
Chapter 2

Tools from Differential
Geometry

In this chapter we introduce the necessary background in differential geometry of
closed compact hypersurfaces in Rn. We investigate the differential geometric prop-
erties of embedded hypersurfaces in n-dimensional Euclidean space, introducing
the notions of Weingarten tensor, principal curvatures, mean curvature, tubular
neighbourhood, surface gradient, surface divergence, and Laplace-Beltrami oper-
ator. The main emphasis lies in deriving representations of these quantities for
hypersurfaces Γ = Γρ that are given as parameterized surfaces in normal direction
of a fixed reference surface Σ by means of a height function ρ. We derive all of
the aforementioned geometric quantities for Γρ in terms of ρ and Σ. It is also
important to study the mapping properties of these quantities in dependence of
ρ, and to derive expressions for their variations. For instance, we show that

κ′(0) = trL2
Σ +ΔΣ,

where κ = κ(ρ) denotes the mean curvature of Γρ, LΣ the Weingarten tensor
of Σ, and ΔΣ the Laplace-Beltrami operator on Σ. This is done in Section 2.
We also study the first and second variations of the area and volume functional,
respectively. In Section 3 we show, among other things, that C2-hypersurfaces can
be approximated in a suitable topology by smooth (i.e., analytic) hypersurfaces.
This leads, in particular, to the existence of parameterizations. In Section 4 we
show that the class of compact embedded hypersurfaces in Rn gives rise to a
new manifold (whose points are the compact embedded hypersufaces). We also
show that the class M2(Ω, r) of all compact embedded hypersurfaces contained
in a bounded domain Ω ⊂ Rn, and satisfying a uniform ball condition with radius
r > 0, can be identified with a subspace of C2(Ω̄). This is important, as it allows us
to derive compactness and embedding properties forM2(Ω, r). Finally, in Section 5
we consider moving hypersurfaces and prove various transport theorems.
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Figure 2.1: A typical chart for Σ.

2.1 Differential Geometry of Hypersurfaces

We consider a closed embedded hypersurface Σ of class Ck, k ≥ 3, enclosing a
bounded domain Ω in Rn. Thus for each point p ∈ Σ there is a ball B(p, r) ⊂ Rn

and a diffemorphism Φ : B(p, r) → U ⊂ Rn such that Φ(p) = 0 ∈ U and

Φ−1(U ∩ (Rn−1 × {0})) = B(p, r) ∩ Σ.

We may assume that Σ is connected; otherwise we would concentrate on one of its
components. The points of Σ are denoted by p, and νΣ = νΣ(p) means the outer
unit normal of Σ at p. Locally at p ∈ Σ we have the parameterization

p = φ(θ) := Φ−1(θ, 0),

where θ runs through an open parameter set Θ ⊂ Rn−1. We denote the tangent
vectors generated by this parameterization by

τi = τi(p) =
∂

∂θi
φ(θ) = ∂iφ, i = 1, . . . , n− 1. (2.1)

These vectors τi form a basis of the tangent space TpΣ of Σ at p. Note that
(τi|νΣ) = 0 for all i, where (·|·) := (·|·)Rn denotes the Euclidean inner product
in Rn. Similarly, we set τij = ∂i∂jφ, τijk = ∂i∂j∂kφ, and so on. In the sequel we
employ Einstein’s summation convention, which means that equal lower and upper
indices are to be summed, and δij are the entries of the unit matrix I. For two
vectors a, b ∈ Rn the tensor product a⊗b ∈ B(Rn) is defined by [a⊗b](x) = (b|x)a
for x ∈ Rn. If a belongs to the tangent space TpΣ, we may represent a as a linear
combination of the basis vectors of TpΣ, i.e., a = aiτi. The coefficients ai are called
the contravariant components of a. On the other hand, this vector a is also uniquely
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characterized by its covariant components, ai defined by ai = (a|τi), which means
that the covariant components are the coefficients of the representation of a in the
basis {τ i} dual to the basis {τj}, defined by the relations (τ i|τj) = δij . Similarly,
if K ∈ B(TpΣ) is a tensor we have the representations

K = kijτi ⊗ τj = kijτ
i ⊗ τ j = kijτi ⊗ τ j = kji τ

i ⊗ τj ,

with e.g. kij = (τi|Kτj) and kij = (τ i|Kτj). Moreover, trK, the trace of K, is
given by

trK = (Kτi|τ i) = (Kτ i|τi). (2.2)

In particular, tr [a⊗ b] = (a|b) = aib
i = aibi.

1.1 The First Fundamental Form
Define

gij = gij(p) = (τi(p)|τj(p)) = (τi|τj), i, j = 1, . . . , n− 1. (2.3)

The matrix G = [gij ] is called the first fundamental form of Σ. Note that G is
symmetric and also positive definite, since

(Gξ|ξ) = gijξ
iξj = (ξiτi|ξjτj) = |ξiτi|2 > 0, for all ξ ∈ Rn−1, ξ �= 0.

We let G−1 = [gij ], hence gikg
kj = δji , and gilglj = δij . The determinant g := detG

is positive. Let a be a tangent vector. Then a = aiτi implies

ak = (a|τk) = ai(τi|τk) = aigik and ai = gikak.

Thus the fundamental form G allows for the passage from contra- to covariant
components of a tangent vector and vice versa. If a, b are two tangent vectors,
then

(a|b) = aibj(τi|τj) = gija
ibj = ajb

j = aibi = gijaibj =: (a|b)Σ
defines an inner product on TpΣ in the canonical way, the Riemannian metric. By
means of the identity

(gikτk|τj) = gikgkj = δij

we further see that
τ i = gijτj and τj = gijτ

i.

This implies the relations

kij = girkrj = gjrk
ri, kij = girkjr, kij = girk

r
j ,

for any tensor K ∈ B(TpΣ). We set for the moment G = gijτi ⊗ τj and have
equivalently

G = gijτi ⊗ τj = gijτ
i ⊗ τ j = τi ⊗ τ i = τ j ⊗ τj .

Let u = ukτk + (u|νΣ)νΣ be an arbitrary vector in Rn. Then

Gu = gijτi(τj |u) = gijτiu
kgjk = ukτk,
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i.e., G equals the orthogonal projection PΣ = I − νΣ ⊗ νΣ of Rn onto the tangent
space TpΣ at p ∈ Σ. Therefore, we have the relation

PΣ = I − νΣ ⊗ νΣ = τi ⊗ τ i = τ i ⊗ τi,

where I denotes the identity map on Rn. These properties explain the meaning of
the first fundamental form [gij ].

1.2 The Second Fundamental Form
Define

lij = lij(p) = (τij |νΣ), L = [lij ]. (2.4)

L is called the second fundamental form of Σ. Note that L is symmetric, and
differentiating the relations (τi|νΣ) = 0 we derive

lij = (τij |νΣ) = −(τi|∂jνΣ) = −(τj |∂iνΣ). (2.5)

The matrix K with entries lij , defined by

lij = girlrj , K = G−1L,

is called the shape matrix of Σ. The eigenvalues κi of K are called the principal
curvatures of Σ at p, and the corresponding eigenvectors ηi determine the principal
curvature directions. Observe that Kηi = κiηi is equivalent to Lηi = κiGηi, hence
the relation

(Lηi|ηi) = κi(Gηi|ηi)
and symmetry of L and G show that the principal curvatures κi are real. Moreover,

κi(Gηi|ηj) = (Lηi|ηj) = (ηi|Lηj) = κj(ηi|Gηj) = κj(Gηi|ηj)

implies that principal directions corresponding to different principal curvatures are
orthogonal with respect to the inner product (G · |·)Rn−1 . We can always assume
that eigenvectors associated to an eigenvalue κi are orthogonal w.r.t. (G · |·)Rn−1

in case κi has geometric multiplicity greater than one. The eigenvalues κi are
semi-simple, i.e., N((κi −K)2) = N(κi −K). In fact, suppose x ∈ N((κi −K)2).
Then

(κi −K)x =

mi∑
r=1

trηi,r,

with tr ∈ R, where {ηi,r : 1 ≤ r ≤ mi} is an (orthogonal) basis of N(κi − K).
Therefore,

tk(Gηi,k|ηi,k) =
( mi∑

r=1

trGηi,r|ηi,k
)
= (G(κi −K)x|ηi,k) = (x|(κiG− L)ηi,k) = 0

for 1 ≤ k ≤ mi. Since G is positive definite, tk = 0, and hence x ∈ N(κi − K).
This shows that K is diagonalizable.
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The trace of K, i.e., the first invariant of K, is called the (n− 1)-fold mean
curvature κ of Σ at p, i.e., we have

κΣ := trK = lii = gij lij =

n−1∑
i=1

κi. (2.6)

The Gaussian curvature KΣ is defined as the last invariant of K, i.e.,

KΣ = detK = g−1 detL = Πn−1
i=1 κi.

We define the Weingarten tensor LΣ by means of

LΣ = LΣ(p) = lijτi ⊗ τj = lijτi ⊗ τ j = lji τ
i ⊗ τj = lijτ

i ⊗ τ j . (2.7)

LΣ is symmetric with respect to the inner product (·|·) in Rn. We note that
LΣ ∈ B(Rn) leaves the tangent space TpΣ invariant and, moreover, LΣνΣ = 0.
This shows that LΣ enjoys the decomposition

LΣ =

[
LΣ|TpΣ 0

0 0

]
: TpΣ⊕ RνΣ → TpΣ⊕ RνΣ. (2.8)

In particular, we note

trLΣ(p) = tr[LΣ|TpΣ], det[I + rLΣ(p)] = det[(I + rLΣ(p))|TpΣ] (2.9)

for r ∈ R. We will in the following not distinguish between LΣ and its restriction
to TpΣ. Observe that

trLΣ = lii = gij lij = κΣ, (2.10)

and the eigenvalues of LΣ in TpΣ are the principal curvatures, since

LΣηk = lij(τ
j |ηk)τi = lijη

j
kτi = κkη

i
kτi = κkηk.

The remaining eigenvalue of LΣ in Rn is 0 with eigenvector νΣ.

1.3 The Third Fundamental Form
To obtain another property of the shape matrix K we differentiate the identity
|νΣ|2 = 1 to the result (∂iνΣ|νΣ) = 0. This means that ∂iνΣ belongs to the tangent
space, hence ∂iνΣ = γk

i τk for some numbers γk
i . Taking the inner product with τj

we get
γk
i gkj = γk

i (τk|τj) = (∂iνΣ|τj) = −(τij |νΣ) = −lij ,

hence
γr
i = γk

i gkjg
jr = −lijg

jr = −grj lji = −lri ,

where we used symmetry of L and G. Therefore we have

∂iνΣ = −lri τr = −LΣτi, i = 1, . . . , n− 1, (2.11)
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the Weingarten relations. Furthermore,

0 = ∂i(νΣ|∂jνΣ) = (∂iνΣ|∂jνΣ) + (νΣ|∂i∂jνΣ)

implies

−(∂i∂jνΣ|νΣ) = (∂iνΣ|∂jνΣ) = lri l
s
j (τr|τs) = lri grsl

s
j = lisg

srlrj = lri lrj , (2.12)

which are the entries of the matrix LG−1L, i.e., the covariant components of L2
Σ.

This is the so-called third fundamental form of Σ. In particular this implies the
relation

trL2
Σ = (LΣτ

i|LΣτi) = −gij(∂i∂jνΣ|νΣ), (2.13)

which will be useful later on. Moreover, we deduce from (2.12)

trL2
Σ = (LΣτ

i|LΣτi) = gij lri lrj = lri l
i
r =

n−1∑
i=1

κ2
i . (2.14)

1.4 The Christoffel Symbols
The Christoffel symbols are defined according to

Λij|k = (τij |τk), Λk
ij = gkrΛij|r. (2.15)

Their importance stems from the representation of τij in the basis {τk, νΣ} of Rn

via
τij = Λk

ijτk + lijνΣ. (2.16)

Indeed, suppose τij = akijτk + bijνΣ. Then lij = (τij |νΣ) = bij and

Λij|k = (τij |τk) = (arijτr|τk) = gkra
r
ij .

Therefore, asij = gskgkra
r
ij = gskΛij|k = Λs

ij . To express the Christoffel symbols in
terms of the fundamental form G we use the identities

∂kgij = ∂k(τi|τj) = (τik|τj) + (τi|τjk),
∂igkj = ∂i(τk|τj) = (τik|τj) + (τk|τij),
∂jgik = ∂j(τi|τk) = (τij |τk) + (τi|τjk),

which yield
∂igjk + ∂jgik − ∂kgij = 2(τij |τk),

i.e.,

Λij|k =
1

2
[∂igjk + ∂jgik − ∂kgij ]. (2.17)

Another important identity follows by differentiation of the relations (τ j |τk) = δjk
and (τ j |νΣ) = 0. We have

(∂iτ
j |τk) = −(τ j |τik) = −Λr

ik(τ
j |τr) = −Λj

ik,
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and
(∂iτ

j |νΣ) = −(τ j |∂iνΣ) = (τ j |LΣτi) = lji ,

hence
∂iτ

j = −Λj
ikτ

k + lji νΣ. (2.18)

This gives another interpretation of the Christoffel symbols and of the second
fundamental form.

1.5 The Surface Gradient
Let ρ be a scalar field on Σ. The surface gradient ∇Σρ at p is a vector which
belongs to the tangent space of Σ at p. Thus it can be characterized by its

• covariant components ai, i.e., ∇Σρ = aiτ
i, or by its

• contravariant components ai, i.e., ∇Σρ = aiτi.

The chain rule
∂i(ρ ◦ φ) = (∇Σρ|τi)

yields ai = ∂i(ρ ◦ φ) = ∂iρ. This implies

ai = (∇Σρ|τi) = ak(τk|τi) = akgki,

hence
∇Σρ = τ i∂iρ = (gij∂jρ)τi. (2.19)

Suppose ρ̃ is a C1-extension of ρ in a neighbourhood of Σ. We then have

∇ρ̃ = (∇ρ̃|νΣ)νΣ + (∇ρ̃|τi)τ i = (∇ρ̃|νΣ)νΣ + (∇Σρ|τi)τ i,

and hence, the surface gradient ∇Σρ is the projection of ∇ρ̃ onto TpΣ, that is,

∇Σρ = PΣ∇ρ̃. (2.20)

For a vector field f : Σ → Rm of class C1 we define similarly

∇Σf := gijτi ⊗ ∂jf = τ j ⊗ ∂jf. (2.21)

In particular, this yields for the identity map idΣ on Σ

∇Σ idΣ = gijτi ⊗ ∂jφ = gijτi ⊗ τj = PΣ,

and by the Weingarten relations

∇ΣνΣ = gijτi ⊗ ∂jνΣ = −gij lrj τi ⊗ τr = −lijτi ⊗ τj = −LΣ.

