that in case p < 1, u(t) has even uniform polynomial decay as
t — o0.

(vi) Holder Embeddings. For § > 0 the Holder embedding D(B%) — C’f(RJr; Y)
is valid. More precisely, there is a constant C' > 0 such that

lu(t + h) —u(t)]ly < ChP|B%u|x,, t>0, wucD(B®).

By Section 3.4.3 and general interpolation theory, this shows K /L(R+;Y) —

Cf_E(R+;Y) for K € {W,H}, as long as 8 > ¢ > 0. We observe that in case ¥
belongs to the class HT', we may set € = 0. In fact, in this case D(B®) = (Xo, X1)a
by Theorems 3.3.7 and by the analogue of Theorem 4.3.14 for B.

To prove the claim, as in (v) we use the identity
o] —t a—1
u(t) z/ (81_‘7)30‘1&(5) ds, s>0,
t

where u € D(B). Then for ¢,h > 0,

oo

u(t +h) —u(t) =T(a)! /t+h[(s —(t+h)*t = (s —t)* 71| B%u(s) ds

t+h
_ r(a)—l/ (s — )2~ Bo(s)ds = I, + I,
t
We estimate separately by Holder’s inequality.

I < [F(a)_l/ (s = (E+R)*F = (s = ) HPs” D ds] ¥ | Bl x,
t

and

t+h
Bl <I0@ ™ [ s 0 | Bl =5 o) B,
t
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Next, we have
prh) <l (77T = (r WP D ar
0
e[ = )T e
0
and
hoo /
pa(h) < [/ P (atp—2) dT}l/p — chb.

0

Both integrals are absolutely convergent as p'(a+ pu —2) = p/(8 — 1/p') > —1,
provided 8 > 0. This proves the assertion.

4.6 A General Trace Theorem

We consider functions in the class K ,(R;Y) N Ly ,(Ry; Da(a,p)), where K €

{W,H}, 1> p>1/p, and a € (0,1] (recall that W} = H} for p € (1,00)). For
B:=a-1+p—1/p>0wehave K7 (R;Y) — C(R4;Y), so the question is what
regularity the initial value ug := u(0) of the function u enjoys. We want to prove
the following result, which is employed at many places in subsequent sections.

Theorem 3.4.8. Suppose A is a densely defined invertible sectorial operator in'Y
with spectral angle g4 < w/2,p € (1,00), p € (1/p, 1], and 8 := a—14+pu—1/p > 0.
Let K € {H, W}, and set Yo = Da(a,p) or Y, = D(A%).

Then the trace map

tr: Ky, (Ry;Y)N Ly (R Ya) = Da(B,p),  tr:uw— u(0),

is linear and bounded. In particular, if u € Kﬁp(R%Y) then the function v =
(0%

ou(R3Y), and the trace map tr is surjective.

u — e Mg belongs to oK
Note that the second assertion follows from Proposition 3.4.3.

Proof. (i) Observe that Hardy’s inequality implies
0Hp (R Y) = Ly i1 (R Y),
hence interpolating with the trivial embedding
Lp (R Y) = Ly u(Ry;Y)
we obtain by the complex method
0H(RisY) = Ly Ry Y),
and by the real method

OW;#(R—H Y) <= Lppta Ry Y),
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for all € (0,1) and 1 > p > 1/p.

(i) We can now prove assertion (¢) of Proposition 3.4.3. For this purpose, let
€ Da(a—1+p—1/p,p); then u(t) = e~ Ao —e ' € oH,, o 1(R; X). Step
(i) implies u € Ly ;10 (R4 ; X), hence by complex interpolation u € o Hj, ,(Ry; X),
hence e~ 4tz € Hg#(R+; X). On the other hand, using real interpolation of type
(a,p) we obtain u € \Wy ,(Ry; X), hence e~z € W, (Ry; X). For the last as-
sertion, observe that v(t) = e~z —e~t A~ 1x as before belongs to Ly ,+a(Ry; X),
but it is also in Ly ,4a—1(R4;X4) by Proposition 3.4.2. Hence complex inter-
polation yields u € L, ,(R;;D(A%)), which proves the last statement in (c) of
Proposition 3.4.3.

