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Preface

Moving interfaces – and in the stationary case, free boundaries – are ubiquitous in
our environment and daily life. They are at the basis of many physical, chemical,
and also biological processes.

Typically, a moving boundary problem consists of one or more partial dif-
ferential equations which have to be solved in a domain that is a priori unknown
and that has to be determined as part of the problem. Problems with moving
boundaries are in general harder to solve, both analytically and numerically, than
the underlying differential equations would be in a prescribed domain. They have
an inherent nonlinear structure, as two separate solutions cannot be superposed.
Einstein’s words

In so far as the theorems of mathematics relate to reality, they are not certain,
and in so as far as they are certain, they do not relate to reality

appear to be quite correct in the context of formulating and analyzing problems
with moving interfaces or free boundaries. Many simple things, such as a whiskey
glass with a melting ice cube or a pot of boiling water with potatoes, are already
very difficult to be modeled in a physically accurate way.

But as a matter of fact, mathematicians never give up. If unable to model and
analyze a complicated process, we concentrate on simpler ones which already ex-
hibit the important difficulties and characteristics. Mathematicians have followed
this route successfully ever since: let us solve model problems in a rigorous way
in order to improve our tools and invent new ones, and to sharpen old and design
new weapons to tackle real world problems.

The most famous model problem with a moving interface, perhaps, is the
Stefan problem for the freezing of water, proposed by J. Stefan in the 19th century.
This problem has attracted much mathematical research since then, resulting in
hundreds of papers; see the biographical remarks at the end of this book. The
second historically prominent problem which, likely, has been around for as long
as the Stefan-problem, is the two-phase Navier-Stokes problem, which describes
the motion of droplets of oil in water, for instance. This problem has caused as
much mathematical interest as the Stefan problem.

In this book we extend and combine these two historical problems into classes
of models for one-component two-phase flows with phase transitions. The proposed
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vi Preface

models are thermodynamically consistent in the sense that the total energy is
preserved, while the total entropy is non-decreasing. The physical derivation of
these models and their properties are explained in Chapter 1. A rigorous analysis
of the resulting six model problems is presented in Chapters 9, 10, and 11.

Another source of problems with moving interfaces concerns geometric evo-
lution laws which describe the dynamics of hypersurfaces. In these problems, the
normal velocity of a surface is given by a law defined by its geometry. Steady
states then are special “free boundaries,” leading to certain classes of surfaces like
minimal surfaces or Willmore surfaces. Important examples are the mean curva-
ture flow, the surface diffusion flow, and the Willmore flow. On the other hand,
some popular quasi-stationary problems like the Mullins–Sekerka flow, the Stokes
flow, or the Muskat flow, are determined not only by the geometry of the interface,
but also by diffusion in its environment. In this monograph, we extend this list to
include what we call the Stokes flow with phase transition and the Muskat flow
with phase transition.

In the last decades, it has become evident that the theory of maximal reg-
ularity provides an important tool to tackle problems with moving interfaces. By
means of these methods, the quasilinear structure, which is inherent for most
problems with moving boundaries that include mean curvature, can be exploited
in a mathematically optimal way. Via certain linearizations we may resort to the
contraction mapping principle and to the implicit function theorem, as no loss
of regularity will occur. This refers to local well-posedness – sometimes called
short-time existence for arbitrary data – but also to the regularity of solutions and
their stability properties near equilibria – sometimes called long-time existence
for small data. With our methods we can furthermore prove that the interfaces
become instantaneously real analytic if the coefficients in the equations are so and
the initial values are subject to only mild regularity assumptions. This encodes
typical parabolic behaviour.

Techniques relying on variational inequalities and weak solutions have proven
successful in analyzing a wide array of problems with moving interfaces that share
a particular underlying structure, that is, which can be formulated in a weak sense
or in terms of a variational inequality. This enables one to conclude without great
efforts that a solution to the free boundary problem exists in some weak sense.
One can then proceed to establish the regularity of the solution and then attempt
to study the smoothness of the free boundary itself. The advantage of this method
is that it provides the existence of a global solution. However, it is often difficult,
if not impossible, to derive further information on the location and the qualitative
properties of the free boundary. Moreover, problems that include surface tension on
the free boundary do not have the luxury of a comparison principle, and this alters
the mathematical structure of the equations in a fundamental way. Consequently,
methods based on comparison principles, variational inequalities, and viscosity
solutions do not seem well-adapted in the presence of surface tension.
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The basis of our approach relies on the so-called direct mapping method which
means that the problem is transformed to a problem with fixed interface. This can
be achieved very easily by a Lagrange transform if the interface is advected with the
underlying flow, as in the two-phase Navier-Stokes problem. If phase transitions
are present, like in the Stefan problem, it is more convenient to employ a Hanzawa
transform in which the moving interface is parameterized via a height function
over a fixed reference hypersurface. This method seems to be better adapted than
the Lagrange transform for two-phase flows, as it allows us to prove smoothing of
the interface, even if no phase transitions take place but surface tension is present.
For this method, some differential geometry of hypersurfaces in Euclidean space
is needed as well as advanced knowledge of function spaces.

In this monograph, we employ the theory of maximal Lp-theory throughout.
By now, in the Lp-framework, many classical as well as some very recent powerful
results for vector-valued harmonic analysis are at our disposal.

To introduce the needed tools, we will explore numerous connections between
maximal Lp-regularity, sectorial operators,H∞-calculus, Fourier-multipliers, semi-
groups, and function spaces. Chapters 3 and 4 are devoted to this general theory
– a theory that can be used for many other problems besides those with moving
boundaries, as is demonstrated in Chapters 5 and 12. Therefore, this book offers
many things also to researchers who may not primarily be interested in moving
boundaries, but want to learn about parabolic evolution equations.

The monograph is structured as follows. In the introductory Chapter 1, the
necessary physical background is introduced and the main problems to be studied
are formulated. It is shown that these problems are thermodynamically consistent;
their equilibria are identified, and those equilibria which are local maxima of the
total entropy are singled out. One major purpose of this book is to show that the
latter are precisely the stable ones. We also give an outline of the strategies for
their mathematical analysis.

Chapter 2 contains the basic differential geometry of hypersurfaces needed
for the direct mapping principle. We investigate the notions of Weingarten tensor,
principal curvatures, mean curvature, tubular neighbourhood, surface gradient,
surface divergence, and Laplace-Beltrami operator. The main emphasis lies in
deriving representations of these quantities for hypersurfaces that are given as pa-
rameterized surfaces in normal direction of a fixed reference surface by means of
a height function. It is also important to study the mapping properties of these
quantities in dependence on the height function, and to derive expressions for
their variations. Among other things we study the first and second variations of
the area and volume functional. Moreover, we show that C2-hypersurfaces can be
approximated in a suitable topology by smooth (e.g. analytic) hypersurfaces. We
then show that the class of compact embedded hypersurfaces in Rn gives rise to
a new manifold whose points are the compact embedded hypersurfaces. Finally,
we consider moving hypersurfaces, and we state and prove various transport the-
orems. While most of the material is well-known, we nevertheless believe that our
presentation contains new results and aspects that are also of interest to readers



viii Preface

with more advanced knowledge in differential geometry and geometric analysis.
This chapter can be read independently from the rest of the book.

In Chapter 3, some elementary results from operator and semigroup theory
are recalled. Moreover, some interpolation theory and the concept of maximal
Lp-regularity is introduced and discussed. More recent results on vector-valued
harmonic analysis, in particular operator-valued Fourier multiplier theorems in
Lp-spaces and their implication to maximal Lp-theory, are accounted for in Chap-
ter 4. The results of these chapters form the functional analytic foundation for the
maximal regularity results which are at the heart of this book.

To demonstrate the strength and flexibility of the maximal regularity ap-
proach, in Chapter 5 an Lp-theory for abstract quasilinear parabolic evolution
equations is developed. This includes local well-posedness, regularity, compact-
ness of the induced semiflow, as well as the generalized principle of linearized
stability for the analysis of the semiflow near (a manifold of) equilibria. These
results can be applied to a wide array of quasilinear parabolic systems, including
geometric evolution equations, as shown in Chapter 12. Maximal regularity is also
used in an essential way to show the existence of the stable and unstable foliations
at normally hyperbolic equilibria. Chapter 5 only relies on the concept of maxi-
mal Lp-regularity and, hence, it is also useful for readers who are not primarily
interested in problems with moving interfaces, but rather in quasilinear parabolic
systems.

Also of independent interest are Chapters 6, 7 and 8 in which maximal Lp-
regularity for large classes of linear elliptic and parabolic systems is proved. These
classes include transmission problems for two-phase systems, problems with dy-
namics on the interface, and Stokes problems, needed later on. In these chapters
the full strength of the multiplier results from Chapter 4 is used.

Chapters 9, 10, and 11 are devoted to the analysis of the six problems with
moving interfaces introduced in Chapter 1. They form the core of this monograph.
It turns out that these problems can, unfortunately, not be formulated as abstract
evolution equations of the type considered in Chapter 5. This is caused by the
presence of nonlinear stationary transmission conditions on the interface. Never-
theless, Chapter 5 is used as a guideline for the analysis of the more involved
problems. Chapter 9 deals with their local well-posedness, which can be proved
simultaneously for all six problems in question; only the chosen function spaces
are specific for each one. The same is also valid for the regularity theory, and for
the results on long-time behaviour discussed in Chapter 11. On the other hand,
the analysis of the full linearizations at a given equilibrium in Chapter 10 depends
on the specific problem.

Miscellaneous applications of the theory developed in Chapter 5 are presented
in Chapter 12, which include sections on generalized Newtonian flows, nematic
liquid crystal flows, Maxwell–Stefan diffusion, the Stefan problem with variable
surface tension, and geometric evolution equations.

The monograph is supplemented with historical and bibliographical remarks,
suggestions for extensions of the theory and for further studies and research, a list
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Basic Notations

Most notations used throughout this book are fairly standard in the modern math-
ematical literature. So N, Z, Q, R, C denote the set of natural numbers, integers,
rationals, real and complex numbers, respectively, and N0 = N∪{0}, R+ = (0,∞),

Ṙ = R \ {0}, Ṙn = [Ṙ]n, R̂n = Rn−1 × Ṙ, Rn
+ = Rn−1 × R+, C+ = {z ∈ C :

Re z > 0}, a+ = max{a, 0} for a ∈ R. We also denote by

Σφ = {z ∈ C : z �= 0, |arg z| < φ}

the open sector in C symmetric to R+ with opening angle φ ∈ (0, π]. We denote
the Euclidean norm in Rn by | · | in case no confusion is likely. Moreover, we use
the notation (x|y) or x · y for the inner product of x, y ∈ Rn.

If (M,d) is a metric space and N ⊂ M , then N c, intN , N̄ , ∂N designate the
complement, interior, closure, boundary of N , respectively, and dist(x,N) denotes
the distance of x to N , while B(x0, r) and B̄(x0, r) are the open resp. closed balls
with center x0 and radius r.

X,Y, Z will always be Banach spaces with norms | · |X , | · |Y , | · |Z ; the
subscripts will be dropped when there is no danger of confusion. B(X,Y ) denotes
the space of all bounded linear operators from X to Y , B(X) = B(X,X) for short.
The set of all isomorphisms between X and Y is denoted by Isom(X,Y ). The dual
space of X is X∗ = B(X,K), where K = R or K = C is the underlying scalar field;
〈x|x∗〉 = 〈x|x∗〉X,X∗ designates the natural pairing between elements x ∈ X and
x∗ ∈ X∗. If (xn) ⊂ X converges to x ∈ X we write xn → x or limn→∞ xn = x,

while xn ⇀ x or w − limn→∞ xn = x mean weak convergence; similarly x∗
n

∗
⇀ x∗

or w∗ − limn→∞ x∗
n = x∗ stand for weak∗-convergence of (x∗

n) ⊂ X∗ to x∗ ∈ X∗.
If A is a linear operator in X, D(A), R(A), N(A) denote the domain, range,

null space of A, respectively, while σ(A) and ρ(A) mean spectrum and resolvent
set of A. σ(A) is further decomposed into σp(A), σc(A), σr(A), the point spectrum,
continuous spectrum, and residual spectrum of A. The operator A∗ in X∗ denotes
the dual of A. If it exists, it is defined by 〈Ax|x∗〉 = 〈x|A∗x∗〉. If A is closed, then
D(A) equipped with the graph norm of A, |x|A = |x| + |Ax|, is a Banach space,
for which the symbol XA is employed.

If X is a Hilbert space, (x|y) = (x · y)X means the inner product in X and
|x| = |x|X = (x|x)1/2 the canonical norm. The Hilbert space adjoint of an operator

xv
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A will also be denoted by A∗. It is defined by the relation (Ax|y) = (x|A∗y).
Some standard function spaces employed throughout this book are the fol-

lowing.
If (M,d) is a metric space, and X a Banach space, then C(M ;X) denotes the

space of all continuous functions f : M → X. Cb(M ;X) resp. Cub(M ;X) designate
the spaces of all bounded continuous resp. bounded uniformly continuous functions
f : M → X; these spaces become Banach spaces when normed by the sup-norm

|f |0 = sup
t∈M

|f(t)|.

The space of all functions f : M → X which are uniformly Lipschitz-continuous
is denoted by Lip(M ;X), and

|f |Lip = sup
t �=s

|f(t)− f(s)|/d(t, s).

If (Ω,A, μ) is a measure space and X a Banach space, then Lp((Ω,A, μ);X),
1 ≤ p < ∞, denotes the space of all Bochner-measurable functions f : Ω → X
such that |f(·)|p is integrable. This space is also a well-known Banach space when
normed by

|f |p =
(∫

Ω

|f(t)|pdμ(t)
)1/p

,

and functions equal almost everywhere (a.e.) are identified. Similarly,
L∞((Ω,A, μ);X) denotes the space of (equivalence classes of) Bochner-measurable
and essentially bounded functions f : Ω → X, and the norm is defined according
to

|f |∞ = ess sup
t∈Ω

|f(t)|.

For Ω ⊂ Rn open, Σ the Lebesgue σ−algebra, and μ the Lebesgue measure, we
abbreviate Lp((Ω,Σ, μ);X) to Lp(Ω;X). In this case Hm

p (Ω;X) is the space of all
functions f : Ω → X having distributional derivatives ∂αf ∈ Lp(Ω;X) of order
|α| ≤ m. The norm in Hm

p (Ω;X) is given by

|f |m,p =
( ∑

|α|≤m

|∂αf |pp
)1/p

for 1 ≤ p < ∞,

and
|f |m,∞ = max

|α|≤m
|∂αf |∞ for p = ∞.

For Ω ⊂ Rn open, Cm(Ω;X) denotes the space of all functions f : Ω → X
which admit continuous partial derivatives ∂αf in Ω, for each multi-index α with
|α| ≤ m. A function f belongs to Cm(Ω̄;X) if f ∈ Cm(Ω;X), and ∂αf has a
continuous extension to Ω, for each |α| ≤ m. The norm of its subspaces Cm

b (Ω;X)
and Cm

ub(Ω̄;X) is given by

|f |m,0 = sup
|α|≤m

|∂αf |0.
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By Cm−
j (Ω;X) we mean the space of all functions f ∈ Cm−1

j (Ω;X) such that
∂αf ∈ Lip(Ω;X) for each |α| = m. The norm in this space is defined as

|f |m−,0 = |f |m−1,0 + sup
|α|=m

|∂αf |Lip.

Moreover, if Ω is unbounded we set

Cl(Ω;X) := {f ∈ Cb(Ω) : lim
|x|→∞

f(x) exists},

C0(Ω;X) := {f ∈ Cb(Ω) : lim
|x|→∞

f(x) = 0}.

Throughout, we will employ Hörmander’s notation for partial derivatives, i.e. we
write D = −i∂ and Dα = (−i)|α|∂α.

For f ∈ C(Ω;X) the support of f is defined by

supp f = {x ∈ Ω : f(x) �= 0}.

As usual, D(Ω;X) means the space of all test functions ϕ ∈ D(Ω;X) :=⋂
m≥1 C

m(Ω;X) such that supp ϕ ⊂ Ω is compact. For X = C we set D(Ω) =
D(Ω;C), the space of scalar test functions.

The subscript ‘loc’ assigned to any of the above function spaces means mem-
bership to the corresponding space when restricted to compact subsets of its do-
main. Usually, if X is the underlying scalar field K = C or K = R, the image space
in the function space notation introduced above will be dropped. For example,
L1,loc(R) denotes the space of all measurable scalar-valued functions which are
integrable over each compact interval.

A left subscript 0 indicates that the corresponding functions vanish on the
boundary of the relevant domain, along with all its derivatives. For instance, we
have

0H
m
p (Ω;X) = D(Ω;X)

Hm
p
,

and

0C(J ;X) = {f : J → X is continuous, with lim
t→0

f(t) = 0},

0C0(R+;X) = {f : R+ → X is continuous, with lim
t→{0,∞}

f(t) = 0},

where J = (0, a) ⊂ R.
Other function spaces will be introduced where they are needed for the first

time; cf. the list of symbols.
The Fourier transform of a function f ∈ L1(R

n;X) is defined by

Ff(ξ) := f̃(ξ) =

∫
Rn

e−iξ·xf(x) dx, ξ ∈ Rn.
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It is well-known that f̃ : Rn → X is uniformly continuous and tends to 0 as
|ξ| → ∞, by the Riemann-Lebesgue lemma. If X is a Hilbert space, by Parseval’s
theorem, the Fourier transform extends to a unitary operator on L2(R

n;X). On the
Schwartz space S(Rn;X) of all functions f ∈ C∞(Rn;X) such that each derivative
of f decays faster than any polynomial, the Fourier transform is an isomorphism,
and the inversion formula

˜̃
f(x) = (2π)nf(−x), x ∈ Rn,

holds.
The Laplace transform of a function f ∈ L1,loc(R+;X) is denoted by

Lf(λ) := f̂(λ) :=

∫ ∞

0

e−λtf(t) dt, Re λ > ω,

whenever the integral is absolutely convergent for Re λ > ω. The relation between
the Laplace transform of f ∈ L1(R;X), f(t) ≡ 0 for t < 0, and its Fourier
transform is

f̃(ξ) = f̂(iξ), ξ ∈ R.

As usual we employ the star ∗ for the convolution of scalar functions defined
on Rn or on the half line R+.

(f ∗ g)(x) =
∫
Rn

f(x− y)g(y) dy, x ∈ Rn,

e.g. for f, g ∈ L1(R
n), and

(f ∗ g)(t) =
∫ t

0

f(t− s)g(s) ds, t ∈ R+,

e.g. for f, g ∈ L1(R+). Observe that for n = 1, the two representations for f ∗ g
above are equivalent for functions that vanish on t < 0 and so, there will be no
danger of confusion. Recall the convolution theorem for the Fourier transform

F(u ∗ v)(ξ) = Fu(ξ)Fv(ξ), ξ ∈ Rn,

for u, v ∈ L1(R
n), and that for the Laplace transform

L(u ∗ v)(λ) = Lu(λ)Lv(λ), Reλ > ω,

for functions u, v defined on the half line such that e−ωtu, e−ωtv ∈ L1(R+).
Other symbols and notations are introduced where needed for the first time,

and for these the reader should consult the index.
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Throughout the book we will use some monographs as standard references without
further comments. These are the following.

• Function Spaces: Adams [2], Triebel [283, 284];

• Functional Analysis: Brezis [50], Rudin [239], Yosida [300];

• Interpolation Theory: Bergh-Löfström [38], Lunardi [184], Triebel [282];

• Nonlinear Analysis: Deimling [76], Zeidler [305];

• Operator Theory: Dunford-Schwartz [91], Kato [157];

• Semigroup Theory: Arendt et al. [29], Engel-Nagel [94], Hille-Phillips [147].
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Chapter 1

Problems and Strategies

The purpose of this introductory chapter is to explain the problems to be con-
sidered in the main part of this book in some detail. We derive their physical
origin from first principles, discuss some of the main structural properties of the
models, and describe the strategies of our analytical approach. All the notions and
properties relating to differential geometry of hypersurfaces will be introduced and
explained in Chapter 2.

1.1 Modeling

Suppose a (fixed) container Ω – a bounded domain in Rn with smooth boundary
– is filled with a material which is present in two phases that occupy the regions
Ω1(t) and Ω2(t). The interface Γ(t) separating these two phases will depend on
time t, but should not be in contact with the outer boundary ∂Ω of the container
in order to avoid the contact angle problem. Then the so-called continuous phase
Ω2(t) is in contact with the outer boundary, while the diperse phase Ω1(t) is not,
which means that ∂Ω1(t) = Γ(t) and ∂Ω2(t) = ∂Ω ∪ Γ(t). The outer unit normal
of Γ(t) w.r.t. Ω1(t) will be denoted by νΓ, it depends on p ∈ Γ(t) as well as on t;
the outer unit normal of Ω is called ν, it only depends on p ∈ ∂Ω. The Weingarten
tensor LΓ is defined by LΓ := −∇ΓνΓ, where ∇Γ means the surface gradient, and
the ((n− 1)-fold) mean curvature HΓ of Γ by

HΓ = trLΓ = −divΓ νΓ,

where divΓ means the surface divergence on Γ. In the sequel, the jump of a physical
quantity φ across Γ will be denoted by

[[φ]](p) := lim
s→0+

[φ(p+ sνΓ(p))− φ(p− sνΓ(p))], p ∈ Γ.

© Springer International Publishing Switzerland 2016
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∂Ω

Γ

Ω1

νΓ

Γ

Ω1

Ω2

Figure 1.1: A two-phase domain Ω = Ω1 ∪ Γ ∪ Ω2.

1.1 First Principles in the Bulk
We begin with the basic balance laws in the bulk.

Balance of Mass
Let � > 0 denote the density and u the velocity in the bulk phases Ωj , uΓ the
velocity and VΓ := uΓ · νΓ the normal velocity of Γ, respectively. Note that � and
u may jump across the interface Γ and that uΓ is in general not a tangent vector
field to Γ. If there are no sources of mass in the bulk, then conservation of mass
is given by the continuity equation

∂t�+ div (�u) = 0 in Ω \ Γ(t). (1.1)

If there is no surface mass on Γ, we also have the jump condition

[[�(u− uΓ) · νΓ]] = 0 on Γ(t). (1.2)

The interfacial mass flux jΓ, phase flux for short, is defined by means of

jΓ := �(u− uΓ) · νΓ, i.e., [[
1

�
]]jΓ = [[u · νΓ]]. (1.3)

Observe that jΓ is well defined, as (1.2) shows. Phase Transition takes place if
jΓ �≡ 0. On the other hand, if jΓ ≡ 0, then u · νΓ = uΓ · νΓ = VΓ, and in this case
the interface is advected with the velocity field u.

Next we have by the transport theorem for moving domains

d

dt

∫
Ω1(t)

� dx =

∫
Γ(t)

�VΓ dΓ +

∫
Ω1(t)

∂t� dx

=

∫
Γ(t)

�VΓ dΓ−
∫
Ω1(t)

div(�u) dx

=

∫
Γ(t)

(�uΓ · νΓ − �u · νΓ) dΓ = −
∫
Γ(t)

jΓ dΓ,
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and in case u · ν = 0 on ∂Ω in the same way

d

dt

∫
Ω2(t)

� dx =

∫
Γ(t)

jΓ dΓ,

proving conservation of total mass, i.e.,

d

dt

∫
Ω

� dx = 0. (1.4)

In this book we mostly consider the completely incompressible case , i.e., we assume
that the densities are constant in the phases Ωj . Then conservation of mass reduces
to

div u = 0 in Ω \ Γ(t).
If only the latter property holds, we say that the material is incompressible. In
case both phases are completely incompressible we have

�1|Ω1(t)|+ �2|Ω2(t)| ≡ �1|Ω1(0)|+ �2|Ω2(0)| =: c0.

This implies
[[�]]|Ω1(t)| = �2|Ω| − c0,

hence |Ω1(t)| is constant in the case of nonequal densities, i.e., the phase volumes
are preserved. On the other hand, there is no preservation of phase volumes in
general if one or both phases are compressible, or if the densities are constant and
equal.

The Universal Balance Law Let φ be any (mass-specific) physical quantity, J its
flux, and f its sources. Then the balance law for φ in the bulk reads

∂t(�φ) + div(�φu+ J) = �f in Ω \ Γ(t), (1.5)

and if there is a source fΓ for φ on the interface we have

[[(�φ(u− uΓ) + J) · νΓ]] = fΓ on Γ(t). (1.6)

Employing balance of mass and the definition of the phase flux jΓ this simplifies
to

�(∂tφ+ u · ∇φ) + div J = �f in Ω \ Γ(t),
[[φ]]jΓ + [[J · νΓ]] = fΓ on Γ(t).

(1.7)

By (2.101), the corresponding universal transport theorem becomes

d

dt

∫
Ω

�φ dx =

∫
Ω

∂t(�φ) dx−
∫
Γ

[[�φ]]VΓ dΓ

=

∫
Ω

(�f − div (�φu+ J)) dx−
∫
Γ

[[�φuΓ · νΓ]] dΓ

=

∫
Ω

�f dx+

∫
Γ

[[(�φ(u− uΓ) + J) · νΓ]] dΓ−
∫
∂Ω

(�φu+ J) · ν d(∂Ω)

=

∫
Ω

�f dx+

∫
Γ

([[φ]]jΓ + [[J · νΓ]]) dΓ +

∫
∂Ω

g d(∂Ω),
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with g = −(�φu+ J) · ν on ∂Ω. Therefore, we obtain the conservation law

d

dt

∫
Ω

�φ dx =

∫
Ω

�f dx+

∫
Γ

fΓ dΓ +

∫
∂Ω

g d(∂Ω).

In particular, if (f, fΓ, g) = 0, then the total amount of φ in Ω is conserved.

Balance of Momentum
Let π denote the pressure, T the (symmetric) stress tensor, and let f be a force
field, say gravity. Then balance of momentum reads, employing (1.5) with φ = u
and J = −T ,

∂t(�u) + div (�u⊗ u)− div T = �f in Ω \ Γ(t).

Similarly, using (1.6) we get the following jump condition at the interface.

[[(�u⊗ (u− uΓ)− T )νΓ]] = divΓ TΓ on Γ(t).

Here TΓ denotes the (symmetric) surface stress, a tensor field on Γ. Using balance
of mass and the definition of the phase flux jΓ we may rewrite these conservation
laws as follows.

�(∂tu+ u · ∇u)− div T = �f in Ω \ Γ(t),
[[u]]jΓ − [[TνΓ]] = divΓTΓ on Γ(t).

(1.8)

By the surface divergence theorem, total conservation of momentum reads as

d

dt

∫
Ω

�u dx =

∫
Ω

�f dx+

∫
∂Ω

g d(∂Ω),

with g = −(�uu · ν − Tν) on ∂Ω. Note that total momentum is in general not
conserved as the boundary term g on ∂Ω need not be zero.

Balance of Energy
Let ε denote the (mass specific) internal energy density, θ > 0 the absolute tem-
perature, q the heat flux, and r an external (mass specific) heat source. Then
with φ = |u|2/2 + ε, J = −Tu+ q we obtain from the universal balance law (1.5)
conservation of energy, which in the bulk reads

∂t

(�
2
|u|2 + �ε

)
+ div {(�

2
|u|2 + �ε)u} − div(Tu− q) = �f · u+ �r in Ω \ Γ(t).

On the interface we have, in accordance with (1.6),[[(�
2
|u|2 + �ε

)
(u− uΓ)− Tu+ q

]]
· νΓ = (divΓTΓ) · uΓ + rΓ on Γ(t),

where rΓ denotes a heat source on Γ. Using (1.1), (1.8), and the definition of the
phase flux jΓ we may rewrite this conservation law as follows.

�(∂tε+ u · ∇ε) + div q − T : ∇u = �r in Ω \ Γ(t),(
[[ε]] +

[[1
2
|u− uΓ|2

]])
jΓ − [[TνΓ · (u− uΓ)]] + [[q · νΓ]] = rΓ on Γ(t).

(1.9)
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The total bulk energy is given by

E(u, ε,Γ) :=
1

2

∫
Ω\Γ

�|u|2 dx+

∫
Ω\Γ

�ε dx.

For its time derivative we obtain from the universal balance law

∂tE =

∫
Ω

(�f · u+ �r) dx+

∫
∂Ω

g d(∂Ω) +

∫
Γ

{divΓTΓ · uΓ + rΓ} dΓ,

where g = −
(
(�2 |u|2 + �ε)u · ν − Tu · ν + q · ν

)
on ∂Ω. In particular, if (f, r) = 0

in Ω, (u · ν, q · ν, Tν · u) = 0 on ∂Ω as well as divΓTΓ · uΓ + rΓ = 0 on Γ, then

d

dt
E(u, ε,Γ) = 0,

which means that the total bulk energy is preserved.

The Entropy
As is common in thermodynamics, we write

ε(�, θ) = ψ(�, θ) + θη(�, θ), η(�, θ) = −∂θψ(�, θ), (1.10)

where θ > 0 denotes the absolute temperature, and ψ the Helmholtz free energy.
In this book it is considered given. η means the (mass specific) entropy density.
Then the Clausius–Duhem equation holds in the bulk, which means

∂t(�η) + div(�ηu) + div (q/θ) =
1

θ
S : ∇u− 1

θ2
q · ∇θ

+
�2∂�ψ − π

θ
div u in Ω \ Γ(t),

(1.11)

where S := T + π denotes the viscous stress tensor. Therefore, entropy is non-
decreasing locally in the bulk provided the right-hand side of (1.11) is nonnegative.
This gives the well-known requirements

S : ∇u ≥ 0, q · ∇θ ≤ 0, (1.12)

and, since in general the last term will not have a sign, either div u ≡ 0, which
corresponds to the incompressible case, or

π = p(�, θ) := �2∂�ψ(�, θ), (1.13)

which is the famous Maxwell relation for compressible materials. Note that p
should be an increasing function in both variables, � and θ. Hence we require
at least

∂�∂θψ ≥ 0, 2∂�ψ + �∂2
�ψ ≥ 0, �, θ > 0,
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in the compressible case. The total bulk entropy is defined by

Nb(�, θ,Γ) =

∫
Ω\Γ

�η(�, θ)dx.

By the universal balance law we then obtain

d

dt
Nb(�, θ,Γ) =

∫
Ω\Γ

{1

θ
S : ∇u− 1

θ2
q · ∇θ

}
dx+

∫
Γ

{[[η]]jΓ + [[q/θ]] · νΓ}dΓ,

provided u · ν = q · ν = 0 on ∂Ω. In particular, there is no entropy production on
the interface if

[[η]]jΓ + [[q/θ]] · νΓ = 0 on Γ.

1.2 First Principles on the Interface
Throughout we assume that there is no surface mass, and therefore also no surface
momentum on Γ. However, due to surface tension we have to take into account
surface energy, and then also surface entropy. A basic principle of our approach is
conservation of energy and entropy across the interface. We begin with

The Universal Balance Law on the Interface
Suppose φ is a scalar physical quantity which also lives on Γ with surface density
φΓ and let JΓ denote its flux. Thus, JΓ is a tangent vector field to Γ. The basic
balance law for φΓ reads

D

Dt
φΓ + φΓdivΓuΓ + divΓJΓ = −fΓ. (1.14)

Here D/Dt means the Lagrangian derivative with respect to the vector field uΓ

which moves Γ, i.e.,

D

Dt
φΓ(t, ξ) =

d

ds
φΓ(s+ t, x(s+ t, t, ξ))

∣∣∣s=0,

with x(s+ t, t, ξ) the flow induced by the velocity field uΓ, i.e.,

d

ds
x(s+ t, t, ξ) = uΓ(s+ t, x(s+ t, t, ξ)), x(t, t, ξ) = ξ, ξ ∈ Γ(t).

We emphasize again that the velocity field uΓ is in general not tangent to Γ. The
surface transport theorem then yields

d

dt

∫
Γ

φΓ dΓ =

∫
Γ

( D

Dt
φΓ + φΓdivΓuΓ

)
dΓ

=

∫
Γ

(−divΓJΓ − fΓ) dΓ = −
∫
Γ

fΓ dΓ,
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by the surface divergence theorem. Therefore, we obtain conservation of the total
amount of φ in Ω, i.e., we have

d

dt

{∫
Ω

�φ dx+

∫
Γ

φΓ dΓ
}
= 0,

provided (f, g) = 0. Thus the balance law for φ on Γ reads

D

Dt
φΓ + φΓdivΓuΓ + divΓJΓ = −([[φ]]jΓ + [[J ]] · νΓ). (1.15)

We apply this interface conservation law first to

Conservation of Energy on the Interface
Here we have φΓ = εΓ and JΓ = −TΓuΓ+qΓ. Then balance of surface energy reads

D

Dt
εΓ + εΓdivΓ uΓ + divΓ (qΓ − TΓuΓ) = −{(divΓ TΓ) · uΓ + rΓ}.

Hence

D

Dt
εΓ + εΓdivΓ uΓ + divΓ qΓ = TΓ : ∇ΓuΓ − rΓ.

By the conservation laws this implies conservation of total energy

d

dt

{∫
Ω

�

(
|u|2
2

+ ε

)
dx+

∫
Γ

εΓ dΓ

}
= 0,

provided (f, r) = 0 in Ω, u · ν = q · ν = 0 and Tν · u = 0 on ∂Ω.

Surface Entropy
As in the bulk we write

εΓ(θΓ) = ψΓ(θΓ) + θΓηΓ(θΓ), ηΓ(θΓ) = −ψ′
Γ(θΓ),

where we consider the free energy ψΓ as a given function of surface temperature
θΓ. Similarly, we decompose

TΓ = σ(θΓ)PΓ + SΓ,

where σ denotes the coefficient of surface tension, PΓ = I−νΓ⊗νΓ the orthogonal
projection onto the tangent bundle of Γ, and SΓ the interface viscous stress. Then
surface force becomes

divΓ TΓ = σHΓνΓ +∇Γσ + divΓSΓ.

The first term in this decomposition is surface tension which acts in a normal
direction. The second is called the Marangoni force which acts tangentially, and
the last one is the viscous surface force induced by surface viscosity.
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The total surface entropy is given by

NΓ =

∫
Γ

ηΓdΓ.

With the surface transport theorem (2.91) we get

d

dt
NΓ =

∫
Γ

( D

Dt
ηΓ + ηΓdivΓuΓ

)
dΓ =

∫
Γ

( D

Dt
εΓ + θΓηΓdivΓuΓ

)
/θΓ dΓ

=

∫
Γ

(−divΓqΓ − ψΓdivΓuΓ + TΓ : ∇ΓuΓ − rΓ)/θΓ dΓ

=

∫
Γ

(
SΓ : ∇ΓuΓ/θΓ − qΓ · ∇ΓθΓ/θ

2
Γ + (σ − ψΓ)divΓuΓ/θΓ − rΓ/θΓ

)
dΓ.

Now we argue as in the bulk case. To ensure entropy production on the interface
we should have

SΓ : ∇ΓuΓ ≥ 0, qΓ · ∇ΓθΓ ≤ 0,

as well as

ψΓ = σ,

which is the analogue of the Maxwell relation on the interface. Thus in the situation
considered here, the free energy on the interface is the coefficient of surface tension,
which acts as a negative surface pressure.

For the total entropy in Ω we finally obtain

d

dt

(∫
Ω

�η dx+

∫
Γ

ηΓ dΓ
)
=

∫
Ω

{1

θ
S : ∇u− 1

θ2
q · ∇θ

}
dx

+

∫
Γ

{ 1

θΓ
SΓ : ∇ΓuΓ − 1

θ2Γ
qΓ · ∇ΓθΓ

}
dΓ (1.16)

+

∫
Γ

{[[η]]jΓ + [[q/θ]] · νΓ − rΓ/θΓ} dΓ.

Since the integrand in the last integral does not have a sign, we postulate that it
vanishes. This means that the only sources for entropy is friction due to viscosity or
heat conduction, also on the interface. In case (SΓ, qΓ) = 0 it means conservation
of entropy across the interface.

This assumption implies by (1.9)

−
((

[[ε]]+
[[1
2
|u−uΓ|2

]])
jΓ− [[TνΓ · (u−uΓ)]]+ [[q ·νΓ]]

)
/θΓ+[[η]]jΓ+[[q/θ]] ·νΓ = 0.

Assuming [[θ]] = 0, θ = θΓ on Γ, the latter simplifies to(
[[ψ]] +

[[1
2
|u− uΓ|2

]])
jΓ − [[TνΓ · (u− uΓ)]] = 0. (1.17)
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This is the generalized Gibbs–Thomson relation. Taking it for granted, balance of
surface energy becomes

D

Dt
εΓ + εΓdivΓuΓ + divΓqΓ = SΓ : ∇ΓuΓ + σdivΓuΓ − ([[θη]]jΓ + [[q · νΓ]]). (1.18)

On the interface the Clausius–Duhem equation reads

D

Dt
ηΓ + ηΓdivΓuΓ + divΓ(qΓ/θΓ) =

1

θΓ
SΓ : ∇ΓuΓ − 1

θ2Γ
qΓ · ∇ΓθΓ (1.19)

− ([[η]]jΓ + [[q/θ]] · νΓ),

showing that surface entropy production is nonnegative, locally on Γ.
Note that in case (ηΓ, qΓ, SΓ) = 0 on Γ this equation implies the famous

Stefan condition
θ[[η]]jΓ + [[q · νΓ]] = 0.

ηΓ ≡ 0 means ψΓ = σ ≡ constant and εΓ = σ. In this case total surface energy
becomes σ|Γ|, and surface energy balance is trivial.

1.3 Constitutive Laws
In the sequel we assume that there are no external sources for momentum and
energy, i.e., (f, r) = 0.

Constitutive Laws on the Outer Boundary

q · ν = 0 and u = 0. (1.20)

Actually, we could also consider a condition for u of Navier-type at the outer
boundary, which means

u · ν = 0 and P∂ΩTν + ku = 0,

where k ≥ 0, and P∂Ω denotes the projection onto the tangent bundle of the
hypersurface ∂Ω. However, here we stay with the simplest case.

Constitutive Laws in the Phases

ε(�, θ) = ψ(�, θ) + θη(�, θ), η(�, θ) = −∂θψ(�, θ),

T = 2μ(�, θ)D + λ(�, θ)(div u)I − πI, D =
1

2
(∇u+ (∇u)T), (1.21)

q = −d(�, θ)∇θ.

Here μ is called shear viscosity, λ bulk viscosity, and d is the coefficient of heat
conduction or heat conductivity. μ, λ, d are functions depending on (�, θ), and on
the phase, and hence may jump across the interface Γ(t). The second and the third
equations are the classical laws of Newton and Fourier. To meet the requirements
(1.12) we assume

μ(�, θ), d(�, θ) > 0, λ(�, θ) + 2μ(�, θ)/n > 0, �, θ > 0,
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and in the compressible case also the Maxwell relation (1.13).

Constitutive Laws on the Interface

εΓ(θΓ) = σ(θΓ) + θΓηΓ(θΓ), ηΓ(θΓ) = −σ′(θΓ),
[[θ]] = 0, θΓ = θ,

PΓ[[u]] = 0, PΓ(u− uΓ) = 0,

TΓ = σ(θΓ)PΓ + 2μΓ(θΓ)DΓ + λΓ(θΓ)(divΓuΓ)PΓ,

DΓ =
1

2
PΓ(∇ΓuΓ + [∇ΓuΓ]

T)PΓ, qΓ = −dΓ(θΓ)∇ΓθΓ,

0 =
(
[[ψ(θΓ)]] +

[[1
2
|u− uΓ|2

]])
jΓ − [[TνΓ(u− uΓ)]].

(1.22)

The coefficient of surface tension σ and the surface viscosities (μΓ, λΓ) are functions
of θΓ, which are subject to

σ,μΓ > 0, λΓ +
2μΓ

n− 1
> 0.

Recall the relation

VΓ := uΓ · νΓ = u · νΓ − 1

�
jΓ,

for the normal velocity of the interface. In case [[�]] �= 0 this implies

[[u]] = [[1/�]]jΓνΓ, jΓ = [[u · νΓ]]/[[1/�]], VΓ = [[�u · νΓ]]/[[�]], (1.23)

and if [[�]] = 0 we have [[u]] = 0. This shows a fundamental difference between
theses cases: if the densities are not equal, then the phase flux enters directly
the velocity jump on the interface, inducing what is called Stefan current. If the
densities are equal, there is no Stefan current and the velocity field is continuous
across the interface. On each side of the interface we have the identity

u = uΓ + jΓνΓ/�,

which, in view of the definition of the phase flux jΓ, is equivalent to the conditions

PΓ[[u]] = 0, PΓ(u− uΓ) = 0, [[�(u− uΓ) · νΓ]] = 0.

Now we may rewrite[[1
2
|u− uΓ|2

]]
=
[[ 1

2�2

]]
j2Γ,

−[[TνΓ · (u− uΓ)]] = [[−TνΓ]] · PΓ(u− uΓ) + [[−TνΓ · νΓ/�]]jΓ
= [[−TνΓ · νΓ/�]]jΓ,

hence the generalized Gibbs–Thomson relation becomes(
[[ψ]] +

[[ 1

2�2

]]
j2Γ − [[TνΓ · νΓ/�]]

)
jΓ = 0.
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It holds trivially if jΓ ≡ 0, i.e., if there is no phase transition, and otherwise we
assume

[[ψ]] +
[[ 1

2�2

]]
j2Γ − [[TνΓ · νΓ/�]] = 0. (1.24)

We define the heat capacity κ and the surface heat capacity κΓ as usual by

κ(�, θ) = ∂θε(�, θ) = −θ∂2
θψ(�, θ), κΓ(θΓ) = ε′Γ(θΓ) = −θΓσ

′′(θΓ)

respectively. Moreover, we define the latent heat l and the surface latent heat lΓ
by

l(�, θ) = −[[θη(�, θ)]] = [[θ∂θψ(�, θ)]], lΓ(θΓ) = −θΓηΓ(θΓ) = θΓσ
′(θΓ).

The conditions ∂2
θψ ≤ 0 as well as σ′′ ≤ 0 will be needed for well-posedness.

Remark
(1.24) may be generalized to take into account kinetic undercooling. More precisely,
we may replace (1.24) by the law

[[ψ]]+
[[ 1

2�2

]]
j2Γ−[[TνΓ ·νΓ/�]] = −γjΓ+divΓ[α∇Γ(jΓ/θΓ)]+θΓ divΓ[β∇ΓjΓ], (1.25)

where α, β, γ ≥ 0 may depend on the surface temperature θΓ. In this case the
entropy production on Γ is increased by∫

Γ

{γj2Γ/θΓ + α|∇Γ(jΓ/θΓ)|22 + β|∇ΓjΓ|2}dΓ,

and on the right-hand side of the surface energy balance the term

jΓ(γjΓ − divΓ[α∇Γ(jΓ/θΓ)]− θΓ divΓ[β∇ΓjΓ])

has to be added.

1.4 The Resulting Dynamic Problem
Summarizing we obtain the following initial-boundary value problem in the ab-
sence of external forces and heat sources.

∂t�+ div(�u) = 0 in Ω \ Γ(t),
�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = [[1/�]]jΓνΓ on Γ(t),

[[1/�]]j2ΓνΓ − [[TνΓ]] = divΓTΓ on Γ(t),

�(0) = �0, u(0) = u0 in Ω,

(1.26)
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where S = T + π and SΓ = σ(θΓ)PΓ − TΓ are defined above,

�κ(∂tθ + u · ∇θ)− div(d∇θ) = S : ∇u− θ∂θp div u in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

θ = θΓ on Γ(t),

θ(0) = θ0 in Ω.

(1.27)

On the interface we have

κΓ
D

Dt
θΓ − divΓ(dΓ∇ΓθΓ)

= SΓ : ∇ΓuΓ + θΓσ
′(θΓ)divΓuΓ − ([[θη]]jΓ + [[q · νΓ]]) on Γ(t),

[[ψ]] + [[1/2�2]]j2Γ − [[TνΓ · νΓ/�]] = 0 on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t)

Γ(0) = Γ0.

(1.28)

This system has to be supplemented with the constitutive laws for T and TΓ from
the previous subsection. Here the first system should be read as a problem for u
and �, resp. π, the second as one for θ, while the last set determines θΓ, the free
boundary Γ, and the phase flux jΓ. Note that in the absence of phase transitions,
the Gibbs–Thomson relation has to be replaced by jΓ = 0.

1.2 Entropy and Equilibria

2.1 The Entropy
We have seen above that the total entropy

N :=

∫
Ω

�η dx+

∫
Γ

ηΓ dΓ

satisfies

d

dt

(∫
Ω

�η dx+

∫
Γ

ηΓ dΓ
)
=

∫
Ω

{1

θ
S : ∇u− 1

θ2
q · ∇θ

}
dx

+

∫
Γ

{ 1

θΓ
SΓ : ∇ΓuΓ − 1

θ2Γ
qΓ · ∇ΓθΓ

}
dΓ.

Hence the negative total entropy is a Lyapunov functional for the problem. We
show now that it is even a strict one. To see this, assume that N is constant on
some interval (t1, t2). Then dN/dt = 0 in (t1, t2), hence D = 0 and ∇θ = 0 in
(t1, t2) × Ω. Therefore, θ is constant, which implies [[d∂νθ]] = 0, and then from
the interfacial boundary condition we obtain jΓ = 0, provided [[η]] �= 0 on Γ; we
assume this for the moment. This implies [[u]] = 0, hence by Korn’s inequality
we have ∇u = 0 and then u = 0 by the no-slip condition on ∂Ω. Hence VΓ = 0,
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uΓ = 0, and (∂tθ, ∂tu, ∂t�,DθΓ/Dt) = 0, which means that we are at equilibrium.
Further, ∇π = 0, i.e., the pressure is constant in the components of the phases. If
one or both phases are compressible, then assuming pj to be strictly increasing in
�, we conclude that � is constant in the components of Ωj(t) as well. Actually � is
even constant in each phase. To see this, employing Maxwell’s relation we rewrite
the Gibbs–Thomson condition [[ψ]] + [[π/ρ]] = 0 as

∂�(�ψ1(�)) = ∂�(�ψ2(�)).

Suppose �2 is known; then �1 is uniquely determined by �2 (and θ) since ∂�(�ψj(�))
is strictly increasing, for, by assumption, pj has this property. Since θ is continuous
across the interface, the last relation shows that π, and therefore �, are constant
in all of Ω1, even if it is not connected. From this we finally deduce by the Young-
Laplace law [[π]] = σHΓ that Ω1 is a ball if it is connected, or otherwise a finite
union of non-intersecting balls of equal radii, since Ω1 is bounded by assumption.

If, by chance, [[η]] = 0 on Γ, or only on part of it, we are not allowed to
use Korn’s inequality since u may have a jump across the interface. Nevertheless,
u = 0 holds in this case as well, but the proof is a little more involved. For this
we need

Lemma 1.2.1. Suppose u ∈ H2
2 (Ω \ Γ) satisfies u = 0 on ∂Ω and PΓ[[u]] = 0 on Γ.

Then D = 0 implies u = 0 in Ω.

Proof. Integrating by parts twice we obtain

2|D|2L2(Ω) = |∇u|2L2(Ω) + |div u|2L2(Ω) +

∫
Γ

[[u · νΓ div u− νΓ · (u · ∇)u]] dΓ

= |∇u|2L2(Ω) + |div u|2L2(Ω) +

∫
Γ

2[[u · νΓ]]divΓ PΓu− [[(u · νΓ)2]]HΓ dΓ,

since u = 0 on ∂Ω and PΓ[[u]] = 0 on Γ. Here we employed the identities

div u = divΓ(PΓu)− (u · νΓ)HΓ + νΓ · ∂νu,
νΓ · (u · ∇)u = (PΓu · ∇Γ)u · νΓ + (u · νΓ)(νΓ · ∂νu) + LΓPΓu · PΓu

on Γ as well as the surface divergence theorem. Now, if D = 0, then νΓ · ∂νu = 0,
and so the equation for the divergence of u on Γ yields

divΓPΓu = (u · νΓ)HΓ,

hence [[(u ·νΓ)2]]HΓ = 0 which implies ∇u = 0 in Ω. Therefore, u is constant in the
phases, which yields u = 0 in Ω2 by the no-slip condition on the outer boundary
∂Ω. Further, [[u]] = ανΓ is constant on Γ which implies α = 0, hence [[u]] = 0 and
so u = 0 in Ω1, as well. �

Having shown that u = 0 we may proceed as before, provided �1 �= �2.
Actually, there is a problem if [[�]] = [[η]] = 0; then we cannot conclude jΓ = 0
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which means that VΓ may be nontrivial. We exclude this pathology in the sequel.
It is absent anyway if kinetic undercooling is included.

If there is no phase transition, i.e., jΓ ≡ 0, then [[u]] = 0, and we obtain
directly u ≡ 0 by Korn’s inequality. In this case we conclude as above that the
pressures are constant in the components of the phases, hence the densities are
so as well, assuming as before that pj is increasing. We further conclude from the
interface stress condition that HΓ is constant on each component of the interface,
which implies that these components are spheres. But they may have differing
sizes, as the Gibbs–Thomson relation is no longer available. If a phase transition
is absent, constant temperature does no longer ensure that the spheres have equal
size!

2.2 Equilibria as Critical Points of the Entropy
We want to determine the critical points of the total entropy N under the con-
straints of given total mass M0 and given total energy E0. With

M =

∫
Ω

� dx, E =

∫
Ω

�(|u|2/2 + ε) dx+

∫
Γ

εΓ dΓ,

the method of Lagrange multipliers then yields

N′ + λM′ + μE′ = 0.

We compute the derivatives of the involved functionals, where z = (τ, v, ϑ, ϑΓ, h).

〈N′|z〉 =
∫
Ω

{∂�(�η)τ + �∂θηϑ} dx−
∫
Γ

{[[�η]]h− η′ΓϑΓ + ηΓHΓh} dΓ,

〈M′|z〉 =
∫
Ω

τ dx−
∫
Γ

[[�]]h dΓ,

〈E′|z〉 =
∫
Ω

{�u · v + �∂θεϑ+ (|u|2/2 + ε+ �∂�ε)τ} dx

−
∫
Γ

{[[�|u|2/2 + �ε]]h− ε′ΓϑΓ + εΓHΓh} dΓ.

Varying first ϑ and ϑΓ this yields

�∂θη + μ�∂θε = 0,

and
η′Γ + με′Γ = 0,

hence ∂θε = θ∂θη = κ > 0 and ε′Γ = θΓη
′
Γ = κΓ > 0 imply θΓ = θ = −1/μ > 0

constant. Next we vary v to obtain u = 0 since μ �= 0. Variation of τ (when � is
not a priori constant) implies similarly

η + �∂�η + λ+ μ(ε+ �∂�ε) = 0,
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hence λ = (ψ + �∂�ψ)/θ. As a consequence � is constant, since

0 < ∂�p(�, θ)/� = 2∂�ψ(�, θ) + �∂2
�ψ(�, θ) = ∂�(ψ(�, θ) + �∂�ψ(�, θ))

in a phase where � is not a priori constant. In particular, if both phases are
compressible this yields [[ψ + p/�]] = 0, which is the generalized Gibbs–Thomson
relation at equilibrium. Finally, we vary h to obtain

−[[�η]]− ηΓHΓ − λ[[�]] + ([[�ε]] + εΓHΓ)/θ = 0,

which by the definition of ε and ψΓ = σ yields

σHΓ + [[�ψ]] = λθ[[�]]

on the interface Γ. This implies that HΓ is constant, hence Ω1 consists of a finite
number of balls with the same radius. If both phases are compressible we may
further conclude σHΓ = [[p]], which is the normal stress condition on the interface.

In this derivation we assumed κΓ > 0. If instead κΓ ≡ 0, then η′Γ ≡ 0 as well,
hence we do not obtain information on θΓ. However, the remaining conclusions
are valid as before. In this case σ(θΓ) is linear, and as there is no surface heat
capacity it makes sense then to ignore surface diffusion as well.

In summary, we see that the critical points of the total entropy with the
constraints of given mass and prescribed total energy are precisely the equilibria
of the system.

