Chapter 2

Tools from Differential
Geometry

In this chapter we introduce the necessary background in differential geometry of
closed compact hypersurfaces in R™. We investigate the differential geometric prop-
erties of embedded hypersurfaces in n-dimensional Euclidean space, introducing
the notions of Weingarten tensor, principal curvatures, mean curvature, tubular
neighbourhood, surface gradient, surface divergence, and Laplace-Beltrami oper-
ator. The main emphasis lies in deriving representations of these quantities for
hypersurfaces I' = I, that are given as parameterized surfaces in normal direction
of a fixed reference surface ¥ by means of a height function p. We derive all of
the aforementioned geometric quantities for I', in terms of p and X. It is also
important to study the mapping properties of these quantities in dependence of
p, and to derive expressions for their variations. For instance, we show that

K'(0) = tr LE + Ay,

where k = k(p) denotes the mean curvature of I',, Ly, the Weingarten tensor
of ¥, and Ay the Laplace-Beltrami operator on 3. This is done in Section 2.
We also study the first and second variations of the area and volume functional,
respectively. In Section 3 we show, among other things, that C?-hypersurfaces can
be approximated in a suitable topology by smooth (i.e., analytic) hypersurfaces.
This leads, in particular, to the existence of parameterizations. In Section 4 we
show that the class of compact embedded hypersurfaces in R™ gives rise to a
new manifold (whose points are the compact embedded hypersufaces). We also
show that the class M2(€,7) of all compact embedded hypersurfaces contained
in a bounded domain € C R", and satisfying a uniform ball condition with radius
r > 0, can be identified with a subspace of C?({2). This is important, as it allows us
to derive compactness and embedding properties for M? (€, 7). Finally, in Section 5
we consider moving hypersurfaces and prove various transport theorems.
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Figure 2.1: A typical chart for X.

2.1 Differential Geometry of Hypersurfaces

We consider a closed embedded hypersurface ¥ of class C*, k > 3, enclosing a
bounded domain € in R™. Thus for each point p € ¥ there is a ball B(p,r) C R™
and a diffemorphism ® : B(p,r) — U C R" such that ®(p) =0 € U and

&1 (U N (R x {0})) = B(p,r)NX.

We may assume that X is connected; otherwise we would concentrate on one of its
components. The points of ¥ are denoted by p, and vy, = vs(p) means the outer
unit normal of ¥ at p. Locally at p € 3 we have the parameterization

p=¢(0) :=271(6,0),

where 6 runs through an open parameter set © C R™!. We denote the tangent
vectors generated by this parameterization by

0
7 = Ti(p) = 0,

60) =8, i=1,....n—1 (2.1)

These vectors 7; form a basis of the tangent space T,> of ¥ at p. Note that
(rslvs) = 0 for all 4, where (-]-) := (-] )gr» denotes the Euclidean inner product
in R™. Similarly, we set 7;; = 0;0;¢, Tijx = 0;0;0r¢, and so on. In the sequel we
employ Einstein’s summation convention, which means that equal lower and upper
indices are to be summed, and (5;- are the entries of the unit matrix I. For two
vectors a,b € R™ the tensor product a®b € B(R"™) is defined by [a®b](x) = (b|z)a
for z € R™. If a belongs to the tangent space 7},%, we may represent a as a linear
combination of the basis vectors of T},%, i.e., a = a’7;. The coefficients a’ are called
the contravariant components of a. On the other hand, this vector a is also uniquely
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characterized by its covariant components, a; defined by a; = (a|7;), which means
that the covariant components are the coefficients of the representation of @ in the
basis {7} dual to the basis {7;}, defined by the relations (7*|r;) = 6. Similarly,
if K € B(T,X) is a tensor we have the representations

K= kijTi®Tj = kij7i®7’j = k‘;Ti®7’j = kZTi®Tj,

with e.g. kij = (m|K7;) and kj = (7'|K7;). Moreover, tr K, the trace of K, is
given by _ _

tr K = (K7;|7°) = (K7°|735). (2.2)
In particular, tr[a ® b] = (a|b) = a;b" = a'b;.
1.1 The First Fundamental Form
Define

9i; = 9i;(p) = (r:(P)I75(p)) = (7il75), @j=1,....n—1. (2.3)
The matrix G = [g;5] is called the first fundamental form of ¥. Note that G is
symmetric and also positive definite, since
(GEE) = 91,667 = (€'mil¢my) = |€'m> > 0, forall § e R"™F, £ #0.
We let G = [g%], hence gixg™ = 67, and g''g;; = 85. The determinant g := det G
is positive. Let a be a tangent vector. Then a = a’7; implies
ar = (a|ry) = a'(7i|m,) = a’gsr,  and @' = g*ay.

Thus the fundamental form G allows for the passage from contra- to covariant
components of a tangent vector and vice versa. If a,b are two tangent vectors,
then

(alb) = ' (1;]7}) = gi;a’'t! = a;b) = a'b; = g a;b; =: (alb)s

defines an inner product on 7,,% in the canonical way, the Riemannian metric. By
means of the identity

(9™ 7lm) = 9% gk = 55
we further see that . N '
' =g"7; and T; = giT".
This implies the relations

ko =g"kyy = giek™, K9 =g k], kij = gk},

for any tensor K € B(T,X). We set for the moment G = ¢g”7; ® 7; and have
equivalently N ' _ _ '

G=0¢"1®@71 =977 =7,7 =7 @ 7;.
Let u = uF7; + (u|vs)vs be an arbitrary vector in R™. Then

Gu = g"7;(1jlu) = g riub g = uP,
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i.e., G equals the orthogonal projection Py = I — vy ® vy of R™ onto the tangent
space 1), at p € ¥. Therefore, we have the relation

'PE:I—VZ@)Z/ZZTi@Ti:Ti@Ti,

where I denotes the identity map on R™. These properties explain the meaning of
the first fundamental form [g;;].

1.2 The Second Fundamental Form
Define

lij = lij(p) = (milve), L= [ly]. (2.4)
L is called the second fundamental form of X. Note that L is symmetric, and
differentiating the relations (7;|vs) = 0 we derive

lij = (rijlvs) = —(1l0jvs) = —(75]0;v%). (2.5)
The matrix K with entries [%, defined by
I=g"l;, K=G 'L,

is called the shape matriz of 3. The eigenvalues k; of K are called the principal
curvatures of 3 at p, and the corresponding eigenvectors 7; determine the principal
curvature directions. Observe that Kn; = k;n; is equivalent to Ln; = k;Gn;, hence
the relation

(Lnilmi) = w:i(Gni|ni)

and symmetry of L and G show that the principal curvatures k; are real. Moreover,
ki(Gnilng) = (Lnilng) = (mi|Ln;) = k(0| Gny) = £;(Gnilny)

implies that principal directions corresponding to different principal curvatures are
orthogonal with respect to the inner product (G - |-)gn-1. We can always assume
that eigenvectors associated to an eigenvalue k; are orthogonal w.r.t. (G - |-)gn-1
in case k; has geometric multiplicity greater than one. The eigenvalues x; are
semi-simple, i.e., N((k; — K)?) = N(k; — K). In fact, suppose z € N((r; — K)?).
Then

m;
(ki — K)x = Z tr i
r=1

with ¢, € R, where {n;, : 1 < r < m;} is an (orthogonal) basis of N(x; — K).
Therefore,

tGieli) = (0 4Gl = (Gl = K)alnie) = (2l(5:G — Lnii) = 0
r=1

for 1 < k < m;. Since G is positive definite, ¢, = 0, and hence x € N(x; — K).
This shows that K is diagonalizable.
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The trace of K, i.e., the first invariant of K, is called the (n — 1)-fold mean
curvature k of ¥ at p, i.e., we have

n—1

ky =tr K = 1! = g"l;; = Z Kog. (2.6)

i=1
The Gaussian curvature Ky is defined as the last invariant of K, i.e.,
Ks =det K = g~ 'det L = I ' ;.
We define the Weingarten tensor Ly by means of
Ly=Le(p)=lirnen=lner =liren =1 . (2.7)

Ly, is symmetric with respect to the inner product (-|-) in R™. We note that
Ly, € B(R™) leaves the tangent space T,% invariant and, moreover, Lyvy = 0.
This shows that Ly, enjoys the decomposition

L 0
Ly = [ zl)sz 0 } : T,% @ Rug — T,% @ Rus. (2.8)
In particular, we note
trLy(p) = tr[ls|r,s], det[I +rLs(p)] = det[(I + rLs(p))|r,s] (2.9)

for r € R. We will in the following not distinguish between Ly, and its restriction
to T,%. Observe that _ N
tI‘LE = l; = gljlij = Ry, (2.10)

and the eigenvalues of Ly in T},% are the principal curvatures, since

Lym, = l;(lenk)Ti = l;nin = KINLTi = KiMk-
The remaining eigenvalue of Ly; in R™ is 0 with eigenvector vy.

1.3 The Third Fundamental Form
To obtain another property of the shape matrix K we differentiate the identity
|vss|? = 1 to the result (9;vs|vs) = 0. This means that 9;vs; belongs to the tangent
space, hence d;vs; = yFr; for some numbers v¥. Taking the inner product with T
we get
Wars =5 (1) = (Divs|ry) = —(mijlve) = lij,

hence

W =g = g’ = —g s = =1

where we used symmetry of L and G. Therefore we have

Ovg = —U'r,=—Lyry, i=1,...,n—1, (2.11)
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the Weingarten relations. Furthermore,
0= 8i(ug|8j1/2) = (&-ug\ajuz) + (z/g|8i8jyg)
implies
—(8i6jVE‘VZ) = (aiuz|6jV2) = l;l;(Tr|T8) = l;‘grslj = lisgsrl,«j = l;lrj, (212)

which are the entries of the matrix LG™'L, i.e., the covariant components of LZ.
This is the so-called third fundamental form of . In particular this implies the
relation ‘ N

tr L% = (LZTZ|LETZ') = 79” (8153112@2), (213)

which will be useful later on. Moreover, we deduce from (2.12)

tr L% = (Ly7'|Lem) = ¢9151,; = 111 = Zn (2.14)

1.4 The Christoffel Symbols
The Christoffel symbols are defined according to

Aijii = (rij]7w), AL = gF Ay (2.15)

Their importance stems from the representation of 7;; in the basis {74, vs} of R™
via

7o = AT + Lijus. (2.16)

Indeed? Suppose T;; = a?ka + bijl/z}. Then lij = (Tij|l/2> = b” and
Agjik = (1i5170) = (ai;7r|7k) = grrag;.

Therefore, af; = g° gkrau = gSkAmk = Aj;. To express the Christoffel symbols in
terms of the fundamental form G we use the identities
Okgij = Ok(mi|75) = (Tik|75) + (73l Tjk ),
Digrj = 0i(tk|m;) = (Tak|7;) + (T7i;),
959ik = 05(7i|T) = (757h) + (73| Tjx),
which yield
0i9jk + 0j9ix — Okgij = 2(Tij| ™),
ie.,
1
Aijie = §[ai9jk + 0;gir — Oxgij). (2.17)

Another important identity follows by differentiation of the relations (77|7) = 51
and (77|vs) = 0. We have

077 m) = ~(7 ) = ~Ajp(r ) =~
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and . . ‘ ‘
(O vs) = (7 |ouws) = (7| Lsm) = 1,

hence ] ) )
Oyl = —N, r* 4+l (2.18)

This gives another interpretation of the Christoffel symbols and of the second
fundamental form.