(iii) Let v € K ,(Ry;Y) N Ly (Ry; Da(a, p)) be given and set ug := u(0). We
decompose ug as

1 [t I
uozf/ u(s)ds—i-f/ (uo — u(s)) ds = uy + ua.
t 0 t 0

This decomposition leads to

1 1
0] D a8y < [11|Da(sp) + U2l Doy = 177+ L7,

We first estimate I7.

1 t »
I S/ t_l_ﬁp[/ |Ae_Atu(s)|ds] dt
0 0
1 t /ot
< / | / @00 45" / (1= A=Aty (5)[P ds|dt
0 0 0

1 t
= Cp,/t/ flfﬁpﬂ/p’ﬂmfp/ Sp(lfu)|AefAtu(S)|p ds]dt
0 0
1 1 N
= Czw/o sP=r) [/ (| Ae™Mu(s)|)P dt/t} ds < Cp,u|u‘1£pyu(R+;DA(a7p))’

where ¢, ,, = (14 p/(u — 1)) 7P/7".
In case Y, = D(A®), we use the moment inequality to obtain the estimate
[tl=>Al=@e=At| < C, and employ once more Hardy’s inequality, to the result

1 t p
I < C/ t‘”p[/ |A“u(s)|ds} dt
0 0

1
< C/ |A%u(s)[Ps? 1) ds = Clulp, (2. :p(a)-
0
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Next we estimate I by the bound C for tAe~4* and Hardy’s inequality

1 t
Iz:/ tp(l—ﬁ)’Ae_Att_l/ (u(s)—uo)ds‘pdt/t
0

0

1777 t P 1 ds
gCAtprﬂAw@fwM4ﬁgCAh@%mW;ﬁ;

By the embeddings in part (i), the last term is bounded by |u — ug | (0.1):Y)"
p,u )
This completes the proof.

Example 3.4.9. In this example 3 will always denote a compact sufficiently smooth

hypersurface.
(i) Consider as a base space Y the space Y = L,(X). Let A=1—Ax, n € (1/p,1].
Then for all a € (0,1] we have

tr[ Wt (R Lp(2)) N Ly (R WO ()] = W22 2/p (),
This will later on be used for a =1, a =1—-1/2p, and a =1/2 — 1/2p.

(ii) Consider as a base space Y again the space Y = L,(X). Let A = (1 — Ay)?,
w € (1/p,1]. Then we have

tr[Wp /2 2P (Rys Ly(S)) N Ly (R W22 ()] = W —27%/7(3).
This result will be used in Section 6.6.

(iii) Consider as a base space Y the space Y = H2(X). Let A = 1-Ag, p € (1/p,1].
Then we have

tr[W) 2P (R HE(R)) N Ly (R Wy~ P(R))] = W2H2H3/7 (),
This result will be also used in Section 6.6.

(iv) Consider as a base space Y the space Y = szfl/p(E). Let A= (1 - Ax)Y/?
w € (1/p,1]. Then we have

tr[H} (R W2Y/P(2)) N Ly (R WETHP(R))] = W2HH=2/7(3),
This result will be used in Chapter 8.

3.5 Maximal L,-Regularity

5.1 Maximal L,-Regularity
Let J = Ry or (0,a) for some ¢ > 0 and let f : J — X. We consider the
inhomogeneous initial value problem

a(t) + Au(t) = £(t), ted, u(0)=uo, (3.71)

in L,(J; X) for p € (1,00).
The definition of mazimal Ly-regularity for (3.71) is as follows.
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Definition 3.5.1. Suppose A : D(A) C X — X is closed and densely defined.
Then A is said to belong to the class MRy(J; X) — and we say that there is
maximal L-regularity for (3.71) — if for each f € L,(J; X) there exists a unique
we H)(J; X) N Ly(J; Xa) satisfying (3.71) a.e. in J, with ug = 0.