For the surface gradient of tangent vectors we have

∇Στk = gijτi ⊗ ∂jτk = gijτi ⊗ τjk = gijτi ⊗ (Λr
jkτr + ljkνΣ)

= gijΛr
jkτi ⊗ τr + likτi ⊗ νΣ = Λr

kjτ
j ⊗ τr + (LΣτk)⊗ νΣ.
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Finally we note that the surface gradient for tensors is defined according to

∇ΣK = τ j ⊗ ∂jK. (2.22)

1.6 The Surface Divergence
Let f be a tangential vector field on Σ. As before, f i = (f |τ i) denote the con-
travariant components of f , and fi = (f |τi) the covariant components, respectively.
The surface divergence of f is defined by

divΣ f =
1
√
g
∂i(

√
gf i) =

1
√
g
∂i(

√
ggijfj). (2.23)

As before, g := detG denotes the determinant of G = [gij ]. This definition ensures
that partial integration can be carried out as usual, i.e., that the surface divergence
theorem holds for tangential C1-vector fields f :∫

Σ

(∇Σρ|f)Σ dΣ = −
∫
Σ

ρ divΣf dΣ. (2.24)

In fact, if e.g. ρ has support in a chart φ(Θ) at p, then∫
Σ

(∇Σρ|f)Σ dΣ =

∫
Θ

∂i(ρ ◦ φ)[(f i ◦ φ)√g)] dθ

= −
∫
Θ

(ρ ◦ φ) 1
√
g
∂i[

√
g(f i ◦ φ)]√g dθ = −

∫
Σ

ρ divΣf dΣ.

Here we used that the surface measure in local coordinates is given by dΣ =
√
gdθ.

The general case follows from this argument by using a partition of unity. There
is another useful representation of surface divergence, given by

divΣf = gij(τj |∂if) = (τ i|∂if). (2.25)

It comes from

divΣf =
1
√
g
∂i(

√
ggijfj) =

1
√
g
∂i[

√
ggij(τj |f)],

since

(∂i(
√
ggijτj)|τk) = 0, k = 1, . . . , n− 1. (2.26)

Here (2.26) follows from

(∂i(
√
ggijτj)|τk) = ∂i(

√
ggij(τj |τk))−

√
ggij(τj |τki) = ∂k

√
g −√

ggij(τj |τki)

= ∂k
√
g − 1

2

√
ggij∂k(τj |τi) =

1

2
√
g

(
∂kg − ggij∂kgij

)
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and the relation

∂kg = g tr [G−1∂kG] = ggij∂kgij . (2.27)

The last assertion can be verified as follows:

∂kg = ∂k detG =

n−1∑
j=1

det [G1, · · · , ∂kGj , · · ·Gn−1]

= (detG)
n−1∑
j=1

det
(
G−1[G1, · · · , ∂kGj , · · · , Gn−1]

)
= g tr [G−1∂kG],

where G = [gij ] = [G1, · · · , Gn−1], with Gj the j-th column of G. From (2.25)
follows

divΣτk = gij(τj |τki) = gijΛki|j = Λi
ik.

Equation (2.25) can be used as a definition of surface divergence for general, not
necessarily tangential vector fields f , i.e., we have

divΣf := gij(τj |∂if) = (τ i|∂if), f ∈ C1(Σ,Rn). (2.28)

For example, consider f = νΣ. Then ∂iνΣ = −lki τk by the Weingarten relations
and we obtain

divΣνΣ = gij(τj |∂iνΣ) = −gij lij = −κΣ.

This way we have derived the important relation

κΣ = −divΣνΣ. (2.29)

With this in hand, we can now deduce the relation

divΣf = divΣPΣf − (f |νΣ)κΣ. (2.30)

We remind that the surface divergence theorem (2.24) only holds for tangential
vector fields. The surface divergence theorem for general vector fields reads as∫

Σ

(∇Σρ|f) dΣ = −
∫
Σ

ρ( divΣf + (f |νΣ)κΣ) dΣ, f ∈ C1(Σ,Rn). (2.31)

This follows from (2.24) and (2.30) by means of∫
Σ

(∇Σρ|f)Σ dΣ =

∫
Σ

(∇Σρ|PΣf)Σ dΣ = −
∫
Σ

ρ divΣPΣf dΣ.

Another representation of the surface divergence of a general vector field f is given
by

divΣf = (τ i|∂if) = tr[τ i ⊗ ∂if ] = tr∇Σf. (2.32)
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Suppose that f ∈ C1(Σ,Rn) admits a C1-extension f̃ in a neighbourhood of Σ.
Then

divΣf = divxf̃ − (νΣ|[∇xf̃ ]
TνΣ) = divxf̃ −

(
νΣ

∣∣∣ ∂f̃
∂νΣ

)
,

as can be deduced from

divΣf = (τ i|∂if) = (τ i|[∇xf̃ ]
Tτi)

= (τ i|[∇xf̃ ]
Tτi) + (νΣ|[∇xf̃ ]

TνΣ)− (νΣ|[∇xf̃ ]
TνΣ).

Suppose now that νΣ admits a C1-extension ν̃Σ in a neighbourhood of Σ such that
|ν̃Σ| = 1 is this neighbourhood. Then we have

2(νΣ(p)|[∇xν̃Σ(p)]
TνΣ(p)) =

d

dt
(ν̃Σ(p+ tνΣ(p)|ν̃(p+ tνΣ(p))

∣∣∣
t=0

= 0,

and we obtain
divxν̃Σ = divΣνΣ = −κΣ. (2.33)

Consequently, if Σ is given as the zero set of a C2-level function ϕ with ∇xϕ �= 0,
with ∇xϕ pointing in the direction of νΣ, we have the well-known formula

κΣ = −divx

(
∇xϕ

|∇xϕ|

)
.

Finally, the surface divergence for tensors is given by

divΣK = (τ j |∂jK) := (∂jK)Tτ j . (2.34)

This immediately yields the important relation

divΣPΣ = κΣνΣ. (2.35)

1.7 The Laplace-Beltrami Operator
The Laplace-Beltrami operator on Σ is defined for scalar fields by means of

ΔΣρ = divΣ∇Σρ,

which in local coordinates reads

ΔΣρ =
1
√
g
∂i[

√
ggij∂jρ].

Another representation of ΔΣ is given by

ΔΣρ = gij∂i∂jρ− gijΛk
ij∂kρ. (2.36)

This follows from (2.19), (2.25) and (2.18). Since at each point p ∈ Σ we may choose
a chart such that gij = δij and Λk

ij = 0 at p, we see from this representation that
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the Laplace-Beltrami operator is equivalent to the Laplacian at the point p; see
also Section 2.1.8 below.

To obtain another representation of ΔΣ, for a scalar C2-function we compute

∇2
Σρ = ∇Σ(τ

j∂jρ) = τ i ⊗ ∂i(τ
j∂jρ).

This yields with (2.18)

∇2
Σρ =(∂i∂jρ)τ

i ⊗ τ j + (∂jρ)τ
i ⊗ ∂iτ

j

=(∂i∂kρ− Λj
ik∂jρ)τ

i ⊗ τk + (LΣ∇Σρ)⊗ νΣ.

Taking traces gives

ΔΣρ = tr∇2
Σρ.

Similarly, the Laplace-Beltrami operator applies to general vector fields f accord-
ing to

ΔΣf = gij(∂i∂jf − Λr
ij∂rf).

For example, this yields, for the identity map idΣ on Σ,

ΔΣ idΣ = gij(∂i∂jφ− Λr
ij∂rφ) = gij(τij − Λr

ijτr),

and hence by (2.16)

ΔΣ idΣ = gij lijνΣ = κΣνΣ.

Finally, we prove the important formula

ΔΣνΣ = −∇ΣκΣ − [trL2
Σ]νΣ. (2.37)

In fact, we have from (2.12)

(ΔΣνΣ|νΣ) = gij(∂ijνΣ − Λr
ij∂rνΣ|νΣ) = gij(∂ijνΣ|νΣ) = −trL2

Σ.

Next observe that

(∂k∂jνΣ|τi)− (∂i∂jνΣ|τk) = ∂k(∂jνΣ|τi)− ∂i(∂jνΣ|τk)
= −∂k(νΣ|τij) + ∂i(νΣ|τkj) = ∂k(∂iνΣ|τj)− ∂i(∂kνΣ|τj)
= (∂iνΣ|τkj)− (∂kνΣ|τij) = Λr

kj(∂iνΣ|τr)− Λr
ij(∂kνΣ|τr)

= Λr
kj(∂rνΣ|τi)− Λr

ij(∂rνΣ|τk),

hence

(∂k∂jνΣ − Λr
kj∂rνΣ|τi) = (∂i∂jνΣ − Λr

ij∂rνΣ|τk).

This implies

(ΔΣνΣ|τi) = gjk(∂k∂jνΣ − Λr
kj∂rνΣ|τi) = (∂i∂jνΣ − Λr

ij∂rνΣ|τ j).
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On the other hand,

−(∇ΣκΣ|τi) = −∂iκΣ = ∂i(∂jνΣ|τ j)
= (∂i∂jνΣ|τ j) + (∂rνΣ|∂iτ r)
= (∂i∂jνΣ − Λr

ij∂rνΣ|τ j).

This proves formula (2.37).

1.8 The Case of a Graph over Rn−1

Suppose that Σ is a graph over Rn−1, i.e., there is a function h ∈ C2(Rn−1) such
that the hypersurface Σ is given by the chart φ(x) = [xT, h(x)]T, x ∈ Rn−1. Then
the tangent vectors are given by τi = [eTi , ∂ih]

T, where {ei} denotes the standard
basis in Rn−1. The (upward pointing) normal νΣ is given by

νΣ(x) = β(x)[−∇xh(x)
T, 1]T, β(x) = 1/

√
1 + |∇xh(x)|2.

The first fundamental form becomes gij = δij + ∂ih∂jh, hence

gij = δij − β2∂ih∂jh.

This yields
τ i = [[ei − β2∂ih∇xh]

T, β2∂ih]
T,

and with τij = [0, ∂i∂jh]
T,

lij = (τij |νΣ) = β∂i∂jh,

and therefore

κΣ = gij lij = β[Δxh− β2(∇2
xh∇xh|∇xh)] = divx

(
∇xh√

1 + |∇xh|2

)
.

The Christoffel symbols in this case are given by

Λij|k = ∂i∂jh∂kh, Λk
ij = β2∂i∂jh∂kh.

Suppose that Rn−1 × {0} is the tangent plane at φ(0) = 0 ∈ Σ. Then h(0) = 0
and ∇xh(0) = 0, hence at this point we have gij = δij , τi = [eTi , 0]

T, νΣ = [0, 1]T,
β = 1, and lij = ∂i∂jh. Thus the principal curvatures κi(0) are the eigenvalues of
∇2

xh(0), the mean curvature is κΣ(0) = Δxh(0), and Λk
ij(0) = 0.

To obtain a representation of the surface gradient, let ρ : Σ → R. Then

∇Σρ = τ j∂jρ = [[∇xρ− β2(∇xρ|∇xh)∇xh]
T, β2(∇xρ|∇xh)]

T.

Similarly, for f = (f̄ , fn) : Σ → Rn−1 × R we obtain

divΣf = (τ i|∂if) = divxf̄ + β2(∇xh|∇xf
n − (∇xh · ∇x)f̄),

and for the Laplace-Beltrami

ΔΣρ = Δxρ− β2(∇2
xρ∇xh|∇xh)− β2[Δxh− β2(∇2

xh∇xh|∇xh)](∇xh|∇xρ).
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Σ

ρνΣ

Γρ

Figure 2.2: Parameterization of Γ over Σ.

2.2 Parameterized Hypersurfaces

We consider now a hypersurface Γ = Γρ which is parameterized over a fixed
hypersurface Σ according to

q = ψρ(p) = p+ ρ(p)νΣ(p), p ∈ Σ, (2.38)

where as before νΣ = νΣ(p) denotes the outer unit normal of Σ at p ∈ Σ.
We want to derive the basic geometric quantities of Γ in terms of ρ and those

of Σ. In the sequel we assume that ρ is of class C1 and small enough. A precise
bound on ρ will be given below.

2.1 The Fundamental Form
Differentiating (2.38) we obtain with the Weingarten relations (2.11)

τΓi = ∂iψρ = τi + ρ∂iνΣ + (∂iρ)νΣ = (I − ρLΣ)τi + (∂iρ)νΣ. (2.39)

We may then compute the fundamental form GΓ = [gΓij ] of Γ to the result

gΓij = (τΓi |τΓj ) = ((I − ρLΣ)τi + ∂iρνΣ|(I − ρLΣ)τj + ∂jρνΣ)

= ((I − ρLΣ)τi|(I − ρLΣ)τj) + ∂iρ∂jρ,

= (τi|(I − ρLΣ)
2τj) + (τi|[∇Σρ⊗∇Σρ]τj)

where we used that ((I − ρLΣ)τk|νΣ) = 0. Hence

[gΓij ] = [(I − ρLΣ)
2 +∇Σρ⊗∇Σρ]ij .
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This yields the representation

[gΓij ] = [(I − ρLΣ)
2[I + (I − ρLΣ)

−2∇Σρ⊗∇Σρ]]ij

= [gik][(I − ρLΣ)
2[I + (I − ρLΣ)

−2∇Σρ⊗∇Σρ]]
k
j .

(2.40)

We then have

gΓ := detGΓ := det[gΓij ] = g det[[(I − ρLΣ)
2[I + (I − ρLΣ)

−2∇Σρ⊗∇Σρ]].

Since for any two vectors a, b ∈ Rn,

det(I + a⊗ b) = 1 + (a|b),

we obtain
gΓ = gα2(ρ)μ2(ρ), (2.41)

where
α(ρ) = det(I − ρLΣ) = det(I − ρK) = Πn−1

i=1 (1− ρκi),

and

μ(ρ) = (1 + ((I − ρLΣ)
−2∇Σρ|∇Σρ))

1/2

= (1 + ((I − ρLΣ)
−1∇Σρ|(I − ρLΣ)

−1∇Σρ))
1/2.