1.5 The Surface Gradient
Let p be a scalar field on X. The surface gradient Vyp at p is a vector which
belongs to the tangent space of ¥ at p. Thus it can be characterized by its

e covariant components a;, i.e., Vsp = a;7°, or by its
e contravariant components a*, i.e., Vyp = a'7;.

The chain rule
9i(po¢) = (Vsplri)
yields a; = 9;(p o ¢) = 0;p. This implies

a; = (Vsp|i) = ak(Tk|Ti) = akgku

hence _ N
Vsp=1'0;p = (g"0;p)T;. (2.19)

Suppose p is a C'l-extension of p in a neighbourhood of ¥. We then have
Vi = (Vplvs)vs + (Vilm)m' = (Vilvs)vs + (Veplm),
and hence, the surface gradient Vxp is the projection of V onto 1,3, that is,
Vsp=PsVp. (2.20)
For a vector field f : ¥ — R™ of class C! we define similarly
Vsfi=g¢"1®0;f =7 ®0;f. (2.21)
In particular, this yields for the identity map idsy, on X
Vsids = ¢¥7 ® 0;0 = ¢ n, @ 7; = Px,
and by the Weingarten relations
Vsvs, = g9 ® Ojvs = —gijlgri @7 =-1r® 7; = —Ls.
For the surface gradient of tangent vectors we have
Vst = ¢91 @ 0T, = ¢ ® Tik = g9 ® (A;kTr +likrs)
= gijAgkn QT + 1T Qs = };j’l‘j Q7 + (LynTg) Q vs.
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Finally we note that the surface gradient for tensors is defined according to

VeK =77 ® 0;K. (2.22)

1.6 The Surface Divergence

Let f be a tangential vector field on ¥. As before, f* = (f|r*) denote the con-
travariant components of f, and f; = (f|7;) the covariant components, respectively.
The surface divergence of f is defined by

e f = L (V) = =
lezf—\@@z(\/ﬁf)—\@

As before, g := det G denotes the determinant of G = [g¢;;]. This definition ensures
that partial integration can be carried out as usual, i.e., that the surface divergence
theorem holds for tangential C'-vector fields f:

9i(v/99" £)- (2.23)

% %

In fact, if e.g. p has support in a chart ¢(©) at p, then

/ (Vplf)s dS = / 3i(po 8)\(fi o $)v/a)] db
h) ©

! ‘ = - iv
=—/e<po¢>ﬁai[\/§<f 0 )]y/Gdo = /Epd of dS.

Here we used that the surface measure in local coordinates is given by d = ,/gdf.
The general case follows from this argument by using a partition of unity. There
is another useful representation of surface divergence, given by

divs f = g% (75]0:f) = (7"|0; f). (2.25)
It comes from
1

g&[\/ﬁg” (1),

divsf = Jlgaxﬁg”jfj) -

S

since -
(0:(v99” 7)) =0, k=1,...,n—1 (2.26)
Here (2.26) follows from

(0i(v/99" 7)) |mk) = 8i(V/99" (7517x)) — /99" (71 7ki) = Bn/g — /99" (75| 7s)
= O0k\/9 — %\/ﬁgijak(TﬂTi) = 2\1@ (Okg — 99" Orgij)
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and the relation
g = g tr[GTOkG) = 99" Orgi;- (2.27)

The last assertion can be verified as follows:

n—1
Org = Opdet G = det[Gh,-+,0kGj, -+ Gn_1]
j=1
n—1
= (detG) > det (G [G1,-++ ,0kGy, -+ ,Gna]) = gtr[GT1OG],
j=1

where G = [g;;] = [G1,- -+ ,Gn-1], with G, the j-th column of G. From (2.25)
follows

divsT = g7 (75]70i) = 97 Agiy = M-
Equation (2.25) can be used as a definition of surface divergence for general, not
necessarily tangential vector fields f, i.e., we have

divs f := g (7|0:f) = ('10:f), € CH(E,RM). (2.28)
For example, consider f = vs. Then ;s = —lka by the Weingarten relations
and we obtain
diVZVE = gij(Tj|8il/2) = —gijlij = —Ry.

This way we have derived the important relation
Ky, = —divyys. (2.29)
With this in hand, we can now deduce the relation
divef =divePsf — (flvs)ks. (2.30)

We remind that the surface divergence theorem (2.24) only holds for tangential
vector fields. The surface divergence theorem for general vector fields reads as

[ Fsolnyiz == [ pldivss+ Gses)ds, feCUERY. (@231
This follows from (2.24) and (2.30) by means of
/E(VZPV)Z ax = /E(VZPW)EJ”)E dy = —/EpdiVEPZde.
Another representation of the surface divergence of a general vector field f is given

by
divy f = (T1|81f) = tl"[Ti ® 0;f] =trVaf. (2.32)
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Suppose that f € C1(X,R") admits a C'-extension f in a neighbourhood of X.

Then -
of )7

diVZf = diVa:.f_ (VEHVCDfN]TVZ) = divmf_ (VZ %

as can be deduced from
divs f = (7'10;f) = (T'|[Vo f] 1)
= (TN[VafIT7) + (ws|[Ve /] Tvs) = (sl [V f]Tvs).

Suppose now that vs; admits a C''-extension s in a neighbourhood of ¥ such that
|Us:] = 1 is this neighbourhood. Then we have

2 () [Vars ()] v(p) = S (Psp + o @) + o (e =0,

and we obtain
diVIf/z; = din;Vz; = —KR3. (233)

Consequently, if Y is given as the zero set of a C2-level function ¢ with V¢ # 0,
with V¢ pointing in the direction of vy, we have the well-known formula

Ky = —div M
o ; Vel '

Finally, the surface divergence for tensors is given by
dive K = (77)9;K) := (0;K)" 9. (2.34)
This immediately yields the important relation

diVng = Ryly. (2.35)

1.7 The Laplace-Beltrami Operator
The Laplace-Beltrami operator on X is defined for scalar fields by means of

Agp = dng VE 142

which in local coordinates reads

1 ii
Aspp = %31[\/59 ?0;p].

Another representation of Ay, is given by
Asp =g 0;0;p — g" A;0kp. (2.36)

This follows from (2.19), (2.25) and (2.18). Since at each point p € ¥ we may choose
a chart such that g;; = d;; and Afj = 0 at p, we see from this representation that
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the Laplace-Beltrami operator is equivalent to the Laplacian at the point p; see
also Section 2.1.8 below.
To obtain another representation of Ay, for a scalar C?-function we compute

Vip = Vs(r70;p) =" @ 9i(t70;p).
This yields with (2.18)
Vip Z(BZij)Ti Q7 + (8jp)7'i ® 0; 7
=(3i0kp — N, 9;p)T" @ TF + (L Vsp) @ vs.

Taking traces gives
Asp = tr Vip.

Similarly, the Laplace-Beltrami operator applies to general vector fields f accord-
ing to
Asf = g"“(0:0;f — Aj;0-f).
For example, this yields, for the identity map idy; on X,
Axids = g7 (9;0;¢ — Aj;0,0) = g (1ij — Ajj7),

and hence by (2.16)
AE ldz = gijlijVE = Ryly.

Finally, we prove the important formula
Asvs, = —Vsky — [tr LE]vs. (2.37)
In fact, we have from (2.12)
(Asvslvy) = gij(aijug — Afjarl/gh/g) = gij(aijz/g|yg) = ftrL%.
Next observe that

(OkOjvs|Ti) — (0;95vs|m) = Ok (Ojvs|mi) — 0;(0jvs|Tk)
= —0k(vs|1ij) + O0i(vs|Tj) = Ok (Oivs|T;) — 0;(Okrs|T;)
= (Oivslmiy) — (Okvsmis) = Ay (Oivs|r) — Aj; (Okvs|T)
= Ay, (0rvs|i) — A3 (Orvs|mh),
hence
(Or0jvs — AL;0rvs|Ti) = (0i0;vs — A;0rvs|Ti).

This implies

(Asvs|n) = ¢* (0k0;vs — Ay, 00vs|r) = (0:0;v5 — Aj;0pvs|T7).
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On the other hand,
—(Vsks|n) = —0ikx = 0;(9;vs|T7)
= (87;aj1/2|7'j) + (arl/2|ai7j)
= (aiajl/g — A:jarylej).
This proves formula (2.37).

1.8 The Case of a Graph over R" !

Suppose that X is a graph over R"~! i.e., there is a function h € C2(R"~!) such
that the hypersurface ¥ is given by the chart ¢(x) = [zT, h(x)]T, € R*~1. Then
the tangent vectors are given by 7; = [e], d;h]T, where {e;} denotes the standard
basis in R"~!. The (upward pointing) normal vs is given by

vs(z) = B(@)[-Voh(z), 1T, B(z) =1//1+ |V, h(z)]2.
The first fundamental form becomes g;; = J;; + 0;h0;h, hence
g = 511 — B20,hd;h.
This yields
7' =[le; — B20;hV h]T, B20:h] T,
and with 7, = [0, ;9 h]T,
lij = (ri5lvs) = BO;0;h,

and therefore

Ky = g"1; = BlAgh — BA(VERV,h|V,h)] = div, <W> .

14 |V h|?
The Christoffel symbols in this case are given by
Aijlk = 0;0;h0kh, Afj = 626i8jh8kh.

Suppose that R"~! x {0} is the tangent plane at ¢(0) = 0 € . Then h(0) = 0
and V,h(0) = 0, hence at this point we have g;; = d;;, 7; = [e],0]7, vs = [0,1]T,

B =1, and l;; = 9;0jh. Thus the principal curvatures x;(0) are the eigenvalues of
V2h(0), the mean curvature is kx(0) = A, h(0), and A%(O) =0.
To obtain a representation of the surface gradient, let p : 3 — R. Then

Vsp=10;p = [[Vap — B2(Vap|Vah)Vah]T, B2(Vap| Voh)] .
Similarly, for f = (f, f*) : £ — R"~! x R we obtain
divs f = (7'10;f) = divaf + B*(Voh|Va f" = (Vah - Vo)),
and for the Laplace-Beltrami
Asp = Dup — B (V3pVeh|Vieh) — B2[Arh — B2(VERV 2 h|V o h)(V:h|V.p).
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29>
Figure 2.2: Parameterization of I' over X.
2.2 Parameterized Hypersurfaces
We consider now a hypersurface I' = I', which is parameterized over a fixed
hypersurface ¥ according to
q="1vo(p) =p+pp)vslp), pEX, (2.38)

where as before vs = vs(p) denotes the outer unit normal of ¥ at p € ¥.

We want to derive the basic geometric quantities of I' in terms of p and those
of ¥. In the sequel we assume that p is of class C'' and small enough. A precise
bound on p will be given below.

2.1 The Fundamental Form
Differentiating (2.38) we obtain with the Weingarten relations (2.11)

TiF = 8zwp =7+ p@iyg + (8@[))1/2 = (I - pLZ)Ti + (aip)l/z. (239)

We may then compute the fundamental form G'' = [gfj] of I' to the result

((I = pLs)7; + Oiprs|(I — pLs)Tj 4+ Ojprs)
((I — pLs)7i|(I — pLx)7;) + 0ipd;p,
(7il(I = pLx)?75) + (7l [Vp @ Vspl7;)

gi = (1 17})

where we used that ((I — pLs)7x|vs) = 0. Hence

[gzr;] =[(I - ,OLE;)2 +Vsp® Vzp}ij'
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This yields the representation

93] = [(I = pLs)*[I + (I = pLs) " *Vsp @ Vspllyj (2.40)
= [9a][(I = pLx)*[I + (I = pLs)"*Vsp @ Vspll}.