2.3 Equilibria which are Maxima of Total Entropy
Suppose we have an equilibrium e := (�, u, θ, θΓ,Γ) where the total entropy has
a local maximum, w.r.t. the constraints M = M0 and E = E0 constant. Then
D := [N+λM+μE]′′ is negative semi-definite on the kernel of M′ intersected with
that of E′, where (λ, μ) are the fixed Lagrange multipliers found in the previous
subsection. The kernel of M′(e) is easily found to be characterized by the relation∫

Ω

τ dx = [[�]]

∫
Γ

h dΓ, (1.29)

and that of E′(e) by∫
Ω

∂�(�η)τ dx+

∫
Ω

(�κ/θ)ϑ dx+(κΓ/θ)

∫
Γ

ϑΓ dΓ = ([[�η]] + ηΓHΓ)

∫
Γ

h dΓ. (1.30)

On the other hand, a straightforward but somewhat lengthy calculation yields

−θ〈Dz|z〉 =
∫
Ω

�|v|2 dx+

∫
Ω

∂2
�(�ψ)τ

2 dx+

∫
Ω

(�κ/θ)ϑ2 dx (1.31)

+ (κΓ/θ)

∫
Γ

ϑ2
Γ dΓ− σ

∫
Γ

(H ′
Γh)h dΓ.
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As �, κ, κΓ and
∂2
�(�ψ) = 2∂�ψ + �∂2

� = [∂�p(�)]/�

are nonnegative, we see that the form 〈Dz|z〉 is negative semi-definite as soon as
H ′

Γ is negative semi-definite. We will see in the next chapter that

H ′
Γ = (n− 1)/R2 +ΔΓ,

where ΔΓ denotes the Laplace-Beltrami operator on Γ and R means the radius of
the equilibrium spheres.

We want to derive necessary conditions for an equilibrium e to be a local
maximum of entropy.

1. Suppose that Γ is not connected, i.e., Γ consists of a finite union of spheres Γk.
Set (τ, v, ϑ, ϑΓ) = 0, and let h = hk constant on Γk with

∑
k hk = 0. Then the

constraints (1.30) and (1.31) hold and

〈Dz|z〉 = σ(θ)(n− 1)

θR2

∑
k

Γkh
2
k > 0,

hence D is not negative semi-definite in this case. Thus if e is an equilibrium with
local maximal total entropy, then Γ must be connected, hence both phases are
connected. This is related to the so-called Ostwald ripening effect.

2. Assume that Γ is connected and �1 �= �2 are a priori constant. Then τ = 0 and
the first constraint (1.30) implies

∫
Γ
h dΓ = 0. As H ′

Γ(h) is negative semi-definite
for functions with average zero, we see that in this case D is negative semi-definite.

3. Assume that Γ is connected and �1 = �2 =: � is constant. Then τ = 0, but the
first constraint gives no information. Setting v = 0, ϑ = ϑΓ constant, as well as h
constant, we see that D negative semi-definite on the kernel of E′(e) implies the
condition

σ(θ)(n− 1)

R2
≤ l20|Γ|

θ((κ|�)Ω + κΓ|Γ|)
, (1.32)

where l0 = l0(θ) = −θ(�[[η]] + ηΓHΓ).

4. If e is an equilibrium which (locally) maximizes the total entropy, it is generically
not isolated. If the sphere Γ does not touch the outer boundary, we may move it
inside of Ω without changing the total entropy. This fact is reflected in D by
choosing τ = ϑ = ϑΓ = 0 and h = Yj , the spherical harmonics for Γ, which satisfy
H ′

ΓYj = 0.

It is one of our purposes in this book to prove in the completely incompressible
case that an equilibrium is stable if and only if the total entropy at this equilibrium
is maximal. Thus in case �1 �= �2 are a priori constant, an equilibrium is stable
if and only if the interface is connected, and in case �1 = �2 if in addition the
stability condition (1.32) is satisfied with strict inequality. (Here we exclude the
limiting case where in (1.32) equality holds.)
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2.4 The Manifold of Equilibria
As we have seen above, the equilibria of the system (1.26), (1.27), (1.28) are zero
velocities, constant pressures in the phases, constant temperature, vanishing phase
flux, and the dispersed phase Ω1 consists of finitely many non-intersecting balls
with the same radius if phase transition is present. We call an equilibrium non-
degenerate if the balls do not touch the outer boundary ∂Ω and also do not touch
each other. This set will be denoted by E . We want to show that E is a manifold;
it is not connected but has infinitely many finite dimensional components, the
components are given by the number of spheres. The dimension of the component
consisting of m spheres is m(n + 1), where n comes from the center and 1 from
the radius of a particular sphere.

To show that E is a manifold, we just have to show how a neighbouring
sphere is parameterized over a given one. In fact, let us assume that Σ = SR(0) is
centered at the origin of Rn. Suppose S ⊂ Ω is a sphere that is sufficiently close
to Σ. Denote by (y1, . . . , yn) the coordinates of its center and let y0 be such that
R+ y0 corresponds to its radius. Then the sphere S can be parameterized over Σ
by the distance function

δ(y) =
n∑

j=1

yjYj −R+

√√√√(

n∑
j=1

yjYj)2 + (R+ y0)2 −
n∑

j=1

y2j ,

where Yj are the spherical harmonics of degree one. Obviously, this is a real analytic
parametrization.

We summarize our considerations in

Theorem 1.2.2. (a) The total mass M and the total energy E are preserved for
smooth solutions.

(b) The negative total entropy −N is a strict Lyapunov functional except on the
pathological points (�, θ) constant, [[�]] = [[η]] = 0.

(c) The critical points of the entropy functional for prescribed total mass and total
energy are precisely the equilibria of the system.

(d) The non-degenerate equilibria are zero velocities, constant pressures in the
components of the phases, and the interface is a union of non-intersecting spheres
which do not touch the outer boundary ∂Ω. If phase transition is present, then the
spheres are of equal size.

(e) If the total entropy at an equilibrium is locally maximal, then the phases are
connected and, in addition, in the case of equal constant densities the stability
condition (1.32) holds.

(f ) The set E of non-degenerate equilibria forms a real analytic manifold.

This result shows that the models are thermodynamically consistent, hence
are physically reasonable.
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2.5 Equilibrium Temperatures
To determine θ, R and π at equilibrium, we have to solve the system

|Ω1|�1ε1 + |Ω2|�2ε2 + εΓ|Γ| = E0,

[[π]] = σHΓ, (1.33)

[[ψ]] = −[[π/�]].

In addition, there is conservation of mass

�1|Ω1|+ �2|Ω2| = c0.

If the equilibrium densities are not equal, this equation can be employed to com-
pute the radius of the balls, i.e., with ωn = |∂B(0, 1)| we have

m(ωn/n)R
n = (�2|Ω| − c0)/[[�]]

in case there are m balls with common radius R. The energy equation then
uniquely determines θ since εΓ is non-decreasing and εj(θ) are strictly increasing.
Finally, the last two conditions in (1.33) determine the pressures in the phases.

If there is no phase transition, then the dimension of the component Em of E ,
with m ∈ N the number of spheres, is dim Em = m(n+ 1) + 1. Here the variables
are the centers of the balls, their radia, and the temperature. Prescribing total
energy and individual volumes of the components of the dispersed phase reduces
the dimension to mn.

On the other hand, if phase transition takes place and �1 �= �2, then dim Em =
mn + 2. The variables are the centers of the balls, the common radius, and the
temperature. If we prescribe phase volumes and total energy, then the radius of
the balls and the temperature are fixed, resulting into dim Em = nm.

But if the equilibrium densities are equal, �1 = �2 =: �, then conservation of
mass determines merely the value of the density �, no information on the phase
volumes at equilibrium is available. Hence only θ, R and the pressure jump

[[π]] = [[π]](θ) = σ(θ)HΓ = −σ(θ)(n− 1)

R(θ)

can be obtained from (1.33). This implies that the dimension of Em is mn+1, and
if we prescribe the total energy, then it will be nm.

In this case we get

R = R(θ) =
σ(θ)(n− 1)

�[[ψ(θ)]]

for the radius R > 0, and system (1.33) reduces to a single equation for the
temperature θ:

Ee(θ) := |Ω|�ε2(θ)−m(ωn/n)R
n(θ)�[[ε(θ)]] + εΓmωnR

n−1(θ) = E0.

We call the function Ee(θ) the equilibrium energy function.
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Note that only the temperature range [[ψ(θ)]]/σ(θ) > 0 is relevant due to the
requirement R > 0, and with

R∗
m = sup{R > 0 : Ω contains m disjoint balls of radius R}

we must also have R < R∗
m, i.e., with ϕ(θ) = �[[ψ(θ)]]

0 <
σ(θ)

ϕ(θ)
<

R∗
m

n− 1
.

With ε(θ) = ψ(θ) − θψ′(θ) and εΓ = σ(θ) − θσ′(θ), after some calculations Ee(θ)
may be rewritten as

Ee(θ) = |Ω|�ε2(θ) + cn

( σ(θ)n

ϕ(θ)n−1
− θ

d

dθ

σ(θ)n

ϕ(θ)n−1

)
= |Ω|�ε2(θ) + cn

( σ(θ)n

ϕ(θ)n−1
+ (n− 1)θ

σ(θ)nϕ′(θ)
ϕ(θ)n

− nθ
σ(θ)n−1σ′(θ)

ϕ(θ)n−1

)
,

where we have set cn = mωn

n (n − 1)n−1. Observe that the equilibrium energy
function Ee(θ) has the form

Ee(θ) = Ψ(θ)− θΨ′(θ),

where Ψ(θ) = |Ω|�ψ2(θ) + cnσ(θ)
n/ϕ(θ)n−1 plays the role of the equilibrium free

energy. We have then
E′
e(θ) = −θΨ′′(θ),

hence with

R′(θ) =
(n− 1)σ′(θ)

ϕ(θ)
− σ(θ)(n− 1)ϕ′(θ)

ϕ2(θ)
,

after some more calculations

E′
e(θ) = (κ(θ)|�)Ω + κΓ(θ)|Γ| −

R(θ)2l0(θ)
2|Γ|

θσ(θ)(n− 1)
,

with l0(θ) defined in the previous subsection. Now recall the stability condition
(1.32) to see that E′

e(θ) is non-positive if and only if the stability condition holds.
Thus, loosely speaking, total entropy is maximal at an equilibrium if and only if
E′
e(θ) ≤ 0. We may write E′

e(θ) yet in another form, namely

E′
e(θ) = (κ(θ)|�)Ω + κΓ(θ)|Γ| − (n− 1)|Γ|σθ(ϕ

′(θ))
ϕ(θ)

− σ′(θ)
σ(θ)

)2.

In general it is not a simple task to analyze the equation for the temperature

Ee(θ) = Ψ(θ)− θΨ′(θ) = E0,
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unless more properties of the functions εj(θ) and in particular of ϕ(θ) and σ(θ)
are known. A natural assumption is that ϕ has exactly one positive zero θm > 0,
the so called melting temperature. Therefore we look at two examples.

Example 1. Suppose that ε2 is increasing and convex, � = 1, ηΓ ≡ 0, i.e., σ is
constant, and that the heat capacities are identical, i.e., [[κ]] ≡ 0. This implies

θϕ′′(θ) = θ[[ψ′′(θ)]] = −[[κ(θ)]] ≡ 0,

which means that ϕ(θ) = ϕ0 + ϕ1θ is linear. The melting temperature then is
0 < θm = −ϕ0/ϕ1, hence we have two cases.

Case 1. ϕ0 < 0, ϕ1 > 0. This means l(θm) > 0.
Then the relevant temperature range is θ > θm as ϕ is positive there. As θ → θm+
we have ϕ(θ) → 0 hence Ee(θ) → ∞, and also Ee(θ) → ∞ for θ → ∞ as ε2(θ) is
increasing and convex. Further, we have

E′
e(θ) = |Ω|ε′2(θ)− n(n− 1)cnσ(θ)

n ϕ2
1θ

(ϕ0 + ϕ1θ)n+1
,

E′′
e (θ) = |Ω|ε′′2(θ) + n(n− 1)cnσ(θ)

nϕ2
1

−ϕ0 + nϕ1θ

(ϕ0 + ϕ1θ)n+2
> 0,

which shows that Ee(θ) is strictly convex for θ > θm. Thus Ee(θ) has a unique
minimum θ0 > θm, Ee(θ) is decreasing for θm < θ < θ0 and increasing for θ > θ0.
Thus there are precisely two equilibrium temperatures θ+∗ ∈ (θ0,∞) and θ−∗ ∈
(θm, θ0) provided E0 > φ(θ0) and none if E0 < E(θ0). The smaller temperature
leads to stable equilibria while the larger to unstable ones.

Case 2. ϕ0 > 0, ϕ1 < 0. This means l(θm) < 0.
Then the relevant temperature range is 0 < θ < θm as h is positive there. As
θ → θm− we have ϕ(θ) → 0+ hence Ee(θ) → −∞, and as θ → 0+ we have
Ee(θ) → E(0) = |Ω|ε2(0) + cnσ

n/ϕn−1
0 > 0, assuming that ε2(0) = lims→0+ ε2(s)

exists. Further, for θ close to 0 this implies E′
e(θ) > 0 and E′

e(θ) → −∞ as
θ → θm−. Therefore E′

e(θ) admits at least one zero in (0, θm). But there may be
more than one unless ε2(θ) is concave, so let us assume this. Let θ0 ∈ (0, θm) denote
the absolute maximum of Ee(θ) in (0, θm). Then there is exactly one equilibrium
temperature θ∗ ∈ (θ0, θm) if E0 < Ee(0+) and it is stable; there are exactly two
equilibria θ−∗ ∈ (0, θ0) and θ+∗ ∈ (θ0, θm) if Ee(0+) < E0 < Ee(θ0), the first one is
unstable the second stable. If E0 > Ee(θ0) there are no equilibria.

Note that in both cases these equilibrium temperatures give rise to equilibria
only if the corresponding radius is smaller than R∗.

Example 2. Suppose ηΓ ≡ 0, � = 1, and that the internal energies εj(θ) are linear
increasing, i.e.,

εj(θ) = aj + κjθ, j = 1, 2,
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where κj > 0, and now [[κ]] �= 0. The identity εj = ψj − θψ′
j then leads to

ψj(θ) = aj + bjθ − κjθ log θ, j = 1, 2,

where bj are arbitrary. This yields, with α = [[a]], β = [[b]] and γ = [[κ]],

ϕ(θ) = α+ βθ − γθ log θ.

Scaling the temperature by θ = θ0ϑ with β − γ log θ0 = 0 and scaling ϕ we may
assume β = 0 and γ = ±1. Then we have to investigate the equation Ee(ϑ) = E1,
where

Ee(ϑ) = δϑ+
{ 1

ϕn−1(ϑ)
+ (n− 1)ϑ

ϕ′(ϑ)
ϕn(ϑ)

}
, ϕ(ϑ) = ±(α+ ϑ log ϑ),

with δ > 0 and α,E1 ∈ R. The requirement of existence of a melting temperature
ϑm > 0, i.e., a zero of ϕ(ϑ), leads to the restriction α ≤ 1/e. Also here we
have to distinguish two cases, namely that of a plus-sign for ϕ where the relevant
temperature range is ϑ > ϑm, and in case of a minus-sign it is (0, ϑm). Note that
ϕ is convex in the first, and concave in the second case. In the case of ϕ(ϑ) =
(α+ ϑ log ϑ) we get

E′
e(ϑ) = δ + (n− 1)

{ϕ(ϑ)− nϑϕ′(ϑ)2

ϕn+1(ϑ)

}
,

E′′
e (ϑ) = n(n− 1)

ϕ′(ϑ)
ϕn+2(ϑ)

{
(n+ 1)ϑϕ′(ϑ)2 − ϕ(ϑ)(3 + ϕ′(ϑ))

}
.

We have Ee(ϑ) → ∞ for ϑ → ∞ and for ϑ → ϑm+, hence Ee(ϑ) has a global
minimum θ0 in (θm,∞). Furthermore, E′′

e (ϑ) > 0 in (θm,∞), hence the minimum
is unique and there are precisely two equilibrium temperatures ϑ−

∗ ∈ (ϑm, ϑ0) and
ϑ+
∗ ∈ (ϑ0,∞), provided E1 > Ee(ϑ0), the first one is stable, the second unstable.

To prove convexity of Ee we write

(n+ 1)ϑϕ′(ϑ)2 − 3ϕ(ϑ)− ϕ(ϑ)ϕ′(ϑ) = (n− 1)ϑϕ′(ϑ)2 + f(ϑ),

where

f(ϑ) = 2ϑϕ′(ϑ)2 − ϕ(ϑ)(3 + ϕ′(ϑ)) = 2ϑ(1 + log ϑ)2 − (α+ ϑ log ϑ)(4 + log ϑ).

We then have f(ϑm) = 2ϑm(1 + log ϑm)2 > 0, and

f ′(θ) = (1 + log ϑ)2 + 1− α/ϑ > 1− α/ϑ ≥ 0,

for α ≤ 1/e < ϑm ≤ ϑ.
Actually, the requirement that the melting temperature is unique, i.e., that

ϕ has exactly one positive zero, implies α < 0. Indeed, for α ∈ (0, 1/e) there is a
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second zero ϑ− > 0 of ϕ, and ϕ is positive in (0, ϑ−). Equilibrium temperatures
in this range would not make sense physically.

Let us illustrate the sign in ϕ for the water-ice system, ignoring the density
jump of water at freezing temperature. So suppose that Ω2 consists of ice and
Ω1 of water. In this case we have κ1 > κ2, and hence γ < 0, which implies the
plus-sign for ϕ. Here we obtain θ±∗ > θm, i.e., the ice is overheated. Equilibria only
exist if ψ0 is large enough, which means that there is enough energy in the system.
If the energy in the system is very large, then the stable equilibrium temperature
θ−∗ comes close to the melting temperature ϑm and then R(ϑ) will become large,
eventually larger than R∗. This excludes equilibria in Ω, the physical interpretation
being that everything will eventually melt.

On the other hand, if Ω1 consists of ice and Ω2 of water, we have the minus
sign, which we want to consider next. Here we expect under-cooling of the water-
phase, existence of equilibria only for low values of energy, and if the energy in
the system is too small everything will freeze.

So assume that ϕ(ϑ) = −(α + ϑ log ϑ) and let α < 0. Then the relevant
temperature range is (0, ϑm). Here we have Ee(ϑ) → −∞ as ϑ → ϑm− and
Ee(ϑ) → 1/|α|n−1 > 0. Moreover we have E′

e(0) = δ + (n − 1)/|α|n > 0, and
E′
e(ϑ) → −∞ for ϑ → ϑm−. Therefore, Ee(θ) has an absolute maximum in ϑ0 in the

interval (0, ϑm). If Ee(ϑ) would be concave in (0, ϑm), then this maximum would
be unique and there would be precisely two equilibrium temperatures ϑ−

∗ ∈ (0, ϑ0)
and ϑ+

∗ ∈ (ϑ0, ϑm), provided E1 ∈ (−∞,Ee(ϑ0)), the first one unstable and the
second stable. However, as we will see things are not as simple.

To investigate concavity of Ee in the interval (0, ϑm), we recompute the
derivatives of Ee.

E′
e(ϑ) = δ − (n− 1)

{ 1

ϕn(ϑ)
+ n

ϑϕ′(ϑ)2

ϕn+1(ϑ)

}
,

E′′
e (ϑ) = n(n− 1)

ϕ′(ϑ)
ϕn+2(ϑ)

{
(n+ 1)ϑϕ′(ϑ)2 + ϕ(ϑ)(3− ϕ′(ϑ))

}
.

Setting ϑ+ = 1/e, for ϑ ∈ (ϑ+, ϑm) we have ϕ(ϑ) > 0 and ϕ′(ϑ) < 0, and hence
E′′
e (ϑ) < 0. On the other hand, for ϑ ∈ (0, ϑ+), both ϕ(ϑ) and ϕ′(ϑ) are positive.

Then we rewrite

(n+ 1)ϑϕ′(ϑ)2 + 3ϕ(ϑ)− ϕ(ϑ)ϕ′(ϑ) = (n− 1)ϑ(1 + log ϑ)2 + f(ϑ),

where

f(ϑ) = 2ϑϕ′(ϑ)2 + ϕ(ϑ)(3− ϕ′(ϑ))

= 2ϑ(1 + log ϑ)2 − (α+ ϑ log ϑ)(4 + log ϑ)

= ϑ(2 + log2(θ))− α(4 + log ϑ),

f ′(ϑ) = 2 + log2 ϑ+ 2 log ϑ− α/ϑ = (1 + log ϑ)2 + 1− α/ϑ ≥ 0,
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provided α ≤ 0. This shows that f is increasing, f(ϑ) → −∞ as ϑ → 0, and
f(1/e3) = 11/e3−α > 0. On the other hand, the function ϑ(1+log ϑ)2 is increasing
in (0, 1/e3), hence ψ′′(ϑ) has a unique zero ϑ− ∈ (0, 1/e3). Therefore, Ee is concave
in (0, ϑ−) ∪ (ϑ+, ϑm) and convex in (ϑ−, ϑ+), and E′

e has a minimum at ϑ− and
a maximum at ϑ+. Observe that E′

e(ϑ) < δ, E′
e(ϑ) → −∞ for ϑ → ϑm− and

E′
e(0+) = δ − (n − 1)/|α|n < ψ′(ϑ+). Therefore, E

′
0 may have no, one, two, or

three zeros in (0, ϑm), depending on the value of δ > 0. However, if δ > 0 is
large enough, then E′

e has only one zero ϑ1 which lies in (ϑ+, ϑm). In this case
Ee is increasing in (0, ϑ1) and decreasing in (ϑ1, ϑm), hence for Ee ∈ (ψ(0), ψ(ϑ1))
there are precisely two equilibrium temperatures, the smaller leads to unstable,
the larger to a stable equilibrium. If E1 < Ee(0+) there is a unique equilibrium
which is stable, and in case E1 > Ee(ϑ1) there is none. However, in general there
may be up to four equilibrium temperatures.

1.3 Goals and Strategies

In this book we will consider only the completely incompressible case, i.e., the
densities �1 and �2 are assumed to be constant. Throughout we neglect viscous
surface stress, so we set SΓ ≡ 0. Thus the only surface stress acting is the surface
tension TΓ = σPΓ. We always assume the constitutive laws

T = S − πI, S := 2μ(θ)D, D = (∇u+ [∇u]T)/2.

In this book we want to consider the following main problems which are ordered
by complexity. The main hypotheses for these problems are formulated as well.
Throughout, Ω will be a bounded domain with boundary ∂Ω of class C3.

3.1 The Main Models

Problem 1. The Stefan Problem with Surface Tension.
Here we assume �1 = �2 =: � > 0, σ > 0, and u ≡ 0.
Then we have

VΓ = −jΓ/�, [[−TνΓ]] = σHΓνΓ,

hence the Gibbs–Thomson law becomes

[[ψ(θ)]] =
1

�
[[TνΓ · νΓ]] = −σ

�
HΓ,

and we have the Stefan law −�[[θη(θ)]]VΓ − [[d(θ)∂νθ]] = 0 on Γ. Observing that at
melting temperature θm there holds [[ψ(θm)]] = 0, by linearization of ψ one obtains
with the relative temperature ϑ = (θ − θm)/θm

ϑ = − σ

lm�
HΓ, lm = −θm[[η(θm)]],

which is the standard constitutive relation for the classical Stefan problem with
surface tension. Here lm is the latent heat at melting temperature. Similarly, the
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linearized Stefan law becomes �lmVΓ − [[d(θ)∂νθ]] = 0, which is the classical one.
Note that these relations are only valid near melting temperature, and in particular
exclude large curvatures of Γ. In this model, surface entropy is zero and balance
of surface energy is trivial. The model equations read

�κ(θ)∂tθ − div(d(θ)∇θ) = 0 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0, �[[ψ(θ)]] + σHΓ = 0 on Γ(t),

θ(0) = θ0 in Ω.

(1.34)

−�[[θη(θ)]]VΓ − [[d(θ)∂νθ]] = 0 on Γ(t),

Γ(0) = Γ0.
(1.35)

Concerning ψ and d we assume

(H1) ψ ∈ C3(0,∞), d ∈ C2(0,∞), −ψ′′(s), d(s) > 0 for all s > 0.

Remark 1.3.1. If κ ≡ 0, i.e., if ψ is linear, we obtain the so-called quasi-stationary
Stefan problem with surface tension, also called Mullins–Sekerka problem or
Mullins–Sekerka flow in the literature. It has the same equilibria as in the case
κ �≡ 0, but their stability properties are different.

Problem 2. The Two-Phase Navier–Stokes Problem with Surface Tension.
Here we assume jΓ ≡ 0, σ > 0 constant.
This is the case without phase transitions. Then

[[u]] = 0, VΓ = u · νΓ, −[[TνΓ]] = σHΓνΓ,

which leads to the classical model for incompressible two-phase flow without phase
transitions.

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = 0, −[[SνΓ]] + [[π]]νΓ = σHΓνΓ on Γ(t),

u(0) = u0 in Ω.

(1.36)

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0, [[d(θ)∂νθ]] = 0 on Γ(t),

θ(0) = θ0 in Ω.

(1.37)

VΓ = u · νΓ on Γ(t), Γ(0) = Γ0. (1.38)

Here we suppose

(H2) ψ ∈ C3(0,∞), d,μ ∈ C2(0,∞), −ψ′′(s), d(s),μ(s) > 0 for all s > 0.
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Remark 1.3.2. (i) If μ is constant, then the Navier-Stokes problem decouples from
the heat problem. More generally, in the isothermal case, the temperature is as-
sumed to be constant and the equation for the temperature, i.e., energy balance,
is ignored. This means that the friction term 2μ|D|22 is neglected. In this case the
reduced energy E0 defined by

E0(u,Γ) :=
1

2

∫
Ω\Γ

�|u|2 dx+ σ|Γ|

is a strict Lyapunov functional, as the identity

d

dt
E0(u(t),Γ(t)) = −2

∫
Ω

μ|D|22 dx

and Korn’s inequality show. Also in this case the equilibria are zero velocity and
constant pressures in the components of the phases. The disperse phase Ω1 is an
at most countable union of disjoint balls, and the radia of the balls are related to
the pressures according to the Young-Laplace law

[[π]] = σHΓ = −σ(n− 1)

R
.

(ii) If θ is constant and ignoring inertia (i.e., the term �(∂tu+ u · ∇u)) we are left
with a quasi-stationary problem, the two-phase Stokes problem, which generates
the so-called two-phase Stokes flow. More precisely, this problem reads

−divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = 0, −[[SνΓ]] + [[π]]νΓ = σHΓνΓ on Γ(t),

VΓ = u · νΓ on Γ(t),

Γ(0) = Γ0.

(1.39)

(iii) If σ = 0, then u = 0 is a solution of the Navier–Stokes problem. Then we
end up with the standard transmission problem for the heat equation with fixed
domain.

(iv) Modeling flows in porous media frequently relies on Darcy’s law, which reads

u = −k∇π,

where k = k(π) > 0 may depend on π, and depends on the phases. The interface
velocity then becomes

VΓ = u · νΓ = −k(π)∂νπ.

This is meaningful, provided

−[[k(π)∂νπ]] = [[u · νΓ]] = 0.
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Furthermore, the driving force for the evolution of the interface is surface tension,
hence we require

[[π]] = σHΓ,

where σ > 0 is constant. Finally, we have to take into account conservation of
mass which results in the porous medium equation

∂t�(π)− div (�(π)k(π)∇π) = 0.

Here � > 0 is non-decreasing w.r.t. π, and depends on the phases. Summarizing
we obtain the problem

�′(π)∂tπ − div (�(π)k(π)∇π) = 0 in Ω \ Γ(t),
∂νπ = 0 on ∂Ω,

[[π]] = σHΓ on Γ(t),

[[k(π)∂νπ]] = 0 on Γ(t),

VΓ + k(π)∂νπ = 0 on Γ(t),

Γ(0) = Γ0, π(0) = π0.

(1.40)

This problem is called the Verigin problem in the literature, and its quasi-steady
(i.e., incompressible) version, where � is constant in the phases, is known as the
Muskat problem or the Muskat flow, a geometric evolution equation.

(v) A variant of Darcy’s law is Forchheimer’s law which reads

g(|u|)u = −∇π,

where the function g is strictly positive and s �→ sg(s) is strictly increasing. Solving
this equation for u we obtain

u = −k(|∇π|2)∇π,

where k is strictly positive and satisfies k(t)+2tk′(t) > 0 on R+. These conditions
ensure strong ellipticity of the operator −div(k(|∇π|2)∇π).

Problem 3. Incompressible Two-Phase Fluid Flow with Phase Transition I.
Here we assume �1 = �2 =: �, σ > 0 constant.
In this situation the Navier–Stokes problem is only weakly coupled to a Stefan
problem. It can be treated by combining the methods developed for Problems 1
and 2. We call this case temperature dominated.

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = 0, −[[SνΓ]] + [[π]]νΓ = σHΓνΓ on Γ(t),

u(0) = u0 in Ω.

(1.41)
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�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0, [[θη(θ)]]jΓ − [[d(θ)∂νθ]] = 0 on Γ(t),

θ(0) = θ0 in Ω.

(1.42)

�[[ψ(θ)]] + σHΓ = 0 on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

Γ(0) = Γ0.

(1.43)

We set hypothesis (H3) := (H2). Recall that we can eliminate the phase flux jΓ
by

jΓ = −[[d(θ)∂νθ]]/l(θ),

provided l(θ) �= 0. This will be one restriction for well-posedness of this model.

Remark 1.3.3. We will see that the Navier–Stokes problem is only weakly coupled
to the Stefan problem with surface tension. Setting u = 0 and ignoring the Navier–
Stokes problem it reduces to Problem (P1).

Problem 4. Incompressible Two-Phase Fluid Flow with Phase Transition II.
Here we assume �1 �= �2, σ > 0 constant.
This case is more difficult than the previous one. Here the problem for θ is only
weakly coupled with that for (u, π, h). We call this case velocity dominated.

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = [[1/�]]jΓνΓ on Γ(t),

[[1/�]]j2ΓνΓ − [[TνΓ]] = σHΓνΓ on Γ(t),

u(0) = u0 in Ω.

(1.44)

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0 on Γ(t),

[[θη(θ)]]jΓ − [[d(θ)∂νθ]] = 0 on Γ(t),

θ(0) = θ0 in Ω.

(1.45)

[[ψ(θ)]] + [[1/2�2]]j2Γ − [[TνΓ · νΓ/�]] = 0 on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

Γ(0) = Γ0.

(1.46)
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The main hypothesis here is (H4) := (H2). Here we can eliminate jΓ as explained
before by means of the identities

jΓ = [[u · νΓ]]/[[1/ρ]], VΓ = [[ρu · νΓ]]/[[ρ]].

Remark 1.3.4. (i) A variant of this problem concerns the situation where heat
conduction is taken into account in both phases but only one phase is moving,
the model for melting and solidification. This problem formally results by letting
μ1 → ∞. To obtain this model, for finite μ1, let Tj denote the stress tensor in Ωj .
Set u ≡ π ≡ 0 in Ω1, maintain the jump condition for u, drop the stress jump
condition on the interface, but replace T1νΓ · νΓ in the Gibbs–Thomson law from
the normal stress jump, according to

T1νΓ · νΓ = T2νΓ · νΓ + σHΓ − [[1/�]]j2Γ

to the result
u2 = [[1/�]]jΓνΓ, VΓ = −jΓ/�1,

and
[[ψ(θ)]] + (1/2)[[1/�]]2j2Γ − [[1/�]]T2νΓ · νΓ + (σ/�1)HΓ = 0.

These conditions on the interface do not contain the viscosity μ1, hence we may
formally pass to the limit μ1 → ∞. Therefore, the resulting model reads

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω2(t),

div u = 0 in Ω2(t),

u = 0 on ∂Ω,

u = [[1/�]]jΓνΓ on Γ(t),

u(0) = u0 in Ω.

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

[[θ]] = 0 on Γ(t),

[[θη(θ)]]jΓ − [[d(θ)∂νθ]] = 0 on Γ(t),

θ(0) = θ0 in Ω2.

[[ψ(θ)]] + (1/2)[[1/�]]2j2Γ − [[1/�]]T2νΓ · νΓ + (σ/�1)HΓ = 0 on Γ(t),

VΓ = −jΓ/�1 on Γ(t),

Γ(0) = Γ0.

This model also has conservation of total energy and production of total entropy
is nonnegative, hence it is consistent with thermodynamics. Note, however, that
momentum is not conserved across the interface, as at the outer boundary ∂Ω.
Furthermore, if the densities are equal, the viscosity is constant, and the initial
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velocity is zero also in Ω2, then u ≡ 0 and π is constant in Ω2. In this situation
the model reduces to Problem 1.

(ii) In the isothermal case the temperature θ is assumed to be constant and the
heat problem is ignored. Then we obtain a model for isothermal two-phase flows
with surface tension and phase transition, the latter is driven by pressure, only.

(iii) Again in the incompressible, isothermal case, ignoring inertia and j2Γ, we
obtain the equations for the Stokes flow with phase transition which reads

−divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = [[1/�]]jΓνΓ on Γ(t),

−[[TνΓ]] = σHΓνΓ on Γ(t),

−[[TνΓ · νΓ/�]] = c on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

Γ(0) = Γ0.

(1.47)

Here c = −[[ψ]] is constant. The phase flux jΓ can be eliminated from the normal
component of the velocity jump, and so we have a transmission problem for the
Stokes equation with (n− 1) jump conditions for the velocity and (n+ 1) for the
normal stresses. This leads to a geometric evolution equation where the interface
is moved by surface tension as well as by stationary phase transitions due to the
different densities.

(iv) Employing again Darcy’s (or Forchheimer’s) law u = −k(π)∇π, we obtain the
Verigin problem with phase transition

�′(π)∂tπ − div (�(π)k(π)∇π) = 0 in Ω \ Γ(t),
∂νπ = 0 on ∂Ω,

[[π]] = σHΓ on Γ(t),

[[ψ + π/�]] = 0 on Γ(t),

[[�]]VΓ + [[�(π)k(π)∂νπ]] = 0 on Γ(t),

Γ(0) = Γ0, π(0) = π0.

(1.48)

Note that here the pressure π is the independent variable, and Maxwell’s law
then reads ψ′(π) = π�′(π)/�2(π). Its quasi-steady version, where � is constant in
the phases, is the Muskat flow with phase transition, another geometric evolution
equation.

Problem 5. Marangoni Forces I. Here we assume �1 = �2 =: �, σ nonconstant.
Experience shows that σ is strictly decreasing and positive at melting temperature
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θm, and as σ is also concave, it has a unique zero θc > θm; we call θc the criti-
cal temperature. As beyond the critical temperature there is no phase separation
anymore, we restrict to the temperature range θ ∈ (0, θc).

Here the model equations read

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = 0, PΓuΓ = PΓu on Γ(t),

−[[TνΓ]] = σ(θΓ)HΓνΓ + σ′(θΓ)∇ΓθΓ on Γ(t),

u(0) = u0 in Ω.

(1.49)

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

θ = θΓ on Γ(t),

θ(0) = θ0 in Ω.

(1.50)

κΓ(θΓ)
D

Dt
θΓ − divΓ(dΓ(θΓ)∇ΓθΓ)

= θΓσ
′(θΓ)divΓuΓ − ([[θη(θ)]]jΓ − [[d(θ)∂νθ]]) on Γ(t),

�[[ψ(θ)]] + σ(θ)HΓ = 0 on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

Γ(0) = Γ0.

(1.51)

We assume

(H5) ψ, σ ∈ C3(0, θc), d, dΓ,μ ∈ C2(0, θc),

− ψ′′(s),−σ′′(s),−σ′(s), d(s), dΓ(s),μ(s) > 0 for all s ∈ (0, θc).

In this problem, the Navier-Stokes problem is again only weakly coupled with a
Stefan problem, modified by energy conservation on the interface. Note that

divΓ uΓ = divΓPΓu−HΓVΓ,

which eliminates uΓ, but here it is not so easy to eliminate jΓ, as for this problem
it really is an implicit variable!

Remark 1.3.5. Setting u = 0 and ignoring the Navier-Stokes problem, the latter
becomes the Stefan problem with surface tension and surface heat capacity, which
reads

�κ(θ)∂tθ − div(d(θ)∇θ) = 0 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

θ = θΓ on Γ(t),

θ(0) = θ0 in Ω.

(1.52)



1.3. Goals and Strategies 33

κΓ(θΓ)
D

Dt
θΓ − divΓ(dΓ(θΓ)∇ΓθΓ)

= −θΓσ
′(θΓ)HΓVΓ + �[[θη(θ)]]VΓ + [[d(θ)∂νθ]] on Γ(t),

�[[ψ(θ)]] + σ(θ)HΓ = 0 on Γ(t),

Γ(0) = Γ0.

(1.53)

This problem will be studied in Chapter 12.

Problem 6. Marangoni Forces II. Here we assume �1 �= �2, σ nonconstant.
This is the model of highest complexity considered in this book.

�(∂tu+ u · ∇u)− divS +∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

PΓuΓ = PΓu, [[u]] = [[1/�]]jΓνΓ on Γ(t),

[[1/�]]j2ΓνΓ − [[TνΓ]] = σ(θΓ)HΓ + σ′(θΓ)∇ΓθΓ on Γ(t),

u(0) = u0, in Ω.

(1.54)

�κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ) = 2μ(θ)|D|22 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

θ = θΓ on Γ(t),

θ(0) = θ0 in Ω.

(1.55)

κΓ(θΓ)
D

Dt
θΓ − divΓ(dΓ(θΓ)∇ΓθΓ) =

= θΓσ
′(θΓ)divΓuΓ − ([[θη(θ)]]jΓ − [[d(θ)∂νθ]]) on Γ(t),

VΓ = uΓ · νΓ = u · νΓ − jΓ/� on Γ(t),

[[ψ(θ)]] + [[1/2�2]]j2Γ − [[TνΓ · νΓ/�]] = 0 on Γ(t),

Γ(0) = Γ0.
(1.56)

The main assumption on the coefficients is (H6) := (H5). Here jΓ can be elimi-
nated as in Problem (P4), and divΓuΓ as in Problem (P5).

3.2 Transformation to a Fixed Domain
A basic idea is to transform Problems (P1)–(P6) to a domain with a fixed interface
Σ, where Γ(t) is parameterized over Σ by means of a height function h(t). For this
we rely on the so-called Hanzawa transform which we will now explain.

(a) The Hanzawa Transform
We assume, as before, that Ω ⊂ Rn is a bounded domain with boundary ∂Ω of
class C2, and that Γ ⊂ Ω is a hypersurface of class C2, i.e., a C2-manifold which
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is the boundary of a bounded domain Ω1 ⊂ Ω. As above, we set Ω2 = Ω\Ω̄1. Note
that Ω2 typically is connected, while Ω1 may be disconnected. In the later case,
Ω1 consists of finitely many components, since ∂Ω1 = Γ ⊂ Ω by assumption is a
manifold, at least of class C2. As will be shown in Section 2.4, the hypersurface
Γ can be approximated by a real analytic hypersurafce Σ, in the sense that the
Hausdorff distance of the second-order normal bundles is as small as we please.
More precisely, given η > 0, there exists an analytic hypersurface Σ such that
dH(N 2Σ,N 2Γ) ≤ η. If η > 0 is small enough, then Σ bounds a domain ΩΣ

1 with

ΩΣ
1 ⊂ Ω and we set ΩΣ

2 = Ω \ ΩΣ
1 ⊂ Ω.

In the sequel we will freely use results that are established in Chapter 2. In
particular, it is shown in Section 2.3 that the C2-hypersurface Σ admits a tubular
neighbourhood, which means that there is a0 > 0 such that the map

Λ : Σ× (−a0, a0) → Rn,

Λ(p, r) := p+ rνΣ(p)

is a diffeomorphism from Σ× (−a0, a0) onto im(Λ), the image of Λ. The inverse

Λ−1 : im(Λ) → Σ× (−a0, a0)

of this map is conveniently decomposed as

Λ−1(x) = (ΠΣ(x), dΣ(x)), x ∈ im(Λ).

Here ΠΣ(x) means the metric projection of x onto Σ and dΣ(x) the signed distance
from x to Σ; so |dΣ(x)| = dist(x,Σ) and dΣ(x) < 0 if and only if x ∈ ΩΣ

1 . In
particular we have im(Λ) = {x ∈ Rn : dist(x,Σ) < a0}. The maximal number
a0 is given by the radius rΣ > 0, defined as the largest number r such that the
exterior and interior ball conditions for Σ in Ω hold. In the following, we choose

a0 = rΣ/2 and a = a0/3.

The derivatives of ΠΣ(x) and dΣ(x) are given by

∇dΣ(x) = νΣ(ΠΣ(x)), ∂ΠΣ(x) = M0(dΣ(x))PΣ(ΠΣ(x)),

where, as before, PΣ(p) = I − νΣ(p) ⊗ νΣ(p) denotes the orthogonal projection
onto the tangent space TpΣ of Σ at p ∈ Σ, and M0(r) = (I− rLΣ)

−1, with LΣ the
Weingarten tensor. Then

|M0(r)| ≤ 1/(1− r|LΣ|) ≤ 3 for all |r| ≤ 2rΣ/3.

If dist(Γ,Σ) is small enough, we may use the map Λ to parameterize the unknown
free boundary Γ(t) over Σ by means of a height function h(t) via

Γ(t) = {p+ h(t, p)νΣ(p) : p ∈ Σ}, t ≥ 0,
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for small t ≥ 0, at least. Extend this diffeomorphism to all of Ω̄ by means of

Ξh(t, x) = x+ χ(dΣ(x)/a)h(t,ΠΣ(x))νΣ(ΠΣ(x)) =: x+ ξh(t, x).

Here χ denotes a suitable cut-off function. More precisely, let χ ∈ D(R), 0 ≤ χ ≤ 1,
χ(r) = 1 for |r| < 1, and χ(r) = 0 for |r| > 2. (We may choose χ in such a way
that 1 < |χ′|∞ ≤ 3.) Note that Ξh(t, x) = x for |dΣ(x)| > 2a, and

ΠΣ(Ξh(t, x)) = ΠΣ(x), |dΣ(x)| < a,

as well as

dΣ(Ξh(t, x)) = dΣ(x) + χ(dΣ(x)/a)h(t,ΠΣ(x)), |dΣ(x)| < 2a.

This yields

Ξ−1
h (t, x) = x− h(t,ΠΣ(x))νΣ(ΠΣ(x)) for |dΣ(x)| < a,

in particular,
Ξ−1
h (t, x) = x− h(t, x)νΣ(x) for x ∈ Σ.

Furthermore, we obtain

∂ Ξh = I + ∂ξh, (∂ Ξh)
−1 = I − [I + ∂ξh]

−1
∂ξh =: I −MT

1 (h),

where ∂ := ∂x denotes the derivative with respect to x ∈ Rn, and

∂ξh(t, x)

= νΣ(ΠΣ(x))⊗M0(dΣ(x))∇Σh(t,ΠΣ(x))− h(t,ΠΣ(x))M0(dΣ(x))LΣ(ΠΣ(x))

for |dΣ(x)| < a, ξ′h(t, x) = 0 for |dΣ(x)| > 2a, and in general

∂ξh(t, x) =
1

a
χ′(dΣ(x)/a)h(t,ΠΣ(x))νΣ(ΠΣ(x))⊗ νΣ(ΠΣ(x))

+ χ(dΣ(x)/a)νΣ(ΠΣ(x))⊗M0(dΣ(x))∇Σh(t,ΠΣ(x))

− χ(dΣ(x)/a)h(t,ΠΣ(x))M0(dΣ(x))LΣ(ΠΣ(x)).

It is a matter of simple algebra to determine the inverse of ∂Ξh, to the result

(∂Ξh(t, x))
−1

= I −
(
χhLΣ − χ′h/a

1 + χ′h/a
νΣ ⊗ νΣ − χ

1 + χ′h/a
νΣ ⊗∇Σh

)
M0(dΣ + χh),

where we dropped the obvious arguments. This implies

M1(h) = χM0(dΣ + χh)
(∇Σh⊗ νΣ
1 + χ′h/a

− hLΣ

)
+

χ′h/a
1 + χ′h/a

νΣ ⊗ νΣ.
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Note that M1(h) depends linearly on ∇Σh. On the interface we then have

M1(h) = M0(h)
(
∇Σh⊗ νΣ − hLΣ

)
.

In particular, ∂Ξh is invertible, provided M0(dΣ + χh) = (I − (dΣ + χh)LΣ)
−1

exists, and 1 + χ′h/a > 0. This certainly holds if

|dΣ + χh||LΣ| ≤ 2/3 and |χ′|∞|h|/a ≤ 1/2,

which leads to the restriction |h|∞ ≤ h∞ := a/2|χ′|∞; note that |χ′|∞ > 1.
Observe that at this place no restrictions on ∇Σh are required.

Next we have

∂tΞh(t, x) = χ(dΣ(x)/a)∂th(t,ΠΣ(x))νΣ(ΠΣ(x)), x ∈ Ω̄,

hence the relation Ξ−1
h (t,Ξh(t, x)) = x implies

∂tΞ
−1
h (t,Ξh(t, x)) = −m0(h)∂th(t,ΠΣ(x))νΣ(ΠΣ(x)), x ∈ Ω̄,

where

m0(h)(t, x) =
χ(dΣ(x)/a)

(1 + h(t,ΠΣ(x))χ′(dΣ(x)/a)/a
.

With the Weingarten tensor LΣ and the surface gradient ∇Σ we further have

νΓ(h) = β(h)(νΣ − a(h)), a(h) = M0(h)∇Σh,

M0(h) = (I − hLΣ)
−1, β(h) = (1 + |a(h)|2)−1/2,

and
VΓ = ∂tΞh · νΓ = (νΣ · νΓ)∂th = β(h)∂th.

It will be shown in Section 2.2 that the surface gradient of a function φ on Γ is
given by

∇Γφ = PΓ(h)M0(h)∇Σφ̄ =: GΓ(h)φ̄,

where φ̄ = φ ◦ Ξh, the surface divergence of a vector field f on Γ becomes

divΓf = tr[PΓ(h)M0(h)∇Σf̄ ],

and the Laplace–Beltrami operator ΔΓ reads

ΔΓϕ = tr[PΓ(h)M0(h)∇ΣPΓ(h)M0(h)∇Σϕ̄].

Finally, for the mean curvature HΓ(h) we have

HΓ(h) = β(h){tr[M0(h)(LΣ +∇Σa(h))]− β2(h)(M0(h)a(h)|[∇Σa(h)]a(h))},

a differential expression involving second-order derivatives of h only linearly. We
may write

HΓ(h) = C0(h) : ∇2
Σh+ C1(h),
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where C0(h) and C1(h) depend on h and ∇Σh, provided |h| ≤ h∞ holds. The
linearization of HΓ(h) at h = 0 is given by

H ′
Γ(0) = trL2

Σ +ΔΣ.

Here ΔΣ denotes the Laplace–Beltrami operator on Σ.

(b) The Transformed Problem
Now we define the transformed quantities

�̄(t, x) = �(t,Ξh(t, x)), ū(t, x) = u(t,Ξh(t, x)) in Ω\Σ,
π̄(t, x) = π(t,Ξh(t, x)), θ̄(t, x) = θ(t,Ξh(t, x)) in Ω\Σ,
ūΓ(t, p) = uΓ(t,Ξh(t, p)), j̄Γ(t, p) = jΓ(t,Ξh(t, p)) on Σ,

(1.57)

the pull back of (�, u, π, θ, uΓ, jΓ). This way we have transformed the time varying
regions Ω \ Γ(t) to the fixed region Ω \ Σ. This transforms the general problem
(1.26), (1.27), (1.28) to the following problem for (�̄, ū, π̄, θ̄, ūΓ, j̄Γ, h).

∂t�̄+ G(h) · �̄ū = m0(h)∂th(νΣ · ∇)�̄) in Ω \ Σ,
�̄∂tū− G(h) · S̄ + G(h)π̄ = �̄Ru(ū, θ̄, h) in Ω \ Σ,

ū = 0 on ∂Ω,

[[1/�̄]]j̄2ΓνΓ(h)−[[S̄νΓ(h)]] + [[π̄]]νΓ(h) = GΓ(h) · (σ(θ̄Γ)PΓ(h) + S̄Γ) on Σ,

[[ū]]− [[1/�̄]]j̄ΓνΓ(h) = 0 on Σ,

�̄(0) = �̄0, ū(0) = ū0,
(1.58)

where

S̄ = μ(θ̄, �̄)(G(h)ū+ [G(h)ū]T) + λ(θ̄, �̄)(G(h) · ū)I,
S̄Γ = μΓ(θΓ)PΓ(h)(GΓ(h)ūΓ + [GΓ(h)ūΓ]

T)PΓ(h) + λ(θ̄Γ)(GΓ(h) · ūΓ)PΓ(h),

�̄κ(θ̄, �̄)∂tθ̄ − G(h) · d(θ̄, �̄)G(h)θ̄ = �̄κ(θ̄, �̄)Rθ(ū, θ̄, h) in Ω\Σ,
∂ν θ̄ = 0 on ∂Ω,

[[θ̄]] = 0, θ̄ = θ̄Γ on Σ,

θ̄(0) = θ̄0 in Ω,

(1.59)

κΓ(θ̄Γ)∂tθ̄Γ − (GΓ(h)|dΓ(θ̄Γ)GΓ(h)θ̄Γ)− [[θ̄η(θ̄, ρ̄)]]j̄Γ

+[[d(θ̄, ρ̄)G(h)θ̄ · νΓ(h)]] = S̄Γ : GΓ(h)ūΓ + σ(θ̄)GΓ(h) · ūΓ +RΓ(θ̄Γ, h) on Σ

[[ψ(θ̄, ρ̄)]] + [[1/2ρ̄2]]j̄2Γ − [[S̄νΓ · νΓ/ρ̄]] + [[π̄/ρ̄]]νΓ(h) = 0 on Σ,

β(h)∂th− (ū|νΓ) + j̄Γ/ρ̄ = 0, on Σ,

θ̄Γ(0) = θ̄0, h(0) = h0.
(1.60)
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Here G(h) and GΓ(h) denote the transformed gradient resp. the transformed surface
gradient. More precisely, we have the relations

[∇π] ◦ Ξh = G(h)π̄ = [(∂ Ξ−1
h )T ◦ Ξh]∇π̄ = (I −M1(h))∇π̄

and
[∇θ] ◦ Ξh = (I −M1(h))∇θ̄,

as well as

(∇ · u) ◦ Ξh = (G(h)|ū) = ((I −M1(h))∇|ū).

Furthermore,

D

Dt
θΓ ◦ Ξh = ∂tθ̄Γ + ūΓ · ∇Σθ̄Γ − ūΓ ·M1(h)∇Σθ̄Γ,

and

[∂tu] ◦ Ξh = ∂tū+ ∂ū[(∂tΞ
−1
h ) ◦ Ξh] = ∂tū−m0(h)∂th(νΣ · ∇)ū,

hence
Ru(ū, θ̄, h) = −ū · G(h)ū+m0(h)∂th(νΣ · ∇)ū.

Similarly we have

[∂tθ] ◦ Ξh = ∂tθ̄ −m0(h)∂th(νΣ · ∇)θ̄,

and so
Rθ(ū, θ̄, h) = −ū · G(h)θ̄ +m0(h)∂th(νΣ · ∇)θ̄.

In the same way we get

RΓ(θ̄Γ, h) = −ūΓ · ∇Σθ̄Γ + ūΓ ·M1(h)∇Σθ̄Γ + θ̄Γσ
′(θ̄Γ)GΓ(h) · ūΓ.

It is convenient to decompose the stress boundary condition into tangential and
normal parts; here we set SΓ = 0. For this purpose let PΣ = I−νΣ⊗νΣ denote the
projection onto the tangent space of Σ. Multiplying the stress interface condition
with νΣ/β we obtain

[[1/�̄]]j̄2Γ + [[π̄]]− σHΓ(h) = ([[S̄]](νΣ −M0(h)∇Σh)|νΣ)
+ σ′β(M0∇Σh|M0∇Σθ̄Γ)

(1.61)

for the normal part of the stress boundary condition. Substituting this expression
into the stress interface condition and then applying the projection PΣ yields, after
some computation,

PΣ[[S̄]](νΣ −M0(h)∇Σh) = ([[S̄]](νΣ −M0(h)∇Σh)|νΣ)M0(h)∇Σh

+ (σ′/β)M0(h)∇Σθ̄Γ
(1.62)
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for the tangential part. Note that the latter neither contains the phase flux nor
the pressure jump nor the curvature!

3.3 Goals and Strategies
The goal of this monograph is the exposition of a general theory for the models
introduced above. We present in detail a rigorous analysis of these problems. It
will become clear that the scope of our approach is much wider. It can be used
for many other problems with moving interfaces, such as phase transitions driven
by chemical potentials, two-phase flow problems with surface viscosities, multi-
component two phase flows, as well as similar quasi-steady problems or purely
geometric ones, to mention a few more applications. The essential restriction is
that the problems in question ought to be of parabolic nature. In this book we will
employ Lp-theory since it avoids higher order compatibility conditions. In addition,
deep results of harmonic analysis are at our disposal. Nevertheless, one could also
use other frameworks where maximal regularity is available, e.g. Cα-theory.

In particular, we address the following topics.

a) Local well-posedness and local semiflow;

b) Stability analysis of equilibria;

c) Long-time behaviour of solutions.

