
Chapter 1

Problems and Strategies

The purpose of this introductory chapter is to explain the problems to be con-
sidered in the main part of this book in some detail. We derive their physical
origin from first principles, discuss some of the main structural properties of the
models, and describe the strategies of our analytical approach. All the notions and
properties relating to differential geometry of hypersurfaces will be introduced and
explained in Chapter 2.

1.1 Modeling

Suppose a (fixed) container Ω – a bounded domain in Rn with smooth boundary
– is filled with a material which is present in two phases that occupy the regions
Ω1(t) and Ω2(t). The interface Γ(t) separating these two phases will depend on
time t, but should not be in contact with the outer boundary ∂Ω of the container
in order to avoid the contact angle problem. Then the so-called continuous phase
Ω2(t) is in contact with the outer boundary, while the diperse phase Ω1(t) is not,
which means that ∂Ω1(t) = Γ(t) and ∂Ω2(t) = ∂Ω ∪ Γ(t). The outer unit normal
of Γ(t) w.r.t. Ω1(t) will be denoted by νΓ, it depends on p ∈ Γ(t) as well as on t;
the outer unit normal of Ω is called ν, it only depends on p ∈ ∂Ω. The Weingarten
tensor LΓ is defined by LΓ := −∇ΓνΓ, where ∇Γ means the surface gradient, and
the ((n− 1)-fold) mean curvature HΓ of Γ by

HΓ = trLΓ = −divΓ νΓ,

where divΓ means the surface divergence on Γ. In the sequel, the jump of a physical
quantity φ across Γ will be denoted by

[[φ]](p) := lim
s→0+

[φ(p+ sνΓ(p))− φ(p− sνΓ(p))], p ∈ Γ.
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Figure 1.1: A two-phase domain Ω = Ω1 ∪ Γ ∪ Ω2.

1.1 First Principles in the Bulk
We begin with the basic balance laws in the bulk.

Balance of Mass
Let � > 0 denote the density and u the velocity in the bulk phases Ωj , uΓ the
velocity and VΓ := uΓ · νΓ the normal velocity of Γ, respectively. Note that � and
u may jump across the interface Γ and that uΓ is in general not a tangent vector
field to Γ. If there are no sources of mass in the bulk, then conservation of mass
is given by the continuity equation

∂t�+ div (�u) = 0 in Ω \ Γ(t). (1.1)

If there is no surface mass on Γ, we also have the jump condition

[[�(u− uΓ) · νΓ]] = 0 on Γ(t). (1.2)

The interfacial mass flux jΓ, phase flux for short, is defined by means of

jΓ := �(u− uΓ) · νΓ, i.e., [[
1

�
]]jΓ = [[u · νΓ]]. (1.3)

Observe that jΓ is well defined, as (1.2) shows. Phase Transition takes place if
jΓ �≡ 0. On the other hand, if jΓ ≡ 0, then u · νΓ = uΓ · νΓ = VΓ, and in this case
the interface is advected with the velocity field u.

Next we have by the transport theorem for moving domains

d

dt

∫
Ω1(t)

� dx =

∫
Γ(t)

�VΓ dΓ +

∫
Ω1(t)

∂t� dx

=

∫
Γ(t)

�VΓ dΓ−
∫
Ω1(t)

div(�u) dx

=

∫
Γ(t)

(�uΓ · νΓ − �u · νΓ) dΓ = −
∫
Γ(t)

jΓ dΓ,
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and in case u · ν = 0 on ∂Ω in the same way

d

dt

∫
Ω2(t)

� dx =

∫
Γ(t)

jΓ dΓ,

proving conservation of total mass, i.e.,

d

dt

∫
Ω

� dx = 0. (1.4)

In this book we mostly consider the completely incompressible case , i.e., we assume
that the densities are constant in the phases Ωj . Then conservation of mass reduces
to

div u = 0 in Ω \ Γ(t).
If only the latter property holds, we say that the material is incompressible. In
case both phases are completely incompressible we have

�1|Ω1(t)|+ �2|Ω2(t)| ≡ �1|Ω1(0)|+ �2|Ω2(0)| =: c0.

This implies
[[�]]|Ω1(t)| = �2|Ω| − c0,

hence |Ω1(t)| is constant in the case of nonequal densities, i.e., the phase volumes
are preserved. On the other hand, there is no preservation of phase volumes in
general if one or both phases are compressible, or if the densities are constant and
equal.

The Universal Balance Law Let φ be any (mass-specific) physical quantity, J its
flux, and f its sources. Then the balance law for φ in the bulk reads

∂t(�φ) + div(�φu+ J) = �f in Ω \ Γ(t), (1.5)

and if there is a source fΓ for φ on the interface we have

[[(�φ(u− uΓ) + J) · νΓ]] = fΓ on Γ(t). (1.6)

Employing balance of mass and the definition of the phase flux jΓ this simplifies
to

�(∂tφ+ u · ∇φ) + div J = �f in Ω \ Γ(t),
[[φ]]jΓ + [[J · νΓ]] = fΓ on Γ(t).

(1.7)

By (2.101), the corresponding universal transport theorem becomes

d

dt

∫
Ω

�φ dx =

∫
Ω

∂t(�φ) dx−
∫
Γ

[[�φ]]VΓ dΓ

=

∫
Ω

(�f − div (�φu+ J)) dx−
∫
Γ

[[�φuΓ · νΓ]] dΓ

=

∫
Ω

�f dx+

∫
Γ

[[(�φ(u− uΓ) + J) · νΓ]] dΓ−
∫
∂Ω

(�φu+ J) · ν d(∂Ω)

=

∫
Ω

�f dx+

∫
Γ

([[φ]]jΓ + [[J · νΓ]]) dΓ +

∫
∂Ω

g d(∂Ω),
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with g = −(�φu+ J) · ν on ∂Ω. Therefore, we obtain the conservation law

d

dt

∫
Ω

�φ dx =

∫
Ω

�f dx+

∫
Γ

fΓ dΓ +

∫
∂Ω

g d(∂Ω).

In particular, if (f, fΓ, g) = 0, then the total amount of φ in Ω is conserved.

Balance of Momentum
Let π denote the pressure, T the (symmetric) stress tensor, and let f be a force
field, say gravity. Then balance of momentum reads, employing (1.5) with φ = u
and J = −T ,

∂t(�u) + div (�u⊗ u)− div T = �f in Ω \ Γ(t).

Similarly, using (1.6) we get the following jump condition at the interface.

[[(�u⊗ (u− uΓ)− T )νΓ]] = divΓ TΓ on Γ(t).

Here TΓ denotes the (symmetric) surface stress, a tensor field on Γ. Using balance
of mass and the definition of the phase flux jΓ we may rewrite these conservation
laws as follows.

�(∂tu+ u · ∇u)− div T = �f in Ω \ Γ(t),
[[u]]jΓ − [[TνΓ]] = divΓTΓ on Γ(t).

(1.8)

By the surface divergence theorem, total conservation of momentum reads as

d

dt

∫
Ω

�u dx =

∫
Ω

�f dx+

∫
∂Ω

g d(∂Ω),

with g = −(�uu · ν − Tν) on ∂Ω. Note that total momentum is in general not
conserved as the boundary term g on ∂Ω need not be zero.

Balance of Energy
Let ε denote the (mass specific) internal energy density, θ > 0 the absolute tem-
perature, q the heat flux, and r an external (mass specific) heat source. Then
with φ = |u|2/2 + ε, J = −Tu+ q we obtain from the universal balance law (1.5)
conservation of energy, which in the bulk reads

∂t

(�
2
|u|2 + �ε

)
+ div {(�

2
|u|2 + �ε)u} − div(Tu− q) = �f · u+ �r in Ω \ Γ(t).

On the interface we have, in accordance with (1.6),[[(�
2
|u|2 + �ε

)
(u− uΓ)− Tu+ q

]]
· νΓ = (divΓTΓ) · uΓ + rΓ on Γ(t),

where rΓ denotes a heat source on Γ. Using (1.1), (1.8), and the definition of the
phase flux jΓ we may rewrite this conservation law as follows.

�(∂tε+ u · ∇ε) + div q − T : ∇u = �r in Ω \ Γ(t),(
[[ε]] +

[[1
2
|u− uΓ|2

]])
jΓ − [[TνΓ · (u− uΓ)]] + [[q · νΓ]] = rΓ on Γ(t).

(1.9)
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The total bulk energy is given by

E(u, ε,Γ) :=
1

2

∫
Ω\Γ

�|u|2 dx+

∫
Ω\Γ

�ε dx.

For its time derivative we obtain from the universal balance law

∂tE =

∫
Ω

(�f · u+ �r) dx+

∫
∂Ω

g d(∂Ω) +

∫
Γ

{divΓTΓ · uΓ + rΓ} dΓ,

where g = −
(
(�2 |u|2 + �ε)u · ν − Tu · ν + q · ν

)
on ∂Ω. In particular, if (f, r) = 0

in Ω, (u · ν, q · ν, Tν · u) = 0 on ∂Ω as well as divΓTΓ · uΓ + rΓ = 0 on Γ, then

d

dt
E(u, ε,Γ) = 0,

which means that the total bulk energy is preserved.

The Entropy
As is common in thermodynamics, we write

ε(�, θ) = ψ(�, θ) + θη(�, θ), η(�, θ) = −∂θψ(�, θ), (1.10)

where θ > 0 denotes the absolute temperature, and ψ the Helmholtz free energy.
In this book it is considered given. η means the (mass specific) entropy density.
Then the Clausius–Duhem equation holds in the bulk, which means

∂t(�η) + div(�ηu) + div (q/θ) =
1

θ
S : ∇u− 1

θ2
q · ∇θ

+
�2∂�ψ − π

θ
div u in Ω \ Γ(t),

(1.11)

where S := T + π denotes the viscous stress tensor. Therefore, entropy is non-
decreasing locally in the bulk provided the right-hand side of (1.11) is nonnegative.
This gives the well-known requirements

S : ∇u ≥ 0, q · ∇θ ≤ 0, (1.12)

and, since in general the last term will not have a sign, either div u ≡ 0, which
corresponds to the incompressible case, or

π = p(�, θ) := �2∂�ψ(�, θ), (1.13)

which is the famous Maxwell relation for compressible materials. Note that p
should be an increasing function in both variables, � and θ. Hence we require
at least

∂�∂θψ ≥ 0, 2∂�ψ + �∂2
�ψ ≥ 0, �, θ > 0,
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in the compressible case. The total bulk entropy is defined by

Nb(�, θ,Γ) =

∫
Ω\Γ

�η(�, θ)dx.

By the universal balance law we then obtain

d

dt
Nb(�, θ,Γ) =

∫
Ω\Γ

{1

θ
S : ∇u− 1

θ2
q · ∇θ

}
dx+

∫
Γ

{[[η]]jΓ + [[q/θ]] · νΓ}dΓ,

provided u · ν = q · ν = 0 on ∂Ω. In particular, there is no entropy production on
the interface if

[[η]]jΓ + [[q/θ]] · νΓ = 0 on Γ.

1.2 First Principles on the Interface
Throughout we assume that there is no surface mass, and therefore also no surface
momentum on Γ. However, due to surface tension we have to take into account
surface energy, and then also surface entropy. A basic principle of our approach is
conservation of energy and entropy across the interface. We begin with

The Universal Balance Law on the Interface
Suppose φ is a scalar physical quantity which also lives on Γ with surface density
φΓ and let JΓ denote its flux. Thus, JΓ is a tangent vector field to Γ. The basic
balance law for φΓ reads

D

Dt
φΓ + φΓdivΓuΓ + divΓJΓ = −fΓ. (1.14)

Here D/Dt means the Lagrangian derivative with respect to the vector field uΓ

which moves Γ, i.e.,

D

Dt
φΓ(t, ξ) =

d

ds
φΓ(s+ t, x(s+ t, t, ξ))

∣∣∣s=0,

with x(s+ t, t, ξ) the flow induced by the velocity field uΓ, i.e.,

d

ds
x(s+ t, t, ξ) = uΓ(s+ t, x(s+ t, t, ξ)), x(t, t, ξ) = ξ, ξ ∈ Γ(t).