The closed graph theorem implies then that there exists a constant C' > 0
such that
|U|Lp(J;X) + |u|Lp(J;X) + ‘AU|LP(J;X) < C|f|Lp(J;X). (3.72)

Combining L,-maximal regularity with Section 3.4.1 we then obtain for the solu-
tion of (3.71) the estimate
[l L, (i) + [0l 0x) + [Aulz,ix) < Cllwolpaa-1/pp) + 1 L,0x))- (3T3)

We denote the solution operator f +— w by R. It is well known that there is
maximal L, regularity for (3.71) only if —A generates an analytic semigroup. If
J =R, then the semigroup is even of negative exponential type. We state this as

Proposition 3.5.2. Let A € MR,(J; X) for some p € (1,00).
Then the following assertions are valid.

(1) If J = (0,a) then there are constants w > 0 and M > 1 such that
{z€C:Rez< —w} Cp(A) and |z2(z+ A) px) <M, Rez>w,
is valid. In particular, w + A is sectorial with spectral angle < w/2.

(i) If J = Ry then C_ := {z € C: Rez < 0} C p(A) and there is a constant
M > 1 such that

|(z + A)fl\B(x) <

is valid. In particular, A is sectorial with spectral angle < /2 and 0 € p(A).

Proof. Consider first the case J = (0, a). We show that there are constants wy > 0
and M > 1 such that

lellzlx +lzlx, < M|(p+ A)zlx, x€D(A), Rep > w;. (3.74)

In particular, u + A is injective for each Re > wi. Indeed, choose p € C,, x €
D(A), and and let v, (t) := e**z. Then v, satisfies v, + Av,, = ¢,,(t) and v, (0) = =,
where g, (t) = e*(u + A)x € L,(J; X). The maximal regularity estimate (3.73)
implies

leRH L i (el x + |2lx,) < Ce™ M L, (rix)l(p + A)z|x + |z]x,).

Choosing w; large enough such that 2C < |etReM‘Lp(J;X) yields (3.74).
In a next step, which is more involved, we show that there is a constant
we > 0 such that p + A is surjective for Repy > wy. Choose p € Cp, z € X,
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and define f, € L,(R4;X) by f,.(t) = e #z. Let u,(t;z) = R(f,)(t), where R
denotes the solution operator for (3.71) with uy = 0. Set

‘. 2R ‘o .
Uy := 2Re,u/ e M, (t;x) dt = f?/i [/ e M, (t;x) dt — e uy, (a; x)}
0 H 0

The maximal regularity property for (3.71) implies that there exists a constant
C > 0 such that

Uulax) <CA+[ul)™", Rep>0,

where w is sufficiently large. In fact, we have with Hélder’s inequality and the
maximal regularity estimate (3.72)

Upz| < Q(p/ReM)l_l/p/|uM|Lp(J;X) < O(Reu)l/p‘fule(J;X) < Clz|,
as well as

U] < 2Re plp| " [(P'Re o) /7 + e Bera /P Vi | i)
< Clul~ (Re )| ful b,y i) < lul ' Clal.

Next we multiply (3.71) with f = f, by e #* and integrate over J. This
yields by closedness of A and an integration by parts

(1 — e 29Ren)y — 2Re,u/ e P (t)dt = 2Re,u/ e MM, (t o) + Auy, (8 2)] dt
0 0
— (i + AU,z + 2(Re p)e " u, (a; 2),
which after rearrangement becomes
(fi+ AUz =2 —Va, Vo = e 280 1 2(Re p)e u,, (a; ).
Estimating as before we obtain
|V,z| < [e_ZQRe“ +C’e_“Re“(aReu)1/p,]|x\,

from which we see that there is wy > 0 such that [V},[gx) < 1/2, for each Re u >
wo. This then shows that i+ A is surjective for all such u. Setting w = max{wy, w2}
we conclude that u+ A : D(A) — X is invertible, and

(+A)=U,(1-V,)"", Rep>w.

The estimate on U,, (or the a priori estimate in (3.74)) then shows that w + A is
sectorial with spectral angle < /2.

For the case J = R the proof is simpler; one deduces in the same way the
relation (i + A)~! = U, with w = 0. O
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There is variant of maximal L,-regularity if one requires for the solution of
(3.71) only u € C(R4; X) and 1, Au € L,(Ry; X). We call the class of operators
with this weaker property ¢MR,(R4;X). The proof of Proposition 3.5.2 shows
that then in (ii) the condition 0 € p(A) is dropped. More precisely we have

Corollary 3.5.3. Suppose A € MR, (R;;X).
Then A is pseudo-sectorial in X with spectral angle < w/2.
Moreover, A € MR,(Ry; X) if and only if A € yJMR,(Ry;X) and 0 € p(A).