We now outline our approach, explaining the main ideas and tools to be employed.

a) Local-Well-posedness and Local Semiflow
To obtain local well-posedness we write the transformed problem in the form

Lz = (N(z), z0).

Here L is the principal linear part of the problem in question, and N is the
remaining nonlinear part which is small in the sense that N collects all lower
order terms and contains only highest order terms which carry a factor |∇Σh|
which is small on small time intervals due to the choice of the Hanzawa transform.
The variable z with initial value z0 collects all essential variables of the problem
under consideration.

The first step is to find function spaces E(J) and F(J), J = (0, a) or J = R+,
such that L : E(J) → F(J)×Eγ is an isomorphism. Here Eγ denotes the time-trace
space of E(J) which the initial value z0 should belong to. This is the question of
maximal regularity. These spaces differ from problem to problem and the question
of maximal regularity has to be studied separately for each one. Here we will use
the framework of Lp-spaces and rely on deep results from vector-valued harmonic
analysis and operator theory which will be introduced and discussed in Chapter 4.

The second step then employs the contraction mapping principle to obtain
local solutions, and the implicit function theorem to obtain smooth dependence
of the solutions on the data. For this, estimates of the nonlinearity N are needed,
eventually showing that N : E(J) → F(J) is continuously Fréchet-differentiable, at
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least. This requires some smoothness of the coefficient functions in the constitutive
laws. If these are, say, even real analytic then N will be so as well, and by a scaling
argument and the implicit function theorem we will show that the solutions are
real analytic jointly in time and space as well. In particular, the interface will
become instantaneously real analytic, which shows the strong regularizing effect,
characteristic for parabolic problems.

The third step consists in setting up the state manifold SM of the untrans-
formed problem. It will be a truly nonlinear manifold which comes from the generic
nonlinear structure, due to geometry and the involved nonlinear compatibility con-
ditions of the problem. Charts for the state manifold are induced by the Hanzawa
transform mentioned above. The local existence and regularity results for the
transformed problem induce a local semiflow on the proper state manifold SM
for the problem in question.

b) Stability Analysis of Equilibria
For the stability analysis of equilibria it is natural to employ again the Hanzawa
transform, where the reference manifold Σ now is the equilibrium interface Γ∗, a
union of finitely many disjoint spheres contained in Ω. As the linearized problem
enjoys maximal Lp-regularity, an abstract result shows that the operator L asso-
ciated with the fully linearized problem is the negative generator of a compact
analytic C0-semigroup. Therefore, the spectrum of L consists only of countably
many isolated eigenvalues of finite algebraic multiplicity. Thus, it is natural to
study these eigenvalues and to apply the principle of linearized stability for the
nonlinear problem.

However, a major difficulty of this approach lies in the fact that the equilibria
are not isolated in the state manifold, but form a finite-dimensional submanifold
E of SM. For the linearization of the transformed problem this implies that the
kernel of L is nontrivial, i.e., the imaginary axis is not in the resolvent set of L,
and so the standard principle of linearized stability is not applicable. Fortunately,
0 is the only eigenvalue of L on iR and it is nicely behaved: the kernel N(L) is
isomorphic to the tangent space of E at this equilibrium, and 0 is semi-simple. This
shows that 0 is normally stable if the remaining eigenvalues of L have positive real
parts, and normally hyperbolic if some of them have negative real parts; these are
only finitely many. Therefore, we can employ what we call the generalized principle
of linearized stability, a method which is adapted to such a situation and has been
worked out recently for quasilinear parabolic evolution equations by the authors.
So our stability analysis of equilibria proceeds in two steps.

In the first step we analyze the eigenvalues of L and find conditions, if possible
necessary and sufficient, which ensure that all eigenvalues of L except 0 have
positive real parts; this is the normally stable case. In the normally hyperbolic
case we determine the dimension of the unstable subspace of L. And of course,
we have to show that 0 is semi-simple, to determine the kernel of L, and to prove
that N(L) is isomorphic to the tangent space of E .

In the second step we employ the generalized principle of linearized stability



1.3. Goals and Strategies 41

to the nonlinear problem. This can be done simultaneously for all six problems
in question, as the proof only uses the general structure of the problems under
consideration. Here we employ once more the implicit function theorem.

c) Long-Time behaviour of Solutions
In general, solutions in SM will exist on a maximal time interval [0, t+(z0)) which
typically will be finite, due to several obstructions, such as missing a priori bounds,
loss of well-posedness, or topological changes in the moving interface. However, if a
solution does not develop singularities in a sense to be specified, then we will prove
that the solution exists globally, i.e., t+(z0) = ∞, and it converges in the topology
of SM to an equilibrium. This essentially relies on a method using time weights
to improve regularity and on compact Sobolev embeddings. Actually, we are able
to characterize solutions which exist globally and converge as t → ∞. This result
is also proved simultaneously for all problems under consideration, as the proof
only relies on general properties of semiflows, relative compactness of bounded
orbits, the existence of a strict Lyapunov functional (the negative entropy), and
the results on stability of equilibria.

On our way of presenting the tools which are needed to achieve these goals we
will frequently discuss other problems to illustrate the main ideas. For example, the
Laplacian, the Laplace–Beltrami operator, the heat operator, the Stokes operator,
and several Dirichlet-to-Neumann operators will be studied in various frameworks.
In Chapter 5 we develop an Lp-theory of abstract quasilinear parabolic evolution
equations which serves as a guide for the more complex problems to be studied
later on. In Chapter 12 we will present several applications of the main results of
Chapter 5 to problems arising from generalized Newtonian flows, nematic liquid
crystal flows, Maxwell-Stefan diffusion, and the Stefan problem with surface ten-
sion and surface heat capacity, as well as to geometric evolutions equations like
the averaged mean curvature flow, the surface diffusion flow, the Mullins–Sekerka
flow, the Muskat flow, the Stokes flow, and the Stokes flow with phase transition.



Chapter 2

Tools from Differential
Geometry

In this chapter we introduce the necessary background in differential geometry of
closed compact hypersurfaces in Rn. We investigate the differential geometric prop-
erties of embedded hypersurfaces in n-dimensional Euclidean space, introducing
the notions of Weingarten tensor, principal curvatures, mean curvature, tubular
neighbourhood, surface gradient, surface divergence, and Laplace-Beltrami oper-
ator. The main emphasis lies in deriving representations of these quantities for
hypersurfaces Γ = Γρ that are given as parameterized surfaces in normal direction
of a fixed reference surface Σ by means of a height function ρ. We derive all of
the aforementioned geometric quantities for Γρ in terms of ρ and Σ. It is also
important to study the mapping properties of these quantities in dependence of
ρ, and to derive expressions for their variations. For instance, we show that

κ′(0) = trL2
Σ +ΔΣ,

where κ = κ(ρ) denotes the mean curvature of Γρ, LΣ the Weingarten tensor
of Σ, and ΔΣ the Laplace-Beltrami operator on Σ. This is done in Section 2.
We also study the first and second variations of the area and volume functional,
respectively. In Section 3 we show, among other things, that C2-hypersurfaces can
be approximated in a suitable topology by smooth (i.e., analytic) hypersurfaces.
This leads, in particular, to the existence of parameterizations. In Section 4 we
show that the class of compact embedded hypersurfaces in Rn gives rise to a
new manifold (whose points are the compact embedded hypersufaces). We also
show that the class M2(Ω, r) of all compact embedded hypersurfaces contained
in a bounded domain Ω ⊂ Rn, and satisfying a uniform ball condition with radius
r > 0, can be identified with a subspace of C2(Ω̄). This is important, as it allows us
to derive compactness and embedding properties forM2(Ω, r). Finally, in Section 5
we consider moving hypersurfaces and prove various transport theorems.
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φ

Θ
Rn−1

Figure 2.1: A typical chart for Σ.

2.1 Differential Geometry of Hypersurfaces

We consider a closed embedded hypersurface Σ of class Ck, k ≥ 3, enclosing a
bounded domain Ω in Rn. Thus for each point p ∈ Σ there is a ball B(p, r) ⊂ Rn

and a diffemorphism Φ : B(p, r) → U ⊂ Rn such that Φ(p) = 0 ∈ U and

Φ−1(U ∩ (Rn−1 × {0})) = B(p, r) ∩ Σ.

We may assume that Σ is connected; otherwise we would concentrate on one of its
components. The points of Σ are denoted by p, and νΣ = νΣ(p) means the outer
unit normal of Σ at p. Locally at p ∈ Σ we have the parameterization

p = φ(θ) := Φ−1(θ, 0),

where θ runs through an open parameter set Θ ⊂ Rn−1. We denote the tangent
vectors generated by this parameterization by

τi = τi(p) =
∂

∂θi
φ(θ) = ∂iφ, i = 1, . . . , n− 1. (2.1)

These vectors τi form a basis of the tangent space TpΣ of Σ at p. Note that
(τi|νΣ) = 0 for all i, where (·|·) := (·|·)Rn denotes the Euclidean inner product
in Rn. Similarly, we set τij = ∂i∂jφ, τijk = ∂i∂j∂kφ, and so on. In the sequel we
employ Einstein’s summation convention, which means that equal lower and upper
indices are to be summed, and δij are the entries of the unit matrix I. For two
vectors a, b ∈ Rn the tensor product a⊗b ∈ B(Rn) is defined by [a⊗b](x) = (b|x)a
for x ∈ Rn. If a belongs to the tangent space TpΣ, we may represent a as a linear
combination of the basis vectors of TpΣ, i.e., a = aiτi. The coefficients ai are called
the contravariant components of a. On the other hand, this vector a is also uniquely
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characterized by its covariant components, ai defined by ai = (a|τi), which means
that the covariant components are the coefficients of the representation of a in the
basis {τ i} dual to the basis {τj}, defined by the relations (τ i|τj) = δij . Similarly,
if K ∈ B(TpΣ) is a tensor we have the representations

K = kijτi ⊗ τj = kijτ
i ⊗ τ j = kijτi ⊗ τ j = kji τ

i ⊗ τj ,

with e.g. kij = (τi|Kτj) and kij = (τ i|Kτj). Moreover, trK, the trace of K, is
given by

trK = (Kτi|τ i) = (Kτ i|τi). (2.2)

In particular, tr [a⊗ b] = (a|b) = aib
i = aibi.

1.1 The First Fundamental Form
Define

gij = gij(p) = (τi(p)|τj(p)) = (τi|τj), i, j = 1, . . . , n− 1. (2.3)

The matrix G = [gij ] is called the first fundamental form of Σ. Note that G is
symmetric and also positive definite, since

(Gξ|ξ) = gijξ
iξj = (ξiτi|ξjτj) = |ξiτi|2 > 0, for all ξ ∈ Rn−1, ξ �= 0.

We let G−1 = [gij ], hence gikg
kj = δji , and gilglj = δij . The determinant g := detG

is positive. Let a be a tangent vector. Then a = aiτi implies

ak = (a|τk) = ai(τi|τk) = aigik and ai = gikak.

Thus the fundamental form G allows for the passage from contra- to covariant
components of a tangent vector and vice versa. If a, b are two tangent vectors,
then

(a|b) = aibj(τi|τj) = gija
ibj = ajb

j = aibi = gijaibj =: (a|b)Σ
defines an inner product on TpΣ in the canonical way, the Riemannian metric. By
means of the identity

(gikτk|τj) = gikgkj = δij

we further see that
τ i = gijτj and τj = gijτ

i.

This implies the relations

kij = girkrj = gjrk
ri, kij = girkjr, kij = girk

r
j ,

for any tensor K ∈ B(TpΣ). We set for the moment G = gijτi ⊗ τj and have
equivalently

G = gijτi ⊗ τj = gijτ
i ⊗ τ j = τi ⊗ τ i = τ j ⊗ τj .

Let u = ukτk + (u|νΣ)νΣ be an arbitrary vector in Rn. Then

Gu = gijτi(τj |u) = gijτiu
kgjk = ukτk,
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i.e., G equals the orthogonal projection PΣ = I − νΣ ⊗ νΣ of Rn onto the tangent
space TpΣ at p ∈ Σ. Therefore, we have the relation

PΣ = I − νΣ ⊗ νΣ = τi ⊗ τ i = τ i ⊗ τi,

where I denotes the identity map on Rn. These properties explain the meaning of
the first fundamental form [gij ].

1.2 The Second Fundamental Form
Define

lij = lij(p) = (τij |νΣ), L = [lij ]. (2.4)

L is called the second fundamental form of Σ. Note that L is symmetric, and
differentiating the relations (τi|νΣ) = 0 we derive

lij = (τij |νΣ) = −(τi|∂jνΣ) = −(τj |∂iνΣ). (2.5)

The matrix K with entries lij , defined by

lij = girlrj , K = G−1L,

is called the shape matrix of Σ. The eigenvalues κi of K are called the principal
curvatures of Σ at p, and the corresponding eigenvectors ηi determine the principal
curvature directions. Observe that Kηi = κiηi is equivalent to Lηi = κiGηi, hence
the relation

(Lηi|ηi) = κi(Gηi|ηi)
and symmetry of L and G show that the principal curvatures κi are real. Moreover,

κi(Gηi|ηj) = (Lηi|ηj) = (ηi|Lηj) = κj(ηi|Gηj) = κj(Gηi|ηj)

implies that principal directions corresponding to different principal curvatures are
orthogonal with respect to the inner product (G · |·)Rn−1 . We can always assume
that eigenvectors associated to an eigenvalue κi are orthogonal w.r.t. (G · |·)Rn−1

in case κi has geometric multiplicity greater than one. The eigenvalues κi are
semi-simple, i.e., N((κi −K)2) = N(κi −K). In fact, suppose x ∈ N((κi −K)2).
Then

(κi −K)x =

mi∑
r=1

trηi,r,

with tr ∈ R, where {ηi,r : 1 ≤ r ≤ mi} is an (orthogonal) basis of N(κi − K).
Therefore,

tk(Gηi,k|ηi,k) =
( mi∑

r=1

trGηi,r|ηi,k
)
= (G(κi −K)x|ηi,k) = (x|(κiG− L)ηi,k) = 0

for 1 ≤ k ≤ mi. Since G is positive definite, tk = 0, and hence x ∈ N(κi − K).
This shows that K is diagonalizable.
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The trace of K, i.e., the first invariant of K, is called the (n− 1)-fold mean
curvature κ of Σ at p, i.e., we have

κΣ := trK = lii = gij lij =

n−1∑
i=1

κi. (2.6)

The Gaussian curvature KΣ is defined as the last invariant of K, i.e.,

KΣ = detK = g−1 detL = Πn−1
i=1 κi.

We define the Weingarten tensor LΣ by means of

LΣ = LΣ(p) = lijτi ⊗ τj = lijτi ⊗ τ j = lji τ
i ⊗ τj = lijτ

i ⊗ τ j . (2.7)

LΣ is symmetric with respect to the inner product (·|·) in Rn. We note that
LΣ ∈ B(Rn) leaves the tangent space TpΣ invariant and, moreover, LΣνΣ = 0.
This shows that LΣ enjoys the decomposition

LΣ =

[
LΣ|TpΣ 0

0 0

]
: TpΣ⊕ RνΣ → TpΣ⊕ RνΣ. (2.8)

In particular, we note

trLΣ(p) = tr[LΣ|TpΣ], det[I + rLΣ(p)] = det[(I + rLΣ(p))|TpΣ] (2.9)

for r ∈ R. We will in the following not distinguish between LΣ and its restriction
to TpΣ. Observe that

trLΣ = lii = gij lij = κΣ, (2.10)

and the eigenvalues of LΣ in TpΣ are the principal curvatures, since

LΣηk = lij(τ
j |ηk)τi = lijη

j
kτi = κkη

i
kτi = κkηk.

The remaining eigenvalue of LΣ in Rn is 0 with eigenvector νΣ.

1.3 The Third Fundamental Form
To obtain another property of the shape matrix K we differentiate the identity
|νΣ|2 = 1 to the result (∂iνΣ|νΣ) = 0. This means that ∂iνΣ belongs to the tangent
space, hence ∂iνΣ = γk

i τk for some numbers γk
i . Taking the inner product with τj

we get
γk
i gkj = γk

i (τk|τj) = (∂iνΣ|τj) = −(τij |νΣ) = −lij ,

hence
γr
i = γk

i gkjg
jr = −lijg

jr = −grj lji = −lri ,

where we used symmetry of L and G. Therefore we have

∂iνΣ = −lri τr = −LΣτi, i = 1, . . . , n− 1, (2.11)
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the Weingarten relations. Furthermore,

0 = ∂i(νΣ|∂jνΣ) = (∂iνΣ|∂jνΣ) + (νΣ|∂i∂jνΣ)

implies

−(∂i∂jνΣ|νΣ) = (∂iνΣ|∂jνΣ) = lri l
s
j (τr|τs) = lri grsl

s
j = lisg

srlrj = lri lrj , (2.12)

which are the entries of the matrix LG−1L, i.e., the covariant components of L2
Σ.

This is the so-called third fundamental form of Σ. In particular this implies the
relation

trL2
Σ = (LΣτ

i|LΣτi) = −gij(∂i∂jνΣ|νΣ), (2.13)

which will be useful later on. Moreover, we deduce from (2.12)

trL2
Σ = (LΣτ

i|LΣτi) = gij lri lrj = lri l
i
r =

n−1∑
i=1

κ2
i . (2.14)

1.4 The Christoffel Symbols
The Christoffel symbols are defined according to

Λij|k = (τij |τk), Λk
ij = gkrΛij|r. (2.15)

Their importance stems from the representation of τij in the basis {τk, νΣ} of Rn

via
τij = Λk

ijτk + lijνΣ. (2.16)

Indeed, suppose τij = akijτk + bijνΣ. Then lij = (τij |νΣ) = bij and

Λij|k = (τij |τk) = (arijτr|τk) = gkra
r
ij .

Therefore, asij = gskgkra
r
ij = gskΛij|k = Λs

ij . To express the Christoffel symbols in
terms of the fundamental form G we use the identities

∂kgij = ∂k(τi|τj) = (τik|τj) + (τi|τjk),
∂igkj = ∂i(τk|τj) = (τik|τj) + (τk|τij),
∂jgik = ∂j(τi|τk) = (τij |τk) + (τi|τjk),

which yield
∂igjk + ∂jgik − ∂kgij = 2(τij |τk),

i.e.,

Λij|k =
1

2
[∂igjk + ∂jgik − ∂kgij ]. (2.17)

Another important identity follows by differentiation of the relations (τ j |τk) = δjk
and (τ j |νΣ) = 0. We have

(∂iτ
j |τk) = −(τ j |τik) = −Λr

ik(τ
j |τr) = −Λj

ik,
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and
(∂iτ

j |νΣ) = −(τ j |∂iνΣ) = (τ j |LΣτi) = lji ,

hence
∂iτ

j = −Λj
ikτ

k + lji νΣ. (2.18)

This gives another interpretation of the Christoffel symbols and of the second
fundamental form.

1.5 The Surface Gradient
Let ρ be a scalar field on Σ. The surface gradient ∇Σρ at p is a vector which
belongs to the tangent space of Σ at p. Thus it can be characterized by its

• covariant components ai, i.e., ∇Σρ = aiτ
i, or by its

• contravariant components ai, i.e., ∇Σρ = aiτi.

The chain rule
∂i(ρ ◦ φ) = (∇Σρ|τi)

yields ai = ∂i(ρ ◦ φ) = ∂iρ. This implies

ai = (∇Σρ|τi) = ak(τk|τi) = akgki,

hence
∇Σρ = τ i∂iρ = (gij∂jρ)τi. (2.19)

Suppose ρ̃ is a C1-extension of ρ in a neighbourhood of Σ. We then have

∇ρ̃ = (∇ρ̃|νΣ)νΣ + (∇ρ̃|τi)τ i = (∇ρ̃|νΣ)νΣ + (∇Σρ|τi)τ i,

and hence, the surface gradient ∇Σρ is the projection of ∇ρ̃ onto TpΣ, that is,

∇Σρ = PΣ∇ρ̃. (2.20)

For a vector field f : Σ → Rm of class C1 we define similarly

∇Σf := gijτi ⊗ ∂jf = τ j ⊗ ∂jf. (2.21)

In particular, this yields for the identity map idΣ on Σ

∇Σ idΣ = gijτi ⊗ ∂jφ = gijτi ⊗ τj = PΣ,

and by the Weingarten relations

∇ΣνΣ = gijτi ⊗ ∂jνΣ = −gij lrj τi ⊗ τr = −lijτi ⊗ τj = −LΣ.

For the surface gradient of tangent vectors we have

∇Στk = gijτi ⊗ ∂jτk = gijτi ⊗ τjk = gijτi ⊗ (Λr
jkτr + ljkνΣ)

= gijΛr
jkτi ⊗ τr + likτi ⊗ νΣ = Λr

kjτ
j ⊗ τr + (LΣτk)⊗ νΣ.
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Finally we note that the surface gradient for tensors is defined according to

∇ΣK = τ j ⊗ ∂jK. (2.22)

1.6 The Surface Divergence
Let f be a tangential vector field on Σ. As before, f i = (f |τ i) denote the con-
travariant components of f , and fi = (f |τi) the covariant components, respectively.
The surface divergence of f is defined by

divΣ f =
1
√
g
∂i(

√
gf i) =

1
√
g
∂i(

√
ggijfj). (2.23)

As before, g := detG denotes the determinant of G = [gij ]. This definition ensures
that partial integration can be carried out as usual, i.e., that the surface divergence
theorem holds for tangential C1-vector fields f :∫

Σ

(∇Σρ|f)Σ dΣ = −
∫
Σ

ρ divΣf dΣ. (2.24)

In fact, if e.g. ρ has support in a chart φ(Θ) at p, then∫
Σ

(∇Σρ|f)Σ dΣ =

∫
Θ

∂i(ρ ◦ φ)[(f i ◦ φ)√g)] dθ

= −
∫
Θ

(ρ ◦ φ) 1
√
g
∂i[

√
g(f i ◦ φ)]√g dθ = −

∫
Σ

ρ divΣf dΣ.

Here we used that the surface measure in local coordinates is given by dΣ =
√
gdθ.

The general case follows from this argument by using a partition of unity. There
is another useful representation of surface divergence, given by

divΣf = gij(τj |∂if) = (τ i|∂if). (2.25)

It comes from

divΣf =
1
√
g
∂i(

√
ggijfj) =

1
√
g
∂i[

√
ggij(τj |f)],

since

(∂i(
√
ggijτj)|τk) = 0, k = 1, . . . , n− 1. (2.26)

Here (2.26) follows from

(∂i(
√
ggijτj)|τk) = ∂i(

√
ggij(τj |τk))−

√
ggij(τj |τki) = ∂k

√
g −√

ggij(τj |τki)

= ∂k
√
g − 1

2

√
ggij∂k(τj |τi) =

1

2
√
g

(
∂kg − ggij∂kgij

)
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and the relation

∂kg = g tr [G−1∂kG] = ggij∂kgij . (2.27)

The last assertion can be verified as follows:

∂kg = ∂k detG =

n−1∑
j=1

det [G1, · · · , ∂kGj , · · ·Gn−1]

= (detG)
n−1∑
j=1

det
(
G−1[G1, · · · , ∂kGj , · · · , Gn−1]

)
= g tr [G−1∂kG],

where G = [gij ] = [G1, · · · , Gn−1], with Gj the j-th column of G. From (2.25)
follows

divΣτk = gij(τj |τki) = gijΛki|j = Λi
ik.

Equation (2.25) can be used as a definition of surface divergence for general, not
necessarily tangential vector fields f , i.e., we have

divΣf := gij(τj |∂if) = (τ i|∂if), f ∈ C1(Σ,Rn). (2.28)

For example, consider f = νΣ. Then ∂iνΣ = −lki τk by the Weingarten relations
and we obtain

divΣνΣ = gij(τj |∂iνΣ) = −gij lij = −κΣ.

This way we have derived the important relation

κΣ = −divΣνΣ. (2.29)

With this in hand, we can now deduce the relation

divΣf = divΣPΣf − (f |νΣ)κΣ. (2.30)

We remind that the surface divergence theorem (2.24) only holds for tangential
vector fields. The surface divergence theorem for general vector fields reads as∫

Σ

(∇Σρ|f) dΣ = −
∫
Σ

ρ( divΣf + (f |νΣ)κΣ) dΣ, f ∈ C1(Σ,Rn). (2.31)

This follows from (2.24) and (2.30) by means of∫
Σ

(∇Σρ|f)Σ dΣ =

∫
Σ

(∇Σρ|PΣf)Σ dΣ = −
∫
Σ

ρ divΣPΣf dΣ.

Another representation of the surface divergence of a general vector field f is given
by

divΣf = (τ i|∂if) = tr[τ i ⊗ ∂if ] = tr∇Σf. (2.32)
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Suppose that f ∈ C1(Σ,Rn) admits a C1-extension f̃ in a neighbourhood of Σ.
Then

divΣf = divxf̃ − (νΣ|[∇xf̃ ]
TνΣ) = divxf̃ −

(
νΣ

∣∣∣ ∂f̃
∂νΣ

)
,

as can be deduced from

divΣf = (τ i|∂if) = (τ i|[∇xf̃ ]
Tτi)

= (τ i|[∇xf̃ ]
Tτi) + (νΣ|[∇xf̃ ]

TνΣ)− (νΣ|[∇xf̃ ]
TνΣ).

Suppose now that νΣ admits a C1-extension ν̃Σ in a neighbourhood of Σ such that
|ν̃Σ| = 1 is this neighbourhood. Then we have

2(νΣ(p)|[∇xν̃Σ(p)]
TνΣ(p)) =

d

dt
(ν̃Σ(p+ tνΣ(p)|ν̃(p+ tνΣ(p))

∣∣∣
t=0

= 0,

and we obtain
divxν̃Σ = divΣνΣ = −κΣ. (2.33)

Consequently, if Σ is given as the zero set of a C2-level function ϕ with ∇xϕ �= 0,
with ∇xϕ pointing in the direction of νΣ, we have the well-known formula

κΣ = −divx

(
∇xϕ

|∇xϕ|

)
.

Finally, the surface divergence for tensors is given by

divΣK = (τ j |∂jK) := (∂jK)Tτ j . (2.34)

This immediately yields the important relation

divΣPΣ = κΣνΣ. (2.35)

1.7 The Laplace-Beltrami Operator
The Laplace-Beltrami operator on Σ is defined for scalar fields by means of

ΔΣρ = divΣ∇Σρ,

which in local coordinates reads

ΔΣρ =
1
√
g
∂i[

√
ggij∂jρ].

Another representation of ΔΣ is given by

ΔΣρ = gij∂i∂jρ− gijΛk
ij∂kρ. (2.36)

This follows from (2.19), (2.25) and (2.18). Since at each point p ∈ Σ we may choose
a chart such that gij = δij and Λk

ij = 0 at p, we see from this representation that
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the Laplace-Beltrami operator is equivalent to the Laplacian at the point p; see
also Section 2.1.8 below.

To obtain another representation of ΔΣ, for a scalar C2-function we compute

∇2
Σρ = ∇Σ(τ

j∂jρ) = τ i ⊗ ∂i(τ
j∂jρ).

This yields with (2.18)

∇2
Σρ =(∂i∂jρ)τ

i ⊗ τ j + (∂jρ)τ
i ⊗ ∂iτ

j

=(∂i∂kρ− Λj
ik∂jρ)τ

i ⊗ τk + (LΣ∇Σρ)⊗ νΣ.

Taking traces gives

ΔΣρ = tr∇2
Σρ.

Similarly, the Laplace-Beltrami operator applies to general vector fields f accord-
ing to

ΔΣf = gij(∂i∂jf − Λr
ij∂rf).

For example, this yields, for the identity map idΣ on Σ,

ΔΣ idΣ = gij(∂i∂jφ− Λr
ij∂rφ) = gij(τij − Λr

ijτr),

and hence by (2.16)

ΔΣ idΣ = gij lijνΣ = κΣνΣ.

Finally, we prove the important formula

ΔΣνΣ = −∇ΣκΣ − [trL2
Σ]νΣ. (2.37)

In fact, we have from (2.12)

(ΔΣνΣ|νΣ) = gij(∂ijνΣ − Λr
ij∂rνΣ|νΣ) = gij(∂ijνΣ|νΣ) = −trL2

Σ.

Next observe that

(∂k∂jνΣ|τi)− (∂i∂jνΣ|τk) = ∂k(∂jνΣ|τi)− ∂i(∂jνΣ|τk)
= −∂k(νΣ|τij) + ∂i(νΣ|τkj) = ∂k(∂iνΣ|τj)− ∂i(∂kνΣ|τj)
= (∂iνΣ|τkj)− (∂kνΣ|τij) = Λr

kj(∂iνΣ|τr)− Λr
ij(∂kνΣ|τr)

= Λr
kj(∂rνΣ|τi)− Λr

ij(∂rνΣ|τk),

hence

(∂k∂jνΣ − Λr
kj∂rνΣ|τi) = (∂i∂jνΣ − Λr

ij∂rνΣ|τk).

This implies

(ΔΣνΣ|τi) = gjk(∂k∂jνΣ − Λr
kj∂rνΣ|τi) = (∂i∂jνΣ − Λr

ij∂rνΣ|τ j).
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On the other hand,

−(∇ΣκΣ|τi) = −∂iκΣ = ∂i(∂jνΣ|τ j)
= (∂i∂jνΣ|τ j) + (∂rνΣ|∂iτ r)
= (∂i∂jνΣ − Λr

ij∂rνΣ|τ j).

This proves formula (2.37).

1.8 The Case of a Graph over Rn−1

Suppose that Σ is a graph over Rn−1, i.e., there is a function h ∈ C2(Rn−1) such
that the hypersurface Σ is given by the chart φ(x) = [xT, h(x)]T, x ∈ Rn−1. Then
the tangent vectors are given by τi = [eTi , ∂ih]

T, where {ei} denotes the standard
basis in Rn−1. The (upward pointing) normal νΣ is given by

νΣ(x) = β(x)[−∇xh(x)
T, 1]T, β(x) = 1/

√
1 + |∇xh(x)|2.

The first fundamental form becomes gij = δij + ∂ih∂jh, hence

gij = δij − β2∂ih∂jh.

This yields
τ i = [[ei − β2∂ih∇xh]

T, β2∂ih]
T,

and with τij = [0, ∂i∂jh]
T,

lij = (τij |νΣ) = β∂i∂jh,

and therefore

κΣ = gij lij = β[Δxh− β2(∇2
xh∇xh|∇xh)] = divx

(
∇xh√

1 + |∇xh|2

)
.

The Christoffel symbols in this case are given by

Λij|k = ∂i∂jh∂kh, Λk
ij = β2∂i∂jh∂kh.

Suppose that Rn−1 × {0} is the tangent plane at φ(0) = 0 ∈ Σ. Then h(0) = 0
and ∇xh(0) = 0, hence at this point we have gij = δij , τi = [eTi , 0]

T, νΣ = [0, 1]T,
β = 1, and lij = ∂i∂jh. Thus the principal curvatures κi(0) are the eigenvalues of
∇2

xh(0), the mean curvature is κΣ(0) = Δxh(0), and Λk
ij(0) = 0.

To obtain a representation of the surface gradient, let ρ : Σ → R. Then

∇Σρ = τ j∂jρ = [[∇xρ− β2(∇xρ|∇xh)∇xh]
T, β2(∇xρ|∇xh)]

T.

Similarly, for f = (f̄ , fn) : Σ → Rn−1 × R we obtain

divΣf = (τ i|∂if) = divxf̄ + β2(∇xh|∇xf
n − (∇xh · ∇x)f̄),

and for the Laplace-Beltrami

ΔΣρ = Δxρ− β2(∇2
xρ∇xh|∇xh)− β2[Δxh− β2(∇2

xh∇xh|∇xh)](∇xh|∇xρ).
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Σ

ρνΣ

Γρ

Figure 2.2: Parameterization of Γ over Σ.

2.2 Parameterized Hypersurfaces

We consider now a hypersurface Γ = Γρ which is parameterized over a fixed
hypersurface Σ according to

q = ψρ(p) = p+ ρ(p)νΣ(p), p ∈ Σ, (2.38)

where as before νΣ = νΣ(p) denotes the outer unit normal of Σ at p ∈ Σ.
We want to derive the basic geometric quantities of Γ in terms of ρ and those

of Σ. In the sequel we assume that ρ is of class C1 and small enough. A precise
bound on ρ will be given below.

2.1 The Fundamental Form
Differentiating (2.38) we obtain with the Weingarten relations (2.11)

τΓi = ∂iψρ = τi + ρ∂iνΣ + (∂iρ)νΣ = (I − ρLΣ)τi + (∂iρ)νΣ. (2.39)

We may then compute the fundamental form GΓ = [gΓij ] of Γ to the result

gΓij = (τΓi |τΓj ) = ((I − ρLΣ)τi + ∂iρνΣ|(I − ρLΣ)τj + ∂jρνΣ)

= ((I − ρLΣ)τi|(I − ρLΣ)τj) + ∂iρ∂jρ,

= (τi|(I − ρLΣ)
2τj) + (τi|[∇Σρ⊗∇Σρ]τj)

where we used that ((I − ρLΣ)τk|νΣ) = 0. Hence

[gΓij ] = [(I − ρLΣ)
2 +∇Σρ⊗∇Σρ]ij .
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This yields the representation

[gΓij ] = [(I − ρLΣ)
2[I + (I − ρLΣ)

−2∇Σρ⊗∇Σρ]]ij

= [gik][(I − ρLΣ)
2[I + (I − ρLΣ)

−2∇Σρ⊗∇Σρ]]
k
j .

(2.40)

We then have

gΓ := detGΓ := det[gΓij ] = g det[[(I − ρLΣ)
2[I + (I − ρLΣ)

−2∇Σρ⊗∇Σρ]].

Since for any two vectors a, b ∈ Rn,

det(I + a⊗ b) = 1 + (a|b),

we obtain
gΓ = gα2(ρ)μ2(ρ), (2.41)

where
α(ρ) = det(I − ρLΣ) = det(I − ρK) = Πn−1

i=1 (1− ρκi),

and

μ(ρ) = (1 + ((I − ρLΣ)
−2∇Σρ|∇Σρ))

1/2

= (1 + ((I − ρLΣ)
−1∇Σρ|(I − ρLΣ)

−1∇Σρ))
1/2.

This yields for the surface measure dΓ on Γρ,

dΓ =
√

gΓdθ = α(ρ)μ(ρ)
√
g dθ = α(ρ)μ(ρ) dΣ, (2.42)

hence

|Γρ| =
∫
Γρ

dΓ =

∫
Σ

α(ρ)μ(ρ) dΣ,

where |Γρ| denotes the surface area of Γρ. Since

(I + a⊗ b)−1 = I − a⊗ b

1 + (a|b) ,

we obtain for [GΓ]−1 the identity

[GΓ]−1 = [gijΓ ] = [[I − μ−2(ρ)(I − ρLΣ)
−2∇Σρ⊗∇Σρ](I − ρLΣ)

−2]ik[g
kj
Σ ].

All of this makes sense only for functions ρ such that I−ρK is invertible, i.e., α(ρ)
should not vanish. Thus the precise bound for ρ is determined by the principle
curvatures of Σ, and we assume here and in the sequel that

|ρ|∞ <
1

max{|κi(p)| : i = 1, . . . , n− 1, p ∈ Σ} =: ρ0. (2.43)
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2.2 The Normal at Γ
We next compute the outer unit normal at Γ. For this purpose we set

νΓ = β(ρ)(νΣ − a(ρ)),

where β(ρ) is a scalar and a(ρ) ∈ TpΣ. Then β(ρ) = (1 + |a(ρ)|2)−1/2 and

0 = (νΓ|τΓi ) = β(ρ)(νΣ − a(ρ)|(I − ρLΣ)τi + νΣ∂iρ),

which yields

0 = ∂iρ− (a(ρ)|(I − ρLΣ)τi) = ∂iρ− ((I − ρLΣ)a(ρ)|τi),

by symmetry of LΣ. But this implies (I − ρLΣ)a(ρ) = ∇Σρ, i.e., we have

νΓ = β(ρ)(νΣ − a(ρ)) (2.44)

with

a(ρ) = M0(ρ)∇Σρ, M0(ρ) = (I − ρLΣ)
−1, β(ρ) = (1 + |a(ρ)|2)−1/2. (2.45)

Note that μ(ρ) = β−1(ρ), where μ(ρ) was introduced in the last section. By means
of a(ρ), β(ρ) and M0(ρ) this leads to another representation of GΓ and G−1

Γ ,
namely

[gΓij ] = [(I − ρLΣ)[I + a(ρ)⊗ a(ρ)](I − ρLΣ)]ij ,

and
[gijΓ ] = [M0(ρ)[I − β2(ρ)a(ρ)⊗ a(ρ)]M0(ρ)]

ij .

2.3 The Surface Gradient and the Surface Divergence on Γ
It is of importance to have a representation for the surface gradient on Γ in terms
of Σ. For this purpose recall that

PΓ = I − νΓ ⊗ νΓ = gijΓ τΓi ⊗ τΓj ,

where νΓ = β(ρ)(νΣ −M0(ρ)∇Σρ), and

τΓi = (I − ρLΣ)τ
Σ
i + ∂iρνΣ.

By virtue of LΣνΣ = 0, the latter implies

τΓi = (I − ρLΣ)(τ
Σ
i + ∂iρνΣ).

As remarked before we do not distinguish between LΣ ∈ B(Rn) and its
restriction to TpΣ. With this identification, and by the fact that (I − ρLΣ) = I on
RνΣ, we have

(I − ρLΣ)(p) ∈ Isom (Rn,Rn) ∩ Isom (TpΣ, TpΣ),
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provided ρ satisfies (2.43). As before, ρLΣ is the short form for ρ(p)LΣ(p). Hence,

M0(ρ)(p) ∈ Isom(Rn,Rn) ∩ Isom(TpΣ, TpΣ).

We conclude that
M0(ρ)τ

Γ
i = τΣi + (∂iρ)νΣ,

and therefore
PΣM0(ρ)τ

Γ
i = τΣi . (2.46)

On the other hand, we have

PΓM0(ρ)τ
r
Σ = gijΓ τΓi ⊗ τΓj M0(ρ)τ

r
Σ = τ jΓ(τ

Γ
j |M0(ρ)τ

r
Σ),

hence
PΓM0(ρ)τ

r
Σ = τ rΓ. (2.47)

(2.46) and (2.47) allow for an easy change between the bases of TpΣ and TqΓ,
where q = ψρ(p) = p+ ρ(p)νΣ(p). (2.47) implies for a scalar function ϕ on Γ,

∇Γϕ = τ rΓ∂rϕ = PΓM0(ρ)τ
r
Σ∂rϕ∗ = PΓM0(ρ)∇Σϕ∗, ϕ∗ = ϕ ◦ ψρ

which leads to the identity

∇Γϕ = PΓM0(ρ)∇Σϕ∗.

Similarly, if f denotes a vector field on Γ, then

∇Γf = PΓM0(ρ)∇Σf∗,

and so

divΓf = (τ rΓ|∂rf) = (PΓM0(ρ)τ
r
Σ|∂rf) = tr [PΓM0(ρ)∇Σf∗].

As a consequence, we obtain for the Laplace-Beltrami operator on Γ,

ΔΓϕ = tr [PΓM0(ρ)∇Σ(PΓM0(ρ)∇Σϕ∗)],

which can be written as

ΔΓϕ = M0(ρ)PΓM0(ρ) : ∇2
Σϕ∗ + (b(ρ,∇Σρ,∇2

Σρ)|∇Σϕ∗),

with b = ∂i(M0(ρ)PΓ)PΓM(ρ)τ iΣ. One should note that the structure of the
Laplace-Beltrami operator on Γ in local coordinates is

ΔΓϕ = aij(ρ, ∂ρ)∂i∂jϕ∗ + bk(ρ, ∂ρ, ∂2ρ)∂kϕ∗

with
aij(ρ, ∂ρ) = (PΓM0(ρ)τ

i
Σ|PΓM0(ρ)τ

j
Σ) = (τ iΓ|τ

j
Γ) = gijΓ
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and

bk(ρ, ∂ρ, ∂2ρ) = (PΓM0(ρ)τ
i
Σ|∂i(M0(ρ)PΓτ

k)) = (τ iΓ|∂iτkΓ) = −gijΓ Λk
Γij .

This shows that −ΔΓ is strongly elliptic on the reference manifold Σ as long as
|ρ|∞ < ρ0.

2.4 Normal Variations
For ρ, h ∈ C(Σ) sufficiently smooth and F (ρ) : Σ → Rk we define

F ′(ρ)h :=
d

dε
F (ρ+ εh)

∣∣∣
ε=0

.

First we have
M ′

0(ρ) = M0(ρ)LΣM0(ρ), M ′
0(0) = LΣ,

as M0(0) = I. Next

β′(ρ)h = −β(ρ)3
(
M0(ρ)∇Σρ

∣∣M ′
0(ρ)h∇Σρ+M0(ρ)∇Σh

)
,

which yields β′(0) = 0, as β(0) = 1. From this we get for the normal

ν(ρ) = νΓ = β(ρ)(νΣ −M0(ρ)∇Σρ)

the relation

ν′(ρ)h = β′(ρ)h(νΣ −M0(ρ)∇Σρ)− β(ρ)(M ′
0(ρ)h∇Σρ+M0(ρ)∇Σh),

which yields
ν′(0)h = −∇Σh.

This in turn implies for the projection P (ρ) := PΓ

P ′(ρ)h = −ν′(ρ)h⊗ ν(ρ)− ν(ρ)⊗ ν′(ρ)h,

hence
P ′(0)h = ∇Σh⊗ νΣ + νΣ ⊗∇Σh =: [∇Σ ⊗ νΣ + νΣ ⊗∇Σ]h.

Applying these relations to ∇(ρ) := ∇Γ = P (ρ)M0(ρ)∇Σ yields

(∇′(0)h)ϕ = [P ′(0)h+ P (0)M ′(0)h]∇Σϕ

= [∇Σh⊗ νΣ + νΣ ⊗∇Σh+ hLΣ]∇Σϕ = [νΣ ⊗∇Σh+ hLΣ]∇Σϕ,

and for a not necessarily tangent vector field f

(∇′(0)h)f = νΣ ⊗ (∇Σh|∇Σ)f + hLΣ∇Σf

where (∇Σh|∇Σ)f := (∇Σh|τ j)∂jf . For the divergence of the vector field f this
implies

[div′(0)h]f = (νΣ|(∇Σh|∇Σ)f) + h tr[LΣ∇Σf ].



60 Chapter 2. Tools from Differential Geometry

Finally, the variation of the Laplace-Beltrami operator Δ(ρ) := ΔΓ becomes

(Δ′(0)h)ϕ = h tr[LΣ∇2
Σϕ+∇Σ(LΣ∇Σϕ)] + 2(LΣ∇Σh|∇Σϕ)− κ(∇Σh|∇Σϕ).

Note that in local coordinates we have

tr[LΣ∇2
Σϕ] = lijΣ (∂i∂jϕ− Λk

ij∂kϕ),

hence with
tr[∇Σ(LΣ∇Σϕ)] = tr[LΣ∇2

Σϕ] + (divΣLΣ|∇Σϕ),

we may write alternatively

(Δ′(0)h)ϕ = 2h tr[LΣ∇2
Σϕ] + (h divΣLΣ + [2LΣ − κΣ]∇Σh|∇Σϕ).

2.5 The Weingarten Tensor and the Mean Curvature of Γ
In invariant formulation we have

L(ρ) := LΓ = −∇ΓνΓ = −P (ρ)M0(ρ)∇Σ{β(ρ)(νΣ −M0(ρ)∇Σρ)}.

Thus for the variation of LΓ at ρ = 0 we obtain with P (0) = PΣ, β(0) = 1,
M0(0) = I, and P ′(0) = ∇Σ ⊗ νΣ + νΣ ⊗∇Σ, β

′(0) = 0, M ′
0(0) = LΣ,

L′(0) = νΣ ⊗ LΣ∇Σ + L2
Σ +∇2

Σ.

In particular, for κ(ρ) := κΓ we have

κ(ρ) = −tr[∇ΓνΓ] = trL(ρ),

hence
κ′(0) = trL2

Σ +ΔΣ. (2.48)

Let us take another look at the mean curvature κ(ρ) := κΓ. By the relations
τ rΓ = PΓM0(ρ)τ

r
Σ and νΓ = β(ρ)(νΣ − a(ρ)) we obtain

κ(ρ) = −(τ jΓ|∂jνΓ) = −(PΓM0(ρ)τ
j
Σ|(∂jβ(ρ)/β(ρ))νΓ + β(ρ)(∂jνΣ − ∂ja(ρ)))

= β(ρ)(PΓM0(ρ)τ
j
Σ|LΣτ

Σ
j + ∂ja(ρ))

= β(ρ)(M0(ρ)τ
j
Σ|LΣτ

Σ
j + ∂ja(ρ))− β(ρ)(νΓ|M0(ρ)τ

j
Σ)(νΓ|LΣτ

Σ
j + ∂ja(ρ)).

Since (M0(ρ)τ
j
Σ|LΣτ

Σ
j ) = tr[M0(ρ)LΣ] as well as

(M0(ρ)τ
j
Σ|∂ja(ρ)) = tr[M0(ρ)∇Σa(ρ)],

and (νΓ|M0(ρ)τ
j
Σ) = −β(ρ)[M0(ρ)a(ρ)]

j , we obtain

κ(ρ) = β(ρ)
{
tr
[
M0(ρ)(LΣ +∇Σa(ρ))

]
+ β2(ρ)

[
M0(ρ)a(ρ)

]j[
(νΣ|∂ja(ρ))− (a(ρ)|∂ja(ρ))− (a(ρ)|LΣτ

Σ
j )
]}

= β(ρ)
{
tr
[
M0(ρ)(LΣ +∇Σa(ρ))

]
− β2(ρ)(M0(ρ)a(ρ)|∇Σa(ρ)a(ρ))

}
,
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as (νΣ|a(ρ)) = 0 implies

(νΣ|∂ja(ρ)) = −(∂jνΣ|a(ρ)) = (LΣτ
Σ
j |a(ρ)).

This yields the final form for the mean curvature of Γ.

κ(ρ) = β(ρ)
{
tr
[
M0(ρ)(LΣ+∇Σa(ρ))

]
−β2(ρ)(M0(ρ)a(ρ)|[∇Σa(ρ)]a(ρ))

}
. (2.49)

Recall that a(ρ) = M0(ρ)∇Σρ.
We can write the curvature of Γ in local coordinates in the following form.

κ(ρ) = cij(ρ, ∂ρ)∂i∂jρ+ g(ρ, ∂ρ),

with
cij(ρ, ∂ρ) = β(ρ)[M2

0 (ρ)]
ij − β3(ρ)[M2

0 (ρ)∇Σρ]
i[M2

0 (ρ)∇Σρ]
j .

A simple computation yields for the symbol c(ρ, ξ) = cij(ρ, ∂ρ)ξiξj of the principal
part of −κ(ρ)

c(ρ, ξ) = β(ρ){|M0(ρ)ξ|2 − β2(ρ)(a(ρ)|M0(ρ)ξ)
2} ≥ β3(ρ)|M0(ρ)ξ|2 ≥ η|ξ|2,

for ξ = ξkτ
k
Σ ∈ TpΣ, as long as |ρ|∞ < ρ0. Therefore, −κ(ρ) is a quasilinear

strongly elliptic differential operator on Σ, acting on the parameterization ρ of Γ
over Σ.

2.6 The Area Functional
As shown before, the area functional for the surface Γρ = {p+ ρ(p)νΣ(p) : p ∈ Σ}
is given by

Φ(ρ) =

∫
Γρ

dΓ =

∫
Σ

α(ρ)μ(ρ) dΣ.

Here we use the notation

α(ρ) = det(I − ρK) = Πn−1
i=1 (1− ρκi), μ(ρ) = (1 + |a(ρ)|2)1/2,

with a(ρ) defined in (2.45).
We compute its first variation to the result

〈Φ′(ρ)|h〉 =
∫
Σ

[(μ(ρ)α′(ρ) + α(ρ)μ′(ρ)]h dΣ.

For the derivatives of α and μ we get

α′(ρ) = α(ρ)
n−1∑
i=1

−κi

1− ρκi
, μ′(ρ)h = μ(ρ)−1(a(ρ)|a′(ρ)h).

In particular, at ρ = 0 we get with α(0) = μ(0) = 1 and a(0) = 0

α′(0) = −κΣ, μ′(0) = 0.
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This implies for the first variation of Φ at ρ = 0,

〈Φ′(0)|h〉 = −
∫
Σ

κΣh dΣ. (2.50)

This shows, in particular, that the critical points of the area functional Φ are
hypersurfaces with mean curvature κΣ = 0. Such surfaces are called minimal
surfaces.

Similarly, the second variation becomes

〈Φ′′(ρ)h|k〉 =
∫
Σ

[μ(ρ)α′′(ρ) + α(ρ)μ′′(ρ)]hk dΣ

+

∫
Σ

[α′(ρ)hμ′(ρ)k + α′(ρ)kμ′(ρ)h] dΣ.

Since α(0) = μ(0) = 1 and μ′(0) = 0 we get

〈Φ′′(0)h|k〉 =
∫
Σ

[α′′(0) + μ′′(0)]hk dΣ.

We have

α′′(ρ) = α(ρ)
[( n−1∑

i=1

−κi

1− ρκi

)2

−
n−1∑
i=1

κ2
i

(1− ρκi)2

]
,

hence

α′′(0) =
( n−1∑

i=1

κi

)2

−
n−1∑
i=1

κ2
i = (trK)2 − trK2,

which is the second invariant of the shape operator K.
In particular, in case Σ is a sphere of radius R we have κi = −1/R, hence

α′′(0) = (n− 1)(n− 2)/R2.
For the second derivative of μ at ρ = 0 we obtain

μ′′(0)hk = (a′(0)h|a′(0)k) = (∇Σh|∇Σk).

This yields the following representation for the second variation of Φ at ρ = 0,

〈Φ′′(0)h|k〉 =
∫
Σ

{[(trK)2 − trK2]hk + (∇Σh|∇Σk)}dΣ. (2.51)

By means of the surface divergence theorem (2.24), this representation can be
rewritten as

〈Φ′′(0)h|k〉 =
∫
Σ

{[(trK)2 − trK2]h−ΔΣh}k dΣ,

and therefore
Φ′′(0)h = [(trK)2 − trK2]h−ΔΣh, (2.52)
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i.e., Φ′′(0) is the Jacobi operator, (sometimes also called the stability operator).
Thus we see that

Φ′′(0) = −κ′(0) + κ2
Σ.

In the next section we will come back to this relation.

2.7 The Volume Functional
Let Ωρ denote the domain bounded by the surface Γρ = {p+ ρ(p)νΣ(p) : p ∈ Σ}.
We define the volume functional Ψ by means of

Ψ(ρ) := |Ωρ|. (2.53)

In order to obtain the variation of Ψ(ρ) we rewrite the volume functional by means
of the divergence theorem as

nΨ(ρ) =

∫
Ωρ

div x dx =

∫
Γρ

(x|νΓ) dΓ =

∫
Σ

(idΣ + ρνΣ|νΓ)α(ρ)μ(ρ) dΣ,

which yields, with νΓ = β(ρ)(νΣ − a(ρ)),

nΨ(ρ) =

∫
Σ

[ρ+ (idΣ|νΣ − a(ρ))]α(ρ) dΣ,

where as before α(ρ) = det(I − ρK) = Πn−1
i=1 (1 − ρκi). The first variation of Ψ

then is

n〈Ψ′(ρ)|h〉 =
∫
Σ

{[ρ+ (idΣ|νΣ − a(ρ))]α′(ρ)h+ [h− (idΣ|a′(ρ)h)]α(ρ)} dΣ.

From α(0) = 1, α′(0) = −κΣ and a′(0)h = ∇Σh follows

n〈Ψ′(0)|h〉 =
∫
Σ

[1− (idΣ|νΣ)κΣ]h dΣ−
∫
Σ

(idΣ|∇Σh) dΣ

=

∫
Σ

(1 + divΣ idΣ)h dΣ,

where we used the surface divergence theorem (2.31) in the last step. From

divΣ idΣ = (τ i|∂i idΣ) = (τ i|τi) = (n− 1)

follows the well-known formula for the first variation of the volume functional

〈Ψ′(0)|h〉 =
∫
Σ

h dΣ. (2.54)

Now we reconsider the area functional Φ. We want to minimize surface area of
Σ under the constraint that the volume of the domain bounded by Σ is a given
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constant Ψ0. The method of Lagrange multipliers yields a number λ ∈ R such that
Φ′ − λΨ′ = 0. According to (2.50) and (2.54), this means

0 = 〈Φ′ − λΨ′|h〉 = −
∫
Σ

(κΣ + λ)h dΣ = 0,

for all functions h. This implies κΣ ≡ −λ, i.e., Σ must be a sphere since Σ is an
embedded closed and compact hypersurface. But then the value Φ is given by the
constraint, i.e.,

Φ(SR(x0)) = ωnR
n−1, κΣ = −(n− 1)/R, λ = (n− 1)/R, (ωn/n)R

n = Ψ0.