We emphasize again that the velocity field uΓ is in general not tangent to Γ. The
surface transport theorem then yields

d

dt

∫
Γ

φΓ dΓ =

∫
Γ

( D

Dt
φΓ + φΓdivΓuΓ

)
dΓ

=

∫
Γ

(−divΓJΓ − fΓ) dΓ = −
∫
Γ

fΓ dΓ,
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by the surface divergence theorem. Therefore, we obtain conservation of the total
amount of φ in Ω, i.e., we have

d

dt

{∫
Ω

�φ dx+

∫
Γ

φΓ dΓ
}
= 0,

provided (f, g) = 0. Thus the balance law for φ on Γ reads

D

Dt
φΓ + φΓdivΓuΓ + divΓJΓ = −([[φ]]jΓ + [[J ]] · νΓ). (1.15)

We apply this interface conservation law first to

Conservation of Energy on the Interface
Here we have φΓ = εΓ and JΓ = −TΓuΓ+qΓ. Then balance of surface energy reads

D

Dt
εΓ + εΓdivΓ uΓ + divΓ (qΓ − TΓuΓ) = −{(divΓ TΓ) · uΓ + rΓ}.

Hence

D

Dt
εΓ + εΓdivΓ uΓ + divΓ qΓ = TΓ : ∇ΓuΓ − rΓ.

By the conservation laws this implies conservation of total energy

d

dt

{∫
Ω

�

(
|u|2
2

+ ε

)
dx+

∫
Γ

εΓ dΓ

}
= 0,

provided (f, r) = 0 in Ω, u · ν = q · ν = 0 and Tν · u = 0 on ∂Ω.

Surface Entropy
As in the bulk we write

εΓ(θΓ) = ψΓ(θΓ) + θΓηΓ(θΓ), ηΓ(θΓ) = −ψ′
Γ(θΓ),

where we consider the free energy ψΓ as a given function of surface temperature
θΓ. Similarly, we decompose

TΓ = σ(θΓ)PΓ + SΓ,

where σ denotes the coefficient of surface tension, PΓ = I−νΓ⊗νΓ the orthogonal
projection onto the tangent bundle of Γ, and SΓ the interface viscous stress. Then
surface force becomes

divΓ TΓ = σHΓνΓ +∇Γσ + divΓSΓ.

The first term in this decomposition is surface tension which acts in a normal
direction. The second is called the Marangoni force which acts tangentially, and
the last one is the viscous surface force induced by surface viscosity.
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The total surface entropy is given by

NΓ =

∫
Γ

ηΓdΓ.

With the surface transport theorem (2.91) we get

d

dt
NΓ =

∫
Γ

( D

Dt
ηΓ + ηΓdivΓuΓ

)
dΓ =

∫
Γ

( D

Dt
εΓ + θΓηΓdivΓuΓ

)
/θΓ dΓ

=

∫
Γ

(−divΓqΓ − ψΓdivΓuΓ + TΓ : ∇ΓuΓ − rΓ)/θΓ dΓ

=

∫
Γ

(
SΓ : ∇ΓuΓ/θΓ − qΓ · ∇ΓθΓ/θ

2
Γ + (σ − ψΓ)divΓuΓ/θΓ − rΓ/θΓ

)
dΓ.

Now we argue as in the bulk case. To ensure entropy production on the interface
we should have

SΓ : ∇ΓuΓ ≥ 0, qΓ · ∇ΓθΓ ≤ 0,

as well as

ψΓ = σ,

which is the analogue of the Maxwell relation on the interface. Thus in the situation
considered here, the free energy on the interface is the coefficient of surface tension,
which acts as a negative surface pressure.

For the total entropy in Ω we finally obtain

d

dt

(∫
Ω

�η dx+

∫
Γ

ηΓ dΓ
)
=

∫
Ω

{1

θ
S : ∇u− 1

θ2
q · ∇θ

}
dx

+

∫
Γ

{ 1

θΓ
SΓ : ∇ΓuΓ − 1

θ2Γ
qΓ · ∇ΓθΓ

}
dΓ (1.16)

+

∫
Γ

{[[η]]jΓ + [[q/θ]] · νΓ − rΓ/θΓ} dΓ.

Since the integrand in the last integral does not have a sign, we postulate that it
vanishes. This means that the only sources for entropy is friction due to viscosity or
heat conduction, also on the interface. In case (SΓ, qΓ) = 0 it means conservation
of entropy across the interface.

This assumption implies by (1.9)

−
((

[[ε]]+
[[1
2
|u−uΓ|2

]])
jΓ− [[TνΓ · (u−uΓ)]]+ [[q ·νΓ]]

)
/θΓ+[[η]]jΓ+[[q/θ]] ·νΓ = 0.

Assuming [[θ]] = 0, θ = θΓ on Γ, the latter simplifies to(
[[ψ]] +

[[1
2
|u− uΓ|2

]])
jΓ − [[TνΓ · (u− uΓ)]] = 0. (1.17)
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This is the generalized Gibbs–Thomson relation. Taking it for granted, balance of
surface energy becomes

D

Dt
εΓ + εΓdivΓuΓ + divΓqΓ = SΓ : ∇ΓuΓ + σdivΓuΓ − ([[θη]]jΓ + [[q · νΓ]]). (1.18)

On the interface the Clausius–Duhem equation reads

D

Dt
ηΓ + ηΓdivΓuΓ + divΓ(qΓ/θΓ) =

1

θΓ
SΓ : ∇ΓuΓ − 1

θ2Γ
qΓ · ∇ΓθΓ (1.19)

− ([[η]]jΓ + [[q/θ]] · νΓ),

showing that surface entropy production is nonnegative, locally on Γ.
Note that in case (ηΓ, qΓ, SΓ) = 0 on Γ this equation implies the famous

Stefan condition
θ[[η]]jΓ + [[q · νΓ]] = 0.

ηΓ ≡ 0 means ψΓ = σ ≡ constant and εΓ = σ. In this case total surface energy
becomes σ|Γ|, and surface energy balance is trivial.

1.3 Constitutive Laws
In the sequel we assume that there are no external sources for momentum and
energy, i.e., (f, r) = 0.

Constitutive Laws on the Outer Boundary

q · ν = 0 and u = 0. (1.20)

Actually, we could also consider a condition for u of Navier-type at the outer
boundary, which means

u · ν = 0 and P∂ΩTν + ku = 0,

where k ≥ 0, and P∂Ω denotes the projection onto the tangent bundle of the
hypersurface ∂Ω. However, here we stay with the simplest case.

Constitutive Laws in the Phases

ε(�, θ) = ψ(�, θ) + θη(�, θ), η(�, θ) = −∂θψ(�, θ),

T = 2μ(�, θ)D + λ(�, θ)(div u)I − πI, D =
1

2
(∇u+ (∇u)T), (1.21)

q = −d(�, θ)∇θ.

Here μ is called shear viscosity, λ bulk viscosity, and d is the coefficient of heat
conduction or heat conductivity. μ, λ, d are functions depending on (�, θ), and on
the phase, and hence may jump across the interface Γ(t). The second and the third
equations are the classical laws of Newton and Fourier. To meet the requirements
(1.12) we assume

μ(�, θ), d(�, θ) > 0, λ(�, θ) + 2μ(�, θ)/n > 0, �, θ > 0,
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and in the compressible case also the Maxwell relation (1.13).

Constitutive Laws on the Interface

εΓ(θΓ) = σ(θΓ) + θΓηΓ(θΓ), ηΓ(θΓ) = −σ′(θΓ),
[[θ]] = 0, θΓ = θ,

PΓ[[u]] = 0, PΓ(u− uΓ) = 0,

TΓ = σ(θΓ)PΓ + 2μΓ(θΓ)DΓ + λΓ(θΓ)(divΓuΓ)PΓ,

DΓ =
1

2
PΓ(∇ΓuΓ + [∇ΓuΓ]

T)PΓ, qΓ = −dΓ(θΓ)∇ΓθΓ,

0 =
(
[[ψ(θΓ)]] +

[[1
2
|u− uΓ|2

]])
jΓ − [[TνΓ(u− uΓ)]].

(1.22)

The coefficient of surface tension σ and the surface viscosities (μΓ, λΓ) are functions
of θΓ, which are subject to

σ,μΓ > 0, λΓ +
2μΓ

n− 1
> 0.

Recall the relation

VΓ := uΓ · νΓ = u · νΓ − 1

�
jΓ,

for the normal velocity of the interface. In case [[�]] �= 0 this implies

[[u]] = [[1/�]]jΓνΓ, jΓ = [[u · νΓ]]/[[1/�]], VΓ = [[�u · νΓ]]/[[�]], (1.23)

and if [[�]] = 0 we have [[u]] = 0. This shows a fundamental difference between
theses cases: if the densities are not equal, then the phase flux enters directly
the velocity jump on the interface, inducing what is called Stefan current. If the
densities are equal, there is no Stefan current and the velocity field is continuous
across the interface. On each side of the interface we have the identity

u = uΓ + jΓνΓ/�,

which, in view of the definition of the phase flux jΓ, is equivalent to the conditions

PΓ[[u]] = 0, PΓ(u− uΓ) = 0, [[�(u− uΓ) · νΓ]] = 0.

Now we may rewrite[[1
2
|u− uΓ|2

]]
=

[[ 1

2�2

]]
j2Γ,

−[[TνΓ · (u− uΓ)]] = [[−TνΓ]] · PΓ(u− uΓ) + [[−TνΓ · νΓ/�]]jΓ
= [[−TνΓ · νΓ/�]]jΓ,

hence the generalized Gibbs–Thomson relation becomes(
[[ψ]] +

[[ 1

2�2

]]
j2Γ − [[TνΓ · νΓ/�]]

)
jΓ = 0.
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It holds trivially if jΓ ≡ 0, i.e., if there is no phase transition, and otherwise we
assume

[[ψ]] +
[[ 1

2�2

]]
j2Γ − [[TνΓ · νΓ/�]] = 0. (1.24)

We define the heat capacity κ and the surface heat capacity κΓ as usual by

κ(�, θ) = ∂θε(�, θ) = −θ∂2
θψ(�, θ), κΓ(θΓ) = ε′Γ(θΓ) = −θΓσ

′′(θΓ)

respectively. Moreover, we define the latent heat l and the surface latent heat lΓ
by

l(�, θ) = −[[θη(�, θ)]] = [[θ∂θψ(�, θ)]], lΓ(θΓ) = −θΓηΓ(θΓ) = θΓσ
′(θΓ).

The conditions ∂2
θψ ≤ 0 as well as σ′′ ≤ 0 will be needed for well-posedness.

Remark
(1.24) may be generalized to take into account kinetic undercooling. More precisely,
we may replace (1.24) by the law

[[ψ]]+
[[ 1

2�2

]]
j2Γ−[[TνΓ ·νΓ/�]] = −γjΓ+divΓ[α∇Γ(jΓ/θΓ)]+θΓ divΓ[β∇ΓjΓ], (1.25)

where α, β, γ ≥ 0 may depend on the surface temperature θΓ. In this case the
entropy production on Γ is increased by∫

Γ

{γj2Γ/θΓ + α|∇Γ(jΓ/θΓ)|22 + β|∇ΓjΓ|2}dΓ,

and on the right-hand side of the surface energy balance the term

jΓ(γjΓ − divΓ[α∇Γ(jΓ/θΓ)]− θΓ divΓ[β∇ΓjΓ])

has to be added.

