
Chapter 3

Operator Theory and
Semigroups

In this chapter we introduce some basic tools from operator and semigroup theory.
The class of sectorial operators is studied in detail, its functional calculus is intro-
duced, leading to analytic semigroups and complex powers. The classes BIP(X)
and H∞(X) are defined and elementary properties are shown. Via trace theory for
abstract Cauchy problems the connections to real interpolation are derived, and
the relation of complex interpolation to powers of operators is shown. The chapter
concludes with a first study of maximal Lp-regularity.

3.1 Sectorial Operators

The concept of sectorial operators introduced in Definition 3.1.1 below is basic
in this book. Most closed linear operators appearing in applications have this
property, at least after translation and rotation. We will meet many examples of
such operators in later sections.

1.1 Sectorial Operators
We begin with the definition of sectorial operators.

Definition 3.1.1. Let X be a complex Banach space, and A a closed linear operator
in X. A is called sectorial if the following two conditions are satisfied.

(S1) D(A) = X, R(A) = X, (−∞, 0) ⊂ ρ(A);

(S2) |t(t+A)−1| ≤ M for all t > 0, and some M < ∞.

The class of sectorial operators in X will be denoted by S(X). If (−∞, 0) ⊂ ρ(A)
and only (S2) holds then A is said to be pseudo-sectorial. The class of pseudo-
sectorial operators will be denoted by PS(X).
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Suppose that A is a linear operator in X which is pseudo-sectorial. Then
the operator family {A(t + A)−1}t>0 ∈ B(X) is uniformly bounded as well. For
x ∈ D(A) we have

t(t+A)−1x− x = −A(t+A)−1x = −(t+A)−1Ax →t→∞ 0,

hence limt→∞ t(t+ A)−1x = x for all x ∈ D(A), by (S2). In particular, if D(A) is
dense in X then

lim
t→∞ t(t+A)−1x = x for all x ∈ X.

Similarly, for y = Ax ∈ R(A) we have

A(t+A)−1Ax−Ax = −t(t+A)−1Ax = −tA(t+A)−1x →t→0 0,

hence limt→0 A(t + A)−1y = y for all y ∈ R(A), employing once more (S2). In
particular, if R(A) is dense in X then

lim
t→0

A(t+A)−1x = x for all x ∈ X.

On the other hand, if x ∈ N(A) then A(t + A)−1x = 0, and this shows that we
always have N(A) ∩ R(A) = {0}.

If D(A) is dense in X, then its dual A∗ is well-defined. The relation

N(A∗) = R(A)⊥

then shows that A ∈ S(X) iff A ∈ PS(X) and N(A∗) = 0.
Next, letX be reflexive and A be pseudo-sectorial. Then any sequence (λn) ⊂

ρ(A), λn → ∞ contains a subsequence, which may depend on x, such that λn(λn+
A)−1x ⇀ y ∈ X. This implies λn(λn + A)−1(λ + A)−1x ⇀ (λ + A)−1y, for any
λ > 0. But by means of the resolvent equation

λn(λn +A)−1(λ+A)−1x =
λn

λn − λ
[(λ+A)−1 − (λn +A)−1]x ⇀ (λ+A)−1x,

hence (λ+A)−1x = (λ+A)−1y, by uniqueness of weak limits. This implies x = y,
hence λ(λ+ A)−1x ⇀ x as λ → ∞. As a consequence of this we see that D(A) is
weakly dense in X, hence also strongly dense, and then by what has been proved
before λ(λ+A)−1x → x as λ → ∞, for each x ∈ X.

At λ = 0 we proceed similarly. Fix x ∈ X and choose a sequence (λn) ⊂ ρ(A),
λn → 0 such that A(λn + A)−1x ⇀ y ∈ X. Then λA(λn + A)−1(λ + A)−1x ⇀
λ(λ+A)−1y ∈ X, hence the resolvent equation yields

y − λ(λ+A)−1y = A(λ+A)−1x = x− λ(λ+A)−1x,

for any λ > 0. This identity shows x − y ∈ N(A), in particular A(λ + A)−1x =
A(λ+A)−1y, hence A(λn +A)−1y ⇀ y as well. Writing

x = (x− y) +A(λn +A)−1x+ λn(λn +A)−1y
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and observing λn(λn + A)−1y ⇀ 0 the latter implies that N(A) + R(A) is weakly
dense in X, hence also strongly dense. But from what we already proved above
this implies A(λ + A)−1x → Px ∈ X as λ → 0, for each x ∈ X. Here P ∈ B(X),
by the Banach-Steinhaus theorem, and R(P ) ⊂ R(A), as well as R(I−P ) ⊂ N(A).
Finally, A(λ + A)−1x = A(λ + A)−1Px for all x ∈ X implies P 2 = P , i.e., P is
the projection onto R(A) along N(A). We have proved in particular the direct sum
decomposition X = N(A)⊕ R(A). Thus in a reflexive space, R(A) is dense in X if
and only if N(A) = {0}.

Let us summarize what we have shown above in

Theorem 3.1.2. Let X be a Banach space and A a pseudo-sectorial operator in X.
Then

(i) N(A) ∩ R(A) = {0}, and

lim
t→∞ t(t+A)−1x = x for each x ∈ D(A),

lim
t→0+

A(t+A)−1x = x for each x ∈ R(A). (3.1)

(ii) If D(A) is dense in X, then A ∈ S(X) if and only if N(A∗) = 0.

(iii) If X is reflexive then limt→∞ t(t + A)−1x = x and limt→0+ A(t + A)−1x =
Px for each x ∈ X, where P is the projection onto R(A) along N(A), and
X = N(A)⊕R(A). Thus, if X is reflexive then any pseudo-sectorial operator
A with N(A) = {0} is sectorial.

(iv) If X is a general Banach space and A is sectorial, then D(Ak) ∩ R(Ak) is
dense in X, for each k ∈ N.

Concerning the last assertion of Theorem 3.1.2, note that (1 +
n−1A)−kAk(n−1 + A)−k converges strongly to I as n → ∞ and has range in
D(Ak) ∩ R(Ak).

Let Σθ ⊂ C denote the open sector with vertex 0, opening angle 2θ, which is
symmetric w.r.t. the positive half-axis R+, i.e.,

Σθ = {λ ∈ C \ {0} : | arg λ| < θ}.

If A ∈ PS(X) then ρ(−A) ⊃ Σθ, for some θ > 0, and

sup{|λ(λ+A)−1| : | arg λ| < θ} < ∞.

In fact, with (d/dt)n(t + A)−1 = (−1)nn!(t + A)−(n+1), for t > 0 the Taylor
expansion

(λ+A)−1 =

∞∑
n=0

(−1)n(λ− t)n(t+A)−(n+1)
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and (S2) yield the estimate

|(λ+A)−1| ≤
∞∑

n=0

|λ− t|n|(t+A)−(n+1)| ≤ (M/t)

∞∑
n=0

(M |λ− t|/t)n.

This bound is finite provided |λ/t− 1| < 1/M , which by minimization over t > 0
yields | sinφ| < 1/M , where λ = reiφ.

Therefore it makes sense to define the spectral angle φA of A ∈ PS(X) by

φA = inf{φ : ρ(−A) ⊃ Σπ−φ, sup
λ∈Σπ−φ

|λ(λ+A)−1| < ∞}. (3.2)

Evidently, we have φA ∈ [0, π) and

φA ≥ sup{| arg λ| : λ ∈ σ(A)}. (3.3)

If A ∈ PS(X) is bounded and 0 ∈ ρ(A) then there is equality in (3.3). In fact,
by holomorphy of (λ − A)−1 on ρ(A), λ(λ − A)−1 is bounded in B(X) on each
compact subset of ρ(A), and for all |λ| > |A| we have

|λ(λ−A)−1| ≤ |λ|
|λ| − |A| ,

which is uniformly bounded, say for |λ| ≥ 2|A|. But this implies uniform bound-
edness of λ(λ+A)−1 on each sector Σπ−φ with φ > sup{| arg(λ)| : λ ∈ σ(A)}.

For φ ∈ (φA, π) we frequently employ the notations

Mπ−φ(A) = sup
λ∈Σπ−φ

|λ(λ+A)−1|, Cπ−φ(A) = sup
λ∈Σπ−φ

|A(λ+A)−1|. (3.4)

It is not difficult to see that Cπ−φ(A) ≥ 1 as well as Mπ−φ(A) ≥ 1, for all
φ ∈ (φA, π]. Observe the limiting case φ = π:

M0(A) = sup
r>0

|r(r +A)−1|, C0(A) = sup
r>0

|A(r +A)−1|. (3.5)

1.2 Permanence Properties
The class of sectorial operators has a number of nice permanence properties which
are summarized in the following

Proposition 3.1.3. Let X be a complex Banach space. The class S(X) of sectorial
operators has the following permanence properties.

(i) A ∈ S(X) iff N(A) = {0} and A−1 ∈ S(X); then φA−1 = φA;

(ii) A ∈ S(X) implies rA ∈ S(X) and φrA = φA for all r > 0;

(iii) A ∈ S(X) implies e±iψA ∈ S(X) for all ψ ∈ [0, π−φA), and φe±iψA = φA+ψ;

(iv) A ∈ S(X) implies (μ+A) ∈ S(X) for all μ ∈ Σπ−φA
, and

φμ+A ≤ max{φA, | argμ|};
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(v) if D(A) is dense in X and D(A∗) dense in X∗, then A ∈ S(X) iff A∗ ∈ S(X∗),
and φA = φA∗ ;

(vi) if Y denotes another Banach space and T ∈ B(X,Y ) is bijective, then A ∈
S(X) iff A1 = TAT−1 ∈ S(Y ), and φA = φA1

.

Proof. Assertion (i) follows from the identity

λ(λ+A−1)−1 = λA(1 + λA)−1 = A(λ−1 +A)−1.

Similarly, (ii) is a consequence of

λ(λ+ rA)−1 = (λ/r)((λ/r) +A)−1, r > 0,

and (iii) follows from |(λ+eiφA)−1| = |(λe−iφ+A)−1|. If μ ∈ Σπ−φA
, | arg(μ)| = ψ,

and λ ∈ Σπ−φ, then for (π − φ) + ψ < π we have

| arg(λ+ μ)| ≤ max{| arg(λ)|, | arg(μ)|},

as well as

|λ+ μ| ≥ c(|λ|+ |μ|), where c = cos((π − φ+ ψ)/2).

Therefore, φ > max{φA, ψ} implies

|(λ+ μ+A)−1| ≤ Mπ−φ(A)

|λ+ μ| ≤ Mπ−φ(A)

c(|λ|+ |μ|) , for all λ ∈ Σπ−φ,

and this yields (iv). To prove (v) it is enough to observe that an operator T ∈ B(X)
is invertible if and only if T ∗ ∈ B(X∗) is invertible, and |T | = |T ∗|. Finally, to
prove (vi) we verify that the relation

(λ+A1)
−1 = T (λ+A)−1T−1

is satisfied. �

Next we introduce approximations of a sectorial operator which are again
sectorial, but in addition bounded and invertible. This will be achieved as follows.
For a given pseudo-sectorial operator A and ε > 0 set

Aε = (ε+A)(1 + εA)−1. (3.6)

Then Aε is bounded, invertible with inverse

A−1
ε = (1 + εA)(ε+A)−1 = ((1/ε) +A)(1 + (1/ε)A)−1 = A1/ε,

and, more generally,

(t+Aε)
−1 = (t+ (ε+A)(1 + εA)−1)−1

= (1 + εA)(t+ ε+ (1 + εt)A)−1

=
1

1 + εt
(1 + εA)(

t+ ε

1 + εt
+A)−1, t, ε > 0.
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This implies ρ(Aε) ⊃ (−∞, 0], and as ε → 0, (t+Aε)
−1 → (t+A)−1 in B(X) for

each t > 0, Aεx → Ax for each x ∈ D(A), A−1
ε x → A−1x for each x ∈ R(A). Since

|t(t+Aε)
−1| ≤ tM0(A)

t+ ε
+

εtC0(A)

1 + εt
≤ M0(A) + C0(A), t, ε > 0,

we have Aε ∈ S(X) for each ε > 0, and there is a constant M for (S2) which is
independent of ε. Replacing t > 0 by λ ∈ Σπ−φ and observing that the functions
ϕε(λ) = (ε+λ)/(1+ελ) are leaving all sectors Σφ invariant, we obtain the following
result.

Proposition 3.1.4. Suppose A ∈ PS(X), and let Aε be defined according to (3.6).
Then Aε is bounded, sectorial, and invertible, for each ε > 0. The spectral angle
of Aε satisfies φAε

≤ φA, and the bounds Cπ−φ(Aε) and Mπ−φ(Aε) are uniformly
bounded w.r.t. ε > 0, for each fixed φ > φA. Moreover,

lim
ε→0

(λ+Aε)
−1 = (λ+A)−1 in B(X) for each λ ∈ Σπ−φA

, (3.7)

and in case A is sectorial,

lim
ε→0

Aεx = Ax for each x ∈ D(A), (3.8)

lim
ε→0

A−1
ε x = A−1x for eachx ∈ R(A).

In later sections we shall frequently make use of the approximations Aε.

1.3 Perturbation Theory
In this section we consider the behaviour of the class S(X) w.r.t. perturbations.
For this purpose, suppose A ∈ S(X), and let B be a closed linear operator in X
which is subordinate to A in the sense that D(A) ⊂ D(B) and

|Bx| ≤ b|Ax|, for all x ∈ D(A), (3.9)

with some constant b ≥ 0. If b < 1 then A+B defined by

(A+B)x = Ax+Bx, x ∈ D(A+B) = D(A), (3.10)

is also closed, densely defined, and N(A+B) = {0}. In fact, if (A+B)x = 0 then
|Ax| = |Bx| ≤ b|Ax|, hence Ax = 0, which by injectivity of A in turn implies
x = 0. The operator K := BA−1 with domain D(K) = R(A) is densely defined
and bounded by b < 1, hence by density of R(A) in X admits a unique bounded
extension to all of X which we again denote by K. Then A+B can be factored as
A+B = (I +K)A, and I +K is invertible, by b < 1. Therefore, if x∗ ⊥ R(A+B)
then (I+K∗)x∗ ⊥ R(A), hence (I+K∗)x∗ = 0 by density of R(A) in X, and then
x∗ = 0, by invertibility of I +K∗. This shows that R(A + B) is also dense in X.
Moreover, for r > 0 we have

r +A+B = (1 +B(r +A)−1)(r +A),
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hence r +A+B is invertible, provided |B(r +A)−1| < 1, and then

(r +A+B)−1 = (r +A)−1(1 +B(r +A)−1)−1. (3.11)

This implies that A + B is also sectorial, whenever bC0(A) < 1, where C0(A) is
defined by (3.5), and then

|r(r +A+B)−1| ≤ M0(A)

1− bC0(A)
, for all r > 0, (3.12)

with M0(A) also given by (3.5). Replacing r > 0 by λ ∈ Σπ−φ in the above
argument we also obtain an estimate for the spectral angle of A+B, namely

φA+B ≤ inf{φ > φA : bCπ−φ(A) < 1}. (3.13)

Thus the class of operators B satisfying (3.9) with bC0(A) < 1 forms an admissible
class of perturbations for A ∈ S(X).

Theorem 3.1.5. Suppose A ∈ S(X), B linear with D(A) ⊂ D(B) such that (3.9)
holds, and let A+B be defined by (3.10).

Then bC0(A) < 1 implies A + B ∈ S(X), and the spectral angle φA+B of
A+B satisfies (3.13).

Let us next consider perturbations B which instead of (3.9) are subject to

|Bx| ≤ b|Ax|+ a|x|, for all x ∈ D(A), (3.14)

where a, b ≥ 0. Then even for small b one cannot expect that A ∈ S(X) implies
A+B ∈ S(X), in general. For example Bx = −ax satisfies (3.14) with b = 0, but
A + B �∈ S(X) unless σ(A) ∩ [0, a) = ∅. However, S(X) is invariant w.r.t. right
shifts, and therefore it is reasonable to ask whether μ+A+B is sectorial, for some
μ ≥ 0. Now (3.14) implies

|B(μ+A)−1| ≤ a|(μ+A)−1|+ b|A(μ+A)−1|

≤ aM0(A)

μ
+ bC0(A), (3.15)

hence μ+A+B is invertible provided aM0(A)/μ+ bC0(A) < 1, i.e., if bC0(A) < 1
and μ > μ0 := aM0(A)/(1− bC0(A)), and then

|(μ+A+B)−1| ≤ M0(A)

1− bC0(A)

1

μ− μ0
, for all μ > μ0. (3.16)

This shows that μ+A+B ∈ S(X) if bC0(A) < 1 and μ ≥ μ0.
Similarly, applying Theorem 3.1.5 to the pair (μ+A,B) instead of (A,B) we

obtain the following result.
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Corollary 3.1.6. Suppose A ∈ PS(X), B linear with D(A) ⊂ D(B) such that (3.14)
holds, and let A+B be defined by (3.10).

Then there are numbers b0 > 0 and μ0 ≥ 0 such that μ + A + B ∈ S(X),
whenever b < b0 and μ ≥ μ0.

It should be mentioned that the condition of lower order type

|Bx| ≤ a|x|+ b|Aαx|, for all x ∈ D(A), (3.17)

where a, b ≥ 0 and α ∈ [0, 1), implies (3.14) via the moment inequality, see (3.55),

|Aαx| ≤ k|Ax|α|x|1−α, x ∈ D(A), (3.18)

for any b > 0. For the definition of Aα as well as for (3.18) we refer to the next
subsections. In fact, (3.17) and (3.18) yield

|Bx| ≤ a|x|+ b|Aαx| ≤ a|x|+ bk|Ax|α|x|1−α,

hence by means of Young’s inequality

|Bx| ≤ (a+ bk(1− α)ε−α/(1−α))|x|+ αbkε|Ax|, x ∈ D(A).

Since ε can be chosen arbitrarily small, Corollary 3.1.6 applies in particular to
perturbations satisfying (3.17) without restrictions on a and b, provided α ∈ [0, 1).

Next we consider A-compact perturbations, i.e., operators B in X such that
B : XA → X is compact. For such perturbations we have

Lemma 3.1.7. Let A ∈ PS(X), B a linear operator in X such that B : XA → X
is compact. Furthermore, assume either of the following two conditions

(i) B is closable in X,

(ii) X is reflexive.

Then for each b > 0 there is a > 0 such that (3.14) is valid.

Proof. We may assume that A is invertible; replace A by A+1 otherwise. Suppose
the assertion does not hold. Then there is a constant b0 > 0 and a sequence
(xn) ⊂ D(A) with |Axn| = 1 such that

|Bxn| ≥ b0|Axn|+ n|xn| = b0 + n|xn|, n ∈ N.