The second variation of Ψ can be computed as follows.

n〈Ψ′′(0)h|k〉 =
∫
Σ

(idΣ|νΣ)α′′(0)hk dΣ

+

∫
Σ

{[k − (idΣ|∇Σk)]h+ [(h− (idΣ|∇Σh)]k}α′(0) dΣ

−
∫
Σ

(idΣ|a′′(0)hk)α(0) dΣ.

We observe that

(idΣ|∇Σk)h+ (idΣ|∇Σh)]k = (idΣ|∇Σ(hk))

and

a′′(0)hk = M ′
0(0)k∇Σh+M ′

0(0)h∇Σk = LΣ[k∇Σh+ h∇Σk] = LΣ∇Σ(hk).

Collecting terms this yields

〈Ψ′′(0)h|k〉 = 1

n

∫
Σ

[(idΣ|νΣ)α′′(0) + 2α′(0)]hk dΣ

− 1

n

∫
Σ

(idΣ|[α′(0)I + LΣ]∇Σ(hk)) dΣ.

(2.55)

Here we recall that α′(0) = −κΣ and α′′(0) = (trLΣ)
2 − trL2

Σ.

In particular, for a sphere of radius R centered at the origin we get idΣ = RνΣ,
and hence

〈Ψ′′(0)h|k〉 = 1

n

∫
Σ

[
R(n− 1)(n− 2)

R2
+

2(n− 1)

R

]
hk dΣ =

n− 1

R

∫
Σ

hk dΣ.

This implies at a stationary point of the surface functional Φ with constraint
Ψ(ρ) = c with Φ′ + λΨ′ = 0 and λ = κΣ,

Φ′′ + λΨ′′ = −ΔΣ − (n− 1)/R2 = −κ′(0).
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2.3 Approximation of Hypersurfaces

3.1 The Tubular Neighbourhood of a Hypersurface
Let Σ be a compact connected C2-hypersurface bounding a domain Ω ⊂ Rn, and
let νΣ be the outer unit normal field on Σ with respect to Ω. Then Σ satisfies the
uniform interior and exterior ball condition , i.e., there is a number a > 0 such
that for each point p ∈ Σ there are balls B(x1, a) ⊂ Ω and B(x2, a) ⊂ Ω̄c, such
that Σ ∩ B̄(xi, a) = {p}. Choosing the radius a0 maximal, we set a = a0/2 in the
sequel. Consider the mapping

Λ : Σ× (−a, a) → Rn, Λ(p, r) := p+ rνΣ(p). (2.56)

We claim that Λ is a C1-diffeomorphism onto its image

Ua := im(Λ) = {x ∈ Rn : dist(x,Σ) < a}.

Note that the centers of the balls B(xi, a) necessarily are equal to x1 = p−aνΣ(p)
and x2 = p+ aνΣ(p). To prove injectivity of Λ, suppose

p1 + r1νΣ(p1) = p2 + r2νΣ(p2),

where we may assume w.l.o.g. that r2 ≤ r1 < a. But then

p2 − (p1 + r1νΣ(p1)) = −r2νΣ(p2),

hence p2 ∈ B̄(p1 + r1νΣ(p1), r1) ∩ Σ = {p1}, which shows p1 = p2 and then also
r1 = r2. The set Ua will be called the tubular neighbourhood of Σ of of width a.
To prove that Λ is a diffeomorphism, fix a point (p0, r0) ∈ Σ× (−a, a) and a chart
φ for p0. Then the function f(θ, r) = Λ(φ(θ), r) has derivative

Df(0, r0) = [[I − r0LΣ(p0)]φ
′(0), νΣ(p0)].

It follows from (2.58) that [I−r0LΣ(p0)] ∈ B(Tp0
Σ) is invertible, and consequently,

Df(0, r0) ∈ B(Rn) is invertible as well. The inverse function theorem implies that
Λ is locally invertible with inverse of class C1.

It will be convenient to decompose the inverse of Λ into Λ−1 = (ΠΣ, dΣ) such
that

ΠΣ ∈ C1(Ua,Σ), dΣ ∈ C1(Ua, (−a, a)). (2.57)

ΠΣ(x) is the nearest point on Σ to x, dΣ(x) is the signed distance from x to Σ.
From the uniform interior and exterior ball condition follows that the number

1/a0 bounds the principal curvatures of Σ, i.e.,

max{κi(p) : p ∈ Σ, i = 1, · · · , n− 1} ≤ 1/a0. (2.58)

A remarkable fact is that the signed distance dΣ is even of class C2. To see this,
we use the identities

x−ΠΣ(x) = dΣ(x)νΣ(ΠΣ(x)), dΣ(x) = (x−ΠΣ(x)|νΣ(ΠΣ(x)).
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Differentiating w.r.t. xk this yields

∂xk
dΣ(x) = (ek − ∂xk

ΠΣ(x)|νΣ(ΠΣ(x))) + (x−ΠΣ(x)|∂xk
(νΣ ◦ΠΣ)(x))

= νkΣ(ΠΣ(x)) + dΣ(x)(νΣ(ΠΣ(x))|∂xk
(νΣ ◦ΠΣ(x)))

= νkΣ(ΠΣ(x)),

since ∂xk
ΠΣ(x) belongs to the tangent space TΠΣ(x)Σ, as does ∂xk

(νΣ ◦ ΠΣ(x)),
since |νΣ ◦ΠΣ(x)| ≡ 1. Thus we have the formula

∇xdΣ(x) = νΣ(ΠΣ(x)), x ∈ Ua. (2.59)

This shows, in particular, that dΣ is of class C2.
It is useful to also have a representation for the derivatve ∂ΠΣ(x) of ΠΣ(x).

With

I − ∂ΠΣ(x) = νΣ(ΠΣ(x))⊗∇xdΣ(x) + dΣ(x)∂νΣ(ΠΣ(x))∂ΠΣ(x),

and (2.59), we obtain

∂ΠΣ(x) = M0(dΣ(x))(ΠΣ(x))PΣ(ΠΣ(x)), (2.60)

where M0(r)(p) := (I− rLΣ(p))
−1. This shows that ∂ΠΣ(p) = ∇xΠΣ(p) = PΣ(p),

the orthogonal projection onto the tangent space TpΣ.

3.2 The Level Function
Let Σ be a compact connected hypersurface of class C2 bounding the domain Ω in
Rn. According to the previous section, Σ admits a tubular neighbourhood Ua of
width a > 0. We may assume w.l.o.g. a ≤ 1. The signed distance function dΣ(x)
in this tubular neighbourhood is of class C2 as well, and since

∇xdΣ(x) = νΣ(ΠΣ(x)), x ∈ Ua,

we can view ∇xdΣ(x) as a C1-extension of the normal field νΣ(x) from Σ to the
tubular neighbourhood Ua of Σ. Computing the second derivatives∇2

xdΣ we obtain

∇2
xdΣ(x) = ∇xνΣ(ΠΣ(x)) = −LΣ(ΠΣ(x))PΣ(ΠΣ(x))(I − dΣ(x)LΣ(ΠΣ(x)))

−1

= −LΣ(ΠΣ(x))(I − dΣ(x)LΣ(ΠΣ(x)))
−1,

for x ∈ Ua, as LΣ(p) = LΣ(p)PΣ(p). Taking traces then yields

ΔdΣ(x) = −
n−1∑
i=1

κi(ΠΣ(x))

1− dΣ(x)κi(ΠΣ(x))
, x ∈ Ua. (2.61)

In particular, this implies

∇2
xdΣ(p) = −LΣ(p), ΔxdΣ(p) = −κΣ(p), p ∈ Σ. (2.62)
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Therefore the norm of ∇2
xdΣ is equivalent to the maximum of the moduli of the

curvatures of Σ at a fixed point. Hence we find a constant c, depending only on
n, such that

c|∇2
xdΣ|∞ ≤ max{|κi(p)| : i = 1, . . . , n− 1, p ∈ Σ} ≤ c−1|∇2

xdΣ|∞.

Next we extend dΣ as a function ϕ to all of Rn. For this purpose we choose a C∞-
function χ(s) such that χ(s) = 1 for |s| ≤ 1, χ(s) = 0 for |s| ≥ 2, 0 ≤ χ(s) ≤ 1.
Then we set

ϕ(x) :=

{
dΣ(x)χ(3dΣ(x)/a) + sign (dΣ(x))(1− χ(3dΣ(x)/a)), x ∈ Ua,

χΩex
(x)− χΩin

(x), x /∈ Ua,
(2.63)

where Ωex and Ωin denote the exterior and interior component of Rn \Ua, respec-
tively. This function ϕ is then of class C2, ϕ(x) = dΣ(x) for x ∈ Ua/3, and

ϕ(x) = 0 ⇔ x ∈ Σ.

Thus Σ is given as zero-level set of ϕ, i.e., Σ = ϕ−1(0). ϕ is called a canonical level
function for Σ. It is a special level function for Σ, as

∇xϕ(x) = νΣ(ΠΣ(x)) for x ∈ Ua/3.

3.3 Existence of Parameterizations
Recall the Hausdorff metric on the set K of compact subsets of Rn defined by

dH(K1,K2) = max{ sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)}. (2.64)

Suppose Σ is a compact connected closed hypersurface of class C2 bounding a
bounded domain in Rn. As before, let Ua be its tubular neighbourhood, ΠΣ : Ua →
Σ the projection and dΣ : Ua → R the signed distance. We want to parameterize
hypersurfaces Γ which are close to Σ as

Γ = {p+ ρ(p)νΣ(p) : p ∈ Σ},

where ρ : Σ → R is then called the normal parameterization of Γ over Σ. For this
to make sense, Γ must belong to the tubular neighbourhood Ua of Σ. Therefore,
a natural requirement would be dH(Γ,Σ) < a. We then say that Γ and Σ are
C0-close (of order ε) if dH(Γ,Σ) < ε.

However, this condition is not enough to allow for existence of a normal
parameterization, since it is not clear that the map ΠΣ is injective on Γ: small
Hausdorff distance does not prevent Γ from folding within the tubular neighbour-
hood. We need a stronger assumption to prevent this. If Γ is a hypersurface of
class C1 we may introduce the normal bundle NΓ defined by

NΓ := {(q, νΓ(q)) : q ∈ Γ} ⊂ R2n.
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Suppose Γ is a compact, connected C1-hypersurface in Rn. We say that Γ and
Σ are C1-close (of order ε) if dH(NΓ,NΣ) < ε. We are going to show that C1-
hypersurfaces Γ which are C1-close to Σ can in fact be parametrized over Σ.

For this purpose observe that, in case Γ and Σ are C1-close of order ε,
whenever q ∈ Γ, there is p ∈ Σ such that |q − p| + |νΓ(q) − νΣ(p)| < ε. Hence
|q −ΠΣq| < ε, with ΠΣq := ΠΣ(q), and

|νΓ(q)− νΣ(ΠΣq)| ≤ |νΓ(q)− νΣ(p)|+ |νΣ(ΠΣq)− νΣ(p)| ≤ ε+ L|ΠΣq − p|,

which yields with |ΠΣq − p| ≤ |ΠΣq − q|+ |p− q| < 2ε,

|q −ΠΣq|+ |νΓ(q)− νΣ(ΠΣq)| ≤ 2(1 + L)ε,

where L denotes the Lipschitz constant of the normal of Σ. In particular, the
tangent space TqΓ is transversal to νΣ(ΠΣq), for each q ∈ Γ, that is,

(νΣ(ΠΣq) | νΓ(q)) �= 0, q ∈ Γ.

Now fix a point q0 ∈ Γ and set p0 = ΠΣq0. Since the tangent space Tq0Γ is
transversal to νΣ(p0), we infer that Π′

Σ(q0) : Tq0Γ → Tp0
Σ is invertible. The

inverse function theorem yields an open neighbourhood V (p0) ⊂ Σ and a C1-map
g : V (p0) → Γ such that g(p0) = q0, g(V (p0)) ⊂ Γ, and ΠΣg(p) = p in V (p0).
Therefore we obtain

q = g(p) = Λ ◦ (ΠΣ, dΣ)g(p) = ΠΣg(p) + dΣ(g(p))νΣ(ΠΣg(p)) = p+ ρ(p)νΣ(p),

with
ρ(p) := dΣ(g(p)).

Thus we have a local normal parameterization of Γ over Σ. We may extend g to a
maximal domain V ⊂ Σ, e.g. by means of Zorn’s lemma. Clearly V is open in Σ
and we claim that V = Σ. If not, then the boundary of V in Σ is nonempty and
hence we find a sequence pn ∈ V such that pn → p∞ ∈ ∂V . Since ρn = ρ(pn) is
bounded, we may assume w.l.o.g. that ρn → ρ∞. But then q∞ = p∞ + ρ∞νΣ(p∞)
belongs to Γ as Γ is closed. Now we may apply the inverse function theorem again
to see that V cannot be maximal. Since the map Φ(p) = p + ρ(p)νΣ(p) is a local
C1-diffeomorphism, it is also open. Hence Φ(Σ) ⊂ Γ is open and compact, i.e.,
Φ(Σ) = Γ by connectedness of Γ. The map Φ is therefore a C1-diffeomorphism
from Σ to Γ. In case Σ is of class Ck+1 and Γ is of class Ck for k ≥ 1 the proof
above immediately implies that Φ ∈ Diffk(Σ,Γ).

Observe that because of x = ΠΣx + dΣ(x)νΣ(ΠΣx) in Ua we have x ∈ Γ if
and only if dΣ(x) = ρ(ΠΣx). This property can be used to construct a C1-function
ψ on Rn such that Γ = ψ−1(0), i.e., a level function for Γ. For example we may
take

ψ(x) = ϕ(x)− ρ(ΠΣx)χ(3dΣ(x)/a), x ∈ Rn,

provided ε < a/3, where ϕ and χ are defined in (2.63).
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3.4 Approximation of Hypersurfaces
Suppose as before that Σ is a compact connected hypersurface of class C2 bounding
a bounded domain Ω in Rn. We may use the level function ϕ : Rn → R introduced
in (2.63) to construct a real analytic hypersurface Σε such that Σ appears as a
C2-graph over Σε. In fact, we show that there is ε0 ∈ (0, a/3) such that for every
ε ∈ (0, ε0) there is an analytic manifold Σε and a function ρε ∈ C2(Σε) with the
property that

Σ = {p+ ρε(p)νΣε
(p) : p ∈ Σε}

and
|ρε|∞ + |∇Σε

ρε|∞ + |∇2
Σε

ρε|∞ ≤ ε.

For this purpose, choose R > 0 such that ϕ(x) = 1 for |x| > R/2. Then define

ψk(x) = ck

(
1− |x|2

R2

)k

+
, x ∈ Rn,

where ck > 0 is chosen such that
∫
Rn ψk(x)dx = 1. Then ck ∼ αkn/2 as k → ∞,

with some number α = α(n,R). Indeed, we have∫
B(0,R)

(
1− |x|2

R2

)k

dx = ωnR
n

∫ 1

0

(1− r2)krn−1 dr =
ωnR

n

2

∫ 1

0

(1− t)ktn/2−1 dt,

where ωn = |∂B(0, 1)|. Using the well-known relations∫ 1

0

(1− t)ktn/2−1 dt = B
(n
2
, k + 1

)
=

Γ(n2 )Γ(k + 1)

Γ(k + 1 + n
2 )

∼ Γ(n/2)k−n/2

with B the Beta function and Γ the Gamma function, the claim follows, with
α = ((ωnR

n/2)Γ(n/2))−1 = (πR2)−n/2.
Then as k → ∞, we have ψk(x) → 0, uniformly for |x| ≥ η > 0, since

kn/2qk → 0 for any fixed q ∈ (0, 1). Consequently, ψk ∗ f → f in Cm
ub(R

n),
whenever f ∈ Cm

ub(R
n). Let ϕk = 1 + ψk ∗ (ϕ− 1). Then

ϕk → ϕ in C2
ub(R

n). (2.65)

Moreover,

ψk ∗ (ϕ− 1)(x) =

∫
Rn

(ϕ(y)− 1)ψk(x− y)dy =

∫
|y|≤R/2

(ϕ(y)− 1)ψk(x− y)dy.

For |x|, |y| < R/2 follows |x−y| < R, and hence ψk(x−y) = ck(1−|x−y|2/R2)k is
polynomial in x, y. But then ϕk(x) is a polynomial for such values of x; in particu-
lar, ϕk is real analytic in Ua. Choosing k large enough, we have |ϕ−ϕk|C2

b (R
n) < ε.

Now suppose ϕk(x) = 0. Then |ϕ(x)| < ε, hence x ∈ Ua and then |dΣ(x)| < ε.
This shows that the set Σk := ϕ−1

k (0) is in the ε-tubular neighbourhood around
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Σ. Moreover, |∇ϕk − ∇ϕ|∞ < ε yields ∇ϕk(x) �= 0 in Ua, and therefore Σk is a
manifold, which is real analytic.

Next we show that Σ and Σk are C1-diffeomorphic. For this purpose, fix a
point q0 ∈ Σk. Then q0 = p0 + r0νΣ(p0), where p0 = ΠΣq0 ∈ Σ and r0 = dΣ(q0).
Consider the equation gk(p, r) := ϕk(p+ rνΣ(p)) = 0 near (p0, r0). Since

∂rgk(p, r) = (∇xϕk(p+ rνΣ(p))|νΣ(p))

we have

∂rgk(p0, r0) = (∇xϕk(q0)|∇xϕ(p0))

≥ 1− |∇xϕk(q0)−∇xϕ(q0)| − |∇xϕ(q0)−∇xϕ(p0)|
≥ 1− |ϕk − ϕ|C1

b (R
n) − ε|∇2

xϕ|Cb(Rn) > 0.

Therefore, we may apply the implicit function theorem to obtain an open neigh-
bourhood V (p0) ⊂ Σ and a C1-function rk : V (p0) → R such that rk(p0) = r0
and p+ rk(p)νΣ(p) ∈ Σk for all p ∈ V (p0). We can now proceed as in the previous
subsection to extend rk(·) to a maximal domain V ⊂ Σ, which coincides with Σ
by compactness and connectedness of Σ.

Thus we have a well-defined C1-map fk : Σ → Σk, fk(p) = p + rk(p)νΣ(p),
which is injective and a diffeomorphism from Σ to its range. We claim that fk is
also surjective. If not, there is some point q ∈ Σk, q �∈ fk(Σ). Set p = ΠΣq. Then
q = p + dΣ(p)νΣ(p) with dΣ(p) �= rk(p). Thus, there are at least two numbers
β1, β2 ∈ (−a, a) with p+ βiνΣ(p) ∈ Σk. This implies with νΣ = νΣ(p)

0 = ϕk(p+β2νΣ)−ϕk(p+β1νΣ) = (β2−β1)

∫ 1

0

(∇xϕk(p+(β1+t(β2−β1))νΣ)|νΣ) dt,

which yields β2 − β1 = 0 since∫ 1

0

(∇xϕk(p+ (β1 + t(β2 − β1))νΣ)|νΣ) dt ≥ 1− ε− ε|∇2
xϕ|Cb(Rn) > 0,

as above. Therefore, the map fk is also surjective, and hence fk ∈ Diff1(Σ,Σk).
This implies, in particular, that Σk = fk(Σ) is connected. For later use we note
that

|rk|∞ + |∇Σrk|∞ → 0 as k → ∞,

as can be inferred from ∂irk(p) = (τΣk
i (p+rk(p)νΣ(p))|νΣ(p)) for p ∈ Σ, see (2.39).

Next we show that the mapping

Λk : Σk × (−a/2, a/2) → U(Σk, a/2), Λk(q, s) := q + sνk(q)

is a C1-diffeomorphism for k ≥ k0, with k0 ∈ N sufficiently large. In order to see
this, we use the diffeomorphism fk constructed above to rewrite Λk as

Λk(q, s) = Λk(fk(p), s)

= p+ s νΣ(p) + rk(p)νΣ(p) + s[νk(p+ rk(p)νΣ(p))− νΣ(p)]

=: Λ(p, s) +Gk(p, s) =: Hk(p, s).
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Clearly Hk ∈ C1(Σ × (−a/2, a/2),Rn) and Λ ∈ Diff1(Σ × (−a, a), U(Σ, a)). It is
not difficult to see that

|Gk(p, s)|+ |DGk(p, s)| → 0 as k → ∞, uniformly in (p, s) ∈ Σ× [−a/2, a/2].

Consequently, DHk(p, s) : TpΣ×(−a/2, a/2) → Rn is invertible for k ≥ k0, and by
the inverse function theorem,Hk is a local C1-diffeomorphism. We claim thatHk is
injective for all k sufficiently large. For this purpose, note that due to compactness
of Σ× [−a/2, a/2] and injectivity of Λ there exists a constant c > 0 such that

|Λ(p, s)− Λ(p̄, s̄)| ≥ c
(
|p− p̄|+ |s− s̄|

)
, (p, s), (p̄, s̄) ∈ Σ× [−a/2, a/2].

The properties of Gk and compactness of Σ× [−a/2, a/2] imply, in turn, that the
estimate above remains true for Λ replaced by Hk, and c replaced by c/2, provided
k ≥ k0 with k0 sufficiently large. Hence Hk is a C1-diffeomorphism onto its image
for k sufficiently large, as claimed. This shows that Σk has a uniform tubular
neighbourhood of width a/2 for any k ≥ k0, and it follows that Σ ⊂ U(Γk, a/2).
Σ and Σk are compact connected closed C1 hypersurfaces, and we may now apply
the results of the previous subsection, showing that Σ can be parameterized over
Σk by means of

p �→ p+ ρk(p)νk(p) with ρk ∈ C2(Σk,R),

with νk := νΣk
.

Finally we show that |ρk|∞ + |∇Σk
ρk|∞ + |∇2

Σk
ρk|∞ ≤ ε for k sufficiently

large. We already know from the construction that |ρk|∞ → 0 as k → ∞. However,
we need the following estimate on the rate of convergence: there exists k0 ∈ N and
a constant C = C(k0) such that

|ρk|∞ ≤ Ck−1/2, k ≥ k0. (2.66)

In order to see this, we first observe that, for |x| ≤ R/2,

|ϕ(x)− ϕk(x)| =
∣∣∣ ∫

Rn

[ϕ(x)− ϕ(x− y)]ψk(y) dy
∣∣∣ ≤ |∇ϕ|∞

∫
|y|≤R

|y|ψk(y)dy

= |∇ϕ|∞C(n,R)ckB
(n+ 1

2
, k + 1

)
.

Using similar arguments as above for the asymptotics of ck and B((n+1)/2, k+1)
this yields constants k0 ∈ N and C = C(k0) such that |ϕ(x) − ϕk(x)| ≤ Ck−1/2,
whenever |x| ≤ R/2 and k ≥ k0. Let p ∈ Σk be given, and let q = p+ ρk(p)νk(p).
Then |ϕk(q)| = |ϕk(q)− ϕ(q)| ≤ Ck−1/2 for k ≥ k0. On the other hand,

|ϕk(q)| = |ϕk(q)− ϕk(p)| = ρk(p)
∣∣∣ ∫ 1

0

(∇ϕk(p+ tρk(p)νk(p)|νk(p))dt
∣∣∣ ≥ 1

2
ρk(p),

provided k is sufficiently large, and this implies (2.66).
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Next we show that there exists k0 ∈ N and C = C(k0) such that |∂αϕk(x)| ≤
Ck1/2 whenever k ≥ k0, |x| ≤ R/2, and |α| = 3. Indeed this follows from

|∂�∂i∂jϕk(x)| = (2/R2)kck

∣∣∣ ∫
|y|≤R

∂i∂jϕk(x− y)y�(1− |y|2/R2)k−1dy
∣∣∣

≤ CkckB
(n+ 1

2
, k
)
∼ ck1/2,

where c is an appropriate constant. Combining with (2.66) we have shown that
there are constants k0 ∈ N and C = C(k0) such that

ρk(p)|∂αϕk(x)| ≤ C, (2.67)

for k ≥ k0, |α| = 3, p ∈ Σk, and |x| ≤ R/2.
In order to show smallness of |∇Σk

ρk|∞+ |∇2
Σk

ρk|∞, we consider the relation

ϕ
(
ψk(θ) + (ρkνk)(ψk(θ)

)
= 0, θ ∈ Θk, (2.68)

where ψk : Θk → Σk is a C2-parameterization of Σk around a point pk = fk(q) for
some q ∈ Σ. Since Σk = ϕ−1

k (0) and ϕk → ϕ in C2
ub(R

n) one shows that |∂jψk(0)|
is uniformly bounded in k for k sufficiently large.

Let ν̃k(x) := ∇xϕk(x)/|∇xϕk(x)| for x ∈ Rn. Clearly, νk(ψk(θ)) =
ν̃k(ψk(θ)). Taking partial derivatives in (2.68) and using the orthogonality relation
(∇xϕk(ψk(θ)) | ∂jψk(θ)) = 0 yields

∂j(ρk ◦ ψk)(θ)
(
∇xϕ(qk(θ)) | (νk ◦ ψk)(θ)

)
=
(
∇xϕ(qk(θ))−∇xϕk(ψk(θ)) | ∂jψk(θ)

)
− (ρk ◦ ψk)(θ)

(
∇xϕ(qk(θ)) | ∂j(ν̃k ◦ ψk)(θ)

) (2.69)

where, for brevity, we set qk(θ) = ψk(θ) + (ρkνk)(ψk(θ)). It follows from (2.65)
and uniform continuity that

(∇xϕ(qk(θ))|(νk ◦ ψk)(θ)) ≥ 1/2, (2.70)

provided k ≥ k0 with k0 sufficiently large. The fact that ∂jψk(θ) is uniformly
bounded for k ≥ k0 and (2.65) implies that the right-hand side in (2.69) converges
to zero as k → ∞. We have shown that |∂jρk(pk)| ≤ ε, provided that k ≥ k0 with
k0 sufficiently large.

Next, we take an additional derivative ∂i = ∂θi in (2.69). This will produce
the terms

∂i∂j(ρk ◦ ψk)(θ)
(
∇xϕ(qk(θ)) | (νk ◦ ψk)(θ)

)
+ ∂j(ρk ◦ ψk)(θ)∂i

(
∇xϕ(qk(θ)) | (νk ◦ ψk)(θ)

)
on the left-hand side. From the previous step for ∂j(ρk ◦ ψk) we conclude that
the second term converges to 0 as k → ∞. Thus it follows from (2.70) that
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∂i∂j(ρk ◦ψk) converges to 0 as k → ∞, provided we can show that the derivatives
of the right-hand side in (2.69) converge to zero as k → ∞. A moment of reflec-
tion shows that this is indeed the case, with the possible exception of the term
ρk(ψk(θ))

(
∇xϕ(qk(θ)) | ∂i∂j(ν̃k ◦ψk)(θ)

)
which is problematic as ∂i∂j(ν̃k ◦ψk) in-

volves third-order derivatives of ϕk. Since ((ν̃k ◦ ψk)(θ) | (ν̃k ◦ ψk)(θ)) = 1 we get
((ν̃k ◦ ψk)(θ) | ∂j(ν̃k ◦ ψk)(θ)) = 0, and hence

((ν̃k ◦ ψk)(θ) | ∂i∂j(ν̃k ◦ ψk)(θ)) = −(∂i(ν̃k ◦ ψk)(θ) | ∂j(ν̃k ◦ ψk)(θ)).

With ∇xϕ(qk(θ)) = νΣ(qk(θ)) this yields

ρk(ψk(θ))
(
∇xϕ(qk(θ)) | ∂i∂j(ν̃ ◦ ψk))(θ))

)
=
(
νΣ(qk(θ))− ν̃k(ψk(θ)) | ρk(ψk(θ))∂i∂j(ν̃k ◦ ψk)(θ)

)
+ ρk(ψk(θ))

(
∂i(ν̃k ◦ ψk)(θ) | ∂j(ν̃k ◦ ψk)(θ)

)
.

Convergence to 0 of the first term on the right-hand side follows from (2.67) and
(2.65), while the second term converges to 0 since ρk has this property.

Since fk : Σ → Σk is a bijection, the assertion holds true for any point
pk ∈ Σk, k ≥ k0, and hence the claim follows.

2.4 The Manifold of Hypersurfaces in Rn

4.1 Compact Connected Hypersurfaces of Class C2

Consider the set MH2 of all compact connected C2-hypersurfaces Σ in Rn. Let
NΣ denote their associated normal bundles. The second normal bundle of Σ is
defined by

N 2Σ = {(p, νΣ(p),∇ΣνΣ(p)) : p ∈ Σ}.
We introduce a metric dMH2 on MH2 by means of dMH2(Σ1,Σ2) =
dH(N 2Σ1,N 2Σ2). This way MH2 becomes a metric space. We want to show
that MH2 is a Banach manifold.

Fix a hypersurface Σ ∈ MH2 of class C3. Then we define a chart over the
Banach space XΣ := C2(Σ,R) as follows. Σ has a tubular neighbourhood Ua of
width a. For a given function ρ ∈ BXΣ(0, a/3) we obtain a hypersurface ΓΣ

ρ by
means of the map

ΦΣ(ρ)(p) := p+ ρ(p)νΣ(p), p ∈ Σ.

According to Section 2.3, this yields a hypersurface ΓΣ
ρ of class C2, diffeomorphic

to Σ. Moreover, with some constant CΣ
a , we have

dMH2(ΓΣ
ρ ,Σ) ≤ CΣ

a |ρ|C2
b (Σ),

which shows that the map ΦΣ : BXΣ(0, a/3) → MH2 is continuous. Conversely,
given Γ ∈ MH2 which is C2-close to Σ, the results in Section 2.3.3 show that Γ
can be parameterized by a function ρ ∈ C2(Σ,R), such that |ρ|C2

b (Σ) < a/3.
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We now determine the tangent space TΣMH2 at some fixed C3-hypersurface
Σ ∈ MH2. For this purpose we take a differentiable curve Γ : (−δ0, δ0) → MH2

with Γ(0) = Σ. According to Section 2.3.3, there is δ ∈ (0, δ0) such that for each
t ∈ (−δ, δ) we find a normal parameterization ρ(t) ∈ C2(Σ,R) of Γ(t). Then in
these coordinates we have

v :=
d

dt
Γ(0) =

d

dt
ρ(0)νΣ ∈ C2(Σ, T⊥

Σ MH2).

On the other hand, if v = ρνΣ is a normal field on Σ with ρ ∈ XΣ we obtain a
curve Γ : (−δ, δ) → MH2 by means of Γ(t)(p) = p+ tρ(p)νΣ(p). Clearly, Γ(0) = Σ
and ρνΣ = d

dtΓ(0) ∈ TΣMH2. In other words, the tangent space TΣMH2 consists
of all normal fields v on Σ which are of class C2.

There is one shortcoming with this approach, namely the need to require that
Σ ∈ C3. This is due to the fact that we are losing one derivative when forming
the normal νΣ. However, since we may approximate a given hypersurface of class
C2 by a real analytic one in the second normal bundle, this defect can be avoided
by only parameterizing over real analytic hypersurfaces, which will be sufficient
below.

4.2 Compact Hypersurfaces with Uniform Ball Condition
Let Ω ⊂ Rn be a bounded domain, and consider a closed compact connected
C2-hypersurface Γ ⊂ Ω. This hypersurface separates Ω into two disjoint open
connected sets Ω1 and Ω2, the interior and the exterior of Γ w.r.t. Ω. By means
of the level function ϕΓ of Γ we have Ω1 = ϕ−1

Γ (−∞, 0) and Ω2 = Ω \ Ω̄1. Then
∂Ω1 = Γ and ∂Ω2 = ∂Ω ∪ Γ.

The hypersurface Γ satisfies the ball condition, i.e., there is a radius r > 0 such
that for each point p ∈ Γ there are balls B(xi, r) ⊂ Ωi such that Γ∩B̄(xi, r) = {p}.
The set of hypersurfaces of class C2 contained in Ω satisfying the ball condition
with radius r > 0 will be denoted by MH2(Ω, r). Note that hypersurfaces in this
class have uniformly bounded principal curvatures.

The elements of MH2(Ω, r) have a tubular neighbourhood of width a larger
than r. Therefore the construction of the level function ϕΓ of Γ from Section 2.3.2
can be carried out with the same a and the same cut-off function χ for each
Γ ∈ MH2(Ω, r). More precisely, we have

ϕΓ(x) = g(dΓ(x)), x ∈ Ω,

with
g(s) = sχ(3s/a) + sgn(s)(1− χ(3s/a)), s ∈ R;

note that g is strictly increasing and equals ±1 for ±s > 2a/3. This induces an
injective map

Φ : MH2(Ω, r) → C2(Ω̄), Φ(Γ) := ϕΓ. (2.71)

Φ is in fact a homeomorphism of MH2(Ω, r) onto Φ(MH2(Ω, r)) ⊂ C2(Ω̄).
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∂Ω

Γ

Ω1
Γ

Ω1

Ω2

Figure 2.3: Illustration of the ball condition.

This can be seen as follows. Let ε > 0 be small enough. If |ϕΓ1 −ϕΓ2 |2,∞ ≤ ε,
then dΓ1(x) ≤ ε on Γ2 and dΓ2(x) ≤ ε on Γ1, which implies dH(Γ1,Γ2) ≤ ε.
Moreover, we also have |∇xϕΓ1

(x)−νΓ2
(x)| ≤ ε on Γ2 and |∇xϕΓ2

(x)−νΓ1
(x)| ≤ ε

on Γ1 which yields dH(NΓ1,NΓ2) ≤ C0ε. Then the hypersurfaces Γj can both
be parameterized over a C3-hypersurface Σ, and therefore dH(N 2Γ1,N 2Γ2) ≤ ε
if and only if

|ρ1 − ρ2|∞ + |∇Σ(ρ1 − ρ2)|∞ + |∇2
Σ(ρ1 − ρ2)|∞ ≤ C1ε.

This in turn is equivalent to |ϕΓ1
− ϕΓ2

|2,∞ ≤ C2ε.

Let s− (n− 1)/p > 2. For Γ ∈ MH2(Ω, r) we then define

Γ ∈ W s
p (Ω, r) if ϕΓ ∈ W s

p (Ω), (2.72)

and
distW s

p (Ω,r)(Γ1,Γ2) := |ϕΓ1
− ϕΓ2

|W s
p (Ω). (2.73)

In this case the local charts for Γ can be chosen of class W s
p as well. A subset

A ⊂ W s
p (Ω, r) is said to be (relatively) compact, if Φ(A) ⊂ W s

p (Ω) is (relatively)
compact. In particular, it follows from Rellich’s theorem that W s

p (Ω, r) is a com-
pact subset of W σ

q (Ω, r), whenever s− n/p > σ − n/q, and s > σ.

2.5 Moving Hypersurfaces and Domains

In this section we consider the situation of moving hypersurfaces, that is, hyper-
surfaces that are time dependent. We first introduce the notion of normal velocity,
and we then prove a transport theorem for moving surfaces. A special case is
the well-known formula for the change of surface area. In addition, we prove a
transport theorem for moving domains, and derive the change of volume formula.

5.1 Moving Hypersurfaces
Let {Γ(t) : t ∈ I} be a family of compact connected closed C2-hypersurfaces in
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Rn bounding domains Ω(t) ⊂ Rn, with I ⊂ R an open interval. In the following,
we write νΓ(t, ·), κΓ(t, ·), and LΓ(t, ·) for the unit normal, the mean curvature and
the Weingarten tensor of Γ(t), respectively. Let

M =
⋃
t∈I

({t} × Γ(t)) . (2.74)

By definition, M is of class C1,2 if it is a C1-hypersurface in Rn+1 and, moreover,
νΓ ∈ C1(M,Rn).

We now show that for every t0 ∈ I there is a closed, compact, analytic
hypersurface Σ, an interval I0 := (t0− δ, t0+ δ) ⊂ I and a function ρ : I0×Σ → R

with
ρ ∈ C1(I0 × Σ), ∇Σρ ∈ C1(I0 × Σ,Rn) (2.75)

such that
Γ(t) = {ξ + ρ(t, ξ)νΣ(ξ) : t ∈ I0, ξ ∈ Σ}. (2.76)

This is obtained as follows. Let t0 ∈ I be fixed. The assumption that M is a
hypersurface in Rn+1 implies that for every ε > 0 there exits δ > 0 such that
dH(Γ(t0),Γ(t)) ≤ ε whenever |t − t0| ≤ δ. In order to prove the assertion, it
suffices to show that for every ε > 0 there exists δ > 0 such that

dist(p,Γ(t0)) ≤ ε for all p ∈ Γ(t) and all |t− t0| ≤ δ.

Suppose the latter assertion is not true. Then there exists a > 0, a sequence
(pn)n∈N in Γ(t), and a sequence (tn)n∈N with tn → t0 such that dist(pn,Γ(tn)) ≥ 2a
for all n ∈ N. As Γ(t0) is compact, we find p ∈ Γ(t0) and a subsequence of (pn)n∈N,
again denoted by (pn)n∈N, such that pn → p. Therefore, dist(p,Γ(tn)) ≥ a for n ≥
N , with N sufficiently large. This shows that

(
{tn}×Γ(tn)

)
∩
(
R×BRn(p, a)

)
= ∅

for n ≥ N , contradicting the assumption that M is a manifold. As νΓ is continuous
on M we conclude that for every ε > 0 there exists δ > 0 such that

dH(NΓ(t),NΓ(t0)) ≤ ε, whenever |t− t0| ≤ δ.

According to the approximation result in Section 2.3.4 we can find an analytic
hypersurface Σ which approximates Γ(t0). We can assume that Γ(t) ⊂ Uε/2(Σ) for
t ∈ I0, that is, Γ(t) is contained in the tubular neighbourhood Uε/2(Σ) of Σ of width
ε/2. By Section 2.3.3, for every t ∈ I0 there exists a function ρ(t, ·) ∈ C2(Σ) such
that (2.76) holds. It remains to show that ρ satisfies the regularity assumptions
claimed in (2.75). In order to see this, let us consider the mapping

Π̂Σ : M(I0) → I0×Σ, Π̂Σ(t, p) = (t,ΠΣ(p)), where M(I0) :=
⋃
t∈I0

(
{t}×Γ(t)}.

We note that Π̂Σ is well-defined, as Γ(t) ⊂ Uε/2(Σ) for each t ∈ I0. Moreover, we
have

Π̂Σ ∈ C1(M(I0), I0 × Σ), Π̂Σ(t, ·) = ΠΣ|Γ(t).
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An inspection of the proof in Section 2.3.3 shows that

Π̂Σ ∈ Diff1(M(I0), I0 × Σ), (Π̂Σ)
−1(t, ξ) = Φ(t, ξ) := (t, ξ + ρ(t, ξ)νΣ(ξ)).

This yields, in particular, ρ ∈ C1(I0 × Σ) and it remains to show the additional
regularity claimed in (2.75). We recall from (2.44) that

νΓ(Φ(t, ξ)) =
(
β(ρ)(νΣ −M0(ρ)∇Σρ)

)
(t, ξ), (t, ξ) ∈ I0 × Σ. (2.77)

This representation, in conjuction with the regularity ρ ∈ C1(I0 × Σ) already
established, implies that

νΓ ∈ C1(M(I0),R
n) ⇐⇒ ∇Σρ ∈ C1(I0 × Σ,Rn),

as we will see next. Clearly, νΓ ∈ C1(M(I0),R
n) iff νΓ ◦ Φ ∈ C1(I0 × Σ,Rn).

Suppose that νΓ ∈ C1(M(I0),R
n). Thanks to β(ρ)(t, ξ) = (νΓ(Φ(t, ξ)) | νΣ(ξ)) we

have β(ρ) ∈ C1(I0 × Σ) and this, in turn, implies

∇Σρ = (I − ρLΣ)
(
νΣ − (1/β(ρ))(νΓ ◦ Φ)

)
∈ C1(I0 × Σ).

On the other hand, if ρ satisfies the regularity assumptions in (2.75) and the family
{Γ(t) : t ∈ I0} is given by (2.76), then it is not difficult to verify that M(I0) is a
hypersurface of class C1,2.

We now state a useful variant of (2.76). The result reads as follows: for every
fixed t ∈ I there exists a number δ > 0 and a function ρ ∈ C1((−δ, δ)×Σ), where
Σ = Γ(t), such that

Γ(t+ s) = {p+ ρ(s, p)νΣ(p) : s ∈ (−δ, δ), p ∈ Σ}, Σ := Γ(t). (2.78)

This follows by an obvious modification of the arguments given above. In fact,
the proof is less involved, as there is no need to generate a smooth approximation
for Γ(t).

5.2 The Normal Velocity
Let M be as above. Suppose I0 is a subinterval of I and γ : I0 → Rn is a C1-curve.
Then γ is called a C1-curve on M if γ(t) ∈ Γ(t) for each t ∈ I0. Hence, γ is a
C1-curve on M iff (t, γ(t)) ∈ M for t ∈ I0. If γ is C1-curve on M, then

VΓ(t, p) := (γ′(t)|νΓ(t, p)), p = γ(t), (2.79)

is called the normal velocity of {Γ(t) : t ∈ I} at the point (t, p). The normal
velocity VΓ is well-defined, that is, VΓ(t, p) does not depend on the choice of a
C1-curve on M through p ∈ Γ(t). Indeed, let γ : I0 → Rn be an arbitrary C1-
curve on M and let p = γ(t). We can assume, by possibly shrinking I0, that the
representation (2.76) holds. Therefore, the curve γ can be expressed by

γ(t) = ξ(t) + ρ(t, ξ(t))νΣ(ξ(t)), t ∈ I0, ξ(t) ∈ Σ,
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and hence,

γ′(t) = (I − ρ(t, ξ(t))LΣ(ξ(t)))ξ
′(t) + (∂tρ(t, ξ(t)) + (∇Σρ(t, ξ(t))|ξ′(t))νΣ(ξ(t)).

Using (2.77), and suppressing the variables, we obtain

VΓ = (γ′|νΓ) = β(ρ){∂tρ+ (∇Σρ|ξ′)− ((I − ρLΣ)ξ
′|M0(ρ)∇Σρ)} = β(ρ)∂tρ,

or in more precise notation, VΓ(t, p) = (VΓ ◦ Φ)(t, ξ) = β(ρ(t))(ξ)∂tρ(t, ξ). This
expression does not refer to the curve γ, and this shows that the definition (2.79)
is independent of a particular curve. Moreover, this also shows that we can, alter-
natively, define the normal velocity by

VΓ = β(ρ)∂tρ, (2.80)

provided {Γ(t) : t ∈ I0} is represented by (2.76), which can always be assumed.
For later use we note that

[1, VΓνΓ]
T ∈ T(t,p)M, (2.81)

i.e., [1, (VΓνΓ)(t, p)]
T is a tangent vector for M at the point (t, p). This can be

seen as follows. Suppose γ : I0 → Rn is a C1-curve on M. Then (t, γ(t)) ∈ M for
t ∈ I0 and consequently, [1, γ′(t)]T ∈ T(t,p)M with p = γ(t). Hence, by (2.79),

[1, (VΓνΓ)(t, p)]
T
= [1, (γ′(t)|νΓ(t, p))νΓ(t, p)]T

= [1, γ′(t)]T − [0,PΓ(t)(p)γ
′(t)]T ∈ T(t,p)M,

as [0, v]T ∈ T(t,p)M for any vector v ∈ TpΓ(t).

5.3 The Lagrange Derivative for Moving Surfaces
Suppose that uΓ(t, ·) := uΓ(t)(·) : Γ(t) → Rn is a vector field for each t ∈ I. Hence
uΓ is defined on M and we assume that uΓ ∈ C1(M,Rn). Then uΓ is called a
C1-velocity field for the family {Γ(t) : t ∈ I} if

VΓ = (uΓ|νΓ), (2.82)

or more precisely, if VΓ(t, p) = (uΓ(t, p)|νΓ(t, p)) for (t, p) ∈ M.
A velocity field uΓ is called a normal velocity field for {Γ(t) : t ∈ I} if

uΓ(t, ·) ∈ T⊥Γ(t), i.e., uΓ(t, ·) lies in the normal bundle of Γ(t) for each t ∈ I.
Hence,

uΓ is a normal velocity field ⇐⇒ uΓ = VΓνΓ. (2.83)

Although only normal velocity fields matter from a geometric point of view, we
nevertheless need to consider general velocity fields in order to treat the motion
of fluid particles in fluid flows subject to phase transitions.
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We note that if uΓ is a velocity field for {Γ(t) : t ∈ I} then

[1, uΓ]
T ∈ TM. (2.84)

This can be deduced from (2.81), (2.82), and the decomposition

[1, uΓ] = [1, (uΓ|νΓ)νΓ] + [0,PΓuΓ] = [1, VΓνΓ] + [0,PΓuΓ],

where, as before, we use the fact that [0, v]T ∈ TM for any vector v ∈ TΓ(t).
Next we show that for every C1-velocity field uΓ and every p ∈ Γ(t), with t

fixed, there exists δ > 0 and a unique C1-curve [s �→ x(t+ s)] : (−δ, δ) → Rn such
that

d

ds
x(t+ s) = uΓ(t+ s, x(t+ s)), x(t+ s) ∈ Γ(t+ s), s ∈ (−δ, δ),

x(t) = p.
(2.85)

The solution to (2.85), in the sequel denoted by x(t + s, t, p), is then called a
trajectory or a flow line on M through p ∈ Γ(t), generated by the velocity field
uΓ. The existence of such a trajectory can be seen by the following argument.
Setting

z(s) := [t+ s, x(t+ s)]T

we see that x(t+s) ∈ Γ(t+s) is equivalent to z(s) ∈ M for s ∈ (−δ, δ). Therefore,
(2.85) has a (unique) solution if and only if the differential equation

ż(s) = [1, uΓ(z(s))]
T, s ∈ (−δ, δ), z(0) = (t, p), (2.86)

has a (unique) solution. Existence and uniqueness of a solution z(s) = z(s, (t, p))
to (2.86) follows from the fact that the vector field [1, uΓ]

T is tangential to M, see
(2.84), and well-known results from the theory of differential equations. Moreover,
we conclude that

[(s, (t, p)) �→ z(s, (t, p))] ∈ C1((−δ, δ)×M,M),

and this implies

[(s, p) �→ x(t+ s, t, p)] ∈ C1((−δ, δ)× Γ(t),Γ(t)).

We note that

uΓ is a C1-velocity field :⇐⇒ VΓ = (uΓ|νΓ) ⇐⇒ [1, uΓ]
T ∈ TM. (2.87)

The first equivalence follows by definition, while the second implication “ ⇒ ” has
been shown above. Suppose that [1, uΓ]

T ∈ TM. Then (2.85) admits a C1-solution
[s �→ x(t+ s, t, p)], and the definition of VΓ in (2.79) implies

VΓ(t, p) =
( d

ds
x(t+ s, t, p)

∣∣
s=0

∣∣ νΓ(t, p)) = (uΓ(t, p)|νΓ(t, p)).
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It is illustrative to point out an alternative way to establish existence of solutions
to (2.85). By (2.76) we can assume that {Γ(t+ s) : s ∈ (−δ, δ)} is given by

Γ(t+ s) = {ξ + ρ(s, ξ)νΣ(ξ) : s ∈ (−δ, δ), ξ ∈ Σ},

where Σ is a smooth hypersurface. Then the curve x(s) = ξ(s)+ρ(s, ξ(s))νΣ(ξ(s)),
with ξ(s) ∈ Σ, satisfies (2.76) if and only if

ξ′(s) = (I − ρLΣ)
−1PΣ(ξ(s))uΓ(s, ξ(s) + ρ(s, ξ(s))νΣ(ξ(s)))

ξ(t) = ξ0,
(2.88)

where (I − ρLΣ) is the short form for (I − ρ(s, ξ(s))LΣ(ξ(s))). Indeed, applying
the projection PΣ to the equation

(I − ρLΣ)ξ
′(s) + [∂sρ(s, ξ(s)) + (∇Σρ(s, ξ(s))|ξ′(s))]νΣ(ξ(s)) = uΓ(s, x(s))

yields (2.88), while the projection onto T⊥Σ trivializes, i.e., we automatically have

∂sρ(s, ξ(s)) + (∇Σρ(s, ξ(s))|ξ′(s)) = (uΓ(s, x(s))|νΣ(ξ(s))).

The last assertion follows from

β(ρ(s))(uΓ(s, x(s))|νΣ(ξ(s)))
= (uΓ(s, x(s))|νΓ(s, x(s))) + β(ρ(s))(uΓ(s, x(s))|M0(ρ(s))∇Σρ(s, ξ(s)))

= β(ρ(s))[∂sρ(s, ξ(s)) + (M0(ρ(s))PΣ(ξ(s))uΓ(s, x(s))|∇Σρ(s, ξ(s)))

= β(ρ(s))[∂sρ(s, ξ(s)) + (ξ′(s)|∇Σρ(s, ξ(s))),

where we employed (2.77), (2.80) and (2.88). It remains to observe that the or-
dinary differential equation (2.88), defined on Σ, admits a unique solution as
(I − ρLΣ)

−1PΣuΓ ∈ TΣ.
Suppose that uΓ is a C1-velocity field for {Γ(t) : t ∈ I} and fΓ ∈ C1(M,R).

Then we define the Lagrange derivative of fΓ (sometimes also called the material
derivative of fΓ ) with respect to the velocity field uΓ at the point (t, p) ∈ M by

D

Dt
fΓ(t, p) :=

DuΓ

Dt
fΓ(t, p) :=

d

ds
fΓ(t+ s, x(t+ s, t, p))

∣∣∣
s=0

where [s �→ x(s + t, t, p)] denotes the solution of (2.85). In case uΓ is a normal
C1-velocity field, in which case uΓ = VΓνΓ, the Lagrange derivative is called the
normal derivative, and we set

Dn

Dt
:=

DVΓνΓ

Dt
.

Then the following relation holds.

DuΓ

Dt
fΓ(t, p) =

Dn

Dt
fΓ(t, p) + (uΓ(t, p)|∇Γ(t))fΓ(t, p). (2.89)
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In order to see this, let us consider an extension f̃Γ of fΓ in an open neighbour-
hood of M in Rn+1. Such an extension can, for instance, be obtained on the
neighbourhood

Ua(M) :=
⋃
t∈I

(
{t} × Ua(Γ(t))

)
,

where Ua(Γ(t)) is a tubular neighbourhood of Γ(t) of with a, by setting

f̃Γ(t, x) := fΓ(t, p), (t, x) ∈ Ua(M), p = ΠΓ(t)(x).

Then one obtains

DuΓ

Dt
fΓ(t, p) = ∂tf̃Γ(t, p) + (uΓ(t, p)|∇x)f̃Γ(t, p). (2.90)

By the same argument one has

Dn

Dt
fΓ(t, p) =

d

ds
fΓ(t+ s, y(t+ s, t, p))

∣∣∣
s=0

=
d

ds
f̃Γ(t+ s, y(t+ s, t, p))

∣∣∣
s=0

= ∂tf̃Γ(t, p) + VΓ(t, p)(νΓ(t, p)|∇x)f̃Γ(t, p),

where y(·) is the solution of (2.85) with respect to the normal velocity field VΓνΓ.
Using the relation

∇xf̃Γ = (∇xf̃Γ|νΓ)νΓ + PΓ∇xf̃Γ = (∇xf̃Γ|νΓ)νΓ +∇ΓfΓ,

see (2.20), we conclude with (2.82)

DuΓ

Dt
fΓ(t, p) = ∂tf̃Γ(t, p) + VΓ(t, p)(νΓ(t, p)|∇x)f̃Γ(t, p) + (uΓ(t, p)|∇Γ(t))fΓ(t, p)

=
Dn

Dt
fΓ(t, p) + (uΓ(t, p)|∇Γ(t))fΓ(t, p).

5.4 The Transport Theorem for Moving Hypersurfaces
Suppose uΓ is a C1-velocity field for {Γ(t) : t ∈ I} and fΓ ∈ C1(M,Rn). The
transport theorem for moving surfaces states that

d

dt

∫
Γ(t)

fΓ(t, x) dΓ =

∫
Γ(t)

[DuΓ

Dt
fΓ(t, x) + fΓ(t, x) divΓuΓ(t, x)

]
dΓ

=

∫
Γ(t)

[Dn

Dt
fΓ(t, x)− fΓ(t, x)κΓ(t, x)VΓ(t, x)

]
dΓ.