We then have
g =detGT = det[g{j] = gdet[[(I — pLs)*[I + (I — pLs) *Vsp ® Vxp)].

Since for any two vectors a,b € R”,

det(I+a®0b) =1+ (ab),

we obtain
9" = ga®(p)1* (p), (2.41)
where
a(p) = det(I — pLy) = det(I — pK) = T} (1 — pry),
and

p(p) = (1+ ((I — pLs) " *Vp|Vsp))'/?
= (14 ((I = pLx) 'Vsp|(I = pLx) ' Vzp)'/?.

This yields for the surface measure dI' on I,

dl = /gTdf = a(p)u(p)v/g do = a(p)p(p) d3, (2.42)

Ry = [ oot az.

where |I',| denotes the surface area of I',,. Since

hence

®b
I gy 990
(I +a®b) T+ (@)’

we obtain for [G']~! the identity
[G"7 = lor] = ([ = ()T = pLs) *Vp© Vipl(I = pLs) *lilos’].

All of this makes sense only for functions p such that I —pK is invertible, i.e., a(p)
should not vanish. Thus the precise bound for p is determined by the principle
curvatures of X, and we assume here and in the sequel that

Pl < : po. (2.43)

max{|r;(p)|:i=1,....n—1,peS}



2.2. Parameterized Hypersurfaces 57

2.2 The Normal at T’
We next compute the outer unit normal at I'. For this purpose we set

v = B(p)(vs — alp)),

where ((p) is a scalar and a(p) € T,X. Then B(p) = (1 + |a(p)|>)~'/? and

0= (vrlr}) = B(p)(vs — alp)|(I = pLs)7i + vdip),
which yields
0= 0ip — (a(p)|(I = pLx)7i) = 0ip — ((I — pLg)alp)|7i),

by symmetry of Ly. But this implies (I — pLy)a(p) = Vsp, i.e., we have
vr = B(p)(vs —alp)) (2.44)

with

a(p) = Mo(p)Vsp, Mo(p) = (I = pLs)~",  B(p) = (1+la(p)|*)"/%.  (2.45)

Note that u(p) = 8~1(p), where p(p) was introduced in the last section. By means
of a(p), B(p) and My(p) this leads to another representation of G and Gp',
namely

l9i;] = [(I = pL)[I + alp) @ a(p))(I — pLx)lij,
and B

[9'] = [Mo(p)[I = 3*(p)alp) ® al(p)]Mo(p)]"”.

2.3 The Surface Gradient and the Surface Divergence on I’
It is of importance to have a representation for the surface gradient on I' in terms
of ¥. For this purpose recall that

Pr=I-vr@ur =gir @1,
where vp = 8(p)(vs — Mo(p)Vsp), and
Tir = - pLZ)TiE + O;prs.
By virtue of Lyvy = 0, the latter implies
o = (I - pL) (7P + Bipu).

As remarked before we do not distinguish between Ly € B(R") and its
restriction to T,3. With this identification, and by the fact that (I — pLx) = I on
Rus;, we have

(I — pLx)(p) € Isom (R™,R"™) NIsom (T,%, T,X),
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provided p satisfies (2.43). As before, pLy, is the short form for p(p) Lz (p). Hence,
Mo(p)(p) € Isom(R"™,R"™) NIsom(T, %, T,%).

We conclude that
Mo(p)7i =77 + (Bip)vs,

and therefore
PeMo(p)i =77 (2.46)

(2

On the other hand, we have
PrMo(p)s = g7l @ 71 Mo(p)7& = (7] |Mo(p)78),

hence
PrMo(p)rs; = 71 (2.47)

(2.46) and (2.47) allow for an easy change between the bases of T,,X and T,T,
where ¢ = 1,(p) = p + p(p)v=(p). (2.47) implies for a scalar function ¢ on T,

Vi = 110 = PrMo(p) 50,0+ = PrMo(p)Vspw, s = 0o,
which leads to the identity
Ve = PrMo(p)Vseps.
Similarly, if f denotes a vector field on I', then
Vrf =PrMo(p)Vs fu
and so
dive f = (1710, f) = (PeMo(p)710, f) = tr [PrMo(p) Vs £.].
As a consequence, we obtain for the Laplace-Beltrami operator on I,
Ary = tr [PrMo(p) Vs (PrMo(p)Vse)],
which can be written as
Arg = Mo(p)PrMo(p) : Vip. + (b(p, Vsp, V) V.,

with b = 8;(Mo(p)Pr)PrM(p)rs. One should note that the structure of the
Laplace-Beltrami operator on I' in local coordinates is

Arp = a”(p,0p)3i0jp. + 0" (p, dp, 8% p)Dyp.

with
a'’(p,0p) = (PrMo(p)rs:|PrMo(p)73,) = (p|7%) = 97
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and
b¥(p, dp, 0% p) = (PrMo(p)m|0:( Mo (p)Prr")) = (1057f) = —gif Af;.

This shows that —Ar is strongly elliptic on the reference manifold ¥ as long as
ploo < po.

2.4 Normal Variations
For p, h € C(X) sufficiently smooth and F(p) : & — R* we define

d
F'(p)h = —F DI
(p)h =2 Flp+eh)|

First we have
My(p) = Mo(p) L Mo(p), M;(0) = Ls,

as My(0) = I. Next
B'(p)h = —B(p)* (Mo(p)Vsp|My(p)hV zp + Mo(p)Vsh),
which yields 3/(0) = 0, as 8(0) = 1. From this we get for the normal
v(p) = vr = B(p)(vs — Mo(p)Vsp)
the relation
V(p)h = B'(p)h(vs — Mo(p)Vsp) — B(p)(Mg(p)hVsp + Mo(p)Vsh),

which yields
I//(O)h = —VZ}L.

This in turn implies for the projection P(p) := Pr
Pl(p)h =~ (p)h @ v(p) — v(p) @ V'(p)h,

hence
P'(0)h=Vsh®vs +vs ®Vsh=: [Vs ® vs +vs @ Vslh.

Applying these relations to V(p) := Vr = P(p)My(p)Vyx yields
(V'(0)h)p = [P'(0)h + P(0)M'(0)h] Vs
=[Vsh®uvs +vs ® Vesh+ hLs|Vse = [vs @ Vsh + hLs Vs,
and for a not necessarily tangent vector field f
(VOh)f =ve® (Vsh|Vs)f +hlsVsf
where (Vsh|Vys)f := (Vxh|r7)9; f. For the divergence of the vector field f this

implies
[div/(())h}f = (Vg‘(VEh‘Vg)f) + htr[LEng].
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Finally, the variation of the Laplace-Beltrami operator A(p) := Ar becomes
(A'(0)h)p = htr[Ls Ve + Vi(LsVze)] + 2(LsVeh|Vse) — £(Vsh|Vse).
Note that in local coordinates we have
tr[Le V] = 5(0:0;0 — Al;0kp),

hence with
tl"[v;; (LEVZQD)] = tl"[LzV%(p] + (diVZLZ|V2<p),

we may write alternatively
(A'(0)h)p = 2h tr[LsV3p] + (hdivs Ly + [2Ls — ks]Vsh|Vse).

2.5 The Weingarten Tensor and the Mean Curvature of I'
In invariant formulation we have

L(p) := Lr = =Vrvr = —P(p)Mo(p)Ve{B(p)(vs — Mo(p)Vsp)}-

Thus for the variation of Lt at p = 0 we obtain with P(0) = Py, 5(0) = 1,
Mo(O) = I, and P/(O) = VZ Rus +rs VZ; BI<O) = O7 M(/)(O) = Lz,

L'(0) = vs ® Ly Vs + L% + V&.
In particular, for x(p) := kr we have
k(p) = —tr[Vrur] = tr L(p),

hence
K'(0) = tr L% + Asy. (2.48)

Let us take another look at the mean curvature x(p) := kp. By the relations
T = PrMo(p)r§ and vr = B(p)(vs — a(p)) we obtain

K(p) = —(lelc’“)w) = —(PrMo(p)T%I(ajﬂ(p)/ﬁ(p))w + B(p)(0;vs — Oja(p)))
B(p)(PrMo(p)73:| L7} + 8;a(p))
B(p)(Mo(p)7| L7} + Dja(p)) — B(p)(vr| Mo(p)T) (vr| LT + 9;a(p)).
Since (Mo(p)7|Ls7s) = tr[Mo(p)Ls] as well as
(Mo(p)7:|9a(p)) = tx[Mo(p)Vsa(p)),
and (VFlMO( )73,) = —B(p)[Mo(p)a(p))’, we obtain
(p){tr[Mo(p)(Ls + Vza(p))]

)
+52(p) [Mo(p)a(p)]” [(vs]0;a(p)) — (a(p)|salp)) — (alp)|LeTs)]}
p){tr[Mo(p)(Ls + Vsa(p))] — B%(p)(Mo(p)a(p)|Vsa(p)a(p))},
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as (vgla(p)) = 0 implies

(v2105a(p)) = —(9jvsla(p)) = (LzTj|a(p))-

This yields the final form for the mean curvature of I.

k(p) = B(p){tr[Mo(p)(Ls + Vsa(p))] = 8%(p)(Mo(p)alp)|[Vsa(p)la(p)) }. (2.49)
Recall that a(p) = Mo(p)Vsp.

We can write the curvature of I in local coordinates in the following form.
K(p) = ¢ (p,0p)Did;p + g(p, 9p),
with N N _ _
< (p,dp) = B(p)[Mg (p)]7 = B2(p) M3 (p)Vp]' [Mg (p)Vsp) .

A simple computation yields for the symbol c(p, &) = ¢ (p, p)&;€&; of the principal
part of —k(p)

c(p,&) = Bp){|Mo(p)&* — B2(p)(alp)| Mo(p)€)*} = B ()| Mo (p)€|* > nlef?,

for ¢ = & € T,%, as long as |pleo < po. Therefore, —r(p) is a quasilinear
strongly elliptic differential operator on ., acting on the parameterization p of I’
over Y.

2.6 The Area Functional
As shown before, the area functional for the surface I') = {p+ p(p)v=(p) : p € £}
is given by

fI’(ﬂ)Z/Fp dF:/Ea(p)u(p)dE-

Here we use the notation

a(p) = det(I — pK) =721 (1= pra),  plp) = (1 + |a(p)[*)'/?,

with a(p) defined in (2.45).
We compute its first variation to the result

@I = [ )’ () + ool (Pl

For the derivatives of a and p we get

—K;

o (p)=alp) Y W (p)h = pu(p) ™ (alp)|a’(p)h).

i=1

1—pr;’
In particular, at p = 0 we get with a(0) = (0) = 1 and a(0) =0

a'(0) = —kg, 4'(0)=0.
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This implies for the first variation of ® at p =0,

(®'(0)|h) = —/ kxhdX. (2.50)
b
This shows, in particular, that the critical points of the area functional ® are
hypersurfaces with mean curvature xky = 0. Such surfaces are called minimal
surfaces.