Proposition 3.5.2 shows that for a finite interval J = (0,a) its length a > 0
plays no role for maximal L,-regularity, and up to a shift of A, without loss of
generality, we may consider J = R, and may assume that —A is the generator
of an analytic semigroup of negative exponential type. Therefore, in the sequel
we mostly consider J = R, and abbreviate MR, (X) = MR,(R4+; X) as well as
oMR,(X) = o MR,(Ry; X).

Unfortunately, the converse of Proposition 3.5.2 is false. Actually, it is a
formidable task to prove that a given operator A belongs to MR, (X). We want
to explain the difficulty in more detail. Obviously, the variation of parameters
formula

t
u(t) = e Mug +/ e A= f(s)ds, >0,
0

implies that there is maximal L,-regularity for (3.71) if and only if the operator
R defined by

Rf = A/t e A=) f(s) ds
0

acts as a bounded operator on L,(R4; X). It is nontrivial to show this since the
kernel of this convolution operator on the half-line is Ae~“* which has a non-
integrable singularity near ¢ = 0, behaving like 1/¢, as follows from the well-known,
best possible estimate

Me™t
t

|A€_At|B(X) S 5 t> 07

valid for exponentially stable analytic semigroups. Therefore, R is a singular in-
tegral operator on L,(R4; X) with operator-valued kernel. This calls for vector-
valued harmonic analysis and we take up this topic in the next chapter.

5.2 Maximal Regularity in Weighted L,-Spaces
We next study maximal regularity in spaces L, ,,. The main result of this section
reads as follows.

Theorem 3.5.4. Let X be a Banach space, p € (1,00), and 1/p < u < 1. Then

Ae MR,(X) if and only if A€ MR, . (X).
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Proof. In the following we shall use the notation Xy := X and X; := X4. It
follows that X is a Banach space which is densely embedded in Xj.

(i) Suppose that A € MR,(X). Then we know by Proposition (3.5.2) that —A
generates an exponentially stable analytic semigroup {e7*4 : ¢t > 0} on Xj. Let
f €Ly, (Ry; Xo) be given. Let us consider the function u defined by the variation
of constants formula

u(t) := /Ot e" =45 (s)ds, t>0. (3.75)

It follows from Lemma 3.2.5(a) that this integral exists in X,. We will now rewrite
equation (3.75) in the following way

t t
u(t) =t [ A sy ds 4 0t [0 (1)) s (s) ds
0 0
= O [(By+ A) 'O f + Ta®,f] = @, o1 + va).

Here we use the same notation for A and its canonical extension on L,(R4; Xy),
given by (Au)(t) := Au(t) for t > 0. By definition, T4 is the integral operator

(Tag)(t) ¢=/0 e TIA(t)s) T — 1]g(s)ds, g € Ly(Ry; Xo).

Observe that the kernel K (t) := Ae~ !4 satisfies the assumptions of Proposition
4.3.13 below with Y = X;. We conclude that

T € B(Ly(Ry: Xo), L (Ry: X1). (3.76)

It is a consequence of (3.76) that vy has a derivative almost everywhere, given by

¢
Ug = —ATx®,f + (1 — ,u)t_“/ e~ =94 1(s) ds.
0

It follows from Hardy’s inequality, Lemma 3.4.5, that

oo t D S t p
[l [eeagas asar [~ (e [ise1as) ar < enisiy
; ; 0 o P

and we infer that
V2 € oHp (R Xo) N Ly(Ry; X1). (3.77)

It follows from our assumption that v, enjoys the same regularity properties as v
and consequently, v satisfies (3.77) as well. Proposition 3.2.6 then shows that

u€oH, ,(Ry; Xo) N Ly u(Ry; X1). (3.78)

It is now easy to verify that u is in fact a solution of the Cauchy problem (3.71)
with initial value 0. We have thus shown that A € MR, ,(X).
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(b) Suppose now that A € MR, ,,(Xo). As in the case p = 1 one shows that
A generates a bounded analytic Cp-semigroup {e~*4;¢ > 0} on X,. Let f €
L,(Ry; Xy) be given. Here we use the representation