This yields for the surface measure dΓ on Γρ,

dΓ =
√

gΓdθ = α(ρ)μ(ρ)
√
g dθ = α(ρ)μ(ρ) dΣ, (2.42)

hence

|Γρ| =
∫
Γρ

dΓ =

∫
Σ

α(ρ)μ(ρ) dΣ,

where |Γρ| denotes the surface area of Γρ. Since

(I + a⊗ b)−1 = I − a⊗ b

1 + (a|b) ,

we obtain for [GΓ]−1 the identity

[GΓ]−1 = [gijΓ ] = [[I − μ−2(ρ)(I − ρLΣ)
−2∇Σρ⊗∇Σρ](I − ρLΣ)

−2]ik[g
kj
Σ ].

All of this makes sense only for functions ρ such that I−ρK is invertible, i.e., α(ρ)
should not vanish. Thus the precise bound for ρ is determined by the principle
curvatures of Σ, and we assume here and in the sequel that

|ρ|∞ <
1

max{|κi(p)| : i = 1, . . . , n− 1, p ∈ Σ} =: ρ0. (2.43)



2.2. Parameterized Hypersurfaces 57

2.2 The Normal at Γ
We next compute the outer unit normal at Γ. For this purpose we set

νΓ = β(ρ)(νΣ − a(ρ)),

where β(ρ) is a scalar and a(ρ) ∈ TpΣ. Then β(ρ) = (1 + |a(ρ)|2)−1/2 and

0 = (νΓ|τΓi ) = β(ρ)(νΣ − a(ρ)|(I − ρLΣ)τi + νΣ∂iρ),

which yields

0 = ∂iρ− (a(ρ)|(I − ρLΣ)τi) = ∂iρ− ((I − ρLΣ)a(ρ)|τi),

by symmetry of LΣ. But this implies (I − ρLΣ)a(ρ) = ∇Σρ, i.e., we have

νΓ = β(ρ)(νΣ − a(ρ)) (2.44)

with

a(ρ) = M0(ρ)∇Σρ, M0(ρ) = (I − ρLΣ)
−1, β(ρ) = (1 + |a(ρ)|2)−1/2. (2.45)

Note that μ(ρ) = β−1(ρ), where μ(ρ) was introduced in the last section. By means
of a(ρ), β(ρ) and M0(ρ) this leads to another representation of GΓ and G−1

Γ ,
namely

[gΓij ] = [(I − ρLΣ)[I + a(ρ)⊗ a(ρ)](I − ρLΣ)]ij ,

and
[gijΓ ] = [M0(ρ)[I − β2(ρ)a(ρ)⊗ a(ρ)]M0(ρ)]

ij .

2.3 The Surface Gradient and the Surface Divergence on Γ
It is of importance to have a representation for the surface gradient on Γ in terms
of Σ. For this purpose recall that

PΓ = I − νΓ ⊗ νΓ = gijΓ τΓi ⊗ τΓj ,

where νΓ = β(ρ)(νΣ −M0(ρ)∇Σρ), and

τΓi = (I − ρLΣ)τ
Σ
i + ∂iρνΣ.

By virtue of LΣνΣ = 0, the latter implies

τΓi = (I − ρLΣ)(τ
Σ
i + ∂iρνΣ).

As remarked before we do not distinguish between LΣ ∈ B(Rn) and its
restriction to TpΣ. With this identification, and by the fact that (I − ρLΣ) = I on
RνΣ, we have

(I − ρLΣ)(p) ∈ Isom (Rn,Rn) ∩ Isom (TpΣ, TpΣ),
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provided ρ satisfies (2.43). As before, ρLΣ is the short form for ρ(p)LΣ(p). Hence,

M0(ρ)(p) ∈ Isom(Rn,Rn) ∩ Isom(TpΣ, TpΣ).

We conclude that
M0(ρ)τ

Γ
i = τΣi + (∂iρ)νΣ,

and therefore
PΣM0(ρ)τ

Γ
i = τΣi . (2.46)

On the other hand, we have

PΓM0(ρ)τ
r
Σ = gijΓ τΓi ⊗ τΓj M0(ρ)τ

r
Σ = τ jΓ(τ

Γ
j |M0(ρ)τ

r
Σ),

hence
PΓM0(ρ)τ

r
Σ = τ rΓ. (2.47)

(2.46) and (2.47) allow for an easy change between the bases of TpΣ and TqΓ,
where q = ψρ(p) = p+ ρ(p)νΣ(p). (2.47) implies for a scalar function ϕ on Γ,

∇Γϕ = τ rΓ∂rϕ = PΓM0(ρ)τ
r
Σ∂rϕ∗ = PΓM0(ρ)∇Σϕ∗, ϕ∗ = ϕ ◦ ψρ

which leads to the identity

∇Γϕ = PΓM0(ρ)∇Σϕ∗.

Similarly, if f denotes a vector field on Γ, then

∇Γf = PΓM0(ρ)∇Σf∗,

and so

divΓf = (τ rΓ|∂rf) = (PΓM0(ρ)τ
r
Σ|∂rf) = tr [PΓM0(ρ)∇Σf∗].

As a consequence, we obtain for the Laplace-Beltrami operator on Γ,

ΔΓϕ = tr [PΓM0(ρ)∇Σ(PΓM0(ρ)∇Σϕ∗)],

which can be written as

ΔΓϕ = M0(ρ)PΓM0(ρ) : ∇2
Σϕ∗ + (b(ρ,∇Σρ,∇2

Σρ)|∇Σϕ∗),

with b = ∂i(M0(ρ)PΓ)PΓM(ρ)τ iΣ. One should note that the structure of the
Laplace-Beltrami operator on Γ in local coordinates is

ΔΓϕ = aij(ρ, ∂ρ)∂i∂jϕ∗ + bk(ρ, ∂ρ, ∂2ρ)∂kϕ∗

with
aij(ρ, ∂ρ) = (PΓM0(ρ)τ

i
Σ|PΓM0(ρ)τ

j
Σ) = (τ iΓ|τ

j
Γ) = gijΓ
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and

bk(ρ, ∂ρ, ∂2ρ) = (PΓM0(ρ)τ
i
Σ|∂i(M0(ρ)PΓτ

k)) = (τ iΓ|∂iτkΓ) = −gijΓ Λk
Γij .

This shows that −ΔΓ is strongly elliptic on the reference manifold Σ as long as
|ρ|∞ < ρ0.

2.4 Normal Variations
For ρ, h ∈ C(Σ) sufficiently smooth and F (ρ) : Σ → Rk we define

F ′(ρ)h :=
d

dε
F (ρ+ εh)

∣∣∣
ε=0

.

First we have
M ′

0(ρ) = M0(ρ)LΣM0(ρ), M ′
0(0) = LΣ,

as M0(0) = I. Next

β′(ρ)h = −β(ρ)3
(
M0(ρ)∇Σρ

∣∣M ′
0(ρ)h∇Σρ+M0(ρ)∇Σh

)
,

which yields β′(0) = 0, as β(0) = 1. From this we get for the normal

ν(ρ) = νΓ = β(ρ)(νΣ −M0(ρ)∇Σρ)

the relation

ν′(ρ)h = β′(ρ)h(νΣ −M0(ρ)∇Σρ)− β(ρ)(M ′
0(ρ)h∇Σρ+M0(ρ)∇Σh),

which yields
ν′(0)h = −∇Σh.

This in turn implies for the projection P (ρ) := PΓ

P ′(ρ)h = −ν′(ρ)h⊗ ν(ρ)− ν(ρ)⊗ ν′(ρ)h,

hence
P ′(0)h = ∇Σh⊗ νΣ + νΣ ⊗∇Σh =: [∇Σ ⊗ νΣ + νΣ ⊗∇Σ]h.

Applying these relations to ∇(ρ) := ∇Γ = P (ρ)M0(ρ)∇Σ yields

(∇′(0)h)ϕ = [P ′(0)h+ P (0)M ′(0)h]∇Σϕ

= [∇Σh⊗ νΣ + νΣ ⊗∇Σh+ hLΣ]∇Σϕ = [νΣ ⊗∇Σh+ hLΣ]∇Σϕ,

and for a not necessarily tangent vector field f

(∇′(0)h)f = νΣ ⊗ (∇Σh|∇Σ)f + hLΣ∇Σf

where (∇Σh|∇Σ)f := (∇Σh|τ j)∂jf . For the divergence of the vector field f this
implies

[div′(0)h]f = (νΣ|(∇Σh|∇Σ)f) + h tr[LΣ∇Σf ].
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Finally, the variation of the Laplace-Beltrami operator Δ(ρ) := ΔΓ becomes

(Δ′(0)h)ϕ = h tr[LΣ∇2
Σϕ+∇Σ(LΣ∇Σϕ)] + 2(LΣ∇Σh|∇Σϕ)− κ(∇Σh|∇Σϕ).

Note that in local coordinates we have

tr[LΣ∇2
Σϕ] = lijΣ (∂i∂jϕ− Λk

ij∂kϕ),

hence with
tr[∇Σ(LΣ∇Σϕ)] = tr[LΣ∇2

Σϕ] + (divΣLΣ|∇Σϕ),

we may write alternatively

(Δ′(0)h)ϕ = 2h tr[LΣ∇2
Σϕ] + (h divΣLΣ + [2LΣ − κΣ]∇Σh|∇Σϕ).

2.5 The Weingarten Tensor and the Mean Curvature of Γ
In invariant formulation we have

L(ρ) := LΓ = −∇ΓνΓ = −P (ρ)M0(ρ)∇Σ{β(ρ)(νΣ −M0(ρ)∇Σρ)}.

Thus for the variation of LΓ at ρ = 0 we obtain with P (0) = PΣ, β(0) = 1,
M0(0) = I, and P ′(0) = ∇Σ ⊗ νΣ + νΣ ⊗∇Σ, β

′(0) = 0, M ′
0(0) = LΣ,

L′(0) = νΣ ⊗ LΣ∇Σ + L2
Σ +∇2

Σ.

In particular, for κ(ρ) := κΓ we have

κ(ρ) = −tr[∇ΓνΓ] = trL(ρ),

hence
κ′(0) = trL2

Σ +ΔΣ. (2.48)

Let us take another look at the mean curvature κ(ρ) := κΓ. By the relations
τ rΓ = PΓM0(ρ)τ

r
Σ and νΓ = β(ρ)(νΣ − a(ρ)) we obtain

κ(ρ) = −(τ jΓ|∂jνΓ) = −(PΓM0(ρ)τ
j
Σ|(∂jβ(ρ)/β(ρ))νΓ + β(ρ)(∂jνΣ − ∂ja(ρ)))

= β(ρ)(PΓM0(ρ)τ
j
Σ|LΣτ

Σ
j + ∂ja(ρ))

= β(ρ)(M0(ρ)τ
j
Σ|LΣτ

Σ
j + ∂ja(ρ))− β(ρ)(νΓ|M0(ρ)τ

j
Σ)(νΓ|LΣτ

Σ
j + ∂ja(ρ)).

Since (M0(ρ)τ
j
Σ|LΣτ

Σ
j ) = tr[M0(ρ)LΣ] as well as

(M0(ρ)τ
j
Σ|∂ja(ρ)) = tr[M0(ρ)∇Σa(ρ)],

and (νΓ|M0(ρ)τ
j
Σ) = −β(ρ)[M0(ρ)a(ρ)]

j , we obtain

κ(ρ) = β(ρ)
{
tr
[
M0(ρ)(LΣ +∇Σa(ρ))

]
+ β2(ρ)

[
M0(ρ)a(ρ)

]j[
(νΣ|∂ja(ρ))− (a(ρ)|∂ja(ρ))− (a(ρ)|LΣτ

Σ
j )
]}

= β(ρ)
{
tr
[
M0(ρ)(LΣ +∇Σa(ρ))

]
− β2(ρ)(M0(ρ)a(ρ)|∇Σa(ρ)a(ρ))

}
,
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as (νΣ|a(ρ)) = 0 implies

(νΣ|∂ja(ρ)) = −(∂jνΣ|a(ρ)) = (LΣτ
Σ
j |a(ρ)).

This yields the final form for the mean curvature of Γ.

κ(ρ) = β(ρ)
{
tr
[
M0(ρ)(LΣ+∇Σa(ρ))

]
−β2(ρ)(M0(ρ)a(ρ)|[∇Σa(ρ)]a(ρ))

}
. (2.49)

Recall that a(ρ) = M0(ρ)∇Σρ.
We can write the curvature of Γ in local coordinates in the following form.

κ(ρ) = cij(ρ, ∂ρ)∂i∂jρ+ g(ρ, ∂ρ),

with
cij(ρ, ∂ρ) = β(ρ)[M2

0 (ρ)]
ij − β3(ρ)[M2

0 (ρ)∇Σρ]
i[M2

0 (ρ)∇Σρ]
j .

A simple computation yields for the symbol c(ρ, ξ) = cij(ρ, ∂ρ)ξiξj of the principal
part of −κ(ρ)

c(ρ, ξ) = β(ρ){|M0(ρ)ξ|2 − β2(ρ)(a(ρ)|M0(ρ)ξ)
2} ≥ β3(ρ)|M0(ρ)ξ|2 ≥ η|ξ|2,

for ξ = ξkτ
k
Σ ∈ TpΣ, as long as |ρ|∞ < ρ0. Therefore, −κ(ρ) is a quasilinear

strongly elliptic differential operator on Σ, acting on the parameterization ρ of Γ
over Σ.

2.6 The Area Functional
As shown before, the area functional for the surface Γρ = {p+ ρ(p)νΣ(p) : p ∈ Σ}
is given by

Φ(ρ) =

∫
Γρ

dΓ =

∫
Σ

α(ρ)μ(ρ) dΣ.

Here we use the notation

α(ρ) = det(I − ρK) = Πn−1
i=1 (1− ρκi), μ(ρ) = (1 + |a(ρ)|2)1/2,

with a(ρ) defined in (2.45).
We compute its first variation to the result

〈Φ′(ρ)|h〉 =
∫
Σ

[(μ(ρ)α′(ρ) + α(ρ)μ′(ρ)]h dΣ.

For the derivatives of α and μ we get

α′(ρ) = α(ρ)
n−1∑
i=1

−κi

1− ρκi
, μ′(ρ)h = μ(ρ)−1(a(ρ)|a′(ρ)h).