Similarly, the second variation becomes

(@"(p)hlk) = /Z [u(p)a” (p) + alp)r” (p)]hk dX

+ [ 0o (o) + o)k (o)1)
>
Since «(0) = p(0) =1 and ©'(0) = 0 we get
(" (0)h|k) = /E [ (0) + 1" (0)] hk .

We have

hence
n—1

a”’(0) = (Zm—f —nilff? = (trK)? —tr K2,
i=1

i=1
which is the second invariant of the shape operator K.
In particular, in case ¥ is a sphere of radius R we have k; = —1/R, hence
a”(0) = (n—1)(n—2)/R2.
For the second derivative of u at p = 0 we obtain

1" (0)hk = (a'(0)h|d'(0)k) = (Vsh|Vsk).

This yields the following representation for the second variation of ® at p =0,
(®"(0)h|k) = /{[(trK)2 — tr K?]hk 4+ (Vsh|Vsk)}dY. (2.51)
b

By means of the surface divergence theorem (2.24), this representation can be
rewritten as

(@"(0)h|k) = /Z{[(tr K)? —tr K*h — Agh}kdY,

and therefore
®"(0)h = [(tr K)* — tr K?|h — Axh, (2.52)
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ie., ®”(0) is the Jacobi operator, (sometimes also called the stability operator).
Thus we see that
"(0) = —+'(0) + K&.

In the next section we will come back to this relation.

2.7 The Volume Functional
Let Q, denote the domain bounded by the surface I'y = {p + p(p)v=(p) : p € E}.
We define the volume functional ¥ by means of

W(p) = Q. (2.59)

In order to obtain the variation of ¥(p) we rewrite the volume functional by means
of the divergence theorem as

n\I!(p):/Q div:vdgc:/F (x\up)dl"z/Z(idg—i-pl/gh/p)a(p),u(p) a3,

P P

which yields, with vr = B(p)(vs — a(p)),
w¥(p) = [l + sl — alp)la(p) dz.

where as before a(p) = det(I — pK) = II7'(1 — px;). The first variation of ¥
then is

n(¥'(p)|h) = /Z{[p + (idslvs — a(p)]e/ (p)h + [h = (idsla’(p)h)]a(p)} d3.
From «(0) =1, &/(0) = —kyx and a’(0)h = Vxh follows
n(¥'(0)|h) = /2[1 — (dg|vs)ks|hd® — /E(idg\Vgh) %
= /2(1 + divy idg)h 5,
where we used the surface divergence theorem (2.31) in the last step. From
divg ids = (7%]0;ids) = (7'|7) = (n — 1)

follows the well-known formula for the first variation of the volume functional
(U'(0)|h) = / hdX. (2.54)
b

Now we reconsider the area functional ®. We want to minimize surface area of
Y under the constraint that the volume of the domain bounded by ¥ is a given
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constant Wy. The method of Lagrange multipliers yields a number A € R such that
@' — AP’ = 0. According to (2.50) and (2.54), this means

0= (&' — \U'|h) = —/(%E +AhdS =0,
b

for all functions h. This implies ks = — A, i.e., ¥ must be a sphere since ¥ is an
embedded closed and compact hypersurface. But then the value ® is given by the
constraint, i.e.,

®(Sr(w0)) =wnR"™!, ke =—-(n—1)/R, A=(n—1)/R, (wn/n)R"=V,.

The second variation of ¥ can be computed as follows.

n (T (0)h|k) = /E (ids|vs ) (0)hk dS

+ /E {[k — (ids|Vssk)]h + [(h — (ids|Vsh)]k}e/ (0) dS

—/E(idg|a”(0)hk')a(0) dx.
We observe that
(ids|Vsk)h + (ids|Vsh)|k = (ids Vs (hk))
and
a”(0)hk = M{(0)kVsh + M{(0)hWVsk = Ly [kVsh + hVsk] = Ls Vs (hk).
Collecting terms this yields

(T (0)h|k) = % /E [(ids|s)a” (0) + 2/ (0)]hk d5)

| (2.55)

o /E (idss|[o! (0)] + Lx] Vs (hk)) dS.

Here we recall that o/(0) = —kyx and o’ (0) = (tr Ly)? — tr L%,

In particular, for a sphere of radius R centered at the origin we get idy;, = Rvy,
and hence

(0" (0)h|k) = %/2 {R(”;)z("m + 2("}g 1)} hk dS = n};l/Ehde.

This implies at a stationary point of the surface functional ® with constraint
U(p) = c with & + AV’ =0 and A = ky,

" + NV = —Ay — (n—1)/R* = —/(0).
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2.3 Approximation of Hypersurfaces

3.1 The Tubular Neighbourhood of a Hypersurface

Let ¥ be a compact connected C2-hypersurface bounding a domain  C R", and
let vy, be the outer unit normal field on ¥ with respect to 2. Then ¥ satisfies the
uniform interior and exterior ball condition , i.e., there is a number a > 0 such
that for each point p € ¥ there are balls B(x1,a) C © and B(xs,a) C Q°, such
that ¥ N B(x;,a) = {p}. Choosing the radius ap maximal, we set a = ag/2 in the
sequel. Consider the mapping

A:¥ x (—a,a) > R", A(p,7):=p+rvs(p). (2.56)
We claim that A is a C'-diffeomorphism onto its image
Uy :=1m(A) = {z € R" : dist(z, X) < a}.
Note that the centers of the balls B(x;, a) necessarily are equal to z1 = p—avs(p)
and 2 = p 4 avs(p). To prove injectivity of A, suppose
p1+71vs(p1) = p2 + ravs(p2),

where we may assume w.l.o.g. that ro < r; < a. But then

p2 — (p1 +1mvs(p1)) = —rovs(p2),

hence py € B(p1 + rivs(p1),71) N Y = {p1}, which shows p; = py and then also
r1 = ry. The set U, will be called the tubular neighbourhood of % of of width a.
To prove that A is a diffeomorphism, fix a point (po,79) € ¥ X (—a,a) and a chart
¢ for pg. Then the function f(6,r) = A(¢(0),r) has derivative

Df(0,70) = [[I = roLs(po)]#'(0), vs(po)]-

It follows from (2.58) that [I —roLs(po)] € B(Tp,X) is invertible, and consequently,
Df(0,79) € B(R™) is invertible as well. The inverse function theorem implies that
A is locally invertible with inverse of class C*.
It will be convenient to decompose the inverse of A into A~! = (Ily, dx;) such
that
Iy € CY(U,, %), dy e CYU,,(~a,a)). (2.57)

IIs;(z) is the nearest point on ¥ to z, dx(z) is the signed distance from z to X.
From the uniform interior and exterior ball condition follows that the number
1/ag bounds the principal curvatures of ¥, i.e.,

max{ki(p):p€ X, i=1,---,n—1} <1/am. (2.58)

A remarkable fact is that the signed distance dyx; is even of class C2. To see this,
we use the identities

r—g(z) = de(z)vs(ls(r)), ds(z) = (z — g (z)lvs(ls(x)).
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Differentiating w.r.t. x; this yields

Oy ds(x) = (ex — Op, I (2)vn(lx(2))) + (¢ — Hs(2)|0, (vs 0 Ilx) (7))
(Is(2)) + ds(2) (v (s(2))|0s), (vs 0 s ()

since O, Il (7) belongs to the tangent space Ty (2)%, as does O, (vs o lIs(x)),
since |vs, o IIs(z)| = 1. Thus we have the formula

deg(:c) = I/Z(HZ(I)), z € U,. (259)

This shows, in particular, that dy is of class C?.
It is useful to also have a representation for the derivatve dllx(z) of IIg(z).
With

I— 8HE(1) = l/g(HE(JC)) ® Vdx (l‘) + dx; (I)@I/E(HE(I))(?HX(JC),
and (2.59), we obtain
Ils(z) = Mo(ds(z))(ls(2))Pe (s (2)), (2.60)

where Mo(7)(p) := (I —rLs(p))~!. This shows that Ol (p) = V.IIs(p) = Ps(p),
the orthogonal projection onto the tangent space 7,,3.

3.2 The Level Function

Let ¥ be a compact connected hypersurface of class C2 bounding the domain (2 in
R™. According to the previous section, ¥ admits a tubular neighbourhood U, of
width a > 0. We may assume w.l.o.g. @ < 1. The signed distance function dx(x)
in this tubular neighbourhood is of class C? as well, and since

Veds(z) = vs(lln(z)), =€ U,,

we can view V,dx(z) as a Cl-extension of the normal field vs:(z) from ¥ to the
tubular neighbourhood U, of . Computing the second derivatives V2ds, we obtain

Vids(x) = Vors(ls(z)) = —Le(ls(z))Ps (s (2)) (I — ds () Ly (s (2))
= —Ly(lx(2))(I — ds(z)Ly(Ix(x)) ",
for © € Uy, as Lx(p) = Lx(p)Px(p). Taking traces then yields

n—l ri(s(x))
Ads(z) = =) 1— dg(x)ii(ﬂz(x))’

=1

zeU,. (2.61)

In particular, this implies

Vids(p) = —Ls(p), Auds(p) = —rs(p), peX. (2.62)
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Therefore the norm of V2dy is equivalent to the maximum of the moduli of the
curvatures of ¥ at a fixed point. Hence we find a constant ¢, depending only on
n, such that

| Vids|oo < max{|ki(p)|: i=1,....,n—1,p € X} < ¢ |V2ds|w.

Next we extend dy as a function ¢ to all of R™. For this purpose we choose a C'*°-
function x(s) such that x(s) =1 for |s| < 1, x(s) =0 for |s| > 2,0 < x(s) < 1.
Then we set

plz) = { ds()x(3ds(w)/a) + sign (ds(2))(1 = X(3ds()/a)), = € Ua,

X0 (T) — Xeu (2), v 4 U, (2.63)

where Qe and i, denote the exterior and interior component of R™ \ U,, respec-
tively. This function ¢ is then of class C?, ¢(x) = dx(z) for x € U,/3, and

plr)=0 < zeX.

Thus X is given as zero-level set of ¢, i.e., ¥ = ¢ ~1(0). ¢ is called a canonical level
function for 3. It is a special level function for X, as

Vaep(r) = vs(llg(x)) for x € Uyys.

3.3 Existence of Parameterizations
Recall the Hausdorff metric on the set K of compact subsets of R defined by

dp (Ky, K2) = max{ sup dist(z, K3), sup dist(y, K1)}. (2.64)
zeK; yeKso

Suppose ¥ is a compact connected closed hypersurface of class C? bounding a
bounded domain in R™. As before, let U, be its tubular neighbourhood, Iy, : U, —
> the projection and dy : U, — R the signed distance. We want to parameterize
hypersurfaces I' which are close to ¥ as

L= {p+ppvsp) :pecX}

where p: ¥ — R is then called the normal parameterization of T' over X. For this
to make sense, I' must belong to the tubular neighbourhood U, of ¥. Therefore,
a natural requirement would be dy(T',¥) < a. We then say that T' and ¥ are
C-close (of order ¢) if dy (', %) < e.