As B is A-compact, there is a convergent subsequence Bxnk
→ y in X, hence

xnk
→ 0 in X, and |y| ≥ b0 > 0.
If (i) holds, then y = 0 as B is closable in X, which yields a contradiction to

y �= 0.
If (ii) holds, then there is a weakly-convergent subsequence Axnk

, its limit is
0 as xnk

→ 0 in X. Therefore (xnk
) converges to 0 weakly in XA, hence Bxnk

→
y = 0 strongly in X by compactness, and so we again obtain a contradiction to
y �= 0. �
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As another consequence of Theorem 3.1.5, let us consider multiplicative per-
turbations. So let A ∈ S(X) and suppose C ∈ B(X); then the operator CA with
domain D(CA) = D(A) is well- and densely defined, and it is closed if in addition
C is invertible. Moreover, the latter property of C shows also that R(CA) is dense
in X. It is more difficult to obtain ρ(CA) ⊃ (−∞, 0) and (S2) for CA. A very
simple case arises if we require C to be such that |C − I| < 1/C0(A). In fact,
then we may write CA = A + (C − I)A, and B = (C − I)A is subject to the
assumption of Theorem 3.1.5. Note that this condition on C necessarily implies
that C is bounded but also invertible since C0(A) ≥ 1. Observing that S(X) is
invariant under dilations, as a second corollary to Theorem 3.1.5 we obtain

Corollary 3.1.8. Suppose A ∈ S(X) and that C ∈ B(X) satisfies the condition

|C − rC | < rC/C0(A), for some rC > 0. (3.19)

Then CA and AC with natural domains D(CA) = D(A) and D(AC) = C−1D(A)
belong to S(X).

The assertion for AC follows by the similarity transform AC = C−1(CA)C
of CA.

1.4 The Dunford Functional Calculus
In this subsection we want to develop the functional calculus for pseudo-sectorial
operators. For this purpose we first introduce the following function algebras. Let
φ ∈ (0, π] and define the algebra of holomorphic functions on Σφ

H(Σφ) = {f : Σφ → C is holomorphic}, (3.20)

and
H∞(Σφ) = {f : Σφ → C : f is holomorphic and bounded}. (3.21)

H∞(Σφ) with norm

|f |H∞(Σφ) = sup{|f(λ)| : | arg λ| < φ} (3.22)

is a Banach algebra. First we assume B ∈ S(X) to be bounded and invertible, and
fix φ > φB . Then the well-known Dunford calculus for bounded linear operators
applies. In fact, in this situation the spectrum σ(B) is a compact subset of Σφ,
hence choosing a simple closed path ΓB in Σφ surrounding σ(B) counterclockwise
we define

f(B) =
1

2πi

∫
ΓB

f(λ)(λ−B)−1 dλ, f ∈ H(Σφ). (3.23)

Since ΓB is compact there are no convergence problems with the integral in this
formula, and it defines an algebra homomorphism from H(Σφ) to B(X).

(3.23) can be used as a starting point to define the functional calculus for
arbitrary pseudo-sectorial operators A in X. To achieve this, a main idea is to
take B = Aε, the approximations of A introduced in (3.6), and to pass to the limit
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ε → 0+. But then we first have to make the integration path ΓB independent of
B. This can be done in several ways at the expense that we have to restrict the
function algebra H(Σφ).

(i) A natural approach is to deform the integration path ΓB into Γ defined by
Γ = (∞, 0]eiψ ∪ [0,∞)e−iψ, where φA < ψ < φ. We will do this in two steps. First
we deform ΓB into the path Γr,R defined by

Γr,R = e−iψ[r,R] ∪Rei[−ψ,ψ] ∪ eiψ[R, r] ∪ rei[ψ,−ψ]. (3.24)

Here the numbers 0 < r < R should be chosen such that R > |B| and r < |B−1|−1.
By means of Cauchy’s theorem we then obtain

f(B) =
1

2πi

∫
Γr,R

f(λ)(λ−B)−1 dλ, f ∈ H(Σφ), (3.25)

since Γr,R is also a simple compact Lipschitz curve surrounding σ(B) counter-
clockwise. But we still have the dependence of the integration path in (3.25) on
the norms of B and B−1.

Next we let r → 0+ and R → ∞. This cannot be done for arbitrary f ∈
H(Σφ), but by means of Lebesgue’s convergence theorem it works for the subspace
H0(Σφ) defined according to

H0(Σφ) =
⋃

α,β<0

Hα,β(Σφ), where (3.26)

Hα,β(Σφ) = {f ∈ H(Σφ) : |f |φα,β < ∞}, and (3.27)

|f |φα,β = sup
|λ|≤1

|λαf(λ)|+ sup
|λ|≥1

|λ−βf(λ)|. (3.28)

With Γ = (∞, 0]eiψ∪[0,∞)e−iψ this yields (3.23) with ΓB replaced by the contour
Γ which is independent of r,R.

Now let A ∈ PS(X) be arbitrary. Employing the approximations Aε intro-
duced before, setting B = Aε and using Proposition 3.1.4, we may pass to the
limit ε → 0+, to obtain the following result.

Proposition 3.1.9. Let A ∈ PS(X), fix any φ ∈ (φA, π], and let H0(Σφ) be defined
as above. Then, with Γ = (∞, 0]eiψ ∪ [0,∞)e−iψ, the Dunford integral

f(A) =
1

2πi

∫
Γ

f(λ)(λ−A)−1 dλ, f ∈ H0(Σφ), (3.29)

defines via ΦA(f) = f(A) a functional calculus ΦA : H0(Σφ) → B(X) which is a
bounded algebra homomorphism. Moreover, we have

lim
ε→0+

f(Aε) = f(A) in B(X), (3.30)

and {f(Aε)}ε>0 ⊂ B(X) is uniformly bounded, for each f ∈ H0(Σφ).
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Γ

φ

Σφ

σ(A)

Figure 3.1: Integration path for the Dunford integral.

Observe that boundedness of ΦA is understood in the sense of inductive
limits. This means that we have estimates of the form

|f(A)| ≤ C|f |φα,β , for f ∈ Hα,β(Σφ),

where C depends only on A, φ, α, and β. This follows directly from (3.29). In virtue
of Proposition 3.1.4, a similar estimate holds also for Aε, uniformly in ε > 0.

Remark 3.1.10. Consider the map ϕ(λ) = 1/λ which maps Σφ onto itself. Then
we have the identity

(f ◦ ϕ)(A) = f(A−1), for each f ∈ H0(Σφ), (3.31)

in case N(A) = 0. In fact, the change of variable λ �→ 1/λ yields

(f ◦ ϕ)(A) = 1

2πi

∫
Γ

f(1/λ)(λ−A)−1 dλ

= − 1

2πi

∫
Γ

f(λ)(1/λ−A)−1 dλ/λ2

= − 1

2πi

∫
Γ

f(λ)(A−1 − λ)−1A−1 dλ/λ

=
1

2πi

∫
Γ

f(λ)[−1/λ+ (λ−A−1)−1] dλ = f(A−1),

where the last equality follows from Cauchy’s theorem.

There is a simple but useful extensions of the Dunford calculus in Proposition
3.1.9. Namely, in case f ∈ H(Σφ) is holomorphic in a neighbourhood of zero and
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such that λαf(λ) ∈ H∞(Σφ) for some α > 0, then f belongs to H0(Σφ) if and only
if f(0) = 0. But in case f(0) �= 0 we may write f(λ) = f0(λ)+ f(0)/(1+λ), where
f0 ∈ H∞

0 (Σφ), hence the definition f(A) := f0(A) + f(0)(1 + A)−1 is reasonable.
We want to derive a different representation formula for f(A) in such situations.
For this purpose we modify the integration path ΓB in the representation (3.23)
of f(B) into

Γδ = (∞, δ]eiψ ∪ δei[ψ,2π−ψ] ∪ [δ,∞)e−iψ,

and employing Cauchy’s theorem we obtain

f(B) =
1

2πi

∫
Γδ

f(λ)(λ−B)−1 dλ

=
1

2πi

∫
Γδ

f0(λ)(λ−B)−1 dλ+
1

2πi

∫
Γδ

f(0)(1 + λ)−1(λ−B)−1 dλ

=
1

2πi

∫
Γ

f0(λ)(λ−B)−1 dλ+ f(0)(1 +B)−1

= f0(B) + f(0)(1 +B)−1.

Setting again B = Aε and passing to the limit ε → 0+, we get

f(A) =
1

2πi

∫
Γδ

f(λ)(λ−A)−1 dλ, (3.32)

where δ is small enough but arbitrary otherwise. Define the corresponding space
by

Ha(Σφ) = {f ∈
⋃
β<0

H0,β(Σφ) : f is holomorphic in a neighbourhood of 0}.

Then we have the following result.

Corollary 3.1.11. Let A ∈ PS(X) with spectral angle φA, fix any φ > φA, and let
Ha(Σφ) be defined as above.

Then the Dunford map Φ : Ha(Σφ) → B(X) defined via Φ(f) = f(A), where
f(A) is given by the Dunford integral (3.32), is well-defined and an algebra homo-
morphism. It coincides with the Dunford map of Proposition 3.1.9, and we have
the relation

f(A) = f0(A) + f(0)(1 +A)−1,

where f0(λ) = f(λ)− f(0)/(1 + λ) belongs to H0(Σφ). In particular, for the func-
tions gμ(λ) = 1/(λ−μ) with μ �∈ Σφ we have gμ(A) = (A−μ)−1. The convergence
assertion (3.30) of Proposition 3.1.9 is also valid for Ha(Σφ).

Remark 3.1.12. (a) A similar result can be obtained for functions f ∈ H(Σφ)
which are holomorphic at infinity and decay polynomially at zero. With f∞(λ) =
f(λ)− f(∞)λ/(1 + λ) we then have the relation

f(A) = f∞(A) + f(∞)A(I +A)−1,
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and there is an integral representation corresponding to (3.32) which we do not
explicitly state here.

(b) If f ∈ H(Σφ) is holomorphic at infinity and at zero we have correspond-
ingly

f(A) = f0,∞(A) + f(0)(I +A)−1 + f(∞)A(I +A)−1.

With δ > 0 small and ρ > δ large one obtains alternatively

f(A) =
1

2πi

∫
Γρ
δ

f(λ)(λ−A)−1 dλ,

where
Γρ
δ = [ρ, δ]eiψ ∪ δei[ψ,2π−ψ] ∪ [δ, ρ]e−iψ ∪ ρei[2π−ψ,ψ].

The proof of these facts is left to the reader.
(c) The functions ϕε(λ) = (ε+ λ)/(1+ ελ) map Σφ into itself, and ϕ(0) = ε,

ϕ(∞) = 1/ε. This means that fε = f ◦ ϕε belongs to H(Σφ) and is holomorphic
at infinity and at zero, for any f ∈ H(Σφ). Therefore, (b) of this Remark applies
and we obtain

(f ◦ ϕε)(A) = f(Aε).

In fact, the identity

(λ−Aε)
−1 = (1 + εA)(λ− ε− (1− λε)A)−1

= (1 + εA)(1− ελ)−1(
λ− ε

1− ελ
−A)−1

=
1− ε2

(1− ελ)2
(
λ− ε

1− ελ
−A)−1 − ε

1− ελ

and the variable transformation z = (λ− ε)/(1− ελ), i.e., λ = ϕε(z) yield

f(Aε) =
1

2πi

∫
ΓR
r

f(λ)(λ−Aε)
−1 dλ

=
1

2πi

∫
ΓR
r

f(λ)(
λ− ε

1− ελ
−A)−1 1− ε2

(1− ελ)2
dλ

=
1

2πi

∫
ϕε(ΓR

r )

f(ϕε(z)))(z −A)−1 dz = (f ◦ ϕε)(A),

employing once more Cauchy’s theorem.

3.2 The Derivation Operator

This section is devoted to the most elementary operator in analysis, the derivation
operator d/dt. We will consider this operator on intervals J = R, J = R+, and on
J = (0, a), in various spaces.
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2.1. The Whole Line Case
Let J = R. In the sequel we will use the notation Yp(R) = Lp(R;Y ), where Y
denotes a Banach space and p ∈ [1,∞], Yb(R) = Cb(R;Y ), Yub(R) = Cub(R;Y ),
and Y0(R) = C0(R;Y ). Define Bp in Yp(R) by means of

(Bpu)(t) = u̇(t), t ∈ R, u ∈ D(Bp) = H1
p (R;Y ), (3.33)

for p ∈ [1,∞] and D(Bp) = C1
p(R;Y ) for p ∈ {0, b, ub}. It is easy to see that Bp

is closed, and Bp is densely defined except for p ∈ {∞, b}. Since u̇(t) = 0 for all
t ∈ R implies that u is constant, we have N(Bp) = {0} for all p ∈ [1,∞) ∪ {0},
while N(Bb) = N(Bub) = N(B∞) ≡ Y .

Next consider the range of Bp for p ∈ (1,∞) ∪ {0}. If f ∈ C(R;Y ) has
compact support and mean value Mf =

∫∞
−∞ f(s) ds = 0, then the solution u of

u̇ = f on R belongs to C1(R;Y ) and has compact support as well. Since the set of
such functions f is dense in Yp(R) for 1 < p < ∞ and for p = 0, by the following
lemma, we see that R(Bp) is dense in Yp(R), 1 < p < ∞ and p = 0.

Lemma 3.2.1. Let Y be a Banach space, ϕ ∈ L1(R) ∩ C0(R) such that ϕ ≥ 0,∫
R
ϕ(t) dt = 1, and define ϕε(t) = εϕ(εt), t ∈ R, ε > 0.

Then for f ∈ Y1(R)+Y∞(R) the approximations fε of f defined by fε = ϕε∗f
have the following properties.

(i) fε →ε→∞ f in Yp(R), for each f ∈ Yp(R), p ∈ [1,∞) ∪ {0, ub};
(ii) fε →ε→0+ 0 in Yp(R), for each f ∈ Yp(R), p ∈ (1,∞) ∪ {0}.
Proof. (i) Let T (t) denote the translation group defined by

[T (t)f ](s) = f(t+ s), t, s ∈ R.

Then for p ∈ [1,∞) ∪ {0, ub} we have T (t)f → f in Yp(R) as t → 0, for each
f ∈ Yp(R). Therefore with

∫
R
ϕ(t) dt = 1 we obtain

|fε − f |p = |
∫
R

ϕε(s)([T (−s)f ]− f) ds|p

≤
∫
|s|≤R

ϕε(s)|T (−s)f − f |p ds+
∫
|s|≥R

ϕε(s)(|T (−s)f |p + |f |p) ds

≤ sup
|s|≤R

|T (−s)f − f |p + 2|f |p
∫
|s|≥Rε

|ϕ(s)| ds.

Now, given an arbitrary number η > 0, choose first R > 0 such that |T (s)f −
f |p ≤ η/2 for all |s| ≤ R, and then for this fixed R a number εη > 0 such that
2|f |p

∫
|s|≥Rεη

|ϕ(s)| ds < η/2|f |p. Then |fε − f |p ≤ η for all ε ≥ εη, which implies

assertion (i).

(ii) To prove the second assertion, note that by Young’s inequality |fε|p ≤ |f |p,
for each f ∈ Yp(R). On the other hand, |fε|∞ ≤ ε|ϕ|∞|f |1. This implies |fε|∞ → 0
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as ε → 0+, for each f ∈ Y1(R), hence also

|fε|p ≤ |fε|1−1/p
∞ |fε|1/p1 ≤ [|ϕ|∞ε]1−1/p|f |1 → 0+

as ε → 0+, for each f ∈ Y1(R) ∩ Y0(R). By (i) and a cut off procedure such
functions are dense in Yp(R), p ∈ (1,∞) ∪ {0}, and so assertion (ii) follows. �

For p = 1, Mf = 0 is a necessary condition for f ∈ R(B1), hence R(B1) ⊂
N(M) and because M is bounded, N(M) �= Y1(R) is closed and so R(B1) is not
dense in Y1(R).

The kernel N(Bp) consists of the constant functions for p ∈ {b, ub,∞}, hence
dimN(Bp) = 1, and Bp is pseudo-sectorial as we shall see below, so R(Bp) cannot
be dense for these p, by Theorem 3.1.2.

To compute the spectrum of Bp, we consider the equation

λu(t) + u̇(t) = f(t), t ∈ R. (3.34)

For Reλ > 0 a solution is given by

uλ(t) =

∫ ∞

0

e−λsf(t− s) ds =

∫ t

−∞
e−λ(t−s)f(s) ds, t ∈ R,

and we have the estimate

|uλ|p ≤ |f |p/Reλ, Reλ > 0.

On the other hand, for Reλ < 0 a solution is

uλ(t) = −
∫ 0

−∞
e−λsf(t− s) ds = −

∫ ∞

t

e−λ(t−s)f(s) ds, t ∈ R,

and
|uλ|p ≤ |f |p/|Reλ|, Reλ < 0.

Since the general solution of (3.34) is given by u(t) = uλ(t) + ce−λt, and for
Reλ �= 0 the function e−λt is not in Yp(R), we have N(λ+Bp) = 0 for all Reλ �= 0.
Summarizing we have

Proposition 3.2.2. Let J = R. Then the operators Bp and −Bp defined above
are pseudo-sectorial in Yp(R) with spectral angles φBp

= φ−Bp
= π/2, for all

p ∈ [1,∞] ∪ {0, b, ub}. The domains of Bp are dense for all p ∈ [1,∞) ∪ {0, ub},
their kernels are trivial for all p ∈ [1,∞) ∪ {0}, and R(Bp) is dense for all p ∈
(1,∞) ∪ {0}. Consequently, Bp and −Bp are sectorial iff p ∈ (1,∞) ∪ {0}.

2.2 The Half-Line Case
Next we consider the operator Bp on J = R+. This time we let Yp(R+) =
Lp(R+;Y ) for p ∈ [1,∞], Yp(R+) = 0Cp(R̄+;Y ) for p ∈ {0, b, ub}, where the
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subscript 0 indicates zero trace at t = 0. Define

(Bpu)(t) = u̇(t), t ∈ J, u ∈ D(Bp) = 0H
1
p(R+;Y ), (3.35)

for p ∈ [1,∞] and D(Bp) = 0Cp(R+;Y ) ∩ C1
p(R+;Y ) for p ∈ {0, b, ub}. As in the

case of J = R, it is easy to see that Bp is closed, and that Bp is densely defined
except for p ∈ {∞, b}. Since u̇(t) = 0 for all t ∈ R+ implies that u is constant
hence u(t) ≡ u(0) = 0, we have N(Bp) = 0 for all p ∈ [1,∞] ∪ {0, b, ub}.