1.4 The Resulting Dynamic Problem
Summarizing we obtain the following initial-boundary value problem in the ab-
sence of external forces and heat sources.

∂t�+ div(�u) = 0 in Ω \ Γ(t),
�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = [[1/�]]jΓνΓ on Γ(t),

[[1/�]]j2ΓνΓ − [[TνΓ]] = divΓTΓ on Γ(t),

�(0) = �0, u(0) = u0 in Ω,

(1.26)
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where S = T + π and SΓ = σ(θΓ)PΓ − TΓ are defined above,

�κ(∂tθ + u · ∇θ)− div(d∇θ) = S : ∇u− θ∂θp div u in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

θ = θΓ on Γ(t),

θ(0) = θ0 in Ω.

(1.27)

On the interface we have

κΓ
D

Dt
θΓ − divΓ(dΓ∇ΓθΓ)

= SΓ : ∇ΓuΓ + θΓσ
′(θΓ)divΓuΓ − ([[θη]]jΓ + [[q · νΓ]]) on Γ(t),

[[ψ]] + [[1/2�2]]j2Γ − [[TνΓ · νΓ/�]] = 0 on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t)

Γ(0) = Γ0.

(1.28)

This system has to be supplemented with the constitutive laws for T and TΓ from
the previous subsection. Here the first system should be read as a problem for u
and �, resp. π, the second as one for θ, while the last set determines θΓ, the free
boundary Γ, and the phase flux jΓ. Note that in the absence of phase transitions,
the Gibbs–Thomson relation has to be replaced by jΓ = 0.

1.2 Entropy and Equilibria

2.1 The Entropy
We have seen above that the total entropy

N :=

∫
Ω

�η dx+

∫
Γ

ηΓ dΓ

satisfies

d

dt

(∫
Ω

�η dx+

∫
Γ

ηΓ dΓ
)
=

∫
Ω

{1

θ
S : ∇u− 1

θ2
q · ∇θ

}
dx

+

∫
Γ

{ 1

θΓ
SΓ : ∇ΓuΓ − 1

θ2Γ
qΓ · ∇ΓθΓ

}
dΓ.

Hence the negative total entropy is a Lyapunov functional for the problem. We
show now that it is even a strict one. To see this, assume that N is constant on
some interval (t1, t2). Then dN/dt = 0 in (t1, t2), hence D = 0 and ∇θ = 0 in
(t1, t2) × Ω. Therefore, θ is constant, which implies [[d∂νθ]] = 0, and then from
the interfacial boundary condition we obtain jΓ = 0, provided [[η]] �= 0 on Γ; we
assume this for the moment. This implies [[u]] = 0, hence by Korn’s inequality
we have ∇u = 0 and then u = 0 by the no-slip condition on ∂Ω. Hence VΓ = 0,
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uΓ = 0, and (∂tθ, ∂tu, ∂t�,DθΓ/Dt) = 0, which means that we are at equilibrium.
Further, ∇π = 0, i.e., the pressure is constant in the components of the phases. If
one or both phases are compressible, then assuming pj to be strictly increasing in
�, we conclude that � is constant in the components of Ωj(t) as well. Actually � is
even constant in each phase. To see this, employing Maxwell’s relation we rewrite
the Gibbs–Thomson condition [[ψ]] + [[π/ρ]] = 0 as

∂�(�ψ1(�)) = ∂�(�ψ2(�)).

Suppose �2 is known; then �1 is uniquely determined by �2 (and θ) since ∂�(�ψj(�))
is strictly increasing, for, by assumption, pj has this property. Since θ is continuous
across the interface, the last relation shows that π, and therefore �, are constant
in all of Ω1, even if it is not connected. From this we finally deduce by the Young-
Laplace law [[π]] = σHΓ that Ω1 is a ball if it is connected, or otherwise a finite
union of non-intersecting balls of equal radii, since Ω1 is bounded by assumption.

If, by chance, [[η]] = 0 on Γ, or only on part of it, we are not allowed to
use Korn’s inequality since u may have a jump across the interface. Nevertheless,
u = 0 holds in this case as well, but the proof is a little more involved. For this
we need

Lemma 1.2.1. Suppose u ∈ H2
2 (Ω \ Γ) satisfies u = 0 on ∂Ω and PΓ[[u]] = 0 on Γ.

Then D = 0 implies u = 0 in Ω.

Proof. Integrating by parts twice we obtain

2|D|2L2(Ω) = |∇u|2L2(Ω) + |div u|2L2(Ω) +

∫
Γ

[[u · νΓ div u− νΓ · (u · ∇)u]] dΓ

= |∇u|2L2(Ω) + |div u|2L2(Ω) +

∫
Γ

2[[u · νΓ]]divΓ PΓu− [[(u · νΓ)2]]HΓ dΓ,

since u = 0 on ∂Ω and PΓ[[u]] = 0 on Γ. Here we employed the identities

div u = divΓ(PΓu)− (u · νΓ)HΓ + νΓ · ∂νu,
νΓ · (u · ∇)u = (PΓu · ∇Γ)u · νΓ + (u · νΓ)(νΓ · ∂νu) + LΓPΓu · PΓu

on Γ as well as the surface divergence theorem. Now, if D = 0, then νΓ · ∂νu = 0,
and so the equation for the divergence of u on Γ yields

divΓPΓu = (u · νΓ)HΓ,

hence [[(u ·νΓ)2]]HΓ = 0 which implies ∇u = 0 in Ω. Therefore, u is constant in the
phases, which yields u = 0 in Ω2 by the no-slip condition on the outer boundary
∂Ω. Further, [[u]] = ανΓ is constant on Γ which implies α = 0, hence [[u]] = 0 and
so u = 0 in Ω1, as well. �

Having shown that u = 0 we may proceed as before, provided �1 �= �2.
Actually, there is a problem if [[�]] = [[η]] = 0; then we cannot conclude jΓ = 0
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which means that VΓ may be nontrivial. We exclude this pathology in the sequel.
It is absent anyway if kinetic undercooling is included.

If there is no phase transition, i.e., jΓ ≡ 0, then [[u]] = 0, and we obtain
directly u ≡ 0 by Korn’s inequality. In this case we conclude as above that the
pressures are constant in the components of the phases, hence the densities are
so as well, assuming as before that pj is increasing. We further conclude from the
interface stress condition that HΓ is constant on each component of the interface,
which implies that these components are spheres. But they may have differing
sizes, as the Gibbs–Thomson relation is no longer available. If a phase transition
is absent, constant temperature does no longer ensure that the spheres have equal
size!

2.2 Equilibria as Critical Points of the Entropy
We want to determine the critical points of the total entropy N under the con-
straints of given total mass M0 and given total energy E0. With

M =

∫
Ω

� dx, E =

∫
Ω

�(|u|2/2 + ε) dx+

∫
Γ

εΓ dΓ,

the method of Lagrange multipliers then yields

N′ + λM′ + μE′ = 0.

We compute the derivatives of the involved functionals, where z = (τ, v, ϑ, ϑΓ, h).

〈N′|z〉 =
∫
Ω

{∂�(�η)τ + �∂θηϑ} dx−
∫
Γ

{[[�η]]h− η′ΓϑΓ + ηΓHΓh} dΓ,

〈M′|z〉 =
∫
Ω

τ dx−
∫
Γ

[[�]]h dΓ,

〈E′|z〉 =
∫
Ω

{�u · v + �∂θεϑ+ (|u|2/2 + ε+ �∂�ε)τ} dx

−
∫
Γ

{[[�|u|2/2 + �ε]]h− ε′ΓϑΓ + εΓHΓh} dΓ.

Varying first ϑ and ϑΓ this yields

�∂θη + μ�∂θε = 0,

and
η′Γ + με′Γ = 0,

hence ∂θε = θ∂θη = κ > 0 and ε′Γ = θΓη
′
Γ = κΓ > 0 imply θΓ = θ = −1/μ > 0

constant. Next we vary v to obtain u = 0 since μ �= 0. Variation of τ (when � is
not a priori constant) implies similarly

η + �∂�η + λ+ μ(ε+ �∂�ε) = 0,
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hence λ = (ψ + �∂�ψ)/θ. As a consequence � is constant, since

0 < ∂�p(�, θ)/� = 2∂�ψ(�, θ) + �∂2
�ψ(�, θ) = ∂�(ψ(�, θ) + �∂�ψ(�, θ))

in a phase where � is not a priori constant. In particular, if both phases are
compressible this yields [[ψ + p/�]] = 0, which is the generalized Gibbs–Thomson
relation at equilibrium. Finally, we vary h to obtain

−[[�η]]− ηΓHΓ − λ[[�]] + ([[�ε]] + εΓHΓ)/θ = 0,

which by the definition of ε and ψΓ = σ yields

σHΓ + [[�ψ]] = λθ[[�]]

on the interface Γ. This implies that HΓ is constant, hence Ω1 consists of a finite
number of balls with the same radius. If both phases are compressible we may
further conclude σHΓ = [[p]], which is the normal stress condition on the interface.

In this derivation we assumed κΓ > 0. If instead κΓ ≡ 0, then η′Γ ≡ 0 as well,
hence we do not obtain information on θΓ. However, the remaining conclusions
are valid as before. In this case σ(θΓ) is linear, and as there is no surface heat
capacity it makes sense then to ignore surface diffusion as well.

In summary, we see that the critical points of the total entropy with the
constraints of given mass and prescribed total energy are precisely the equilibria
of the system.

2.3 Equilibria which are Maxima of Total Entropy
Suppose we have an equilibrium e := (�, u, θ, θΓ,Γ) where the total entropy has
a local maximum, w.r.t. the constraints M = M0 and E = E0 constant. Then
D := [N+λM+μE]′′ is negative semi-definite on the kernel of M′ intersected with
that of E′, where (λ, μ) are the fixed Lagrange multipliers found in the previous
subsection. The kernel of M′(e) is easily found to be characterized by the relation∫

Ω

τ dx = [[�]]

∫
Γ

h dΓ, (1.29)

and that of E′(e) by∫
Ω

∂�(�η)τ dx+

∫
Ω

(�κ/θ)ϑ dx+(κΓ/θ)

∫
Γ

ϑΓ dΓ = ([[�η]] + ηΓHΓ)

∫
Γ

h dΓ. (1.30)

On the other hand, a straightforward but somewhat lengthy calculation yields

−θ〈Dz|z〉 =
∫
Ω

�|v|2 dx+

∫
Ω

∂2
�(�ψ)τ

2 dx+

∫
Ω

(�κ/θ)ϑ2 dx (1.31)

+ (κΓ/θ)

∫
Γ

ϑ2
Γ dΓ− σ

∫
Γ

(H ′
Γh)h dΓ.
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As �, κ, κΓ and
∂2
�(�ψ) = 2∂�ψ + �∂2

� = [∂�p(�)]/�

are nonnegative, we see that the form 〈Dz|z〉 is negative semi-definite as soon as
H ′

Γ is negative semi-definite. We will see in the next chapter that

H ′
Γ = (n− 1)/R2 +ΔΓ,

where ΔΓ denotes the Laplace-Beltrami operator on Γ and R means the radius of
the equilibrium spheres.

We want to derive necessary conditions for an equilibrium e to be a local
maximum of entropy.