However, this condition is not enough to allow for existence of a normal
parameterization, since it is not clear that the map Iy is injective on I': small
Hausdorff distance does not prevent I' from folding within the tubular neighbour-
hood. We need a stronger assumption to prevent this. If I is a hypersurface of
class C' we may introduce the normal bundle NT defined by

NT :={(q,vr(q)) : ¢ €T} C R*"™.
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Suppose I' is a compact, connected Cl-hypersurface in R”. We say that I" and
¥ are C'-close (of order ¢) if dy(NT,NE) < . We are going to show that C-
hypersurfaces I' which are C'-close to ¥ can in fact be parametrized over X.

For this purpose observe that, in case I' and ¥ are C'-close of order ¢,
whenever ¢ € T, there is p € ¥ such that |¢ — p| 4+ |vr(q) — vs(p)| < €. Hence
lg — sgq| < e, with IIxq := IIx(q), and

lvr(q) — ve(lsg)| < [vr(q) —vs(p)| + lve(llsq) — vs(p)| < €+ Lillsg — pl,
which yields with [IIgq — p| < |Usqg —gq| + |p — q] < 2e,
lg — sq| + [vr(q) —vs(llsq)| < 2(1+ L)e,

where L denotes the Lipschitz constant of the normal of ¥. In particular, the
tangent space T,I is transversal to vs(Ilxg), for each ¢ € I, that is,

(vs(Isq)| vr(q)) #0, qel.

Now fix a point ¢y € I' and set pg = IInqp. Since the tangent space Ty, I' is
transversal to vx(pg), we infer that II%(qo) : Ty,I' — Tp,X is invertible. The
inverse function theorem yields an open neighbourhood V(py) C ¥ and a C'-map

g : V(po) — T such that g(po) = qo, 9(V(po)) C T, and Uxg(p) = p in V(po).
Therefore we obtain

q=g(p) = Ao (lls,ds)g(p) = llsg(p) + ds(g(p))vs(lsg(p)) = p + p(p)vs(p),

with
p(p) == ds(g9(p))-

Thus we have a local normal parameterization of I' over ¥. We may extend g to a
maximal domain V' C ¥, e.g. by means of Zorn’s lemma. Clearly V' is open in X
and we claim that V = 3. If not, then the boundary of V in X is nonempty and
hence we find a sequence p,, € V such that p, — p € 9V. Since p, = p(p,) is
bounded, we may assume w.l.o.g. that p, = poo. But then ¢oo = Poo + pPoo¥s (Poo)
belongs to I' as I is closed. Now we may apply the inverse function theorem again
to see that V' cannot be maximal. Since the map ®(p) = p + p(p)vs(p) is a local
C!-diffeomorphism, it is also open. Hence ®(¥) C I is open and compact, i.e.,
®(X) = I' by connectedness of I'. The map @ is therefore a C!-diffeomorphism
from ¥ to I'. In case ¥ is of class C*¥*! and T is of class C* for k > 1 the proof
above immediately implies that ® € Diff* (2, T).

Observe that because of z = IIgx + ds(z)vs(Ilgx) in U, we have z € T if
and only if ds(x) = p(Ilxx). This property can be used to construct a C-function
¥ on R™ such that I' = ¢~1(0), i.e., a level function for I'. For example we may
take

¥(z) = ¢(z) — p(Isz)Xx(3ds(2)/a), x€R™,

provided ¢ < a/3, where ¢ and x are defined in (2.63).
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3.4 Approximation of Hypersurfaces

Suppose as before that ¥ is a compact connected hypersurface of class C? bounding
a bounded domain €2 in R™. We may use the level function ¢ : R®™ — R introduced
in (2.63) to construct a real analytic hypersurface . such that ¥ appears as a
C?-graph over Y.. In fact, we show that there is g9 € (0,a/3) such that for every
e € (0,&0) there is an analytic manifold ¥, and a function p. € C?(X.) with the
property that

Y={p+p(p)vs.(p) :p € Xc}

and
|pe‘c>o + |v25p6|00 + ‘V%Epsloo <e.

For this purpose, choose R > 0 such that ¢(z) =1 for |z| > R/2. Then define

i () (1 |I|2)k eR"
r)=cll— =) , = ,
y b R2 /4
where c¢;, > 0 is chosen such that fR,,L Yr(z)dr = 1. Then ¢, ~ ak™? as k — oo,
with some number o = «a(n, R). Indeed, we have

2\ F 1 n ol
/ < - |x|2) dx = wnR"/ (1 —r2)krn=Lldr = wn 7 / (1 — )kt 1
B(0,R) R 0 2 0

where w, = |0B(0, 1)|. Using the well-known relations

L3Ik + 1)

~T(n/2)k"/?
CESE

1
/ (1= £)fn/21 gg — B(g,lﬁ— 1) =
0

with B the Beta function and I" the Gamma function, the claim follows, with
o = (waR"/2)T(n/2))" = (xR2) /2.

Then as k — oo, we have ¥p(z) — 0, uniformly for |x| > n > 0, since
E"/2g% — 0 for any fixed ¢ € (0,1). Consequently, 1, * f — f in cm(R™),
whenever f € C7(R™). Let o, =1+ 45 * (¢ — 1). Then

or — ¢ in C%(R™). (2.65)

Moreover,

ix ( — 1)() = / ((y) — Dn (e — y)dy = / (o) — Dbl — y)dy.

ly|<R/2

n

For |z|, |y| < R/2 follows |z —y| < R, and hence ¢ (x —y) = cx(1— |z —y|?>/R?)¥ is
polynomial in z,y. But then ¢ (z) is a polynomial for such values of z; in particu-
lar, oy, is real analytic in U,. Choosing k large enough, we have |p — gok|C§(Rn) <e.

Now suppose @i (z) = 0. Then |¢(z)| < €, hence z € U, and then |ds(x)] < e.
This shows that the set Xy, := @,;1(0) is in the e-tubular neighbourhood around
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3. Moreover, |V — Vploo < € yields Vg (x) # 0 in U, and therefore ¥y is a
manifold, which is real analytic.

Next we show that ¥ and ¥, are C'-diffeomorphic. For this purpose, fix a
point qo € Xg. Then g9 = po + rovs(po), where pg = IInqo € X and ro = ds(qo).
Consider the equation gx(p,r) := pr(p + rvs(p)) = 0 near (po,ro). Since

Irgk(p, 1) = (Vapr(p + rvs(p))|vs(p))
we have

9r9k(Po,70) = (Vapr(q0)|Vae(po))

> 1~ |Vapr(go) = Vap(ao)| = [Va(q0) — Vaip(po)]

> 1—|op — @lormny — e[V2olc,@n) > 0.
Therefore, we may apply the implicit function theorem to obtain an open neigh-
bourhood V(pg) C ¥ and a Cl-function 74 : V(pg) — R such that rx(po) = ro
and p+ri(p)vs(p) € Xy for all p € V(py). We can now proceed as in the previous
subsection to extend r;(-) to a maximal domain V' C X, which coincides with ¥
by compactness and connectedness of X.

Thus we have a well-defined C'-map f; : ¥ — g, fu(p) = p + re(p)vs(p),
which is injective and a diffeomorphism from ¥ to its range. We claim that fj is
also surjective. If not, there is some point ¢ € Xy, ¢ € fr(X). Set p = IIng. Then
q = p+ ds(p)vs(p) with ds(p) # rr(p). Thus, there are at least two numbers
b1, B2 € (—a,a) with p+ Bivs(p) € Xi. This implies with vs = vs(p)

1
0 = @r(p+Bovs)—pr(p+Pivs) = (52*[31)/0 (Veor(p+(B1+t(B2—pB1))vs)vs) dt,

which yields 82 — 81 = 0 since
1
/ (Veor(p+ (b1 + (B2 — Br))vs)lvs) dt > 1 —e —|Vag|c,@n) > 0,
0

as above. Therefore, the map fi is also surjective, and hence fj € Diffl(E,Ek).
This implies, in particular, that X5 = f;(X) is connected. For later use we note
that

[7k]oo + [Verk]oo — 0 as k — oo,

as can be inferred from 9,7 (p) = (7 (p+74(p)vs(p))|vs(p)) for p € X, see (2.39).
Next we show that the mapping
Ag 3k x (—a/2,a/2) =5 U(Zk,a/2), Ak(q,s) :=q+ svg(q)

is a C'-diffeomorphism for k > kg, with ko € N sufficiently large. In order to see
this, we use the diffeomorphism f; constructed above to rewrite Ay as
Ar(q,s) = Ar(fe(p), )
=p+svs(p) +re(p)vsp) + sv(p + re(p)vs(p) — vs(p)
: A(p, S) + Gk(p7 S) = Hk(pv S)
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Clearly Hy, € CY(X x (—a/2,a/2),R") and A € Diff' (X x (—a,a), U(X,a)). It is
not difficult to see that

|Gr(p, s)| + | DGr(p,s)] = 0 as k — oo, uniformly in (p,s) € ¥ x [—a/2,a/2].

Consequently, DH(p, s) : TpX % (—a/2,a/2) — R™ is invertible for k > ko, and by
the inverse function theorem, Hy, is a local C*-diffeomorphism. We claim that Hy, is
injective for all k sufficiently large. For this purpose, note that due to compactness
of ¥ x [—a/2,a/2] and injectivity of A there exists a constant ¢ > 0 such that

[A(p,s) = A, 5)| = c(lp—pl + s = 5]), (p.s), (p.5) € X x[-a/2,a/2].

The properties of G, and compactness of ¥ x [—a/2,a/2] imply, in turn, that the
estimate above remains true for A replaced by Hy, and ¢ replaced by ¢/2, provided
k > ko with kg sufficiently large. Hence Hj, is a C'-diffeomorphism onto its image
for k sufficiently large, as claimed. This shows that ¥X; has a uniform tubular
neighbourhood of width a/2 for any k > ko, and it follows that ¥ C U(Tk, a/2).
¥ and ¥, are compact connected closed C'' hypersurfaces, and we may now apply
the results of the previous subsection, showing that 3 can be parameterized over
Yk by means of
p = p+ pe(p)vi(p) with p, € C*(Zy, R),

with vy == vy, .

Finally we show that |pi|ec + [V, pkloo + |V3, prlec < € for k sufficiently
large. We already know from the construction that |pg|.c — 0 as k& — oo. However,
we need the following estimate on the rate of convergence: there exists ky € N and
a constant C' = C(kg) such that

|Pkloe < CETY2, k> k. (2.66)

In order to see this, we first observe that, for |z| < R/2,

o) = eu@)l = | [ 0@) — oo = lint) ] < Telw [ lulinto)dy

ly|<R
n+1

= |Vy|C(n, R)ckB( Jk+1).

Using similar arguments as above for the asymptotics of ¢, and B((n+1)/2,k+1)
this yields constants ko € N and C' = C/(ko) such that |p(z) — @(z)| < Ck~1/2,

whenever |z| < R/2 and k > ko. Let p € &), be given, and let ¢ = p + pi(p)vr(p).
Then |¢1(q)] = |er(q) — ©(q)] < Ck~Y/2 for k > ko. On the other hand,

lok(@)] = |er(q) — or(p)] :pk(p)‘/o (Vor(p + tpe(p)ve(p)|ve(p))dt | > %pk(p),

provided k is sufficiently large, and this implies (2.66).
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Next we show that there exists ko € N and C = C(ko) such that [0%py(x)| <
Ck'/? whenever k > ko, |z| < R/2, and |a| = 3. Indeed this follows from

1000:05px ()| = (2/32)79%’/ 0;0;01(x — y)ye(1 — |y[>/R*)"dy

ly|I<R

< ChexB(™ ‘; l,k) ~ k12,

where ¢ is an appropriate constant. Combining with (2.66) we have shown that
there are constants kg € N and C = C(ko) such that

pr(P)|0%er(z)| < C, (2.67)

for k > ko, |a| =3, p € Iy, and |z| < R/2.
In order to show smallness of |Vs, pi|oo + |V%k Pk| oo, We consider the relation

o(V(0) + (prvi) (Yr(0)) =0, 6 € O, (2.68)

where vy, : O — ¥ is a C%-parameterization of ¥, around a point pj, = fx(q) for
some g € ¥. Since ¥ = ¢, (0) and ¢}, — ¢ in C2,(R™) one shows that |9;x(0)|
is uniformly bounded in k for k sufficiently large.