In particular, at ρ = 0 we get with α(0) = μ(0) = 1 and a(0) = 0

α′(0) = −κΣ, μ′(0) = 0.
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This implies for the first variation of Φ at ρ = 0,

〈Φ′(0)|h〉 = −
∫
Σ

κΣh dΣ. (2.50)

This shows, in particular, that the critical points of the area functional Φ are
hypersurfaces with mean curvature κΣ = 0. Such surfaces are called minimal
surfaces.

Similarly, the second variation becomes

〈Φ′′(ρ)h|k〉 =
∫
Σ

[μ(ρ)α′′(ρ) + α(ρ)μ′′(ρ)]hk dΣ

+

∫
Σ

[α′(ρ)hμ′(ρ)k + α′(ρ)kμ′(ρ)h] dΣ.

Since α(0) = μ(0) = 1 and μ′(0) = 0 we get

〈Φ′′(0)h|k〉 =
∫
Σ

[α′′(0) + μ′′(0)]hk dΣ.

We have

α′′(ρ) = α(ρ)
[( n−1∑

i=1

−κi

1− ρκi

)2

−
n−1∑
i=1

κ2
i

(1− ρκi)2

]
,

hence

α′′(0) =
( n−1∑

i=1

κi

)2

−
n−1∑
i=1

κ2
i = (trK)2 − trK2,

which is the second invariant of the shape operator K.
In particular, in case Σ is a sphere of radius R we have κi = −1/R, hence

α′′(0) = (n− 1)(n− 2)/R2.
For the second derivative of μ at ρ = 0 we obtain

μ′′(0)hk = (a′(0)h|a′(0)k) = (∇Σh|∇Σk).

This yields the following representation for the second variation of Φ at ρ = 0,

〈Φ′′(0)h|k〉 =
∫
Σ

{[(trK)2 − trK2]hk + (∇Σh|∇Σk)}dΣ. (2.51)

By means of the surface divergence theorem (2.24), this representation can be
rewritten as

〈Φ′′(0)h|k〉 =
∫
Σ

{[(trK)2 − trK2]h−ΔΣh}k dΣ,

and therefore
Φ′′(0)h = [(trK)2 − trK2]h−ΔΣh, (2.52)
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i.e., Φ′′(0) is the Jacobi operator, (sometimes also called the stability operator).
Thus we see that

Φ′′(0) = −κ′(0) + κ2
Σ.

In the next section we will come back to this relation.

2.7 The Volume Functional
Let Ωρ denote the domain bounded by the surface Γρ = {p+ ρ(p)νΣ(p) : p ∈ Σ}.
We define the volume functional Ψ by means of

Ψ(ρ) := |Ωρ|. (2.53)

In order to obtain the variation of Ψ(ρ) we rewrite the volume functional by means
of the divergence theorem as

nΨ(ρ) =

∫
Ωρ

div x dx =

∫
Γρ

(x|νΓ) dΓ =

∫
Σ

(idΣ + ρνΣ|νΓ)α(ρ)μ(ρ) dΣ,

which yields, with νΓ = β(ρ)(νΣ − a(ρ)),

nΨ(ρ) =

∫
Σ

[ρ+ (idΣ|νΣ − a(ρ))]α(ρ) dΣ,

where as before α(ρ) = det(I − ρK) = Πn−1
i=1 (1 − ρκi). The first variation of Ψ

then is

n〈Ψ′(ρ)|h〉 =
∫
Σ

{[ρ+ (idΣ|νΣ − a(ρ))]α′(ρ)h+ [h− (idΣ|a′(ρ)h)]α(ρ)} dΣ.

From α(0) = 1, α′(0) = −κΣ and a′(0)h = ∇Σh follows

n〈Ψ′(0)|h〉 =
∫
Σ

[1− (idΣ|νΣ)κΣ]h dΣ−
∫
Σ

(idΣ|∇Σh) dΣ

=

∫
Σ

(1 + divΣ idΣ)h dΣ,

where we used the surface divergence theorem (2.31) in the last step. From

divΣ idΣ = (τ i|∂i idΣ) = (τ i|τi) = (n− 1)

follows the well-known formula for the first variation of the volume functional

〈Ψ′(0)|h〉 =
∫
Σ

h dΣ. (2.54)

Now we reconsider the area functional Φ. We want to minimize surface area of
Σ under the constraint that the volume of the domain bounded by Σ is a given
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constant Ψ0. The method of Lagrange multipliers yields a number λ ∈ R such that
Φ′ − λΨ′ = 0. According to (2.50) and (2.54), this means

0 = 〈Φ′ − λΨ′|h〉 = −
∫
Σ

(κΣ + λ)h dΣ = 0,

for all functions h. This implies κΣ ≡ −λ, i.e., Σ must be a sphere since Σ is an
embedded closed and compact hypersurface. But then the value Φ is given by the
constraint, i.e.,

Φ(SR(x0)) = ωnR
n−1, κΣ = −(n− 1)/R, λ = (n− 1)/R, (ωn/n)R

n = Ψ0.

The second variation of Ψ can be computed as follows.

n〈Ψ′′(0)h|k〉 =
∫
Σ

(idΣ|νΣ)α′′(0)hk dΣ

+

∫
Σ

{[k − (idΣ|∇Σk)]h+ [(h− (idΣ|∇Σh)]k}α′(0) dΣ

−
∫
Σ

(idΣ|a′′(0)hk)α(0) dΣ.

We observe that

(idΣ|∇Σk)h+ (idΣ|∇Σh)]k = (idΣ|∇Σ(hk))

and

a′′(0)hk = M ′
0(0)k∇Σh+M ′

0(0)h∇Σk = LΣ[k∇Σh+ h∇Σk] = LΣ∇Σ(hk).

Collecting terms this yields

〈Ψ′′(0)h|k〉 = 1

n

∫
Σ

[(idΣ|νΣ)α′′(0) + 2α′(0)]hk dΣ

− 1

n

∫
Σ

(idΣ|[α′(0)I + LΣ]∇Σ(hk)) dΣ.

(2.55)

Here we recall that α′(0) = −κΣ and α′′(0) = (trLΣ)
2 − trL2

Σ.

In particular, for a sphere of radius R centered at the origin we get idΣ = RνΣ,
and hence

〈Ψ′′(0)h|k〉 = 1

n

∫
Σ

[
R(n− 1)(n− 2)

R2
+

2(n− 1)

R

]
hk dΣ =

n− 1

R

∫
Σ

hk dΣ.

This implies at a stationary point of the surface functional Φ with constraint
Ψ(ρ) = c with Φ′ + λΨ′ = 0 and λ = κΣ,

Φ′′ + λΨ′′ = −ΔΣ − (n− 1)/R2 = −κ′(0).
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2.3 Approximation of Hypersurfaces

3.1 The Tubular Neighbourhood of a Hypersurface
Let Σ be a compact connected C2-hypersurface bounding a domain Ω ⊂ Rn, and
let νΣ be the outer unit normal field on Σ with respect to Ω. Then Σ satisfies the
uniform interior and exterior ball condition , i.e., there is a number a > 0 such
that for each point p ∈ Σ there are balls B(x1, a) ⊂ Ω and B(x2, a) ⊂ Ω̄c, such
that Σ ∩ B̄(xi, a) = {p}. Choosing the radius a0 maximal, we set a = a0/2 in the
sequel. Consider the mapping

Λ : Σ× (−a, a) → Rn, Λ(p, r) := p+ rνΣ(p). (2.56)

We claim that Λ is a C1-diffeomorphism onto its image

Ua := im(Λ) = {x ∈ Rn : dist(x,Σ) < a}.

Note that the centers of the balls B(xi, a) necessarily are equal to x1 = p−aνΣ(p)
and x2 = p+ aνΣ(p). To prove injectivity of Λ, suppose

p1 + r1νΣ(p1) = p2 + r2νΣ(p2),

where we may assume w.l.o.g. that r2 ≤ r1 < a. But then

p2 − (p1 + r1νΣ(p1)) = −r2νΣ(p2),

hence p2 ∈ B̄(p1 + r1νΣ(p1), r1) ∩ Σ = {p1}, which shows p1 = p2 and then also
r1 = r2. The set Ua will be called the tubular neighbourhood of Σ of of width a.
To prove that Λ is a diffeomorphism, fix a point (p0, r0) ∈ Σ× (−a, a) and a chart
φ for p0. Then the function f(θ, r) = Λ(φ(θ), r) has derivative

Df(0, r0) = [[I − r0LΣ(p0)]φ
′(0), νΣ(p0)].

It follows from (2.58) that [I−r0LΣ(p0)] ∈ B(Tp0
Σ) is invertible, and consequently,

Df(0, r0) ∈ B(Rn) is invertible as well. The inverse function theorem implies that
Λ is locally invertible with inverse of class C1.

It will be convenient to decompose the inverse of Λ into Λ−1 = (ΠΣ, dΣ) such
that

ΠΣ ∈ C1(Ua,Σ), dΣ ∈ C1(Ua, (−a, a)). (2.57)

ΠΣ(x) is the nearest point on Σ to x, dΣ(x) is the signed distance from x to Σ.
From the uniform interior and exterior ball condition follows that the number

1/a0 bounds the principal curvatures of Σ, i.e.,

max{κi(p) : p ∈ Σ, i = 1, · · · , n− 1} ≤ 1/a0. (2.58)

A remarkable fact is that the signed distance dΣ is even of class C2. To see this,
we use the identities

x−ΠΣ(x) = dΣ(x)νΣ(ΠΣ(x)), dΣ(x) = (x−ΠΣ(x)|νΣ(ΠΣ(x)).
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Differentiating w.r.t. xk this yields

∂xk
dΣ(x) = (ek − ∂xk

ΠΣ(x)|νΣ(ΠΣ(x))) + (x−ΠΣ(x)|∂xk
(νΣ ◦ΠΣ)(x))

= νkΣ(ΠΣ(x)) + dΣ(x)(νΣ(ΠΣ(x))|∂xk
(νΣ ◦ΠΣ(x)))

= νkΣ(ΠΣ(x)),

since ∂xk
ΠΣ(x) belongs to the tangent space TΠΣ(x)Σ, as does ∂xk

(νΣ ◦ ΠΣ(x)),
since |νΣ ◦ΠΣ(x)| ≡ 1. Thus we have the formula

∇xdΣ(x) = νΣ(ΠΣ(x)), x ∈ Ua. (2.59)

This shows, in particular, that dΣ is of class C2.
It is useful to also have a representation for the derivatve ∂ΠΣ(x) of ΠΣ(x).

With

I − ∂ΠΣ(x) = νΣ(ΠΣ(x))⊗∇xdΣ(x) + dΣ(x)∂νΣ(ΠΣ(x))∂ΠΣ(x),

and (2.59), we obtain

∂ΠΣ(x) = M0(dΣ(x))(ΠΣ(x))PΣ(ΠΣ(x)), (2.60)

where M0(r)(p) := (I− rLΣ(p))
−1. This shows that ∂ΠΣ(p) = ∇xΠΣ(p) = PΣ(p),

the orthogonal projection onto the tangent space TpΣ.

3.2 The Level Function
Let Σ be a compact connected hypersurface of class C2 bounding the domain Ω in
Rn. According to the previous section, Σ admits a tubular neighbourhood Ua of
width a > 0. We may assume w.l.o.g. a ≤ 1. The signed distance function dΣ(x)
in this tubular neighbourhood is of class C2 as well, and since

∇xdΣ(x) = νΣ(ΠΣ(x)), x ∈ Ua,

we can view ∇xdΣ(x) as a C1-extension of the normal field νΣ(x) from Σ to the
tubular neighbourhood Ua of Σ. Computing the second derivatives∇2

xdΣ we obtain

∇2
xdΣ(x) = ∇xνΣ(ΠΣ(x)) = −LΣ(ΠΣ(x))PΣ(ΠΣ(x))(I − dΣ(x)LΣ(ΠΣ(x)))

−1

= −LΣ(ΠΣ(x))(I − dΣ(x)LΣ(ΠΣ(x)))
−1,

for x ∈ Ua, as LΣ(p) = LΣ(p)PΣ(p). Taking traces then yields

ΔdΣ(x) = −
n−1∑
i=1

κi(ΠΣ(x))

1− dΣ(x)κi(ΠΣ(x))
, x ∈ Ua. (2.61)

In particular, this implies

∇2
xdΣ(p) = −LΣ(p), ΔxdΣ(p) = −κΣ(p), p ∈ Σ. (2.62)
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Therefore the norm of ∇2
xdΣ is equivalent to the maximum of the moduli of the

curvatures of Σ at a fixed point. Hence we find a constant c, depending only on
n, such that

c|∇2
xdΣ|∞ ≤ max{|κi(p)| : i = 1, . . . , n− 1, p ∈ Σ} ≤ c−1|∇2

xdΣ|∞.

Next we extend dΣ as a function ϕ to all of Rn. For this purpose we choose a C∞-
function χ(s) such that χ(s) = 1 for |s| ≤ 1, χ(s) = 0 for |s| ≥ 2, 0 ≤ χ(s) ≤ 1.
Then we set

ϕ(x) :=

{
dΣ(x)χ(3dΣ(x)/a) + sign (dΣ(x))(1− χ(3dΣ(x)/a)), x ∈ Ua,

χΩex
(x)− χΩin

(x), x /∈ Ua,
(2.63)

where Ωex and Ωin denote the exterior and interior component of Rn \Ua, respec-
tively. This function ϕ is then of class C2, ϕ(x) = dΣ(x) for x ∈ Ua/3, and

ϕ(x) = 0 ⇔ x ∈ Σ.

Thus Σ is given as zero-level set of ϕ, i.e., Σ = ϕ−1(0). ϕ is called a canonical level
function for Σ. It is a special level function for Σ, as

∇xϕ(x) = νΣ(ΠΣ(x)) for x ∈ Ua/3.

3.3 Existence of Parameterizations
Recall the Hausdorff metric on the set K of compact subsets of Rn defined by

dH(K1,K2) = max{ sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)}. (2.64)

Suppose Σ is a compact connected closed hypersurface of class C2 bounding a
bounded domain in Rn. As before, let Ua be its tubular neighbourhood, ΠΣ : Ua →
Σ the projection and dΣ : Ua → R the signed distance. We want to parameterize
hypersurfaces Γ which are close to Σ as

Γ = {p+ ρ(p)νΣ(p) : p ∈ Σ},

where ρ : Σ → R is then called the normal parameterization of Γ over Σ. For this
to make sense, Γ must belong to the tubular neighbourhood Ua of Σ. Therefore,
a natural requirement would be dH(Γ,Σ) < a. We then say that Γ and Σ are
C0-close (of order ε) if dH(Γ,Σ) < ε.