To compute the spectrum of Bp for J = R+, consider the problem

λu(t) + u̇(t) = f(t), t > 0, u(0) = 0.

For all λ ∈ C its solution is given by

uλ(t) =

∫ t

0

e−λsf(t− s) ds, t ∈ R+,

and we have the estimate

|uλ|p ≤ |f |p/Reλ, Reλ > 0.

Concerning the range of Bp, note that necessarily (B−1
p f)(t) =

∫ t

0
f(s) ds whenever

f ∈ R(Bp). Since the set of continuous functions f with compact support in (0,∞)
and mean value Mf =

∫∞
0

f(s) ds = 0 is dense in Yp(R+) for each p ∈ (1,∞)∪{0},
we see that the range of Bp for such p is dense. On the other hand, as in the case
of J = R we see that R(B1) is not dense, and this is also the case for p ∈ {∞, b}. In
fact, consider a Hahn-Banach extension of the limit functional 〈l|f〉 := limt→∞ f(t)
from the closed subspace Cl(R̄+;Y ) of Yub(R+) to Yb(R+). Then for f ∈ R(Bp),
p ∈ {b, ub}, f ∈ Cl(R̄+;Y ) we must necessarily have 〈l|f〉 = 0, which means
R(Bp) ⊂ N(l). From these considerations we obtain

Proposition 3.2.3. Let J = R+. Then the operator Bp defined by (3.35) is injective
and pseudo-sectorial in Yp(R+) with spectral angle φBp

= π/2, for all p ∈ [1,∞]∪
{0, b, ub}. The domain of Bp is dense for all p ∈ [1,∞) ∪ {0, ub}, and R(Bp) is
dense for all p ∈ (1,∞) ∪ {0}. Consequently, Bp is sectorial iff p ∈ (1,∞) ∪ {0}.

2.3 Finite Interval
Here we consider the operator Bp on the finite interval J = (0, a). This time we
let Yp(J) = Lp(J ;Y ) for p ∈ [1,∞], Yp(J) = 0Cp(J̄ ;Y ) for p ∈ {0, b, ub}, where as
before the subscript 0 indicates trace zero at t = 0. Define

(Bpu)(t) = u̇(t), t ∈ J, u ∈ D(Bp) = 0H
1
p(J ;Y ), (3.36)

for p ∈ [1,∞] and D(Bp) = 0Cp(J ;Y )∩C1
p(J ;Y ) for p ∈ {0, b, ub}. As in the case

of J = R+, it is easy to see that Bp is closed, injective, and that Bp is densely
defined except for p = ∞.
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This time the spectrum of Bp is empty for each p, in fact we have the relation

(λ+Bp)
−1f(t) = uλ(t) =

∫ t

0

e−λsf(t− s) ds, t ∈ J, λ ∈ C,

|uλ|p ≤ |f |p(1− e−Reλa)/Reλ, Reλ �= 0,

and
|uλ|p ≤ |f |pa, Reλ = 0.

Therefore, although σ(Bp) = ∅, Bp still has spectral angle π/2. More precisely we
have

Proposition 3.2.4. Let J = (0, a). Then the operator Bp defined by (3.36) is
invertible and pseudo-sectorial in Yp(J) with spectral angle φBp = π/2, for all
p ∈ [1,∞] ∪ {0, b, ub}. The domain of Bp is dense for all p ∈ [1,∞) ∪ {0, b, ub},
hence, Bp is sectorial iff p �= ∞.

It is instructive to have a look at the functional calculus for Bp. Since the
resolvent of Bp admits the kernel representation

(λ−Bp)
−1w(t) = −

∫
J

eλ(t− s)w(s) ds, t ∈ J,

where eλ(t) = eλt for t > 0, eλ(t) = 0 for t ≤ 0, for a function f ∈ H0(Σφ),
φ > π/2, the operators f(Bp) admit a kernel representation as well, namely

[f(Bp)w](t) =

∫
J

kf (t− s)w(s) ds, t ∈ J.

The kernel kf (t) is obtained as the contour integral

kf (t) = − 1

2πi

∫
Γ

f(λ)eλ(t) dλ,

in particular kf (t) = 0 for t ≤ 0. The contour Γ is chosen as in Section 3.1.4.
This is precisely the inversion formula for the Laplace transform, i.e., f and kf
are related by k̂f (λ) = f(λ), for λ > 0, say.

The approximations (Bp)ε of Bp introduced in Section 3.1.2 also admit a
kernel representation. In fact, the functions fε(λ) = (ε + λ)/(1 + ελ) are the
Laplace transforms of kε(t) = δ0(t)/ε+(1− 1/ε2)e−t/εη0(t), where η0 denotes the
Heaviside function, and δ0 its derivative, the Dirac measure. This implies

[(Bp)εw](t) = ε−1w(t) + (1− ε−2)

∫ t

0

w(t− s)e−s/ε ds, t ∈ J, ε > 0,

the kernel representation of (Bp)ε.
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2.4 Weighted Lp-Spaces
Let Y be a Banach space and assume that p ∈ (1,∞) and 1/p < μ ≤ 1. We set

Lp,μ(R+;Y ) := {f : R+ → Y : t1−μf ∈ Lp(R+;Y )}

and equip it with the norm |f |Lp,μ(R+;Y ) := (
∫∞
0

|t1−μf(t)|p dt)1/p. We also define

H1
p,μ(R+;Y ) := {u ∈ Lp,μ(R+;Y ) ∩H1

1,loc(R+;Y ) : u̇ ∈ Lp,μ(R+;Y )}.

H1
p,μ(R+;Y ) will always be given the norm

|u|H1
p,μ

= |u|pLp,μ(R+;Y ) + |u̇|pLp,μ(R+;Y ))
1/p,

which turns it into a Banach space.

Lemma 3.2.5. Suppose p ∈ (1,∞) and 1/p < μ ≤ 1. Then

(a) Lp,μ(R+;Y ) ↪→ L1,loc(R̄+;Y );

(b) H1
p,μ(R+;Y ) ↪→ W 1

1,loc(R̄+;Y );

(c) Every function u ∈ H1
p,μ(R+;Y ) has a well-defined trace, that is, u(0) is well-

defined in Y .

Proof. (a) The first assertion follows from∫ T

0

|f(t)| dt ≤ (

∫ T

0

t−p′(1−μ) dt)1/p
′
(

∫ T

0

|t1−μf(t)|p dt)1/p ≤ c|f |Lp,μ(R+;Y )

which is valid provided that μ > 1/p.

(b) This follows from the definition of H1
p,μ(R+;Y ) and from (a).

(c) We conclude from (b) that every function u ∈ H1
p,μ(R+;Y ) is locally absolutely

continuous, and this yields the assertion in (c). �
In the following we set

0H
1
p,μ(R+;Y ) := {u ∈ H1

p,μ(R+;Y ) : u(0) = 0}.

Then the derivation operator

Bp,μu(t) := u̇(t) :=
d

dt
u(t), t > 0, D(Bp,μ) := 0H

1
p,μ(R+;Y ) (3.37)

is well-defined on Lp,μ(R+;Y ). It is natural to introduce the mapping

Φμ : Lp,μ(R+;Y ) → Lp(R+;Y ), (Φμu)(t) := t1−μu(t), t > 0.

Next we show that the operator Φμ also maps 0H
1
p,μ(R+;Y ) into 0H

1
p (R+;Y ),

provided μ > 1/p.
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Proposition 3.2.6. Let p ∈ (1,∞) and let 1/p < μ ≤ 1. Then

(a) Φμ : Lp,μ(R+;Y ) → Lp(R+;Y ) is an isometric isomorphism.

(b) Φμ : 0H
1
p,μ(R+;Y ) → 0H

1
p (R+;Y ) is a (topological) isomorphism.

Proof. (a) The assertion in (a) is clear.

(b) (i) We will first show that Φ−1
μ maps 0H

1
p (R+;Y ) into 0H

1
p,μ(R+;Y ). In order

to see this, let v ∈ 0H
1
p (R+;Y ) be given. An easy computation shows that the

function tμ−1v is in H1
p,loc(R+;Y ) and that

t1−μ d

dt
[tμ−1v](t) = v̇(t)− (1− μ)

v(t)

t
, t > 0. (3.38)

By means of Hardy’s inequality (see Proposition 3.4.5 below) we can verify that

the function v/t belongs to Lp(R+;Y ). Indeed, we infer from v(t) =
∫ t

0
v̇(s) ds that

(

∫ ∞

0

|t−1v(t)|p dt)1/p = (

∫ ∞

0

|t−1

∫ t

0

v̇(s)ds|p dt)1/p ≤ p′(
∫ ∞

0

|v̇(s)|pds)1/p.
(3.39)

We conclude from (3.38)–(3.39) that Φ−1
μ v belongs to H1

p,μ(R+;Y ), and also that
the mapping Φ−1

μ is linear and bounded between the indicated spaces.

(ii) Next we show that u = Φ−1
μ v has trace zero. Observing that

u(t) = tμ−1v(t) = tμ−1

∫ t

0

v̇(s) ds

we obtain by Hölder’s inequality that |u(t)| ≤ tμ−1/p(
∫ t

0
|v̇(s)|p ds)1/p. This shows

that u(t) → 0 as t → 0+.

(iii) Similar arguments show that Φμ maps 0H
1
p,μ(R+;Y ) into 0H

1
p (R+;Y ), and

that the mapping is bounded and linear. �

We will now consider the derivation operator Bp,μ defined in (3.37). Thanks
to Proposition 3.2.6 the operator

B̄p,μ := ΦμBp,μΦ
−1
μ , D(B̄p,μ) := 0H

1
p (R+;Y ), (3.40)

which acts on the function space Lp(R+;Y ), is well-defined. It follows from (3.38)
that

B̄p,μ = Bp,1 +B0, where (B0v)(t) := −(1− μ)v(t)/t. (3.41)

Observe that B̄p,μ and Bp,μ coincide if μ = 1. Moreover, note that Bμ,p in
Lp,μ(R+;Y ) is similar to Bp,1 +B0 in Lp(R+;Y ). It follows from equation (3.39)
that B0 is relatively bounded with respect to Bp,1, with bound smaller than 1,
provided (1−μ)p′ < 1, i.e., for 1 ≥ μ > 1/p. It is now easy to see that the operators
Bp,μ and B̄p,μ share the following properties.
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Proposition 3.2.7. Suppose 1 < p < ∞ and 1/p < μ ≤ 1. Then

(i) B̄p,μ is closed and densely defined in Lp(R+;Y ). Moreover, N(B̄p,μ) = 0, and
R(B̄p,μ) is dense in Lp(R+;Y ).

(ii) Bp,μ is closed and densely defined in Lp,μ(R+;Y ). Moreover, N(Bp,μ) = 0,
and R(Bp,μ) is dense in Lp,μ(R+;Y ).

Proof. (i) It has been proved above that Bp,1 has all the properties listed in the
proposition. Since B0 is relatively bounded with respect to Bp,1 with relative
bound strictly smaller than 1, we obtain from (3.41) that B̄p,μ enjoys the same
properties, see Section 3.1.3.

(ii) The assertions in (ii) follow from (i) by employing the isomorphism Φμ. �

In the sequel we take the liberty to work with Bp,μ and B̄p,μ interchangeably,
that is, we will use the representation that is the most convenient one.

Lemma 3.2.8. Let 1/p < μ ≤ 1 and suppose that k ∈ L1(R+;B(X,Y )) satisfies
|k(t)| ≤ κ(t), where κ ∈ L1(R+) is nonnegative and nonincreasing, and where
X,Y are Banach spaces. Then we have

(i)
∣∣∣ ∫ t

0

k(t− s)(t/s)1−μv(s) ds
∣∣∣
p
≤ cp,μ|κ|1|v|p for v ∈ Lp(R+;X),

where cp,μ = 21−μ[1 + (1− p′(1− μ))−p/p′
]1/p.

(ii) The convolution operator K := k∗ belongs to B(Lp,μ(R+;X), Lp,μ(R+;Y ))
and |K| ≤ cp,μ|κ|1.

Proof. (i) Let v ∈ Lp(R+;X) be given. Then Hölder’s inequality implies∣∣∣ ∫ t

0

k(t− s)(t/s)1−μv(s) ds
∣∣∣p
p
≤

∫ ∞

0

[ ∫ t

0

κ(t− s)(t/s)1−μ|v(s)|ds
]p

dt

≤
∫ ∞

0

[ ∫ t

0

κ(t− r)r−p′(1−μ)dr
]p/p′

tp(1−μ)

∫ t

0

κ(t− s)|v(s)|p dsdt

=

∫ ∞

0

|v(s)|p
{∫ ∞

s

tp(1−μ)κ(t− s)
[ ∫ t

0

κ(t− r)r−p′(1−μ)dr
]p/p′

dt
}
ds

≤ cpp,μ|κ|
p
1|v|pp,

as the following estimates show. On the one hand, we have∫ ∞

s

tp(1−μ)κ(t− s)
[ ∫ t

t/2

κ(t− r)r−p′(1−μ)dr
]p/p′

dt

≤ 2p(1−μ)

∫ ∞

s

κ(t− s)
[ ∫ t

t/2

κ(t− r)dr
]p/p′

dt

≤ 2p(1−μ)|κ|1+p/p′

1 = 2p(1−μ)|κ|p1.
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Since κ(t) is nonincreasing and (1− μ)p′ < 1 we have, on the other hand,∫ ∞

s

tp(1−μ)κ(t− s)
[ ∫ t/2

0

κ(t− r)r−p′(1−μ)dr
]p/p′

dt

≤
∫ ∞

s

tp(1−μ)κ(t− s)
[
κ(t/2)

∫ t/2

0

r−p′(1−μ)dr
]p/p′

dt

= (1− p′(1− μ))−p/p′
2p(1−μ)

∫ ∞

s

κ(t− s)[κ(t/2)(t/2)]p/p
′
dt

≤ (1− p′(1− μ))−p/p′
2p(1−μ)|κ|p1.

Note that the last inequality follows from

κ(t/2)(t/2) =

∫ t/2

0

κ(t/2) dτ ≤
∫ t/2

0

κ(τ) dτ ≤ |κ|1,

where we have once more used that κ is nonincreasing.

(ii) We conclude from (i) that

|Kv|Lp,μ
=

(∫ ∞

0

t(1−μ)p|Kv(t)|p dt
)1/p

=
(∫ ∞

0

∣∣∣ ∫ t

0

k(t− s)(t/s)1−μs1−μv(s) ds
∣∣∣p dt)1/p

≤ cp,μ|κ|1|s1−μv|p = cp,μ|κ|1|v|Lp,μ ,

and the proof of Lemma 3.2.8 is complete. �
We already know that the operator −Bp,1 generates a positive C0-semigroup

{T (t) : t ∈ R+} of contractions on Lp(R+;Y ) which is given by

[T (t)u](s) :=

{
u(s− t) if s > t,

0 if s < t.
(3.42)

This implies the resolvent estimate

|(λ+Bp,1)
−1|B(Lp(R+;Y )) ≤

1

Reλ
, Reλ > 0.

However, note that this semigroup is not of class C0 in Lp,μ(R+;Y ) for μ < 1, as
T (t) does not map Lp,μ(R+;Y ) into Lp,μ(R+;Y ) for t > 0. Nevertheless, we now
prove a resolvent estimate for Bp,μ, which is best possible.

Proposition 3.2.9. Let 1/p < μ ≤ 1. Then the resolvent set ρ(Bp,μ) contains the
open negative half-plane C− = −Σπ/2, and there is a constant cp,μ > 1 such that

|(λ+Bp,μ)
−1|B(Lp,μ(R+;Y )) ≤

cp,μ
Reλ

, Reλ > 0, (3.43)

holds. In particular, Bp,μ is sectorial in Lp,μ(R+;Y ) with φBp,μ
= π/2.
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Proof. (i) Let λ ∈ C with Reλ > 0 be fixed and set

(Kλf)(t) :=

∫ t

0

e−λ(t−s)f(s) ds, f ∈ Lp,μ(R+;Y ).

Moreover, let κ(t) := e−tReλ. Then Kλ satisfies the assertions of Lemma 3.2.8,
with |κ|1 = 1/Reλ. Consequently, Lemma 3.2.8 shows that Kλ is a bounded
linear operator in Lp,μ(R+;Y ), and that

|Kλ|B(Lp,μ(R+;Y )) ≤
cp,μ
Reλ

. (3.44)

(ii) We verify that (λ+ Bp,μ) : D(Bp,μ) → Lp,μ(R+;Y ) is invertible for Reλ > 0,
with

[(λ+Bp,μ)
−1f ](t) =

∫ t

0

e−λ(t−s)f(s) ds, f ∈ Lp,μ(R+;Y ). (3.45)

Indeed, let f ∈ Lp,μ(R+;Y ) be given and recall that Lp,μ(R+;Y ) is embedded into
L1,loc(R+;Y ). It is then not difficult to see that the differential equation

(λ+
d

dt
)u = f, u(0) = 0,

has a unique solution u = uλ in H1
1,loc(R̄+;Y ). It is given by the right-hand side of

equation (3.45). It remains to show uλ ∈ D(Bp,μ). For this we note that uλ = Kλf
and u̇λ = f − λKλuλ. Hence we obtain from (i) that uλ as well as u̇λ belong to
the space Lp,μ(R+;Y ). Since uλ(0) = 0 we conclude uλ ∈ D(Bp,μ), and this estab-
lishes equation (3.45). We have shown that ρ(Bp,μ) contains C−, and the resolvent
estimate (3.43) is now a direct consequence of (3.44)–(3.45).

(iii) It follows from (3.43) that φBp,μ ≤ π/2. On the other hand, φBp,μ cannot be
strictly smaller than π/2, as this would imply that Bp,μ generates a (strongly con-
tinuous analytic) semigroup on Lp,μ(R+;Y ), which is not possible. The assertion
follows now from Proposition 3.2.7. �

3.3 Analytic Semigroups and Fractional Powers

3.1 Holomorphic Semigroups
Typical examples of functions in Ha(Σφ) with φ < π/2 are the functions et(z) =
e−zt for each t > 0. Provided φA < π/2, the Dunford calculus from Section 3.1.4
gives rise to the family of operators et(A) =: e−tA, t > 0, which because of the
multiplicativity of the the calculus yields the semigroup property

e−A(t+s) = e−Ate−As, t, s > 0.

Therefore it is called a semigroup of operators.
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Definition 3.3.1. A family of operators {T (t)}t≥0 ⊂ B(X) in a Banach space X is
called a semigroup, if

T (t+ s) = T (t)T (s), t, s > 0, T (0) = I,

is satisfied. The semigroup is called of class C0, if in addition

lim
t→0+

T (t)x = x, x ∈ X,

holds.

We prove the following result which is basic in semigroup theory and for
parabolic partial differential equations.