Let og(x) = Vuor(x)/|Veer(z)| for z € R™ Clearly, vgx(vr(0)) =
Ui (Y5 (0)). Taking partial derivatives in (2.68) and using the orthogonality relation
(Vaor (v (0)) | 99%(6)) = 0 yields

95 (pr © Yr)(0) (Varp(qr(0)) | (v 0 ¥r)(9))
= (Va(qr(0)) — Varr(vi(0)) | 0;41(0)) (2.69)
— (i 0 i) (0) (Vap(ar(8)) | 8;(7k 0 i) (0))

where, for brevity, we set qi(0) = ¥r(0) + (prvi)(Wr(9)). It follows from (2.65)
and uniform continuity that

(Vap(ar(0))|(vi 0 i) (0)) = 1/2, (2.70)

provided k > ko with ko sufficiently large. The fact that 0;¢;(6) is uniformly
bounded for k > k¢ and (2.65) implies that the right-hand side in (2.69) converges
to zero as k — oo. We have shown that |0;pr(pr)| < €, provided that k > ko with
ko sufficiently large.

Next, we take an additional derivative 9; = 9p, in (2.69). This will produce

the terms
9;0; (pr 0 Vi) (0) (Vap(qr(0)) | (vi o ¢i)(6))
+ 0 (pk © Vi) (0)0; (Vo (qu(8)) | (vi 0 ¥1)(6))

on the left-hand side. From the previous step for 0;(px © ¥,) we conclude that
the second term converges to 0 as kK — oo. Thus it follows from (2.70) that
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0;0;j(pr 0 r) converges to 0 as k — oo, provided we can show that the derivatives
of the right-hand side in (2.69) converge to zero as k — co. A moment of reflec-
tion shows that this is indeed the case, with the possible exception of the term

ok (Vi) (Vaip(qe(0)) | 9:0; (9 01b%)(6)) which is problematic as 0;0; (7, o ¥y,) in-
volves third-order derivatives of . Since ((Dg o ) (0) | (I 0 ¥i)(0)) = 1 we get
(g 0 Yr)(0) | 0j(Pk 0 ¢i)(8)) = 0, and hence

(7 0 ¥x)(0) | 0:0;(Dr, 0 i) (0)) = — (95 (Fk © i) () | 0 (T © ) ().
With V,¢(qx(0)) = vs(qr(0)) this yields

pr(¥(0)) (Vao(ai(0)) | 0:05(7 0 1)) (6)))
= (vs(ar(0)) — Tr(yn(0)) | pr(¥(0))8:0; (1 0 1) ()
+ o1 (1(0)) (0i Pk 0 1) (0) | 85 (k © 1) (6))-
Convergence to 0 of the first term on the right-hand side follows from (2.67) and
(2.65), while the second term converges to 0 since py has this property.

Since fr : ¥ — Xj is a bijection, the assertion holds true for any point
pr € Xk, k > ko, and hence the claim follows.

N

2.4 The Manifold of Hypersurfaces in R"

4.1 Compact Connected Hypersurfaces of Class C?

Consider the set MH? of all compact connected C2-hypersurfaces ¥ in R”. Let
NX denote their associated normal bundles. The second normal bundle of ¥ is
defined by

N2 = {(p,vs(p), Vsvs(p)) : p € 5}
We introduce a metric dyge on MH? by means of dyge(E1,382) =
dp(N?21, N?5,). This way MH? becomes a metric space. We want to show
that MH? is a Banach manifold.

Fix a hypersurface ¥ € MH? of class C®. Then we define a chart over the
Banach space Xx := C%(3,R) as follows. ¥ has a tubular neighbourhood U, of
width a. For a given function p € Bx,(0,a/3) we obtain a hypersurface FE by
means of the map

Px(p)(p) :==p+p(p)ve(p), peX.
According to Section 2.3, this yields a hypersurface I‘E of class C?, diffeomorphic
to 3. Moreover, with some constant C>, we have

A2 (T, 5) < C§|P|C§(z),

which shows that the map @y : Bx, (0,a/3) — MH? is continuous. Conversely,
given I' € MH? which is C?-close to ¥, the results in Section 2.3.3 show that T
can be parameterized by a function p € C?(%,R), such that lplez(s) < a/3.
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We now determine the tangent space Ts; MH? at some fixed C3-hypersurface
¥ € MH?. For this purpose we take a differentiable curve T' : (=8, dg) — MH?
with I'(0) = 3. According to Section 2.3.3, there is § € (0, dp) such that for each
t € (—0,6) we find a normal parameterization p(t) € C?(Z,R) of I'(t). Then in
these coordinates we have

_4ad
Cdt

d
v: I'0) = ap(O)yZ € C*(%, Te MH?).
On the other hand, if v = pry is a normal field on ¥ with p € X5 we obtain a
curve I' : (—6,68) — MH? by means of I'(t)(p) = p+tp(p)vs(p). Clearly, I'(0) = ¥
and pvy = %F(O) € Ty MH?. In other words, the tangent space Ts. MHM? consists
of all normal fields v on ¥ which are of class C?2.

There is one shortcoming with this approach, namely the need to require that
¥ € C3. This is due to the fact that we are losing one derivative when forming
the normal vy. However, since we may approximate a given hypersurface of class
C? by a real analytic one in the second normal bundle, this defect can be avoided
by only parameterizing over real analytic hypersurfaces, which will be sufficient
below.

4.2 Compact Hypersurfaces with Uniform Ball Condition

Let © C R™ be a bounded domain, and consider a closed compact connected
C2-hypersurface I' C Q. This hypersurface separates € into two disjoint open
connected sets 2; and (2, the interior and the exterior of I' w.r.t. 2. By means
of the level function ¢r of I' we have € = cpl?l(foo, 0) and Qy = Q\ Q. Then
001 =T and 0922 = 0QUT.

The hypersurface I satisfies the ball condition, i.e., there is a radius r > 0 such
that for each point p € I there are balls B(z;,7) C €; such that TN B(z;,7) = {p}-
The set of hypersurfaces of class C? contained in € satisfying the ball condition
with radius 7 > 0 will be denoted by MH?2(£2, 7). Note that hypersurfaces in this
class have uniformly bounded principal curvatures.

The elements of MH2(2,7) have a tubular neighbourhood of width a larger
than r. Therefore the construction of the level function ¢p of I' from Section 2.3.2
can be carried out with the same a and the same cut-off function x for each
' € MH?(Q, 7). More precisely, we have

er(z) =g(dr(z)), z€Q,
with
g(s) = sx(3s/a) +sgn(s)(1 — x(3s/a)), se€R;

note that g is strictly increasing and equals 1 for +s > 2a/3. This induces an
injective map

O MHA(Q,7) = C*(Q), &) := or. (2.71)
® is in fact a homeomorphism of MH?(€, 1) onto ®(MH2(2, 1)) C C*(Q).
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o0

Figure 2.3: Hlustration of the ball condition.

This can be seen as follows. Let € > 0 be small enough. If |pr, —¢r,|2.00 <,
then dr,(z) < ¢ on I'y and dp,(z) < e on I'y, which implies dy(T'1,T'2) < e.
Moreover, we also have |V ¢r, (z)—vp, (2)| < eonTg and |Vyer, (z)—vp, (2)| < &
on I'y which yields dyg(NT1,NT3) < Cpe. Then the hypersurfaces I'; can both
be parameterized over a C’S—hypersurface Y., and therefore dp (N T, N 2F2) <e
if and only if

1p1 = p2loo + Vs (p1 = p2)loe + [VE(p1 — p2)]e < Che.

This in turn is equivalent to |er, — ¢r,|2.00 < Cae.

Let s — (n—1)/p> 2. For I' € MH?(Q,r) we then define
LeW (,r) if oreW;(Q), (2.72)

and

distyys (o, (I'1, I'2) := [or, — @rs|ws (o) (2.73)
In this case the local charts for I' can be chosen of class W as well. A subset
A CW;(Q,r) is said to be (relatively) compact, if ®(A) C W3 (1) is (relatively)
compact. In particular, it follows from Rellich’s theorem that W, (£, 7) is a com-
pact subset of W7 (€2,7), whenever s —n/p > o —n/q, and s > 0.

2.5 Moving Hypersurfaces and Domains

In this section we consider the situation of moving hypersurfaces, that is, hyper-
surfaces that are time dependent. We first introduce the notion of normal velocity,
and we then prove a transport theorem for moving surfaces. A special case is
the well-known formula for the change of surface area. In addition, we prove a
transport theorem for moving domains, and derive the change of volume formula.

5.1 Moving Hypersurfaces
Let {I'(t) : t € I} be a family of compact connected closed C2-hypersurfaces in



76 Chapter 2. Tools from Differential Geometry

R"™ bounding domains Q(t) C R™, with I C R an open interval. In the following,
we write vp(t, ), kr(t,-), and Lp(t,-) for the unit normal, the mean curvature and
the Weingarten tensor of I'(t), respectively. Let

M =]t} xr@). (2.74)

tel

By definition, M is of class C? if it is a C'-hypersurface in R"*! and, moreover,

vr € CL(M,R™).

We now show that for every to € I there is a closed, compact, analytic
hypersurface 3, an interval Iy := (tg — 0,0 +0) C I and a function p: [p x ¥ — R
with

p€CH Iy xY), VspeCl(IyxI,R") (2.75)
such that
T(t) = {€ + p(t, s (€)  t € Iy, £ €5}, (2.76)

This is obtained as follows. Let tg € I be fixed. The assumption that M is a
hypersurface in R**! implies that for every ¢ > 0 there exits § > 0 such that
dp(T'(to),I'(t)) < e whenever [t — to] < d. In order to prove the assertion, it
suffices to show that for every € > 0 there exists § > 0 such that

dist(p,T'(tg)) < e for all p e T'(¢) and all |t — tg| < 6.

Suppose the latter assertion is not true. Then there exists a > 0, a sequence
(pn)nen in T'(¢), and a sequence (¢, )nen with ¢, — ¢ such that dist(p,, ['(t,)) > 2a
for all n € N. As I'(g) is compact, we find p € I'(tp) and a subsequence of (p,)nen,
again denoted by (pn)nen, such that p, — p. Therefore, dist(p, I'(¢,)) > a for n >
N, with N sufficiently large. This shows that ({t,} x I'(t,)) N (R x Bgn(p,a)) =0
for n > N, contradicting the assumption that M is a manifold. As vr is continuous
on M we conclude that for every ¢ > 0 there exists 6 > 0 such that

dg(NT(t),NT(ty)) <e, whenever |t — o] < 0.