However, this condition is not enough to allow for existence of a normal
parameterization, since it is not clear that the map ΠΣ is injective on Γ: small
Hausdorff distance does not prevent Γ from folding within the tubular neighbour-
hood. We need a stronger assumption to prevent this. If Γ is a hypersurface of
class C1 we may introduce the normal bundle NΓ defined by

NΓ := {(q, νΓ(q)) : q ∈ Γ} ⊂ R2n.



68 Chapter 2. Tools from Differential Geometry

Suppose Γ is a compact, connected C1-hypersurface in Rn. We say that Γ and
Σ are C1-close (of order ε) if dH(NΓ,NΣ) < ε. We are going to show that C1-
hypersurfaces Γ which are C1-close to Σ can in fact be parametrized over Σ.

For this purpose observe that, in case Γ and Σ are C1-close of order ε,
whenever q ∈ Γ, there is p ∈ Σ such that |q − p| + |νΓ(q) − νΣ(p)| < ε. Hence
|q −ΠΣq| < ε, with ΠΣq := ΠΣ(q), and

|νΓ(q)− νΣ(ΠΣq)| ≤ |νΓ(q)− νΣ(p)|+ |νΣ(ΠΣq)− νΣ(p)| ≤ ε+ L|ΠΣq − p|,

which yields with |ΠΣq − p| ≤ |ΠΣq − q|+ |p− q| < 2ε,

|q −ΠΣq|+ |νΓ(q)− νΣ(ΠΣq)| ≤ 2(1 + L)ε,

where L denotes the Lipschitz constant of the normal of Σ. In particular, the
tangent space TqΓ is transversal to νΣ(ΠΣq), for each q ∈ Γ, that is,

(νΣ(ΠΣq) | νΓ(q)) �= 0, q ∈ Γ.

Now fix a point q0 ∈ Γ and set p0 = ΠΣq0. Since the tangent space Tq0Γ is
transversal to νΣ(p0), we infer that Π′

Σ(q0) : Tq0Γ → Tp0
Σ is invertible. The

inverse function theorem yields an open neighbourhood V (p0) ⊂ Σ and a C1-map
g : V (p0) → Γ such that g(p0) = q0, g(V (p0)) ⊂ Γ, and ΠΣg(p) = p in V (p0).
Therefore we obtain

q = g(p) = Λ ◦ (ΠΣ, dΣ)g(p) = ΠΣg(p) + dΣ(g(p))νΣ(ΠΣg(p)) = p+ ρ(p)νΣ(p),

with
ρ(p) := dΣ(g(p)).

Thus we have a local normal parameterization of Γ over Σ. We may extend g to a
maximal domain V ⊂ Σ, e.g. by means of Zorn’s lemma. Clearly V is open in Σ
and we claim that V = Σ. If not, then the boundary of V in Σ is nonempty and
hence we find a sequence pn ∈ V such that pn → p∞ ∈ ∂V . Since ρn = ρ(pn) is
bounded, we may assume w.l.o.g. that ρn → ρ∞. But then q∞ = p∞ + ρ∞νΣ(p∞)
belongs to Γ as Γ is closed. Now we may apply the inverse function theorem again
to see that V cannot be maximal. Since the map Φ(p) = p + ρ(p)νΣ(p) is a local
C1-diffeomorphism, it is also open. Hence Φ(Σ) ⊂ Γ is open and compact, i.e.,
Φ(Σ) = Γ by connectedness of Γ. The map Φ is therefore a C1-diffeomorphism
from Σ to Γ. In case Σ is of class Ck+1 and Γ is of class Ck for k ≥ 1 the proof
above immediately implies that Φ ∈ Diffk(Σ,Γ).

Observe that because of x = ΠΣx + dΣ(x)νΣ(ΠΣx) in Ua we have x ∈ Γ if
and only if dΣ(x) = ρ(ΠΣx). This property can be used to construct a C1-function
ψ on Rn such that Γ = ψ−1(0), i.e., a level function for Γ. For example we may
take

ψ(x) = ϕ(x)− ρ(ΠΣx)χ(3dΣ(x)/a), x ∈ Rn,

provided ε < a/3, where ϕ and χ are defined in (2.63).
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3.4 Approximation of Hypersurfaces
Suppose as before that Σ is a compact connected hypersurface of class C2 bounding
a bounded domain Ω in Rn. We may use the level function ϕ : Rn → R introduced
in (2.63) to construct a real analytic hypersurface Σε such that Σ appears as a
C2-graph over Σε. In fact, we show that there is ε0 ∈ (0, a/3) such that for every
ε ∈ (0, ε0) there is an analytic manifold Σε and a function ρε ∈ C2(Σε) with the
property that

Σ = {p+ ρε(p)νΣε
(p) : p ∈ Σε}

and
|ρε|∞ + |∇Σε

ρε|∞ + |∇2
Σε

ρε|∞ ≤ ε.

For this purpose, choose R > 0 such that ϕ(x) = 1 for |x| > R/2. Then define

ψk(x) = ck

(
1− |x|2

R2

)k

+
, x ∈ Rn,

where ck > 0 is chosen such that
∫
Rn ψk(x)dx = 1. Then ck ∼ αkn/2 as k → ∞,

with some number α = α(n,R). Indeed, we have∫
B(0,R)

(
1− |x|2

R2

)k

dx = ωnR
n

∫ 1

0

(1− r2)krn−1 dr =
ωnR

n

2

∫ 1

0

(1− t)ktn/2−1 dt,

where ωn = |∂B(0, 1)|. Using the well-known relations∫ 1

0

(1− t)ktn/2−1 dt = B
(n
2
, k + 1

)
=

Γ(n2 )Γ(k + 1)

Γ(k + 1 + n
2 )

∼ Γ(n/2)k−n/2

with B the Beta function and Γ the Gamma function, the claim follows, with
α = ((ωnR

n/2)Γ(n/2))−1 = (πR2)−n/2.
Then as k → ∞, we have ψk(x) → 0, uniformly for |x| ≥ η > 0, since

kn/2qk → 0 for any fixed q ∈ (0, 1). Consequently, ψk ∗ f → f in Cm
ub(R

n),
whenever f ∈ Cm

ub(R
n). Let ϕk = 1 + ψk ∗ (ϕ− 1). Then

ϕk → ϕ in C2
ub(R

n). (2.65)

Moreover,

ψk ∗ (ϕ− 1)(x) =

∫
Rn

(ϕ(y)− 1)ψk(x− y)dy =

∫
|y|≤R/2

(ϕ(y)− 1)ψk(x− y)dy.

For |x|, |y| < R/2 follows |x−y| < R, and hence ψk(x−y) = ck(1−|x−y|2/R2)k is
polynomial in x, y. But then ϕk(x) is a polynomial for such values of x; in particu-
lar, ϕk is real analytic in Ua. Choosing k large enough, we have |ϕ−ϕk|C2

b (R
n) < ε.

Now suppose ϕk(x) = 0. Then |ϕ(x)| < ε, hence x ∈ Ua and then |dΣ(x)| < ε.
This shows that the set Σk := ϕ−1

k (0) is in the ε-tubular neighbourhood around
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Σ. Moreover, |∇ϕk − ∇ϕ|∞ < ε yields ∇ϕk(x) �= 0 in Ua, and therefore Σk is a
manifold, which is real analytic.

Next we show that Σ and Σk are C1-diffeomorphic. For this purpose, fix a
point q0 ∈ Σk. Then q0 = p0 + r0νΣ(p0), where p0 = ΠΣq0 ∈ Σ and r0 = dΣ(q0).
Consider the equation gk(p, r) := ϕk(p+ rνΣ(p)) = 0 near (p0, r0). Since

∂rgk(p, r) = (∇xϕk(p+ rνΣ(p))|νΣ(p))

we have

∂rgk(p0, r0) = (∇xϕk(q0)|∇xϕ(p0))

≥ 1− |∇xϕk(q0)−∇xϕ(q0)| − |∇xϕ(q0)−∇xϕ(p0)|
≥ 1− |ϕk − ϕ|C1

b (R
n) − ε|∇2

xϕ|Cb(Rn) > 0.

Therefore, we may apply the implicit function theorem to obtain an open neigh-
bourhood V (p0) ⊂ Σ and a C1-function rk : V (p0) → R such that rk(p0) = r0
and p+ rk(p)νΣ(p) ∈ Σk for all p ∈ V (p0). We can now proceed as in the previous
subsection to extend rk(·) to a maximal domain V ⊂ Σ, which coincides with Σ
by compactness and connectedness of Σ.

Thus we have a well-defined C1-map fk : Σ → Σk, fk(p) = p + rk(p)νΣ(p),
which is injective and a diffeomorphism from Σ to its range. We claim that fk is
also surjective. If not, there is some point q ∈ Σk, q �∈ fk(Σ). Set p = ΠΣq. Then
q = p + dΣ(p)νΣ(p) with dΣ(p) �= rk(p). Thus, there are at least two numbers
β1, β2 ∈ (−a, a) with p+ βiνΣ(p) ∈ Σk. This implies with νΣ = νΣ(p)

0 = ϕk(p+β2νΣ)−ϕk(p+β1νΣ) = (β2−β1)

∫ 1

0

(∇xϕk(p+(β1+t(β2−β1))νΣ)|νΣ) dt,

which yields β2 − β1 = 0 since∫ 1

0

(∇xϕk(p+ (β1 + t(β2 − β1))νΣ)|νΣ) dt ≥ 1− ε− ε|∇2
xϕ|Cb(Rn) > 0,

as above. Therefore, the map fk is also surjective, and hence fk ∈ Diff1(Σ,Σk).
This implies, in particular, that Σk = fk(Σ) is connected. For later use we note
that

|rk|∞ + |∇Σrk|∞ → 0 as k → ∞,

as can be inferred from ∂irk(p) = (τΣk
i (p+rk(p)νΣ(p))|νΣ(p)) for p ∈ Σ, see (2.39).

Next we show that the mapping

Λk : Σk × (−a/2, a/2) → U(Σk, a/2), Λk(q, s) := q + sνk(q)

is a C1-diffeomorphism for k ≥ k0, with k0 ∈ N sufficiently large. In order to see
this, we use the diffeomorphism fk constructed above to rewrite Λk as

Λk(q, s) = Λk(fk(p), s)

= p+ s νΣ(p) + rk(p)νΣ(p) + s[νk(p+ rk(p)νΣ(p))− νΣ(p)]

=: Λ(p, s) +Gk(p, s) =: Hk(p, s).
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Clearly Hk ∈ C1(Σ × (−a/2, a/2),Rn) and Λ ∈ Diff1(Σ × (−a, a), U(Σ, a)). It is
not difficult to see that

|Gk(p, s)|+ |DGk(p, s)| → 0 as k → ∞, uniformly in (p, s) ∈ Σ× [−a/2, a/2].

Consequently, DHk(p, s) : TpΣ×(−a/2, a/2) → Rn is invertible for k ≥ k0, and by
the inverse function theorem,Hk is a local C1-diffeomorphism. We claim thatHk is
injective for all k sufficiently large. For this purpose, note that due to compactness
of Σ× [−a/2, a/2] and injectivity of Λ there exists a constant c > 0 such that

|Λ(p, s)− Λ(p̄, s̄)| ≥ c
(
|p− p̄|+ |s− s̄|

)
, (p, s), (p̄, s̄) ∈ Σ× [−a/2, a/2].

The properties of Gk and compactness of Σ× [−a/2, a/2] imply, in turn, that the
estimate above remains true for Λ replaced by Hk, and c replaced by c/2, provided
k ≥ k0 with k0 sufficiently large. Hence Hk is a C1-diffeomorphism onto its image
for k sufficiently large, as claimed. This shows that Σk has a uniform tubular
neighbourhood of width a/2 for any k ≥ k0, and it follows that Σ ⊂ U(Γk, a/2).
Σ and Σk are compact connected closed C1 hypersurfaces, and we may now apply
the results of the previous subsection, showing that Σ can be parameterized over
Σk by means of

p �→ p+ ρk(p)νk(p) with ρk ∈ C2(Σk,R),

with νk := νΣk
.

Finally we show that |ρk|∞ + |∇Σk
ρk|∞ + |∇2

Σk
ρk|∞ ≤ ε for k sufficiently

large. We already know from the construction that |ρk|∞ → 0 as k → ∞. However,
we need the following estimate on the rate of convergence: there exists k0 ∈ N and
a constant C = C(k0) such that

|ρk|∞ ≤ Ck−1/2, k ≥ k0. (2.66)

In order to see this, we first observe that, for |x| ≤ R/2,

|ϕ(x)− ϕk(x)| =
∣∣∣ ∫

Rn

[ϕ(x)− ϕ(x− y)]ψk(y) dy
∣∣∣ ≤ |∇ϕ|∞

∫
|y|≤R

|y|ψk(y)dy

= |∇ϕ|∞C(n,R)ckB
(n+ 1

2
, k + 1

)
.

Using similar arguments as above for the asymptotics of ck and B((n+1)/2, k+1)
this yields constants k0 ∈ N and C = C(k0) such that |ϕ(x) − ϕk(x)| ≤ Ck−1/2,
whenever |x| ≤ R/2 and k ≥ k0. Let p ∈ Σk be given, and let q = p+ ρk(p)νk(p).
Then |ϕk(q)| = |ϕk(q)− ϕ(q)| ≤ Ck−1/2 for k ≥ k0. On the other hand,

|ϕk(q)| = |ϕk(q)− ϕk(p)| = ρk(p)
∣∣∣ ∫ 1

0

(∇ϕk(p+ tρk(p)νk(p)|νk(p))dt
∣∣∣ ≥ 1

2
ρk(p),

provided k is sufficiently large, and this implies (2.66).
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Next we show that there exists k0 ∈ N and C = C(k0) such that |∂αϕk(x)| ≤
Ck1/2 whenever k ≥ k0, |x| ≤ R/2, and |α| = 3. Indeed this follows from

|∂�∂i∂jϕk(x)| = (2/R2)kck

∣∣∣ ∫
|y|≤R

∂i∂jϕk(x− y)y�(1− |y|2/R2)k−1dy
∣∣∣

≤ CkckB
(n+ 1

2
, k
)
∼ ck1/2,

where c is an appropriate constant. Combining with (2.66) we have shown that
there are constants k0 ∈ N and C = C(k0) such that

ρk(p)|∂αϕk(x)| ≤ C, (2.67)

for k ≥ k0, |α| = 3, p ∈ Σk, and |x| ≤ R/2.
In order to show smallness of |∇Σk

ρk|∞+ |∇2
Σk

ρk|∞, we consider the relation

ϕ
(
ψk(θ) + (ρkνk)(ψk(θ)

)
= 0, θ ∈ Θk, (2.68)

where ψk : Θk → Σk is a C2-parameterization of Σk around a point pk = fk(q) for
some q ∈ Σ. Since Σk = ϕ−1

k (0) and ϕk → ϕ in C2
ub(R

n) one shows that |∂jψk(0)|
is uniformly bounded in k for k sufficiently large.