(2.91)

Proof. Let (t, p) ∈ M be fixed let φ(t, ·) : Θ ⊂ Rn−1 → Γ(t) be a sufficiently
smooth parameterization of an open neighbourhood of p in Γ(t). Then

φ(t+ s, ·) := x(t+ s, t, φ(t, ·)) : Θ → Γ(t+ s), s ∈ (−δ, δ),
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defines a C1-parameterization of a neighbourhood of x(t+ s, t, p) in Γ(t+ s). We
first suppose that supp fΓ ⊂⊂ U := {φ(t+ s, θ) : (s, θ) ∈ (−δ, δ)×Θ}. Let

gij(t+ s, θ) := (∂iφ(t+ s, θ) | ∂jφ(t+ s, θ)), G(t+ s, θ) := [gij(t+ s, θ)].

Hence, G(t + s, θ) is the fundamental matrix of Γ(t + s) with respect to the pa-
rameterization φ(t+ s, ·). With g(t+ s, ·) := detG(t+ s, ·) we obtain∫

Γ(t+s)

fΓ(t+ s, y) dΓ =

∫
Θ

fΓ(t+ s, φ(t+ s, θ))
√
g(t+ s, θ) dθ,

and hence

d

ds

∫
Γ(t+s)

fΓ(t+ s, y) dΓ
∣∣∣
s=0

=

∫
Θ

( D

Dt
fΓ(t, φ(t, θ))

)√
g(t, θ) + fΓ(t, φ(t, θ))

∂

∂s

√
g(t+ s, θ)

∣∣∣
s=0

dθ.

As in (2.27) we obtain

∂

∂s

√
g(t+ s, θ) =

1

2
√
g(t+ s, θ)

∂

∂s
g(t+ s, θ)

=
1

2

√
g(t+ s, θ)gij(t+ s, θ)

∂

∂s
gij(t+ s, θ).

From

∂s∂ix(t+ s, t, φ(t, θ)) = ∂i∂sx(t+ s, t, φ(t, θ)) = ∂iuΓ(t+ s, x(t+ s, t, φ(t, θ)))

follows

1

2
gij(t+ s, θ)

∂

∂s
gij(t+ s, θ)

∣∣∣
s=0

=
1

2
gij(t, θ) [(∂iuΓ(t, φ(t, θ)) | ∂jφ(t, θ)) + (∂iφ(t, θ) | ∂juΓ(t, φ(t, θ)))]

=
1

2
gij(t, θ)

[(
∂iuΓ(t, φ(t, θ)) | τΓ(t)j (φ(t, θ))

)
+
(
τ
Γ(t)
i (φ(t, θ)) | ∂juΓ(t, φ(t, θ))

)]
=

1

2

[(
∂iuΓ(t, φ(t, θ)) | τ iΓ(t)(φ(t, θ))

)
+
(
τ jΓ(t)(φ(t, θ)) | ∂juΓ(t, φ(t, θ))

)]
= divΓ(t)uΓ(t, φ(t, θ)).

Combining all steps yields

d

ds

∫
Γ(t+s)

fΓ(t+ s, y) dΓ
∣∣∣
s=0

=

∫
Θ

[
D

Dt
fΓ(t, φ(t, θ)) + fΓ(t, φ(t, θ)) divΓ(t)uΓ(t, φ(t, θ))

]√
g(t, θ) dθ

=

∫
Γ(t)

[
D

Dt
fΓ(t, y) + fΓ(t, y) divΓ(t)uΓ(t, y)

]
dΓ.
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For a more general function fΓ we can apply the result above in conjunction with
a partition of unity for M. Hence, we have shown that

d

dt

∫
Γ(t)

fΓ(t, x) dΓ =

∫
Γ(t)

[DuΓ

Dt
fΓ(t, x) + fΓ(t, x) divΓuΓ(t, x)

]
dΓ.

The second assertion in (2.91) follows from the surface divergence theorem (2.31)
and (2.89). �

We note that (2.91) implies, in particular, the well-known change of area
formula

d

dt
|Γ(t)| = −

∫
Γ(t)

κΓVΓ dΓ. (2.92)

It is worthwhile to point out that (2.92) can also be derived from (2.50). This can
be obtained as follows. Using the representation (2.78) we have |Γ(t+s)| = Φ(ρ(s))
for t fixed, and the change of area formula (2.50) in conjunction with the relation
ρ(0) = 0 immediately yields

d

ds
|Γ(t+ s)|

∣∣∣
s=0

= 〈Φ′(0), ∂sρ(0)〉 = −
∫
Σ

κΣ∂sρ(0) dΣ = −
∫
Γ(t)

κΓVΓ dΓ.

5.5 The Transport Theorem for Moving Domains
Suppose {Γ(t) : t ∈ I} is a family of compact connected closed C2-hypersurfaces
in Rn, bounding domains Ω(t) ⊂ Rn. We assume again that

M =
⋃
t∈I

(
{t} × Γ(t)

)
is a C1,2-hypersurface in Rn+1, and we set

Q =
⋃
t∈I

(
{t} × Ω(t)

)
.

Let f ∈ C1(Q). Then we have the transport theorem for moving domains:

d

dt

∫
Ω(t)

f(t, x) dx =

∫
Ω(t)

∂tf(t, x) dx+

∫
Γ(t)

f(t, x)VΓ(t, x) dΓ. (2.93)

Proof. We first show that for each fixed t ∈ I there exists a family of mappings

Φ(t+ s, ·) : Ω(t) → Ω(t+ s), s ∈ (−δ, δ),

such that

Φ(t+ s, ·) ∈ Diff1
(
Ω(t),Ω(t+ s)

)
∩Diff1

(
Γ(t),Γ(t+ s)

)
, s ∈ (−δ, δ), (2.94)
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where Diff1(U, V ) denotes the set of all C1-diffeomorphisms from U into V . The
mappings Φ(t + s, ·) can, for instance, be constructed as follows. According to
(2.78) we know that

φ(t+ s, p) := p+ ρ(s, p)νΣ(p), p ∈ Σ := Γ(t), s ∈ (−δ, δ), (2.95)

satisfies φ(t + s, ·) ∈ Diff1(Γ(t),Γ(t + s)). By means of a Hanzawa transform we
can extend φ(t+ s, ·) to Ω(t) such that (2.94) holds. In more detail, let

Φ(t+ s, x) = x+ χ(dΣ(x)/a)ρ(s,ΠΣ(x))νΣ(ΠΣ(x)), x ∈ Ω(t).

Here dΣ and ΠΣ have the same meaning as in (2.57), and χ is a suitable cut-off
function, say χ ∈ D(R), 0 ≤ χ ≤ 1, χ(r) = 1 for |r| < 1/3, and χ(r) = 0 for
|r| > 2/3.

Clearly, Φ(t + s, p) = φ(t + s, p) for p ∈ Γ(t). Since Φ(t, ·) = idΩ(t) we can

assume that det ∂xΦ(t + s, x) > 0 for (s, x) ∈ (−δ, δ) × Ω(t) by choosing δ small
enough. Next we observe that by (2.27)

d

ds
det ∂xΦ(t+ s, x) = det ∂xΦ(t+ s, x)tr([∂yΦ(t+ s, x)]−1[∂x∂sΦ(t+ s, x)]),

and therefore,

d

ds
det ∂xΦ(t+ s, x)

∣∣∣
s=0

= tr[∂x∂sΦ(t, x)] = divx ∂sΦ(t, x).

Employing the transformation rule for integrals yields∫
Ω(t+s)

f(t+ s, y) dy =

∫
Ω(t)

f(t+ s,Φ(t+ s, x)) det ∂xΦ(t+ s, x) dx,

and hence,

d

ds

∫
Ω(t+s)

f(t+ s, y) dy
∣∣∣
s=0

=

∫
Ω(t)

[
∂tf(t, x) + (∇xf(t, x)|∂sΦ(t, x)) + f(t, x)divx ∂sΦ(t, x)

]
dx

=

∫
Ω(t)

[
∂tf(t, x) + divx (f(t, x)∂sΦ(t, x))

]
dx

=

∫
Ω(t)

∂tf(t, x) dx+

∫
Γ(t)

f(t, x)(∂sΦ(t, x)|νΓ(t, x))dΓ

=

∫
Ω(t)

∂tf(t, x) dx+

∫
Γ(t)

f(t, x)VΓ(t, x)dΓ,

(2.96)

where we used (2.79) in the last step. This completes the proof. �
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The relation (2.93) immediately yields the well-known change of volume for-
mula

d

dt
|Ω(t)| =

∫
Γ(t)

VΓ dΓ. (2.97)

We point out that (2.97) can also be derived from (2.54). Indeed, using once more
the representation

Γ(t+ s) = {p+ ρ(s, p)νΣ(p) : s ∈ (−δ, δ), p ∈ Σ}, Σ := Γ(t),

we have |Ω(t+ s)| = Ψ(ρ(s)), with Ψ the volume functional introduced in Section
2.2.7. Then the first variation formula (2.54) and the relation ρ(0) = 0 imply

d

ds
|Ω(t+ s)|

∣∣∣
s=0

= 〈Ψ′(0), ∂sρ(0)〉 =
∫
Σ

∂sρ(0) dΣ =

∫
Γ(t)

VΓ dΓ.

We now consider the more special case where the moving domain Ω(t) is trans-
ported by a velocity field u. Suppose then that J ⊂ R is an open interval, G ⊂ Rn

is an open set, and u ∈ C1(J × Ω,Rn). We assume that solutions to the ordinary
differential equation

y′(t) = u(t, y(t)), y(τ) = ξ,

exist on I for all (τ, ξ) ∈ J × G, and we denote the unique solution with initial
value y(τ) = ξ by y(t, τ, ξ). Let Ω0 ⊂⊂ G be a C2-domain, t0 ∈ I a fixed number,
and suppose that the family {Ω(t) : t ∈ I} of moving domains is given by

Ω(t) = y(t, t0, ·)|Ω0
= {y(t, t0, x0) : x0 ∈ Ω0}, t ∈ I.

Suppose that f ∈ C1(J ×G). Then the Reynolds transport theorem states that

d

dt

∫
Ω(t)

f(t, x) dx =

∫
Ω(t)

[
∂tf(t, x) + divx (f(t, x)u(t, x))

]
dx. (2.98)

Proof. Let t ∈ I be fixed and let Φ(s, x) := y(s, t, x) for (s, x) ∈ J ×G. From the
theory of ordinary differential equations follows that

Φ(t+ s, ·) ∈ Diff1
(
Ω(t),Ω(t+ s)

)
, s ∈ (−δ, δ), (2.99)

with φ−1(t+ s, ·) = y(t, t+ s, ·). We can now follow the computations in (2.93) to
the result

d

dt

∫
Ω(t)

f(x, t) dx =

∫
Ω(t)

[
∂tf(t, x) + divx (f(t, x)∂sΦ(t, x))

]
dx

=

∫
Ω(t)

[
∂tf(t, x) + divx (f(t, x)u(t, x))

]
dx

and this completes the proof. �
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5.6 The Transport Theorem for Two-Phase Moving Domains
Let Ω ⊂ Rn be a bounded open domain in Rn with C2-boundary ∂Ω. Suppose
that {Γ(t) : t ∈ I} is a family of closed compact C2-hypersurfaces with Γ(t) ⊂ Ω,
such that Γ(t) encloses a region Ω1(t) ⊂ Ω, and such that ∂Ω1(t) = Γ(t) for each
t ∈ I. Let Ω2(t) := Ω \ Ω̄1(t). Then

Ω = Ω1(t) ∪ Ω2(t), Ω1(t) ∩ Ω2(t) = Γ(t), ∂Ω2(t) = Γ(t) ∪ ∂Ω, t ∈ I.

Hence, Γ(t) separates Ω into an ‘inner’ region Ω1(t) and an ‘outer’ region Ω2(t),
with Ω2(t) being in contact with the boundary ∂Ω. Then νΓ(t) denotes the outward
pointing unit normal field for Ω1(t) on Γ(t). Let

Qj =
⋃
t∈I

(
{t} × Ωj(t)

)
, j = 1, 2.

As above, we assume that M is a C1,2-hypersurface. Let fj : Qj → R be given.
Then we set

f(t, x) :=

{
f1(t, x), x ∈ Ω1(t),

f2(t, x), x ∈ Ω2(t),

so that f : Q1 ∪Q2 → R. In case fj admits a continuous extension f̄j ∈ C(Qj) we
define the jump of f across Γ(t) by means of

[[f(t, p)]] := f̄2(t, p)− f̄1(t, p), p ∈ Γ(t). (2.100)

Suppose that the functions fj admit extensions f̄j ∈ C1(Qj), j = 1, 2. Then the
transport theorem for two-phase moving domains states that

d

dt

∫
Ω\Γ(t)

f(t, x) dx =

∫
Ω\Γ(t)

∂tf(t, x) dx−
∫
Γ(t)

[[f(t, x)]]VΓ(t, x) dΓ. (2.101)

Proof. Let t ∈ I be fixed. As in the proof of (2.93) we extend the family of
diffeormorphisms φ(t+ s, ·) : Γ(t) → Γ(t+ s) given in (2.95) by means of

Φ(t+ s, x) = x+ χ(dΣ(x)/a)ρ(s,ΠΣ(x))νΣ(ΠΣ(x)), x ∈ Ω,

to a family of diffeomorphisms Φ(t+ s, ·) : Ω → Ω such that

Φj(t+ s, ·) := Φ(t+ s, ·)|Ωj(t+s) ∈ Diff1
(
Ωj(t),Ωj(t+ s)

)
, j = 1, 2, s ∈ (−δ, δ).

By choosing a small enough we can assume that a tubular neighbourhood of Γ(t)
of width a is contained in Ω, and hence that Φ(t+ s, ·) = idRn in a neighbourhood
of ∂Ω. We can now proceed as in the proof of (2.93) to obtain

d

dt

∫
Ωj(t)

f(t, x) dx =

∫
Ωj(t)

∂tf(t, x) dx−
∫
Γ(t)

(−1)j f̄j(t, x)VΓ(t, x) dΓ,

and (2.101) then follows from (2.100). �
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Chapter 3

Operator Theory and
Semigroups

In this chapter we introduce some basic tools from operator and semigroup theory.
The class of sectorial operators is studied in detail, its functional calculus is intro-
duced, leading to analytic semigroups and complex powers. The classes BIP(X)
and H∞(X) are defined and elementary properties are shown. Via trace theory for
abstract Cauchy problems the connections to real interpolation are derived, and
the relation of complex interpolation to powers of operators is shown. The chapter
concludes with a first study of maximal Lp-regularity.

3.1 Sectorial Operators

The concept of sectorial operators introduced in Definition 3.1.1 below is basic
in this book. Most closed linear operators appearing in applications have this
property, at least after translation and rotation. We will meet many examples of
such operators in later sections.

1.1 Sectorial Operators
We begin with the definition of sectorial operators.

Definition 3.1.1. Let X be a complex Banach space, and A a closed linear operator
in X. A is called sectorial if the following two conditions are satisfied.

(S1) D(A) = X, R(A) = X, (−∞, 0) ⊂ ρ(A);

(S2) |t(t+A)−1| ≤ M for all t > 0, and some M < ∞.

The class of sectorial operators in X will be denoted by S(X). If (−∞, 0) ⊂ ρ(A)
and only (S2) holds then A is said to be pseudo-sectorial. The class of pseudo-
sectorial operators will be denoted by PS(X).
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J. Prüss and G. Simonett,Moving Interfaces and Quasilinear Parabolic
Evolution Equations, Monographs in Mathematics 105,
DOI 10.1007/978-3-319-27698-4_3

89



90 Chapter 3. Operator Theory and Semigroups

Suppose that A is a linear operator in X which is pseudo-sectorial. Then
the operator family {A(t + A)−1}t>0 ∈ B(X) is uniformly bounded as well. For
x ∈ D(A) we have

t(t+A)−1x− x = −A(t+A)−1x = −(t+A)−1Ax →t→∞ 0,

hence limt→∞ t(t+ A)−1x = x for all x ∈ D(A), by (S2). In particular, if D(A) is
dense in X then

lim
t→∞ t(t+A)−1x = x for all x ∈ X.

Similarly, for y = Ax ∈ R(A) we have

A(t+A)−1Ax−Ax = −t(t+A)−1Ax = −tA(t+A)−1x →t→0 0,

hence limt→0 A(t + A)−1y = y for all y ∈ R(A), employing once more (S2). In
particular, if R(A) is dense in X then

lim
t→0

A(t+A)−1x = x for all x ∈ X.

On the other hand, if x ∈ N(A) then A(t + A)−1x = 0, and this shows that we
always have N(A) ∩ R(A) = {0}.

If D(A) is dense in X, then its dual A∗ is well-defined. The relation

N(A∗) = R(A)⊥

then shows that A ∈ S(X) iff A ∈ PS(X) and N(A∗) = 0.
Next, letX be reflexive and A be pseudo-sectorial. Then any sequence (λn) ⊂

ρ(A), λn → ∞ contains a subsequence, which may depend on x, such that λn(λn+
A)−1x ⇀ y ∈ X. This implies λn(λn + A)−1(λ + A)−1x ⇀ (λ + A)−1y, for any
λ > 0. But by means of the resolvent equation

λn(λn +A)−1(λ+A)−1x =
λn

λn − λ
[(λ+A)−1 − (λn +A)−1]x ⇀ (λ+A)−1x,

hence (λ+A)−1x = (λ+A)−1y, by uniqueness of weak limits. This implies x = y,
hence λ(λ+ A)−1x ⇀ x as λ → ∞. As a consequence of this we see that D(A) is
weakly dense in X, hence also strongly dense, and then by what has been proved
before λ(λ+A)−1x → x as λ → ∞, for each x ∈ X.

At λ = 0 we proceed similarly. Fix x ∈ X and choose a sequence (λn) ⊂ ρ(A),
λn → 0 such that A(λn + A)−1x ⇀ y ∈ X. Then λA(λn + A)−1(λ + A)−1x ⇀
λ(λ+A)−1y ∈ X, hence the resolvent equation yields

y − λ(λ+A)−1y = A(λ+A)−1x = x− λ(λ+A)−1x,

for any λ > 0. This identity shows x − y ∈ N(A), in particular A(λ + A)−1x =
A(λ+A)−1y, hence A(λn +A)−1y ⇀ y as well. Writing

x = (x− y) +A(λn +A)−1x+ λn(λn +A)−1y
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and observing λn(λn + A)−1y ⇀ 0 the latter implies that N(A) + R(A) is weakly
dense in X, hence also strongly dense. But from what we already proved above
this implies A(λ + A)−1x → Px ∈ X as λ → 0, for each x ∈ X. Here P ∈ B(X),
by the Banach-Steinhaus theorem, and R(P ) ⊂ R(A), as well as R(I−P ) ⊂ N(A).
Finally, A(λ + A)−1x = A(λ + A)−1Px for all x ∈ X implies P 2 = P , i.e., P is
the projection onto R(A) along N(A). We have proved in particular the direct sum
decomposition X = N(A)⊕ R(A). Thus in a reflexive space, R(A) is dense in X if
and only if N(A) = {0}.

Let us summarize what we have shown above in

Theorem 3.1.2. Let X be a Banach space and A a pseudo-sectorial operator in X.
Then

(i) N(A) ∩ R(A) = {0}, and

lim
t→∞ t(t+A)−1x = x for each x ∈ D(A),

lim
t→0+

A(t+A)−1x = x for each x ∈ R(A). (3.1)

(ii) If D(A) is dense in X, then A ∈ S(X) if and only if N(A∗) = 0.

(iii) If X is reflexive then limt→∞ t(t + A)−1x = x and limt→0+ A(t + A)−1x =
Px for each x ∈ X, where P is the projection onto R(A) along N(A), and
X = N(A)⊕R(A). Thus, if X is reflexive then any pseudo-sectorial operator
A with N(A) = {0} is sectorial.

(iv) If X is a general Banach space and A is sectorial, then D(Ak) ∩ R(Ak) is
dense in X, for each k ∈ N.

Concerning the last assertion of Theorem 3.1.2, note that (1 +
n−1A)−kAk(n−1 + A)−k converges strongly to I as n → ∞ and has range in
D(Ak) ∩ R(Ak).

Let Σθ ⊂ C denote the open sector with vertex 0, opening angle 2θ, which is
symmetric w.r.t. the positive half-axis R+, i.e.,

Σθ = {λ ∈ C \ {0} : | arg λ| < θ}.

If A ∈ PS(X) then ρ(−A) ⊃ Σθ, for some θ > 0, and

sup{|λ(λ+A)−1| : | arg λ| < θ} < ∞.

In fact, with (d/dt)n(t + A)−1 = (−1)nn!(t + A)−(n+1), for t > 0 the Taylor
expansion

(λ+A)−1 =

∞∑
n=0

(−1)n(λ− t)n(t+A)−(n+1)
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and (S2) yield the estimate

|(λ+A)−1| ≤
∞∑

n=0

|λ− t|n|(t+A)−(n+1)| ≤ (M/t)

∞∑
n=0

(M |λ− t|/t)n.

This bound is finite provided |λ/t− 1| < 1/M , which by minimization over t > 0
yields | sinφ| < 1/M , where λ = reiφ.

Therefore it makes sense to define the spectral angle φA of A ∈ PS(X) by

φA = inf{φ : ρ(−A) ⊃ Σπ−φ, sup
λ∈Σπ−φ

|λ(λ+A)−1| < ∞}. (3.2)

Evidently, we have φA ∈ [0, π) and

φA ≥ sup{| arg λ| : λ ∈ σ(A)}. (3.3)

If A ∈ PS(X) is bounded and 0 ∈ ρ(A) then there is equality in (3.3). In fact,
by holomorphy of (λ − A)−1 on ρ(A), λ(λ − A)−1 is bounded in B(X) on each
compact subset of ρ(A), and for all |λ| > |A| we have

|λ(λ−A)−1| ≤ |λ|
|λ| − |A| ,

which is uniformly bounded, say for |λ| ≥ 2|A|. But this implies uniform bound-
edness of λ(λ+A)−1 on each sector Σπ−φ with φ > sup{| arg(λ)| : λ ∈ σ(A)}.

For φ ∈ (φA, π) we frequently employ the notations

Mπ−φ(A) = sup
λ∈Σπ−φ

|λ(λ+A)−1|, Cπ−φ(A) = sup
λ∈Σπ−φ

|A(λ+A)−1|. (3.4)

It is not difficult to see that Cπ−φ(A) ≥ 1 as well as Mπ−φ(A) ≥ 1, for all
φ ∈ (φA, π]. Observe the limiting case φ = π:

M0(A) = sup
r>0

|r(r +A)−1|, C0(A) = sup
r>0

|A(r +A)−1|. (3.5)

1.2 Permanence Properties
The class of sectorial operators has a number of nice permanence properties which
are summarized in the following

Proposition 3.1.3. Let X be a complex Banach space. The class S(X) of sectorial
operators has the following permanence properties.

(i) A ∈ S(X) iff N(A) = {0} and A−1 ∈ S(X); then φA−1 = φA;

(ii) A ∈ S(X) implies rA ∈ S(X) and φrA = φA for all r > 0;

(iii) A ∈ S(X) implies e±iψA ∈ S(X) for all ψ ∈ [0, π−φA), and φe±iψA = φA+ψ;

(iv) A ∈ S(X) implies (μ+A) ∈ S(X) for all μ ∈ Σπ−φA
, and

φμ+A ≤ max{φA, | argμ|};
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(v) if D(A) is dense in X and D(A∗) dense in X∗, then A ∈ S(X) iff A∗ ∈ S(X∗),
and φA = φA∗ ;

(vi) if Y denotes another Banach space and T ∈ B(X,Y ) is bijective, then A ∈
S(X) iff A1 = TAT−1 ∈ S(Y ), and φA = φA1

.

Proof. Assertion (i) follows from the identity

λ(λ+A−1)−1 = λA(1 + λA)−1 = A(λ−1 +A)−1.

Similarly, (ii) is a consequence of

λ(λ+ rA)−1 = (λ/r)((λ/r) +A)−1, r > 0,

and (iii) follows from |(λ+eiφA)−1| = |(λe−iφ+A)−1|. If μ ∈ Σπ−φA
, | arg(μ)| = ψ,

and λ ∈ Σπ−φ, then for (π − φ) + ψ < π we have

| arg(λ+ μ)| ≤ max{| arg(λ)|, | arg(μ)|},

as well as

|λ+ μ| ≥ c(|λ|+ |μ|), where c = cos((π − φ+ ψ)/2).

Therefore, φ > max{φA, ψ} implies

|(λ+ μ+A)−1| ≤ Mπ−φ(A)

|λ+ μ| ≤ Mπ−φ(A)

c(|λ|+ |μ|) , for all λ ∈ Σπ−φ,

and this yields (iv). To prove (v) it is enough to observe that an operator T ∈ B(X)
is invertible if and only if T ∗ ∈ B(X∗) is invertible, and |T | = |T ∗|. Finally, to
prove (vi) we verify that the relation

(λ+A1)
−1 = T (λ+A)−1T−1

is satisfied. �

Next we introduce approximations of a sectorial operator which are again
sectorial, but in addition bounded and invertible. This will be achieved as follows.
For a given pseudo-sectorial operator A and ε > 0 set

Aε = (ε+A)(1 + εA)−1. (3.6)

Then Aε is bounded, invertible with inverse

A−1
ε = (1 + εA)(ε+A)−1 = ((1/ε) +A)(1 + (1/ε)A)−1 = A1/ε,

and, more generally,

(t+Aε)
−1 = (t+ (ε+A)(1 + εA)−1)−1

= (1 + εA)(t+ ε+ (1 + εt)A)−1

=
1

1 + εt
(1 + εA)(

t+ ε

1 + εt
+A)−1, t, ε > 0.
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This implies ρ(Aε) ⊃ (−∞, 0], and as ε → 0, (t+Aε)
−1 → (t+A)−1 in B(X) for

each t > 0, Aεx → Ax for each x ∈ D(A), A−1
ε x → A−1x for each x ∈ R(A). Since

|t(t+Aε)
−1| ≤ tM0(A)

t+ ε
+

εtC0(A)

1 + εt
≤ M0(A) + C0(A), t, ε > 0,

we have Aε ∈ S(X) for each ε > 0, and there is a constant M for (S2) which is
independent of ε. Replacing t > 0 by λ ∈ Σπ−φ and observing that the functions
ϕε(λ) = (ε+λ)/(1+ελ) are leaving all sectors Σφ invariant, we obtain the following
result.

Proposition 3.1.4. Suppose A ∈ PS(X), and let Aε be defined according to (3.6).
Then Aε is bounded, sectorial, and invertible, for each ε > 0. The spectral angle
of Aε satisfies φAε

≤ φA, and the bounds Cπ−φ(Aε) and Mπ−φ(Aε) are uniformly
bounded w.r.t. ε > 0, for each fixed φ > φA. Moreover,

lim
ε→0

(λ+Aε)
−1 = (λ+A)−1 in B(X) for each λ ∈ Σπ−φA

, (3.7)

and in case A is sectorial,

lim
ε→0

Aεx = Ax for each x ∈ D(A), (3.8)

lim
ε→0

A−1
ε x = A−1x for eachx ∈ R(A).

In later sections we shall frequently make use of the approximations Aε.

1.3 Perturbation Theory
In this section we consider the behaviour of the class S(X) w.r.t. perturbations.
For this purpose, suppose A ∈ S(X), and let B be a closed linear operator in X
which is subordinate to A in the sense that D(A) ⊂ D(B) and

|Bx| ≤ b|Ax|, for all x ∈ D(A), (3.9)

with some constant b ≥ 0. If b < 1 then A+B defined by

(A+B)x = Ax+Bx, x ∈ D(A+B) = D(A), (3.10)

is also closed, densely defined, and N(A+B) = {0}. In fact, if (A+B)x = 0 then
|Ax| = |Bx| ≤ b|Ax|, hence Ax = 0, which by injectivity of A in turn implies
x = 0. The operator K := BA−1 with domain D(K) = R(A) is densely defined
and bounded by b < 1, hence by density of R(A) in X admits a unique bounded
extension to all of X which we again denote by K. Then A+B can be factored as
A+B = (I +K)A, and I +K is invertible, by b < 1. Therefore, if x∗ ⊥ R(A+B)
then (I+K∗)x∗ ⊥ R(A), hence (I+K∗)x∗ = 0 by density of R(A) in X, and then
x∗ = 0, by invertibility of I +K∗. This shows that R(A + B) is also dense in X.
Moreover, for r > 0 we have

r +A+B = (1 +B(r +A)−1)(r +A),
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hence r +A+B is invertible, provided |B(r +A)−1| < 1, and then

(r +A+B)−1 = (r +A)−1(1 +B(r +A)−1)−1. (3.11)

This implies that A + B is also sectorial, whenever bC0(A) < 1, where C0(A) is
defined by (3.5), and then

|r(r +A+B)−1| ≤ M0(A)

1− bC0(A)
, for all r > 0, (3.12)

with M0(A) also given by (3.5). Replacing r > 0 by λ ∈ Σπ−φ in the above
argument we also obtain an estimate for the spectral angle of A+B, namely

φA+B ≤ inf{φ > φA : bCπ−φ(A) < 1}. (3.13)

Thus the class of operators B satisfying (3.9) with bC0(A) < 1 forms an admissible
class of perturbations for A ∈ S(X).

Theorem 3.1.5. Suppose A ∈ S(X), B linear with D(A) ⊂ D(B) such that (3.9)
holds, and let A+B be defined by (3.10).

Then bC0(A) < 1 implies A + B ∈ S(X), and the spectral angle φA+B of
A+B satisfies (3.13).

Let us next consider perturbations B which instead of (3.9) are subject to

|Bx| ≤ b|Ax|+ a|x|, for all x ∈ D(A), (3.14)

where a, b ≥ 0. Then even for small b one cannot expect that A ∈ S(X) implies
A+B ∈ S(X), in general. For example Bx = −ax satisfies (3.14) with b = 0, but
A + B �∈ S(X) unless σ(A) ∩ [0, a) = ∅. However, S(X) is invariant w.r.t. right
shifts, and therefore it is reasonable to ask whether μ+A+B is sectorial, for some
μ ≥ 0. Now (3.14) implies

|B(μ+A)−1| ≤ a|(μ+A)−1|+ b|A(μ+A)−1|

≤ aM0(A)

μ
+ bC0(A), (3.15)

hence μ+A+B is invertible provided aM0(A)/μ+ bC0(A) < 1, i.e., if bC0(A) < 1
and μ > μ0 := aM0(A)/(1− bC0(A)), and then

|(μ+A+B)−1| ≤ M0(A)

1− bC0(A)

1

μ− μ0
, for all μ > μ0. (3.16)

This shows that μ+A+B ∈ S(X) if bC0(A) < 1 and μ ≥ μ0.
Similarly, applying Theorem 3.1.5 to the pair (μ+A,B) instead of (A,B) we

obtain the following result.
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Corollary 3.1.6. Suppose A ∈ PS(X), B linear with D(A) ⊂ D(B) such that (3.14)
holds, and let A+B be defined by (3.10).

Then there are numbers b0 > 0 and μ0 ≥ 0 such that μ + A + B ∈ S(X),
whenever b < b0 and μ ≥ μ0.

It should be mentioned that the condition of lower order type

|Bx| ≤ a|x|+ b|Aαx|, for all x ∈ D(A), (3.17)

where a, b ≥ 0 and α ∈ [0, 1), implies (3.14) via the moment inequality, see (3.55),

|Aαx| ≤ k|Ax|α|x|1−α, x ∈ D(A), (3.18)

for any b > 0. For the definition of Aα as well as for (3.18) we refer to the next
subsections. In fact, (3.17) and (3.18) yield

|Bx| ≤ a|x|+ b|Aαx| ≤ a|x|+ bk|Ax|α|x|1−α,

hence by means of Young’s inequality

|Bx| ≤ (a+ bk(1− α)ε−α/(1−α))|x|+ αbkε|Ax|, x ∈ D(A).

Since ε can be chosen arbitrarily small, Corollary 3.1.6 applies in particular to
perturbations satisfying (3.17) without restrictions on a and b, provided α ∈ [0, 1).

Next we consider A-compact perturbations, i.e., operators B in X such that
B : XA → X is compact. For such perturbations we have

Lemma 3.1.7. Let A ∈ PS(X), B a linear operator in X such that B : XA → X
is compact. Furthermore, assume either of the following two conditions

(i) B is closable in X,

(ii) X is reflexive.

Then for each b > 0 there is a > 0 such that (3.14) is valid.

Proof. We may assume that A is invertible; replace A by A+1 otherwise. Suppose
the assertion does not hold. Then there is a constant b0 > 0 and a sequence
(xn) ⊂ D(A) with |Axn| = 1 such that

|Bxn| ≥ b0|Axn|+ n|xn| = b0 + n|xn|, n ∈ N.

As B is A-compact, there is a convergent subsequence Bxnk
→ y in X, hence

xnk
→ 0 in X, and |y| ≥ b0 > 0.
If (i) holds, then y = 0 as B is closable in X, which yields a contradiction to

y �= 0.
If (ii) holds, then there is a weakly-convergent subsequence Axnk

, its limit is
0 as xnk

→ 0 in X. Therefore (xnk
) converges to 0 weakly in XA, hence Bxnk

→
y = 0 strongly in X by compactness, and so we again obtain a contradiction to
y �= 0. �
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As another consequence of Theorem 3.1.5, let us consider multiplicative per-
turbations. So let A ∈ S(X) and suppose C ∈ B(X); then the operator CA with
domain D(CA) = D(A) is well- and densely defined, and it is closed if in addition
C is invertible. Moreover, the latter property of C shows also that R(CA) is dense
in X. It is more difficult to obtain ρ(CA) ⊃ (−∞, 0) and (S2) for CA. A very
simple case arises if we require C to be such that |C − I| < 1/C0(A). In fact,
then we may write CA = A + (C − I)A, and B = (C − I)A is subject to the
assumption of Theorem 3.1.5. Note that this condition on C necessarily implies
that C is bounded but also invertible since C0(A) ≥ 1. Observing that S(X) is
invariant under dilations, as a second corollary to Theorem 3.1.5 we obtain

Corollary 3.1.8. Suppose A ∈ S(X) and that C ∈ B(X) satisfies the condition

|C − rC | < rC/C0(A), for some rC > 0. (3.19)

Then CA and AC with natural domains D(CA) = D(A) and D(AC) = C−1D(A)
belong to S(X).

The assertion for AC follows by the similarity transform AC = C−1(CA)C
of CA.

1.4 The Dunford Functional Calculus
In this subsection we want to develop the functional calculus for pseudo-sectorial
operators. For this purpose we first introduce the following function algebras. Let
φ ∈ (0, π] and define the algebra of holomorphic functions on Σφ

H(Σφ) = {f : Σφ → C is holomorphic}, (3.20)

and
H∞(Σφ) = {f : Σφ → C : f is holomorphic and bounded}. (3.21)

H∞(Σφ) with norm

|f |H∞(Σφ) = sup{|f(λ)| : | arg λ| < φ} (3.22)

is a Banach algebra. First we assume B ∈ S(X) to be bounded and invertible, and
fix φ > φB . Then the well-known Dunford calculus for bounded linear operators
applies. In fact, in this situation the spectrum σ(B) is a compact subset of Σφ,
hence choosing a simple closed path ΓB in Σφ surrounding σ(B) counterclockwise
we define

f(B) =
1

2πi

∫
ΓB

f(λ)(λ−B)−1 dλ, f ∈ H(Σφ). (3.23)

Since ΓB is compact there are no convergence problems with the integral in this
formula, and it defines an algebra homomorphism from H(Σφ) to B(X).

(3.23) can be used as a starting point to define the functional calculus for
arbitrary pseudo-sectorial operators A in X. To achieve this, a main idea is to
take B = Aε, the approximations of A introduced in (3.6), and to pass to the limit
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ε → 0+. But then we first have to make the integration path ΓB independent of
B. This can be done in several ways at the expense that we have to restrict the
function algebra H(Σφ).

(i) A natural approach is to deform the integration path ΓB into Γ defined by
Γ = (∞, 0]eiψ ∪ [0,∞)e−iψ, where φA < ψ < φ. We will do this in two steps. First
we deform ΓB into the path Γr,R defined by

Γr,R = e−iψ[r,R] ∪Rei[−ψ,ψ] ∪ eiψ[R, r] ∪ rei[ψ,−ψ]. (3.24)

Here the numbers 0 < r < R should be chosen such that R > |B| and r < |B−1|−1.
By means of Cauchy’s theorem we then obtain

f(B) =
1

2πi

∫
Γr,R

f(λ)(λ−B)−1 dλ, f ∈ H(Σφ), (3.25)

since Γr,R is also a simple compact Lipschitz curve surrounding σ(B) counter-
clockwise. But we still have the dependence of the integration path in (3.25) on
the norms of B and B−1.

Next we let r → 0+ and R → ∞. This cannot be done for arbitrary f ∈
H(Σφ), but by means of Lebesgue’s convergence theorem it works for the subspace
H0(Σφ) defined according to

H0(Σφ) =
⋃

α,β<0

Hα,β(Σφ), where (3.26)

Hα,β(Σφ) = {f ∈ H(Σφ) : |f |φα,β < ∞}, and (3.27)

|f |φα,β = sup
|λ|≤1

|λαf(λ)|+ sup
|λ|≥1

|λ−βf(λ)|. (3.28)

With Γ = (∞, 0]eiψ∪[0,∞)e−iψ this yields (3.23) with ΓB replaced by the contour
Γ which is independent of r,R.

Now let A ∈ PS(X) be arbitrary. Employing the approximations Aε intro-
duced before, setting B = Aε and using Proposition 3.1.4, we may pass to the
limit ε → 0+, to obtain the following result.

Proposition 3.1.9. Let A ∈ PS(X), fix any φ ∈ (φA, π], and let H0(Σφ) be defined
as above. Then, with Γ = (∞, 0]eiψ ∪ [0,∞)e−iψ, the Dunford integral

f(A) =
1

2πi

∫
Γ

f(λ)(λ−A)−1 dλ, f ∈ H0(Σφ), (3.29)

defines via ΦA(f) = f(A) a functional calculus ΦA : H0(Σφ) → B(X) which is a
bounded algebra homomorphism. Moreover, we have

lim
ε→0+

f(Aε) = f(A) in B(X), (3.30)

and {f(Aε)}ε>0 ⊂ B(X) is uniformly bounded, for each f ∈ H0(Σφ).
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Γ

φ

Σφ

σ(A)

Figure 3.1: Integration path for the Dunford integral.

Observe that boundedness of ΦA is understood in the sense of inductive
limits. This means that we have estimates of the form

|f(A)| ≤ C|f |φα,β , for f ∈ Hα,β(Σφ),

where C depends only on A, φ, α, and β. This follows directly from (3.29). In virtue
of Proposition 3.1.4, a similar estimate holds also for Aε, uniformly in ε > 0.

Remark 3.1.10. Consider the map ϕ(λ) = 1/λ which maps Σφ onto itself. Then
we have the identity

(f ◦ ϕ)(A) = f(A−1), for each f ∈ H0(Σφ), (3.31)

in case N(A) = 0. In fact, the change of variable λ �→ 1/λ yields

(f ◦ ϕ)(A) = 1

2πi

∫
Γ

f(1/λ)(λ−A)−1 dλ

= − 1

2πi

∫
Γ

f(λ)(1/λ−A)−1 dλ/λ2

= − 1

2πi

∫
Γ

f(λ)(A−1 − λ)−1A−1 dλ/λ

=
1

2πi

∫
Γ

f(λ)[−1/λ+ (λ−A−1)−1] dλ = f(A−1),

where the last equality follows from Cauchy’s theorem.

There is a simple but useful extensions of the Dunford calculus in Proposition
3.1.9. Namely, in case f ∈ H(Σφ) is holomorphic in a neighbourhood of zero and
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such that λαf(λ) ∈ H∞(Σφ) for some α > 0, then f belongs to H0(Σφ) if and only
if f(0) = 0. But in case f(0) �= 0 we may write f(λ) = f0(λ)+ f(0)/(1+λ), where
f0 ∈ H∞

0 (Σφ), hence the definition f(A) := f0(A) + f(0)(1 + A)−1 is reasonable.
We want to derive a different representation formula for f(A) in such situations.
For this purpose we modify the integration path ΓB in the representation (3.23)
of f(B) into

Γδ = (∞, δ]eiψ ∪ δei[ψ,2π−ψ] ∪ [δ,∞)e−iψ,

and employing Cauchy’s theorem we obtain

f(B) =
1

2πi

∫
Γδ

f(λ)(λ−B)−1 dλ

=
1

2πi

∫
Γδ

f0(λ)(λ−B)−1 dλ+
1

2πi

∫
Γδ

f(0)(1 + λ)−1(λ−B)−1 dλ

=
1

2πi

∫
Γ

f0(λ)(λ−B)−1 dλ+ f(0)(1 +B)−1

= f0(B) + f(0)(1 +B)−1.

Setting again B = Aε and passing to the limit ε → 0+, we get

f(A) =
1

2πi

∫
Γδ

f(λ)(λ−A)−1 dλ, (3.32)

where δ is small enough but arbitrary otherwise. Define the corresponding space
by

Ha(Σφ) = {f ∈
⋃
β<0

H0,β(Σφ) : f is holomorphic in a neighbourhood of 0}.

Then we have the following result.

Corollary 3.1.11. Let A ∈ PS(X) with spectral angle φA, fix any φ > φA, and let
Ha(Σφ) be defined as above.

Then the Dunford map Φ : Ha(Σφ) → B(X) defined via Φ(f) = f(A), where
f(A) is given by the Dunford integral (3.32), is well-defined and an algebra homo-
morphism. It coincides with the Dunford map of Proposition 3.1.9, and we have
the relation

f(A) = f0(A) + f(0)(1 +A)−1,

where f0(λ) = f(λ)− f(0)/(1 + λ) belongs to H0(Σφ). In particular, for the func-
tions gμ(λ) = 1/(λ−μ) with μ �∈ Σφ we have gμ(A) = (A−μ)−1. The convergence
assertion (3.30) of Proposition 3.1.9 is also valid for Ha(Σφ).

Remark 3.1.12. (a) A similar result can be obtained for functions f ∈ H(Σφ)
which are holomorphic at infinity and decay polynomially at zero. With f∞(λ) =
f(λ)− f(∞)λ/(1 + λ) we then have the relation

f(A) = f∞(A) + f(∞)A(I +A)−1,



3.2. The Derivation Operator 101

and there is an integral representation corresponding to (3.32) which we do not
explicitly state here.

(b) If f ∈ H(Σφ) is holomorphic at infinity and at zero we have correspond-
ingly

f(A) = f0,∞(A) + f(0)(I +A)−1 + f(∞)A(I +A)−1.

With δ > 0 small and ρ > δ large one obtains alternatively

f(A) =
1

2πi

∫
Γρ
δ

f(λ)(λ−A)−1 dλ,

where
Γρ
δ = [ρ, δ]eiψ ∪ δei[ψ,2π−ψ] ∪ [δ, ρ]e−iψ ∪ ρei[2π−ψ,ψ].

The proof of these facts is left to the reader.
(c) The functions ϕε(λ) = (ε+ λ)/(1+ ελ) map Σφ into itself, and ϕ(0) = ε,

ϕ(∞) = 1/ε. This means that fε = f ◦ ϕε belongs to H(Σφ) and is holomorphic
at infinity and at zero, for any f ∈ H(Σφ). Therefore, (b) of this Remark applies
and we obtain

(f ◦ ϕε)(A) = f(Aε).

In fact, the identity

(λ−Aε)
−1 = (1 + εA)(λ− ε− (1− λε)A)−1

= (1 + εA)(1− ελ)−1(
λ− ε

1− ελ
−A)−1

=
1− ε2

(1− ελ)2
(
λ− ε

1− ελ
−A)−1 − ε

1− ελ

and the variable transformation z = (λ− ε)/(1− ελ), i.e., λ = ϕε(z) yield

f(Aε) =
1

2πi

∫
ΓR
r

f(λ)(λ−Aε)
−1 dλ

=
1

2πi

∫
ΓR
r

f(λ)(
λ− ε

1− ελ
−A)−1 1− ε2

(1− ελ)2
dλ

=
1

2πi

∫
ϕε(ΓR

r )

f(ϕε(z)))(z −A)−1 dz = (f ◦ ϕε)(A),

employing once more Cauchy’s theorem.

3.2 The Derivation Operator

This section is devoted to the most elementary operator in analysis, the derivation
operator d/dt. We will consider this operator on intervals J = R, J = R+, and on
J = (0, a), in various spaces.
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2.1. The Whole Line Case
Let J = R. In the sequel we will use the notation Yp(R) = Lp(R;Y ), where Y
denotes a Banach space and p ∈ [1,∞], Yb(R) = Cb(R;Y ), Yub(R) = Cub(R;Y ),
and Y0(R) = C0(R;Y ). Define Bp in Yp(R) by means of

(Bpu)(t) = u̇(t), t ∈ R, u ∈ D(Bp) = H1
p (R;Y ), (3.33)

for p ∈ [1,∞] and D(Bp) = C1
p(R;Y ) for p ∈ {0, b, ub}. It is easy to see that Bp

is closed, and Bp is densely defined except for p ∈ {∞, b}. Since u̇(t) = 0 for all
t ∈ R implies that u is constant, we have N(Bp) = {0} for all p ∈ [1,∞) ∪ {0},
while N(Bb) = N(Bub) = N(B∞) ≡ Y .

Next consider the range of Bp for p ∈ (1,∞) ∪ {0}. If f ∈ C(R;Y ) has
compact support and mean value Mf =

∫∞
−∞ f(s) ds = 0, then the solution u of

u̇ = f on R belongs to C1(R;Y ) and has compact support as well. Since the set of
such functions f is dense in Yp(R) for 1 < p < ∞ and for p = 0, by the following
lemma, we see that R(Bp) is dense in Yp(R), 1 < p < ∞ and p = 0.

Lemma 3.2.1. Let Y be a Banach space, ϕ ∈ L1(R) ∩ C0(R) such that ϕ ≥ 0,∫
R
ϕ(t) dt = 1, and define ϕε(t) = εϕ(εt), t ∈ R, ε > 0.

Then for f ∈ Y1(R)+Y∞(R) the approximations fε of f defined by fε = ϕε∗f
have the following properties.

(i) fε →ε→∞ f in Yp(R), for each f ∈ Yp(R), p ∈ [1,∞) ∪ {0, ub};
(ii) fε →ε→0+ 0 in Yp(R), for each f ∈ Yp(R), p ∈ (1,∞) ∪ {0}.
Proof. (i) Let T (t) denote the translation group defined by

[T (t)f ](s) = f(t+ s), t, s ∈ R.

Then for p ∈ [1,∞) ∪ {0, ub} we have T (t)f → f in Yp(R) as t → 0, for each
f ∈ Yp(R). Therefore with

∫
R
ϕ(t) dt = 1 we obtain

|fε − f |p = |
∫
R

ϕε(s)([T (−s)f ]− f) ds|p

≤
∫
|s|≤R

ϕε(s)|T (−s)f − f |p ds+
∫
|s|≥R

ϕε(s)(|T (−s)f |p + |f |p) ds

≤ sup
|s|≤R

|T (−s)f − f |p + 2|f |p
∫
|s|≥Rε

|ϕ(s)| ds.

Now, given an arbitrary number η > 0, choose first R > 0 such that |T (s)f −
f |p ≤ η/2 for all |s| ≤ R, and then for this fixed R a number εη > 0 such that
2|f |p

∫
|s|≥Rεη

|ϕ(s)| ds < η/2|f |p. Then |fε − f |p ≤ η for all ε ≥ εη, which implies

assertion (i).

(ii) To prove the second assertion, note that by Young’s inequality |fε|p ≤ |f |p,
for each f ∈ Yp(R). On the other hand, |fε|∞ ≤ ε|ϕ|∞|f |1. This implies |fε|∞ → 0
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as ε → 0+, for each f ∈ Y1(R), hence also

|fε|p ≤ |fε|1−1/p
∞ |fε|1/p1 ≤ [|ϕ|∞ε]1−1/p|f |1 → 0+

as ε → 0+, for each f ∈ Y1(R) ∩ Y0(R). By (i) and a cut off procedure such
functions are dense in Yp(R), p ∈ (1,∞) ∪ {0}, and so assertion (ii) follows. �

For p = 1, Mf = 0 is a necessary condition for f ∈ R(B1), hence R(B1) ⊂
N(M) and because M is bounded, N(M) �= Y1(R) is closed and so R(B1) is not
dense in Y1(R).

The kernel N(Bp) consists of the constant functions for p ∈ {b, ub,∞}, hence
dimN(Bp) = 1, and Bp is pseudo-sectorial as we shall see below, so R(Bp) cannot
be dense for these p, by Theorem 3.1.2.

To compute the spectrum of Bp, we consider the equation

λu(t) + u̇(t) = f(t), t ∈ R. (3.34)

For Reλ > 0 a solution is given by

uλ(t) =

∫ ∞

0

e−λsf(t− s) ds =

∫ t

−∞
e−λ(t−s)f(s) ds, t ∈ R,

and we have the estimate

|uλ|p ≤ |f |p/Reλ, Reλ > 0.

On the other hand, for Reλ < 0 a solution is

uλ(t) = −
∫ 0

−∞
e−λsf(t− s) ds = −

∫ ∞

t

e−λ(t−s)f(s) ds, t ∈ R,

and
|uλ|p ≤ |f |p/|Reλ|, Reλ < 0.

Since the general solution of (3.34) is given by u(t) = uλ(t) + ce−λt, and for
Reλ �= 0 the function e−λt is not in Yp(R), we have N(λ+Bp) = 0 for all Reλ �= 0.
Summarizing we have

Proposition 3.2.2. Let J = R. Then the operators Bp and −Bp defined above
are pseudo-sectorial in Yp(R) with spectral angles φBp

= φ−Bp
= π/2, for all

p ∈ [1,∞] ∪ {0, b, ub}. The domains of Bp are dense for all p ∈ [1,∞) ∪ {0, ub},
their kernels are trivial for all p ∈ [1,∞) ∪ {0}, and R(Bp) is dense for all p ∈
(1,∞) ∪ {0}. Consequently, Bp and −Bp are sectorial iff p ∈ (1,∞) ∪ {0}.

2.2 The Half-Line Case
Next we consider the operator Bp on J = R+. This time we let Yp(R+) =
Lp(R+;Y ) for p ∈ [1,∞], Yp(R+) = 0Cp(R̄+;Y ) for p ∈ {0, b, ub}, where the
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subscript 0 indicates zero trace at t = 0. Define

(Bpu)(t) = u̇(t), t ∈ J, u ∈ D(Bp) = 0H
1
p(R+;Y ), (3.35)

for p ∈ [1,∞] and D(Bp) = 0Cp(R+;Y ) ∩ C1
p(R+;Y ) for p ∈ {0, b, ub}. As in the

case of J = R, it is easy to see that Bp is closed, and that Bp is densely defined
except for p ∈ {∞, b}. Since u̇(t) = 0 for all t ∈ R+ implies that u is constant
hence u(t) ≡ u(0) = 0, we have N(Bp) = 0 for all p ∈ [1,∞] ∪ {0, b, ub}.

To compute the spectrum of Bp for J = R+, consider the problem

λu(t) + u̇(t) = f(t), t > 0, u(0) = 0.

For all λ ∈ C its solution is given by

uλ(t) =

∫ t

0

e−λsf(t− s) ds, t ∈ R+,

and we have the estimate

|uλ|p ≤ |f |p/Reλ, Reλ > 0.

Concerning the range of Bp, note that necessarily (B−1
p f)(t) =

∫ t

0
f(s) ds whenever

f ∈ R(Bp). Since the set of continuous functions f with compact support in (0,∞)
and mean value Mf =

∫∞
0

f(s) ds = 0 is dense in Yp(R+) for each p ∈ (1,∞)∪{0},
we see that the range of Bp for such p is dense. On the other hand, as in the case
of J = R we see that R(B1) is not dense, and this is also the case for p ∈ {∞, b}. In
fact, consider a Hahn-Banach extension of the limit functional 〈l|f〉 := limt→∞ f(t)
from the closed subspace Cl(R̄+;Y ) of Yub(R+) to Yb(R+). Then for f ∈ R(Bp),
p ∈ {b, ub}, f ∈ Cl(R̄+;Y ) we must necessarily have 〈l|f〉 = 0, which means
R(Bp) ⊂ N(l). From these considerations we obtain

Proposition 3.2.3. Let J = R+. Then the operator Bp defined by (3.35) is injective
and pseudo-sectorial in Yp(R+) with spectral angle φBp

= π/2, for all p ∈ [1,∞]∪
{0, b, ub}. The domain of Bp is dense for all p ∈ [1,∞) ∪ {0, ub}, and R(Bp) is
dense for all p ∈ (1,∞) ∪ {0}. Consequently, Bp is sectorial iff p ∈ (1,∞) ∪ {0}.