Theorem 3.3.2. Let A be a closed densely defined operator in a Banach space X.
Then the following assertions are equivalent.

(a) A is pseudo-sectorial with spectral angle less than π/2;

(b) −A generates a C0-semigroup T (t) which admits a bounded and holomorphic
extension to a sector Σψ;

(c) −A generates a C0-semigroup T (t) such that R(T (t)) ⊂ D(A), and there is a
constant M0 > 0 such that |T (t)|+ |tAT (t)| ≤ M0, for each t > 0.

Proof. (c) ⇒ (b). Suppose −A generates a C0-semigroup such that the conditions
of (c) are satisfied. Define T (z) by means of the power series

T (t+ z) =

∞∑
n=0

zn

n!
T (n)(t).

Because of T (n)(t) = AnT (t) = [AT (t/n)]n we obtain |T (n)(t)| ≤ [M0n/t]
n, for all

t > 0 and n ∈ N0. These estimates imply

|T (t+ z)| ≤
∞∑

n=0

[n|z|M0]
n

tnn!
< ∞,

provided
limn→∞[(n|z|M0)

n/tnn!]1/n = M0|z|e/t < 1,

which means |z| < t/M0e or | arg z| < ψT := arcsin(1/M0e). On each smaller
sector Σψ, ψ < ψT , T (z) is then holomorphic, bounded, and has the semigroup
property T (z1)T (z2) = T (z1 + z2), and |T (z)| ≤ Mψ.

(b) ⇒ (a). Now let T (z) be holomorphic on ΣψT
and bounded on each smaller

sector Σψ. Then for each λ > 0, Cauchy’s theorem applied to the closed contour
ΓR = [0, R] ∪Rei[0,ψ] ∪ eiψ[R, 0] implies with R → ∞

(λ+A)−1 =

∫ ∞

0

e−λtT (t) dt =

∫ ∞

0

e−λteiψT (teiψ) dt, (3.46)
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for each |ψ| < ψT , by virtue of∣∣∣ ∫ ψ

0

T (Reiϕ)e−λReiϕiReiϕ dϕ
∣∣∣ ≤ MψR

∫ ψ

0

e−Rλ cosϕ dϕ → 0

as R → ∞. Because of the estimate∣∣∣ ∫ ∞

0

e−λteiψT (teiψ) dt
∣∣∣ ≤ Mψ

∫ ∞

0

e−tRe(λeiψ) dt (3.47)

≤ Mψ

|λ| cos(ψ + arg λ)
,

formula (3.46) allows for holomorphic extension of the resolvent of A to the sector
−Σπ/2+ψT

, and implies σ(A) ⊂ Σπ/2−ψT
, and (3.46) holds for all λ ∈ Σπ/2+ψT

.
Moreover, estimate (3.47) yields supλ∈Σπ−φ

|λ(λ+A)−1| < ∞ for all φ > π/2−ψT ,
and therefore A ∈ PS(X) and φA ≤ π/2− ψT .

(a) ⇒ (c). Suppose A ∈ PS(X) satisfies φA < π
2 , and let φA < φ < π

2 . Then for
z ∈ Σψ, the functions ez(λ) = e−zλ are holomorphic in C and belong to Ha(Σφ),
as long as ψ < π/2 − φ. Therefore, the functional calculus for pseudo-sectorial
operators yields bounded linear operators T (z) = ez(A) = e−zA, which satisfy the
semigroup property

T (z1 + z2) = T (z1)T (z2), z1, z2 ∈ Σπ
2 −φ.

Since the map z �→ fz is holomorphic on Σπ
2 −φ with derivative ∂zez(λ) = −λez(λ)

which even belongs to H0(Σφ), we may conclude that the family {T (z)}z∈Σπ
2

−φ
⊂

B(X) is holomorphic and d
dzT (z) = −AT (z). In particular, −A is the generator of

T (z) and the operators T (z) have ranges contained in D(A), for each z ∈ Σπ
2 −φ.

Let us next derive bounds for |T (z)|. For this purpose we take the representation
of ez(A) from (3.32).

T (z) =
1

2πi

∫
Γδ

e−zλ(λ−A)−1 dλ.

With | arg z| ≤ ψ < π/2− φ a straightforward estimate yields

|T (z)| ≤ Mπ−φ(A)

2π

∫
Γδ

e−Re(zλ) | dλ|
|λ|

≤ Mπ−φ(A)

π

[ ∫ ∞

δ

e−|z|r cos(φ+ψ) dr

r
+

∫ π

ψ

e|z|δ dϕ
]
≤ K0

ψ(A),

by the choice δ = 1/|z|. This shows that the semigroup T (z) is uniformly bounded
on Σψ. Similarly, choosing δ = 0 we obtain

|AT (z)| ≤ Mπ−φ(A)

∫ ∞

0

e−|z|r cos(φ+ψ)dr =
K1

ψ(A)

|z| , z ∈ Σπ
2 −φ.
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To see that T (z) → I strongly as z → 0, let x ∈ D(A) and fix δ > 0. Then the
identity (λ−A)−1x = x/λ+ (λ−A)−1Ax/λ yields

T (z) =
1

2πi

∫
Γδ

e−zλ[x+ (λ−A)−1Ax]
dλ

λ
.

By means of residue calculus the first part of this integral can be evaluated to the
result

T (z)x = x+
1

2πi

∫
Γδ

e−zλ(λ−A)−1Ax
dλ

λ
,

and passing to the limit z → 0, contracting the contour in −Σπ−φ we conclude

T (z)x → x+
1

2πi

∫
Γδ

(λ−A)−1Ax
dλ

λ
= x,

by Cauchy’s theorem. Since D(A) is dense in X and T (z) is uniformly bounded
we obtain T (z) → I strongly as z → 0. The theorem is proved. �

3.2 Extended Functional Calculus
We consider now a method to define f(A) for all A ∈ PS(X) and all functions
f ∈ H(Σφ) which grow at most polynomially at infinity and zero. More precisely,
suppose f ∈ Hα,α(Σφ) for some α ∈ R+. Define ψ(λ) = λ/(1 + λ)2; this function
is rational and belongs to H0(Σφ). Contracting the contour Γ, by residue calculus
we obtain ψ(A) = A(I + A)−2. This operator is bounded and injective, its range
equals D(A)∩ R(A) and its inverse is given by ψ(A)−1 = 2+A+A−1. If k ∈ N is
such that k > α then ψkf ∈ H0(Σφ) and so the Dunford calculus of Proposition
3.1.9 applies and yields a bounded operator (ψkf)(A). We then set

f(A) = ψ(A)−k(ψkf)(A), and

D(f(A)) = {x ∈ X : (ψkf)(A)x ∈ D(Ak) ∩ R(Ak)}.
(3.48)

This definition of f(A) is independent of k > α; in fact, if l > k > α then
ψlf = ψl−kψkf , hence (ψlf)(A) = ψl−k(A)(ψkf)(A) since ψl−k and also ψkf
belong toH0(Σφ). Therefore we may always choose k = [α]+1, the smallest integer
larger than α. f(A) defined this way is closed and densely defined. Moreover, we
have

Theorem 3.3.3. Let X be a complex Banach space and A ∈ PS(X). Then the
functional calculus ΦA defined by ΦA(f) = f(A) with f(A) given by (3.48) is well-
defined for all functions in

⋃
α∈R

Hα,α(Σφ). For α ≥ 0 and f ∈ Hα,α(Σφ), f(A)
is a closed linear operator in X with domain

D(f(A)) = {x ∈ X : (fψk)(A)x ∈ D(Ak) ∩ R(Ak)},

where k > α. The inclusion D(f(A)) ⊃ D(Ak) ∩ R(Ak) is valid, and

f(A)x = (fψk)(A)ψ−k(A)x, x ∈ D(Ak) ∩ R(Ak).
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In particular, f(A) is densely defined if A is sectorial. ΦA is an algebra homomor-
phism in the sense that

(af + bg)(A)x = af(A)x+ bg(A)x, for all f, g ∈ Hα,α(Σφ), x ∈ D(Ak)∩R(Ak),

and all a, b ∈ C, with k > α, and

(fg)(A)x = f(A)g(A)x, f ∈ Hα,α(Σφ), g ∈ Hβ,β(Σφ), x ∈ D(Ak) ∩ R(Ak),

for k > α+ β. The approximations Aε of A satisfy

lim
ε→0+

f(Aε)x = f(A)x, for all f ∈ Hα,α(Σφ), x ∈ D(Ak) ∩R(Ak), k > α.

It is useful to have a representation of f(A)x as a contour integral, for f ∈
Hα,β(Σφ) and x ∈ D(Ak)∩R(Al), with k > α and l > β. To this aim we use again
(3.25) for a bounded and invertible B ∈ S(X). Split the contour as Γr,R = ΓR

1 ∪Γr
2,

where

ΓR
1 = e−iψ[1, R] ∪Rei[−ψ,ψ] ∪ eiψ[R, 1], Γr

2 = [1, r]eiψ ∪ rei[ψ,−ψ] ∪ [r, 1]e−iψ.
(3.49)

Fix any l ∈ N0. On ΓR
1 we write

(λ−B)−1 =

l∑
j=1

λ−jBj−1 + λ−l(λ−B)−1Bl,

and then we have∫
ΓR
1

f(λ)(λ−B)−1 dλ =

∫
ΓR
1

λ−lf(λ)(λ−B)−1Bl dλ

+

l∑
j=1

∫
ΓR
1

f(λ)λ−jBj−1 dλ.

Deforming the contour ΓR
1 into Γ0 = ei[−ψ,ψ] in Σφ, we may employ Cauchy’s

theorem to see that the contributions from the terms λl−jBj−1 are independent
of R.

The integral over Γr
2 can be treated similarly. On this path we replace the

resolvent (λ−B)−1 according to the identity

(λ−B)−1 = λk(λ−B)−1B−k −
k∑

j=1

λj−1B−j ,

to the result ∫
Γr
2

f(λ)(λ−B)−1 dλ =

∫
Γr
2

λkf(λ)(λ−B)−1B−k dλ

−
k∑

j=1

∫
Γr
2

f(λ)λj−1B−j dλ.



3.3. Analytic Semigroups and Fractional Powers 115

Again by Cauchy’s theorem we may deform the contributions from the terms
λj−1B−j into an integral over Γ0 which is independent of r > 0.

This way, we obtain the following representation formula for f(B).

f(B) =
1

2πi

∫
ΓR
1

λ−lf(λ)(λ−B)−1Bl dλ

+
1

2πi

∫
Γr
2

λkf(λ)(λ−B)−1B−k dλ (3.50)

+
1

2πi

∫
Γ0

f(λ)[

k∑
j=1

λj−1B−j +

l∑
j=1

λ−jBj−1] dλ,

where the contours ΓR
1 , Γ

r
2 are defined by (3.49), and Γ0 = ei[−ψ,ψ]. Observe that

the last integral is of the form

l−1∑
j=−k

cj(f)B
j , with (3.51)

c−j(f) =
1

2πi

∫
Γ0

λ−(j+1)f(λ) dλ, cj(f) =
1

2πi

∫
Γ0

λ−(j+1)f(λ) dλ.

This shows that the coefficients cj(f) depend on f linearly and boundedly, in fact
we have

|cj(f)| ≤ 2φ sup{|f(eit)| : |t| ≤ φ}, for all j ∈ Z.

For functions f ∈ H(Σφ) which grow at most polynomially at infinity and at zero
we may now pass to the limits R → ∞ and r → 0+.

f(B) =
1

2πi

∫
Γ1

λ−lf(λ)(λ−B)−1Bl dλ

+
1

2πi

∫
Γ2

λkf(λ)(λ−B)−1B−k dλ+

l−1∑
j=−k

cj(f)B
j (3.52)

where k, l ∈ N0 denote any numbers such that α < k and β < l.
Now consider an arbitrary operator A ∈ S(X) such that φ > φA. Then for any

ε > 0 we let Aε denote the approximations of A introduced in Section 3.1.2, and we
may set B = Aε in formula (3.52). With Proposition 3.1.4 we have (λ−Aε)

−1 →
(λ−A)−1 as ε → 0+ in B(X), as well as Aj

εx → Ajx for all x ∈ D(Al), 0 ≤ j ≤ l,
and A−j

ε x → A−jx for all x ∈ R(Ak), 0 ≤ j ≤ k. Since the function |λ−(l+1)f(λ)|
is integrable over Γ1, |λk−1f(λ)| has this property on Γ2, we may pass to the limit
ε → 0+ to the result

f(A)x =
1

2πi

∫
Γ1

λ−lf(λ)(λ−A)−1Alx dλ

+
1

2πi

∫
Γ2

λkf(λ)(λ−A)−1A−kx dλ+

l−1∑
j=−k

cj(f)A
jx, (3.53)
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for any x ∈ D(Al) ∩ R(Ak). This is the representation formula of f(A)x we have
been looking for.

3.3 Complex Powers of Sectorial Operators
For z ∈ C the functions hz(λ) = λz are holomorphic on Σπ, the sliced complex
plane and the estimate

|hz(λ)| = |ez log λ| = eRe z log |λ|−Imz arg λ ≤ |λ|Re zeφ|Imz|, λ ∈ Σφ,

shows that hz belongs to Hα,α(Σφ) for α = Re z. Therefore, we may apply the
extended functional calculus for sectorial operators to obtain the following result.

Proposition 3.3.4. Suppose A ∈ S(X), let Az be defined by Az = hz(A), and
|Rez| < k, k ∈ N. Then

(i) Azx is holomorphic on the strip |Re z| < k, for each x ∈ D(Ak) ∩ R(Ak);

(ii) Az is closed for each z ∈ C;

(iii) Az+wx = AzAwx for all z, w ∈ C, x ∈ D(Ak) ∩ R(Ak), where k >
|Re z|, |Rew|, |Re (z + w)|;

(iv) Azx = limε→0 A
z
εx, x ∈ D(Ak) ∩ R(Ak), |Re z| < k.

Because of Proposition 3.3.4, the operators Az are linear, closed, densely
defined and, because of AzA−zx = x = A−zAzx for x in a dense subset of X,
have also dense ranges and trivial kernels. If A ∈ S(X) is invertible then {A−z,
Re z > 0} forms a bounded holomorphic C0-semigroup on Σπ/2. This can be seen
from formula (3.53) with l = 0 and k = 1 which in this case makes sense for all
x ∈ X.

It turns out that for real α with |α| < π/φA the powers Aα are sectorial as
well, and the power law (Aα)zx = Aαzx is valid.

Theorem 3.3.5. Let A ∈ S(X) and α ∈ R be such that |α| < π/φA. Then Aα is
also sectorial and φAα ≤ |α|φA. If z ∈ C and k > |Re z||α|, then

(Aα)zx = Aαzx, for all x ∈ D(Ak) ∩ R(Ak). (3.54)

For any real numbers α < β < γ with γ − α < π/φA, the moment inequality

|Aβx| ≤ k|Aαx|
γ−β
γ−α |Aγx|

β−α
γ−α , x ∈ D(Aα) ∩ D(Aγ), (3.55)

is valid, where k denotes a constant depending only on α, β, γ and A.

Proof. Since A−α = (A−1)α, it is enough to consider positive α. So let α ∈
(0, π/φA) be fixed. We want to show that the operators μ + Aα are invertible
for μ ∈ Σπ−αφA

, and that the resolvent estimate

sup
μ∈Σφα

|μ(μ+Aα)−1| ≤ Mφα < ∞
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is valid for each φα < π−αφA. For this purpose we consider the functions gμ(λ) =
μ/(μ + λα), which are holomorphic and bounded on Σφ, uniformly w.r.t. μ, as
long as μ ∈ Σφα

, and φα + αφ < π. By means of the extended functional calculus
we have gμ(A) = μ(μ + Aα)−1, the problem is to show that these operators are
bounded with a bound which is uniform in μ ∈ Σφα . Observe that although the
functions gμ(λ) are uniformly bounded, they are neither holomorphic at zero nor
at infinity, due to the presence of the power λα.

As a starting point we use formula (3.29) for the approximations Aε of A
which are bounded and invertible. Contract the contour Γ by means of Cauchy’s
theorem and by residue calculus to the halfray Γα = [0,∞)eiθ, with π ≥ θ ≥
φ > φA, where the branch cut of λα is put on this ray. This is possible if the
function μ + λα has no zeros on this ray, which means that with ϕ = arg μ we
have ϕ − αθ �= (2k + 1)π and ϕ + 2απ − αθ �= (2k + 1)π, for all k ∈ Z. Let λj ,
j = 1, . . . , n denote the zeros of μ+ λα; note that there are only finitely many of
them, and n = 0 means that there are none. n is bounded from above in terms of
α and φA. Then we obtain

gμ(Aε) = μ
1

2πi

∫ ∞

0

[ ei(θ−2π)

μ+ rαeiα(θ−2π)
− eiθ

μ+ rαeiαθ

]
(reiθ −Aε)

−1 dr

+ μ

n∑
j=1

λ1−α
j (λj −Aε)

−1/α

=
μeiθ

2πi

∫ ∞

0

[ ei(θα) − ei(θ−2π)α

(μ+ rαeiα(θ−2π))(μ+ rαeiαθ)

]
rα(reiθ −Aε)

−1 dr

+ μ
n∑

j=1

λ1−α
j (λj −Aε)

−1/α.

Estimating this expression we get

|gμ(Aε)| ≤ C|μ|
∫ ∞

0

rα−1 dr

|μe−iαθ + rα||μeiα(2π−θ) + rα| + C

≤ C
{
1 +

∫ ∞

0

dr

|ei(ϕ−αθ) + r||ei(ϕ−αθ+2απ) + r|

}
≤ C.

Therefore we have uniform bounds on gμ(Aε), hence with ε → 0+ also on gμ(A),
in virtue of gμ(Aε)x → gμ(A)x as ε → 0+ on a dense subset of X, and of the
Banach-Steinhaus theorem. This proves that Aα is sectorial and φAα ≤ αφA if
α < π/φA.

The identity (Aα
ε )

z = Aαz
ε is obviously valid, hence passing to the limit we

obtain (3.54).
To prove the moment inequality, let us observe that it is enough to consider

the case α = 0 and γ = 1; in fact, replace x by Aαx, β by (β − α)/(γ − α), A
by Aγ−α, to see this; observe that by the restriction γ − α < π/φA, the operator



118 Chapter 3. Operator Theory and Semigroups

Aγ−α is again sectorial, by the first part of this proof. Contracting the contour Γ
in the representation of Aβ−1

ε to the negative half-axis we obtain

Aβ−1
ε =

sin(βπ)

π

∫ ∞

0

rβ−1(r +Aε)
−1 dr.