Let ν̃k(x) := ∇xϕk(x)/|∇xϕk(x)| for x ∈ Rn. Clearly, νk(ψk(θ)) =
ν̃k(ψk(θ)). Taking partial derivatives in (2.68) and using the orthogonality relation
(∇xϕk(ψk(θ)) | ∂jψk(θ)) = 0 yields

∂j(ρk ◦ ψk)(θ)
(
∇xϕ(qk(θ)) | (νk ◦ ψk)(θ)

)
=
(
∇xϕ(qk(θ))−∇xϕk(ψk(θ)) | ∂jψk(θ)

)
− (ρk ◦ ψk)(θ)

(
∇xϕ(qk(θ)) | ∂j(ν̃k ◦ ψk)(θ)

) (2.69)

where, for brevity, we set qk(θ) = ψk(θ) + (ρkνk)(ψk(θ)). It follows from (2.65)
and uniform continuity that

(∇xϕ(qk(θ))|(νk ◦ ψk)(θ)) ≥ 1/2, (2.70)

provided k ≥ k0 with k0 sufficiently large. The fact that ∂jψk(θ) is uniformly
bounded for k ≥ k0 and (2.65) implies that the right-hand side in (2.69) converges
to zero as k → ∞. We have shown that |∂jρk(pk)| ≤ ε, provided that k ≥ k0 with
k0 sufficiently large.

Next, we take an additional derivative ∂i = ∂θi in (2.69). This will produce
the terms

∂i∂j(ρk ◦ ψk)(θ)
(
∇xϕ(qk(θ)) | (νk ◦ ψk)(θ)

)
+ ∂j(ρk ◦ ψk)(θ)∂i

(
∇xϕ(qk(θ)) | (νk ◦ ψk)(θ)

)
on the left-hand side. From the previous step for ∂j(ρk ◦ ψk) we conclude that
the second term converges to 0 as k → ∞. Thus it follows from (2.70) that
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∂i∂j(ρk ◦ψk) converges to 0 as k → ∞, provided we can show that the derivatives
of the right-hand side in (2.69) converge to zero as k → ∞. A moment of reflec-
tion shows that this is indeed the case, with the possible exception of the term
ρk(ψk(θ))

(
∇xϕ(qk(θ)) | ∂i∂j(ν̃k ◦ψk)(θ)

)
which is problematic as ∂i∂j(ν̃k ◦ψk) in-

volves third-order derivatives of ϕk. Since ((ν̃k ◦ ψk)(θ) | (ν̃k ◦ ψk)(θ)) = 1 we get
((ν̃k ◦ ψk)(θ) | ∂j(ν̃k ◦ ψk)(θ)) = 0, and hence

((ν̃k ◦ ψk)(θ) | ∂i∂j(ν̃k ◦ ψk)(θ)) = −(∂i(ν̃k ◦ ψk)(θ) | ∂j(ν̃k ◦ ψk)(θ)).

With ∇xϕ(qk(θ)) = νΣ(qk(θ)) this yields

ρk(ψk(θ))
(
∇xϕ(qk(θ)) | ∂i∂j(ν̃ ◦ ψk))(θ))

)
=
(
νΣ(qk(θ))− ν̃k(ψk(θ)) | ρk(ψk(θ))∂i∂j(ν̃k ◦ ψk)(θ)

)
+ ρk(ψk(θ))

(
∂i(ν̃k ◦ ψk)(θ) | ∂j(ν̃k ◦ ψk)(θ)

)
.

Convergence to 0 of the first term on the right-hand side follows from (2.67) and
(2.65), while the second term converges to 0 since ρk has this property.

Since fk : Σ → Σk is a bijection, the assertion holds true for any point
pk ∈ Σk, k ≥ k0, and hence the claim follows.

2.4 The Manifold of Hypersurfaces in Rn

4.1 Compact Connected Hypersurfaces of Class C2

Consider the set MH2 of all compact connected C2-hypersurfaces Σ in Rn. Let
NΣ denote their associated normal bundles. The second normal bundle of Σ is
defined by

N 2Σ = {(p, νΣ(p),∇ΣνΣ(p)) : p ∈ Σ}.
We introduce a metric dMH2 on MH2 by means of dMH2(Σ1,Σ2) =
dH(N 2Σ1,N 2Σ2). This way MH2 becomes a metric space. We want to show
that MH2 is a Banach manifold.

Fix a hypersurface Σ ∈ MH2 of class C3. Then we define a chart over the
Banach space XΣ := C2(Σ,R) as follows. Σ has a tubular neighbourhood Ua of
width a. For a given function ρ ∈ BXΣ(0, a/3) we obtain a hypersurface ΓΣ

ρ by
means of the map

ΦΣ(ρ)(p) := p+ ρ(p)νΣ(p), p ∈ Σ.

According to Section 2.3, this yields a hypersurface ΓΣ
ρ of class C2, diffeomorphic

to Σ. Moreover, with some constant CΣ
a , we have

dMH2(ΓΣ
ρ ,Σ) ≤ CΣ

a |ρ|C2
b (Σ),

which shows that the map ΦΣ : BXΣ(0, a/3) → MH2 is continuous. Conversely,
given Γ ∈ MH2 which is C2-close to Σ, the results in Section 2.3.3 show that Γ
can be parameterized by a function ρ ∈ C2(Σ,R), such that |ρ|C2

b (Σ) < a/3.
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We now determine the tangent space TΣMH2 at some fixed C3-hypersurface
Σ ∈ MH2. For this purpose we take a differentiable curve Γ : (−δ0, δ0) → MH2

with Γ(0) = Σ. According to Section 2.3.3, there is δ ∈ (0, δ0) such that for each
t ∈ (−δ, δ) we find a normal parameterization ρ(t) ∈ C2(Σ,R) of Γ(t). Then in
these coordinates we have

v :=
d

dt
Γ(0) =

d

dt
ρ(0)νΣ ∈ C2(Σ, T⊥

Σ MH2).

On the other hand, if v = ρνΣ is a normal field on Σ with ρ ∈ XΣ we obtain a
curve Γ : (−δ, δ) → MH2 by means of Γ(t)(p) = p+ tρ(p)νΣ(p). Clearly, Γ(0) = Σ
and ρνΣ = d

dtΓ(0) ∈ TΣMH2. In other words, the tangent space TΣMH2 consists
of all normal fields v on Σ which are of class C2.

There is one shortcoming with this approach, namely the need to require that
Σ ∈ C3. This is due to the fact that we are losing one derivative when forming
the normal νΣ. However, since we may approximate a given hypersurface of class
C2 by a real analytic one in the second normal bundle, this defect can be avoided
by only parameterizing over real analytic hypersurfaces, which will be sufficient
below.

4.2 Compact Hypersurfaces with Uniform Ball Condition
Let Ω ⊂ Rn be a bounded domain, and consider a closed compact connected
C2-hypersurface Γ ⊂ Ω. This hypersurface separates Ω into two disjoint open
connected sets Ω1 and Ω2, the interior and the exterior of Γ w.r.t. Ω. By means
of the level function ϕΓ of Γ we have Ω1 = ϕ−1

Γ (−∞, 0) and Ω2 = Ω \ Ω̄1. Then
∂Ω1 = Γ and ∂Ω2 = ∂Ω ∪ Γ.

The hypersurface Γ satisfies the ball condition, i.e., there is a radius r > 0 such
that for each point p ∈ Γ there are balls B(xi, r) ⊂ Ωi such that Γ∩B̄(xi, r) = {p}.
The set of hypersurfaces of class C2 contained in Ω satisfying the ball condition
with radius r > 0 will be denoted by MH2(Ω, r). Note that hypersurfaces in this
class have uniformly bounded principal curvatures.

The elements of MH2(Ω, r) have a tubular neighbourhood of width a larger
than r. Therefore the construction of the level function ϕΓ of Γ from Section 2.3.2
can be carried out with the same a and the same cut-off function χ for each
Γ ∈ MH2(Ω, r). More precisely, we have

ϕΓ(x) = g(dΓ(x)), x ∈ Ω,

with
g(s) = sχ(3s/a) + sgn(s)(1− χ(3s/a)), s ∈ R;

note that g is strictly increasing and equals ±1 for ±s > 2a/3. This induces an
injective map

Φ : MH2(Ω, r) → C2(Ω̄), Φ(Γ) := ϕΓ. (2.71)

Φ is in fact a homeomorphism of MH2(Ω, r) onto Φ(MH2(Ω, r)) ⊂ C2(Ω̄).
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∂Ω

Γ

Ω1
Γ

Ω1

Ω2

Figure 2.3: Illustration of the ball condition.

This can be seen as follows. Let ε > 0 be small enough. If |ϕΓ1 −ϕΓ2 |2,∞ ≤ ε,
then dΓ1(x) ≤ ε on Γ2 and dΓ2(x) ≤ ε on Γ1, which implies dH(Γ1,Γ2) ≤ ε.
Moreover, we also have |∇xϕΓ1

(x)−νΓ2
(x)| ≤ ε on Γ2 and |∇xϕΓ2

(x)−νΓ1
(x)| ≤ ε

on Γ1 which yields dH(NΓ1,NΓ2) ≤ C0ε. Then the hypersurfaces Γj can both
be parameterized over a C3-hypersurface Σ, and therefore dH(N 2Γ1,N 2Γ2) ≤ ε
if and only if

|ρ1 − ρ2|∞ + |∇Σ(ρ1 − ρ2)|∞ + |∇2
Σ(ρ1 − ρ2)|∞ ≤ C1ε.

This in turn is equivalent to |ϕΓ1
− ϕΓ2

|2,∞ ≤ C2ε.

Let s− (n− 1)/p > 2. For Γ ∈ MH2(Ω, r) we then define

Γ ∈ W s
p (Ω, r) if ϕΓ ∈ W s

p (Ω), (2.72)

and
distW s

p (Ω,r)(Γ1,Γ2) := |ϕΓ1
− ϕΓ2

|W s
p (Ω). (2.73)

In this case the local charts for Γ can be chosen of class W s
p as well. A subset

A ⊂ W s
p (Ω, r) is said to be (relatively) compact, if Φ(A) ⊂ W s

p (Ω) is (relatively)
compact. In particular, it follows from Rellich’s theorem that W s

p (Ω, r) is a com-
pact subset of W σ

q (Ω, r), whenever s− n/p > σ − n/q, and s > σ.

2.5 Moving Hypersurfaces and Domains

In this section we consider the situation of moving hypersurfaces, that is, hyper-
surfaces that are time dependent. We first introduce the notion of normal velocity,
and we then prove a transport theorem for moving surfaces. A special case is
the well-known formula for the change of surface area. In addition, we prove a
transport theorem for moving domains, and derive the change of volume formula.

5.1 Moving Hypersurfaces
Let {Γ(t) : t ∈ I} be a family of compact connected closed C2-hypersurfaces in
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Rn bounding domains Ω(t) ⊂ Rn, with I ⊂ R an open interval. In the following,
we write νΓ(t, ·), κΓ(t, ·), and LΓ(t, ·) for the unit normal, the mean curvature and
the Weingarten tensor of Γ(t), respectively. Let

M =
⋃
t∈I

({t} × Γ(t)) . (2.74)

By definition, M is of class C1,2 if it is a C1-hypersurface in Rn+1 and, moreover,
νΓ ∈ C1(M,Rn).

We now show that for every t0 ∈ I there is a closed, compact, analytic
hypersurface Σ, an interval I0 := (t0− δ, t0+ δ) ⊂ I and a function ρ : I0×Σ → R

with
ρ ∈ C1(I0 × Σ), ∇Σρ ∈ C1(I0 × Σ,Rn) (2.75)

such that
Γ(t) = {ξ + ρ(t, ξ)νΣ(ξ) : t ∈ I0, ξ ∈ Σ}. (2.76)

This is obtained as follows. Let t0 ∈ I be fixed. The assumption that M is a
hypersurface in Rn+1 implies that for every ε > 0 there exits δ > 0 such that
dH(Γ(t0),Γ(t)) ≤ ε whenever |t − t0| ≤ δ. In order to prove the assertion, it
suffices to show that for every ε > 0 there exists δ > 0 such that

dist(p,Γ(t0)) ≤ ε for all p ∈ Γ(t) and all |t− t0| ≤ δ.

Suppose the latter assertion is not true. Then there exists a > 0, a sequence
(pn)n∈N in Γ(t), and a sequence (tn)n∈N with tn → t0 such that dist(pn,Γ(tn)) ≥ 2a
for all n ∈ N. As Γ(t0) is compact, we find p ∈ Γ(t0) and a subsequence of (pn)n∈N,
again denoted by (pn)n∈N, such that pn → p. Therefore, dist(p,Γ(tn)) ≥ a for n ≥
N , with N sufficiently large. This shows that

(
{tn}×Γ(tn)

)
∩
(
R×BRn(p, a)

)
= ∅

for n ≥ N , contradicting the assumption that M is a manifold. As νΓ is continuous
on M we conclude that for every ε > 0 there exists δ > 0 such that

dH(NΓ(t),NΓ(t0)) ≤ ε, whenever |t− t0| ≤ δ.

According to the approximation result in Section 2.3.4 we can find an analytic
hypersurface Σ which approximates Γ(t0). We can assume that Γ(t) ⊂ Uε/2(Σ) for
t ∈ I0, that is, Γ(t) is contained in the tubular neighbourhood Uε/2(Σ) of Σ of width
ε/2. By Section 2.3.3, for every t ∈ I0 there exists a function ρ(t, ·) ∈ C2(Σ) such
that (2.76) holds. It remains to show that ρ satisfies the regularity assumptions
claimed in (2.75). In order to see this, let us consider the mapping

Π̂Σ : M(I0) → I0×Σ, Π̂Σ(t, p) = (t,ΠΣ(p)), where M(I0) :=
⋃
t∈I0

(
{t}×Γ(t)}.