1. Suppose that Γ is not connected, i.e., Γ consists of a finite union of spheres Γk.
Set (τ, v, ϑ, ϑΓ) = 0, and let h = hk constant on Γk with

∑
k hk = 0. Then the

constraints (1.30) and (1.31) hold and

〈Dz|z〉 = σ(θ)(n− 1)

θR2

∑
k

Γkh
2
k > 0,

hence D is not negative semi-definite in this case. Thus if e is an equilibrium with
local maximal total entropy, then Γ must be connected, hence both phases are
connected. This is related to the so-called Ostwald ripening effect.

2. Assume that Γ is connected and �1 �= �2 are a priori constant. Then τ = 0 and
the first constraint (1.30) implies

∫
Γ
h dΓ = 0. As H ′

Γ(h) is negative semi-definite
for functions with average zero, we see that in this case D is negative semi-definite.

3. Assume that Γ is connected and �1 = �2 =: � is constant. Then τ = 0, but the
first constraint gives no information. Setting v = 0, ϑ = ϑΓ constant, as well as h
constant, we see that D negative semi-definite on the kernel of E′(e) implies the
condition

σ(θ)(n− 1)

R2
≤ l20|Γ|

θ((κ|�)Ω + κΓ|Γ|)
, (1.32)

where l0 = l0(θ) = −θ(�[[η]] + ηΓHΓ).

4. If e is an equilibrium which (locally) maximizes the total entropy, it is generically
not isolated. If the sphere Γ does not touch the outer boundary, we may move it
inside of Ω without changing the total entropy. This fact is reflected in D by
choosing τ = ϑ = ϑΓ = 0 and h = Yj , the spherical harmonics for Γ, which satisfy
H ′

ΓYj = 0.

It is one of our purposes in this book to prove in the completely incompressible
case that an equilibrium is stable if and only if the total entropy at this equilibrium
is maximal. Thus in case �1 �= �2 are a priori constant, an equilibrium is stable
if and only if the interface is connected, and in case �1 = �2 if in addition the
stability condition (1.32) is satisfied with strict inequality. (Here we exclude the
limiting case where in (1.32) equality holds.)
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2.4 The Manifold of Equilibria
As we have seen above, the equilibria of the system (1.26), (1.27), (1.28) are zero
velocities, constant pressures in the phases, constant temperature, vanishing phase
flux, and the dispersed phase Ω1 consists of finitely many non-intersecting balls
with the same radius if phase transition is present. We call an equilibrium non-
degenerate if the balls do not touch the outer boundary ∂Ω and also do not touch
each other. This set will be denoted by E . We want to show that E is a manifold;
it is not connected but has infinitely many finite dimensional components, the
components are given by the number of spheres. The dimension of the component
consisting of m spheres is m(n + 1), where n comes from the center and 1 from
the radius of a particular sphere.

To show that E is a manifold, we just have to show how a neighbouring
sphere is parameterized over a given one. In fact, let us assume that Σ = SR(0) is
centered at the origin of Rn. Suppose S ⊂ Ω is a sphere that is sufficiently close
to Σ. Denote by (y1, . . . , yn) the coordinates of its center and let y0 be such that
R+ y0 corresponds to its radius. Then the sphere S can be parameterized over Σ
by the distance function

δ(y) =
n∑

j=1

yjYj −R+

√√√√(

n∑
j=1

yjYj)2 + (R+ y0)2 −
n∑

j=1

y2j ,

where Yj are the spherical harmonics of degree one. Obviously, this is a real analytic
parametrization.

We summarize our considerations in

Theorem 1.2.2. (a) The total mass M and the total energy E are preserved for
smooth solutions.

(b) The negative total entropy −N is a strict Lyapunov functional except on the
pathological points (�, θ) constant, [[�]] = [[η]] = 0.

(c) The critical points of the entropy functional for prescribed total mass and total
energy are precisely the equilibria of the system.

(d) The non-degenerate equilibria are zero velocities, constant pressures in the
components of the phases, and the interface is a union of non-intersecting spheres
which do not touch the outer boundary ∂Ω. If phase transition is present, then the
spheres are of equal size.

(e) If the total entropy at an equilibrium is locally maximal, then the phases are
connected and, in addition, in the case of equal constant densities the stability
condition (1.32) holds.

(f ) The set E of non-degenerate equilibria forms a real analytic manifold.

This result shows that the models are thermodynamically consistent, hence
are physically reasonable.
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2.5 Equilibrium Temperatures
To determine θ, R and π at equilibrium, we have to solve the system

|Ω1|�1ε1 + |Ω2|�2ε2 + εΓ|Γ| = E0,

[[π]] = σHΓ, (1.33)

[[ψ]] = −[[π/�]].

In addition, there is conservation of mass

�1|Ω1|+ �2|Ω2| = c0.

If the equilibrium densities are not equal, this equation can be employed to com-
pute the radius of the balls, i.e., with ωn = |∂B(0, 1)| we have

m(ωn/n)R
n = (�2|Ω| − c0)/[[�]]

in case there are m balls with common radius R. The energy equation then
uniquely determines θ since εΓ is non-decreasing and εj(θ) are strictly increasing.
Finally, the last two conditions in (1.33) determine the pressures in the phases.

If there is no phase transition, then the dimension of the component Em of E ,
with m ∈ N the number of spheres, is dim Em = m(n+ 1) + 1. Here the variables
are the centers of the balls, their radia, and the temperature. Prescribing total
energy and individual volumes of the components of the dispersed phase reduces
the dimension to mn.

On the other hand, if phase transition takes place and �1 �= �2, then dim Em =
mn + 2. The variables are the centers of the balls, the common radius, and the
temperature. If we prescribe phase volumes and total energy, then the radius of
the balls and the temperature are fixed, resulting into dim Em = nm.

But if the equilibrium densities are equal, �1 = �2 =: �, then conservation of
mass determines merely the value of the density �, no information on the phase
volumes at equilibrium is available. Hence only θ, R and the pressure jump

[[π]] = [[π]](θ) = σ(θ)HΓ = −σ(θ)(n− 1)

R(θ)

can be obtained from (1.33). This implies that the dimension of Em is mn+1, and
if we prescribe the total energy, then it will be nm.

In this case we get

R = R(θ) =
σ(θ)(n− 1)

�[[ψ(θ)]]

for the radius R > 0, and system (1.33) reduces to a single equation for the
temperature θ:

Ee(θ) := |Ω|�ε2(θ)−m(ωn/n)R
n(θ)�[[ε(θ)]] + εΓmωnR

n−1(θ) = E0.

We call the function Ee(θ) the equilibrium energy function.
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Note that only the temperature range [[ψ(θ)]]/σ(θ) > 0 is relevant due to the
requirement R > 0, and with

R∗
m = sup{R > 0 : Ω contains m disjoint balls of radius R}

we must also have R < R∗
m, i.e., with ϕ(θ) = �[[ψ(θ)]]

0 <
σ(θ)

ϕ(θ)
<

R∗
m

n− 1
.

With ε(θ) = ψ(θ) − θψ′(θ) and εΓ = σ(θ) − θσ′(θ), after some calculations Ee(θ)
may be rewritten as

Ee(θ) = |Ω|�ε2(θ) + cn

( σ(θ)n

ϕ(θ)n−1
− θ

d

dθ

σ(θ)n

ϕ(θ)n−1

)
= |Ω|�ε2(θ) + cn

( σ(θ)n

ϕ(θ)n−1
+ (n− 1)θ

σ(θ)nϕ′(θ)
ϕ(θ)n

− nθ
σ(θ)n−1σ′(θ)

ϕ(θ)n−1

)
,

where we have set cn = mωn

n (n − 1)n−1. Observe that the equilibrium energy
function Ee(θ) has the form

Ee(θ) = Ψ(θ)− θΨ′(θ),

where Ψ(θ) = |Ω|�ψ2(θ) + cnσ(θ)
n/ϕ(θ)n−1 plays the role of the equilibrium free

energy. We have then
E′
e(θ) = −θΨ′′(θ),

hence with

R′(θ) =
(n− 1)σ′(θ)

ϕ(θ)
− σ(θ)(n− 1)ϕ′(θ)

ϕ2(θ)
,

after some more calculations

E′
e(θ) = (κ(θ)|�)Ω + κΓ(θ)|Γ| −

R(θ)2l0(θ)
2|Γ|

θσ(θ)(n− 1)
,

with l0(θ) defined in the previous subsection. Now recall the stability condition
(1.32) to see that E′

e(θ) is non-positive if and only if the stability condition holds.
Thus, loosely speaking, total entropy is maximal at an equilibrium if and only if
E′
e(θ) ≤ 0. We may write E′

e(θ) yet in another form, namely

E′
e(θ) = (κ(θ)|�)Ω + κΓ(θ)|Γ| − (n− 1)|Γ|σθ(ϕ

′(θ))
ϕ(θ)

− σ′(θ)
σ(θ)

)2.

In general it is not a simple task to analyze the equation for the temperature

Ee(θ) = Ψ(θ)− θΨ′(θ) = E0,
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unless more properties of the functions εj(θ) and in particular of ϕ(θ) and σ(θ)
are known. A natural assumption is that ϕ has exactly one positive zero θm > 0,
the so called melting temperature. Therefore we look at two examples.

Example 1. Suppose that ε2 is increasing and convex, � = 1, ηΓ ≡ 0, i.e., σ is
constant, and that the heat capacities are identical, i.e., [[κ]] ≡ 0. This implies

θϕ′′(θ) = θ[[ψ′′(θ)]] = −[[κ(θ)]] ≡ 0,

which means that ϕ(θ) = ϕ0 + ϕ1θ is linear. The melting temperature then is
0 < θm = −ϕ0/ϕ1, hence we have two cases.

Case 1. ϕ0 < 0, ϕ1 > 0. This means l(θm) > 0.
Then the relevant temperature range is θ > θm as ϕ is positive there. As θ → θm+
we have ϕ(θ) → 0 hence Ee(θ) → ∞, and also Ee(θ) → ∞ for θ → ∞ as ε2(θ) is
increasing and convex. Further, we have

E′
e(θ) = |Ω|ε′2(θ)− n(n− 1)cnσ(θ)

n ϕ2
1θ

(ϕ0 + ϕ1θ)n+1
,

E′′
e (θ) = |Ω|ε′′2(θ) + n(n− 1)cnσ(θ)

nϕ2
1

−ϕ0 + nϕ1θ

(ϕ0 + ϕ1θ)n+2
> 0,

which shows that Ee(θ) is strictly convex for θ > θm. Thus Ee(θ) has a unique
minimum θ0 > θm, Ee(θ) is decreasing for θm < θ < θ0 and increasing for θ > θ0.
Thus there are precisely two equilibrium temperatures θ+∗ ∈ (θ0,∞) and θ−∗ ∈
(θm, θ0) provided E0 > φ(θ0) and none if E0 < E(θ0). The smaller temperature
leads to stable equilibria while the larger to unstable ones.

Case 2. ϕ0 > 0, ϕ1 < 0. This means l(θm) < 0.
Then the relevant temperature range is 0 < θ < θm as h is positive there. As
θ → θm− we have ϕ(θ) → 0+ hence Ee(θ) → −∞, and as θ → 0+ we have
Ee(θ) → E(0) = |Ω|ε2(0) + cnσ

n/ϕn−1
0 > 0, assuming that ε2(0) = lims→0+ ε2(s)

exists. Further, for θ close to 0 this implies E′
e(θ) > 0 and E′

e(θ) → −∞ as
θ → θm−. Therefore E′

e(θ) admits at least one zero in (0, θm). But there may be
more than one unless ε2(θ) is concave, so let us assume this. Let θ0 ∈ (0, θm) denote
the absolute maximum of Ee(θ) in (0, θm). Then there is exactly one equilibrium
temperature θ∗ ∈ (θ0, θm) if E0 < Ee(0+) and it is stable; there are exactly two
equilibria θ−∗ ∈ (0, θ0) and θ+∗ ∈ (θ0, θm) if Ee(0+) < E0 < Ee(θ0), the first one is
unstable the second stable. If E0 > Ee(θ0) there are no equilibria.