¢ ¢
u(t) = 1" / e~ =)A= (5 ds — / e~ U=DAY(t /)11 — 1] f(s) ds
0 0
=, (Bpu+A) O f —Taf,
with T4 as above. The assertion follows now by similar arguments as in (a). O

We will now consider the Cauchy problem (3.71) in L, ,(Ry; X). Define the
function spaces

EO»N = EO,M(R-F) L= LPaM(R"F;XO)’
By i=E1u(Ry) i =H, ,(Ry; Xo) N Ly u(Ry; X1),

where X := X and X, := X 4. It is not difficult to verify that the norm
— . 1
|U‘El’“ T (|u|iP,M(R+§X1) + |u|ip-,u(R+§X0)) v (379)

turns E, ,(Ry) into a Banach space. The result reads as follows

Theorem 3.5.5. Let p € (1,00) and 1/p < p < 1. Suppose that A € MR,(X).
Then

d
(5 +Astr) € Tsom(Ex,(Ry ), Eou(Ro) x X),

where tr(u) := u(0) denotes the trace operator, and X, ,, = Da(p—1/p,p).

Proof. We observe that (< + A) € B(Ey,,Eo,) and tr € B(Ey,, X,,) yield
boundedness of (< + A, tr). Theorem 3.5.4 shows that the operator (B, + A)
with domain

D(By. + A) = D(By,) N D(A) = {u € Ey ,(Ry) : u(0) = 0}
is invertible. Let (f,uo) € Eq,, x X, be given and let
w= (Bpu + A) 7 f 4 e . (3.80)

Clearly, u solves the Cauchy problem (3.71). Therefore, (% + A, tr) is surjective.
The assertion follows now from the open mapping theorem. O

If 1 < p<ooand pu=1 the semigroup of translations T'(7)u(t) = u(t + 7)
is strongly continuous in [, 1, which implies that the time-trace tr maps E; ; into
C(Ry4; X, 1), with bound

sup [u(t)|x, , < C|T(T)ulg,, =0 as T — oo.
t>T
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Therefore, we have the embedding
Ei1(R4) = Co(Ry; Xy1). (3.81)
On the other hand, as the time weights ¢! ~* act only near ¢t = 0 we obtain
Ei . (Ry) = Ep1(d,00), for each 6 > 0.
This implies -
Ei (Ry) = C(R4; Xy,.) NCo(Ry; X5 1), (3.82)

which shows parabolic regularization. This will be very useful in later chapters.
It is sometimes important to also have solvability results for the non-
autonomous problem

w4+ Alt)u= f(t), t>0, u(0)=up.
This is the content of the next proposition.

Proposition 3.5.6. Suppose A € C(J,B(X1,Xo)) and A(t) € M,(J, Xo) for each
te J=10,a]. Then

d
(% v A(.),tr) € Tsom(Eq . (J), Eo u(J) % Xo.).

In particular, the non-autonomous problem
w+Au=f(t), teJ, u(0)=mu,
admits for each (f,up) € Eo ,(J) x X, a unique solution u € Eq ,,(J).

Proof. (i) As (& + A(-),tr) € B(E1,,(J),Eo,.(J) x X,,,,) it suffices to show that
(% + A(+), tr) is bijective, thanks to the open mapping theorem. By a perturbation
and compactness argument one shows that there is a constant M such that

d —1
L As),t ‘ <M, se.lJ
’(dt +A(s) r> B(E1 u(J)Eou(J)X Xy u) ’

By compactness of J we can choose points 0 = sg < $1 -+ < Sy42 = a such that

max  |A(t) — A(sj)|B(x,,x0) S 1/2M, j=0,...,m.

85 <t<sj42
A Neumann series argument then yields with J; = (s;,5541)

d .