We note that Π̂Σ is well-defined, as Γ(t) ⊂ Uε/2(Σ) for each t ∈ I0. Moreover, we
have

Π̂Σ ∈ C1(M(I0), I0 × Σ), Π̂Σ(t, ·) = ΠΣ|Γ(t).
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An inspection of the proof in Section 2.3.3 shows that

Π̂Σ ∈ Diff1(M(I0), I0 × Σ), (Π̂Σ)
−1(t, ξ) = Φ(t, ξ) := (t, ξ + ρ(t, ξ)νΣ(ξ)).

This yields, in particular, ρ ∈ C1(I0 × Σ) and it remains to show the additional
regularity claimed in (2.75). We recall from (2.44) that

νΓ(Φ(t, ξ)) =
(
β(ρ)(νΣ −M0(ρ)∇Σρ)

)
(t, ξ), (t, ξ) ∈ I0 × Σ. (2.77)

This representation, in conjuction with the regularity ρ ∈ C1(I0 × Σ) already
established, implies that

νΓ ∈ C1(M(I0),R
n) ⇐⇒ ∇Σρ ∈ C1(I0 × Σ,Rn),

as we will see next. Clearly, νΓ ∈ C1(M(I0),R
n) iff νΓ ◦ Φ ∈ C1(I0 × Σ,Rn).

Suppose that νΓ ∈ C1(M(I0),R
n). Thanks to β(ρ)(t, ξ) = (νΓ(Φ(t, ξ)) | νΣ(ξ)) we

have β(ρ) ∈ C1(I0 × Σ) and this, in turn, implies

∇Σρ = (I − ρLΣ)
(
νΣ − (1/β(ρ))(νΓ ◦ Φ)

)
∈ C1(I0 × Σ).

On the other hand, if ρ satisfies the regularity assumptions in (2.75) and the family
{Γ(t) : t ∈ I0} is given by (2.76), then it is not difficult to verify that M(I0) is a
hypersurface of class C1,2.

We now state a useful variant of (2.76). The result reads as follows: for every
fixed t ∈ I there exists a number δ > 0 and a function ρ ∈ C1((−δ, δ)×Σ), where
Σ = Γ(t), such that

Γ(t+ s) = {p+ ρ(s, p)νΣ(p) : s ∈ (−δ, δ), p ∈ Σ}, Σ := Γ(t). (2.78)

This follows by an obvious modification of the arguments given above. In fact,
the proof is less involved, as there is no need to generate a smooth approximation
for Γ(t).

5.2 The Normal Velocity
Let M be as above. Suppose I0 is a subinterval of I and γ : I0 → Rn is a C1-curve.
Then γ is called a C1-curve on M if γ(t) ∈ Γ(t) for each t ∈ I0. Hence, γ is a
C1-curve on M iff (t, γ(t)) ∈ M for t ∈ I0. If γ is C1-curve on M, then

VΓ(t, p) := (γ′(t)|νΓ(t, p)), p = γ(t), (2.79)

is called the normal velocity of {Γ(t) : t ∈ I} at the point (t, p). The normal
velocity VΓ is well-defined, that is, VΓ(t, p) does not depend on the choice of a
C1-curve on M through p ∈ Γ(t). Indeed, let γ : I0 → Rn be an arbitrary C1-
curve on M and let p = γ(t). We can assume, by possibly shrinking I0, that the
representation (2.76) holds. Therefore, the curve γ can be expressed by

γ(t) = ξ(t) + ρ(t, ξ(t))νΣ(ξ(t)), t ∈ I0, ξ(t) ∈ Σ,
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and hence,

γ′(t) = (I − ρ(t, ξ(t))LΣ(ξ(t)))ξ
′(t) + (∂tρ(t, ξ(t)) + (∇Σρ(t, ξ(t))|ξ′(t))νΣ(ξ(t)).

Using (2.77), and suppressing the variables, we obtain

VΓ = (γ′|νΓ) = β(ρ){∂tρ+ (∇Σρ|ξ′)− ((I − ρLΣ)ξ
′|M0(ρ)∇Σρ)} = β(ρ)∂tρ,

or in more precise notation, VΓ(t, p) = (VΓ ◦ Φ)(t, ξ) = β(ρ(t))(ξ)∂tρ(t, ξ). This
expression does not refer to the curve γ, and this shows that the definition (2.79)
is independent of a particular curve. Moreover, this also shows that we can, alter-
natively, define the normal velocity by

VΓ = β(ρ)∂tρ, (2.80)

provided {Γ(t) : t ∈ I0} is represented by (2.76), which can always be assumed.
For later use we note that

[1, VΓνΓ]
T ∈ T(t,p)M, (2.81)

i.e., [1, (VΓνΓ)(t, p)]
T is a tangent vector for M at the point (t, p). This can be

seen as follows. Suppose γ : I0 → Rn is a C1-curve on M. Then (t, γ(t)) ∈ M for
t ∈ I0 and consequently, [1, γ′(t)]T ∈ T(t,p)M with p = γ(t). Hence, by (2.79),

[1, (VΓνΓ)(t, p)]
T
= [1, (γ′(t)|νΓ(t, p))νΓ(t, p)]T

= [1, γ′(t)]T − [0,PΓ(t)(p)γ
′(t)]T ∈ T(t,p)M,

as [0, v]T ∈ T(t,p)M for any vector v ∈ TpΓ(t).

5.3 The Lagrange Derivative for Moving Surfaces
Suppose that uΓ(t, ·) := uΓ(t)(·) : Γ(t) → Rn is a vector field for each t ∈ I. Hence
uΓ is defined on M and we assume that uΓ ∈ C1(M,Rn). Then uΓ is called a
C1-velocity field for the family {Γ(t) : t ∈ I} if

VΓ = (uΓ|νΓ), (2.82)

or more precisely, if VΓ(t, p) = (uΓ(t, p)|νΓ(t, p)) for (t, p) ∈ M.
A velocity field uΓ is called a normal velocity field for {Γ(t) : t ∈ I} if

uΓ(t, ·) ∈ T⊥Γ(t), i.e., uΓ(t, ·) lies in the normal bundle of Γ(t) for each t ∈ I.
Hence,

uΓ is a normal velocity field ⇐⇒ uΓ = VΓνΓ. (2.83)

Although only normal velocity fields matter from a geometric point of view, we
nevertheless need to consider general velocity fields in order to treat the motion
of fluid particles in fluid flows subject to phase transitions.
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We note that if uΓ is a velocity field for {Γ(t) : t ∈ I} then

[1, uΓ]
T ∈ TM. (2.84)

This can be deduced from (2.81), (2.82), and the decomposition

[1, uΓ] = [1, (uΓ|νΓ)νΓ] + [0,PΓuΓ] = [1, VΓνΓ] + [0,PΓuΓ],

where, as before, we use the fact that [0, v]T ∈ TM for any vector v ∈ TΓ(t).
Next we show that for every C1-velocity field uΓ and every p ∈ Γ(t), with t

fixed, there exists δ > 0 and a unique C1-curve [s �→ x(t+ s)] : (−δ, δ) → Rn such
that

d

ds
x(t+ s) = uΓ(t+ s, x(t+ s)), x(t+ s) ∈ Γ(t+ s), s ∈ (−δ, δ),

x(t) = p.
(2.85)

The solution to (2.85), in the sequel denoted by x(t + s, t, p), is then called a
trajectory or a flow line on M through p ∈ Γ(t), generated by the velocity field
uΓ. The existence of such a trajectory can be seen by the following argument.
Setting

z(s) := [t+ s, x(t+ s)]T

we see that x(t+s) ∈ Γ(t+s) is equivalent to z(s) ∈ M for s ∈ (−δ, δ). Therefore,
(2.85) has a (unique) solution if and only if the differential equation

ż(s) = [1, uΓ(z(s))]
T, s ∈ (−δ, δ), z(0) = (t, p), (2.86)

has a (unique) solution. Existence and uniqueness of a solution z(s) = z(s, (t, p))
to (2.86) follows from the fact that the vector field [1, uΓ]

T is tangential to M, see
(2.84), and well-known results from the theory of differential equations. Moreover,
we conclude that

[(s, (t, p)) �→ z(s, (t, p))] ∈ C1((−δ, δ)×M,M),

and this implies

[(s, p) �→ x(t+ s, t, p)] ∈ C1((−δ, δ)× Γ(t),Γ(t)).

We note that

uΓ is a C1-velocity field :⇐⇒ VΓ = (uΓ|νΓ) ⇐⇒ [1, uΓ]
T ∈ TM. (2.87)

The first equivalence follows by definition, while the second implication “ ⇒ ” has
been shown above. Suppose that [1, uΓ]

T ∈ TM. Then (2.85) admits a C1-solution
[s �→ x(t+ s, t, p)], and the definition of VΓ in (2.79) implies

VΓ(t, p) =
( d

ds
x(t+ s, t, p)

∣∣
s=0

∣∣ νΓ(t, p)) = (uΓ(t, p)|νΓ(t, p)).
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It is illustrative to point out an alternative way to establish existence of solutions
to (2.85). By (2.76) we can assume that {Γ(t+ s) : s ∈ (−δ, δ)} is given by

Γ(t+ s) = {ξ + ρ(s, ξ)νΣ(ξ) : s ∈ (−δ, δ), ξ ∈ Σ},

where Σ is a smooth hypersurface. Then the curve x(s) = ξ(s)+ρ(s, ξ(s))νΣ(ξ(s)),
with ξ(s) ∈ Σ, satisfies (2.76) if and only if

ξ′(s) = (I − ρLΣ)
−1PΣ(ξ(s))uΓ(s, ξ(s) + ρ(s, ξ(s))νΣ(ξ(s)))

ξ(t) = ξ0,
(2.88)

where (I − ρLΣ) is the short form for (I − ρ(s, ξ(s))LΣ(ξ(s))). Indeed, applying
the projection PΣ to the equation

(I − ρLΣ)ξ
′(s) + [∂sρ(s, ξ(s)) + (∇Σρ(s, ξ(s))|ξ′(s))]νΣ(ξ(s)) = uΓ(s, x(s))

yields (2.88), while the projection onto T⊥Σ trivializes, i.e., we automatically have

∂sρ(s, ξ(s)) + (∇Σρ(s, ξ(s))|ξ′(s)) = (uΓ(s, x(s))|νΣ(ξ(s))).

The last assertion follows from

β(ρ(s))(uΓ(s, x(s))|νΣ(ξ(s)))
= (uΓ(s, x(s))|νΓ(s, x(s))) + β(ρ(s))(uΓ(s, x(s))|M0(ρ(s))∇Σρ(s, ξ(s)))

= β(ρ(s))[∂sρ(s, ξ(s)) + (M0(ρ(s))PΣ(ξ(s))uΓ(s, x(s))|∇Σρ(s, ξ(s)))

= β(ρ(s))[∂sρ(s, ξ(s)) + (ξ′(s)|∇Σρ(s, ξ(s))),

where we employed (2.77), (2.80) and (2.88). It remains to observe that the or-
dinary differential equation (2.88), defined on Σ, admits a unique solution as
(I − ρLΣ)

−1PΣuΓ ∈ TΣ.
Suppose that uΓ is a C1-velocity field for {Γ(t) : t ∈ I} and fΓ ∈ C1(M,R).

Then we define the Lagrange derivative of fΓ (sometimes also called the material
derivative of fΓ ) with respect to the velocity field uΓ at the point (t, p) ∈ M by

D

Dt
fΓ(t, p) :=

DuΓ

Dt
fΓ(t, p) :=

d

ds
fΓ(t+ s, x(t+ s, t, p))

∣∣∣
s=0

where [s �→ x(s + t, t, p)] denotes the solution of (2.85). In case uΓ is a normal
C1-velocity field, in which case uΓ = VΓνΓ, the Lagrange derivative is called the
normal derivative, and we set

Dn

Dt
:=

DVΓνΓ

Dt
.

Then the following relation holds.

DuΓ

Dt
fΓ(t, p) =

Dn

Dt
fΓ(t, p) + (uΓ(t, p)|∇Γ(t))fΓ(t, p). (2.89)
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In order to see this, let us consider an extension f̃Γ of fΓ in an open neighbour-
hood of M in Rn+1. Such an extension can, for instance, be obtained on the
neighbourhood

Ua(M) :=
⋃
t∈I

(
{t} × Ua(Γ(t))

)
,

where Ua(Γ(t)) is a tubular neighbourhood of Γ(t) of with a, by setting

f̃Γ(t, x) := fΓ(t, p), (t, x) ∈ Ua(M), p = ΠΓ(t)(x).

Then one obtains

DuΓ

Dt
fΓ(t, p) = ∂tf̃Γ(t, p) + (uΓ(t, p)|∇x)f̃Γ(t, p). (2.90)

By the same argument one has

Dn

Dt
fΓ(t, p) =

d

ds
fΓ(t+ s, y(t+ s, t, p))

∣∣∣
s=0

=
d

ds
f̃Γ(t+ s, y(t+ s, t, p))

∣∣∣
s=0

= ∂tf̃Γ(t, p) + VΓ(t, p)(νΓ(t, p)|∇x)f̃Γ(t, p),

where y(·) is the solution of (2.85) with respect to the normal velocity field VΓνΓ.
Using the relation

∇xf̃Γ = (∇xf̃Γ|νΓ)νΓ + PΓ∇xf̃Γ = (∇xf̃Γ|νΓ)νΓ +∇ΓfΓ,

see (2.20), we conclude with (2.82)

DuΓ

Dt
fΓ(t, p) = ∂tf̃Γ(t, p) + VΓ(t, p)(νΓ(t, p)|∇x)f̃Γ(t, p) + (uΓ(t, p)|∇Γ(t))fΓ(t, p)

=
Dn

Dt
fΓ(t, p) + (uΓ(t, p)|∇Γ(t))fΓ(t, p).

5.4 The Transport Theorem for Moving Hypersurfaces
Suppose uΓ is a C1-velocity field for {Γ(t) : t ∈ I} and fΓ ∈ C1(M,Rn). The
transport theorem for moving surfaces states that

d

dt

∫
Γ(t)

fΓ(t, x) dΓ =

∫
Γ(t)

[DuΓ

Dt
fΓ(t, x) + fΓ(t, x) divΓuΓ(t, x)

]
dΓ

=

∫
Γ(t)

[Dn

Dt
fΓ(t, x)− fΓ(t, x)κΓ(t, x)VΓ(t, x)

]
dΓ.