Note that in both cases these equilibrium temperatures give rise to equilibria
only if the corresponding radius is smaller than R∗.

Example 2. Suppose ηΓ ≡ 0, � = 1, and that the internal energies εj(θ) are linear
increasing, i.e.,

εj(θ) = aj + κjθ, j = 1, 2,
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where κj > 0, and now [[κ]] �= 0. The identity εj = ψj − θψ′
j then leads to

ψj(θ) = aj + bjθ − κjθ log θ, j = 1, 2,

where bj are arbitrary. This yields, with α = [[a]], β = [[b]] and γ = [[κ]],

ϕ(θ) = α+ βθ − γθ log θ.

Scaling the temperature by θ = θ0ϑ with β − γ log θ0 = 0 and scaling ϕ we may
assume β = 0 and γ = ±1. Then we have to investigate the equation Ee(ϑ) = E1,
where

Ee(ϑ) = δϑ+
{ 1

ϕn−1(ϑ)
+ (n− 1)ϑ

ϕ′(ϑ)
ϕn(ϑ)

}
, ϕ(ϑ) = ±(α+ ϑ log ϑ),

with δ > 0 and α,E1 ∈ R. The requirement of existence of a melting temperature
ϑm > 0, i.e., a zero of ϕ(ϑ), leads to the restriction α ≤ 1/e. Also here we
have to distinguish two cases, namely that of a plus-sign for ϕ where the relevant
temperature range is ϑ > ϑm, and in case of a minus-sign it is (0, ϑm). Note that
ϕ is convex in the first, and concave in the second case. In the case of ϕ(ϑ) =
(α+ ϑ log ϑ) we get

E′
e(ϑ) = δ + (n− 1)

{ϕ(ϑ)− nϑϕ′(ϑ)2

ϕn+1(ϑ)

}
,

E′′
e (ϑ) = n(n− 1)

ϕ′(ϑ)
ϕn+2(ϑ)

{
(n+ 1)ϑϕ′(ϑ)2 − ϕ(ϑ)(3 + ϕ′(ϑ))

}
.

We have Ee(ϑ) → ∞ for ϑ → ∞ and for ϑ → ϑm+, hence Ee(ϑ) has a global
minimum θ0 in (θm,∞). Furthermore, E′′

e (ϑ) > 0 in (θm,∞), hence the minimum
is unique and there are precisely two equilibrium temperatures ϑ−

∗ ∈ (ϑm, ϑ0) and
ϑ+
∗ ∈ (ϑ0,∞), provided E1 > Ee(ϑ0), the first one is stable, the second unstable.

To prove convexity of Ee we write

(n+ 1)ϑϕ′(ϑ)2 − 3ϕ(ϑ)− ϕ(ϑ)ϕ′(ϑ) = (n− 1)ϑϕ′(ϑ)2 + f(ϑ),

where

f(ϑ) = 2ϑϕ′(ϑ)2 − ϕ(ϑ)(3 + ϕ′(ϑ)) = 2ϑ(1 + log ϑ)2 − (α+ ϑ log ϑ)(4 + log ϑ).

We then have f(ϑm) = 2ϑm(1 + log ϑm)2 > 0, and

f ′(θ) = (1 + log ϑ)2 + 1− α/ϑ > 1− α/ϑ ≥ 0,

for α ≤ 1/e < ϑm ≤ ϑ.
Actually, the requirement that the melting temperature is unique, i.e., that

ϕ has exactly one positive zero, implies α < 0. Indeed, for α ∈ (0, 1/e) there is a
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second zero ϑ− > 0 of ϕ, and ϕ is positive in (0, ϑ−). Equilibrium temperatures
in this range would not make sense physically.

Let us illustrate the sign in ϕ for the water-ice system, ignoring the density
jump of water at freezing temperature. So suppose that Ω2 consists of ice and
Ω1 of water. In this case we have κ1 > κ2, and hence γ < 0, which implies the
plus-sign for ϕ. Here we obtain θ±∗ > θm, i.e., the ice is overheated. Equilibria only
exist if ψ0 is large enough, which means that there is enough energy in the system.
If the energy in the system is very large, then the stable equilibrium temperature
θ−∗ comes close to the melting temperature ϑm and then R(ϑ) will become large,
eventually larger than R∗. This excludes equilibria in Ω, the physical interpretation
being that everything will eventually melt.

On the other hand, if Ω1 consists of ice and Ω2 of water, we have the minus
sign, which we want to consider next. Here we expect under-cooling of the water-
phase, existence of equilibria only for low values of energy, and if the energy in
the system is too small everything will freeze.

So assume that ϕ(ϑ) = −(α + ϑ log ϑ) and let α < 0. Then the relevant
temperature range is (0, ϑm). Here we have Ee(ϑ) → −∞ as ϑ → ϑm− and
Ee(ϑ) → 1/|α|n−1 > 0. Moreover we have E′

e(0) = δ + (n − 1)/|α|n > 0, and
E′
e(ϑ) → −∞ for ϑ → ϑm−. Therefore, Ee(θ) has an absolute maximum in ϑ0 in the

interval (0, ϑm). If Ee(ϑ) would be concave in (0, ϑm), then this maximum would
be unique and there would be precisely two equilibrium temperatures ϑ−

∗ ∈ (0, ϑ0)
and ϑ+

∗ ∈ (ϑ0, ϑm), provided E1 ∈ (−∞,Ee(ϑ0)), the first one unstable and the
second stable. However, as we will see things are not as simple.

To investigate concavity of Ee in the interval (0, ϑm), we recompute the
derivatives of Ee.

E′
e(ϑ) = δ − (n− 1)

{ 1

ϕn(ϑ)
+ n

ϑϕ′(ϑ)2

ϕn+1(ϑ)

}
,

E′′
e (ϑ) = n(n− 1)

ϕ′(ϑ)
ϕn+2(ϑ)

{
(n+ 1)ϑϕ′(ϑ)2 + ϕ(ϑ)(3− ϕ′(ϑ))

}
.

Setting ϑ+ = 1/e, for ϑ ∈ (ϑ+, ϑm) we have ϕ(ϑ) > 0 and ϕ′(ϑ) < 0, and hence
E′′
e (ϑ) < 0. On the other hand, for ϑ ∈ (0, ϑ+), both ϕ(ϑ) and ϕ′(ϑ) are positive.

Then we rewrite

(n+ 1)ϑϕ′(ϑ)2 + 3ϕ(ϑ)− ϕ(ϑ)ϕ′(ϑ) = (n− 1)ϑ(1 + log ϑ)2 + f(ϑ),

where

f(ϑ) = 2ϑϕ′(ϑ)2 + ϕ(ϑ)(3− ϕ′(ϑ))

= 2ϑ(1 + log ϑ)2 − (α+ ϑ log ϑ)(4 + log ϑ)

= ϑ(2 + log2(θ))− α(4 + log ϑ),

f ′(ϑ) = 2 + log2 ϑ+ 2 log ϑ− α/ϑ = (1 + log ϑ)2 + 1− α/ϑ ≥ 0,
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provided α ≤ 0. This shows that f is increasing, f(ϑ) → −∞ as ϑ → 0, and
f(1/e3) = 11/e3−α > 0. On the other hand, the function ϑ(1+log ϑ)2 is increasing
in (0, 1/e3), hence ψ′′(ϑ) has a unique zero ϑ− ∈ (0, 1/e3). Therefore, Ee is concave
in (0, ϑ−) ∪ (ϑ+, ϑm) and convex in (ϑ−, ϑ+), and E′

e has a minimum at ϑ− and
a maximum at ϑ+. Observe that E′

e(ϑ) < δ, E′
e(ϑ) → −∞ for ϑ → ϑm− and

E′
e(0+) = δ − (n − 1)/|α|n < ψ′(ϑ+). Therefore, E

′
0 may have no, one, two, or

three zeros in (0, ϑm), depending on the value of δ > 0. However, if δ > 0 is
large enough, then E′

e has only one zero ϑ1 which lies in (ϑ+, ϑm). In this case
Ee is increasing in (0, ϑ1) and decreasing in (ϑ1, ϑm), hence for Ee ∈ (ψ(0), ψ(ϑ1))
there are precisely two equilibrium temperatures, the smaller leads to unstable,
the larger to a stable equilibrium. If E1 < Ee(0+) there is a unique equilibrium
which is stable, and in case E1 > Ee(ϑ1) there is none. However, in general there
may be up to four equilibrium temperatures.

1.3 Goals and Strategies

In this book we will consider only the completely incompressible case, i.e., the
densities �1 and �2 are assumed to be constant. Throughout we neglect viscous
surface stress, so we set SΓ ≡ 0. Thus the only surface stress acting is the surface
tension TΓ = σPΓ. We always assume the constitutive laws

T = S − πI, S := 2μ(θ)D, D = (∇u+ [∇u]T)/2.

In this book we want to consider the following main problems which are ordered
by complexity. The main hypotheses for these problems are formulated as well.
Throughout, Ω will be a bounded domain with boundary ∂Ω of class C3.

3.1 The Main Models

Problem 1. The Stefan Problem with Surface Tension.
Here we assume �1 = �2 =: � > 0, σ > 0, and u ≡ 0.
Then we have

VΓ = −jΓ/�, [[−TνΓ]] = σHΓνΓ,

hence the Gibbs–Thomson law becomes

[[ψ(θ)]] =
1

�
[[TνΓ · νΓ]] = −σ

�
HΓ,

and we have the Stefan law −�[[θη(θ)]]VΓ − [[d(θ)∂νθ]] = 0 on Γ. Observing that at
melting temperature θm there holds [[ψ(θm)]] = 0, by linearization of ψ one obtains
with the relative temperature ϑ = (θ − θm)/θm

ϑ = − σ

lm�
HΓ, lm = −θm[[η(θm)]],

which is the standard constitutive relation for the classical Stefan problem with
surface tension. Here lm is the latent heat at melting temperature. Similarly, the
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linearized Stefan law becomes �lmVΓ − [[d(θ)∂νθ]] = 0, which is the classical one.
Note that these relations are only valid near melting temperature, and in particular
exclude large curvatures of Γ. In this model, surface entropy is zero and balance
of surface energy is trivial. The model equations read

�κ(θ)∂tθ − div(d(θ)∇θ) = 0 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0, �[[ψ(θ)]] + σHΓ = 0 on Γ(t),

θ(0) = θ0 in Ω.

(1.34)

−�[[θη(θ)]]VΓ − [[d(θ)∂νθ]] = 0 on Γ(t),

Γ(0) = Γ0.
(1.35)

Concerning ψ and d we assume

(H1) ψ ∈ C3(0,∞), d ∈ C2(0,∞), −ψ′′(s), d(s) > 0 for all s > 0.

Remark 1.3.1. If κ ≡ 0, i.e., if ψ is linear, we obtain the so-called quasi-stationary
Stefan problem with surface tension, also called Mullins–Sekerka problem or
Mullins–Sekerka flow in the literature. It has the same equilibria as in the case
κ �≡ 0, but their stability properties are different.

Problem 2. The Two-Phase Navier–Stokes Problem with Surface Tension.
Here we assume jΓ ≡ 0, σ > 0 constant.
This is the case without phase transitions. Then

[[u]] = 0, VΓ = u · νΓ, −[[TνΓ]] = σHΓνΓ,

which leads to the classical model for incompressible two-phase flow without phase
transitions.