According to the approximation result in Section 2.3.4 we can find an analytic
hypersurface ¥ which approximates I'(to). We can assume that I'(t) C U, 5(X) for
t € I, that is, I'() is contained in the tubular neighbourhood Uy /5(X) of ¥ of width
g/2. By Section 2.3.3, for every t € I there exists a function p(t,-) € C%(X) such
that (2.76) holds. It remains to show that p satisfies the regularity assumptions
claimed in (2.75). In order to see this, let us consider the mapping

Iy : M(Io) = Iy x %, Tx(t,p) = (t,1Ix(p)), where M(lo) = | J ({t} xT(1)}.
tely

We note that IIy; is well-defined, as I'(t) C U./2(%) for each t € Iy. Moreover, we
have R R
Iy € CY(M(Iy), Io x 8), x(t,-) =s|rq).
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An inspection of the proof in Section 2.3.3 shows that
ﬂZ € Dlﬂ.l(M(IO)7 IO X E)7 (ﬂz)_l(t7§) = (P(t7€) = (t7§ + p(t7£)1/2(€))

This yields, in particular, p € C(Iy x ¥) and it remains to show the additional
regularity claimed in (2.75). We recall from (2.44) that

v (@(1,6) = (B(D)(vs — Mo(p)Vsp)) (1,E), (LE) €lox T (277)

This representation, in conjuction with the regularity p € C'(Iy x X) already
established, implies that

vp € CY(M(Iy),R™) <= Vypc CY(Iy x ,R"),

as we will see next. Clearly, vp € CY(M(Iy),R"™) iff vp o @ € CY(Ip x ¥, R™).

Suppose that vr € C1(M(Iy),R™). Thanks to 8(p)(t, &) = (vr(®(t,€)) | vs(£)) we
have 3(p) € C'(Ip x X) and this, in turn, implies

Vo = (I - pLy) (v — (1/8(p))(vr 0 ®)) € C* (I x X).

On the other hand, if p satisfies the regularity assumptions in (2.75) and the family
{T'(t) : t € Iy} is given by (2.76), then it is not difficult to verify that M(Ip) is a
hypersurface of class C1:2.

We now state a useful variant of (2.76). The result reads as follows: for every
fixed ¢ € I there exists a number § > 0 and a function p € C*((—4,4) x %), where
> =T'(¢), such that

T(t+s)={p+p(s,ps(p):s€(=60), peX}, X:=T(). (2.78)

This follows by an obvious modification of the arguments given above. In fact,
the proof is less involved, as there is no need to generate a smooth approximation
for T'(¢).

5.2 The Normal Velocity

Let M be as above. Suppose Ij is a subinterval of I and v : [y — R" is a C'*-curve.
Then 7 is called a C'-curve on M if () € T'(t) for each t € Iy. Hence, v is a
Cl-curve on M iff (¢,7(t)) € M for t € Iy. If y is C'-curve on M, then

Vo(t,p) == (' (O)lvr(t.p), p=n(t), (2.79)

is called the normal velocity of {I'(t) : t € I} at the point (¢,p). The normal
velocity Vr is well-defined, that is, Vi (¢,p) does not depend on the choice of a
Cl-curve on M through p € T'(t). Indeed, let v : Iy — R™ be an arbitrary C*-
curve on M and let p = (). We can assume, by possibly shrinking Iy, that the
representation (2.76) holds. Therefore, the curve v can be expressed by

P)/(t) = f(t) + p(tag(t))VE(g(t))a te IO? g(t) € Ev



78 Chapter 2. Tools from Differential Geometry

and hence,

V() = (I = p(t, &) Lu(E)))8(t) + (Qep(t,6(1) + (Vup(t, £(1)[€' (1)) v (E(1))-

Using (2.77), and suppressing the variables, we obtain

Ve = (Y|vr) = B(p){0ep + (Vspl') — (I — pLs)€' |Mo(p)Vsp)} = B(p)d:p,

or in more precise notation, Vr(t,p) = (Vr o @)(¢,£) = B(p(t))(€)p(t, ). This
expression does not refer to the curve «y, and this shows that the definition (2.79)
is independent of a particular curve. Moreover, this also shows that we can, alter-
natively, define the normal velocity by

Vi = B(p)orp, (2.80)

provided {I'(¢) : t € Iy} is represented by (2.76), which can always be assumed.
For later use we note that

(L, Viup]" € Ty pyM, (2.81)

i.e., [1,(Vrrr)(t,p)]" is a tangent vector for M at the point (¢,p). This can be
seen as follows. Suppose v : [y — R" is a Cl-curve on M. Then (t,v(t)) € M for
t € Iy and consequently, [1,7/(t)]T € T(; )M with p = ~(t). Hence, by (2.79),

L, (Vevr) (8, 9] = [L (Y (D)l (tp)ve (£, p)] T
1

[ 7’7/(75)]1— - [Ova(t) (p)’yl(tﬂT € T(t,p)Ma

as [0,v]" € T,y M for any vector v € T,I'(t).

5.3 The Lagrange Derivative for Moving Surfaces

Suppose that ur(t,-) := upy)(-) : I'(t) = R™ is a vector field for each ¢ € I. Hence
ur is defined on M and we assume that ur € C'(M,R"). Then ur is called a
C'-velocity field for the family {T'(t) : t € I} if

VF = (UF|VF), (282)

or more precisely, if Vr(t,p) = (ur(t, p)|vr(t,p)) for (t,p) € M.

A velocity field ur is called a normal velocity field for {I'(t) : t € I} if
ur(t,”) € T*T(t), i.e., ur(t,-) lies in the normal bundle of I'(¢) for each t € I.
Hence,

ur is a normal velocity field <= ur = Vrur. (2.83)

Although only normal velocity fields matter from a geometric point of view, we
nevertheless need to consider general velocity fields in order to treat the motion
of fluid particles in fluid flows subject to phase transitions.
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We note that if ur is a velocity field for {I'(¢) : t € I} then
[1,ur]" € TM. (2.84)
This can be deduced from (2.81), (2.82), and the decomposition
[1,ur] = [1, (ur|vr)vr] + [0, Prur] = [1, Vrur] + [0, Prur],

where, as before, we use the fact that [0,v]T € TM for any vector v € TT(t).

Next we show that for every C'-velocity field ur and every p € I'(t), with ¢
fixed, there exists 6 > 0 and a unique C'-curve [s — z(t + 5)] : (=6,8) — R™ such
that

d

£x(t +s)=ur(t+s,z(t+s)), z(t+s)el(t+s), se(=4,0),
x(t) = p.

The solution to (2.85), in the sequel denoted by z(t + s,¢,p), is then called a

trajectory or a flow line on M through p € T'(t), generated by the velocity field

ur. The existence of such a trajectory can be seen by the following argument.
Setting

(2.85)

z(s) :=[t+s,z(t + s)]T

we see that x(t+s) € I'(t+s) is equivalent to z(s) € M for s € (—4,0). Therefore,
(2.85) has a (unique) solution if and only if the differential equation

Z(s) = [l,ur(z(s))]T, s € (=4,9), =2(0)=(t,p), (2.86)

has a (unique) solution. Existence and uniqueness of a solution z(s) = z(s, (t,p))
to (2.86) follows from the fact that the vector field [1,ur]T is tangential to M, see
(2.84), and well-known results from the theory of differential equations. Moreover,
we conclude that

[(s, (£, p)) = (s, (t,p))] € C'((~6,8) x M, M),
and this implies
[(5,p) = a(t + s,t,p)] € CH((=6,8) x (), I(t)).
We note that
ur is a Cl-velocity field : <= V¢ = (ur|vr) <= [1,ur]" € TM. (2.87)

The first equivalence follows by definition, while the second implication “ = ” has
been shown above. Suppose that [1,ur]T € TM. Then (2.85) admits a C'-solution
[s — x(t + s,t,p)], and the definition of Vr in (2.79) implies

Ve(t.) = (Salt+5,0.0)] o | ve(t.0)) = (ur(t.p)or(t,p).
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It is illustrative to point out an alternative way to establish existence of solutions
0 (2.85). By (2.76) we can assume that {I'(t + s) : s € (=9, 0)} is given by

L(t+s) ={&+p(s,vn(€) 1 s € (=6,9), £ € X},

where X is a smooth hypersurface. Then the curve z(s) = £(s) +p(s,£(s))vs(£(s)),
with £(s) € 3, satisfies (2.76) if and only if

€'(s) = (I = pLs) " Px(&(s))ur(s,€(s) + p(s,€(5))vs(E(s)))
£(t) = &o,

where (I — pLy) is the short form for (I — p(s,&(s))Lx(&(s))). Indeed, applying
the projection Py to the equation

(I = pLx)€'(5) + [0sp(s5,€(s)) + (Vup(s,£(s))[€(s))]vs(€(s)) = ur(s, x(s))
yields (2.88), while the projection onto T+ trivializes, i.e., we automatically have
9sp(s,8(s)) + (Vep(s, £(5))[€ (s)) = (ur(s, 2(s))lvs(£(s)))-

The last assertion follows from

Bp(s))(ur (s, z(s))lvs(£(s)))
= (ur(s, z(s))[vr (s, z(s)))

(2.88)

+ B(p(s))(ur (s, 2(s))|Mo(p(s)) Vp(s,£(s)))
Mo(p(s))Ps(&(s))ur (s, x(5))[Vsp(s, £(s)))
"(9)[Vep(s,€(5))),

= B(p(s))[0sp(s,£(s)) +
= B(p(s))[0sp(s,£(s)) +

(
(
where we employed (2.77), (2.8
dinary differential equation (2.
(I pLE) 1732up eTy.
Suppose that ur is a Cl-velocity field for {I'(¢) : t € I} and fr € C*(M,R).
Then we define the Lagrange derivative of fr (sometimes also called the material
derivative of fr ) with respect to the velocity field ur at the point (¢,p) € M by

and (2.88). It remains to observe that the or-

€
0)
88), defined on ¥, admits a unique solution as

D Das d
Efl—‘(tap) T Dt (t7p) _£ff‘(t+57x(t+57tvp))

s=0

where [s — z(s + ¢,t,p)] denotes the solution of (2.85). In case ur is a normal
Cl-velocity field, in which case ur = Vpup, the Lagrange derivative is called the
normal derivative, and we set
Dn DVF vr

Dt Dt
Then the following relation holds.

T foltp) = P feltn) + (et D) Vr) feltp). (289)
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In order to see this, let us consider an extension fp of fr in an open neighbour-
hood of M in R"*!. Such an extension can, for instance, be obtained on the
neighbourhood

Us(M) = ({t} x Ua(T (1)),

tel

where U, (T'(¢)) is a tubular neighbourhood of T'(¢t) of with a, by setting

fr(t,z) = fr(t,p), (t,x) €Uy (M), p=Ipy(x).

Then one obtains

U o) = 0t p) + ur (1, 9) V) o (1 9). (290)

By the same argument one has

= el syl 4 5,t,p)
= Oufilt,) + V() e (6 ) V) (1),

D foltp) = (b 5,y(t 4 5,t,p)

Dt s=0

where y(+) is the solution of (2.85) with respect to the normal velocity field Vpur.
Using the relation

Vaofr = (Vaofrlvr)vr + PrVefr = (Vo frlve)ve + Ve fr,

see (2.20), we conclude with (2.82)

%tr fF(t7p) = atff‘(tap) + VF(t7p)(VF(tap)|vL)fF(tap) + (ur(t7p)|VF(t))fF(t7p)

= %ZfF(t’p) + (UF(tap”VF(t))fr(t,p).