Application of this formula to Ax for x ∈ D(A) and passing to the limit ε → 0+
leads to

Aβx = Aβ−1Ax =
sin(βπ)

π

∫ ∞

0

rβ−1(r +A)−1Axdr;

observe that this integral is absolutely convergent. We split the range of integration
at δ > 0 and estimate as follows.

|Aβx| ≤ C

∫ δ

0

rβ−1 dr|x|+ C

∫ ∞

δ

rβ−2 dr|Ax|

= C|x|δβ/β + C|Ax|δβ−1/(1− β) = C|x|1−β |Ax|β ,

by the choice δ = |Ax|/|x|. This completes the proof of Theorem 3.3.5. �
3.4 Operators with Bounded Imaginary Powers
Proposition 3.3.4 shows that the following definition makes sense.

Definition 3.3.6. Suppose A ∈ S(X). Then A is said to admit bounded imaginary
powers if Ais ∈ B(X) for each s ∈ R, and there is a constant C > 0 such that
|Ais| ≤ C for |s| ≤ 1. The class of such operators will be denoted by BIP(X).

Since by Proposition 3.3.4, Ais has the group property, it is clear that A
admits bounded imaginary powers if and only if {Ais : s ∈ R} forms a strongly
continuous group of bounded linear operators in X. The growth bound θA of this
group, i.e.,

θA = lim|s|→∞
1

|s| log |A
is| (3.56)

will be called the power angle of A. Then for each ω > θA there is a constant
M ≥ 1 such that

|Ait|B(X) ≤ Meω|t|, t ∈ R.

It is in general not easy to verify that a given A ∈ S(X) belongs to BIP(X),
although quite a few classes of operators are known for which the answer is positive;
cf. the next subsections.

For a first application of the class BIP(X), consider the fractional power
spaces

Xα = XAα = (D(Aα), | · |α), |x|α = |x|+ |Aαx|, 0 < α < 1,

where A ∈ S(X); the embeddings

XA ↪→ Xβ ↪→ Xα ↪→ X, 1 > β > α > 0,

are well-known. If A belongs to BIP(X), a characterization of Xα in terms of
complex interpolation spaces can be derived.
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Theorem 3.3.7. Suppose A ∈ BIP(X). Then

Xθ
∼= (X,XA)θ, θ ∈ (0, 1), (3.57)

where (X,XA)θ denotes the complex interpolation space between X and XA ↪→ X
of order θ.

We recall the definition of the complex interpolation space (X,XA)θ, θ ∈
(0, 1). Consider the strip S ⊂ C given by S := {z ∈ C : 0 < Re z < 1}. Then x ∈
(X,XA)θ iff there is an f ∈ H∞(S;X) ∩ C(S̄;X) with supt∈R |f(1 + it)|XA

< ∞,
such that f(θ) = x. The norm in (X,XA)θ is defined in the canonical way. More
precisely,

|x|(X,XA)θ := inf{|h(i·)|L∞(R;X) + |h(1 + i·)|L∞(R;XA) : h ∈ H∞(S;X), h(θ) = x}.

The spaces (X,XA)θ are well-known to be Banach spaces such that XA ↪→
(X,XA)θ ↪→ X, with both embeddings dense if D(A) is dense in X.

Proof. We may assume w.l.o.g. that A ∈ BIP(X) is invertible. In fact, the func-
tions h1(z) = (1 + z)α(1 + zα)−1 − 1 and h2(z) = (1 + zα)/(1 + z)α − 1 both
belong to H0(Σφ), for any φ < π. This implies that (1 + A)α(1 + Aα)−1 and
(1 +Aα)(1 +A)−α are bounded, and so D(Aα) = D((A+ 1)α).

Let x ∈ D(A) and let

f(z) = ez
2−θ2

A−z+θx, z ∈ S.

Then f is continuous on S̄, holomorphic in S and bounded in X, since

|f(σ + it)| ≤ Me1−θ2

eω|t|−t2 |A−σ+θx| ≤ C|Ax|,

with some constant C > 0, as by assumption A ∈ BIP(X) is invertible, and
employing the moment inequality. Moreover, for σ = 0, 1 we have

|f(it)|X ≤ C|Aθx|, |Af(1 + it)| ≤ C|Aθx|,

hence
|x|(X,XA)θ ≤ C|Aθx|,

by definition of the complex interpolation spaces. As D(A) is dense in D(Aθ) as
well as in (X,XA)θ, this yields the embedding D(Aθ) ↪→ (X,XA)θ.

To obtain the converse inclusion, fix x ∈ D(A), and let f : S̄ → X be
bounded, continuous, and holomorphic in S, f(θ) = x, and such that

|f(i·)|∞, |Af(1 + i·)|∞ ≤ 2|x|(X,XA)θ .

Set gε(z) = ez
2−θ2

Az(1 + εA)−1f(z), z ∈ S. Then

gε(θ) = Aθ(1 + εA)−1f(θ) = Aθ(1 + εA)−1x → Aθx as ε → 0,
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as Aθ is closed and commutes with the resolvent of A. Obviously, gε is continuous
and bounded on S̄, holomorphic in S and

|gε(it)| ≤ Meω|t|−t2 |(1 + εA)−1||f(it)| ≤ C|x|(X,XA)θ ,

as well as

|gε(1 + it)| ≤ Meeω|t|−t2 |(1 + εA)−1||Af(1 + it)| ≤ C|x|(X,XA)θ .

Hadamard’s three lines theorem then implies

|Aθ(1 + εA)−1x| = |gε(θ)| ≤ |gε(i·)|1−θ
∞ |gε(1 + i·)|θ∞ ≤ C|x|(X,XA)θ .

Passing to the limit ε → 0, this yields the inclusion (X,XA)θ ↪→ D(Aθ), using
once more density of D(A) in D(Aθ) and in (X,XA)θ. �

The importance of Theorem 3.3.7 is twofold. It shows on one hand that
Xα is largely independent of A; for instance if A,B ∈ BIP(X) are such that
D(A) = D(B) then D(Aα) = D(Bα) for all α ∈ (0, 1). On the other hand, (3.57)
makes the tools of complex interpolation theory available for fractional power
spaces and it becomes possible to characterize Xα in many cases. For example,
the reiteration theorem yields the relation

(Xα, Xβ)θ = Xα(1−θ)+θβ , for all 0 ≤ α < β ≤ 1, θ ∈ (0, 1),

for complex interpolation of fractional power spaces of operators A ∈ BIP(X).
Some permanence properties for the class BIP(X) are collected in the next

proposition.

Proposition 3.3.8. Let X be a complex Banach space. The class BIP(X) has the
following permanence properties.

(i) A ∈ BIP(X) iff A−1 ∈ BIP(X); then θA−1 = θA;

(ii) A ∈ BIP(X) implies rA ∈ BIP(X) and θrA = θA for all r > 0;

(iii) A ∈ BIP(X) implies e±iψA ∈ BIP(X) for all ψ ∈ [0, π− θA), and θe±iψA ≤
θA + ψ;

(iv) A ∈ BIP(X) implies (μ+A) ∈ BIP(X) for all μ ∈ Σπ−φA
, and

θμ+A ≤ max{θA, | argμ|};
(v) if D(A∗) is dense in X∗, then A ∈ BIP(X) iff A∗ ∈ BIP(X∗), and θA = θA∗ ;

(vi) if Y denotes another Banach space and T ∈ B(X,Y ) is bijective, then A ∈
BIP(X) iff A1 = TAT−1 ∈ BIP(Y ), and θA = θA1

.

Proof. Using the extended functional calculus and suitable variable transforma-
tions these permanence properties are abtained as in the proof of Proposition 3.1.3,
except for (iv) which is a little more tricky. In fact, (iv) is very much related to the
perturbation theory for the class BIP(X), it follows from our next proposition
with B = μ and h(z) = zis. �



3.3. Analytic Semigroups and Fractional Powers 121

Proposition 3.3.9. Suppose A ∈ S(X), B is a linear operator in X with D(B) ⊃
D(Aα), and

|Bx| ≤ a|x|+ b|Aαx|, x ∈ D(Aα),

holds with constants a, b > 0 and α ∈ [0, 1). Assume that A + B is sectorial and
invertible.

Then h(A) ∈ B(X) implies h(A + B) ∈ B(X), for any h ∈ H∞(Σφ), where
φ > φA, φA+B. In particular, if A ∈ BIP(X) then A+B ∈ BIP(X), and

θA+B ≤ max{θA, φA+B}.

Proof. Fix h according to the assumptions of this proposition and let f = ψh with
ψ as in Section 3.2.2. Then

h(A+B) = ψ−1(A+B)f(A+B) = (2 + (A+B)−1 +A+B)f(A+B),

and with B = B(1 +A)−1(1 +A) this gives

h(A+B) = (2 + (A+B)−1 +B(1 +A)−1 + (1 +B(1 +A)−1)A)f(A+B).

Now, (A + B)−1 and B(1 + A)−1 are bounded by assumption and f(A + B) is
bounded since f ∈ H0(Σφ), hence we only need to show that Af(A+B) is bounded.
Choosing a standard contour Γ, the resolvent equation implies

Af(A+B) = Af(A) +
1

2πi

∫
Γ

f(λ)A(λ−A)−1B(λ− (A+B))−1 dλ.

Since by assumption h(A) is bounded, Af(A) = Aψ(A)h(A) is bounded as well,
and the integral is absolutely convergent since B is of lower order. �

In connection with operators with bounded imaginary powers another func-
tional calculus is very useful and will be crucial. For this purpose recall the Mellin
transform defined by

F (z) =

∫ ∞

0

f(t)tz−1 dt.

Mellin’s inversion formula reads

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (z)t−z dz.

The inverse Mellin transform can be used to define a functional calculus for A ∈
BIP(X) as follows. Set

Mθ(R) = {μ ∈ M0(R) : |μ|θ :=
1

2π

∫
R

eθ|s|| dμ(s)| < ∞},

where M0(R) denotes the space of all finite complex Borel measures on R. Mθ(R)
becomes a Banach algebra with unit, the convolution of measures, scaled by the



122 Chapter 3. Operator Theory and Semigroups

factor 1/2π as multiplication. Evidently the Dirac masses δs with unit mass in
s ∈ R belong to Mθ(R), and 2πδ0 is the unit. For measures μ ∈ Mθ(R) we define

f(z) =
1

2π

∫
R

z−is dμ(s), z ∈ Σθ.

This yields an algebra homomorphism from Mθ(R) into the Banach algebra
H∞(Σθ), and it gives rise to the algebra homomorphism from Mθ(R) to B(X)
defined by the formula

f(A) =
1

2π

∫
R

A−is dμ(s),

for any operator A ∈ BIP(X) with θA < θ. In fact, this formula is precisely the
Phillips calculus for the C0-group A−is. We summarize these observations as

Theorem 3.3.10. Let A ∈ BIP(X) and θ > θA. Then the formula

f(A) =
1

2π

∫
R

A−is dμ(s)

defines an algebra homomorphism from Mθ(R) to B(X), where f and μ are related
by

f(z) =
1

2π

∫
R

z−is dμ(s).

In particular, f(z) = z−is is mapped to A−is, for each s ∈ R. Moreover, there is
a constant K > 0 such that

|f(A)|B(X) ≤ K|μ|θ, for all μ ∈ Mθ(R),

where K = sups∈R e−θ|s||Ais|B(X).

Proof. The only thing left to prove is the multiplication property. Here we
need to recall the convolution theorem for the Mellin transform, i.e., if fj(t) =
1
2π

∫∞
−∞ t−is dμj(s), then

f1(t)f2(t) =
1

2π

∫ ∞

−∞
d(μ1 ∗ μ2)(s), t > 0.

This identity implies

(f1f2)(A) =
1

2π

∫
R

A−is d(μ1 ∗ μ2)(s)

=
1

(2π)2

∫
R

A−is

∫
R

dμ1(s− τ) dμ2(τ)

=
1

(2π)2

∫
R

A−is dμ1(s)

∫
R

A−iτ dμ2(τ)

= f1(A)f2(A).

�
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It is not obvious how to get the resolvent of an operator A from its imaginary
powers. This is due to the fact that the Mellin transform of the function 1/(1 +
t) has poles at 0 and 1. However, since such representations are useful and in
particular show that the functional calculus from Theorem 3.3.10 is consistent
with the Dunford calculus, we comment on this.

For this purpose observe that

(1 + t)−1 =
1

2i

∫ c+i∞

c−i∞
t−z dz

sin(πz)
, t > 0,

where 0 < c < 1 is arbitrary. Therefore,

Tx =
1

2i

∫ c+i∞

c−i∞
A−zx

dz

sin(πz)

is well-defined since the integral is absolutely convergent for x ∈ D(A)∩R(A). By
Cauchy’s theorem, the integral is independent of c. Using again Cauchy’s theorem,
we obtain by an easy computation T = (1 + A)−1. In fact, apply 1 + A to Tx to
the result

(1 +A)Tx =
1

2πi

∫ c+i∞

c−i∞
A−zx

πdz

sin(πz)
+

1

2πi

∫ c+i∞

c−i∞
A1−zx

πdz

sin(πz)
.

Deforming the contour in the first integral to

Γ0 = (−i∞,−iε] ∪ εei[−π/2,π/2] ∪ [iε, i∞)

and the second one to

Γ1 = (1− i∞, 1− iε] ∪ (1− εei[−π/2,π/2]) ∪ [1 + iε, 1 + i∞),

observing that the contributions on the straight lines cancel, and passing to the
limit ε → 0+ there follows (1 + A)Tx = x for each x ∈ D(A) ∩ R(A). Since by
assumption A is sectorial this implies Tx = (1+A)−1x for each x ∈ D(A)∩R(A).

Replacing A by sA, s > 0, and shifting the contour to the imaginary axis we
get the formula

(1 + sA)−1x =
1

2
x+

1

2i
PV

∫ ∞

−∞
(sA)−iρ dρ

sinh(πρ)
, s > 0, (3.58)

where PV means the principal value.

To deduce the second formula, recall the identity

1

1 + λt
=

1

1 + rt
+

1

2i

∫ ∞

−∞
(rt)−iρ (e

φρ − 1)

sinh(πρ)
dρ,
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where λ = reiφ, |φ| < π. Since the measure with density (eiφρ − 1)r−iρ/ sinh(πρ)
belongs to Mθ(R), provided |φ| < π − θ, we get by Theorem 3.3.10 the identity

(1 + λA)−1 = (1 + |λ|A)−1 +
1

2i

∫ ∞

−∞
(|λ|A)−iρ (e

φρ − 1)

sinh(πρ)
dρ, (3.59)

whenever φ = arg(λ) ∈ (−π + θ, π − θ). As a consequence we have

Corollary 3.3.11. Suppose A ∈ BIP(X), θA < π. Then φA ≤ θA.

3.5 Operators with Bounded H∞-Calculus
There is another important concept related to the Dunford calculus for a sectorial
operator.

Definition 3.3.12. A sectorial operator A is said to admit a bounded H∞-calculus
if there are φ > φA and a constant Kφ < ∞ such that

|f(A)| ≤ Kφ|f |H∞(Σφ), for all f ∈ H0(Σφ). (3.60)

The class of sectorial operators A which admit an H∞-calculus will be denoted by
H∞(X). The H∞-angle of A is defined by

φ∞
A = inf{φ > φA : (3.60) is valid}. (3.61)

If this is the case, then the functional calculus for A on H0(Σφ) extends
uniquely to H∞(Σφ). This can be seen by formula (3.53) with k = l = 1, which
is valid for x ∈ D(A) ∩ R(A). If f ∈ H∞(Σφ) and (fn) ⊂ H0(Σφ) is uniformly
bounded and converges to f , uniformly on compact subsets of Σφ, then (3.53)
for fn and Lebesgue’s dominated convergence theorem show fn(A)x → f(A)x as
n → ∞, for each x ∈ D(A) ∩ R(A). Since D(A) ∩ R(A) is dense in X, (3.53) and
the Banach-Steinhaus theorem then yield fn(A) → f(A) in the strong operator
topology. This is a special case of the so-called convergence lemma.

Lemma 3.3.13. Let A ∈ S(X) and φ > φA. Suppose (fn)n≥0 ⊂ H∞(Σφ) is such
that fn → f0 uniformly on compact subsets of Σφ.

Then supn≥1 |fn(A)|B(X) < ∞ implies fn(A) → f0(A) strongly. In particular,
this assertion holds if |fn|H∞(Σφ) ≤ M < ∞ and A admits a bounded H∞-calculus
on Σφ.

Well-known examples for general classes of sectorial operators with bounded
H∞-calculus are

(a) normal sectorial operators in Hilbert spaces;

(b) m-accretive operators in Hilbert spaces;

(c) generators of bounded C0-groups on Lp-spaces;

(d) negative generators of positive contraction semigroups in Lp-spaces.
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Here (a) follows from the functional calculus for normal operators in Hilbert spaces,
see e.g. Dunford-Schwartz [91], while by the Cayley transform, (b) is a consequence
of the Foias-Nagy calculus for contractions in Hilbert spaces; see Foias-Nagy [273].
(c) and (d) and some vector-valued extensions are implied by the theory of Coifman
and Weiss [69].

Since the functions fs(z) = zis belong to H∞(Σφ), for any s ∈ R and φ ∈
(0, π), we obviously have the inclusions

H∞(X) ⊂ BIP(X) ⊂ S(X), (3.62)

and the inequalities

φ∞
A ≥ θA ≥ φA ≥ sup{| arg λ| : λ ∈ σ(A)}. (3.63)

The permanence properties of the class H∞(X) are like those for general sectorial
operators.

Proposition 3.3.14. Let X be a complex Banach space. The class H∞(X) has the
following permanence properties.

(i) A ∈ H∞(X) iff A−1 ∈ H∞(X); then φ∞
A−1 = φ∞

A ;

(ii) A ∈ H∞(X) implies rA ∈ H∞(X) and φ∞
rA = φ∞

A for all r > 0;

(iii) A ∈ H∞(X) implies e±iψA ∈ H∞(X) for all ψ ∈ [0, π − φ∞
A ), and φ∞

e±iψA =
φ∞
A + ψ;

(iv) A ∈ H∞(X) implies (μ+A) ∈ H∞(X) for all μ ∈ Σπ−φA
, and

φ∞
μ+A ≤ max{φ∞

A , | argμ|};

(v) if D(A∗) is dense in X∗, then A ∈ H∞(X) iff A∗ ∈ H∞(X∗), and φ∞
A = φ∞

A∗ ;

(vi) if Y denotes another Banach space and T ∈ B(X,Y ) is bijective, then A ∈
H∞(X) iff A1 = TAT−1 ∈ H∞(Y ), and φ∞

A = φ∞
A1

.

Following the lines of the proof of Proposition 3.1.3, the proof of this result is
evident. Concerning perturbations, we have the following result which is a direct
consequence of Proposition 3.3.9.