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = 0, −[[SνΓ]] + [[π]]νΓ = σHΓνΓ on Γ(t),

u(0) = u0 in Ω.

(1.36)

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0, [[d(θ)∂νθ]] = 0 on Γ(t),

θ(0) = θ0 in Ω.

(1.37)

VΓ = u · νΓ on Γ(t), Γ(0) = Γ0. (1.38)

Here we suppose

(H2) ψ ∈ C3(0,∞), d,μ ∈ C2(0,∞), −ψ′′(s), d(s),μ(s) > 0 for all s > 0.
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Remark 1.3.2. (i) If μ is constant, then the Navier-Stokes problem decouples from
the heat problem. More generally, in the isothermal case, the temperature is as-
sumed to be constant and the equation for the temperature, i.e., energy balance,
is ignored. This means that the friction term 2μ|D|22 is neglected. In this case the
reduced energy E0 defined by

E0(u,Γ) :=
1

2

∫
Ω\Γ

�|u|2 dx+ σ|Γ|

is a strict Lyapunov functional, as the identity

d

dt
E0(u(t),Γ(t)) = −2

∫
Ω

μ|D|22 dx

and Korn’s inequality show. Also in this case the equilibria are zero velocity and
constant pressures in the components of the phases. The disperse phase Ω1 is an
at most countable union of disjoint balls, and the radia of the balls are related to
the pressures according to the Young-Laplace law

[[π]] = σHΓ = −σ(n− 1)

R
.

(ii) If θ is constant and ignoring inertia (i.e., the term �(∂tu+ u · ∇u)) we are left
with a quasi-stationary problem, the two-phase Stokes problem, which generates
the so-called two-phase Stokes flow. More precisely, this problem reads

−divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = 0, −[[SνΓ]] + [[π]]νΓ = σHΓνΓ on Γ(t),

VΓ = u · νΓ on Γ(t),

Γ(0) = Γ0.

(1.39)

(iii) If σ = 0, then u = 0 is a solution of the Navier–Stokes problem. Then we
end up with the standard transmission problem for the heat equation with fixed
domain.

(iv) Modeling flows in porous media frequently relies on Darcy’s law, which reads

u = −k∇π,

where k = k(π) > 0 may depend on π, and depends on the phases. The interface
velocity then becomes

VΓ = u · νΓ = −k(π)∂νπ.

This is meaningful, provided

−[[k(π)∂νπ]] = [[u · νΓ]] = 0.
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Furthermore, the driving force for the evolution of the interface is surface tension,
hence we require

[[π]] = σHΓ,

where σ > 0 is constant. Finally, we have to take into account conservation of
mass which results in the porous medium equation

∂t�(π)− div (�(π)k(π)∇π) = 0.

Here � > 0 is non-decreasing w.r.t. π, and depends on the phases. Summarizing
we obtain the problem

�′(π)∂tπ − div (�(π)k(π)∇π) = 0 in Ω \ Γ(t),
∂νπ = 0 on ∂Ω,

[[π]] = σHΓ on Γ(t),

[[k(π)∂νπ]] = 0 on Γ(t),

VΓ + k(π)∂νπ = 0 on Γ(t),

Γ(0) = Γ0, π(0) = π0.

(1.40)

This problem is called the Verigin problem in the literature, and its quasi-steady
(i.e., incompressible) version, where � is constant in the phases, is known as the
Muskat problem or the Muskat flow, a geometric evolution equation.

(v) A variant of Darcy’s law is Forchheimer’s law which reads

g(|u|)u = −∇π,

where the function g is strictly positive and s �→ sg(s) is strictly increasing. Solving
this equation for u we obtain

u = −k(|∇π|2)∇π,

where k is strictly positive and satisfies k(t)+2tk′(t) > 0 on R+. These conditions
ensure strong ellipticity of the operator −div(k(|∇π|2)∇π).

Problem 3. Incompressible Two-Phase Fluid Flow with Phase Transition I.
Here we assume �1 = �2 =: �, σ > 0 constant.
In this situation the Navier–Stokes problem is only weakly coupled to a Stefan
problem. It can be treated by combining the methods developed for Problems 1
and 2. We call this case temperature dominated.

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = 0, −[[SνΓ]] + [[π]]νΓ = σHΓνΓ on Γ(t),

u(0) = u0 in Ω.

(1.41)
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�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0, [[θη(θ)]]jΓ − [[d(θ)∂νθ]] = 0 on Γ(t),

θ(0) = θ0 in Ω.

(1.42)

�[[ψ(θ)]] + σHΓ = 0 on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

Γ(0) = Γ0.

(1.43)

We set hypothesis (H3) := (H2). Recall that we can eliminate the phase flux jΓ
by

jΓ = −[[d(θ)∂νθ]]/l(θ),

provided l(θ) �= 0. This will be one restriction for well-posedness of this model.

Remark 1.3.3. We will see that the Navier–Stokes problem is only weakly coupled
to the Stefan problem with surface tension. Setting u = 0 and ignoring the Navier–
Stokes problem it reduces to Problem (P1).

Problem 4. Incompressible Two-Phase Fluid Flow with Phase Transition II.
Here we assume �1 �= �2, σ > 0 constant.
This case is more difficult than the previous one. Here the problem for θ is only
weakly coupled with that for (u, π, h). We call this case velocity dominated.

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = [[1/�]]jΓνΓ on Γ(t),

[[1/�]]j2ΓνΓ − [[TνΓ]] = σHΓνΓ on Γ(t),

u(0) = u0 in Ω.

(1.44)

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0 on Γ(t),

[[θη(θ)]]jΓ − [[d(θ)∂νθ]] = 0 on Γ(t),

θ(0) = θ0 in Ω.

(1.45)

[[ψ(θ)]] + [[1/2�2]]j2Γ − [[TνΓ · νΓ/�]] = 0 on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

Γ(0) = Γ0.

(1.46)
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The main hypothesis here is (H4) := (H2). Here we can eliminate jΓ as explained
before by means of the identities

jΓ = [[u · νΓ]]/[[1/ρ]], VΓ = [[ρu · νΓ]]/[[ρ]].

Remark 1.3.4. (i) A variant of this problem concerns the situation where heat
conduction is taken into account in both phases but only one phase is moving,
the model for melting and solidification. This problem formally results by letting
μ1 → ∞. To obtain this model, for finite μ1, let Tj denote the stress tensor in Ωj .
Set u ≡ π ≡ 0 in Ω1, maintain the jump condition for u, drop the stress jump
condition on the interface, but replace T1νΓ · νΓ in the Gibbs–Thomson law from
the normal stress jump, according to

T1νΓ · νΓ = T2νΓ · νΓ + σHΓ − [[1/�]]j2Γ

to the result
u2 = [[1/�]]jΓνΓ, VΓ = −jΓ/�1,

and
[[ψ(θ)]] + (1/2)[[1/�]]2j2Γ − [[1/�]]T2νΓ · νΓ + (σ/�1)HΓ = 0.

These conditions on the interface do not contain the viscosity μ1, hence we may
formally pass to the limit μ1 → ∞. Therefore, the resulting model reads

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω2(t),

div u = 0 in Ω2(t),

u = 0 on ∂Ω,

u = [[1/�]]jΓνΓ on Γ(t),

u(0) = u0 in Ω.

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0 on Γ(t),

[[θη(θ)]]jΓ − [[d(θ)∂νθ]] = 0 on Γ(t),

θ(0) = θ0 in Ω2.

[[ψ(θ)]] + (1/2)[[1/�]]2j2Γ − [[1/�]]T2νΓ · νΓ + (σ/�1)HΓ = 0 on Γ(t),

VΓ = −jΓ/�1 on Γ(t),

Γ(0) = Γ0.

This model also has conservation of total energy and production of total entropy
is nonnegative, hence it is consistent with thermodynamics. Note, however, that
momentum is not conserved across the interface, as at the outer boundary ∂Ω.
Furthermore, if the densities are equal, the viscosity is constant, and the initial
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velocity is zero also in Ω2, then u ≡ 0 and π is constant in Ω2. In this situation
the model reduces to Problem 1.

(ii) In the isothermal case the temperature θ is assumed to be constant and the
heat problem is ignored. Then we obtain a model for isothermal two-phase flows
with surface tension and phase transition, the latter is driven by pressure, only.

(iii) Again in the incompressible, isothermal case, ignoring inertia and j2Γ, we
obtain the equations for the Stokes flow with phase transition which reads

−divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = [[1/�]]jΓνΓ on Γ(t),

−[[TνΓ]] = σHΓνΓ on Γ(t),

−[[TνΓ · νΓ/�]] = c on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

Γ(0) = Γ0.

(1.47)

Here c = −[[ψ]] is constant. The phase flux jΓ can be eliminated from the normal
component of the velocity jump, and so we have a transmission problem for the
Stokes equation with (n− 1) jump conditions for the velocity and (n+ 1) for the
normal stresses. This leads to a geometric evolution equation where the interface
is moved by surface tension as well as by stationary phase transitions due to the
different densities.

(iv) Employing again Darcy’s (or Forchheimer’s) law u = −k(π)∇π, we obtain the
Verigin problem with phase transition

�′(π)∂tπ − div (�(π)k(π)∇π) = 0 in Ω \ Γ(t),
∂νπ = 0 on ∂Ω,

[[π]] = σHΓ on Γ(t),

[[ψ + π/�]] = 0 on Γ(t),

[[�]]VΓ + [[�(π)k(π)∂νπ]] = 0 on Γ(t),

Γ(0) = Γ0, π(0) = π0.

(1.48)

Note that here the pressure π is the independent variable, and Maxwell’s law
then reads ψ′(π) = π�′(π)/�2(π). Its quasi-steady version, where � is constant in
the phases, is the Muskat flow with phase transition, another geometric evolution
equation.

Problem 5. Marangoni Forces I. Here we assume �1 = �2 =: �, σ nonconstant.
Experience shows that σ is strictly decreasing and positive at melting temperature
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θm, and as σ is also concave, it has a unique zero θc > θm; we call θc the criti-
cal temperature. As beyond the critical temperature there is no phase separation
anymore, we restrict to the temperature range θ ∈ (0, θc).

Here the model equations read

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = 0, PΓuΓ = PΓu on Γ(t),

−[[TνΓ]] = σ(θΓ)HΓνΓ + σ′(θΓ)∇ΓθΓ on Γ(t),

u(0) = u0 in Ω.

(1.49)

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

θ = θΓ on Γ(t),

θ(0) = θ0 in Ω.

(1.50)

κΓ(θΓ)
D

Dt
θΓ − divΓ(dΓ(θΓ)∇ΓθΓ)

= θΓσ
′(θΓ)divΓuΓ − ([[θη(θ)]]jΓ − [[d(θ)∂νθ]]) on Γ(t),

�[[ψ(θ)]] + σ(θ)HΓ = 0 on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

Γ(0) = Γ0.

(1.51)

We assume

(H5) ψ, σ ∈ C3(0, θc), d, dΓ,μ ∈ C2(0, θc),

− ψ′′(s),−σ′′(s),−σ′(s), d(s), dΓ(s),μ(s) > 0 for all s ∈ (0, θc).

In this problem, the Navier-Stokes problem is again only weakly coupled with a
Stefan problem, modified by energy conservation on the interface. Note that

divΓ uΓ = divΓPΓu−HΓVΓ,

which eliminates uΓ, but here it is not so easy to eliminate jΓ, as for this problem
it really is an implicit variable!