5.4 The Transport Theorem for Moving Hypersurfaces
Suppose ur is a Cl-velocity field for {I'(t) : t € I} and fr € C*(M,R"). The
transport theorem for moving surfaces states that

A ) dr = / [D“F felt.2) + fe(t,2) diveur(t,2)] dF
() ()

dt Dt
(2.91)

_ /F ., [g’tb elt.2) = fo(t,)me(t, 2)Vi(t, )] dr.

Proof. Let (t,p) € M be fixed let ¢(t,-) : © C Rt — I'(t) be a sufficiently
smooth parameterization of an open neighbourhood of p in I'(¢). Then

ot+s,) =x({t+st0-):0=>T(t+s), se(=60),
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defines a C'-parameterization of a neighbourhood of z(t + s,¢,p) in I'(t + s). We
first suppose that supp fr CC U := {¢(t + s,0) : (s,0) € (=§,0) x ©}. Let

Gij(t+5,0) == (0;0(t +5,0)| 0;0(t +5,0)), G(t+s,0):=[gi(t+s,0)].

Hence, G(t + s,0) is the fundamental matrix of I'(¢ + s) with respect to the pa-
rameterization ¢(t + s,-). With g(t + s,-) := det G(t + s, -) we obtain

/ Jo(t + 5,y) dT = / Fo(t+ 5, 6(t + 5,0))v/g(t + 5.0) db),
T'(t+s) €]

and hence

5
— fr(t+s,y)dl
ds I(t+s) F( ) s=0

:/9(lg)tfp(t,fb(tﬂ)))«/g(t,ﬁ)—&—fp(t,(ﬁ(t,@))gsx/g(t—i—s,e)‘ .

s=

As in (2.27) we obtain
0

1 0
— t+s5,0)= ——— —
9 VIt 5.6) =2 ) 539/
1 g 0
:ix/g(t—f—s,O)g”(t—I—s,9)$gij(t+s,0).

t+s,0)

From
asaz'r(t + s, ¢(t7 0)) = 8zaax(t + 5,1, d)(tv 0)) = 8iuf‘(t + s, ZII(t +s,¢, ¢(ta 9)))

follows

1 .. 0

Py y

2g (t+579)659m(t+379) o
1

= 597 (8.0) [(rur (1, 6(1,0)) | 9;0(1,0)) + (D:6(t.0) | dyur(,6(1,0)))]
= 209(,6) [ (@uur(t,6(1,0)) | 75V (012, 0) + (77D (610, 6)) | Dyur (1, 6(1,6))

= & [@ur (e, 600,0)) 7y (6(1,60)) + (e (012, 0)) | Byur (1,62, 6))]
= divpyur(t, #(t,0)).
Combining all steps yields
d
ds T (t+s)

= [ | Gptitt-ot0.00) + (e o0t 00 v ure. o000 Vatr0)at

fr(t+s,y)dl

s=0

:/ [ll))tfr(ty)-i-fr(tay) diVF(t)uF(t’y)] dr’.
r(t)
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For a more general function fr we can apply the result above in conjunction with
a partition of unity for M. Hence, we have shown that

d

Da, '
dt Jrs Jr(t,z)dl' = /F(t) [ Dt fr(t,z) + fr(t,z) divpur(t, )| dT.

The second assertion in (2.91) follows from the surface divergence theorem (2.31)
and (2.89). O

We note that (2.91) implies, in particular, the well-known change of area
formula

d
L e :—/ ke Vi dI, (2.92)
r(t)

It is worthwhile to point out that (2.92) can also be derived from (2.50). This can
be obtained as follows. Using the representation (2.78) we have [['(t+s)| = ®(p(s))
for t fixed, and the change of area formula (2.50) in conjunction with the relation
p(0) = 0 immediately yields

%H‘(t + 3] = (9'(0),9sp(0)) = 7/ kx0sp(0)dE = — /F(t) krVrdl.

s=0 b))

5.5 The Transport Theorem for Moving Domains
Suppose {I'(t) : t € I} is a family of compact connected closed C?-hypersurfaces
in R™, bounding domains Q(t) C R™. We assume again that

M=]J({t} xT(@)

tel

is a C12-hypersurface in R"*!, and we set

Q= J({t} x Q).

tel
Let f € C1(Q). Then we have the transport theorem for moving domains:

4 flt,x)de = Ocf (t,x) da + ft, x)Vr(t,z)dl. (2.93)
dt Jo Q(t) (t)

Proof. We first show that for each fixed t € I there exists a family of mappings
O(t+5,): Qt) = Qt+35), s€(=6,9),
such that

D(t +s,-) € Diff" (Q(t), At + 5)) NDiff (T(),T(t+5)), se€(=69), (2.94)
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where Diff' (U, V) denotes the set of all C''-diffeomorphisms from U into V. The
mappings ®(t + s,-) can, for instance, be constructed as follows. According to
(2.78) we know that

o(t+s,p) :=p+p(s,p)vs(p), peX:=T(), s€(=607), (2.95)

satisfies ¢(t + s,-) € Diffi(F(t),F(t + s)). By means of a Hanzawa transform we
can extend ¢(t + s,-) to Q(¢) such that (2.94) holds. In more detail, let

O(t+s,2) =z + x(ds(x)/a)p(s, Us(z))vs(Is(x)), =€ Q).

Here dy and IIy have the same meaning as in (2.57), and x is a suitable cut-off
function, say x € D(R), 0 < x < 1, x(r) = 1 for |r| < 1/3, and x(r) = 0 for
|r| > 2/3.

Clearly, ®(t + s,p) = ¢(t + s,p) for p € I'(t). Since ®(t,) = idﬁ(t) we can
assume that det 0, ®(t + s,x) > 0 for (s,z) € (—0,d) x Q(t) by choosing ¢ small
enough. Next we observe that by (2.27)

% det 9, ®(t + s,7) = det 0, (¢ + s, 2)tr([0,P(t + 5,7)] 1[0, 0:P(t + 5,2)]),
and therefore,

d
— o)
o det 9, P(t + s, )

= tr[0,0:P(t, x)] = div, 0, P(¢, ).

s=0

Employing the transformation rule for integrals yields
/ f(t+s,y)dy=/ ft+s,®(t+s,2))det 0, P(t + s, 7) dx,
Q(t+s) Q)

and hence,
S serswa]
ds Q(t+s) ’ s=0

_ /Q ) (0070 2) + (Ve (1,2)|08 (8, 2)) + f (1, 2) v, 0,0 (t, )| da
= /Q(t) [&f(t, x) 4+ div, (f(t,2)0sP(t, )| dz (2.96)

= o f(t,x)dx + ft,2)(0sP (¢, x)|vr(t, x))dT
Q(t) ()

= atf(tvx) dx + f(tax)vr(@l‘)dr,
Q(t) I'(t)

where we used (2.79) in the last step. This completes the proof. O
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The relation (2.93) immediately yields the well-known change of volume for-
mula

d
Zleml= [ vedr. (2.97)
r (1)

We point out that (2.97) can also be derived from (2.54). Indeed, using once more
the representation

L(t+s)={p+p(s,p)vs(p) : s € (=4,0), pe B}, T :=T(1),

we have |Q(t + s)| = ¥(p(s)), with ¥ the volume functional introduced in Section
2.2.7. Then the first variation formula (2.54) and the relation p(0) = 0 imply

d ’ _ _
S+l | = w(0),0,000)) = / Dup(0) 45 — / R

We now consider the more special case where the moving domain €(t) is trans-
ported by a velocity field u. Suppose then that J C R is an open interval, G C R"
is an open set, and u € C1(J x Q,R™). We assume that solutions to the ordinary
differential equation

y'(t) =ult,y), y(r)=¢
exist on I for all (1,&) € J x G, and we denote the unique solution with initial
value y(7) = £ by y(t,7,€). Let Q9 CC G be a C?-domain, tg € I a fixed number,
and suppose that the family {2(¢) : ¢t € I'} of moving domains is given by
Q(t) = y(t,to, ')‘QO = {y(t,to,l'o) X € Qo}, tel.
Suppose that f € C1(J x G). Then the Reynolds transport theorem states that

d .
at - ft,z)dx = /Q(t) [0 f(t, @) + divy (f(t, x)u(t, z))] da. (2.98)

Proof. Let t € I be fixed and let ®(s,x) := y(s,t,z) for (s,z) € J x G. From the
theory of ordinary differential equations follows that
®(t +s,-) € DIff' (Q(t), At +5)), s € (=6,0), (2.99)
with ¢~ (t +s,-) = y(t,t +s,-). We can now follow the computations in (2.93) to
the result
d

p - flx,t)de = /Q(t) [&sf(t, x) + divy (f(¢, x)@S(I)(t,m))} dx

_ / [00f (1) + dive (£(t, 2)u(t, 2))] da
Q1)

and this completes the proof. ([
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5.6 The Transport Theorem for Two-Phase Moving Domains

Let Q C R” be a bounded open domain in R” with C2-boundary 9. Suppose
that {['(t) : t € I} is a family of closed compact C?-hypersurfaces with I'(t) C Q,
such that I'() encloses a region Q4 (¢) C Q, and such that 0 (¢) = I'(¢) for each
t € I. Let Qa(t) := Q\ Qi (¢). Then

Q=0 UQ(t), U#)NQ(t)=T(t), 0%(t)=T()ud, tel.

Hence, T'(t) separates ) into an ‘inner’ region 2 (¢) and an ‘outer’ region Qs(t),
with Q5 (#) being in contact with the boundary 0. Then vp () denotes the outward
pointing unit normal field for 4 (¢) on I'(¢). Let

Qi =J{t x;), j=1.2

As above, we assume that M is a C1:2-hypersurface. Let f; : Q; — R be given.

Then we set
fl(t,lﬂ), T € Ql(t),
ft,x) =
fg(t,l’), T € Qg(t),
so that f: Q1 UQs — R. In case f; admits a continuous extension f] € C’(@j) we
define the jump of f across I'(¢) by means of

Suppose that the functions f; admit extensions f; € C1(Q;), j = 1,2. Then the
transport theorem for two-phase moving domains states that

d
dt Jorq Jtade = /Q\r(w Oty = /F(t) [# & @)IVe(t @) dl. (2.101)

Proof. Let t € I be fixed. As in the proof of (2.93) we extend the family of
diffeormorphisms ¢(t + s,-) : I'(t) — I'(t + s) given in (2.95) by means of
O(t+ s,2) = x + x(ds(x)/a)p(s, Ug(z))vs(ls(z)), z€Q,
to a family of diffecomorphisms ®(t + s,-) : Q — Q such that
Dj(t+s,) = @(t+ s, )o,urs) € DI (), Q(t+5)), j=1,2, s€(=40).

By choosing a small enough we can assume that a tubular neighbourhood of T'(t)
of width a is contained in 2, and hence that ®(¢+s,-) = idgn~ in a neighbourhood
of 9Q. We can now proceed as in the proof of (2.93) to obtain

d

dt Q; (1) Sl e)d = /Qj(t) Ouf (b =) d = / (=1) f;(t, z)Vp(t,z) dT,

r(t)

and (2.101) then follows from (2.100). O
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