Corollary 3.3.15. Suppose A ∈ H∞(X), B is a linear operator in X with D(B) ⊃
D(Aα), and

|Bx| ≤ a|x|+ b|Aαx|, x ∈ D(Aα),

holds with constants a, b > 0 and α ∈ [0, 1). Assume that A + B is sectorial and
invertible.

Then A+B ∈ H∞(X), and φ∞
A+B ≤ max{φ∞

A , φA+B}.
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3.4 Trace Spaces: Real Interpolation

4.1 Trace Spaces of Lp-Type
Consider the homogeneous Cauchy problem

u̇+Au = 0, t > 0, u(0) = x, (3.64)

in a Banach space X, where A is a densely defined pseudo-sectorial operator
with spectral angle φA < π/2. Then −A generates a bounded holomorphic C0-
semigroup in X and the solution u(t) of (3.64) is given by u(t) = T (t)x, for
all t ≥ 0, where T (t) = e−At denotes the semigroup generated by −A. In this
subsection, we study again regularity properties of u(t). More specifically, we ask
for which initial values x the solution u(t) is such that u(t) ∈ D(A) for a.a. t > 0
and Au ∈ Lp,μ(R+;X), μ ∈ (1/p, 1]. In virtue of (3.64) this is equivalent to
u ∈ W 1

p,loc(R+;X) and u̇ ∈ Lp,μ(R+;X).
Suppose that u has this property. Then the initial value x ∈ X satisfies∫∞

0
|AT (t)x|ptp(1−μ) dt < ∞. Let us introduce the following trace spaces.

Definition 3.4.1. Let A be a densely defined pseudo-sectorial operator in X with
spectral angle φA < π/2, let α ∈ (0, 1) and p ∈ [1,∞). The spaces DA(α, p) are
defined by means of

DA(α, p) =
{
x ∈ X : [x]α,p :=

(∫ ∞

0

|t1−αAT (t)x|p dt/t
)1/p

< ∞
}
.

When equipped with the norm

|x|α,p := |x|+ [x]α,p, x ∈ DA(α, p),

DA(α, p) becomes a Banach space. For k ∈ N the spaces DA(k + α, p) are defined
by

DA(k + α, p) := {x ∈ D(Ak) : Akx ∈ DA(α, p)}.
We can now give a complete answer to the question raised at the beginning

of this subsection.

Proposition 3.4.2. Suppose A is a densely defined invertible sectorial operator in
X with spectral angle φA < π/2, p ∈ (1,∞) and μ ∈ (1/p, 1].

Then for the solution u of (3.64) the following assertions are equivalent.

(a) u(t) ∈ D(A) for a.a. t > 0, and u ∈ Lp,μ(R+;XA);

(b) u ∈ H1
p,μ(R+;X);

(c) x ∈ DA(μ− 1/p, p).

In this case there is a constant Cp,μ > 0 depending only on A, p and μ, such that

|u̇|Lp,μ(R+;X) + |Au|Lp,μ(R+;X) ≤ Cp,μ|x|μ−1/p,p,

for all x ∈ DA(μ− 1/p, p).
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Proof. By assumption, −A generates the holomorphic semigroup T (t) = e−At

which is bounded on R+, satisfies T (t)X ⊂ D(A) and, with some ω > 0,

|T (t)|+ t|AT (t)| ≤ Me−ωt, t > 0.

Let x ∈ X and u(t) = T (t)x. Then u(t) ∈ D(A) for t > 0. By definition, x ∈
DA(μ − 1/p, p) implies Au ∈ Lp,μ(R+;X), hence (c) implies (a). Since T (t) is

holomorphic and Ṫ (t) = AT (t) for t > 0, (a) implies (b). On the other hand, (b)
yields Au = −u̇ ∈ Lp,μ(R+;X), hence

[x]pμ−1/p,p = |Au|pLp,μ(R+;X)

shows that (b) implies (c). �

We will also use frequently the following result which extends the previous
proposition to fractional orders.

Proposition 3.4.3. Suppose A is a densely defined invertible sectorial operator in
X with spectral angle φA < π/2, p ∈ (1,∞), μ ∈ (1/p, 1], and α− 1+μ− 1/p > 0.

Then for the solution u of (3.64) the following assertions are equivalent.

(a) u ∈ Lp,μ(R+;DA(α, p));

(b) x ∈ DA(α− 1 + μ− 1/p, p).

In this case, we have in addition

(c) u ∈ Wα
p,μ(R+;X) ∩Hα

p,μ(R+;X) ∩ Lp,μ(R+;D(A
α)),

and there is a constant Cp,μ > 0 depending only on A, p and μ, such that

|u|Wα
p,μ(R+;X) + |u|Hα

p,μ(R+;X) + |u|Lp,μ(R+;DA(α,p)) + |u|Lp,μ(R+;D(Aα))

≤ Cp,μ|x|α−1+μ−1/p,p, for all x ∈ DA(α− 1 + μ− 1/p, p).

Note that for α − 1 + μ− 1/p < 0 assertions (a) and (c) hold for all x ∈ X.
The spaces Wα and Hα are defined via interpolation; see Section 3.4.5 below.

Proof. Observe that (a) holds if and only if I :=
∫∞
0

|u(t)|pDA(α,p)t
p(1−μ) dt < ∞.

We have by Fubini’s theorem

I =

∫ ∞

0

∫ ∞

0

|τ1−αAe−Aτu(t)|p dτ
τ
tp(1−μ) dt

=

∫ ∞

0

∫ ∞

0

|Ae−A(τ+t)x|ptp(1−μ) dtτp(1−α)−1dτ

=

∫ ∞

0

∫ ∞

τ

|Ae−Asx|p(s− τ)p(1−μ) dsτp(1−α)−1dτ,



128 Chapter 3. Operator Theory and Semigroups

therefore applying Fubini another time

I =

∫ ∞

0

|Ae−Asx|p
∫ s

0

(s− τ)p(1−μ)τp(1−α)−1dτds

= C0(α, μ, p)

∫ ∞

0

|Ae−Asx|psp(1−α+1−μ) ds

≤ C0(α, μ, p)|x|pDA(α−1+μ−1/p,p),

with C0(α, μ, p) = B(p(1− α), p(1− μ) + 1), where B denotes the Beta function.
The assertions in (c) will be proved in Section 3.4.6. �

4.2 Trace Spaces and Real Interpolation
We present now some other characterizations of the trace spaces DA(α, p).

For this, we first recall the definition of the real interpolation spaces
(X,XA)α,p of order α ∈ (0, 1) and exponent p ∈ [1,∞). x ∈ (X,XA)α,p iff there
exist a function w ∈ C([0, 1];X)∩C((0, 1];XA)∩C1((0, 1];X) with w(0) = x, such
that

[[w]]α,p :=
[ ∫ 1

0

|t1−αẇ(t)|p dt/t
]1/p

+
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

< ∞. (3.65)

The norm in (X,XA)α,p is then defined as |x|(X,XA)α,p
:= |x|+ inf[[w]]α,p, where

the infimum is taken over all functions w with the described properties.

Proposition 3.4.4. Let A be a densely defined pseudo-sectorial operator in a Banach
space X with spectral angle φA < π/2, let α ∈ (0, 1), and p ∈ [1,∞). Then for
x ∈ X the following assertions are equivalent.

(a) x ∈ DA(α, p);

(b) [x]′α,p := [
∫∞
0

|t−α(T (t)x− x)|p dt/t]1/p < ∞;

(c) [x]′′α,p := [
∫∞
0

|λαA(λ+A)−1x|p dλ/λ]1/p < ∞;

(d) x ∈ (X,XA)α,p.

The norms

| · |α,p, | · |′α,p = | · |+ [·]′α,p, | · |′′α,p = | · |+ [·]′′α,p, | · |(X,XA)α,p

are equivalent.

To prove this result we need some preparation. Firstly, Note that (d) in the
proposition makes sense for all closed linear operators in X, while (c) is well-
defined if A is pseudo-sectorial, in contrast to (a) which requires φA < π/2, and
(b) where −A must be the generator of a bounded C0-semigroup.

Secondly, recall Jensen’s inequality

φ
(∫

Ω

g(ω) dμ(ω)
)
≤

∫
Ω

φ(g(ω)) dμ(ω), (3.66)
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which is valid for each probability measure μ on Ω, for each integrable function g
on Ω, and φ : R → R convex.

Thirdly, we shall need Hardy’s inequality.

Lemma 3.4.5 (Hardy’s inequality). Let p ∈ [1,∞), 0 < T ≤ ∞, and f : R+ → X

be measurable and such that
∫ T

0
|tβf(t)|p dt < ∞, for some β < 1/p′ = 1 − 1/p.

Then ∫ T

0

∣∣∣tβ−1

∫ t

0

f(s)ds
∣∣∣p dt ≤ c(β, p)p

∫ T

0

|tβf(t)|p dt < ∞,

where c(β, p) = (1/p′ − β)−1.

Proof. The change of variables t = eτ , s = eσ yields∫ T

0

∣∣∣tβ−1

∫ t

0

f(s)ds
∣∣∣p dt = ∫ log(T )

−∞

∣∣∣e(β−1)τ

∫ τ

−∞
f(eσ)eσdσ

∣∣∣peτdτ
≤

∫ log(T )

−∞

[ ∫ τ

−∞
|f(eσ)|e(β+1/p)σ · e(β−1+1/p)(τ−σ)dσ

]p
dτ,

hence by Young’s inequality for convolutions∫ T

0

∣∣∣tβ−1

∫ t

0

f(s)ds
∣∣∣p dt ≤ [ ∫ ∞

0

e(β−1/p′)σdσ
]p

·
[ ∫ log(T )

−∞
|f(eτ )e(β+1/p)τ |pdτ

]
= (1/p′ − β)−p

[ ∫ T

0

|tβf(t)|p dt
]
,

which proves the lemma. �
Proof of Proposition 3.4.4.
(a) ⇒ (b). Let x ∈ DA(α, p); then the identity

T (t)x− x = −
∫ t

0

AT (s)x ds

and Lemma 3.4.5 with β = 1− α− 1/p yield∫ ∞

0

|t−α(T (t)x− x)|p dt/t =
∫ ∞

0

t(β−1)p
∣∣∣ ∫ t

0

AT (s)x ds
∣∣∣p dt

≤ α−p

∫ ∞

0

sβp|AT (s)x|p ds

= α−p

∫ ∞

0

|t1−αAT (t)x|p dt/t

= α−p[x]pα,p.

This implies [x]′α,p ≤ α−1[x]α,p.
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(b) ⇒ (c). To prove this implication we employ the identity

A(λ+A)−1x = x− λ(λ+A)−1x =

∫ ∞

0

λe−λt[x− T (t)x] dt, λ > 0,

which yields by Jensen’s inequality (3.66) and Fubini’s theorem∫ ∞

0

|λαA(λ+A)−1x|p dλ/λ =

∫ ∞

0

λαp
∣∣∣ ∫ ∞

0

(T (t)x− x)λe−λt dt
∣∣∣p dλ/λ

≤
∫ ∞

0

λαp
[ ∫ ∞

0

|T (t)x− x|pλe−λt dt
]
dλ/λ

=

∫ ∞

0

|T (t)x− x|p
[ ∫ ∞

0

λαpe−λt dλ
]
dt

=

∫ ∞

0

|T (t)x− x|pΓ(αp+ 1)t−αp−1 dt

where Γ(z) denotes the Gamma function. This yields [x]′′α,p ≤ (Γ(αp+ 1))p[x]′α,p.

(c) ⇒ (d). Suppose [x]′′α,p < ∞. Define u(t) = (1 + tA)−1x for t ∈ [0, 1]; then
u ∈ C([0, 1];X)∩C((0, 1];XA)∩C1((0, 1];X), u(0) = x, and u̇(t) = −A(1+tA)−2x
for t ∈ (0, 1]. The variable transformation t = 1/λ gives

[[u]]α,p =
[ ∫ 1

0

|t1−αA(1 + tA)−2x|p dt/t
]1/p

+
[ ∫ 1

0

|t1−αA(1 + tA)−1x|p dt/t
]1/p

≤ C
[ ∫ 1

0

|t1−αA(1 + tA)−1x|p dt/t
]1/p

= C
[ ∫ ∞

1

|λαA(λ+A)−1x|p dλ/λ
]1/p

≤ C[x]′′α,p.

This proves x ∈ (X,XA)α,p and |x|(X,XA)α,p
≤ C|x|′′α,p.

(d) ⇒ (a). Let x ∈ (X,XA)α,p and w ∈ C([0, 1];X)∩C((0, 1];XA)∩C1((0, 1];X)
with w(0) = x, be such that

[[w]]α,p =
[ ∫ 1

0

|t1−αẇ(t)|p dt/t
]1/p

+
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

< ∞.

Then the identity

x = w(0) = w(t)−
∫ t

0

ẇ(s) ds
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implies by Lemma 3.4.5 with β = 1/p′ − α[ ∫ 1

0

|t1−αAT (t)x|p dt/t
]1/p

≤
[ ∫ 1

0

|t1−αT (t)Aw(t)|p dt/t
]1/p

+
[ ∫ 1

0

∣∣∣t1−αAT (t)

∫ t

0

ẇ(s)ds
∣∣∣p dt/t]1/p

≤ C
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

+ C
[ ∫ 1

0

∣∣∣t−α

∫ t

0

ẇ(s)ds
∣∣∣p dt/t]1/p

≤ C
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

+ Cα−p
[ ∫ 1

0

|t1−α−1/pẇ(t)|p dt
]1/p

≤ C
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

+ C
[ ∫ 1

0

|t1−αẇ(t)|p dt/t
]1/p

.

Because of boundedness of tAT (t) on R+ we also have∫ ∞

1

|t1−αAT (t)x|p dt/t ≤ C|x|p
∫ ∞

1

t−αp−1 dt = C|x|p/αp,

hence we obtain [x]α,p ≤ C(|x| + [[w]]α,p), and since w has been arbitrary it is
also clear that [x]α,p ≤ C|x|(X,XA)α,p

holds, for some constant C independent of
x. The proof is complete. �

4.3 Embeddings
We continue the study of the trace spaces DA(α, p) with some essential embedding
results. For this purpose we extend the definition ofDA(α, p) to the cases p = ∞, 0.

DA(α,∞) := {x ∈ X : [x]DA(α,∞) := sup
λ>0

λα|A(λ+A)−1x| < ∞},

and
DA(α, 0) := {x ∈ DA(α,∞) : lim

λ→∞
λαA(λ+A)−1x = 0}.

These definitions make sense for any pseudo-sectorial operator A in X. The norm
in these spaces are

|x|DA(α,∞) = |x|+ [x]DA(α,∞).

Obviously the continuous interpolation space DA(α, 0) is a closed subspace of
DA(α,∞).

Proposition 3.4.6. Let A be a pseudo-sectorial operator in X with dense domain.
Then for all 0 < α < β < 1, 1 ≤ p < q < ∞, r ∈ [1,∞] ∪ {0}, we have

(i) D(A) ↪→ DA(β, r) ↪→ DA(α, r) ↪→ X;

(ii) DA(β,∞) ↪→ DA(α, 1);

(iii) DA(α, 1) ↪→ DA(α, p) ↪→ DA(α, q) ↪→ DA(α, 0) ↪→ DA(α,∞);
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(iv) DA(α, 1) ↪→ D(Aα) ↪→ DA(α, 0);

(v) D(A) ⊂ DA(α, r) is dense for each r �= ∞;

(vi) if −A generates a bounded C0-semigroup in X, then its restriction to DA(α, r)
is also a bounded C0-semigroup, for each r �= ∞.

Proof. (i) Since for x ∈ D(A), t > 0, we have

tα|A(t+A)−1x| ≤ Ctα−1|Ax|,

so the first inclusion is obvious. The second one follows from assertion (ii) and
(iii), while the third one is trivial by definition of DA(α, p).

(ii) Let x ∈ DA(β,∞), β > α; then∫ ∞

1

tα|A(t+A)−1x|dt
t

≤ |x|β,∞
∫ ∞

1

tα−β−1 dt =
|x|β,∞
β − α

,

which implies assertion (ii).

(iii) Let p ∈ [1,∞), x ∈ DA(α, p); then choosing a standard contour we obtain

tαA(t+A)−1x =
1

2πi

∫
Γ

tαλ1−α

t+ λ
· λαA(λ−A)−1x

dλ

λ
.

For p > 1, by means of Hölder’s inequality this gives

tα|A(t+A)−1x| ≤ 1

2π

[∫
Γ

∣∣∣∣ tαλ1−α

t+ λ

∣∣∣∣p
′ ∣∣∣∣ dλλ

∣∣∣∣
]1/p′ [∫

Γ

|λαA(λ−A)−1x|p
∣∣∣∣ dλλ

∣∣∣∣]1/p .
Next observe that from the resolvent equation

(λ−A)−1 = (|λ|+A)−1[−1 + (λ+ |λ|)(λ−A)−1]

we obtain

|A(λ−A)−1x| ≤ (1 + 2|λ(λ−A)−1|)|A(|λ|+A)−1x| ≤ C|A(|λ|+A)−1x|.

Since by the variable transformation λ = tz∫
Γ

∣∣∣∣ tαλ1−α

t+ λ

∣∣∣∣p
′ ∣∣∣∣ dλλ

∣∣∣∣ = ∫
Γ

∣∣∣∣ z1−α

1 + z

∣∣∣∣p
′ ∣∣∣∣dzz

∣∣∣∣ < ∞,

we conclude
|tαA(t+A)−1x| ≤ C|x|α,p,

which yields the embedding DA(α, p) ↪→ DA(α,∞) in case p > 1. For p = 1 we
use boundedness of tα|λ|1−α/|t+ λ| instead.
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For q > p we have from this

([x]′′α,q)
q =

∫ ∞

0

|tαA(t+A)−1x|q dt
t

≤ sup
t>0

|tαA(t+A)−1x|q−p

∫ ∞

0

|tαA(t+A)−1x|p dt
t

≤ [x]q−p
DA(α,∞)([x]

′′
α,p)

p ≤ C[x]qα,p,

which yields DA(α, p) ↪→ DA(α, q).

Finally, since DA(α, 0) ⊂ DA(α,∞) is closed, the embedding DA(α, p) ⊂
DA(α, 0) follows from (v).

(iv) Let x ∈ D(A); then we know from Section 3.3.3

Aαx =
sin(απ)

π

∫ ∞

0

rαA(r +A)−1x
dr

r
.

This easily implies the first inclusion in (iv), as D(A) is dense in D(Aα).

On the other hand, for x ∈ D(Aα) and r > 0 we have by the moment
inequality

rα|A(r +A)−1x| = rα|A1−α(r +A)−1Aαx| ≤ rαCr−α|Aαx|.