Remark 1.3.5. Setting u = 0 and ignoring the Navier-Stokes problem, the latter
becomes the Stefan problem with surface tension and surface heat capacity, which
reads

�κ(θ)∂tθ − div(d(θ)∇θ) = 0 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

θ = θΓ on Γ(t),

θ(0) = θ0 in Ω.

(1.52)
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κΓ(θΓ)
D

Dt
θΓ − divΓ(dΓ(θΓ)∇ΓθΓ)

= −θΓσ
′(θΓ)HΓVΓ + �[[θη(θ)]]VΓ + [[d(θ)∂νθ]] on Γ(t),

�[[ψ(θ)]] + σ(θ)HΓ = 0 on Γ(t),

Γ(0) = Γ0.

(1.53)

This problem will be studied in Chapter 12.

Problem 6. Marangoni Forces II. Here we assume �1 �= �2, σ nonconstant.
This is the model of highest complexity considered in this book.

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

PΓuΓ = PΓu, [[u]] = [[1/�]]jΓνΓ on Γ(t),

[[1/�]]j2ΓνΓ − [[TνΓ]] = σ(θΓ)HΓ + σ′(θΓ)∇ΓθΓ on Γ(t),

u(0) = u0, in Ω.

(1.54)

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

θ = θΓ on Γ(t),

θ(0) = θ0 in Ω.

(1.55)

κΓ(θΓ)
D

Dt
θΓ − divΓ(dΓ(θΓ)∇ΓθΓ) =

= θΓσ
′(θΓ)divΓuΓ − ([[θη(θ)]]jΓ − [[d(θ)∂νθ]]) on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

[[ψ(θ)]] + [[1/2�2]]j2Γ − [[TνΓ · νΓ/�]] = 0 on Γ(t),

Γ(0) = Γ0.
(1.56)

The main assumption on the coefficients is (H6) := (H5). Here jΓ can be elimi-
nated as in Problem (P4), and divΓuΓ as in Problem (P5).

3.2 Transformation to a Fixed Domain
A basic idea is to transform Problems (P1)–(P6) to a domain with a fixed interface
Σ, where Γ(t) is parameterized over Σ by means of a height function h(t). For this
we rely on the so-called Hanzawa transform which we will now explain.

(a) The Hanzawa Transform
We assume, as before, that Ω ⊂ Rn is a bounded domain with boundary ∂Ω of
class C2, and that Γ ⊂ Ω is a hypersurface of class C2, i.e., a C2-manifold which
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is the boundary of a bounded domain Ω1 ⊂ Ω. As above, we set Ω2 = Ω\Ω̄1. Note
that Ω2 typically is connected, while Ω1 may be disconnected. In the later case,
Ω1 consists of finitely many components, since ∂Ω1 = Γ ⊂ Ω by assumption is a
manifold, at least of class C2. As will be shown in Section 2.4, the hypersurface
Γ can be approximated by a real analytic hypersurafce Σ, in the sense that the
Hausdorff distance of the second-order normal bundles is as small as we please.
More precisely, given η > 0, there exists an analytic hypersurface Σ such that
dH(N 2Σ,N 2Γ) ≤ η. If η > 0 is small enough, then Σ bounds a domain ΩΣ

1 with

ΩΣ
1 ⊂ Ω and we set ΩΣ

2 = Ω \ ΩΣ
1 ⊂ Ω.

In the sequel we will freely use results that are established in Chapter 2. In
particular, it is shown in Section 2.3 that the C2-hypersurface Σ admits a tubular
neighbourhood, which means that there is a0 > 0 such that the map

Λ : Σ× (−a0, a0) → Rn,

Λ(p, r) := p+ rνΣ(p)

is a diffeomorphism from Σ× (−a0, a0) onto im(Λ), the image of Λ. The inverse

Λ−1 : im(Λ) → Σ× (−a0, a0)

of this map is conveniently decomposed as

Λ−1(x) = (ΠΣ(x), dΣ(x)), x ∈ im(Λ).

Here ΠΣ(x) means the metric projection of x onto Σ and dΣ(x) the signed distance
from x to Σ; so |dΣ(x)| = dist(x,Σ) and dΣ(x) < 0 if and only if x ∈ ΩΣ

1 . In
particular we have im(Λ) = {x ∈ Rn : dist(x,Σ) < a0}. The maximal number
a0 is given by the radius rΣ > 0, defined as the largest number r such that the
exterior and interior ball conditions for Σ in Ω hold. In the following, we choose

a0 = rΣ/2 and a = a0/3.

The derivatives of ΠΣ(x) and dΣ(x) are given by

∇dΣ(x) = νΣ(ΠΣ(x)), ∂ΠΣ(x) = M0(dΣ(x))PΣ(ΠΣ(x)),

where, as before, PΣ(p) = I − νΣ(p) ⊗ νΣ(p) denotes the orthogonal projection
onto the tangent space TpΣ of Σ at p ∈ Σ, and M0(r) = (I− rLΣ)

−1, with LΣ the
Weingarten tensor. Then

|M0(r)| ≤ 1/(1− r|LΣ|) ≤ 3 for all |r| ≤ 2rΣ/3.

If dist(Γ,Σ) is small enough, we may use the map Λ to parameterize the unknown
free boundary Γ(t) over Σ by means of a height function h(t) via

Γ(t) = {p+ h(t, p)νΣ(p) : p ∈ Σ}, t ≥ 0,
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for small t ≥ 0, at least. Extend this diffeomorphism to all of Ω̄ by means of

Ξh(t, x) = x+ χ(dΣ(x)/a)h(t,ΠΣ(x))νΣ(ΠΣ(x)) =: x+ ξh(t, x).

Here χ denotes a suitable cut-off function. More precisely, let χ ∈ D(R), 0 ≤ χ ≤ 1,
χ(r) = 1 for |r| < 1, and χ(r) = 0 for |r| > 2. (We may choose χ in such a way
that 1 < |χ′|∞ ≤ 3.) Note that Ξh(t, x) = x for |dΣ(x)| > 2a, and

ΠΣ(Ξh(t, x)) = ΠΣ(x), |dΣ(x)| < a,

as well as

dΣ(Ξh(t, x)) = dΣ(x) + χ(dΣ(x)/a)h(t,ΠΣ(x)), |dΣ(x)| < 2a.

This yields

Ξ−1
h (t, x) = x− h(t,ΠΣ(x))νΣ(ΠΣ(x)) for |dΣ(x)| < a,

in particular,
Ξ−1
h (t, x) = x− h(t, x)νΣ(x) for x ∈ Σ.

Furthermore, we obtain

∂ Ξh = I + ∂ξh, (∂ Ξh)
−1 = I − [I + ∂ξh]

−1
∂ξh =: I −MT

1 (h),

where ∂ := ∂x denotes the derivative with respect to x ∈ Rn, and

∂ξh(t, x)

= νΣ(ΠΣ(x))⊗M0(dΣ(x))∇Σh(t,ΠΣ(x))− h(t,ΠΣ(x))M0(dΣ(x))LΣ(ΠΣ(x))

for |dΣ(x)| < a, ξ′h(t, x) = 0 for |dΣ(x)| > 2a, and in general

∂ξh(t, x) =
1

a
χ′(dΣ(x)/a)h(t,ΠΣ(x))νΣ(ΠΣ(x))⊗ νΣ(ΠΣ(x))

+ χ(dΣ(x)/a)νΣ(ΠΣ(x))⊗M0(dΣ(x))∇Σh(t,ΠΣ(x))

− χ(dΣ(x)/a)h(t,ΠΣ(x))M0(dΣ(x))LΣ(ΠΣ(x)).

It is a matter of simple algebra to determine the inverse of ∂Ξh, to the result

(∂Ξh(t, x))
−1

= I −
(
χhLΣ − χ′h/a

1 + χ′h/a
νΣ ⊗ νΣ − χ

1 + χ′h/a
νΣ ⊗∇Σh

)
M0(dΣ + χh),

where we dropped the obvious arguments. This implies

M1(h) = χM0(dΣ + χh)
(∇Σh⊗ νΣ
1 + χ′h/a

− hLΣ

)
+

χ′h/a
1 + χ′h/a

νΣ ⊗ νΣ.
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Note that M1(h) depends linearly on ∇Σh. On the interface we then have

M1(h) = M0(h)
(
∇Σh⊗ νΣ − hLΣ

)
.

In particular, ∂Ξh is invertible, provided M0(dΣ + χh) = (I − (dΣ + χh)LΣ)
−1

exists, and 1 + χ′h/a > 0. This certainly holds if

|dΣ + χh||LΣ| ≤ 2/3 and |χ′|∞|h|/a ≤ 1/2,

which leads to the restriction |h|∞ ≤ h∞ := a/2|χ′|∞; note that |χ′|∞ > 1.
Observe that at this place no restrictions on ∇Σh are required.

Next we have

∂tΞh(t, x) = χ(dΣ(x)/a)∂th(t,ΠΣ(x))νΣ(ΠΣ(x)), x ∈ Ω̄,

hence the relation Ξ−1
h (t,Ξh(t, x)) = x implies

∂tΞ
−1
h (t,Ξh(t, x)) = −m0(h)∂th(t,ΠΣ(x))νΣ(ΠΣ(x)), x ∈ Ω̄,

where

m0(h)(t, x) =
χ(dΣ(x)/a)

(1 + h(t,ΠΣ(x))χ′(dΣ(x)/a)/a
.

With the Weingarten tensor LΣ and the surface gradient ∇Σ we further have

νΓ(h) = β(h)(νΣ − a(h)), a(h) = M0(h)∇Σh,

M0(h) = (I − hLΣ)
−1, β(h) = (1 + |a(h)|2)−1/2,

and
VΓ = ∂tΞh · νΓ = (νΣ · νΓ)∂th = β(h)∂th.

It will be shown in Section 2.2 that the surface gradient of a function φ on Γ is
given by

∇Γφ = PΓ(h)M0(h)∇Σφ̄ =: GΓ(h)φ̄,

where φ̄ = φ ◦ Ξh, the surface divergence of a vector field f on Γ becomes

divΓf = tr[PΓ(h)M0(h)∇Σf̄ ],

and the Laplace–Beltrami operator ΔΓ reads

ΔΓϕ = tr[PΓ(h)M0(h)∇ΣPΓ(h)M0(h)∇Σϕ̄].

Finally, for the mean curvature HΓ(h) we have

HΓ(h) = β(h){tr[M0(h)(LΣ +∇Σa(h))]− β2(h)(M0(h)a(h)|[∇Σa(h)]a(h))},

a differential expression involving second-order derivatives of h only linearly. We
may write

HΓ(h) = C0(h) : ∇2
Σh+ C1(h),
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where C0(h) and C1(h) depend on h and ∇Σh, provided |h| ≤ h∞ holds. The
linearization of HΓ(h) at h = 0 is given by

H ′
Γ(0) = trL2

Σ +ΔΣ.

Here ΔΣ denotes the Laplace–Beltrami operator on Σ.

(b) The Transformed Problem
Now we define the transformed quantities

�̄(t, x) = �(t,Ξh(t, x)), ū(t, x) = u(t,Ξh(t, x)) in Ω\Σ,
π̄(t, x) = π(t,Ξh(t, x)), θ̄(t, x) = θ(t,Ξh(t, x)) in Ω\Σ,
ūΓ(t, p) = uΓ(t,Ξh(t, p)), j̄Γ(t, p) = jΓ(t,Ξh(t, p)) on Σ,

(1.57)

the pull back of (�, u, π, θ, uΓ, jΓ). This way we have transformed the time varying
regions Ω \ Γ(t) to the fixed region Ω \ Σ. This transforms the general problem
(1.26), (1.27), (1.28) to the following problem for (�̄, ū, π̄, θ̄, ūΓ, j̄Γ, h).