(2.91)

Proof. Let (t, p) ∈ M be fixed let φ(t, ·) : Θ ⊂ Rn−1 → Γ(t) be a sufficiently
smooth parameterization of an open neighbourhood of p in Γ(t). Then

φ(t+ s, ·) := x(t+ s, t, φ(t, ·)) : Θ → Γ(t+ s), s ∈ (−δ, δ),
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defines a C1-parameterization of a neighbourhood of x(t+ s, t, p) in Γ(t+ s). We
first suppose that supp fΓ ⊂⊂ U := {φ(t+ s, θ) : (s, θ) ∈ (−δ, δ)×Θ}. Let

gij(t+ s, θ) := (∂iφ(t+ s, θ) | ∂jφ(t+ s, θ)), G(t+ s, θ) := [gij(t+ s, θ)].

Hence, G(t + s, θ) is the fundamental matrix of Γ(t + s) with respect to the pa-
rameterization φ(t+ s, ·). With g(t+ s, ·) := detG(t+ s, ·) we obtain∫

Γ(t+s)

fΓ(t+ s, y) dΓ =

∫
Θ

fΓ(t+ s, φ(t+ s, θ))
√
g(t+ s, θ) dθ,

and hence

d

ds

∫
Γ(t+s)

fΓ(t+ s, y) dΓ
∣∣∣
s=0

=

∫
Θ

( D

Dt
fΓ(t, φ(t, θ))

)√
g(t, θ) + fΓ(t, φ(t, θ))

∂

∂s

√
g(t+ s, θ)

∣∣∣
s=0

dθ.

As in (2.27) we obtain

∂

∂s

√
g(t+ s, θ) =

1

2
√
g(t+ s, θ)

∂

∂s
g(t+ s, θ)

=
1

2

√
g(t+ s, θ)gij(t+ s, θ)

∂

∂s
gij(t+ s, θ).

From

∂s∂ix(t+ s, t, φ(t, θ)) = ∂i∂sx(t+ s, t, φ(t, θ)) = ∂iuΓ(t+ s, x(t+ s, t, φ(t, θ)))

follows

1

2
gij(t+ s, θ)

∂

∂s
gij(t+ s, θ)

∣∣∣
s=0

=
1

2
gij(t, θ) [(∂iuΓ(t, φ(t, θ)) | ∂jφ(t, θ)) + (∂iφ(t, θ) | ∂juΓ(t, φ(t, θ)))]

=
1

2
gij(t, θ)

[(
∂iuΓ(t, φ(t, θ)) | τΓ(t)j (φ(t, θ))

)
+
(
τ
Γ(t)
i (φ(t, θ)) | ∂juΓ(t, φ(t, θ))

)]
=

1

2

[(
∂iuΓ(t, φ(t, θ)) | τ iΓ(t)(φ(t, θ))

)
+
(
τ jΓ(t)(φ(t, θ)) | ∂juΓ(t, φ(t, θ))

)]
= divΓ(t)uΓ(t, φ(t, θ)).

Combining all steps yields

d

ds

∫
Γ(t+s)

fΓ(t+ s, y) dΓ
∣∣∣
s=0

=

∫
Θ

[
D

Dt
fΓ(t, φ(t, θ)) + fΓ(t, φ(t, θ)) divΓ(t)uΓ(t, φ(t, θ))

]√
g(t, θ) dθ

=

∫
Γ(t)

[
D

Dt
fΓ(t, y) + fΓ(t, y) divΓ(t)uΓ(t, y)

]
dΓ.
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For a more general function fΓ we can apply the result above in conjunction with
a partition of unity for M. Hence, we have shown that

d

dt

∫
Γ(t)

fΓ(t, x) dΓ =

∫
Γ(t)

[DuΓ

Dt
fΓ(t, x) + fΓ(t, x) divΓuΓ(t, x)

]
dΓ.

The second assertion in (2.91) follows from the surface divergence theorem (2.31)
and (2.89). �

We note that (2.91) implies, in particular, the well-known change of area
formula

d

dt
|Γ(t)| = −

∫
Γ(t)

κΓVΓ dΓ. (2.92)

It is worthwhile to point out that (2.92) can also be derived from (2.50). This can
be obtained as follows. Using the representation (2.78) we have |Γ(t+s)| = Φ(ρ(s))
for t fixed, and the change of area formula (2.50) in conjunction with the relation
ρ(0) = 0 immediately yields

d

ds
|Γ(t+ s)|

∣∣∣
s=0

= 〈Φ′(0), ∂sρ(0)〉 = −
∫
Σ

κΣ∂sρ(0) dΣ = −
∫
Γ(t)

κΓVΓ dΓ.

5.5 The Transport Theorem for Moving Domains
Suppose {Γ(t) : t ∈ I} is a family of compact connected closed C2-hypersurfaces
in Rn, bounding domains Ω(t) ⊂ Rn. We assume again that

M =
⋃
t∈I

(
{t} × Γ(t)

)
is a C1,2-hypersurface in Rn+1, and we set

Q =
⋃
t∈I

(
{t} × Ω(t)

)
.

Let f ∈ C1(Q). Then we have the transport theorem for moving domains:

d

dt

∫
Ω(t)

f(t, x) dx =

∫
Ω(t)

∂tf(t, x) dx+

∫
Γ(t)

f(t, x)VΓ(t, x) dΓ. (2.93)

Proof. We first show that for each fixed t ∈ I there exists a family of mappings

Φ(t+ s, ·) : Ω(t) → Ω(t+ s), s ∈ (−δ, δ),

such that

Φ(t+ s, ·) ∈ Diff1
(
Ω(t),Ω(t+ s)

)
∩Diff1

(
Γ(t),Γ(t+ s)

)
, s ∈ (−δ, δ), (2.94)
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where Diff1(U, V ) denotes the set of all C1-diffeomorphisms from U into V . The
mappings Φ(t + s, ·) can, for instance, be constructed as follows. According to
(2.78) we know that

φ(t+ s, p) := p+ ρ(s, p)νΣ(p), p ∈ Σ := Γ(t), s ∈ (−δ, δ), (2.95)

satisfies φ(t + s, ·) ∈ Diff1(Γ(t),Γ(t + s)). By means of a Hanzawa transform we
can extend φ(t+ s, ·) to Ω(t) such that (2.94) holds. In more detail, let

Φ(t+ s, x) = x+ χ(dΣ(x)/a)ρ(s,ΠΣ(x))νΣ(ΠΣ(x)), x ∈ Ω(t).

Here dΣ and ΠΣ have the same meaning as in (2.57), and χ is a suitable cut-off
function, say χ ∈ D(R), 0 ≤ χ ≤ 1, χ(r) = 1 for |r| < 1/3, and χ(r) = 0 for
|r| > 2/3.

Clearly, Φ(t + s, p) = φ(t + s, p) for p ∈ Γ(t). Since Φ(t, ·) = idΩ(t) we can

assume that det ∂xΦ(t + s, x) > 0 for (s, x) ∈ (−δ, δ) × Ω(t) by choosing δ small
enough. Next we observe that by (2.27)

d

ds
det ∂xΦ(t+ s, x) = det ∂xΦ(t+ s, x)tr([∂yΦ(t+ s, x)]−1[∂x∂sΦ(t+ s, x)]),

and therefore,

d

ds
det ∂xΦ(t+ s, x)

∣∣∣
s=0

= tr[∂x∂sΦ(t, x)] = divx ∂sΦ(t, x).

Employing the transformation rule for integrals yields∫
Ω(t+s)

f(t+ s, y) dy =

∫
Ω(t)

f(t+ s,Φ(t+ s, x)) det ∂xΦ(t+ s, x) dx,

and hence,

d

ds

∫
Ω(t+s)

f(t+ s, y) dy
∣∣∣
s=0

=

∫
Ω(t)

[
∂tf(t, x) + (∇xf(t, x)|∂sΦ(t, x)) + f(t, x)divx ∂sΦ(t, x)

]
dx

=

∫
Ω(t)

[
∂tf(t, x) + divx (f(t, x)∂sΦ(t, x))

]
dx

=

∫
Ω(t)

∂tf(t, x) dx+

∫
Γ(t)

f(t, x)(∂sΦ(t, x)|νΓ(t, x))dΓ

=

∫
Ω(t)

∂tf(t, x) dx+

∫
Γ(t)

f(t, x)VΓ(t, x)dΓ,

(2.96)

where we used (2.79) in the last step. This completes the proof. �
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The relation (2.93) immediately yields the well-known change of volume for-
mula

d

dt
|Ω(t)| =

∫
Γ(t)

VΓ dΓ. (2.97)

We point out that (2.97) can also be derived from (2.54). Indeed, using once more
the representation

Γ(t+ s) = {p+ ρ(s, p)νΣ(p) : s ∈ (−δ, δ), p ∈ Σ}, Σ := Γ(t),

we have |Ω(t+ s)| = Ψ(ρ(s)), with Ψ the volume functional introduced in Section
2.2.7. Then the first variation formula (2.54) and the relation ρ(0) = 0 imply

d

ds
|Ω(t+ s)|

∣∣∣
s=0

= 〈Ψ′(0), ∂sρ(0)〉 =
∫
Σ

∂sρ(0) dΣ =

∫
Γ(t)

VΓ dΓ.

We now consider the more special case where the moving domain Ω(t) is trans-
ported by a velocity field u. Suppose then that J ⊂ R is an open interval, G ⊂ Rn

is an open set, and u ∈ C1(J × Ω,Rn). We assume that solutions to the ordinary
differential equation

y′(t) = u(t, y(t)), y(τ) = ξ,

exist on I for all (τ, ξ) ∈ J × G, and we denote the unique solution with initial
value y(τ) = ξ by y(t, τ, ξ). Let Ω0 ⊂⊂ G be a C2-domain, t0 ∈ I a fixed number,
and suppose that the family {Ω(t) : t ∈ I} of moving domains is given by

Ω(t) = y(t, t0, ·)|Ω0
= {y(t, t0, x0) : x0 ∈ Ω0}, t ∈ I.

Suppose that f ∈ C1(J ×G). Then the Reynolds transport theorem states that

d

dt

∫
Ω(t)

f(t, x) dx =

∫
Ω(t)

[
∂tf(t, x) + divx (f(t, x)u(t, x))

]
dx. (2.98)

Proof. Let t ∈ I be fixed and let Φ(s, x) := y(s, t, x) for (s, x) ∈ J ×G. From the
theory of ordinary differential equations follows that

Φ(t+ s, ·) ∈ Diff1
(
Ω(t),Ω(t+ s)

)
, s ∈ (−δ, δ), (2.99)

with φ−1(t+ s, ·) = y(t, t+ s, ·). We can now follow the computations in (2.93) to
the result

d

dt

∫
Ω(t)

f(x, t) dx =

∫
Ω(t)

[
∂tf(t, x) + divx (f(t, x)∂sΦ(t, x))

]
dx

=

∫
Ω(t)

[
∂tf(t, x) + divx (f(t, x)u(t, x))

]
dx

and this completes the proof. �
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5.6 The Transport Theorem for Two-Phase Moving Domains
Let Ω ⊂ Rn be a bounded open domain in Rn with C2-boundary ∂Ω. Suppose
that {Γ(t) : t ∈ I} is a family of closed compact C2-hypersurfaces with Γ(t) ⊂ Ω,
such that Γ(t) encloses a region Ω1(t) ⊂ Ω, and such that ∂Ω1(t) = Γ(t) for each
t ∈ I. Let Ω2(t) := Ω \ Ω̄1(t). Then

Ω = Ω1(t) ∪ Ω2(t), Ω1(t) ∩ Ω2(t) = Γ(t), ∂Ω2(t) = Γ(t) ∪ ∂Ω, t ∈ I.

Hence, Γ(t) separates Ω into an ‘inner’ region Ω1(t) and an ‘outer’ region Ω2(t),
with Ω2(t) being in contact with the boundary ∂Ω. Then νΓ(t) denotes the outward
pointing unit normal field for Ω1(t) on Γ(t). Let

Qj =
⋃
t∈I

(
{t} × Ωj(t)

)
, j = 1, 2.

As above, we assume that M is a C1,2-hypersurface. Let fj : Qj → R be given.
Then we set

f(t, x) :=

{
f1(t, x), x ∈ Ω1(t),

f2(t, x), x ∈ Ω2(t),

so that f : Q1 ∪Q2 → R. In case fj admits a continuous extension f̄j ∈ C(Qj) we
define the jump of f across Γ(t) by means of

[[f(t, p)]] := f̄2(t, p)− f̄1(t, p), p ∈ Γ(t). (2.100)

Suppose that the functions fj admit extensions f̄j ∈ C1(Qj), j = 1, 2. Then the
transport theorem for two-phase moving domains states that

d

dt

∫
Ω\Γ(t)

f(t, x) dx =

∫
Ω\Γ(t)

∂tf(t, x) dx−
∫
Γ(t)

[[f(t, x)]]VΓ(t, x) dΓ. (2.101)

Proof. Let t ∈ I be fixed. As in the proof of (2.93) we extend the family of
diffeormorphisms φ(t+ s, ·) : Γ(t) → Γ(t+ s) given in (2.95) by means of

Φ(t+ s, x) = x+ χ(dΣ(x)/a)ρ(s,ΠΣ(x))νΣ(ΠΣ(x)), x ∈ Ω,

to a family of diffeomorphisms Φ(t+ s, ·) : Ω → Ω such that

Φj(t+ s, ·) := Φ(t+ s, ·)|Ωj(t+s) ∈ Diff1
(
Ωj(t),Ωj(t+ s)

)
, j = 1, 2, s ∈ (−δ, δ).

By choosing a small enough we can assume that a tubular neighbourhood of Γ(t)
of width a is contained in Ω, and hence that Φ(t+ s, ·) = idRn in a neighbourhood
of ∂Ω. We can now proceed as in the proof of (2.93) to obtain

d

dt

∫
Ωj(t)

f(t, x) dx =

∫
Ωj(t)

∂tf(t, x) dx−
∫
Γ(t)

(−1)j f̄j(t, x)VΓ(t, x) dΓ,

and (2.101) then follows from (2.100). �
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