This proves the second embedding in (iv), by density of D(A) in DA(α, 0) .

(v) Since D(A) ⊂ X is dense by assumption, we have xε := (1 + εA)−1x → x as
ε → 0, for each x ∈ X. Therefore tαA(t+A)−1(x− xε) → 0 for each t > 0. Since

|tαA(t+A)−1(x− xε)| ≤ C|tαA(t+A)−1x|,

for x ∈ DA(α, p), Lebesgue’s theorem implies xε → x also in DA(α, p), i.e., D(A)
is dense in DA(α, p). To prove density of D(A) in DA(α, 0), observe that the set
{tαA(t + A)−1x : t > 0} is relatively compact in X, in case x ∈ DA(α, 0). But
this implies

tαA(t+A)−1xε = (1 + εA)−1tαA(t+A)−1x → tαA(t+A)−1x

uniformly in t > 0, which shows xε → x also in DA(α, 0).

(vi) If −A generates a bounded C0-semigroup in X, it follows from the definition
of the spaces DA(α, r) that T (t) is also bounded in DA(α, p). Since T (·)x is contin-
uous in D(A) for each x ∈ D(A), the density of the embedding D(A) ↪→ DA(α, r)
for r �= ∞ implies that T (t) is strongly continuous also in DA(α, r), r �= ∞. �
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4.4 Interpolation of Intersections
The following result on real interpolation of intersections is very useful.

Theorem 3.4.7. Let A,B ∈ PS(X) be densely defined and resolvent-commuting,
α ∈ (0, 1), 1 ≤ p < ∞.

Then (X,D(A) ∩ D(B))α,p ∼= (X,D(A))α,p ∩ (X,D(B))α,p.
In particular, if A+B with natural domain D(A+B) = D(A) ∩ D(B) is pseudo-
sectorial then

DA+B(α, p) ∼= DA(α, p) ∩DB(α, p).

Proof. We may assume that A,B are sectorial and invertible. The inclusion “ ⊂ ”
is trivial. To prove the converse inclusion, let x ∈ (X,D(A))α,p ∩ (X,D(B))α,p
be given. Define u(t) = (I + tA)−1(I + tB)−1x. As the resolvents of A and B
commute, it is clear that u ∈ C([0, 1];X) ∩ C((0, 1];D(A) ∩ D(B)), and

|t1−α−1/pAu(t)|p = |t1−α−1/p(I + tB)−1A(I + tA)−1x|p ≤ MB |x|DA(α,p),

as well as

|t1−α−1/pBu(t)|p = |t1−α−1/p(I + tA)−1B(I + tB)−1x|p ≤ MA|x|DB(α,p).

Next we have u̇(t) = −(I+ tB)−1(I+ tA)−1(A(I+ tA)−1x+B(I+ tB)−1x), hence
in the same way as above we obtain

|t1−α−1/pu̇(t)|p ≤ MAMB(|x|DA(α,p) + |x|DB(α,p)).

This shows the converse inclusion. �
4.5 Vector-Valued Fractional Sobolev, Besov and Bessel-Potential Spaces
(i) Let Y be a Banach space and 1 < p < ∞, ω > 0. Then Bp is sectorial
in X0 := Lp(R+;Y ) with domain X1 = 0H

1
p(R+;Y ), and spectral angle π/2,

according to Section 3.2.3. Then we define the vector-valued Besov spaces by

0B
α
pq(R+;Y ) := DBp(α, q) = (X0, X1)α,q, α ∈ (0, 1), q ∈ [1,∞] ∪ {0}, (3.67)

and the vector-valued fractional Sobolev spaces by

0W
α
p (R+;Y ) := 0B

α
pp(R+;Y ) = DBp

(α, p) = (X0, X1)α,p, α ∈ (0, 1). (3.68)

(ii) This definition extends to the weighted spaces X0,μ = Lp,μ(R+;Y ) for 1/p <
μ ≤ 1, as Bp,μ is also sectorial in this space, with domain X1,μ = 0H

1
p,μ(R+;Y ),

by Proposition 3.2.9. So we set

0B
α
pq,μ(R+;Y ) := DBp,μ(α, q) = (X0,μ, X1,μ)α,q, (3.69)

for α ∈ (0, 1), q ∈ [1,∞] ∪ {0}, and

0W
α
p,μ(R+;Y ) := 0B

α
pp,μ(R+;Y ) = DBp,μ

(α, p) = (X0,μ, X1,μ)α,p (3.70)
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for α ∈ (0, 1). We recall the isomorphism Φμ from Section 3.2.4 defined by
Φμ(u)(t) = t1−μu(t) which maps Xj,μ onto Xj for j = 0, 1, by Proposition 3.2.6.
Interpolating these isomorphisms by the real method implies that

Φμ : 0B
α
pq,μ(R+;Y ) → 0B

α
pq(R+;Y )

is an isomorphism as well, hence we have the characterizations

u ∈ 0B
α
pq,μ(R+;Y ) ⇔ t1−μu ∈ 0B

α
pq(R+;Y ),

and

u ∈ 0W
α
p,μ(R+;Y ) ⇔ t1−μu ∈ 0W

α
p (R+;Y ),

for all α ∈ (0, 1), q ∈ [1,∞] ∪ {0}.

(iii) Similarly, as Bp is also sectorial in Lp(R;Y ), we define

Bα
pq(R;Y ) := (Lp(R;Y ), H1

p (R;Y ))α,q, Wα
p (R;Y ) := Bα

pp(R;Y ),

for p ∈ (1,∞), α ∈ (0, 1), and q ∈ [1,∞]∪{0}. Next we let Bα
pq,μ(R+;Y ) be defined

by

Bα
pq,μ(R+;Y ) = (Lp,μ(R+;Y ), H1

p,μ(R+;Y ))α,q.

(iv) The vector-valued Bessel-potential spaces Hα
p (R;Y ), Hα

p (R+;Y ), as well as

0H
α
p (R+;Y ) and 0H

α
p,μ(R+;Y ) are defined in an analogous way, employing the

complex interpolation method. From the isomorphism Φμ we deduce

u ∈ 0H
α
p,μ(R+;Y ) ⇔ t1−μu ∈ 0H

α
p (R+;Y ),

for all p ∈ (1,∞) and α ∈ (0, 1).

(v) Sobolev Embeddings. Consider the operator B = −d/dt in X0 = Lp,μ(R+;Y )
with maximal domain

X1 = D(B) = H1
p,μ(R+;Y ).

Here we take p ∈ (1,∞), μ ∈ (1/p, 1], α ∈ (0, 1] and set β := α−1+μ−1/p. Then
for β > 0 the Sobolev embedding D(Bα) ↪→ C0(R̄+;Y ) is valid. More precisely,
there a is constant C > 0 such that

|u(t)|Y ≤ C|u|D(Bα), t ≥ 0, u ∈ D(Bα).

By Section 3.4.3 and general interpolation theory, this shows that Kα
p,μ(R+;Y ) ↪→

C0(R̄+;Y ) for K ∈ {W,H}, as long as β > 0.
In fact, it is easy to verify the identity

u(t) =

∫ ∞

t

e−(s−t) (s− t)α−1

Γ(α)
(B + 1)αu(s) ds, s > 0,
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for, say, u ∈ D(B). Applying Hölder’s inequality, this relation implies

|u(t)|Y ≤ ϕ0(t)|(B + 1)αu|X0 ≤ Cϕ0(t)|u|D(Bα),

where

ϕ0(t) = [Γ(α)−1

∫ ∞

t

e−p′(s−t)(s− t)p
′(α−1)sp

′(μ−1) ds]1/p
′
.

In case β > 0, an easy estimate yields

sup
t≥0

(1 + t)(1−μ)ϕ0(t) < ∞,

which proves the assertion, by density of D(B) in D(Bα), and the embedding
H1

p (R+;Y ) ↪→ C0(R̄+;Y ).
We note that in case μ < 1, u(t) has even uniform polynomial decay as

t → ∞.

(vi) Hölder Embeddings. For β > 0 the Hölder embedding D(Bα) ↪→ Ċβ
b (R̄+;Y )

is valid. More precisely, there is a constant C > 0 such that

|u(t+ h)− u(t)|Y ≤ Chβ |Bαu|X0
, t ≥ 0, u ∈ D(Bα).

By Section 3.4.3 and general interpolation theory, this shows Kα
p,μ(R+;Y ) ↪→

Cβ−ε
b (R̄+;Y ) for K ∈ {W,H}, as long as β > ε > 0. We observe that in case Y

belongs to the class HT , we may set ε = 0. In fact, in this case D(Bα) = (X0, X1)α
by Theorems 3.3.7 and by the analogue of Theorem 4.3.14 for B.

To prove the claim, as in (v) we use the identity

u(t) =

∫ ∞

t

(s− t)α−1

Γ(α)
Bαu(s) ds, s > 0,

where u ∈ D(B). Then for t, h ≥ 0,

u(t+ h)− u(t) = Γ(α)−1

∫ ∞

t+h

[(s− (t+ h))α−1 − (s− t)α−1]Bαu(s) ds

− Γ(α)−1

∫ t+h

t

(s− t)α−1Bαu(s)ds =: I1 + I2.

We estimate separately by Hölder’s inequality.

|I1| ≤ [Γ(α)−1

∫ ∞

t+h

|(s− (t+ h))α−1 − (s− t)α−1|p′
sp

′(μ−1) ds]1/p
′ |Bαu|X0

=: ϕ1(h)|Bαu|X0
,

and

|I2| ≤ [Γ(α)−1

∫ t+h

t

(s− t)p
′(α−1)sp

′(μ−1) ds]1/p
′ |Bαu|X0

=: ϕ2(h)|Bαu|X0
.
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Next, we have

ϕ1(h) ≤ c[

∫ ∞

0

(τα−1 − (τ + h)α−1)p
′
(τ + h)p

′(μ−1) dτ ]1/p
′

= chβ [

∫ ∞

0

(rα−1 − (r + 1)α−1)p
′
(r + 1)p

′(μ−1) dr]1/p
′
,

and

ϕ2(h) ≤ [

∫ h

0

τp
′(α+μ−2) dτ ]1/p

′
= chβ .

Both integrals are absolutely convergent as p′(α + μ − 2) = p′(β − 1/p′) > −1,
provided β > 0. This proves the assertion.

4.6 A General Trace Theorem
We consider functions in the class Kα

p,μ(R+;Y ) ∩ Lp,μ(R+;DA(α, p)), where K ∈
{W,H}, 1 ≥ μ > 1/p, and α ∈ (0, 1] (recall that W 1

p = H1
p for p ∈ (1,∞)). For

β := α−1+μ−1/p > 0 we have Kα
p,μ(R+;Y ) ↪→ C(R̄+;Y ), so the question is what

regularity the initial value u0 := u(0) of the function u enjoys. We want to prove
the following result, which is employed at many places in subsequent sections.

Theorem 3.4.8. Suppose A is a densely defined invertible sectorial operator in Y
with spectral angle φA < π/2, p ∈ (1,∞), μ ∈ (1/p, 1], and β := α−1+μ−1/p > 0.
Let K ∈ {H,W}, and set Yα = DA(α, p) or Yα = D(Aα).

Then the trace map

tr : Kα
p,μ(R+;Y ) ∩ Lp,μ(R+;Yα) → DA(β, p), tr : u �→ u(0),

is linear and bounded. In particular, if u ∈ Kα
p,μ(R+;Y ) then the function v =

u− e−Atu0 belongs to 0K
α
p,μ(R+;Y ), and the trace map tr is surjective.

Note that the second assertion follows from Proposition 3.4.3.

Proof. (i) Observe that Hardy’s inequality implies

0H
1
p,μ(R+;Y ) ↪→ Lp,μ+1(R+;Y ),

hence interpolating with the trivial embedding

Lp,μ(R+;Y ) ↪→ Lp,μ(R+;Y )

we obtain by the complex method

0H
α
p,μ(R+;Y ) ↪→ Lp,μ+α(R+;Y ),

and by the real method

0W
α
p,μ(R+;Y ) ↪→ Lp,μ+α(R+;Y ),
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for all α ∈ (0, 1) and 1 ≥ μ > 1/p.

(ii) We can now prove assertion (c) of Proposition 3.4.3. For this purpose, let
x ∈ DA(α− 1 + μ− 1/p, p); then u(t) = e−Atx− e−tx ∈ 0H

1
p,μ+α−1(R+;X). Step

(i) implies u ∈ Lp,μ+α(R+;X), hence by complex interpolation u ∈ 0H
α
p,μ(R+;X),

hence e−Atx ∈ Hα
p,μ(R+;X). On the other hand, using real interpolation of type

(α, p) we obtain u ∈ 0W
α
p,μ(R+;X), hence e−Atx ∈ Wα

p,μ(R+;X). For the last as-

sertion, observe that v(t) = e−Atx−e−tA−1x as before belongs to Lp,μ+α(R+;X),
but it is also in Lp,μ+α−1(R+;XA) by Proposition 3.4.2. Hence complex inter-
polation yields u ∈ Lp,μ(R+;D(A

α)), which proves the last statement in (c) of
Proposition 3.4.3.

(iii) Let u ∈ Kα
p,μ(R+;Y ) ∩ Lp,μ(R+;DA(α, p)) be given and set u0 := u(0). We

decompose u0 as

u0 =
1

t

∫ t

0

u(s) ds+
1

t

∫ t

0

(u0 − u(s)) ds = u1 + u2.

This decomposition leads to

|u0|DA(β,p) ≤ |u1|DA(β,p) + |u2|DA(β,p) = I
1/p
1 + I

1/p
2 .

We first estimate I1.

I1 ≤
∫ 1

0

t−1−βp
[ ∫ t

0

|Ae−Atu(s)|ds
]p

dt

≤
∫ 1

0

t−1−βp
[ ∫ t

0

sp
′(μ−1) ds

]p/p′ ∫ t

0

sp(1−μ)|Ae−Atu(s)|p ds]dt

= cp,μ

∫ 1

0

t−1−βp+p/p′+pμ−p

∫ t

0

sp(1−μ)|Ae−Atu(s)|p ds]dt

= cp,μ

∫ 1

0

sp(1−μ)
[ ∫ 1

s

(t1−α|Ae−Atu(s)|)p dt/t
]
ds ≤ cp,μ|u|pLp,μ(R+;DA(α,p)),

where cp,μ = (1 + p′(μ− 1))−p/p′
.

In case Yα = D(Aα), we use the moment inequality to obtain the estimate
|t1−αA1−αe−At| ≤ C, and employ once more Hardy’s inequality, to the result

I1 ≤ C

∫ 1

0

t−μp
[ ∫ t

0

|Aαu(s)| ds
]p

dt

≤ C

∫ 1

0

|Aαu(s)|psp(1−μ) ds = C|u|Lp,μ(R+;D(Aα)).
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Next we estimate I2 by the bound C for tAe−At and Hardy’s inequality

I2 =

∫ 1

0

tp(1−β)
∣∣∣Ae−Att−1

∫ t

0

(u(s)− u0) ds
∣∣∣p dt/t

≤ C

∫ 1

0

t−1−βp−p
[ ∫ t

0

|u(s)− u0| ds
]p

dt ≤ C

∫ 1

0

|u(s)− u0|p
ds

s1+βp
.

By the embeddings in part (i), the last term is bounded by |u − u0|pKα
p,μ((0,1);Y ).

This completes the proof. �

Example 3.4.9. In this example Σ will always denote a compact sufficiently smooth
hypersurface.
(i) Consider as a base space Y the space Y = Lp(Σ). Let A = 1−ΔΣ, μ ∈ (1/p, 1].
Then for all α ∈ (0, 1] we have

tr[Wα
p,μ(R+;Lp(Σ)) ∩ Lp,μ(R+;W

2α
p (Σ))] = W 2α−2+2μ−2/p

p (Σ).

This will later on be used for α = 1, α = 1− 1/2p, and α = 1/2− 1/2p.

(ii) Consider as a base space Y again the space Y = Lp(Σ). Let A = (1 −ΔΣ)
2,

μ ∈ (1/p, 1]. Then we have

tr[W 1/2−1/2p
p,μ (R+;Lp(Σ)) ∩ Lp,μ(R+;W

2−2/p
p (Σ))] = W 4μ−2−6/p

p (Σ).

This result will be used in Section 6.6.

(iii) Consider as a base space Y the space Y = H2
p (Σ). Let A = 1−ΔΣ, μ ∈ (1/p, 1].

Then we have

tr[W 1−1/2p
p,μ (R+;H

2
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ))] = W 2+2μ−3/p

p (Σ).

This result will be also used in Section 6.6.

(iv) Consider as a base space Y the space Y = W
2−1/p
p (Σ). Let A = (1−ΔΣ)

1/2,
μ ∈ (1/p, 1]. Then we have

tr[H1
p,μ(R+;W

2−1/p
p (Σ)) ∩ Lp,μ(R+;W

3−1/p
p (Σ))] = W 2+μ−2/p

p (Σ).

This result will be used in Chapter 8.

3.5 Maximal Lp-Regularity

5.1 Maximal Lp-Regularity
Let J = R+ or (0, a) for some a > 0 and let f : J → X. We consider the
inhomogeneous initial value problem

u̇(t) +Au(t) = f(t), t ∈ J, u(0) = u0, (3.71)

in Lp(J ;X) for p ∈ (1,∞).
The definition of maximal Lp-regularity for (3.71) is as follows.
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Definition 3.5.1. Suppose A : D(A) ⊂ X → X is closed and densely defined.
Then A is said to belong to the class MRp(J ;X) – and we say that there is
maximal Lp-regularity for (3.71) – if for each f ∈ Lp(J ;X) there exists a unique
u ∈ H1

p (J ;X) ∩ Lp(J ;XA) satisfying (3.71) a.e. in J , with u0 = 0.

The closed graph theorem implies then that there exists a constant C > 0
such that

|u|Lp(J;X) + |u̇|Lp(J;X) + |Au|Lp(J;X) ≤ C|f |Lp(J;X). (3.72)

Combining Lp-maximal regularity with Section 3.4.1 we then obtain for the solu-
tion of (3.71) the estimate

|u|Lp(J;X) + |u̇|Lp(J;X) + |Au|Lp(J;X) ≤ C
(
|u0|DA(1−1/p,p) + |f |Lp(J;X)

)
. (3.73)

We denote the solution operator f �→ u by R. It is well known that there is
maximal Lp regularity for (3.71) only if −A generates an analytic semigroup. If
J = R+, then the semigroup is even of negative exponential type. We state this as

Proposition 3.5.2. Let A ∈ MRp(J ;X) for some p ∈ (1,∞).
Then the following assertions are valid.