(£ + A(),tr) € Tsom(E (), Bo() X Xop), G =0,.om. (3.83)
Let (f,z) € Egu(J) x X5, be given. Then we solve the problem with maximal
L, ,-regularity on the first interval Jy. The final value u(s;) then belongs to X,
hence we solve the problem on J; with this initial value and maximal L,-regularity,
and then by induction on all of the remaining intervals. ([
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5.3 Maximal L, ,-Regularity in Hilbert Spaces

Let X be a Hilbert space and let A be pseudo-sectorial with ¢4 < 5. Then —A is
the generator of a bounded holomorphic Cy-semigroup, in particular the domain
of A is also dense in X. In this subsection we want to consider the Ls-theory of
the abstract Cauchy problem

a(t) + Aut) = f(t), t>0, u(0)=uo, (3.84)

where f € Ly ;,(Ry; X). It is the purpose of this subsection to give a simple proof
of maximal-Ls-regularity in this case.

Theorem 3.5.7. Let X be a Hilbert space and A € PS(X) and such that ¢4 < 7.
Then A € gMR4(X).

Proof. The proof of the result follows by the vector-valued Paley-Wiener theorem
on the halfline which is valid in a Hilbert space setting. This result states that
in case X is a Hilbert space, the Laplace transform is an isometric isomorphism
from Lo(Ry;X) onto the vector-valued Hardy space Hs2(C,; X) equipped with
the norm

1
2 SN2
[ulf, c.ix) 27T/ lu(ip)|?dp

Let f € D(R4; X) first. Then (3.84) admits a unique strong solution u. Laplace
transform yields R
a(\) = A+ A)1F(\), Rer>0.

Uniform boundedness of A(A+ A)~! on C then implies

~

AG(N)] + [Aa(N)] < C[f(N)], ReAx >0,
with a constant C' > 0 depending only on A, hence by the Paley-Wiener theorem

U] 1y Ry x) F AU Lo Ry x) S OlflLyrysx)- (3.85)

Now D(R4; X) is dense in La(R4; X), hence a standard approximation argument
applies to obtain this estimate also for arbitrary f € Lo(Ry; X). O

5.4 Maximal L,-Regularity in Real Interpolation Spaces

It is a remarkable fact that maximal L,-regularity holds in the real interpolation
spaces D4 (a, p) if — A generates an analytic Cy-semigroup in X . This is the content
of the following result.

Theorem 3.5.8. Let X be a Banach space, A € S(X) invertible with ¢4 < 7/2, let
a € (0,1), and p € [1,00).
Then A € MR, (Da(a,p)).

Proof. Let f € L,(Ry; Da(a,p)) be given and set u = e~ x f; we have to prove

|AulL, Ry ;D a(ap)) S Clf|L, Ry 5Da(0m)
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for some constant C' > 0 independent of f. For this purpose, note that
t t

|Ae=AT Au(t)| g/|A2e—A<T+S>f(t—s)|ds < M/\Ae‘A(T+S)f(t—s)|(T+s)_1ds,
0 0

hence by Holder’s inequality

4 ¢ BNV P2 LN b
|Ae= AT Au(t)|P < M[/ (r 4 5)~ P ds] / |Ae=AT+9) f(¢ — 8)|P(r + 5) "t ds,
0 0

where a + b =1 and a > 1/p’ to ensure

o0

[/Ot(T + s)_‘”’/ds]p/p/ < {/0 (t+ s)_“p/ds]p/p/ = clTp(l/p/_a) < 0.
Integrating over ¢ > 0 and using Fubini’s theorem, this yields
|Ae_TAAu|ip(R+;X) < ey MrP/P' =) /000 /SOO|A6_A(T+3)f(t — 8)|P(7 + 5) 7 dtds
= clMTp(l/p/_a) /000 /OOO|A6_A(T+S)f(t)|p(T + s)_bp dtds.

From this estimate we obtain integrating over 7 > 0 with weight 77(!=®)~1 using
again Fubini’s theorem

lAu\ip<R+;DA<a,p>>§ClM/0 / / 07 AT AT f@)[P (7 + 5)~Pdsdr

o0 o0 o0
— oM / / / 751 A= A5 f(4) [P~ dsdrdt
=M / / e A5 f(t) /T'B_lde_bpdsdt
0

= MpB~ / / e A5 f(t)|PsP P dsdt

=cMB™ |f|LP(R+;DA(a,p))’

with 8= (1—a)p+p/p’ —ap > 0 provided a <1 —a+ 1/p’, and then 8 — bp =
(1 —a)p — 1. The argument for p = 1 is similar and even simpler. (I
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