2.3 Finite Interval
Here we consider the operator Bp on the finite interval J = (0, a). This time we
let Yp(J) = Lp(J ;Y ) for p ∈ [1,∞], Yp(J) = 0Cp(J̄ ;Y ) for p ∈ {0, b, ub}, where as
before the subscript 0 indicates trace zero at t = 0. Define

(Bpu)(t) = u̇(t), t ∈ J, u ∈ D(Bp) = 0H
1
p(J ;Y ), (3.36)

for p ∈ [1,∞] and D(Bp) = 0Cp(J ;Y )∩C1
p(J ;Y ) for p ∈ {0, b, ub}. As in the case

of J = R+, it is easy to see that Bp is closed, injective, and that Bp is densely
defined except for p = ∞.
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This time the spectrum of Bp is empty for each p, in fact we have the relation

(λ+Bp)
−1f(t) = uλ(t) =

∫ t

0

e−λsf(t− s) ds, t ∈ J, λ ∈ C,

|uλ|p ≤ |f |p(1− e−Reλa)/Reλ, Reλ �= 0,

and
|uλ|p ≤ |f |pa, Reλ = 0.

Therefore, although σ(Bp) = ∅, Bp still has spectral angle π/2. More precisely we
have

Proposition 3.2.4. Let J = (0, a). Then the operator Bp defined by (3.36) is
invertible and pseudo-sectorial in Yp(J) with spectral angle φBp = π/2, for all
p ∈ [1,∞] ∪ {0, b, ub}. The domain of Bp is dense for all p ∈ [1,∞) ∪ {0, b, ub},
hence, Bp is sectorial iff p �= ∞.

It is instructive to have a look at the functional calculus for Bp. Since the
resolvent of Bp admits the kernel representation

(λ−Bp)
−1w(t) = −

∫
J

eλ(t− s)w(s) ds, t ∈ J,

where eλ(t) = eλt for t > 0, eλ(t) = 0 for t ≤ 0, for a function f ∈ H0(Σφ),
φ > π/2, the operators f(Bp) admit a kernel representation as well, namely

[f(Bp)w](t) =

∫
J

kf (t− s)w(s) ds, t ∈ J.

The kernel kf (t) is obtained as the contour integral

kf (t) = − 1

2πi

∫
Γ

f(λ)eλ(t) dλ,

in particular kf (t) = 0 for t ≤ 0. The contour Γ is chosen as in Section 3.1.4.
This is precisely the inversion formula for the Laplace transform, i.e., f and kf
are related by k̂f (λ) = f(λ), for λ > 0, say.

The approximations (Bp)ε of Bp introduced in Section 3.1.2 also admit a
kernel representation. In fact, the functions fε(λ) = (ε + λ)/(1 + ελ) are the
Laplace transforms of kε(t) = δ0(t)/ε+(1− 1/ε2)e−t/εη0(t), where η0 denotes the
Heaviside function, and δ0 its derivative, the Dirac measure. This implies

[(Bp)εw](t) = ε−1w(t) + (1− ε−2)

∫ t

0

w(t− s)e−s/ε ds, t ∈ J, ε > 0,

the kernel representation of (Bp)ε.
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2.4 Weighted Lp-Spaces
Let Y be a Banach space and assume that p ∈ (1,∞) and 1/p < μ ≤ 1. We set

Lp,μ(R+;Y ) := {f : R+ → Y : t1−μf ∈ Lp(R+;Y )}

and equip it with the norm |f |Lp,μ(R+;Y ) := (
∫∞
0

|t1−μf(t)|p dt)1/p. We also define

H1
p,μ(R+;Y ) := {u ∈ Lp,μ(R+;Y ) ∩H1

1,loc(R+;Y ) : u̇ ∈ Lp,μ(R+;Y )}.

H1
p,μ(R+;Y ) will always be given the norm

|u|H1
p,μ

= |u|pLp,μ(R+;Y ) + |u̇|pLp,μ(R+;Y ))
1/p,

which turns it into a Banach space.

Lemma 3.2.5. Suppose p ∈ (1,∞) and 1/p < μ ≤ 1. Then

(a) Lp,μ(R+;Y ) ↪→ L1,loc(R̄+;Y );

(b) H1
p,μ(R+;Y ) ↪→ W 1

1,loc(R̄+;Y );

(c) Every function u ∈ H1
p,μ(R+;Y ) has a well-defined trace, that is, u(0) is well-

defined in Y .

Proof. (a) The first assertion follows from∫ T

0

|f(t)| dt ≤ (

∫ T

0

t−p′(1−μ) dt)1/p
′
(

∫ T

0

|t1−μf(t)|p dt)1/p ≤ c|f |Lp,μ(R+;Y )

which is valid provided that μ > 1/p.

(b) This follows from the definition of H1
p,μ(R+;Y ) and from (a).

(c) We conclude from (b) that every function u ∈ H1
p,μ(R+;Y ) is locally absolutely

continuous, and this yields the assertion in (c). �
In the following we set

0H
1
p,μ(R+;Y ) := {u ∈ H1

p,μ(R+;Y ) : u(0) = 0}.

Then the derivation operator

Bp,μu(t) := u̇(t) :=
d

dt
u(t), t > 0, D(Bp,μ) := 0H

1
p,μ(R+;Y ) (3.37)

is well-defined on Lp,μ(R+;Y ). It is natural to introduce the mapping

Φμ : Lp,μ(R+;Y ) → Lp(R+;Y ), (Φμu)(t) := t1−μu(t), t > 0.

Next we show that the operator Φμ also maps 0H
1
p,μ(R+;Y ) into 0H

1
p (R+;Y ),

provided μ > 1/p.
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Proposition 3.2.6. Let p ∈ (1,∞) and let 1/p < μ ≤ 1. Then

(a) Φμ : Lp,μ(R+;Y ) → Lp(R+;Y ) is an isometric isomorphism.

(b) Φμ : 0H
1
p,μ(R+;Y ) → 0H

1
p (R+;Y ) is a (topological) isomorphism.

Proof. (a) The assertion in (a) is clear.

(b) (i) We will first show that Φ−1
μ maps 0H

1
p (R+;Y ) into 0H

1
p,μ(R+;Y ). In order

to see this, let v ∈ 0H
1
p (R+;Y ) be given. An easy computation shows that the

function tμ−1v is in H1
p,loc(R+;Y ) and that

t1−μ d

dt
[tμ−1v](t) = v̇(t)− (1− μ)

v(t)

t
, t > 0. (3.38)

By means of Hardy’s inequality (see Proposition 3.4.5 below) we can verify that

the function v/t belongs to Lp(R+;Y ). Indeed, we infer from v(t) =
∫ t

0
v̇(s) ds that

(

∫ ∞

0

|t−1v(t)|p dt)1/p = (

∫ ∞

0

|t−1

∫ t

0

v̇(s)ds|p dt)1/p ≤ p′(
∫ ∞

0

|v̇(s)|pds)1/p.
(3.39)

We conclude from (3.38)–(3.39) that Φ−1
μ v belongs to H1

p,μ(R+;Y ), and also that
the mapping Φ−1

μ is linear and bounded between the indicated spaces.

(ii) Next we show that u = Φ−1
μ v has trace zero. Observing that

u(t) = tμ−1v(t) = tμ−1

∫ t

0

v̇(s) ds

we obtain by Hölder’s inequality that |u(t)| ≤ tμ−1/p(
∫ t

0
|v̇(s)|p ds)1/p. This shows

that u(t) → 0 as t → 0+.

(iii) Similar arguments show that Φμ maps 0H
1
p,μ(R+;Y ) into 0H

1
p (R+;Y ), and

that the mapping is bounded and linear. �

We will now consider the derivation operator Bp,μ defined in (3.37). Thanks
to Proposition 3.2.6 the operator

B̄p,μ := ΦμBp,μΦ
−1
μ , D(B̄p,μ) := 0H

1
p (R+;Y ), (3.40)

which acts on the function space Lp(R+;Y ), is well-defined. It follows from (3.38)
that

B̄p,μ = Bp,1 +B0, where (B0v)(t) := −(1− μ)v(t)/t. (3.41)

Observe that B̄p,μ and Bp,μ coincide if μ = 1. Moreover, note that Bμ,p in
Lp,μ(R+;Y ) is similar to Bp,1 +B0 in Lp(R+;Y ). It follows from equation (3.39)
that B0 is relatively bounded with respect to Bp,1, with bound smaller than 1,
provided (1−μ)p′ < 1, i.e., for 1 ≥ μ > 1/p. It is now easy to see that the operators
Bp,μ and B̄p,μ share the following properties.
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Proposition 3.2.7. Suppose 1 < p < ∞ and 1/p < μ ≤ 1. Then

(i) B̄p,μ is closed and densely defined in Lp(R+;Y ). Moreover, N(B̄p,μ) = 0, and
R(B̄p,μ) is dense in Lp(R+;Y ).

(ii) Bp,μ is closed and densely defined in Lp,μ(R+;Y ). Moreover, N(Bp,μ) = 0,
and R(Bp,μ) is dense in Lp,μ(R+;Y ).

Proof. (i) It has been proved above that Bp,1 has all the properties listed in the
proposition. Since B0 is relatively bounded with respect to Bp,1 with relative
bound strictly smaller than 1, we obtain from (3.41) that B̄p,μ enjoys the same
properties, see Section 3.1.3.

(ii) The assertions in (ii) follow from (i) by employing the isomorphism Φμ. �

In the sequel we take the liberty to work with Bp,μ and B̄p,μ interchangeably,
that is, we will use the representation that is the most convenient one.

Lemma 3.2.8. Let 1/p < μ ≤ 1 and suppose that k ∈ L1(R+;B(X,Y )) satisfies
|k(t)| ≤ κ(t), where κ ∈ L1(R+) is nonnegative and nonincreasing, and where
X,Y are Banach spaces. Then we have

(i)
∣∣∣ ∫ t

0

k(t− s)(t/s)1−μv(s) ds
∣∣∣
p
≤ cp,μ|κ|1|v|p for v ∈ Lp(R+;X),

where cp,μ = 21−μ[1 + (1− p′(1− μ))−p/p′
]1/p.

(ii) The convolution operator K := k∗ belongs to B(Lp,μ(R+;X), Lp,μ(R+;Y ))
and |K| ≤ cp,μ|κ|1.

Proof. (i) Let v ∈ Lp(R+;X) be given. Then Hölder’s inequality implies∣∣∣ ∫ t

0

k(t− s)(t/s)1−μv(s) ds
∣∣∣p
p
≤
∫ ∞

0

[ ∫ t

0

κ(t− s)(t/s)1−μ|v(s)|ds
]p

dt

≤
∫ ∞

0

[ ∫ t

0

κ(t− r)r−p′(1−μ)dr
]p/p′

tp(1−μ)

∫ t

0

κ(t− s)|v(s)|p dsdt

=

∫ ∞

0

|v(s)|p
{∫ ∞

s

tp(1−μ)κ(t− s)
[ ∫ t

0

κ(t− r)r−p′(1−μ)dr
]p/p′

dt
}
ds

≤ cpp,μ|κ|
p
1|v|pp,

as the following estimates show. On the one hand, we have∫ ∞

s

tp(1−μ)κ(t− s)
[ ∫ t

t/2

κ(t− r)r−p′(1−μ)dr
]p/p′

dt

≤ 2p(1−μ)

∫ ∞

s

κ(t− s)
[ ∫ t

t/2

κ(t− r)dr
]p/p′

dt

≤ 2p(1−μ)|κ|1+p/p′

1 = 2p(1−μ)|κ|p1.
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Since κ(t) is nonincreasing and (1− μ)p′ < 1 we have, on the other hand,∫ ∞

s

tp(1−μ)κ(t− s)
[ ∫ t/2

0

κ(t− r)r−p′(1−μ)dr
]p/p′

dt

≤
∫ ∞

s

tp(1−μ)κ(t− s)
[
κ(t/2)

∫ t/2

0

r−p′(1−μ)dr
]p/p′

dt

= (1− p′(1− μ))−p/p′
2p(1−μ)

∫ ∞

s

κ(t− s)[κ(t/2)(t/2)]p/p
′
dt

≤ (1− p′(1− μ))−p/p′
2p(1−μ)|κ|p1.

Note that the last inequality follows from

κ(t/2)(t/2) =

∫ t/2

0

κ(t/2) dτ ≤
∫ t/2

0

κ(τ) dτ ≤ |κ|1,

where we have once more used that κ is nonincreasing.

(ii) We conclude from (i) that

|Kv|Lp,μ
=
(∫ ∞

0

t(1−μ)p|Kv(t)|p dt
)1/p

=
(∫ ∞

0

∣∣∣ ∫ t

0

k(t− s)(t/s)1−μs1−μv(s) ds
∣∣∣p dt)1/p

≤ cp,μ|κ|1|s1−μv|p = cp,μ|κ|1|v|Lp,μ ,

and the proof of Lemma 3.2.8 is complete. �
We already know that the operator −Bp,1 generates a positive C0-semigroup

{T (t) : t ∈ R+} of contractions on Lp(R+;Y ) which is given by

[T (t)u](s) :=

{
u(s− t) if s > t,

0 if s < t.
(3.42)

This implies the resolvent estimate

|(λ+Bp,1)
−1|B(Lp(R+;Y )) ≤

1

Reλ
, Reλ > 0.

However, note that this semigroup is not of class C0 in Lp,μ(R+;Y ) for μ < 1, as
T (t) does not map Lp,μ(R+;Y ) into Lp,μ(R+;Y ) for t > 0. Nevertheless, we now
prove a resolvent estimate for Bp,μ, which is best possible.

Proposition 3.2.9. Let 1/p < μ ≤ 1. Then the resolvent set ρ(Bp,μ) contains the
open negative half-plane C− = −Σπ/2, and there is a constant cp,μ > 1 such that

|(λ+Bp,μ)
−1|B(Lp,μ(R+;Y )) ≤

cp,μ
Reλ

, Reλ > 0, (3.43)

holds. In particular, Bp,μ is sectorial in Lp,μ(R+;Y ) with φBp,μ
= π/2.
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Proof. (i) Let λ ∈ C with Reλ > 0 be fixed and set

(Kλf)(t) :=

∫ t

0

e−λ(t−s)f(s) ds, f ∈ Lp,μ(R+;Y ).

Moreover, let κ(t) := e−tReλ. Then Kλ satisfies the assertions of Lemma 3.2.8,
with |κ|1 = 1/Reλ. Consequently, Lemma 3.2.8 shows that Kλ is a bounded
linear operator in Lp,μ(R+;Y ), and that

|Kλ|B(Lp,μ(R+;Y )) ≤
cp,μ
Reλ

. (3.44)

(ii) We verify that (λ+ Bp,μ) : D(Bp,μ) → Lp,μ(R+;Y ) is invertible for Reλ > 0,
with

[(λ+Bp,μ)
−1f ](t) =

∫ t

0

e−λ(t−s)f(s) ds, f ∈ Lp,μ(R+;Y ). (3.45)

Indeed, let f ∈ Lp,μ(R+;Y ) be given and recall that Lp,μ(R+;Y ) is embedded into
L1,loc(R+;Y ). It is then not difficult to see that the differential equation

(λ+
d

dt
)u = f, u(0) = 0,

has a unique solution u = uλ in H1
1,loc(R̄+;Y ). It is given by the right-hand side of

equation (3.45). It remains to show uλ ∈ D(Bp,μ). For this we note that uλ = Kλf
and u̇λ = f − λKλuλ. Hence we obtain from (i) that uλ as well as u̇λ belong to
the space Lp,μ(R+;Y ). Since uλ(0) = 0 we conclude uλ ∈ D(Bp,μ), and this estab-
lishes equation (3.45). We have shown that ρ(Bp,μ) contains C−, and the resolvent
estimate (3.43) is now a direct consequence of (3.44)–(3.45).

(iii) It follows from (3.43) that φBp,μ ≤ π/2. On the other hand, φBp,μ cannot be
strictly smaller than π/2, as this would imply that Bp,μ generates a (strongly con-
tinuous analytic) semigroup on Lp,μ(R+;Y ), which is not possible. The assertion
follows now from Proposition 3.2.7. �

3.3 Analytic Semigroups and Fractional Powers

3.1 Holomorphic Semigroups
Typical examples of functions in Ha(Σφ) with φ < π/2 are the functions et(z) =
e−zt for each t > 0. Provided φA < π/2, the Dunford calculus from Section 3.1.4
gives rise to the family of operators et(A) =: e−tA, t > 0, which because of the
multiplicativity of the the calculus yields the semigroup property

e−A(t+s) = e−Ate−As, t, s > 0.

Therefore it is called a semigroup of operators.
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Definition 3.3.1. A family of operators {T (t)}t≥0 ⊂ B(X) in a Banach space X is
called a semigroup, if

T (t+ s) = T (t)T (s), t, s > 0, T (0) = I,

is satisfied. The semigroup is called of class C0, if in addition

lim
t→0+

T (t)x = x, x ∈ X,

holds.

We prove the following result which is basic in semigroup theory and for
parabolic partial differential equations.

Theorem 3.3.2. Let A be a closed densely defined operator in a Banach space X.
Then the following assertions are equivalent.

(a) A is pseudo-sectorial with spectral angle less than π/2;

(b) −A generates a C0-semigroup T (t) which admits a bounded and holomorphic
extension to a sector Σψ;

(c) −A generates a C0-semigroup T (t) such that R(T (t)) ⊂ D(A), and there is a
constant M0 > 0 such that |T (t)|+ |tAT (t)| ≤ M0, for each t > 0.

Proof. (c) ⇒ (b). Suppose −A generates a C0-semigroup such that the conditions
of (c) are satisfied. Define T (z) by means of the power series

T (t+ z) =

∞∑
n=0

zn

n!
T (n)(t).

Because of T (n)(t) = AnT (t) = [AT (t/n)]n we obtain |T (n)(t)| ≤ [M0n/t]
n, for all

t > 0 and n ∈ N0. These estimates imply

|T (t+ z)| ≤
∞∑

n=0

[n|z|M0]
n

tnn!
< ∞,

provided
limn→∞[(n|z|M0)

n/tnn!]1/n = M0|z|e/t < 1,

which means |z| < t/M0e or | arg z| < ψT := arcsin(1/M0e). On each smaller
sector Σψ, ψ < ψT , T (z) is then holomorphic, bounded, and has the semigroup
property T (z1)T (z2) = T (z1 + z2), and |T (z)| ≤ Mψ.

(b) ⇒ (a). Now let T (z) be holomorphic on ΣψT
and bounded on each smaller

sector Σψ. Then for each λ > 0, Cauchy’s theorem applied to the closed contour
ΓR = [0, R] ∪Rei[0,ψ] ∪ eiψ[R, 0] implies with R → ∞

(λ+A)−1 =

∫ ∞

0

e−λtT (t) dt =

∫ ∞

0

e−λteiψT (teiψ) dt, (3.46)
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for each |ψ| < ψT , by virtue of∣∣∣ ∫ ψ

0

T (Reiϕ)e−λReiϕiReiϕ dϕ
∣∣∣ ≤ MψR

∫ ψ

0

e−Rλ cosϕ dϕ → 0

as R → ∞. Because of the estimate∣∣∣ ∫ ∞

0

e−λteiψT (teiψ) dt
∣∣∣ ≤ Mψ

∫ ∞

0

e−tRe(λeiψ) dt (3.47)

≤ Mψ

|λ| cos(ψ + arg λ)
,

formula (3.46) allows for holomorphic extension of the resolvent of A to the sector
−Σπ/2+ψT

, and implies σ(A) ⊂ Σπ/2−ψT
, and (3.46) holds for all λ ∈ Σπ/2+ψT

.
Moreover, estimate (3.47) yields supλ∈Σπ−φ

|λ(λ+A)−1| < ∞ for all φ > π/2−ψT ,
and therefore A ∈ PS(X) and φA ≤ π/2− ψT .

(a) ⇒ (c). Suppose A ∈ PS(X) satisfies φA < π
2 , and let φA < φ < π

2 . Then for
z ∈ Σψ, the functions ez(λ) = e−zλ are holomorphic in C and belong to Ha(Σφ),
as long as ψ < π/2 − φ. Therefore, the functional calculus for pseudo-sectorial
operators yields bounded linear operators T (z) = ez(A) = e−zA, which satisfy the
semigroup property

T (z1 + z2) = T (z1)T (z2), z1, z2 ∈ Σπ
2 −φ.

Since the map z �→ fz is holomorphic on Σπ
2 −φ with derivative ∂zez(λ) = −λez(λ)

which even belongs to H0(Σφ), we may conclude that the family {T (z)}z∈Σπ
2

−φ
⊂

B(X) is holomorphic and d
dzT (z) = −AT (z). In particular, −A is the generator of

T (z) and the operators T (z) have ranges contained in D(A), for each z ∈ Σπ
2 −φ.

Let us next derive bounds for |T (z)|. For this purpose we take the representation
of ez(A) from (3.32).

T (z) =
1

2πi

∫
Γδ

e−zλ(λ−A)−1 dλ.

With | arg z| ≤ ψ < π/2− φ a straightforward estimate yields

|T (z)| ≤ Mπ−φ(A)

2π

∫
Γδ

e−Re(zλ) | dλ|
|λ|

≤ Mπ−φ(A)

π

[ ∫ ∞

δ

e−|z|r cos(φ+ψ) dr

r
+

∫ π

ψ

e|z|δ dϕ
]
≤ K0

ψ(A),

by the choice δ = 1/|z|. This shows that the semigroup T (z) is uniformly bounded
on Σψ. Similarly, choosing δ = 0 we obtain

|AT (z)| ≤ Mπ−φ(A)

∫ ∞

0

e−|z|r cos(φ+ψ)dr =
K1

ψ(A)

|z| , z ∈ Σπ
2 −φ.
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To see that T (z) → I strongly as z → 0, let x ∈ D(A) and fix δ > 0. Then the
identity (λ−A)−1x = x/λ+ (λ−A)−1Ax/λ yields

T (z) =
1

2πi

∫
Γδ

e−zλ[x+ (λ−A)−1Ax]
dλ

λ
.

By means of residue calculus the first part of this integral can be evaluated to the
result

T (z)x = x+
1

2πi

∫
Γδ

e−zλ(λ−A)−1Ax
dλ

λ
,

and passing to the limit z → 0, contracting the contour in −Σπ−φ we conclude

T (z)x → x+
1

2πi

∫
Γδ

(λ−A)−1Ax
dλ

λ
= x,

by Cauchy’s theorem. Since D(A) is dense in X and T (z) is uniformly bounded
we obtain T (z) → I strongly as z → 0. The theorem is proved. �

3.2 Extended Functional Calculus
We consider now a method to define f(A) for all A ∈ PS(X) and all functions
f ∈ H(Σφ) which grow at most polynomially at infinity and zero. More precisely,
suppose f ∈ Hα,α(Σφ) for some α ∈ R+. Define ψ(λ) = λ/(1 + λ)2; this function
is rational and belongs to H0(Σφ). Contracting the contour Γ, by residue calculus
we obtain ψ(A) = A(I + A)−2. This operator is bounded and injective, its range
equals D(A)∩ R(A) and its inverse is given by ψ(A)−1 = 2+A+A−1. If k ∈ N is
such that k > α then ψkf ∈ H0(Σφ) and so the Dunford calculus of Proposition
3.1.9 applies and yields a bounded operator (ψkf)(A). We then set

f(A) = ψ(A)−k(ψkf)(A), and

D(f(A)) = {x ∈ X : (ψkf)(A)x ∈ D(Ak) ∩ R(Ak)}.
(3.48)

This definition of f(A) is independent of k > α; in fact, if l > k > α then
ψlf = ψl−kψkf , hence (ψlf)(A) = ψl−k(A)(ψkf)(A) since ψl−k and also ψkf
belong toH0(Σφ). Therefore we may always choose k = [α]+1, the smallest integer
larger than α. f(A) defined this way is closed and densely defined. Moreover, we
have

Theorem 3.3.3. Let X be a complex Banach space and A ∈ PS(X). Then the
functional calculus ΦA defined by ΦA(f) = f(A) with f(A) given by (3.48) is well-
defined for all functions in

⋃
α∈R

Hα,α(Σφ). For α ≥ 0 and f ∈ Hα,α(Σφ), f(A)
is a closed linear operator in X with domain

D(f(A)) = {x ∈ X : (fψk)(A)x ∈ D(Ak) ∩ R(Ak)},

where k > α. The inclusion D(f(A)) ⊃ D(Ak) ∩ R(Ak) is valid, and

f(A)x = (fψk)(A)ψ−k(A)x, x ∈ D(Ak) ∩ R(Ak).
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In particular, f(A) is densely defined if A is sectorial. ΦA is an algebra homomor-
phism in the sense that

(af + bg)(A)x = af(A)x+ bg(A)x, for all f, g ∈ Hα,α(Σφ), x ∈ D(Ak)∩R(Ak),

and all a, b ∈ C, with k > α, and

(fg)(A)x = f(A)g(A)x, f ∈ Hα,α(Σφ), g ∈ Hβ,β(Σφ), x ∈ D(Ak) ∩ R(Ak),

for k > α+ β. The approximations Aε of A satisfy

lim
ε→0+

f(Aε)x = f(A)x, for all f ∈ Hα,α(Σφ), x ∈ D(Ak) ∩R(Ak), k > α.

It is useful to have a representation of f(A)x as a contour integral, for f ∈
Hα,β(Σφ) and x ∈ D(Ak)∩R(Al), with k > α and l > β. To this aim we use again
(3.25) for a bounded and invertible B ∈ S(X). Split the contour as Γr,R = ΓR

1 ∪Γr
2,

where

ΓR
1 = e−iψ[1, R] ∪Rei[−ψ,ψ] ∪ eiψ[R, 1], Γr

2 = [1, r]eiψ ∪ rei[ψ,−ψ] ∪ [r, 1]e−iψ.
(3.49)

Fix any l ∈ N0. On ΓR
1 we write

(λ−B)−1 =

l∑
j=1

λ−jBj−1 + λ−l(λ−B)−1Bl,

and then we have∫
ΓR
1

f(λ)(λ−B)−1 dλ =

∫
ΓR
1

λ−lf(λ)(λ−B)−1Bl dλ

+

l∑
j=1

∫
ΓR
1

f(λ)λ−jBj−1 dλ.

Deforming the contour ΓR
1 into Γ0 = ei[−ψ,ψ] in Σφ, we may employ Cauchy’s

theorem to see that the contributions from the terms λl−jBj−1 are independent
of R.

The integral over Γr
2 can be treated similarly. On this path we replace the

resolvent (λ−B)−1 according to the identity

(λ−B)−1 = λk(λ−B)−1B−k −
k∑

j=1

λj−1B−j ,

to the result ∫
Γr
2

f(λ)(λ−B)−1 dλ =

∫
Γr
2

λkf(λ)(λ−B)−1B−k dλ

−
k∑

j=1

∫
Γr
2

f(λ)λj−1B−j dλ.
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Again by Cauchy’s theorem we may deform the contributions from the terms
λj−1B−j into an integral over Γ0 which is independent of r > 0.

This way, we obtain the following representation formula for f(B).

f(B) =
1

2πi

∫
ΓR
1

λ−lf(λ)(λ−B)−1Bl dλ

+
1

2πi

∫
Γr
2

λkf(λ)(λ−B)−1B−k dλ (3.50)

+
1

2πi

∫
Γ0

f(λ)[

k∑
j=1

λj−1B−j +

l∑
j=1

λ−jBj−1] dλ,

where the contours ΓR
1 , Γ

r
2 are defined by (3.49), and Γ0 = ei[−ψ,ψ]. Observe that

the last integral is of the form

l−1∑
j=−k

cj(f)B
j , with (3.51)

c−j(f) =
1

2πi

∫
Γ0

λ−(j+1)f(λ) dλ, cj(f) =
1

2πi

∫
Γ0

λ−(j+1)f(λ) dλ.

This shows that the coefficients cj(f) depend on f linearly and boundedly, in fact
we have

|cj(f)| ≤ 2φ sup{|f(eit)| : |t| ≤ φ}, for all j ∈ Z.

For functions f ∈ H(Σφ) which grow at most polynomially at infinity and at zero
we may now pass to the limits R → ∞ and r → 0+.

f(B) =
1

2πi

∫
Γ1

λ−lf(λ)(λ−B)−1Bl dλ

+
1

2πi

∫
Γ2

λkf(λ)(λ−B)−1B−k dλ+

l−1∑
j=−k

cj(f)B
j (3.52)

where k, l ∈ N0 denote any numbers such that α < k and β < l.
Now consider an arbitrary operator A ∈ S(X) such that φ > φA. Then for any

ε > 0 we let Aε denote the approximations of A introduced in Section 3.1.2, and we
may set B = Aε in formula (3.52). With Proposition 3.1.4 we have (λ−Aε)

−1 →
(λ−A)−1 as ε → 0+ in B(X), as well as Aj

εx → Ajx for all x ∈ D(Al), 0 ≤ j ≤ l,
and A−j

ε x → A−jx for all x ∈ R(Ak), 0 ≤ j ≤ k. Since the function |λ−(l+1)f(λ)|
is integrable over Γ1, |λk−1f(λ)| has this property on Γ2, we may pass to the limit
ε → 0+ to the result

f(A)x =
1

2πi

∫
Γ1

λ−lf(λ)(λ−A)−1Alx dλ

+
1

2πi

∫
Γ2

λkf(λ)(λ−A)−1A−kx dλ+

l−1∑
j=−k

cj(f)A
jx, (3.53)
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for any x ∈ D(Al) ∩ R(Ak). This is the representation formula of f(A)x we have
been looking for.

3.3 Complex Powers of Sectorial Operators
For z ∈ C the functions hz(λ) = λz are holomorphic on Σπ, the sliced complex
plane and the estimate

|hz(λ)| = |ez log λ| = eRe z log |λ|−Imz arg λ ≤ |λ|Re zeφ|Imz|, λ ∈ Σφ,

shows that hz belongs to Hα,α(Σφ) for α = Re z. Therefore, we may apply the
extended functional calculus for sectorial operators to obtain the following result.

Proposition 3.3.4. Suppose A ∈ S(X), let Az be defined by Az = hz(A), and
|Rez| < k, k ∈ N. Then

(i) Azx is holomorphic on the strip |Re z| < k, for each x ∈ D(Ak) ∩ R(Ak);

(ii) Az is closed for each z ∈ C;

(iii) Az+wx = AzAwx for all z, w ∈ C, x ∈ D(Ak) ∩ R(Ak), where k >
|Re z|, |Rew|, |Re (z + w)|;

(iv) Azx = limε→0 A
z
εx, x ∈ D(Ak) ∩ R(Ak), |Re z| < k.

Because of Proposition 3.3.4, the operators Az are linear, closed, densely
defined and, because of AzA−zx = x = A−zAzx for x in a dense subset of X,
have also dense ranges and trivial kernels. If A ∈ S(X) is invertible then {A−z,
Re z > 0} forms a bounded holomorphic C0-semigroup on Σπ/2. This can be seen
from formula (3.53) with l = 0 and k = 1 which in this case makes sense for all
x ∈ X.

It turns out that for real α with |α| < π/φA the powers Aα are sectorial as
well, and the power law (Aα)zx = Aαzx is valid.

Theorem 3.3.5. Let A ∈ S(X) and α ∈ R be such that |α| < π/φA. Then Aα is
also sectorial and φAα ≤ |α|φA. If z ∈ C and k > |Re z||α|, then

(Aα)zx = Aαzx, for all x ∈ D(Ak) ∩ R(Ak). (3.54)

For any real numbers α < β < γ with γ − α < π/φA, the moment inequality

|Aβx| ≤ k|Aαx|
γ−β
γ−α |Aγx|

β−α
γ−α , x ∈ D(Aα) ∩ D(Aγ), (3.55)

is valid, where k denotes a constant depending only on α, β, γ and A.

Proof. Since A−α = (A−1)α, it is enough to consider positive α. So let α ∈
(0, π/φA) be fixed. We want to show that the operators μ + Aα are invertible
for μ ∈ Σπ−αφA

, and that the resolvent estimate

sup
μ∈Σφα

|μ(μ+Aα)−1| ≤ Mφα < ∞
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is valid for each φα < π−αφA. For this purpose we consider the functions gμ(λ) =
μ/(μ + λα), which are holomorphic and bounded on Σφ, uniformly w.r.t. μ, as
long as μ ∈ Σφα

, and φα + αφ < π. By means of the extended functional calculus
we have gμ(A) = μ(μ + Aα)−1, the problem is to show that these operators are
bounded with a bound which is uniform in μ ∈ Σφα . Observe that although the
functions gμ(λ) are uniformly bounded, they are neither holomorphic at zero nor
at infinity, due to the presence of the power λα.

As a starting point we use formula (3.29) for the approximations Aε of A
which are bounded and invertible. Contract the contour Γ by means of Cauchy’s
theorem and by residue calculus to the halfray Γα = [0,∞)eiθ, with π ≥ θ ≥
φ > φA, where the branch cut of λα is put on this ray. This is possible if the
function μ + λα has no zeros on this ray, which means that with ϕ = arg μ we
have ϕ − αθ �= (2k + 1)π and ϕ + 2απ − αθ �= (2k + 1)π, for all k ∈ Z. Let λj ,
j = 1, . . . , n denote the zeros of μ+ λα; note that there are only finitely many of
them, and n = 0 means that there are none. n is bounded from above in terms of
α and φA. Then we obtain

gμ(Aε) = μ
1

2πi

∫ ∞

0

[ ei(θ−2π)

μ+ rαeiα(θ−2π)
− eiθ

μ+ rαeiαθ

]
(reiθ −Aε)

−1 dr

+ μ

n∑
j=1

λ1−α
j (λj −Aε)

−1/α

=
μeiθ

2πi

∫ ∞

0

[ ei(θα) − ei(θ−2π)α

(μ+ rαeiα(θ−2π))(μ+ rαeiαθ)

]
rα(reiθ −Aε)

−1 dr

+ μ
n∑

j=1

λ1−α
j (λj −Aε)

−1/α.

Estimating this expression we get

|gμ(Aε)| ≤ C|μ|
∫ ∞

0

rα−1 dr

|μe−iαθ + rα||μeiα(2π−θ) + rα| + C

≤ C
{
1 +

∫ ∞

0

dr

|ei(ϕ−αθ) + r||ei(ϕ−αθ+2απ) + r|

}
≤ C.

Therefore we have uniform bounds on gμ(Aε), hence with ε → 0+ also on gμ(A),
in virtue of gμ(Aε)x → gμ(A)x as ε → 0+ on a dense subset of X, and of the
Banach-Steinhaus theorem. This proves that Aα is sectorial and φAα ≤ αφA if
α < π/φA.

The identity (Aα
ε )

z = Aαz
ε is obviously valid, hence passing to the limit we

obtain (3.54).
To prove the moment inequality, let us observe that it is enough to consider

the case α = 0 and γ = 1; in fact, replace x by Aαx, β by (β − α)/(γ − α), A
by Aγ−α, to see this; observe that by the restriction γ − α < π/φA, the operator
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Aγ−α is again sectorial, by the first part of this proof. Contracting the contour Γ
in the representation of Aβ−1

ε to the negative half-axis we obtain

Aβ−1
ε =

sin(βπ)

π

∫ ∞

0

rβ−1(r +Aε)
−1 dr.

Application of this formula to Ax for x ∈ D(A) and passing to the limit ε → 0+
leads to

Aβx = Aβ−1Ax =
sin(βπ)

π

∫ ∞

0

rβ−1(r +A)−1Axdr;

observe that this integral is absolutely convergent. We split the range of integration
at δ > 0 and estimate as follows.

|Aβx| ≤ C

∫ δ

0

rβ−1 dr|x|+ C

∫ ∞

δ

rβ−2 dr|Ax|

= C|x|δβ/β + C|Ax|δβ−1/(1− β) = C|x|1−β |Ax|β ,

by the choice δ = |Ax|/|x|. This completes the proof of Theorem 3.3.5. �
3.4 Operators with Bounded Imaginary Powers
Proposition 3.3.4 shows that the following definition makes sense.

Definition 3.3.6. Suppose A ∈ S(X). Then A is said to admit bounded imaginary
powers if Ais ∈ B(X) for each s ∈ R, and there is a constant C > 0 such that
|Ais| ≤ C for |s| ≤ 1. The class of such operators will be denoted by BIP(X).

Since by Proposition 3.3.4, Ais has the group property, it is clear that A
admits bounded imaginary powers if and only if {Ais : s ∈ R} forms a strongly
continuous group of bounded linear operators in X. The growth bound θA of this
group, i.e.,

θA = lim|s|→∞
1

|s| log |A
is| (3.56)

will be called the power angle of A. Then for each ω > θA there is a constant
M ≥ 1 such that

|Ait|B(X) ≤ Meω|t|, t ∈ R.

It is in general not easy to verify that a given A ∈ S(X) belongs to BIP(X),
although quite a few classes of operators are known for which the answer is positive;
cf. the next subsections.

For a first application of the class BIP(X), consider the fractional power
spaces

Xα = XAα = (D(Aα), | · |α), |x|α = |x|+ |Aαx|, 0 < α < 1,

where A ∈ S(X); the embeddings

XA ↪→ Xβ ↪→ Xα ↪→ X, 1 > β > α > 0,

are well-known. If A belongs to BIP(X), a characterization of Xα in terms of
complex interpolation spaces can be derived.
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Theorem 3.3.7. Suppose A ∈ BIP(X). Then

Xθ
∼= (X,XA)θ, θ ∈ (0, 1), (3.57)

where (X,XA)θ denotes the complex interpolation space between X and XA ↪→ X
of order θ.

We recall the definition of the complex interpolation space (X,XA)θ, θ ∈
(0, 1). Consider the strip S ⊂ C given by S := {z ∈ C : 0 < Re z < 1}. Then x ∈
(X,XA)θ iff there is an f ∈ H∞(S;X) ∩ C(S̄;X) with supt∈R |f(1 + it)|XA

< ∞,
such that f(θ) = x. The norm in (X,XA)θ is defined in the canonical way. More
precisely,

|x|(X,XA)θ := inf{|h(i·)|L∞(R;X) + |h(1 + i·)|L∞(R;XA) : h ∈ H∞(S;X), h(θ) = x}.

The spaces (X,XA)θ are well-known to be Banach spaces such that XA ↪→
(X,XA)θ ↪→ X, with both embeddings dense if D(A) is dense in X.

Proof. We may assume w.l.o.g. that A ∈ BIP(X) is invertible. In fact, the func-
tions h1(z) = (1 + z)α(1 + zα)−1 − 1 and h2(z) = (1 + zα)/(1 + z)α − 1 both
belong to H0(Σφ), for any φ < π. This implies that (1 + A)α(1 + Aα)−1 and
(1 +Aα)(1 +A)−α are bounded, and so D(Aα) = D((A+ 1)α).

Let x ∈ D(A) and let

f(z) = ez
2−θ2

A−z+θx, z ∈ S.

Then f is continuous on S̄, holomorphic in S and bounded in X, since

|f(σ + it)| ≤ Me1−θ2

eω|t|−t2 |A−σ+θx| ≤ C|Ax|,

with some constant C > 0, as by assumption A ∈ BIP(X) is invertible, and
employing the moment inequality. Moreover, for σ = 0, 1 we have

|f(it)|X ≤ C|Aθx|, |Af(1 + it)| ≤ C|Aθx|,

hence
|x|(X,XA)θ ≤ C|Aθx|,

by definition of the complex interpolation spaces. As D(A) is dense in D(Aθ) as
well as in (X,XA)θ, this yields the embedding D(Aθ) ↪→ (X,XA)θ.

To obtain the converse inclusion, fix x ∈ D(A), and let f : S̄ → X be
bounded, continuous, and holomorphic in S, f(θ) = x, and such that

|f(i·)|∞, |Af(1 + i·)|∞ ≤ 2|x|(X,XA)θ .

Set gε(z) = ez
2−θ2

Az(1 + εA)−1f(z), z ∈ S. Then

gε(θ) = Aθ(1 + εA)−1f(θ) = Aθ(1 + εA)−1x → Aθx as ε → 0,
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as Aθ is closed and commutes with the resolvent of A. Obviously, gε is continuous
and bounded on S̄, holomorphic in S and

|gε(it)| ≤ Meω|t|−t2 |(1 + εA)−1||f(it)| ≤ C|x|(X,XA)θ ,

as well as

|gε(1 + it)| ≤ Meeω|t|−t2 |(1 + εA)−1||Af(1 + it)| ≤ C|x|(X,XA)θ .

Hadamard’s three lines theorem then implies

|Aθ(1 + εA)−1x| = |gε(θ)| ≤ |gε(i·)|1−θ
∞ |gε(1 + i·)|θ∞ ≤ C|x|(X,XA)θ .

Passing to the limit ε → 0, this yields the inclusion (X,XA)θ ↪→ D(Aθ), using
once more density of D(A) in D(Aθ) and in (X,XA)θ. �

The importance of Theorem 3.3.7 is twofold. It shows on one hand that
Xα is largely independent of A; for instance if A,B ∈ BIP(X) are such that
D(A) = D(B) then D(Aα) = D(Bα) for all α ∈ (0, 1). On the other hand, (3.57)
makes the tools of complex interpolation theory available for fractional power
spaces and it becomes possible to characterize Xα in many cases. For example,
the reiteration theorem yields the relation

(Xα, Xβ)θ = Xα(1−θ)+θβ , for all 0 ≤ α < β ≤ 1, θ ∈ (0, 1),

for complex interpolation of fractional power spaces of operators A ∈ BIP(X).
Some permanence properties for the class BIP(X) are collected in the next

proposition.

Proposition 3.3.8. Let X be a complex Banach space. The class BIP(X) has the
following permanence properties.

(i) A ∈ BIP(X) iff A−1 ∈ BIP(X); then θA−1 = θA;

(ii) A ∈ BIP(X) implies rA ∈ BIP(X) and θrA = θA for all r > 0;

(iii) A ∈ BIP(X) implies e±iψA ∈ BIP(X) for all ψ ∈ [0, π− θA), and θe±iψA ≤
θA + ψ;

(iv) A ∈ BIP(X) implies (μ+A) ∈ BIP(X) for all μ ∈ Σπ−φA
, and

θμ+A ≤ max{θA, | argμ|};
(v) if D(A∗) is dense in X∗, then A ∈ BIP(X) iff A∗ ∈ BIP(X∗), and θA = θA∗ ;

(vi) if Y denotes another Banach space and T ∈ B(X,Y ) is bijective, then A ∈
BIP(X) iff A1 = TAT−1 ∈ BIP(Y ), and θA = θA1

.

Proof. Using the extended functional calculus and suitable variable transforma-
tions these permanence properties are abtained as in the proof of Proposition 3.1.3,
except for (iv) which is a little more tricky. In fact, (iv) is very much related to the
perturbation theory for the class BIP(X), it follows from our next proposition
with B = μ and h(z) = zis. �
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Proposition 3.3.9. Suppose A ∈ S(X), B is a linear operator in X with D(B) ⊃
D(Aα), and

|Bx| ≤ a|x|+ b|Aαx|, x ∈ D(Aα),

holds with constants a, b > 0 and α ∈ [0, 1). Assume that A + B is sectorial and
invertible.

Then h(A) ∈ B(X) implies h(A + B) ∈ B(X), for any h ∈ H∞(Σφ), where
φ > φA, φA+B. In particular, if A ∈ BIP(X) then A+B ∈ BIP(X), and

θA+B ≤ max{θA, φA+B}.

Proof. Fix h according to the assumptions of this proposition and let f = ψh with
ψ as in Section 3.2.2. Then

h(A+B) = ψ−1(A+B)f(A+B) = (2 + (A+B)−1 +A+B)f(A+B),

and with B = B(1 +A)−1(1 +A) this gives

h(A+B) = (2 + (A+B)−1 +B(1 +A)−1 + (1 +B(1 +A)−1)A)f(A+B).

Now, (A + B)−1 and B(1 + A)−1 are bounded by assumption and f(A + B) is
bounded since f ∈ H0(Σφ), hence we only need to show that Af(A+B) is bounded.
Choosing a standard contour Γ, the resolvent equation implies

Af(A+B) = Af(A) +
1

2πi

∫
Γ

f(λ)A(λ−A)−1B(λ− (A+B))−1 dλ.

Since by assumption h(A) is bounded, Af(A) = Aψ(A)h(A) is bounded as well,
and the integral is absolutely convergent since B is of lower order. �

In connection with operators with bounded imaginary powers another func-
tional calculus is very useful and will be crucial. For this purpose recall the Mellin
transform defined by

F (z) =

∫ ∞

0

f(t)tz−1 dt.

Mellin’s inversion formula reads

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (z)t−z dz.

The inverse Mellin transform can be used to define a functional calculus for A ∈
BIP(X) as follows. Set

Mθ(R) = {μ ∈ M0(R) : |μ|θ :=
1

2π

∫
R

eθ|s|| dμ(s)| < ∞},

where M0(R) denotes the space of all finite complex Borel measures on R. Mθ(R)
becomes a Banach algebra with unit, the convolution of measures, scaled by the
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factor 1/2π as multiplication. Evidently the Dirac masses δs with unit mass in
s ∈ R belong to Mθ(R), and 2πδ0 is the unit. For measures μ ∈ Mθ(R) we define

f(z) =
1

2π

∫
R

z−is dμ(s), z ∈ Σθ.

This yields an algebra homomorphism from Mθ(R) into the Banach algebra
H∞(Σθ), and it gives rise to the algebra homomorphism from Mθ(R) to B(X)
defined by the formula

f(A) =
1

2π

∫
R

A−is dμ(s),

for any operator A ∈ BIP(X) with θA < θ. In fact, this formula is precisely the
Phillips calculus for the C0-group A−is. We summarize these observations as

Theorem 3.3.10. Let A ∈ BIP(X) and θ > θA. Then the formula

f(A) =
1

2π

∫
R

A−is dμ(s)

defines an algebra homomorphism from Mθ(R) to B(X), where f and μ are related
by

f(z) =
1

2π

∫
R

z−is dμ(s).

In particular, f(z) = z−is is mapped to A−is, for each s ∈ R. Moreover, there is
a constant K > 0 such that

|f(A)|B(X) ≤ K|μ|θ, for all μ ∈ Mθ(R),

where K = sups∈R e−θ|s||Ais|B(X).

Proof. The only thing left to prove is the multiplication property. Here we
need to recall the convolution theorem for the Mellin transform, i.e., if fj(t) =
1
2π

∫∞
−∞ t−is dμj(s), then

f1(t)f2(t) =
1

2π

∫ ∞

−∞
d(μ1 ∗ μ2)(s), t > 0.

This identity implies

(f1f2)(A) =
1

2π

∫
R

A−is d(μ1 ∗ μ2)(s)

=
1

(2π)2

∫
R

A−is

∫
R

dμ1(s− τ) dμ2(τ)

=
1

(2π)2

∫
R

A−is dμ1(s)

∫
R

A−iτ dμ2(τ)

= f1(A)f2(A).

�
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It is not obvious how to get the resolvent of an operator A from its imaginary
powers. This is due to the fact that the Mellin transform of the function 1/(1 +
t) has poles at 0 and 1. However, since such representations are useful and in
particular show that the functional calculus from Theorem 3.3.10 is consistent
with the Dunford calculus, we comment on this.

For this purpose observe that

(1 + t)−1 =
1

2i

∫ c+i∞

c−i∞
t−z dz

sin(πz)
, t > 0,

where 0 < c < 1 is arbitrary. Therefore,

Tx =
1

2i

∫ c+i∞

c−i∞
A−zx

dz

sin(πz)

is well-defined since the integral is absolutely convergent for x ∈ D(A)∩R(A). By
Cauchy’s theorem, the integral is independent of c. Using again Cauchy’s theorem,
we obtain by an easy computation T = (1 + A)−1. In fact, apply 1 + A to Tx to
the result

(1 +A)Tx =
1

2πi

∫ c+i∞

c−i∞
A−zx

πdz

sin(πz)
+

1

2πi

∫ c+i∞

c−i∞
A1−zx

πdz

sin(πz)
.

Deforming the contour in the first integral to

Γ0 = (−i∞,−iε] ∪ εei[−π/2,π/2] ∪ [iε, i∞)

and the second one to

Γ1 = (1− i∞, 1− iε] ∪ (1− εei[−π/2,π/2]) ∪ [1 + iε, 1 + i∞),

observing that the contributions on the straight lines cancel, and passing to the
limit ε → 0+ there follows (1 + A)Tx = x for each x ∈ D(A) ∩ R(A). Since by
assumption A is sectorial this implies Tx = (1+A)−1x for each x ∈ D(A)∩R(A).

Replacing A by sA, s > 0, and shifting the contour to the imaginary axis we
get the formula

(1 + sA)−1x =
1

2
x+

1

2i
PV

∫ ∞

−∞
(sA)−iρ dρ

sinh(πρ)
, s > 0, (3.58)

where PV means the principal value.

To deduce the second formula, recall the identity

1

1 + λt
=

1

1 + rt
+

1

2i

∫ ∞

−∞
(rt)−iρ (e

φρ − 1)

sinh(πρ)
dρ,
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where λ = reiφ, |φ| < π. Since the measure with density (eiφρ − 1)r−iρ/ sinh(πρ)
belongs to Mθ(R), provided |φ| < π − θ, we get by Theorem 3.3.10 the identity

(1 + λA)−1 = (1 + |λ|A)−1 +
1

2i

∫ ∞

−∞
(|λ|A)−iρ (e

φρ − 1)

sinh(πρ)
dρ, (3.59)

whenever φ = arg(λ) ∈ (−π + θ, π − θ). As a consequence we have

Corollary 3.3.11. Suppose A ∈ BIP(X), θA < π. Then φA ≤ θA.

3.5 Operators with Bounded H∞-Calculus
There is another important concept related to the Dunford calculus for a sectorial
operator.

Definition 3.3.12. A sectorial operator A is said to admit a bounded H∞-calculus
if there are φ > φA and a constant Kφ < ∞ such that

|f(A)| ≤ Kφ|f |H∞(Σφ), for all f ∈ H0(Σφ). (3.60)

The class of sectorial operators A which admit an H∞-calculus will be denoted by
H∞(X). The H∞-angle of A is defined by

φ∞
A = inf{φ > φA : (3.60) is valid}. (3.61)

If this is the case, then the functional calculus for A on H0(Σφ) extends
uniquely to H∞(Σφ). This can be seen by formula (3.53) with k = l = 1, which
is valid for x ∈ D(A) ∩ R(A). If f ∈ H∞(Σφ) and (fn) ⊂ H0(Σφ) is uniformly
bounded and converges to f , uniformly on compact subsets of Σφ, then (3.53)
for fn and Lebesgue’s dominated convergence theorem show fn(A)x → f(A)x as
n → ∞, for each x ∈ D(A) ∩ R(A). Since D(A) ∩ R(A) is dense in X, (3.53) and
the Banach-Steinhaus theorem then yield fn(A) → f(A) in the strong operator
topology. This is a special case of the so-called convergence lemma.

Lemma 3.3.13. Let A ∈ S(X) and φ > φA. Suppose (fn)n≥0 ⊂ H∞(Σφ) is such
that fn → f0 uniformly on compact subsets of Σφ.

Then supn≥1 |fn(A)|B(X) < ∞ implies fn(A) → f0(A) strongly. In particular,
this assertion holds if |fn|H∞(Σφ) ≤ M < ∞ and A admits a bounded H∞-calculus
on Σφ.

Well-known examples for general classes of sectorial operators with bounded
H∞-calculus are

(a) normal sectorial operators in Hilbert spaces;

(b) m-accretive operators in Hilbert spaces;

(c) generators of bounded C0-groups on Lp-spaces;

(d) negative generators of positive contraction semigroups in Lp-spaces.
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Here (a) follows from the functional calculus for normal operators in Hilbert spaces,
see e.g. Dunford-Schwartz [91], while by the Cayley transform, (b) is a consequence
of the Foias-Nagy calculus for contractions in Hilbert spaces; see Foias-Nagy [273].
(c) and (d) and some vector-valued extensions are implied by the theory of Coifman
and Weiss [69].

Since the functions fs(z) = zis belong to H∞(Σφ), for any s ∈ R and φ ∈
(0, π), we obviously have the inclusions

H∞(X) ⊂ BIP(X) ⊂ S(X), (3.62)

and the inequalities

φ∞
A ≥ θA ≥ φA ≥ sup{| arg λ| : λ ∈ σ(A)}. (3.63)

The permanence properties of the class H∞(X) are like those for general sectorial
operators.

Proposition 3.3.14. Let X be a complex Banach space. The class H∞(X) has the
following permanence properties.