(i) If J = (0, a) then there are constants ω ≥ 0 and M ≥ 1 such that

{z ∈ C : Re z ≤ −ω} ⊂ ρ(A) and |z(z +A)−1|B(X) ≤ M, Re z ≥ ω,

is valid. In particular, ω +A is sectorial with spectral angle < π/2.

(ii) If J = R+ then C− := {z ∈ C : Re z < 0} ⊂ ρ(A) and there is a constant
M ≥ 1 such that

|(z +A)−1|B(X) ≤
M

1 + |z| , Re z > 0,

is valid. In particular, A is sectorial with spectral angle < π/2 and 0 ∈ ρ(A).

Proof. Consider first the case J = (0, a). We show that there are constants ω1 ≥ 0
and M ≥ 1 such that

|μ||x|X + |x|XA
≤ M |(μ+A)x|X , x ∈ D(A), Reμ > ω1. (3.74)

In particular, μ + A is injective for each Reμ > ω1. Indeed, choose μ ∈ C+, x ∈
D(A), and and let vμ(t) := eμtx. Then vμ satisfies v̇μ+Avμ = gμ(t) and vμ(0) = x,
where gμ(t) = eμt(μ + A)x ∈ Lp(J ;X). The maximal regularity estimate (3.73)
implies

|etReμ|Lp(J;X)

(
μ|x|X + |x|XA

)
≤ C

(
|etReμ|Lp(J;X)|(μ+A)x|X + |x|XA

)
.

Choosing ω1 large enough such that 2C ≤ |etReμ|Lp(J;X) yields (3.74).
In a next step, which is more involved, we show that there is a constant

ω2 ≥ 0 such that μ + A is surjective for Reμ > ω2. Choose μ ∈ C+, x ∈ X,
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and define fμ ∈ Lp(R+;X) by fμ(t) = e−μtx. Let uμ(t;x) = R(fμ)(t), where R
denotes the solution operator for (3.71) with u0 = 0. Set

Uμx := 2Reμ

∫ a

0

e−μ̄tuμ(t;x) dt =
2Reμ

μ̄

[ ∫ a

0

e−μ̄tu̇μ(t;x) dt− e−μ̄auμ(a;x)
]
.

The maximal regularity property for (3.71) implies that there exists a constant
C > 0 such that

|Uμ|B(X) ≤ C(1 + |μ|)−1, Reμ > 0,

where ω is sufficiently large. In fact, we have with Hölder’s inequality and the
maximal regularity estimate (3.72)

|Uμx| ≤ 2(p′Reμ)1−1/p′ |uμ|Lp(J;X) ≤ C(Reμ)1/p|fμ|Lp(J;X) ≤ C|x|,

as well as

|Uμx| ≤ 2Reμ|μ|−1
[
(p′Reμ)−1/p′

+ e−aReμa1/p
′]|u̇μ|Lp(J;X)

≤ C|μ|−1(Reμ)1/p|fμ|Lp(J;X) ≤ |μ|−1C|x|.

Next we multiply (3.71) with f = fμ by e−μ̄t and integrate over J . This
yields by closedness of A and an integration by parts

(1− e−2aReμ)x = 2Reμ

∫ a

0

e−μ̄tfμ(t) dt = 2Reμ

∫ a

0

e−μ̄t[u̇μ(t;x) +Auμ(t;x)] dt

= (μ̄+A)Uμx+ 2(Reμ)e−μ̄auμ(a;x),

which after rearrangement becomes

(μ̄+A)Uμx = x− Vμx, Vμx := e−2aReμx+ 2(Reμ)e−μ̄auμ(a;x).

Estimating as before we obtain

|Vμx| ≤
[
e−2aReμ + Ce−aReμ(aReμ)1/p

′]|x|,
from which we see that there is ω2 > 0 such that |Vμ|B(X) ≤ 1/2, for each Reμ ≥
ω2. This then shows that μ̄+A is surjective for all such μ. Setting ω = max{ω1, ω2}
we conclude that μ+A : D(A) → X is invertible, and

(μ̄+A)−1 = Uμ(1− Vμ)
−1, Reμ > ω.

The estimate on Uμ (or the a priori estimate in (3.74)) then shows that ω + A is
sectorial with spectral angle < π/2.

For the case J = R+ the proof is simpler; one deduces in the same way the
relation (μ̄+A)−1 = Uμ with ω = 0. �
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There is variant of maximal Lp-regularity if one requires for the solution of
(3.71) only u ∈ C(R̄+;X) and u̇, Au ∈ Lp(R+;X). We call the class of operators
with this weaker property 0MRp(R+;X). The proof of Proposition 3.5.2 shows
that then in (ii) the condition 0 ∈ ρ(A) is dropped. More precisely we have

Corollary 3.5.3. Suppose A ∈ 0MRp(R+;X).

Then A is pseudo-sectorial in X with spectral angle < π/2.
Moreover, A ∈ MRp(R+;X) if and only if A ∈ 0MRp(R+;X) and 0 ∈ ρ(A).

Proposition 3.5.2 shows that for a finite interval J = (0, a) its length a > 0
plays no role for maximal Lp-regularity, and up to a shift of A, without loss of
generality, we may consider J = R+ and may assume that −A is the generator
of an analytic semigroup of negative exponential type. Therefore, in the sequel
we mostly consider J = R+ and abbreviate MRp(X) = MRp(R+;X) as well as

0MRp(X) = 0MRp(R+;X).

Unfortunately, the converse of Proposition 3.5.2 is false. Actually, it is a
formidable task to prove that a given operator A belongs to MRp(X). We want
to explain the difficulty in more detail. Obviously, the variation of parameters
formula

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)f(s) ds, t ≥ 0,

implies that there is maximal Lp-regularity for (3.71) if and only if the operator
R defined by

Rf := A

∫ t

0

e−A(t−s)f(s) ds

acts as a bounded operator on Lp(R+;X). It is nontrivial to show this since the
kernel of this convolution operator on the half-line is Ae−At which has a non-
integrable singularity near t = 0, behaving like 1/t, as follows from the well-known,
best possible estimate

|Ae−At|B(X) ≤
Me−ηt

t
, t > 0,

valid for exponentially stable analytic semigroups. Therefore, R is a singular in-
tegral operator on Lp(R+;X) with operator-valued kernel. This calls for vector-
valued harmonic analysis and we take up this topic in the next chapter.

5.2 Maximal Regularity in Weighted Lp-Spaces
We next study maximal regularity in spaces Lp,μ. The main result of this section
reads as follows.

Theorem 3.5.4. Let X be a Banach space, p ∈ (1,∞), and 1/p < μ ≤ 1. Then

A ∈ MRp(X) if and only if A ∈ MRp,μ(X).
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Proof. In the following we shall use the notation X0 := X and X1 := XA. It
follows that X1 is a Banach space which is densely embedded in X0.

(i) Suppose that A ∈ MRp(X). Then we know by Proposition (3.5.2) that −A
generates an exponentially stable analytic semigroup {e−tA : t ≥ 0} on X0. Let
f ∈ Lp,μ(R+;X0) be given. Let us consider the function u defined by the variation
of constants formula

u(t) :=

∫ t

0

e−(t−s)Af(s) ds, t > 0. (3.75)

It follows from Lemma 3.2.5(a) that this integral exists in X0. We will now rewrite
equation (3.75) in the following way

u(t) = tμ−1

∫ t

0

e−(t−s)As1−μf(s) ds+ tμ−1

∫ t

0

e−(t−s)A[(t/s)1−μ − 1]s1−μf(s) ds

= Φ−1
μ [(Bp +A)−1Φμf + TAΦμf ] = Φ−1

μ [v1 + v2].

Here we use the same notation for A and its canonical extension on Lp(R+;X0),
given by (Au)(t) := Au(t) for t > 0. By definition, TA is the integral operator

(TAg)(t) :=

∫ t

0

e−(t−s)A[(t/s)1−μ − 1]g(s) ds, g ∈ Lp(R+;X0).

Observe that the kernel KA(t) := Ae−tA satisfies the assumptions of Proposition
4.3.13 below with Y = X1. We conclude that

TA ∈ B(Lp(R+;X0), Lp(R+;X1)). (3.76)

It is a consequence of (3.76) that v2 has a derivative almost everywhere, given by

v̇2 = −ATAΦμf + (1− μ)t−μ

∫ t

0

e−(t−s)Af(s) ds.

It follows from Hardy’s inequality, Lemma 3.4.5, that∫ ∞

0

∣∣∣t−μ

∫ t

0

e−(t−s)Af(s) ds
∣∣∣p dt ≤ M

∫ ∞

0

(
t−μ

∫ t

0

|f(s)| ds
)p

dt ≤ cM |f |pLp,μ

and we infer that
v2 ∈ 0H

1
p (R+;X0) ∩ Lp(R+;X1). (3.77)

It follows from our assumption that v1 enjoys the same regularity properties as v2
and consequently, v satisfies (3.77) as well. Proposition 3.2.6 then shows that

u ∈ 0H
1
p,μ(R+;X0) ∩ Lp,μ(R+;X1). (3.78)

It is now easy to verify that u is in fact a solution of the Cauchy problem (3.71)
with initial value 0. We have thus shown that A ∈ MRp,μ(X).
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(b) Suppose now that A ∈ MRp,μ(X0). As in the case μ = 1 one shows that
A generates a bounded analytic C0-semigroup {e−tA; t ≥ 0} on X0. Let f ∈
Lp(R+;X0) be given. Here we use the representation

u(t) = t1−μ

∫ t

0

e−(t−s)Asμ−1f(s) ds−
∫ t

0

e−(t−s)A[(t/s)1−μ − 1]f(s) ds

= Φμ(Bp,μ +A)−1Φ−1
μ f − TAf,

with TA as above. The assertion follows now by similar arguments as in (a). �

We will now consider the Cauchy problem (3.71) in Lp,μ(R+;X). Define the
function spaces

E0,μ := E0,μ(R+) : = Lp,μ(R+;X0),

E1,μ := E1,μ(R+) : = H1
p,μ(R+;X0) ∩ Lp,μ(R+;X1),

where X0 := X and X1 := XA. It is not difficult to verify that the norm

|u|E1,μ
:= (|u|pLp,μ(R+;X1)

+ |u̇|pLp,μ(R+;X0)
)1/p (3.79)

turns E1,μ(R+) into a Banach space. The result reads as follows

Theorem 3.5.5. Let p ∈ (1,∞) and 1/p < μ ≤ 1. Suppose that A ∈ MRp(X).
Then ( d

dt
+A, tr

)
∈ Isom(E1,μ(R+),E0,μ(R+)×Xγ,μ),

where tr(u) := u(0) denotes the trace operator, and Xγ,μ = DA(μ− 1/p, p).

Proof. We observe that ( d
dt + A) ∈ B(E1,μ,E0,μ) and tr ∈ B(E1,μ, Xγ,μ) yield

boundedness of ( d
dt + A, tr). Theorem 3.5.4 shows that the operator (Bp,μ + A)

with domain

D(Bp,μ +A) = D(Bp,μ) ∩ D(A) = {u ∈ E1,μ(R+) : u(0) = 0}

is invertible. Let (f, u0) ∈ E0,μ ×Xγ,μ be given and let

u := (Bp,μ +A)−1f + e−tAu0. (3.80)

Clearly, u solves the Cauchy problem (3.71). Therefore, ( d
dt + A, tr) is surjective.

The assertion follows now from the open mapping theorem. �

If 1 < p < ∞ and μ = 1 the semigroup of translations T (τ)u(t) = u(t + τ)
is strongly continuous in E1,1, which implies that the time-trace tr maps E1,1 into
C(R̄+;Xγ,1), with bound

sup
t≥τ

|u(t)|Xγ,1 ≤ C|T (τ)u|E1,1 → 0 as τ → ∞.
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Therefore, we have the embedding

E1,1(R+) ↪→ C0(R̄+;Xγ,1). (3.81)

On the other hand, as the time weights t1−μ act only near t = 0 we obtain

E1,μ(R+) ↪→ E1,1(δ,∞), for each δ > 0.

This implies
E1,μ(R+) ↪→ C(R̄+;Xγ,μ) ∩ C0(R+;Xγ,1), (3.82)

which shows parabolic regularization. This will be very useful in later chapters.
It is sometimes important to also have solvability results for the non-

autonomous problem

u̇+A(t)u = f(t), t > 0, u(0) = u0.

This is the content of the next proposition.

Proposition 3.5.6. Suppose A ∈ C(J,B(X1, X0)) and A(t) ∈ Mp(J,X0) for each
t ∈ J = [0, a]. Then( d

dt
+A(·), tr

)
∈ Isom(E1,μ(J),E0,μ(J)×Xγ,μ).

In particular, the non-autonomous problem

u̇+A(t)u = f(t), t ∈ J̇ , u(0) = u0,

admits for each (f, u0) ∈ E0,μ(J)×Xγ,μ a unique solution u ∈ E1,μ(J).

Proof. (ii) As ( d
dt + A(·), tr) ∈ B(E1,μ(J),E0,μ(J)×Xγ,μ) it suffices to show that

( d
dt +A(·), tr) is bijective, thanks to the open mapping theorem. By a perturbation

and compactness argument one shows that there is a constant M such that∣∣∣( d

dt
+A(s), tr

)−1∣∣∣
B(E1,μ(J),E0,μ(J)×Xγ,μ)

≤ M, s ∈ J.

By compactness of J we can choose points 0 = s0 < s1 · · · < sm+2 = a such that

max
sj≤t≤sj+2

|A(t)−A(sj)|B(X1,X0) ≤ 1/2M, j = 0, . . . ,m.

A Neumann series argument then yields with Jj = (sj , sj+1)( d

dt
+A(·), tr

)
∈ Isom(E1,μ(Jj),E0,μ(Jj)×Xγ,μ), j = 0, . . . ,m. (3.83)

Let (f, x) ∈ E0,μ(J) × Xγ,μ be given. Then we solve the problem with maximal
Lp,μ-regularity on the first interval J0. The final value u(s1) then belongs to Xγ ,
hence we solve the problem on J1 with this initial value and maximal Lp-regularity,
and then by induction on all of the remaining intervals. �
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5.3 Maximal L2,μ-Regularity in Hilbert Spaces
Let X be a Hilbert space and let A be pseudo-sectorial with φA < π

2 . Then −A is
the generator of a bounded holomorphic C0-semigroup, in particular the domain
of A is also dense in X. In this subsection we want to consider the L2-theory of
the abstract Cauchy problem

u̇(t) +Au(t) = f(t), t > 0, u(0) = u0, (3.84)

where f ∈ L2,μ(R+;X). It is the purpose of this subsection to give a simple proof
of maximal-L2-regularity in this case.

Theorem 3.5.7. Let X be a Hilbert space and A ∈ PS(X) and such that φA < π
2 .

Then A ∈ 0MR2(X).

Proof. The proof of the result follows by the vector-valued Paley-Wiener theorem
on the halfline which is valid in a Hilbert space setting. This result states that
in case X is a Hilbert space, the Laplace transform is an isometric isomorphism
from L2(R+;X) onto the vector-valued Hardy space H2(C+;X) equipped with
the norm

|u|2H2(C+;X) =
1

2π

∫
R

|u(iρ)|2dρ.

Let f ∈ D(R+;X) first. Then (3.84) admits a unique strong solution u. Laplace
transform yields

û(λ) = (λ+A)−1f̂(λ), Reλ > 0.

Uniform boundedness of λ(λ+A)−1 on C+ then implies

|λû(λ)|+ |Aû(λ)| ≤ C|f̂(λ)|, Reλ > 0,

with a constant C > 0 depending only on A, hence by the Paley-Wiener theorem

|u̇|L2(R+;X) + |Au|L2(R+;X) ≤ C|f |L2(R+;X). (3.85)

Now D(R+;X) is dense in L2(R+;X), hence a standard approximation argument
applies to obtain this estimate also for arbitrary f ∈ L2(R+;X). �
5.4 Maximal Lp-Regularity in Real Interpolation Spaces
It is a remarkable fact that maximal Lp-regularity holds in the real interpolation
spacesDA(α, p) if−A generates an analytic C0-semigroup inX. This is the content
of the following result.

Theorem 3.5.8. Let X be a Banach space, A ∈ S(X) invertible with φA < π/2, let
α ∈ (0, 1), and p ∈ [1,∞).

Then A ∈ MRp(DA(α, p)).

Proof. Let f ∈ Lp(R+;DA(α, p)) be given and set u = e−At ∗ f ; we have to prove

|Au|Lp(R+;DA(α,p)) ≤ C|f |Lp(R+;DA(α,p)),
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for some constant C > 0 independent of f . For this purpose, note that

|Ae−AτAu(t)| ≤
∫ t

0

|A2e−A(τ+s)f(t−s)| ds ≤ M

∫ t

0

|Ae−A(τ+s)f(t−s)|(τ+s)−1 ds,

hence by Hölder’s inequality

|Ae−AτAu(t)|p ≤ M
[ ∫ t

0

(τ + s)−ap′
ds
]p/p′ ∫ t

0

|Ae−A(τ+s)f(t− s)|p(τ + s)−bp ds,

where a+ b = 1 and a > 1/p′ to ensure[ ∫ t

0

(τ + s)−ap′
ds
]p/p′

≤
[ ∫ ∞

0

(τ + s)−ap′
ds
]p/p′

= c1τ
p(1/p′−a) < ∞.

Integrating over t > 0 and using Fubini’s theorem, this yields

|Ae−τAAu|pLp(R+;X) ≤ c1Mτp(1/p
′−a)

∫ ∞

0

∫ ∞

s

|Ae−A(τ+s)f(t− s)|p(τ + s)−bp dtds

= c1Mτp(1/p
′−a)

∫ ∞

0

∫ ∞

0

|Ae−A(τ+s)f(t)|p(τ + s)−bp dtds.

From this estimate we obtain integrating over τ > 0 with weight τp(1−α)−1, using
again Fubini’s theorem

|Au|pLp(R+;DA(α,p)) ≤ c1M

∫ ∞

0

∫ ∞

0

∫ ∞

0

τβ−1|Ae−A(τ+s)f(t)|p(τ + s)−bpdsdτdt

= c1M

∫ ∞

0

∫ ∞

0

∫ ∞

τ

τβ−1|Ae−Asf(t)|ps−bpdsdτdt

= c1M

∫ ∞

0

∫ ∞

0

|Ae−Asf(t)|p
∫ s

0

τβ−1dτs−bpdsdt

= c1Mβ−1

∫ ∞

0

∫ ∞

0

|Ae−Asf(t)|psβ−bpdsdt

= c1Mβ−1|f |Lp(R+;DA(α,p)),

with β = (1− α)p+ p/p′ − ap > 0 provided a < 1− α+ 1/p′, and then β − bp =
(1− α)p− 1. The argument for p = 1 is similar and even simpler. �
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