∂t�̄+ G(h) · �̄ū = m0(h)∂th(νΣ · ∇)�̄) in Ω \ Σ,
�̄∂tū− G(h) · S̄ + G(h)π̄ = �̄Ru(ū, θ̄, h) in Ω \ Σ,

ū = 0 on ∂Ω,

[[1/�̄]]j̄2ΓνΓ(h)−[[S̄νΓ(h)]] + [[π̄]]νΓ(h) = GΓ(h) · (σ(θ̄Γ)PΓ(h) + S̄Γ) on Σ,

[[ū]]− [[1/�̄]]j̄ΓνΓ(h) = 0 on Σ,

�̄(0) = �̄0, ū(0) = ū0,
(1.58)

where

S̄ = μ(θ̄, �̄)(G(h)ū+ [G(h)ū]T) + λ(θ̄, �̄)(G(h) · ū)I,
S̄Γ = μΓ(θΓ)PΓ(h)(GΓ(h)ūΓ + [GΓ(h)ūΓ]

T)PΓ(h) + λ(θ̄Γ)(GΓ(h) · ūΓ)PΓ(h),

�̄κ(θ̄, �̄)∂tθ̄ − G(h) · d(θ̄, �̄)G(h)θ̄ = �̄κ(θ̄, �̄)Rθ(ū, θ̄, h) in Ω\Σ,
∂ν θ̄ = 0 on ∂Ω,

[[θ̄]] = 0, θ̄ = θ̄Γ on Σ,

θ̄(0) = θ̄0 in Ω,

(1.59)

κΓ(θ̄Γ)∂tθ̄Γ − (GΓ(h)|dΓ(θ̄Γ)GΓ(h)θ̄Γ)− [[θ̄η(θ̄, ρ̄)]]j̄Γ

+[[d(θ̄, ρ̄)G(h)θ̄ · νΓ(h)]] = S̄Γ : GΓ(h)ūΓ + σ(θ̄)GΓ(h) · ūΓ +RΓ(θ̄Γ, h) on Σ

[[ψ(θ̄, ρ̄)]] + [[1/2ρ̄2]]j̄2Γ − [[S̄νΓ · νΓ/ρ̄]] + [[π̄/ρ̄]]νΓ(h) = 0 on Σ,

β(h)∂th− (ū|νΓ) + j̄Γ/ρ̄ = 0, on Σ,

θ̄Γ(0) = θ̄0, h(0) = h0.
(1.60)
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Here G(h) and GΓ(h) denote the transformed gradient resp. the transformed surface
gradient. More precisely, we have the relations

[∇π] ◦ Ξh = G(h)π̄ = [(∂ Ξ−1
h )T ◦ Ξh]∇π̄ = (I −M1(h))∇π̄

and
[∇θ] ◦ Ξh = (I −M1(h))∇θ̄,

as well as

(∇ · u) ◦ Ξh = (G(h)|ū) = ((I −M1(h))∇|ū).

Furthermore,

D

Dt
θΓ ◦ Ξh = ∂tθ̄Γ + ūΓ · ∇Σθ̄Γ − ūΓ ·M1(h)∇Σθ̄Γ,

and

[∂tu] ◦ Ξh = ∂tū+ ∂ū[(∂tΞ
−1
h ) ◦ Ξh] = ∂tū−m0(h)∂th(νΣ · ∇)ū,

hence
Ru(ū, θ̄, h) = −ū · G(h)ū+m0(h)∂th(νΣ · ∇)ū.

Similarly we have

[∂tθ] ◦ Ξh = ∂tθ̄ −m0(h)∂th(νΣ · ∇)θ̄,

and so
Rθ(ū, θ̄, h) = −ū · G(h)θ̄ +m0(h)∂th(νΣ · ∇)θ̄.

In the same way we get

RΓ(θ̄Γ, h) = −ūΓ · ∇Σθ̄Γ + ūΓ ·M1(h)∇Σθ̄Γ + θ̄Γσ
′(θ̄Γ)GΓ(h) · ūΓ.

It is convenient to decompose the stress boundary condition into tangential and
normal parts; here we set SΓ = 0. For this purpose let PΣ = I−νΣ⊗νΣ denote the
projection onto the tangent space of Σ. Multiplying the stress interface condition
with νΣ/β we obtain

[[1/�̄]]j̄2Γ + [[π̄]]− σHΓ(h) = ([[S̄]](νΣ −M0(h)∇Σh)|νΣ)
+ σ′β(M0∇Σh|M0∇Σθ̄Γ)

(1.61)

for the normal part of the stress boundary condition. Substituting this expression
into the stress interface condition and then applying the projection PΣ yields, after
some computation,

PΣ[[S̄]](νΣ −M0(h)∇Σh) = ([[S̄]](νΣ −M0(h)∇Σh)|νΣ)M0(h)∇Σh

+ (σ′/β)M0(h)∇Σθ̄Γ
(1.62)
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for the tangential part. Note that the latter neither contains the phase flux nor
the pressure jump nor the curvature!

3.3 Goals and Strategies
The goal of this monograph is the exposition of a general theory for the models
introduced above. We present in detail a rigorous analysis of these problems. It
will become clear that the scope of our approach is much wider. It can be used
for many other problems with moving interfaces, such as phase transitions driven
by chemical potentials, two-phase flow problems with surface viscosities, multi-
component two phase flows, as well as similar quasi-steady problems or purely
geometric ones, to mention a few more applications. The essential restriction is
that the problems in question ought to be of parabolic nature. In this book we will
employ Lp-theory since it avoids higher order compatibility conditions. In addition,
deep results of harmonic analysis are at our disposal. Nevertheless, one could also
use other frameworks where maximal regularity is available, e.g. Cα-theory.

In particular, we address the following topics.

a) Local well-posedness and local semiflow;

b) Stability analysis of equilibria;

c) Long-time behaviour of solutions.

We now outline our approach, explaining the main ideas and tools to be employed.

a) Local-Well-posedness and Local Semiflow
To obtain local well-posedness we write the transformed problem in the form

Lz = (N(z), z0).

Here L is the principal linear part of the problem in question, and N is the
remaining nonlinear part which is small in the sense that N collects all lower
order terms and contains only highest order terms which carry a factor |∇Σh|
which is small on small time intervals due to the choice of the Hanzawa transform.
The variable z with initial value z0 collects all essential variables of the problem
under consideration.

The first step is to find function spaces E(J) and F(J), J = (0, a) or J = R+,
such that L : E(J) → F(J)×Eγ is an isomorphism. Here Eγ denotes the time-trace
space of E(J) which the initial value z0 should belong to. This is the question of
maximal regularity. These spaces differ from problem to problem and the question
of maximal regularity has to be studied separately for each one. Here we will use
the framework of Lp-spaces and rely on deep results from vector-valued harmonic
analysis and operator theory which will be introduced and discussed in Chapter 4.

The second step then employs the contraction mapping principle to obtain
local solutions, and the implicit function theorem to obtain smooth dependence
of the solutions on the data. For this, estimates of the nonlinearity N are needed,
eventually showing that N : E(J) → F(J) is continuously Fréchet-differentiable, at
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least. This requires some smoothness of the coefficient functions in the constitutive
laws. If these are, say, even real analytic then N will be so as well, and by a scaling
argument and the implicit function theorem we will show that the solutions are
real analytic jointly in time and space as well. In particular, the interface will
become instantaneously real analytic, which shows the strong regularizing effect,
characteristic for parabolic problems.

The third step consists in setting up the state manifold SM of the untrans-
formed problem. It will be a truly nonlinear manifold which comes from the generic
nonlinear structure, due to geometry and the involved nonlinear compatibility con-
ditions of the problem. Charts for the state manifold are induced by the Hanzawa
transform mentioned above. The local existence and regularity results for the
transformed problem induce a local semiflow on the proper state manifold SM
for the problem in question.

b) Stability Analysis of Equilibria
For the stability analysis of equilibria it is natural to employ again the Hanzawa
transform, where the reference manifold Σ now is the equilibrium interface Γ∗, a
union of finitely many disjoint spheres contained in Ω. As the linearized problem
enjoys maximal Lp-regularity, an abstract result shows that the operator L asso-
ciated with the fully linearized problem is the negative generator of a compact
analytic C0-semigroup. Therefore, the spectrum of L consists only of countably
many isolated eigenvalues of finite algebraic multiplicity. Thus, it is natural to
study these eigenvalues and to apply the principle of linearized stability for the
nonlinear problem.

However, a major difficulty of this approach lies in the fact that the equilibria
are not isolated in the state manifold, but form a finite-dimensional submanifold
E of SM. For the linearization of the transformed problem this implies that the
kernel of L is nontrivial, i.e., the imaginary axis is not in the resolvent set of L,
and so the standard principle of linearized stability is not applicable. Fortunately,
0 is the only eigenvalue of L on iR and it is nicely behaved: the kernel N(L) is
isomorphic to the tangent space of E at this equilibrium, and 0 is semi-simple. This
shows that 0 is normally stable if the remaining eigenvalues of L have positive real
parts, and normally hyperbolic if some of them have negative real parts; these are
only finitely many. Therefore, we can employ what we call the generalized principle
of linearized stability, a method which is adapted to such a situation and has been
worked out recently for quasilinear parabolic evolution equations by the authors.
So our stability analysis of equilibria proceeds in two steps.

In the first step we analyze the eigenvalues of L and find conditions, if possible
necessary and sufficient, which ensure that all eigenvalues of L except 0 have
positive real parts; this is the normally stable case. In the normally hyperbolic
case we determine the dimension of the unstable subspace of L. And of course,
we have to show that 0 is semi-simple, to determine the kernel of L, and to prove
that N(L) is isomorphic to the tangent space of E .

In the second step we employ the generalized principle of linearized stability
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to the nonlinear problem. This can be done simultaneously for all six problems
in question, as the proof only uses the general structure of the problems under
consideration. Here we employ once more the implicit function theorem.

c) Long-Time behaviour of Solutions
In general, solutions in SM will exist on a maximal time interval [0, t+(z0)) which
typically will be finite, due to several obstructions, such as missing a priori bounds,
loss of well-posedness, or topological changes in the moving interface. However, if a
solution does not develop singularities in a sense to be specified, then we will prove
that the solution exists globally, i.e., t+(z0) = ∞, and it converges in the topology
of SM to an equilibrium. This essentially relies on a method using time weights
to improve regularity and on compact Sobolev embeddings. Actually, we are able
to characterize solutions which exist globally and converge as t → ∞. This result
is also proved simultaneously for all problems under consideration, as the proof
only relies on general properties of semiflows, relative compactness of bounded
orbits, the existence of a strict Lyapunov functional (the negative entropy), and
the results on stability of equilibria.

On our way of presenting the tools which are needed to achieve these goals we
will frequently discuss other problems to illustrate the main ideas. For example, the
Laplacian, the Laplace–Beltrami operator, the heat operator, the Stokes operator,
and several Dirichlet-to-Neumann operators will be studied in various frameworks.
In Chapter 5 we develop an Lp-theory of abstract quasilinear parabolic evolution
equations which serves as a guide for the more complex problems to be studied
later on. In Chapter 12 we will present several applications of the main results of
Chapter 5 to problems arising from generalized Newtonian flows, nematic liquid
crystal flows, Maxwell-Stefan diffusion, and the Stefan problem with surface ten-
sion and surface heat capacity, as well as to geometric evolutions equations like
the averaged mean curvature flow, the surface diffusion flow, the Mullins–Sekerka
flow, the Muskat flow, the Stokes flow, and the Stokes flow with phase transition.
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