(i) A ∈ H∞(X) iff A−1 ∈ H∞(X); then φ∞
A−1 = φ∞

A ;

(ii) A ∈ H∞(X) implies rA ∈ H∞(X) and φ∞
rA = φ∞

A for all r > 0;

(iii) A ∈ H∞(X) implies e±iψA ∈ H∞(X) for all ψ ∈ [0, π − φ∞
A ), and φ∞

e±iψA =
φ∞
A + ψ;

(iv) A ∈ H∞(X) implies (μ+A) ∈ H∞(X) for all μ ∈ Σπ−φA
, and

φ∞
μ+A ≤ max{φ∞

A , | argμ|};

(v) if D(A∗) is dense in X∗, then A ∈ H∞(X) iff A∗ ∈ H∞(X∗), and φ∞
A = φ∞

A∗ ;

(vi) if Y denotes another Banach space and T ∈ B(X,Y ) is bijective, then A ∈
H∞(X) iff A1 = TAT−1 ∈ H∞(Y ), and φ∞

A = φ∞
A1

.

Following the lines of the proof of Proposition 3.1.3, the proof of this result is
evident. Concerning perturbations, we have the following result which is a direct
consequence of Proposition 3.3.9.

Corollary 3.3.15. Suppose A ∈ H∞(X), B is a linear operator in X with D(B) ⊃
D(Aα), and

|Bx| ≤ a|x|+ b|Aαx|, x ∈ D(Aα),

holds with constants a, b > 0 and α ∈ [0, 1). Assume that A + B is sectorial and
invertible.

Then A+B ∈ H∞(X), and φ∞
A+B ≤ max{φ∞

A , φA+B}.
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3.4 Trace Spaces: Real Interpolation

4.1 Trace Spaces of Lp-Type
Consider the homogeneous Cauchy problem

u̇+Au = 0, t > 0, u(0) = x, (3.64)

in a Banach space X, where A is a densely defined pseudo-sectorial operator
with spectral angle φA < π/2. Then −A generates a bounded holomorphic C0-
semigroup in X and the solution u(t) of (3.64) is given by u(t) = T (t)x, for
all t ≥ 0, where T (t) = e−At denotes the semigroup generated by −A. In this
subsection, we study again regularity properties of u(t). More specifically, we ask
for which initial values x the solution u(t) is such that u(t) ∈ D(A) for a.a. t > 0
and Au ∈ Lp,μ(R+;X), μ ∈ (1/p, 1]. In virtue of (3.64) this is equivalent to
u ∈ W 1

p,loc(R+;X) and u̇ ∈ Lp,μ(R+;X).
Suppose that u has this property. Then the initial value x ∈ X satisfies∫∞

0
|AT (t)x|ptp(1−μ) dt < ∞. Let us introduce the following trace spaces.

Definition 3.4.1. Let A be a densely defined pseudo-sectorial operator in X with
spectral angle φA < π/2, let α ∈ (0, 1) and p ∈ [1,∞). The spaces DA(α, p) are
defined by means of

DA(α, p) =
{
x ∈ X : [x]α,p :=

(∫ ∞

0

|t1−αAT (t)x|p dt/t
)1/p

< ∞
}
.

When equipped with the norm

|x|α,p := |x|+ [x]α,p, x ∈ DA(α, p),

DA(α, p) becomes a Banach space. For k ∈ N the spaces DA(k + α, p) are defined
by

DA(k + α, p) := {x ∈ D(Ak) : Akx ∈ DA(α, p)}.
We can now give a complete answer to the question raised at the beginning

of this subsection.

Proposition 3.4.2. Suppose A is a densely defined invertible sectorial operator in
X with spectral angle φA < π/2, p ∈ (1,∞) and μ ∈ (1/p, 1].

Then for the solution u of (3.64) the following assertions are equivalent.

(a) u(t) ∈ D(A) for a.a. t > 0, and u ∈ Lp,μ(R+;XA);

(b) u ∈ H1
p,μ(R+;X);

(c) x ∈ DA(μ− 1/p, p).

In this case there is a constant Cp,μ > 0 depending only on A, p and μ, such that

|u̇|Lp,μ(R+;X) + |Au|Lp,μ(R+;X) ≤ Cp,μ|x|μ−1/p,p,

for all x ∈ DA(μ− 1/p, p).
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Proof. By assumption, −A generates the holomorphic semigroup T (t) = e−At

which is bounded on R+, satisfies T (t)X ⊂ D(A) and, with some ω > 0,

|T (t)|+ t|AT (t)| ≤ Me−ωt, t > 0.

Let x ∈ X and u(t) = T (t)x. Then u(t) ∈ D(A) for t > 0. By definition, x ∈
DA(μ − 1/p, p) implies Au ∈ Lp,μ(R+;X), hence (c) implies (a). Since T (t) is

holomorphic and Ṫ (t) = AT (t) for t > 0, (a) implies (b). On the other hand, (b)
yields Au = −u̇ ∈ Lp,μ(R+;X), hence

[x]pμ−1/p,p = |Au|pLp,μ(R+;X)

shows that (b) implies (c). �

We will also use frequently the following result which extends the previous
proposition to fractional orders.

Proposition 3.4.3. Suppose A is a densely defined invertible sectorial operator in
X with spectral angle φA < π/2, p ∈ (1,∞), μ ∈ (1/p, 1], and α− 1+μ− 1/p > 0.

Then for the solution u of (3.64) the following assertions are equivalent.

(a) u ∈ Lp,μ(R+;DA(α, p));

(b) x ∈ DA(α− 1 + μ− 1/p, p).

In this case, we have in addition

(c) u ∈ Wα
p,μ(R+;X) ∩Hα

p,μ(R+;X) ∩ Lp,μ(R+;D(A
α)),

and there is a constant Cp,μ > 0 depending only on A, p and μ, such that

|u|Wα
p,μ(R+;X) + |u|Hα

p,μ(R+;X) + |u|Lp,μ(R+;DA(α,p)) + |u|Lp,μ(R+;D(Aα))

≤ Cp,μ|x|α−1+μ−1/p,p, for all x ∈ DA(α− 1 + μ− 1/p, p).

Note that for α − 1 + μ− 1/p < 0 assertions (a) and (c) hold for all x ∈ X.
The spaces Wα and Hα are defined via interpolation; see Section 3.4.5 below.

Proof. Observe that (a) holds if and only if I :=
∫∞
0

|u(t)|pDA(α,p)t
p(1−μ) dt < ∞.

We have by Fubini’s theorem

I =

∫ ∞

0

∫ ∞

0

|τ1−αAe−Aτu(t)|p dτ
τ
tp(1−μ) dt

=

∫ ∞

0

∫ ∞

0

|Ae−A(τ+t)x|ptp(1−μ) dtτp(1−α)−1dτ

=

∫ ∞

0

∫ ∞

τ

|Ae−Asx|p(s− τ)p(1−μ) dsτp(1−α)−1dτ,
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therefore applying Fubini another time

I =

∫ ∞

0

|Ae−Asx|p
∫ s

0

(s− τ)p(1−μ)τp(1−α)−1dτds

= C0(α, μ, p)

∫ ∞

0

|Ae−Asx|psp(1−α+1−μ) ds

≤ C0(α, μ, p)|x|pDA(α−1+μ−1/p,p),

with C0(α, μ, p) = B(p(1− α), p(1− μ) + 1), where B denotes the Beta function.
The assertions in (c) will be proved in Section 3.4.6. �

4.2 Trace Spaces and Real Interpolation
We present now some other characterizations of the trace spaces DA(α, p).

For this, we first recall the definition of the real interpolation spaces
(X,XA)α,p of order α ∈ (0, 1) and exponent p ∈ [1,∞). x ∈ (X,XA)α,p iff there
exist a function w ∈ C([0, 1];X)∩C((0, 1];XA)∩C1((0, 1];X) with w(0) = x, such
that

[[w]]α,p :=
[ ∫ 1

0

|t1−αẇ(t)|p dt/t
]1/p

+
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

< ∞. (3.65)

The norm in (X,XA)α,p is then defined as |x|(X,XA)α,p
:= |x|+ inf[[w]]α,p, where

the infimum is taken over all functions w with the described properties.

Proposition 3.4.4. Let A be a densely defined pseudo-sectorial operator in a Banach
space X with spectral angle φA < π/2, let α ∈ (0, 1), and p ∈ [1,∞). Then for
x ∈ X the following assertions are equivalent.

(a) x ∈ DA(α, p);

(b) [x]′α,p := [
∫∞
0

|t−α(T (t)x− x)|p dt/t]1/p < ∞;

(c) [x]′′α,p := [
∫∞
0

|λαA(λ+A)−1x|p dλ/λ]1/p < ∞;

(d) x ∈ (X,XA)α,p.

The norms

| · |α,p, | · |′α,p = | · |+ [·]′α,p, | · |′′α,p = | · |+ [·]′′α,p, | · |(X,XA)α,p

are equivalent.

To prove this result we need some preparation. Firstly, Note that (d) in the
proposition makes sense for all closed linear operators in X, while (c) is well-
defined if A is pseudo-sectorial, in contrast to (a) which requires φA < π/2, and
(b) where −A must be the generator of a bounded C0-semigroup.

Secondly, recall Jensen’s inequality

φ
(∫

Ω

g(ω) dμ(ω)
)
≤
∫
Ω

φ(g(ω)) dμ(ω), (3.66)
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which is valid for each probability measure μ on Ω, for each integrable function g
on Ω, and φ : R → R convex.

Thirdly, we shall need Hardy’s inequality.

Lemma 3.4.5 (Hardy’s inequality). Let p ∈ [1,∞), 0 < T ≤ ∞, and f : R+ → X

be measurable and such that
∫ T

0
|tβf(t)|p dt < ∞, for some β < 1/p′ = 1 − 1/p.

Then ∫ T

0

∣∣∣tβ−1

∫ t

0

f(s)ds
∣∣∣p dt ≤ c(β, p)p

∫ T

0

|tβf(t)|p dt < ∞,

where c(β, p) = (1/p′ − β)−1.

Proof. The change of variables t = eτ , s = eσ yields∫ T

0

∣∣∣tβ−1

∫ t

0

f(s)ds
∣∣∣p dt = ∫ log(T )

−∞

∣∣∣e(β−1)τ

∫ τ

−∞
f(eσ)eσdσ

∣∣∣peτdτ
≤
∫ log(T )

−∞

[ ∫ τ

−∞
|f(eσ)|e(β+1/p)σ · e(β−1+1/p)(τ−σ)dσ

]p
dτ,

hence by Young’s inequality for convolutions∫ T

0

∣∣∣tβ−1

∫ t

0

f(s)ds
∣∣∣p dt ≤ [ ∫ ∞

0

e(β−1/p′)σdσ
]p

·
[ ∫ log(T )

−∞
|f(eτ )e(β+1/p)τ |pdτ

]
= (1/p′ − β)−p

[ ∫ T

0

|tβf(t)|p dt
]
,

which proves the lemma. �
Proof of Proposition 3.4.4.
(a) ⇒ (b). Let x ∈ DA(α, p); then the identity

T (t)x− x = −
∫ t

0

AT (s)x ds

and Lemma 3.4.5 with β = 1− α− 1/p yield∫ ∞

0

|t−α(T (t)x− x)|p dt/t =
∫ ∞

0

t(β−1)p
∣∣∣ ∫ t

0

AT (s)x ds
∣∣∣p dt

≤ α−p

∫ ∞

0

sβp|AT (s)x|p ds

= α−p

∫ ∞

0

|t1−αAT (t)x|p dt/t

= α−p[x]pα,p.

This implies [x]′α,p ≤ α−1[x]α,p.
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(b) ⇒ (c). To prove this implication we employ the identity

A(λ+A)−1x = x− λ(λ+A)−1x =

∫ ∞

0

λe−λt[x− T (t)x] dt, λ > 0,

which yields by Jensen’s inequality (3.66) and Fubini’s theorem∫ ∞

0

|λαA(λ+A)−1x|p dλ/λ =

∫ ∞

0

λαp
∣∣∣ ∫ ∞

0

(T (t)x− x)λe−λt dt
∣∣∣p dλ/λ

≤
∫ ∞

0

λαp
[ ∫ ∞

0

|T (t)x− x|pλe−λt dt
]
dλ/λ

=

∫ ∞

0

|T (t)x− x|p
[ ∫ ∞

0

λαpe−λt dλ
]
dt

=

∫ ∞

0

|T (t)x− x|pΓ(αp+ 1)t−αp−1 dt

where Γ(z) denotes the Gamma function. This yields [x]′′α,p ≤ (Γ(αp+ 1))p[x]′α,p.

(c) ⇒ (d). Suppose [x]′′α,p < ∞. Define u(t) = (1 + tA)−1x for t ∈ [0, 1]; then
u ∈ C([0, 1];X)∩C((0, 1];XA)∩C1((0, 1];X), u(0) = x, and u̇(t) = −A(1+tA)−2x
for t ∈ (0, 1]. The variable transformation t = 1/λ gives

[[u]]α,p =
[ ∫ 1

0

|t1−αA(1 + tA)−2x|p dt/t
]1/p

+
[ ∫ 1

0

|t1−αA(1 + tA)−1x|p dt/t
]1/p

≤ C
[ ∫ 1

0

|t1−αA(1 + tA)−1x|p dt/t
]1/p

= C
[ ∫ ∞

1

|λαA(λ+A)−1x|p dλ/λ
]1/p

≤ C[x]′′α,p.

This proves x ∈ (X,XA)α,p and |x|(X,XA)α,p
≤ C|x|′′α,p.

(d) ⇒ (a). Let x ∈ (X,XA)α,p and w ∈ C([0, 1];X)∩C((0, 1];XA)∩C1((0, 1];X)
with w(0) = x, be such that

[[w]]α,p =
[ ∫ 1

0

|t1−αẇ(t)|p dt/t
]1/p

+
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

< ∞.

Then the identity

x = w(0) = w(t)−
∫ t

0

ẇ(s) ds
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implies by Lemma 3.4.5 with β = 1/p′ − α[ ∫ 1

0

|t1−αAT (t)x|p dt/t
]1/p

≤
[ ∫ 1

0

|t1−αT (t)Aw(t)|p dt/t
]1/p

+
[ ∫ 1

0

∣∣∣t1−αAT (t)

∫ t

0

ẇ(s)ds
∣∣∣p dt/t]1/p

≤ C
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

+ C
[ ∫ 1

0

∣∣∣t−α

∫ t

0

ẇ(s)ds
∣∣∣p dt/t]1/p

≤ C
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

+ Cα−p
[ ∫ 1

0

|t1−α−1/pẇ(t)|p dt
]1/p

≤ C
[ ∫ 1

0

|t1−αAw(t)|p dt/t
]1/p

+ C
[ ∫ 1

0

|t1−αẇ(t)|p dt/t
]1/p

.

Because of boundedness of tAT (t) on R+ we also have∫ ∞

1

|t1−αAT (t)x|p dt/t ≤ C|x|p
∫ ∞

1

t−αp−1 dt = C|x|p/αp,

hence we obtain [x]α,p ≤ C(|x| + [[w]]α,p), and since w has been arbitrary it is
also clear that [x]α,p ≤ C|x|(X,XA)α,p

holds, for some constant C independent of
x. The proof is complete. �

4.3 Embeddings
We continue the study of the trace spaces DA(α, p) with some essential embedding
results. For this purpose we extend the definition ofDA(α, p) to the cases p = ∞, 0.

DA(α,∞) := {x ∈ X : [x]DA(α,∞) := sup
λ>0

λα|A(λ+A)−1x| < ∞},

and
DA(α, 0) := {x ∈ DA(α,∞) : lim

λ→∞
λαA(λ+A)−1x = 0}.

These definitions make sense for any pseudo-sectorial operator A in X. The norm
in these spaces are

|x|DA(α,∞) = |x|+ [x]DA(α,∞).

Obviously the continuous interpolation space DA(α, 0) is a closed subspace of
DA(α,∞).

Proposition 3.4.6. Let A be a pseudo-sectorial operator in X with dense domain.
Then for all 0 < α < β < 1, 1 ≤ p < q < ∞, r ∈ [1,∞] ∪ {0}, we have

(i) D(A) ↪→ DA(β, r) ↪→ DA(α, r) ↪→ X;

(ii) DA(β,∞) ↪→ DA(α, 1);

(iii) DA(α, 1) ↪→ DA(α, p) ↪→ DA(α, q) ↪→ DA(α, 0) ↪→ DA(α,∞);
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(iv) DA(α, 1) ↪→ D(Aα) ↪→ DA(α, 0);

(v) D(A) ⊂ DA(α, r) is dense for each r �= ∞;

(vi) if −A generates a bounded C0-semigroup in X, then its restriction to DA(α, r)
is also a bounded C0-semigroup, for each r �= ∞.

Proof. (i) Since for x ∈ D(A), t > 0, we have

tα|A(t+A)−1x| ≤ Ctα−1|Ax|,

so the first inclusion is obvious. The second one follows from assertion (ii) and
(iii), while the third one is trivial by definition of DA(α, p).

(ii) Let x ∈ DA(β,∞), β > α; then∫ ∞

1

tα|A(t+A)−1x|dt
t

≤ |x|β,∞
∫ ∞

1

tα−β−1 dt =
|x|β,∞
β − α

,

which implies assertion (ii).

(iii) Let p ∈ [1,∞), x ∈ DA(α, p); then choosing a standard contour we obtain

tαA(t+A)−1x =
1

2πi

∫
Γ

tαλ1−α

t+ λ
· λαA(λ−A)−1x

dλ

λ
.

For p > 1, by means of Hölder’s inequality this gives

tα|A(t+A)−1x| ≤ 1

2π

[∫
Γ

∣∣∣∣ tαλ1−α

t+ λ

∣∣∣∣p
′ ∣∣∣∣ dλλ

∣∣∣∣
]1/p′ [∫

Γ

|λαA(λ−A)−1x|p
∣∣∣∣ dλλ

∣∣∣∣]1/p .
Next observe that from the resolvent equation

(λ−A)−1 = (|λ|+A)−1[−1 + (λ+ |λ|)(λ−A)−1]

we obtain

|A(λ−A)−1x| ≤ (1 + 2|λ(λ−A)−1|)|A(|λ|+A)−1x| ≤ C|A(|λ|+A)−1x|.

Since by the variable transformation λ = tz∫
Γ

∣∣∣∣ tαλ1−α

t+ λ

∣∣∣∣p
′ ∣∣∣∣ dλλ

∣∣∣∣ = ∫
Γ

∣∣∣∣ z1−α

1 + z

∣∣∣∣p
′ ∣∣∣∣dzz

∣∣∣∣ < ∞,

we conclude
|tαA(t+A)−1x| ≤ C|x|α,p,

which yields the embedding DA(α, p) ↪→ DA(α,∞) in case p > 1. For p = 1 we
use boundedness of tα|λ|1−α/|t+ λ| instead.
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For q > p we have from this

([x]′′α,q)
q =

∫ ∞

0

|tαA(t+A)−1x|q dt
t

≤ sup
t>0

|tαA(t+A)−1x|q−p

∫ ∞

0

|tαA(t+A)−1x|p dt
t

≤ [x]q−p
DA(α,∞)([x]

′′
α,p)

p ≤ C[x]qα,p,

which yields DA(α, p) ↪→ DA(α, q).

Finally, since DA(α, 0) ⊂ DA(α,∞) is closed, the embedding DA(α, p) ⊂
DA(α, 0) follows from (v).

(iv) Let x ∈ D(A); then we know from Section 3.3.3

Aαx =
sin(απ)

π

∫ ∞

0

rαA(r +A)−1x
dr

r
.

This easily implies the first inclusion in (iv), as D(A) is dense in D(Aα).

On the other hand, for x ∈ D(Aα) and r > 0 we have by the moment
inequality

rα|A(r +A)−1x| = rα|A1−α(r +A)−1Aαx| ≤ rαCr−α|Aαx|.

This proves the second embedding in (iv), by density of D(A) in DA(α, 0) .

(v) Since D(A) ⊂ X is dense by assumption, we have xε := (1 + εA)−1x → x as
ε → 0, for each x ∈ X. Therefore tαA(t+A)−1(x− xε) → 0 for each t > 0. Since

|tαA(t+A)−1(x− xε)| ≤ C|tαA(t+A)−1x|,

for x ∈ DA(α, p), Lebesgue’s theorem implies xε → x also in DA(α, p), i.e., D(A)
is dense in DA(α, p). To prove density of D(A) in DA(α, 0), observe that the set
{tαA(t + A)−1x : t > 0} is relatively compact in X, in case x ∈ DA(α, 0). But
this implies

tαA(t+A)−1xε = (1 + εA)−1tαA(t+A)−1x → tαA(t+A)−1x

uniformly in t > 0, which shows xε → x also in DA(α, 0).

(vi) If −A generates a bounded C0-semigroup in X, it follows from the definition
of the spaces DA(α, r) that T (t) is also bounded in DA(α, p). Since T (·)x is contin-
uous in D(A) for each x ∈ D(A), the density of the embedding D(A) ↪→ DA(α, r)
for r �= ∞ implies that T (t) is strongly continuous also in DA(α, r), r �= ∞. �
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4.4 Interpolation of Intersections
The following result on real interpolation of intersections is very useful.

Theorem 3.4.7. Let A,B ∈ PS(X) be densely defined and resolvent-commuting,
α ∈ (0, 1), 1 ≤ p < ∞.

Then (X,D(A) ∩ D(B))α,p ∼= (X,D(A))α,p ∩ (X,D(B))α,p.
In particular, if A+B with natural domain D(A+B) = D(A) ∩ D(B) is pseudo-
sectorial then

DA+B(α, p) ∼= DA(α, p) ∩DB(α, p).

Proof. We may assume that A,B are sectorial and invertible. The inclusion “ ⊂ ”
is trivial. To prove the converse inclusion, let x ∈ (X,D(A))α,p ∩ (X,D(B))α,p
be given. Define u(t) = (I + tA)−1(I + tB)−1x. As the resolvents of A and B
commute, it is clear that u ∈ C([0, 1];X) ∩ C((0, 1];D(A) ∩ D(B)), and

|t1−α−1/pAu(t)|p = |t1−α−1/p(I + tB)−1A(I + tA)−1x|p ≤ MB |x|DA(α,p),

as well as

|t1−α−1/pBu(t)|p = |t1−α−1/p(I + tA)−1B(I + tB)−1x|p ≤ MA|x|DB(α,p).

Next we have u̇(t) = −(I+ tB)−1(I+ tA)−1(A(I+ tA)−1x+B(I+ tB)−1x), hence
in the same way as above we obtain

|t1−α−1/pu̇(t)|p ≤ MAMB(|x|DA(α,p) + |x|DB(α,p)).

This shows the converse inclusion. �
4.5 Vector-Valued Fractional Sobolev, Besov and Bessel-Potential Spaces
(i) Let Y be a Banach space and 1 < p < ∞, ω > 0. Then Bp is sectorial
in X0 := Lp(R+;Y ) with domain X1 = 0H

1
p(R+;Y ), and spectral angle π/2,

according to Section 3.2.3. Then we define the vector-valued Besov spaces by

0B
α
pq(R+;Y ) := DBp(α, q) = (X0, X1)α,q, α ∈ (0, 1), q ∈ [1,∞] ∪ {0}, (3.67)

and the vector-valued fractional Sobolev spaces by

0W
α
p (R+;Y ) := 0B

α
pp(R+;Y ) = DBp

(α, p) = (X0, X1)α,p, α ∈ (0, 1). (3.68)

(ii) This definition extends to the weighted spaces X0,μ = Lp,μ(R+;Y ) for 1/p <
μ ≤ 1, as Bp,μ is also sectorial in this space, with domain X1,μ = 0H

1
p,μ(R+;Y ),

by Proposition 3.2.9. So we set

0B
α
pq,μ(R+;Y ) := DBp,μ(α, q) = (X0,μ, X1,μ)α,q, (3.69)

for α ∈ (0, 1), q ∈ [1,∞] ∪ {0}, and

0W
α
p,μ(R+;Y ) := 0B

α
pp,μ(R+;Y ) = DBp,μ

(α, p) = (X0,μ, X1,μ)α,p (3.70)
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for α ∈ (0, 1). We recall the isomorphism Φμ from Section 3.2.4 defined by
Φμ(u)(t) = t1−μu(t) which maps Xj,μ onto Xj for j = 0, 1, by Proposition 3.2.6.
Interpolating these isomorphisms by the real method implies that

Φμ : 0B
α
pq,μ(R+;Y ) → 0B

α
pq(R+;Y )

is an isomorphism as well, hence we have the characterizations

u ∈ 0B
α
pq,μ(R+;Y ) ⇔ t1−μu ∈ 0B

α
pq(R+;Y ),

and

u ∈ 0W
α
p,μ(R+;Y ) ⇔ t1−μu ∈ 0W

α
p (R+;Y ),

for all α ∈ (0, 1), q ∈ [1,∞] ∪ {0}.

(iii) Similarly, as Bp is also sectorial in Lp(R;Y ), we define

Bα
pq(R;Y ) := (Lp(R;Y ), H1

p (R;Y ))α,q, Wα
p (R;Y ) := Bα

pp(R;Y ),

for p ∈ (1,∞), α ∈ (0, 1), and q ∈ [1,∞]∪{0}. Next we let Bα
pq,μ(R+;Y ) be defined

by

Bα
pq,μ(R+;Y ) = (Lp,μ(R+;Y ), H1

p,μ(R+;Y ))α,q.

(iv) The vector-valued Bessel-potential spaces Hα
p (R;Y ), Hα

p (R+;Y ), as well as

0H
α
p (R+;Y ) and 0H

α
p,μ(R+;Y ) are defined in an analogous way, employing the

complex interpolation method. From the isomorphism Φμ we deduce

u ∈ 0H
α
p,μ(R+;Y ) ⇔ t1−μu ∈ 0H

α
p (R+;Y ),

for all p ∈ (1,∞) and α ∈ (0, 1).

(v) Sobolev Embeddings. Consider the operator B = −d/dt in X0 = Lp,μ(R+;Y )
with maximal domain

X1 = D(B) = H1
p,μ(R+;Y ).

Here we take p ∈ (1,∞), μ ∈ (1/p, 1], α ∈ (0, 1] and set β := α−1+μ−1/p. Then
for β > 0 the Sobolev embedding D(Bα) ↪→ C0(R̄+;Y ) is valid. More precisely,
there a is constant C > 0 such that

|u(t)|Y ≤ C|u|D(Bα), t ≥ 0, u ∈ D(Bα).

By Section 3.4.3 and general interpolation theory, this shows that Kα
p,μ(R+;Y ) ↪→

C0(R̄+;Y ) for K ∈ {W,H}, as long as β > 0.
In fact, it is easy to verify the identity

u(t) =

∫ ∞

t

e−(s−t) (s− t)α−1

Γ(α)
(B + 1)αu(s) ds, s > 0,
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for, say, u ∈ D(B). Applying Hölder’s inequality, this relation implies

|u(t)|Y ≤ ϕ0(t)|(B + 1)αu|X0 ≤ Cϕ0(t)|u|D(Bα),

where

ϕ0(t) = [Γ(α)−1

∫ ∞

t

e−p′(s−t)(s− t)p
′(α−1)sp

′(μ−1) ds]1/p
′
.

In case β > 0, an easy estimate yields

sup
t≥0

(1 + t)(1−μ)ϕ0(t) < ∞,

which proves the assertion, by density of D(B) in D(Bα), and the embedding
H1

p (R+;Y ) ↪→ C0(R̄+;Y ).
We note that in case μ < 1, u(t) has even uniform polynomial decay as

t → ∞.

(vi) Hölder Embeddings. For β > 0 the Hölder embedding D(Bα) ↪→ Ċβ
b (R̄+;Y )

is valid. More precisely, there is a constant C > 0 such that

|u(t+ h)− u(t)|Y ≤ Chβ |Bαu|X0
, t ≥ 0, u ∈ D(Bα).

By Section 3.4.3 and general interpolation theory, this shows Kα
p,μ(R+;Y ) ↪→

Cβ−ε
b (R̄+;Y ) for K ∈ {W,H}, as long as β > ε > 0. We observe that in case Y

belongs to the class HT , we may set ε = 0. In fact, in this case D(Bα) = (X0, X1)α
by Theorems 3.3.7 and by the analogue of Theorem 4.3.14 for B.

To prove the claim, as in (v) we use the identity

u(t) =

∫ ∞

t

(s− t)α−1

Γ(α)
Bαu(s) ds, s > 0,

where u ∈ D(B). Then for t, h ≥ 0,

u(t+ h)− u(t) = Γ(α)−1

∫ ∞

t+h

[(s− (t+ h))α−1 − (s− t)α−1]Bαu(s) ds

− Γ(α)−1

∫ t+h

t

(s− t)α−1Bαu(s)ds =: I1 + I2.

We estimate separately by Hölder’s inequality.

|I1| ≤ [Γ(α)−1

∫ ∞

t+h

|(s− (t+ h))α−1 − (s− t)α−1|p′
sp

′(μ−1) ds]1/p
′ |Bαu|X0

=: ϕ1(h)|Bαu|X0
,

and

|I2| ≤ [Γ(α)−1

∫ t+h

t

(s− t)p
′(α−1)sp

′(μ−1) ds]1/p
′ |Bαu|X0

=: ϕ2(h)|Bαu|X0
.
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Next, we have

ϕ1(h) ≤ c[

∫ ∞

0

(τα−1 − (τ + h)α−1)p
′
(τ + h)p

′(μ−1) dτ ]1/p
′

= chβ [

∫ ∞

0

(rα−1 − (r + 1)α−1)p
′
(r + 1)p

′(μ−1) dr]1/p
′
,

and

ϕ2(h) ≤ [

∫ h

0

τp
′(α+μ−2) dτ ]1/p

′
= chβ .

Both integrals are absolutely convergent as p′(α + μ − 2) = p′(β − 1/p′) > −1,
provided β > 0. This proves the assertion.

4.6 A General Trace Theorem
We consider functions in the class Kα

p,μ(R+;Y ) ∩ Lp,μ(R+;DA(α, p)), where K ∈
{W,H}, 1 ≥ μ > 1/p, and α ∈ (0, 1] (recall that W 1

p = H1
p for p ∈ (1,∞)). For

β := α−1+μ−1/p > 0 we have Kα
p,μ(R+;Y ) ↪→ C(R̄+;Y ), so the question is what

regularity the initial value u0 := u(0) of the function u enjoys. We want to prove
the following result, which is employed at many places in subsequent sections.

Theorem 3.4.8. Suppose A is a densely defined invertible sectorial operator in Y
with spectral angle φA < π/2, p ∈ (1,∞), μ ∈ (1/p, 1], and β := α−1+μ−1/p > 0.
Let K ∈ {H,W}, and set Yα = DA(α, p) or Yα = D(Aα).

Then the trace map

tr : Kα
p,μ(R+;Y ) ∩ Lp,μ(R+;Yα) → DA(β, p), tr : u �→ u(0),

is linear and bounded. In particular, if u ∈ Kα
p,μ(R+;Y ) then the function v =

u− e−Atu0 belongs to 0K
α
p,μ(R+;Y ), and the trace map tr is surjective.

Note that the second assertion follows from Proposition 3.4.3.

Proof. (i) Observe that Hardy’s inequality implies

0H
1
p,μ(R+;Y ) ↪→ Lp,μ+1(R+;Y ),

hence interpolating with the trivial embedding

Lp,μ(R+;Y ) ↪→ Lp,μ(R+;Y )

we obtain by the complex method

0H
α
p,μ(R+;Y ) ↪→ Lp,μ+α(R+;Y ),

and by the real method

0W
α
p,μ(R+;Y ) ↪→ Lp,μ+α(R+;Y ),
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for all α ∈ (0, 1) and 1 ≥ μ > 1/p.

(ii) We can now prove assertion (c) of Proposition 3.4.3. For this purpose, let
x ∈ DA(α− 1 + μ− 1/p, p); then u(t) = e−Atx− e−tx ∈ 0H

1
p,μ+α−1(R+;X). Step

(i) implies u ∈ Lp,μ+α(R+;X), hence by complex interpolation u ∈ 0H
α
p,μ(R+;X),

hence e−Atx ∈ Hα
p,μ(R+;X). On the other hand, using real interpolation of type

(α, p) we obtain u ∈ 0W
α
p,μ(R+;X), hence e−Atx ∈ Wα

p,μ(R+;X). For the last as-

sertion, observe that v(t) = e−Atx−e−tA−1x as before belongs to Lp,μ+α(R+;X),
but it is also in Lp,μ+α−1(R+;XA) by Proposition 3.4.2. Hence complex inter-
polation yields u ∈ Lp,μ(R+;D(A

α)), which proves the last statement in (c) of
Proposition 3.4.3.

(iii) Let u ∈ Kα
p,μ(R+;Y ) ∩ Lp,μ(R+;DA(α, p)) be given and set u0 := u(0). We

decompose u0 as

u0 =
1

t

∫ t

0

u(s) ds+
1

t

∫ t

0

(u0 − u(s)) ds = u1 + u2.

This decomposition leads to

|u0|DA(β,p) ≤ |u1|DA(β,p) + |u2|DA(β,p) = I
1/p
1 + I

1/p
2 .

We first estimate I1.

I1 ≤
∫ 1

0

t−1−βp
[ ∫ t

0

|Ae−Atu(s)|ds
]p

dt

≤
∫ 1

0

t−1−βp
[ ∫ t

0

sp
′(μ−1) ds

]p/p′ ∫ t

0

sp(1−μ)|Ae−Atu(s)|p ds]dt

= cp,μ

∫ 1

0

t−1−βp+p/p′+pμ−p

∫ t

0

sp(1−μ)|Ae−Atu(s)|p ds]dt

= cp,μ

∫ 1

0

sp(1−μ)
[ ∫ 1

s

(t1−α|Ae−Atu(s)|)p dt/t
]
ds ≤ cp,μ|u|pLp,μ(R+;DA(α,p)),

where cp,μ = (1 + p′(μ− 1))−p/p′
.

In case Yα = D(Aα), we use the moment inequality to obtain the estimate
|t1−αA1−αe−At| ≤ C, and employ once more Hardy’s inequality, to the result

I1 ≤ C

∫ 1

0

t−μp
[ ∫ t

0

|Aαu(s)| ds
]p

dt

≤ C

∫ 1

0

|Aαu(s)|psp(1−μ) ds = C|u|Lp,μ(R+;D(Aα)).
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Next we estimate I2 by the bound C for tAe−At and Hardy’s inequality

I2 =

∫ 1

0

tp(1−β)
∣∣∣Ae−Att−1

∫ t

0

(u(s)− u0) ds
∣∣∣p dt/t

≤ C

∫ 1

0

t−1−βp−p
[ ∫ t

0

|u(s)− u0| ds
]p

dt ≤ C

∫ 1

0

|u(s)− u0|p
ds

s1+βp
.

By the embeddings in part (i), the last term is bounded by |u − u0|pKα
p,μ((0,1);Y ).

This completes the proof. �

Example 3.4.9. In this example Σ will always denote a compact sufficiently smooth
hypersurface.
(i) Consider as a base space Y the space Y = Lp(Σ). Let A = 1−ΔΣ, μ ∈ (1/p, 1].
Then for all α ∈ (0, 1] we have

tr[Wα
p,μ(R+;Lp(Σ)) ∩ Lp,μ(R+;W

2α
p (Σ))] = W 2α−2+2μ−2/p

p (Σ).

This will later on be used for α = 1, α = 1− 1/2p, and α = 1/2− 1/2p.

(ii) Consider as a base space Y again the space Y = Lp(Σ). Let A = (1 −ΔΣ)
2,

μ ∈ (1/p, 1]. Then we have

tr[W 1/2−1/2p
p,μ (R+;Lp(Σ)) ∩ Lp,μ(R+;W

2−2/p
p (Σ))] = W 4μ−2−6/p

p (Σ).

This result will be used in Section 6.6.

(iii) Consider as a base space Y the space Y = H2
p (Σ). Let A = 1−ΔΣ, μ ∈ (1/p, 1].

Then we have

tr[W 1−1/2p
p,μ (R+;H

2
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ))] = W 2+2μ−3/p

p (Σ).

This result will be also used in Section 6.6.

(iv) Consider as a base space Y the space Y = W
2−1/p
p (Σ). Let A = (1−ΔΣ)

1/2,
μ ∈ (1/p, 1]. Then we have

tr[H1
p,μ(R+;W

2−1/p
p (Σ)) ∩ Lp,μ(R+;W

3−1/p
p (Σ))] = W 2+μ−2/p

p (Σ).

This result will be used in Chapter 8.

3.5 Maximal Lp-Regularity

5.1 Maximal Lp-Regularity
Let J = R+ or (0, a) for some a > 0 and let f : J → X. We consider the
inhomogeneous initial value problem

u̇(t) +Au(t) = f(t), t ∈ J, u(0) = u0, (3.71)

in Lp(J ;X) for p ∈ (1,∞).
The definition of maximal Lp-regularity for (3.71) is as follows.
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Definition 3.5.1. Suppose A : D(A) ⊂ X → X is closed and densely defined.
Then A is said to belong to the class MRp(J ;X) – and we say that there is
maximal Lp-regularity for (3.71) – if for each f ∈ Lp(J ;X) there exists a unique
u ∈ H1

p (J ;X) ∩ Lp(J ;XA) satisfying (3.71) a.e. in J , with u0 = 0.

The closed graph theorem implies then that there exists a constant C > 0
such that

|u|Lp(J;X) + |u̇|Lp(J;X) + |Au|Lp(J;X) ≤ C|f |Lp(J;X). (3.72)

Combining Lp-maximal regularity with Section 3.4.1 we then obtain for the solu-
tion of (3.71) the estimate

|u|Lp(J;X) + |u̇|Lp(J;X) + |Au|Lp(J;X) ≤ C
(
|u0|DA(1−1/p,p) + |f |Lp(J;X)

)
. (3.73)

We denote the solution operator f �→ u by R. It is well known that there is
maximal Lp regularity for (3.71) only if −A generates an analytic semigroup. If
J = R+, then the semigroup is even of negative exponential type. We state this as

Proposition 3.5.2. Let A ∈ MRp(J ;X) for some p ∈ (1,∞).
Then the following assertions are valid.

(i) If J = (0, a) then there are constants ω ≥ 0 and M ≥ 1 such that

{z ∈ C : Re z ≤ −ω} ⊂ ρ(A) and |z(z +A)−1|B(X) ≤ M, Re z ≥ ω,

is valid. In particular, ω +A is sectorial with spectral angle < π/2.

(ii) If J = R+ then C− := {z ∈ C : Re z < 0} ⊂ ρ(A) and there is a constant
M ≥ 1 such that

|(z +A)−1|B(X) ≤
M

1 + |z| , Re z > 0,

is valid. In particular, A is sectorial with spectral angle < π/2 and 0 ∈ ρ(A).

Proof. Consider first the case J = (0, a). We show that there are constants ω1 ≥ 0
and M ≥ 1 such that

|μ||x|X + |x|XA
≤ M |(μ+A)x|X , x ∈ D(A), Reμ > ω1. (3.74)

In particular, μ + A is injective for each Reμ > ω1. Indeed, choose μ ∈ C+, x ∈
D(A), and and let vμ(t) := eμtx. Then vμ satisfies v̇μ+Avμ = gμ(t) and vμ(0) = x,
where gμ(t) = eμt(μ + A)x ∈ Lp(J ;X). The maximal regularity estimate (3.73)
implies

|etReμ|Lp(J;X)

(
μ|x|X + |x|XA

)
≤ C

(
|etReμ|Lp(J;X)|(μ+A)x|X + |x|XA

)
.

Choosing ω1 large enough such that 2C ≤ |etReμ|Lp(J;X) yields (3.74).
In a next step, which is more involved, we show that there is a constant

ω2 ≥ 0 such that μ + A is surjective for Reμ > ω2. Choose μ ∈ C+, x ∈ X,
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and define fμ ∈ Lp(R+;X) by fμ(t) = e−μtx. Let uμ(t;x) = R(fμ)(t), where R
denotes the solution operator for (3.71) with u0 = 0. Set

Uμx := 2Reμ

∫ a

0

e−μ̄tuμ(t;x) dt =
2Reμ

μ̄

[ ∫ a

0

e−μ̄tu̇μ(t;x) dt− e−μ̄auμ(a;x)
]
.

The maximal regularity property for (3.71) implies that there exists a constant
C > 0 such that

|Uμ|B(X) ≤ C(1 + |μ|)−1, Reμ > 0,

where ω is sufficiently large. In fact, we have with Hölder’s inequality and the
maximal regularity estimate (3.72)

|Uμx| ≤ 2(p′Reμ)1−1/p′ |uμ|Lp(J;X) ≤ C(Reμ)1/p|fμ|Lp(J;X) ≤ C|x|,

as well as

|Uμx| ≤ 2Reμ|μ|−1
[
(p′Reμ)−1/p′

+ e−aReμa1/p
′]|u̇μ|Lp(J;X)

≤ C|μ|−1(Reμ)1/p|fμ|Lp(J;X) ≤ |μ|−1C|x|.

Next we multiply (3.71) with f = fμ by e−μ̄t and integrate over J . This
yields by closedness of A and an integration by parts

(1− e−2aReμ)x = 2Reμ

∫ a

0

e−μ̄tfμ(t) dt = 2Reμ

∫ a

0

e−μ̄t[u̇μ(t;x) +Auμ(t;x)] dt

= (μ̄+A)Uμx+ 2(Reμ)e−μ̄auμ(a;x),

which after rearrangement becomes

(μ̄+A)Uμx = x− Vμx, Vμx := e−2aReμx+ 2(Reμ)e−μ̄auμ(a;x).

Estimating as before we obtain

|Vμx| ≤
[
e−2aReμ + Ce−aReμ(aReμ)1/p

′]|x|,
from which we see that there is ω2 > 0 such that |Vμ|B(X) ≤ 1/2, for each Reμ ≥
ω2. This then shows that μ̄+A is surjective for all such μ. Setting ω = max{ω1, ω2}
we conclude that μ+A : D(A) → X is invertible, and

(μ̄+A)−1 = Uμ(1− Vμ)
−1, Reμ > ω.

The estimate on Uμ (or the a priori estimate in (3.74)) then shows that ω + A is
sectorial with spectral angle < π/2.

For the case J = R+ the proof is simpler; one deduces in the same way the
relation (μ̄+A)−1 = Uμ with ω = 0. �
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There is variant of maximal Lp-regularity if one requires for the solution of
(3.71) only u ∈ C(R̄+;X) and u̇, Au ∈ Lp(R+;X). We call the class of operators
with this weaker property 0MRp(R+;X). The proof of Proposition 3.5.2 shows
that then in (ii) the condition 0 ∈ ρ(A) is dropped. More precisely we have

Corollary 3.5.3. Suppose A ∈ 0MRp(R+;X).

Then A is pseudo-sectorial in X with spectral angle < π/2.
Moreover, A ∈ MRp(R+;X) if and only if A ∈ 0MRp(R+;X) and 0 ∈ ρ(A).

Proposition 3.5.2 shows that for a finite interval J = (0, a) its length a > 0
plays no role for maximal Lp-regularity, and up to a shift of A, without loss of
generality, we may consider J = R+ and may assume that −A is the generator
of an analytic semigroup of negative exponential type. Therefore, in the sequel
we mostly consider J = R+ and abbreviate MRp(X) = MRp(R+;X) as well as

0MRp(X) = 0MRp(R+;X).

Unfortunately, the converse of Proposition 3.5.2 is false. Actually, it is a
formidable task to prove that a given operator A belongs to MRp(X). We want
to explain the difficulty in more detail. Obviously, the variation of parameters
formula

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)f(s) ds, t ≥ 0,

implies that there is maximal Lp-regularity for (3.71) if and only if the operator
R defined by

Rf := A

∫ t

0

e−A(t−s)f(s) ds

acts as a bounded operator on Lp(R+;X). It is nontrivial to show this since the
kernel of this convolution operator on the half-line is Ae−At which has a non-
integrable singularity near t = 0, behaving like 1/t, as follows from the well-known,
best possible estimate

|Ae−At|B(X) ≤
Me−ηt

t
, t > 0,

valid for exponentially stable analytic semigroups. Therefore, R is a singular in-
tegral operator on Lp(R+;X) with operator-valued kernel. This calls for vector-
valued harmonic analysis and we take up this topic in the next chapter.

5.2 Maximal Regularity in Weighted Lp-Spaces
We next study maximal regularity in spaces Lp,μ. The main result of this section
reads as follows.

Theorem 3.5.4. Let X be a Banach space, p ∈ (1,∞), and 1/p < μ ≤ 1. Then

A ∈ MRp(X) if and only if A ∈ MRp,μ(X).



3.5. Maximal Lp-Regularity 143

Proof. In the following we shall use the notation X0 := X and X1 := XA. It
follows that X1 is a Banach space which is densely embedded in X0.

(i) Suppose that A ∈ MRp(X). Then we know by Proposition (3.5.2) that −A
generates an exponentially stable analytic semigroup {e−tA : t ≥ 0} on X0. Let
f ∈ Lp,μ(R+;X0) be given. Let us consider the function u defined by the variation
of constants formula

u(t) :=

∫ t

0

e−(t−s)Af(s) ds, t > 0. (3.75)

It follows from Lemma 3.2.5(a) that this integral exists in X0. We will now rewrite
equation (3.75) in the following way

u(t) = tμ−1

∫ t

0

e−(t−s)As1−μf(s) ds+ tμ−1

∫ t

0

e−(t−s)A[(t/s)1−μ − 1]s1−μf(s) ds

= Φ−1
μ [(Bp +A)−1Φμf + TAΦμf ] = Φ−1

μ [v1 + v2].

Here we use the same notation for A and its canonical extension on Lp(R+;X0),
given by (Au)(t) := Au(t) for t > 0. By definition, TA is the integral operator

(TAg)(t) :=

∫ t

0

e−(t−s)A[(t/s)1−μ − 1]g(s) ds, g ∈ Lp(R+;X0).

Observe that the kernel KA(t) := Ae−tA satisfies the assumptions of Proposition
4.3.13 below with Y = X1. We conclude that

TA ∈ B(Lp(R+;X0), Lp(R+;X1)). (3.76)

It is a consequence of (3.76) that v2 has a derivative almost everywhere, given by

v̇2 = −ATAΦμf + (1− μ)t−μ

∫ t

0

e−(t−s)Af(s) ds.

It follows from Hardy’s inequality, Lemma 3.4.5, that∫ ∞

0

∣∣∣t−μ

∫ t

0

e−(t−s)Af(s) ds
∣∣∣p dt ≤ M

∫ ∞

0

(
t−μ

∫ t

0

|f(s)| ds
)p

dt ≤ cM |f |pLp,μ

and we infer that
v2 ∈ 0H

1
p (R+;X0) ∩ Lp(R+;X1). (3.77)

It follows from our assumption that v1 enjoys the same regularity properties as v2
and consequently, v satisfies (3.77) as well. Proposition 3.2.6 then shows that

u ∈ 0H
1
p,μ(R+;X0) ∩ Lp,μ(R+;X1). (3.78)

It is now easy to verify that u is in fact a solution of the Cauchy problem (3.71)
with initial value 0. We have thus shown that A ∈ MRp,μ(X).
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(b) Suppose now that A ∈ MRp,μ(X0). As in the case μ = 1 one shows that
A generates a bounded analytic C0-semigroup {e−tA; t ≥ 0} on X0. Let f ∈
Lp(R+;X0) be given. Here we use the representation

u(t) = t1−μ

∫ t

0

e−(t−s)Asμ−1f(s) ds−
∫ t

0

e−(t−s)A[(t/s)1−μ − 1]f(s) ds

= Φμ(Bp,μ +A)−1Φ−1
μ f − TAf,

with TA as above. The assertion follows now by similar arguments as in (a). �

We will now consider the Cauchy problem (3.71) in Lp,μ(R+;X). Define the
function spaces

E0,μ := E0,μ(R+) : = Lp,μ(R+;X0),

E1,μ := E1,μ(R+) : = H1
p,μ(R+;X0) ∩ Lp,μ(R+;X1),

where X0 := X and X1 := XA. It is not difficult to verify that the norm

|u|E1,μ
:= (|u|pLp,μ(R+;X1)

+ |u̇|pLp,μ(R+;X0)
)1/p (3.79)

turns E1,μ(R+) into a Banach space. The result reads as follows

Theorem 3.5.5. Let p ∈ (1,∞) and 1/p < μ ≤ 1. Suppose that A ∈ MRp(X).
Then ( d

dt
+A, tr

)
∈ Isom(E1,μ(R+),E0,μ(R+)×Xγ,μ),

where tr(u) := u(0) denotes the trace operator, and Xγ,μ = DA(μ− 1/p, p).

Proof. We observe that ( d
dt + A) ∈ B(E1,μ,E0,μ) and tr ∈ B(E1,μ, Xγ,μ) yield

boundedness of ( d
dt + A, tr). Theorem 3.5.4 shows that the operator (Bp,μ + A)

with domain

D(Bp,μ +A) = D(Bp,μ) ∩ D(A) = {u ∈ E1,μ(R+) : u(0) = 0}

is invertible. Let (f, u0) ∈ E0,μ ×Xγ,μ be given and let

u := (Bp,μ +A)−1f + e−tAu0. (3.80)

Clearly, u solves the Cauchy problem (3.71). Therefore, ( d
dt + A, tr) is surjective.

The assertion follows now from the open mapping theorem. �

If 1 < p < ∞ and μ = 1 the semigroup of translations T (τ)u(t) = u(t + τ)
is strongly continuous in E1,1, which implies that the time-trace tr maps E1,1 into
C(R̄+;Xγ,1), with bound

sup
t≥τ

|u(t)|Xγ,1 ≤ C|T (τ)u|E1,1 → 0 as τ → ∞.
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Therefore, we have the embedding

E1,1(R+) ↪→ C0(R̄+;Xγ,1). (3.81)

On the other hand, as the time weights t1−μ act only near t = 0 we obtain

E1,μ(R+) ↪→ E1,1(δ,∞), for each δ > 0.

This implies
E1,μ(R+) ↪→ C(R̄+;Xγ,μ) ∩ C0(R+;Xγ,1), (3.82)

which shows parabolic regularization. This will be very useful in later chapters.
It is sometimes important to also have solvability results for the non-

autonomous problem

u̇+A(t)u = f(t), t > 0, u(0) = u0.

This is the content of the next proposition.

Proposition 3.5.6. Suppose A ∈ C(J,B(X1, X0)) and A(t) ∈ Mp(J,X0) for each
t ∈ J = [0, a]. Then( d

dt
+A(·), tr

)
∈ Isom(E1,μ(J),E0,μ(J)×Xγ,μ).

In particular, the non-autonomous problem

u̇+A(t)u = f(t), t ∈ J̇ , u(0) = u0,

admits for each (f, u0) ∈ E0,μ(J)×Xγ,μ a unique solution u ∈ E1,μ(J).

Proof. (ii) As ( d
dt + A(·), tr) ∈ B(E1,μ(J),E0,μ(J)×Xγ,μ) it suffices to show that

( d
dt +A(·), tr) is bijective, thanks to the open mapping theorem. By a perturbation

and compactness argument one shows that there is a constant M such that∣∣∣( d

dt
+A(s), tr

)−1∣∣∣
B(E1,μ(J),E0,μ(J)×Xγ,μ)

≤ M, s ∈ J.

By compactness of J we can choose points 0 = s0 < s1 · · · < sm+2 = a such that

max
sj≤t≤sj+2

|A(t)−A(sj)|B(X1,X0) ≤ 1/2M, j = 0, . . . ,m.

A Neumann series argument then yields with Jj = (sj , sj+1)( d

dt
+A(·), tr

)
∈ Isom(E1,μ(Jj),E0,μ(Jj)×Xγ,μ), j = 0, . . . ,m. (3.83)

Let (f, x) ∈ E0,μ(J) × Xγ,μ be given. Then we solve the problem with maximal
Lp,μ-regularity on the first interval J0. The final value u(s1) then belongs to Xγ ,
hence we solve the problem on J1 with this initial value and maximal Lp-regularity,
and then by induction on all of the remaining intervals. �
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5.3 Maximal L2,μ-Regularity in Hilbert Spaces
Let X be a Hilbert space and let A be pseudo-sectorial with φA < π

2 . Then −A is
the generator of a bounded holomorphic C0-semigroup, in particular the domain
of A is also dense in X. In this subsection we want to consider the L2-theory of
the abstract Cauchy problem

u̇(t) +Au(t) = f(t), t > 0, u(0) = u0, (3.84)

where f ∈ L2,μ(R+;X). It is the purpose of this subsection to give a simple proof
of maximal-L2-regularity in this case.

Theorem 3.5.7. Let X be a Hilbert space and A ∈ PS(X) and such that φA < π
2 .

Then A ∈ 0MR2(X).

Proof. The proof of the result follows by the vector-valued Paley-Wiener theorem
on the halfline which is valid in a Hilbert space setting. This result states that
in case X is a Hilbert space, the Laplace transform is an isometric isomorphism
from L2(R+;X) onto the vector-valued Hardy space H2(C+;X) equipped with
the norm

|u|2H2(C+;X) =
1

2π

∫
R

|u(iρ)|2dρ.

Let f ∈ D(R+;X) first. Then (3.84) admits a unique strong solution u. Laplace
transform yields

û(λ) = (λ+A)−1f̂(λ), Reλ > 0.

Uniform boundedness of λ(λ+A)−1 on C+ then implies

|λû(λ)|+ |Aû(λ)| ≤ C|f̂(λ)|, Reλ > 0,

with a constant C > 0 depending only on A, hence by the Paley-Wiener theorem

|u̇|L2(R+;X) + |Au|L2(R+;X) ≤ C|f |L2(R+;X). (3.85)

Now D(R+;X) is dense in L2(R+;X), hence a standard approximation argument
applies to obtain this estimate also for arbitrary f ∈ L2(R+;X). �
5.4 Maximal Lp-Regularity in Real Interpolation Spaces
It is a remarkable fact that maximal Lp-regularity holds in the real interpolation
spacesDA(α, p) if−A generates an analytic C0-semigroup inX. This is the content
of the following result.

Theorem 3.5.8. Let X be a Banach space, A ∈ S(X) invertible with φA < π/2, let
α ∈ (0, 1), and p ∈ [1,∞).

Then A ∈ MRp(DA(α, p)).

Proof. Let f ∈ Lp(R+;DA(α, p)) be given and set u = e−At ∗ f ; we have to prove

|Au|Lp(R+;DA(α,p)) ≤ C|f |Lp(R+;DA(α,p)),
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for some constant C > 0 independent of f . For this purpose, note that

|Ae−AτAu(t)| ≤
∫ t

0

|A2e−A(τ+s)f(t−s)| ds ≤ M

∫ t

0

|Ae−A(τ+s)f(t−s)|(τ+s)−1 ds,

hence by Hölder’s inequality

|Ae−AτAu(t)|p ≤ M
[ ∫ t

0

(τ + s)−ap′
ds
]p/p′ ∫ t

0

|Ae−A(τ+s)f(t− s)|p(τ + s)−bp ds,

where a+ b = 1 and a > 1/p′ to ensure[ ∫ t

0

(τ + s)−ap′
ds
]p/p′

≤
[ ∫ ∞

0

(τ + s)−ap′
ds
]p/p′

= c1τ
p(1/p′−a) < ∞.

Integrating over t > 0 and using Fubini’s theorem, this yields

|Ae−τAAu|pLp(R+;X) ≤ c1Mτp(1/p
′−a)

∫ ∞

0

∫ ∞

s

|Ae−A(τ+s)f(t− s)|p(τ + s)−bp dtds

= c1Mτp(1/p
′−a)

∫ ∞

0

∫ ∞

0

|Ae−A(τ+s)f(t)|p(τ + s)−bp dtds.

From this estimate we obtain integrating over τ > 0 with weight τp(1−α)−1, using
again Fubini’s theorem

|Au|pLp(R+;DA(α,p)) ≤ c1M

∫ ∞

0

∫ ∞

0

∫ ∞

0

τβ−1|Ae−A(τ+s)f(t)|p(τ + s)−bpdsdτdt

= c1M

∫ ∞

0

∫ ∞

0

∫ ∞

τ

τβ−1|Ae−Asf(t)|ps−bpdsdτdt

= c1M

∫ ∞

0

∫ ∞

0

|Ae−Asf(t)|p
∫ s

0

τβ−1dτs−bpdsdt

= c1Mβ−1

∫ ∞

0

∫ ∞

0

|Ae−Asf(t)|psβ−bpdsdt

= c1Mβ−1|f |Lp(R+;DA(α,p)),

with β = (1− α)p+ p/p′ − ap > 0 provided a < 1− α+ 1/p′, and then β − bp =
(1− α)p− 1. The argument for p = 1 is similar and even simpler. �



Chapter 4

Vector-Valued Harmonic
Analysis

In this chapter, operator-valued Fourier multiplier results for vector-valued Lp-
spaces are derived and discussed. These form the basic tools for the proof of various
results on maximal Lp-regularity which are needed for the nonlinear problems.

4.1 R-Boundedness

A central concept in modern analysis is R-boundedness of families of operators.
By means of this notion stochastic analysis is introduced into operator theory.

1.1 R-Bounded Families of Operators
We begin with the definition of R-boundedness.

Definition 4.1.1. Let X and Y be Banach spaces. A family of operators T ⊂
B(X,Y ) is called R-bounded, if there is a constant C > 0 and p ∈ [1,∞) such
that for each N ∈ N, Tj ∈ T , xj ∈ X and for all independent, symmetric, {−1, 1}-
valued random variables εj on a probability space (Ω,A, μ) the inequality

∣∣∣ N∑
j=1

εjTjxj

∣∣∣
Lp(Ω;Y )

≤ C
∣∣∣ N∑
j=1

εjxj

∣∣∣
Lp(Ω;X)

(4.1)

is valid. The smallest such C is called R-bound of T , we denote it by R(T ).

Example 4.1.2. As a prototype for the random variables εk, consider Ω = [0, 1],
A the Borel sets in [0, 1] and μ the Lebesgue measure. The Rademacher functions
rk(t) = sgn(sin(2kπt)), k ≥ 1, are independent, symmetric, {1,−1}-valued random
variables on [0, 1].

© Springer International Publishing Switzerland 2016
J. Prüss and G. Simonett,Moving Interfaces and Quasilinear Parabolic
Evolution Equations, Monographs in Mathematics 105,
DOI 10.1007/978-3-319-27698-4_4

149



150 Chapter 4. Vector-Valued Harmonic Analysis

Remark 4.1.3. (a) If T ⊂ B(X,Y ) is R-bounded, then it is uniformly bounded,
with

sup{|T | : T ∈ T } ≤ R(T ).

This follows from the definition of R-bounded with N = 1, since |ε1|Lp(Ω) = 1.

(b) The definition of R-boundedeness is independent of p ∈ [1,∞).
This follows from Kahane’s inequality. For any Banach space X and 1 ≤ p, q < ∞
there is a constant C(p, q,X) such that∣∣∣ N∑

j=1

εjxj

∣∣∣
Lp(Ω;X)

≤ C(p, q,X)
∣∣∣ N∑
j=1

εjxj

∣∣∣
Lq(Ω;X)

, (4.2)

for each N ∈ N, xj ∈ X, and for all independent, symmetric, {−1, 1}-valued
random variables εj on a probability space (Ω,A, μ). However, one should keep
in mind that the R-bound does depend on p. For convenience, we drop this p-
dependence of R.

(c) In case X and Y are Hilbert spaces, then T ⊂ B(X,Y ) is R-bounded if and
only if T is uniformly bounded.
In fact, let T be uniformly bounded by C > 0. Then choosing p = 2 we obtain∣∣∣ N∑

j=1

εjTjxj

∣∣∣2
L2(Ω;Y )

=

N∑
j,k=1

[ ∫
Ω

εj(ω)εk(ω) dμ
]
(Tjxj |Tkxk)

=

N∑
j=1

[ ∫
Ω

ε2j (ω) dμ
]
|Tjxj |2Y ≤ C2

N∑
j=1

[ ∫
Ω

ε2j (ω) dμ
]
|xj |2X

= C2
N∑

j,k=1

[ ∫
Ω

εj(ω)εk(ω) dμ
]
(xj |xk) = C2

∣∣∣ N∑
j=1

εjxj

∣∣∣2
L2(Ω;X)

,

since the εj are independent, hence orthogonal in L2(Ω).

(d) Let X = Y = Lp(G) for some open G ⊂ Rn. Then T ⊂ B(X,Y ) is R-bounded
if and only if there is a constant M > 0 such that the following square function
estimate holds: ∣∣∣( N∑

j=1

|Tjfj |2
)1/2∣∣∣

Lp(G)
≤ M

∣∣∣( N∑
j=1

|fj |2
)1/2∣∣∣

Lp(G)
, (4.3)

for all N ∈ N, fj ∈ Lp(G), and Tj ∈ T .
This is a consequence of the Khintchine inequality. For each p ∈ [1,∞) there is a
constant Kp > 0 such that

K−1
p

∣∣∣ N∑
j=1

εjaj

∣∣∣
Lp(Ω)

≤
( N∑

j=1

|aj |2
)1/2

≤ Kp

∣∣∣ N∑
j=1

εjaj

∣∣∣
Lp(Ω)

, (4.4)
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for all N ∈ N, aj ∈ C, and for all independent, symmetric, {−1, 1}-valued random
variables εj on a probability space (Ω,A, μ). Note that in case X is a Hilbert
space, ∣∣∣ N∑

j=1

εjxj

∣∣∣2
L2(Ω;X)

=

N∑
j=0

|xj |2X ,

by orthogonality of εj in L2. So Khintchine’s inequality is the scalar version of
Kahane’s inequality; it extends to Hilbert spaces.

To prove the assertion, if (4.3) holds, we have by (4.4)

∣∣∣ N∑
j=1

εjTjfj

∣∣∣
Lp(Ω,Lp(G))

=
∣∣∣ N∑
j=1

εjTjfj

∣∣∣
Lp(G,Lp(Ω))

≤ Kp

∣∣∣( N∑
j=1

|Tjfj |2
)1/2∣∣∣

Lp(G)
≤ KpM

∣∣∣( N∑
j=1

|fj |2
)1/2∣∣∣

Lp(G)

≤ K2
pM

∣∣∣ N∑
j=1

εjfj

∣∣∣
Lp(G,Lp(Ω))

= K2
pM

∣∣∣ N∑
j=1

εjfj

∣∣∣
Lp(Ω,Lp(G))

.

The proof of the converse is similar.

Part (d) of the above remark gives a very useful sufficient condition for R-
boundedness of kernel operators in Lp(G), which we state as

Proposition 4.1.4. Let G ⊂ Rn be open and consider a family T = {Tλ : λ ∈ Λ} ⊂
B(Lp(G;Rm)) of kernel operators

[Tλf ](x) =

∫
G

kλ(x, y)f(y)dy, x ∈ G, f ∈ Lp(G;Rm),

with kernels dominated by a kernel k0, i.e.,

|kλ(x, y)| ≤ k0(x, y), for a.a. x, y ∈ G, and all λ ∈ Λ.

Then T ⊂ B(Lp(G;Rm)) is R-bounded, provided T0 is bounded in Lp(G).

Proof. By Remark 4.1.3(d) we only have to verify the square function estimate
(4.3). But this is easy; due to Lp-boundedness of the dominating operator T0, we
have ∣∣∣( N∑

j=1

|Tjfj |2
)1/2∣∣∣

Lp(G)
≤
∣∣∣( N∑

j=1

(T0|fj |)2
)1/2∣∣∣

Lp(G)

≤
∣∣∣T0

( N∑
j=1

|fj |2
)1/2∣∣∣

Lp(G)
≤ |T0|B(Lp(G))

∣∣∣( N∑
j=1

|fj |2
)1/2∣∣∣

Lp(G)
. �
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A considerable extension of this result reads as follows.

Proposition 4.1.5. Let X and Y be Banach spaces, G ⊂ Rn open, and 1 < p < ∞.
Suppose K ⊂ B(Lp(G;X), Lp(G;Y )) is a family of kernel operators in the sense
that

Kf(x) =

∫
G

k(x, x′)f(x′) dx′, x ∈ G, f ∈ Lp(G;X),

for each K ∈ K, where the kernels k : G×G → B(X,Y ) are measurable, with

R{k(x, x′) : k ∈ K} ≤ k0(x, x
′), x, x′ ∈ G,

and the operator K0 with scalar kernel k0 is bounded in Lp(G).
Then K ⊂ B(Lp(G;X), Lp(G;Y )) is R-bounded and R(K) ≤ |K0|Lp(G).

Proof. This follows easily from the estimate

∣∣∣ N∑
j=1

εjKjfj

∣∣∣
Lp(Ω;Lp(G;Y ))

≤
∣∣∣ ∫

G

∣∣∣ N∑
j=1

εjkj(·, x′)fj(x′)
∣∣∣
Lp(Ω;X)

dx′
∣∣∣
Lp(G)

≤
∣∣∣ ∫

G

k0(·, x′)
∣∣∣ N∑
j=1

εjfj(x
′)
∣∣∣
Lp(Ω;X)

dx′
∣∣∣
Lp(G)

≤ |K0|Lp(G)

∣∣∣ N∑
j=1

εjfj

∣∣∣
Lp(Ω;Lp(G;X))

. �

The next proposition shows that R-bounds behave like norms.

Proposition 4.1.6. (a) Let X,Y be Banach spaces, and T ,S ⊂ B(X,Y ) be R-
bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}

is R-bounded as well, and R(T + S) ≤ R(T ) +R(S).
(b) Let X,Y, Z be Banach spaces, and T ∈ B(X,Y ) and S ⊂ B(Y, Z) be R-
bounded. Then

ST = {ST : T ∈ T , S ∈ S}

is R-bounded, and R(ST ) ≤ R(S)R(T ).

Proof. The first assertion is a consequence of the triangle inequality.

∣∣∣ N∑
j=1

εj(Tj + Sj)xj

∣∣∣
Lp(Ω;Y )

≤
∣∣∣ N∑
j=1

εjTjxj

∣∣∣
Lp(Ω;Y )

+
∣∣∣ N∑
j=1

εjSjxj

∣∣∣
Lp(Ω;Y )

≤ R(T )
∣∣∣ N∑
j=1

εjxj

∣∣∣
Lp(Ω;X)

+R(S)
∣∣∣ N∑
j=1

εjxj

∣∣∣
Lp(Ω;X)

.
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The second assertion follows from∣∣∣ N∑
j=1

εj(SjTj)xj

∣∣∣
Lp(Ω;Z)

≤ R(S)
∣∣∣ N∑
j=1

εjTjxj

∣∣∣
Lp(Ω;Y )

≤ R(S)R(T )
∣∣∣ N∑
j=1

εjxj

∣∣∣
Lp(Ω;X)

. �

1.2 The Contraction Principle
A very useful device in connection withR-boundedness is the contraction principle
of Kahane, which we state as a lemma. For the sake of completeness, a proof is
given here, too.

Lemma 4.1.7. Let X be a Banach space, N ∈ N, xj ∈ X, εj independent,
symmetric, {−1, 1}-valued random variables on a probability space (Ω,A, μ), and
αj , βj ∈ C such that |αj | ≤ |βj |, for each j = 1, . . . , N . Then∣∣∣ N∑

j=1

αjεjxj

∣∣∣
Lp(Ω;X)

≤ 2
∣∣∣ N∑
j=1

βjεjxj

∣∣∣
Lp(Ω,X)

.

The constant 2 can be omitted in case αj and βj are real.

Proof. Replacing xj by βjxj if necessary, we may assume w.l.o.g. βj = 1 for each
j. Decomposing αj into real and imaginary parts the triangle inequality yields the
assertion once the claim holds for real αj with constant 1. Let ek, k = 1, . . . , 2N ,
be any enumeration of the extreme points of the cube [−1, 1]N . Then because

α = (α1, . . . , αN ) ∈ [−1, 1]N we find numbers λk ∈ [0, 1] with
∑2N

k=1 λk = 1 such

that α =
∑2N

k=1 λkek. This implies

∣∣∣ N∑
j=1

αjεjxj

∣∣∣
Lp(Ω,X)

≤
2N∑
k=1

λk

∣∣∣ N∑
j=1

ekjεjxj

∣∣∣
Lp(Ω,X)

=
∣∣∣ N∑
j=1

εjxj

∣∣∣
Lp(Ω;X)

,

since the random variables {εj : j = 1, . . . , N} and {ekjεj : j = 1, . . . , N} have
the same joint distribution. �

It is an easy consequence of Lemma 4.1.7 that any finite family T ⊂ B(X,Y )
is R-bounded. Another simple application of the contraction principle deals with
pointwise scalar multipliers in Lp-spaces. We have

Proposition 4.1.8. Suppose X is a Banach space, G ⊂ Rn open, and 1 ≤ p < ∞.
Then the set

{mφ ∈ B(Lp(G;X)) : φ ∈ L∞(G), |φ|∞ ≤ r}
of pointwise multipliers defined by

[mφf ](x) = φ(x)f(x), x ∈ G, f ∈ Lp(G;X), (4.5)

is R-bounded for each r > 0 with R-bound ≤ 2r.
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Proof. This follows by the contraction principle

∣∣∣ N∑
j=1

εjmφj
fj

∣∣∣
Lp(Ω;Lp(G;X))

=
∣∣∣ N∑
j=1

εjφjfj

∣∣∣
Lp(G;Lp(Ω;X))

≤ 2r
∣∣∣ N∑
j=1

εjfj

∣∣∣
Lp(G;Lp(Ω;X))

= 2r
∣∣∣ N∑
j=1

εjfj

∣∣∣
Lp(Ω;Lp(G;X))

. �

We quote a simple corollary which will be employed below frequently. It
follows directly from Propositions 4.1.6 and 4.1.8.

Corollary 4.1.9. Let 1 ≤ p < ∞, X,Y be Banach spaces, G ⊂ Rn open, and let
T ⊂ B(Lp(G;X), Lp(G;Y )) be R-bounded with R-bound τ . Then

{mφTmψ : T ∈ T , φ, ψ ∈ L∞(G), |φ|∞ ≤ r, |ψ|∞ ≤ s} ⊂ B(Lp(G;X), Lp(G;Y ))

is R-bounded with R-bound ≤ 4rsτ .

Another important consequence of the contraction principle is the following
very useful property, known as convexity of R-bounds.

Proposition 4.1.10. Let X,Y be a Banach spaces and T ⊂ B(X,Y ) be R-bounded.
Then the closure in the strong operator topology of the absolute convex hull of T
is also R-bounded, and the inequality

R(acos(T )) ≤ 2R(T )

is valid.

Proof. (a) We first show that the convex hull co(T ) of T is R-bounded. For this
purpose choose N ∈ N, xj ∈ X, Tj ∈ co(T ), and N independent, symmetric
{−1, 1}-valued random variables εj on a probability space (Ω,A, μ). Then there
are numbers λkj ∈ [0, 1], with

∑mk

j=1 λkj = 1, and Tkj ∈ T such that

Tk =

mk∑
j=1

λkjTkj , k = 1, . . . , N.

Set λkj = 0 for j > mk, l = (l1, . . . , lN ), Tkl = Tklk , and λl = ΠN
i=1λili . Then we

have

Tk =
∑
l∈NN

λlTkl, k = 1, . . . , N,

and

λl ∈ [0, 1], l ∈ NN ,
∑
l∈NN

λl = 1.
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Note that the sums are finite, i.e., only finitely many terms are nonzero. The
triangle inequality now yields

∣∣∣ N∑
k=1

εkTkxk

∣∣∣
Lp(Ω;Y )

≤
∑
l∈NN

λl

∣∣∣ N∑
k=1

εkTklxk

∣∣∣
Lp(Ω;Y )

≤ R(T )
∑
l∈NN

λl

∣∣∣ N∑
k=1

εkxk

∣∣∣
Lp(Ω;X)

= R(T )
∣∣∣ N∑
k=1

εkxk

∣∣∣
Lp(Ω;X)

.

This proves

R(coT ) ≤ R(T )

for the convex hull of T .

(b) The contraction principle shows that with T the set

T0 = {λT : T ∈ T , λ ∈ C, |λ| ≤ 1}

is also R-bounded and R(T0) ≤ 2R(T ). The absolute convex hull of T can be
written as

aco(T ) =
{ m∑

j=1

λjTj : Tj ∈ T , m ∈ N,

m∑
j=1

|λj | ≤ 1
}
= co(T0),

hence the assertion for the absolute convex hull follows.

(c) Finally, it is obvious that R-boundedness is preserved by convergence in the
strong operator topology. �

One simple, but nevertheless useful, consequence of Proposition 4.1.10 is

Corollary 4.1.11. Suppose (Ω,A, μ) is a finite measure space, and let T : Ω×Λ →
B(X,Y ) be such that T (·, λ) is μ-integrable in B(X,Y ), for each λ ∈ Λ, and assume
that T (Ω× Λ) is R-bounded.

Then {
∫
Ω
T (ω, λ) dμ(ω) : λ ∈ Λ} is R-bounded.

Proof. Without loss of generality we may assume μ(Ω) = 1. In virtue of Proposi-
tion 4.1.10 we only need to show that

∫
Ω
T (ω, λ) dμ(ω) belongs to cosT (Ω, λ), for

each fixed λ ∈ Λ. But this is an easy consequence of the fact that T (·, λ) can be
uniformly approximated by countably-valued functions Tλ,n =

∑
k χAλ,k

Tλ,k with
Tλ,k ∈ T (Ω, λ). �

Another very useful result about R-boundedness is contained in

Proposition 4.1.12. Let G ⊂ Cn be open, K ⊂ G compact, and suppose F : G →
B(X,Y ) is holomorphic.

Then F (K) ⊂ B(X,Y ) is R-bounded.
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Proof. Let z0 ∈ K be fixed. Since F is holomorphic inG there is a ballB(z0, r) ⊂ G
such that the power series representation

F (z) =
∑
α∈Nn

0

∂αF (z0)

α!
(z − z0)

α, |z − z0| ≤ r,

is absolutely convergent, we have

ρ0 :=
∑
α∈Nn

0

|∂αF (z0)|B(X,Y )

α!
r|α| < ∞.

Proposition 4.1.6 and Lemma 4.1.7 imply R(F (B(z0, r)) ≤ 2ρ0. Covering K by a
finite set of such balls we obtain the assertion. �

4.2 Unconditionallity

Unconditional convergence is one important ingredient for the Fourier multiplier
theorems we intend to prove. This section serves as an introduction to this topic.

2.1 Unconditional Convergence
We begin with

Definition 4.2.1. Let X be a Banach space and (xn) ⊂ X. The series
∑∞

n=1 xn is
called unconditionally convergent if

∑∞
n=1 xσ(n) is convergent in norm, for every

permutation σ : N → N.

Recall that in the finite-dimensional case, a series is unconditionally con-
vergent if and only if it is absolutely convergent. A famous theorem of Dvoretzky
and Rogers states that this equivalence is even characteristic for finite-dimensional
spaces. The standard example of unconditionally convergent series is

x =

∞∑
n=1

(x, en)en,

where {en}n∈N is an orthonormal basis in an infinite-dimensional Hilbert space.
Note that such a series is absolutely convergent if and only if

∑
n |(x, en)| < ∞.

Let us first observe that in case
∑∞

n=1 xn is unconditionally convergent, then
the sums

∑∞
n=1 xσ(n) are independent of the permutation. In fact, if

∑∞
n=1 xn is

unconditionally convergent, then so are the scalar series
∑∞

n=1 < x∗, xn >, for
each x∗ ∈ X∗. Since X∗ separates points in X and the assertion holds in the
scalar case, it is also true in X.

The following proposition contains some characterizations of unconditional
convergence.

Proposition 4.2.2. Let X be a Banach space and (xn) ⊂ X. Then the following
are equivalent.
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(a) The series
∑∞

n=1 xn is unconditionally convergent;

(b) there is an x ∈ X such that for each ε > 0 there is a finite set Aε ⊂ N with∣∣∣x−
∑
n∈B

xn

∣∣∣ ≤ ε, for all finite sets B ⊃ Aε;

(c) for each ε > 0 there is a finite subset Aε ⊂ N such that∣∣∣ ∑
n∈B

xn

∣∣∣ ≤ ε, for each finite set B ⊂ N, B ∩Aε = ∅;

(d)
∑∞

n=0 εnxn is convergent for all choices of εn ∈ {−1, 1};
(e)

∑∞
n=0 δnxn is convergent for all choices of δn ∈ {0, 1};

(f ) the series
∑∞

n=1 λnxn is convergent, for every bounded sequence (λn) ⊂ C.

Proof. (a) ⇒ (b). Suppose (a) holds but (b) is violated; then for each x ∈ X
there is ε0 > 0 such that for each finite A ⊂ N there is a finite B ⊃ A with
|x −

∑
n∈B xn| > ε0. Choosing x =

∑∞
n=1 xn we now construct a permutation σ

such that
∑∞

n=1 xσ(n) �= x, which contradicts uniqueness of the sum. In fact,
let m1 = n1 = 1 and A1 = {1}; then there is a finite A2 ⊃ A1 such that
|x −

∑
n∈A2

xn| > ε0. Set n2 = #A2, m2 = maxA2, and define σ on the set
{m1, . . . ,m2} by first enumerating A2 and then enumerating {m1, . . . ,m2} \ A2.
Suppose we have constructed mk−1 ≤ nk ≤ mk and a permutation

σ : {1, . . .mk} → {1, . . . ,mk}

with the property |x−
∑nk

n=1 xn| > ε0. Then there is a finite set Ak+1 ⊃ {1, . . . ,mk}
such that |x−

∑
n∈Ak+1

xn| > ε0. Set then nk+1 = #Ak+1, mk+1 = maxAk+1 and

extend σ to the set {1, . . . ,mk+1} by first enumerating Ak+1 \ {1, . . . ,mk} and
then the remaining elements of {1, . . . ,mk+1}. This way we obtain a permutation
σ of N and an increasing sequence nk such that |x −

∑nk

l=1 xσ(l)| > ε0. But this
contradicts

∑∞
j=1 xσ(j) = x.

(b) ⇒ (c). Suppose (b) holds; then for each ε > 0 there is Aε ⊂ N such that
|x−

∑
n∈B xn| ≤ ε/2, for each finite B ⊃ Aε. IfD is finite and such that Aε∩D = ∅,

then with B = Aε ∪D we obtain∣∣∣ ∑
n∈D

xn

∣∣∣ = ∣∣∣[ ∑
n∈B

xn − x
]
+
[
x−

∑
n∈Aε

xn

]∣∣∣ ≤ ε,

i.e., (c) holds.

(c) ⇒ (a). Let ε > 0 and a permutation σ of N be given. Choose Aε according to
(c), and let N ∈ N be such that Aε ⊂ σ{1, . . . , N}. Then for k ≥ l > N we have
Aε ∩ σ{l, . . . , k} = ∅, hence from (c) we get∣∣∣ k∑

n=l

xσ(n)

∣∣∣ ≤ ε, for all k ≥ l > N.
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But this shows convergence of the series
∑∞

n=1 xσ(n), by completeness of X.

(c) ⇒ (d). Let εn ∈ {−1, 1} for n ∈ N and ε > 0 be given and choose Aε according
to (c). For k ≥ l ≥ maxAε, we then set

B+ = {n ∈ N : l ≤ n ≤ k, εn = 1}, B− = {n ∈ N : l ≤ n ≤ k, εn = −1}.

Then we obtain from (c)

∣∣∣ l∑
n=k

εnxn

∣∣∣ ≤ ∣∣∣ ∑
n∈B+

xn

∣∣∣+ ∣∣∣ ∑
n∈B−

xn

∣∣∣ ≤ 2ε,

i.e., the series
∑∞

j=1 εnxn is convergent since X is complete.

(d) ⇒ (e). Let δn ∈ {0, 1} be given and set εn = 2δn − 1. Then

∞∑
n=1

δnxn =
1

2

[ ∞∑
n=1

xn +

∞∑
n=1

εnxn

]
converges since the series on the right-hand side converge.

(e) ⇒ (c). Suppose that (e) holds but (c) is not valid. Then there is ε0 > 0 such
that for each finite set A ⊂ N there is a finite set B := B(A) with A ∩B = ∅ and
|
∑

n∈B xn| ≥ ε0. Choose A1 = {1}, set n1 = 1, let A2 = B(A1), and set n2 =
maxA2. We may proceed inductively to obtain a sequence of sets Ak, an increasing
sequence nk such that {1, . . . nk−1}∩Ak = ∅, nk = maxAk, and |

∑
n∈Ak

xn| ≥ ε0.
Define δn = 1 if n ∈ Ak, δn = 0 if n �∈ Ak for nk−1 < n ≤ nk, k ∈ N. But then the
series

∑∞
n=1 δnxn cannot be convergent since

nk∑
nk−1+1

δnxn =
∑
n∈Ak

xn

does not tend to zero as k → ∞, a contradiction.

(c) ⇒ (f). Let ε > 0 be given and choose a set Aε according to (c). For an
arbitrary bounded sequence λn ≥ 0 we then obtain with k ≥ l > Nε := maxAε

k∑
n=l

λnxn = μ1

k∑
n=l

xn +

k∑
n=l

λ1,nxn,

where μ1 = min{λl, . . . , λk} and λ1,n = λn − μ1 for all l ≤ n ≤ k. Proceeding
inductively we then obtain finitely many μj ≥ 0, with

∑
j μk ≤ |λ|∞, and sets

Aj ⊂ {l, . . . , k} such that

k∑
n=l

λnxn =
∑
j

μj

∑
n∈Aj

xn.
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Estimating we get by (c)∣∣∣ k∑
n=l

λnxn

∣∣∣ ≤ ∑
j

μj

∣∣∣ ∑
n∈Aj

xn

∣∣∣ ≤ ε
∑
j

μj ≤ ε|λ|∞.

This shows that the series
∑∞

n=1 λnxn are convergent, even uniformly in λ, pro-
vided λn ≥ 0 are bounded. For the general case we decompose λj into real and
imaginary parts and these into positive and negative parts, to reduce to the case
λj ≥ 0.

(f) ⇒ (d). This is trivial. �
Note that according to the proof of Proposition 4.2.2, the operator

L : l∞ → X, L(λn) =

∞∑
n=1

λnxn

is compact and uniformly approximated by the finite rank operators

LN : l∞ → X, LN (λn) =

N∑
n=1

λnxn.

2.2 Schauder Decompositions
Next we introduce Schauder decompositions.

Definition 4.2.3. A sequence of projections (Δn)n∈N ⊂ B(X) is called a Schauder
decomposition of X if

ΔnΔm = 0 for all m �= n, and

∞∑
n=1

Δnx = x for each x ∈ X.

If a Schauder decomposition satisfies in addition dimR(Δn) = 1 for each n ∈ N

we may choose 0 �= en ∈ R(Δn); then (en)n∈N is called a Schauder basis of X.
A Schauder decomposition (or Schauder basis) is called unconditional if the series∑∞

n=1 Δnx converges unconditionally, for each x ∈ X.

The next result contains some characterizations of unconditional Schauder
decompositions.

Proposition 4.2.4. Let (Δn)n∈N ⊂ B(X) be a Schauder decomposition of the Ba-
nach space X. Then the following are equivalent.

(i) The decomposition (Δn)n∈N is unconditional;

(ii) there is a constant C > 0 such that∣∣∣ N∑
n=1

εnΔnx
∣∣∣ ≤ C

∣∣∣ N∑
n=1

Δnx
∣∣∣, for all N ∈ N, x ∈ X, εn ∈ {−1, 1}; (4.6)
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(iii) there is a constant C > 0 such that∣∣∣ N∑
n=1

εnxn

∣∣∣ ≤ C
∣∣∣ N∑
n=1

xn

∣∣∣, for all N ∈ N, xn ∈ R(Δn), εn ∈ {−1, 1}.

Proof. (i) ⇒ (ii). Since (Δn) is an unconditional Schauder decomposition, for
every x ∈ X and ε̄ = (εn) ⊂ {−1, 1} the series

Mε̄x :=

∞∑
n=1

εnΔnx

is convergent. This defines linear operators Mε̄ : X → X, which are also closed,
hence bounded by the closed graph theorem.

Next, by Proposition 4.2.2 the family {Mε̄ : ε̄ ∈ {−1, 1}N} ⊂ B(X) is point-
wise bounded, hence uniformly bounded by the uniform boundedness principle.
This implies (ii).

(ii) ⇒ (iii). Apply (ii) to x =
∑N

n=1 xn.

(iii) ⇒ (i). Since (Δn) is a Schauder decomposition, we have x =
∑∞

n=1 Δnx. For
arbitrary k ≥ l set xn = Δnx if l ≤ n ≤ k, xn = 0 elsewhere. Then (iii) yields∣∣∣ k∑

n=l

εnΔnx
∣∣∣ ≤ C

∣∣∣ k∑
n=l

Δnx
∣∣∣,

for arbitrary signs εn ∈ {−1, 1}. Since the right-hand side of this inequality tends
to zero as k, l → ∞, we see that the series

∑∞
n=1 εnΔnx converge for all choices

of signs, hence
∑∞

n=1 Δnx converges unconditionally by Proposition 4.2.2 for each
x ∈ X. �

The smallest constant C such that (4.6) holds is called the unconditional
constant of the Schauder decomposition (Δn), we denote it by CΔ.

The estimates in Proposition 4.2.4 are actually two-sided. In fact, applying
e.g. (iii) to εnxn instead of xn yields∣∣∣ N∑

n=1

xn

∣∣∣ ≤ C
∣∣∣ N∑
n=1

εnxn

∣∣∣, for all N ∈ N, xn ∈ R(Δn), εn ∈ {−1, 1}.

This is the first part of following corollary.

Corollary 4.2.5. Suppose (Δn)n∈N ⊂ B(X) is an unconditional Schauder decom-
position of the Banach space X. Then

(a) for all N ∈ N, xn ∈ R(Δn) we have

C−1
Δ

∣∣∣ N∑
n=1

xn

∣∣∣ ≤ ∣∣∣ N∑
n=1

εnxn

∣∣∣ ≤ CΔ

∣∣∣ N∑
n=1

xn

∣∣∣; (4.7)
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(b) for each sequence (λn) ∈ l∞, the linear operator Mλ defined by

Mλx =
∞∑

n=1

λnΔnx, x ∈ X,

is bounded in X with |Mλ|B(X) ≤ 2CΔ|λ|∞. The factor 2 can be omitted if
all λn are real.

Proof. We know from Proposition 4.2.2 that Mλx exists for each x ∈ X and
the truncations MN

λ :=
∑N

n=1 λnΔn converge strongly to Mλ, even uniformly for
|λ| ≤ 1. Fix N and write λN = (λ1, . . . , λN ) as a convex combination of the
extreme points ε̄k of [−1, 1]N , in case all λn ∈ [−1, 1]. Then (4.7) gives

∣∣MN
λ x

∣∣ = ∣∣∣∑
k

αk

N∑
n=1

εknΔnx
∣∣∣ ≤ CΔ

∣∣∣ N∑
n=1

Δnx
∣∣∣,

hence with N → ∞ the assertion follows for real λ. For the general case decompose
λ into real and imaginary parts. �

Suppose that (Δn)n∈N ⊂ B(X) is an unconditional Schauder decomposition.
Let εn : Ω → {−1, 1} be a sequence of random variables on a probability space
(Ω,A, μ) which are symmetric, i.e., their means are zero, and let them be inde-
pendent. Then from (4.7) we get for each ω ∈ Ω and all xn ∈ R(Δn)

C−1
Δ

∣∣∣ N∑
n=1

xn

∣∣∣ ≤ ∣∣∣ N∑
n=1

εn(ω)xn

∣∣∣ ≤ CΔ

∣∣∣ N∑
n=1

xn

∣∣∣,
hence we also have

C−1
Δ

∣∣∣ N∑
n=1

xn

∣∣∣ ≤ ∣∣∣ N∑
n=1

εnxn

∣∣∣
Lp(Ω;X)

≤ CΔ

∣∣∣ N∑
n=1

xn

∣∣∣, xn ∈ R(Δn), N ∈ N, (4.8)

for each p ∈ [1,∞). In connection with estimate (4.8) one speaks about ran-
domizing the norm in X. An important consequence of this randomization is the
following

Theorem 4.2.6. Suppose (Δn)n∈N ⊂ B(X) is an unconditional Schauder decompo-
sition of the Banach space X, and let {Mn}n∈N ⊂ B(X) be R-bounded, and such
that MnΔn = ΔnMnΔn for all n ∈ N. Then the operator TM defined by

TMx :=
∞∑

n=1

MnΔnx, x ∈ X,

is well-defined and bounded. We have

|TM |B(X) ≤ C2
ΔR{Mn : n ∈ N},

where CΔ means the unconditional constant of the decomposition (Δn).
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Proof. Fix an x ∈ X; since MnΔnx = ΔnMnΔnx ∈ R(Δn) we have by (4.8) for
k ≥ l,∣∣∣ k∑

n=l

MnΔnx
∣∣∣
X

≤ CΔ

∣∣∣ k∑
n=l

εnMnΔnx
∣∣∣
Lp(Ω;X)

≤ CΔR{Mn : n ∈ N}
∣∣∣ k∑
n=l

εnΔnx
∣∣∣
Lp(Ω;X)

≤ C2
ΔR{Mn : n ∈ N}

∣∣∣ k∑
n=l

Δnx
∣∣∣
X
.

Therefore the series defining TMx is convergent in X, for each x ∈ X, hence TM is
well-defined and passing to the limit as N → ∞, the asserted bound for |TM |B(X)

follows. �
2.3 Property (α)
A very useful property of a Banach space is defined as follows.

Definition 4.2.7. A Banach space X is said to have property (α) if there exists a
constant α > 0 such that∣∣∣ N∑

i,j=1

αijεiε
′
jxij

∣∣∣
L2(Ω×Ω′;X)

≤ α
∣∣∣ N∑
i,j=1

εiε
′
jxij

∣∣∣
L2(Ω×Ω′;X)

,

for all αij ∈ {−1, 1}, xij ∈ X, N ∈ N, and all symmetric independent
{−1, 1}-valued random variables εi resp. ε′j on a probability space (Ω,A, μ) resp.
(Ω′,A′, μ′).

We note that every Hilbert space has property (α), and if a Banach space E
has property (α), then Lp(S;E) has as well, for every sigma-finite measure space
(S,Σ, σ) and 1 ≤ p < ∞.

The importance of property (α) in connection with R-boundedness lies in
the following fact.

Proposition 4.2.8. Let X be a Banach space with property (α), and T ⊂ B(X) be
R-bounded.

Then there is a constant K > 0 such that∣∣∣ N∑
i,j=1

εiε
′
jTijxij

∣∣∣
L2(Ω×Ω′;X)

≤ K
∣∣∣ N∑
i,j=1

εiε
′
jxij

∣∣∣
L2(Ω×Ω′;X)

for all xij ∈ X, Tij ∈ T , N ∈ N, and all symmetric independent {−1, 1}-valued
random variables εi resp. ε

′
j on probability spaces (Ω,A, μ) resp. (Ω′,A′, μ′).

Proof. Let αij be independent, symmetric, {−1, 1}-valued random variables on a
probability space (Ω′′,A′′, μ′′). Since X has by assumption property (α), we have,
replacing xij by αij(ω

′′)Tijxij in the definition of (α),∣∣∣ N∑
i,j=1

εiε
′
jTijxij

∣∣∣
L2(Ω×Ω′;X)

≤ α
∣∣∣ N∑
i,j=1

αij(ω
′′)εiε′jTijxij

∣∣∣
L2(Ω×Ω′;X)

,
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for each ω′′ ∈ Ω′′. Squaring and integrating over Ω′′ this yields∣∣∣ N∑
i,j=1

εiε
′
jTijxij

∣∣∣
L2(Ω×Ω′;X)

≤ α
∣∣∣ N∑
i,j=1

αijεiε
′
jTijxij

∣∣∣
L2(Ω′′;L2(Ω×Ω′;X))

.

For fixed ω ∈ Ω, ω′ ∈ Ω′, the set {αijεi(ω)ε
′
j(ω

′)} consists of independent, sym-
metric, {−1, 1}-valued random variables on the probability space (Ω′′,A′′, μ′′),
hence interchanging integration by Fubini’s theorem, we may use R-boundedness
of T to estimate further∣∣∣ N∑

i,j=1

εiε
′
jTijxij

∣∣∣
L2(Ω×Ω′;X)

≤ αR(T )
∣∣∣ N∑
i,j=1

αijεiε
′
jxij

∣∣∣
L2(Ω′′;L2(Ω×Ω′;X))

.

Employing property (α) another time we arrive at∣∣∣ N∑
i,j=1

εiε
′
jTijxij

∣∣∣
L2(Ω×Ω′;X)

≤ α2R(T )
∣∣∣ N∑
i,j=1

εiε
′
jxij

∣∣∣
L2(Ω×Ω′;X)

,

which is the assertion. �
This proposition has a remarkable consequence.

Theorem 4.2.9. Let X be a Banach space with property (α), let Δ = {Δk}∞k=0

be an unconditional Schauder decomposition, and let T ⊂ B(X). Suppose that
TΔ = {TΔj : T ∈ T , j ∈ N0, TΔj = ΔjTΔj} is R-bounded.

Then the set S := {
∑∞

k=0 TkΔk : Tk ∈ TΔ} is R-bounded.

Proof. We may assume 0 ∈ T . Let S1, . . . Sn be of the form Sj =
∑N

k=0 TjkΔk,
with Tjk ∈ TΔ, and fix x1, . . . , xn ∈ X. Then by Corollary 4.2.5 and the above
proposition∣∣∣ n∑

j=1

εjSjxj

∣∣∣
L2(Ω;X)

=
∣∣∣ N∑
k=0

( n∑
j=1

εjTjkΔkxj

)∣∣∣
L2(Ω;X)

≤ CΔ

∣∣∣ N∑
k=0

ε′k
( n∑

j=1

εjTjkΔkxj

)∣∣∣
L2(Ω×Ω′;X)

≤ KCΔ

∣∣∣ N∑
k=0

ε′k
( n∑

j=1

εjΔkxj

)∣∣∣
L2(Ω×Ω′;X)

= KCΔ

∣∣∣ N∑
k=0

ε′kΔk

( n∑
j=1

εjxj

)∣∣∣
L2(Ω′;L2(Ω;X))

≤ KC2
Δ

∣∣∣ n∑
j=1

εjxj

∣∣∣
L2(Ω;X)

,
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where in the last step we used once more Corollary 4.2.5. With N → ∞ the
assertion follows from Proposition 4.1.10. �

4.3 Operator-Valued Fourier Multipliers

We are in position to consider operator-valued Fourier multipliers in vector-valued
Lp-spaces.

3.1 Banach Spaces of Class HT
We consider once more the derivation operator Bp = d/dt from Section 3.2 in
Yp := Lp(R;Y ), where Y is a Banach space. The basic question we want to address
here is whether Bp admits bounded imaginary powers or even a bounded H∞-
calculus.

For this purpose let h ∈ H0(Σφ) for some φ > π/2. Then h(Bp) is given by
the Dunford integral

h(Bp) =
1

2πi

∫
Γ

h(z)(z −Bp)
−1 dz,

where Γ = (∞, 0]eiψ ∪ [0,∞)e−iψ with π/2 < ψ < φ. With the representation of
the resolvent of Bp from Section 3.2 this gives for a test function u on R

h(Bp)u(t) =
1

2πi

∫
Γ

h(z)(z −Bp)
−1u(t) dz =

1

2πi

∫
Γ

h(z)

∫ ∞

0

ezsu(t− s) dsdz,

i.e., Fubini’s theorem yields

h(Bp)u(t) =

∫ ∞

0

kh(s)u(t− s) ds, t ∈ R,

where the kernel kh(s) is defined by

kh(s) =
1

2πi

∫
Γ

h(z)ezs dz = L−1h(s), s > 0,

i.e., it is the inverse Laplace transform of h. This kernel evidently satisfies an
estimate of the form s|kh(s)| ≤ c|h|H∞(Σφ), but nothing more, in general, which
means that we end up with singular integrals.

A different viewpoint uses Fourier transforms. The Fourier transform of Bpu
is given by FBpu(ξ) = iξFu(ξ), hence F(z −Bp)

−1u(ξ) = (z − iξ)−1Fu(ξ). This
implies by Cauchy’s theorem

F [h(Bp)u](ξ) =
1

2πi

∫
Γ

h(z)(z − iξ)−1Fu(ξ) dz = h(iξ)Fu(ξ), (4.9)

i.e., h(Bp)u = F−1[h(i·)Fu]. Thus the question is whether such functions h(i·) are
Fourier multipliers for Lp(R;Y ).
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At this point we recall the classical Mikhlin Fourier multiplier theorem in the
scalar one-dimensional case, which states that for a function m ∈ W 1

1,loc(Ṙ), the
condition

|m(ξ)|+ |ξm′(ξ)| ≤ M, for almost all ξ ∈ R, (4.10)

is sufficient for the operator Tm = F−1m(·)F to be Lp(R)-bounded, for each
p ∈ (1,∞).

If h ∈ H∞(Σφ) for some φ > π/2, then by the Cauchy estimate for holo-
morphic functions, we also have zh(z) uniformly bounded on each smaller sector
Σψ. In particular, the function m(ξ) = h(iξ) satisfies the Mikhlin condition (4.10).
We may therefore conclude that Bp admits an H∞-caluculus in Lp(R), for each
p ∈ (1,∞), with angle φ∞

Bp
= π/2.

Now we turn to the vector-valued case. Obviously, if the Mikhlin multiplier
theorem holds in Yp := Lp(R;Y ), then Bp admits a bounded H∞-calculus in Yp as
well and its H∞-angle equals π/2 as in the scalar case. So let us look for necessary
conditions. For this purpose assume that Bp ∈ BIP(Yp). Then −Bp ∈ BIP(Yp)
as well since −Bp = RBpR is similar to Bp via the reflection Ru(t) = u(−t) which
is bounded in Yp and invertible with inverse R−1 = R. Define next the operator

K :=
1

i sinh(π)
[B−i

p (−Bp)
i − cosh(π)).

It is not difficult to compute the symbol of K which is given by

k(ξ) =
1

i sinh(π)
[(iξ)−i(−iξ)i − cosh(π)] = −i sgn(ξ),

which is precisely the symbol of the Hilbert transform H, defined by

Hu(t) = lim
R→∞

∫
R−1≤|s|≤R

f(t− s)
ds

πs
, t ∈ R. (4.11)

Note that Hu is well-defined pointwise for all test functions u such that 0 �∈
suppF(u), a dense subset of Yp in case 1 < p < ∞.

Thus, as a necessary condition for Bp ∈ BIP(Yp) we find that the Hilbert
transform H must be bounded on Lp(R;Y ). This gives rise to the following defi-
nition.

Definition 4.3.1. A Banach space Y is said to belong to the class HT if the Hilbert
transform defined by (4.11) is bounded on L2(R;Y ). The class HT (α) denotes the
set of all Banach spaces which belong to HT and have property (α).

We note that each Hilbert space E is of class HT , hence also in HT (α), and
if (S,Σ, σ) is a sigma-finite measure space, then Lp(S;E) is of class HT , hence in
HT (α), as well, for each p ∈ (1,∞).

We shall see below that – surprisingly – the Mikhlin multiplier theorem re-
mains valid in Lp(R;Y ) in case Y is a Banach space of class HT .
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3.2 Necessary Conditions
Let X be a Banach space and consider the spaces Lp(R

n;X) for 1 < p < ∞. Given

a Fourier multiplier M ∈ C(Ṙn;B(X,Y )), where Y denotes another Banach space,
we may define an operator TM : F−1D(Rn;X) → S ′(Rn;Y ) by means of

TMφ := F−1MFφ, for all Fφ ∈ D(Rn;X), (4.12)

where F denotes the Fourier transform. Since F−1D(Rn;X) is dense in Lp(R
n;X),

we see that TM is well-defined and linear on a dense subset of Lp(R
n;X).

The main question about such Fourier multipliers is their boundedness in
Lp-norm. This is a classical subject treated in many books; here we want to study
the vector-valued case. We show first that R-boundedness of the operator family
T := {M(ξ) : ξ ∈ Ṙn} ⊂ B(X,Y ) is necessary for Lp-boundedness of TM .

For this purpose we have to show that there is a constant C such that for
given N points ξj ∈ Ṙn, N vectors xj ∈ X, N independent {−1, 1}-valued random
variables εj on a probability space (Ω,A, μ), the inequality∫

Ω

∣∣∣∑
j

εjM(ξj)xj

∣∣∣p
Y
dμ ≤ Cp

∫
Ω

∣∣∣∑
j

εjxj

∣∣∣p
X
dμ

is valid. Choose a function ψ ∈ D(Rn), nonnegative, radially symmetric, 0 ≤ ψ ≤
1, such that

∫
Rn ψ(ξ)2 dξ = 1, and let ψk(ξ) = ψ(ξk), and φk(x) = φ(x/k); set

φ = Fψ. Then Fφk(ξ) = knψ(ξk) by symmetry of ψ, and Fφk · ψk ∈ D(Rn), as
well as ∫

Rn

Fφk(ξ)ψk(ξ) dξ = 1.

Therefore we have

lim
k→∞

∫
Rn

M(ξ)[Fφk](ξ − ξ0)ψk(ξ − ξ0) dξ = M(ξ0)

in B(X,Y ), for each ξ0 ∈ Ṙn. We estimate as follows.∫
Ω

∣∣∣∑
j

εj

∫
Rn

M(ξ)F [φk](ξ − ξj)xjψk(ξ − ξj) dξ
∣∣∣p
Y
dμ

≤
∫
Ω

∣∣∣∑
j

εj

∫
Rn

FTM [eiξj ·φk(·)xj ](ξ) · ψk(ξ − ξj) dξ
∣∣∣p
Y
dμ

=

∫
Ω

∣∣∣∑
j

εj

∫
Rn

TM [eiξj ·φk(·)xj ](x)F [ψk(· − ξj)](x) dx
∣∣∣p
Y
dμ

=

∫
Ω

∣∣∣∑
j

εj

∫
Rn

e−iξj ·xTM [eiξj ·φk(·)xj ](x)[Fψk](x) dx
∣∣∣p
Y
dμ

≤
∫
Ω

[ ∫
Rn

∣∣∣∑
j

εje
−iξj ·xTM [eiξj ·φk(·)xj ](x)

∣∣∣
Y
|Fψk(x)| dx

]p
dμ
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≤
[ ∫

Ω

∫
Rn

∣∣∣∑
j

εje
−iξj ·xTM [eiξj ·φk(·)xj ](x)

∣∣∣p
Y
dx
]
·
[ ∫

Rn

|Fψk(t)|p
′
dt
]p/p′

dμ;

here 1/p+1/p′ = 1. Since TM is bounded from Lp(R
n;X) into Lp(R

n;Y ), the set
{eiσ·TMeiτ · : σ, τ ∈ Rn} is R-bounded in B(Lp(R

n;X), Lp(R
n;Y )) by Corollary

4.1.9, hence we may continue

≤ C
[ ∫

Rn

|Fψk(x)|p
′
dx
]p/p′ ∫

Ω

∫
Rn

∣∣∣∑
j

εjφk(x)xj

∣∣∣p
X
dx dμ

= C
[ ∫

Rn

|Fψk(x)|p
′
dx
]p/p′

·
∫
Ω

∣∣∣∑
j

εjxj

∣∣∣p
X
dμ ·

∫
Rn

|φk(x)|p dx

= C
[ ∫

Rn

|Fψk(x)|p
′
dx
]p/p′ ∫

Rn

|φk(x)|p dx] ·
∫
Ω

∣∣∣∑
j

εjxj

∣∣∣p
X
dμ.

By Fatou’s lemma this yields∫
Ω

∣∣∣∑
j

εjM(ξj)xj

∣∣∣p
Y
dμ ≤ C

[ ∫
Rn

|φ(x)|p dx
][ ∫

Rn

|φ(x)|p′
dx
]p/p′∫

Ω

∣∣∣∑
j

εjxj

∣∣∣p
X
dμ.

This shows that T is necessarily R-bounded, in particular M is bounded a.e.

Proposition 4.3.2. Suppose X, Y are Banach spaces, 1 < p < ∞, and let TM

defined by (4.12) be bounded from Lp(R
n;X) into Lp(R

n;Y ), for some given M ∈
C(Ṙn;B(X,Y )).

Then {M(ξ) : ξ ∈ Ṙn} is R-bounded in B(X,Y ), in particular we necessarily
have M ∈ L∞(Rn;B(X,Y )), and thus TMF−1D(Rn;X) ⊂ L∞(Rn;Y ).

3.3. The One-Dimensional Case
The following theorem is the operator-valued Mikhlin Fourier multiplier theorem
in one variable.

Theorem 4.3.3. Suppose X, Y are spaces of class HT , let 1 < p < ∞, and
M ∈ C1(Ṙ;B(X,Y )) be such that the following conditions are satisfied.

(i) R({M(ξ) : ξ ∈ Ṙ}) =: κ0 < ∞;

(ii) R({ξM ′(ξ) : ξ ∈ Ṙ) =: κ1 < ∞.

Then the operator T defined by (4.12) is bounded from Lp(R;X) into Lp(R;Y )
with norm |T |B(Lp(R;X),Lp(R;Y )) ≤ C(κ0 + κ1), where the constant C > 0 depends
only on p, X, and Y .

Proof. Before we proof this result, let us note that w.l.o.g. we may assume X = Y .
Otherwise, we consider the multiplier

M̃(ξ)(x, y) = (0,M(ξ)x), ξ ∈ Ṙ, (x, y) ∈ X × Y,
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on the product space X × Y .
W.l.o.g. we may restrict attention to multipliers which vanish on (−∞, 0). In

fact, if M(ξ) is given, set M+(ξ) = M(ξ)χR+
(ξ), M−(ξ) = M(ξ)χR−(ξ), where χA

denotes the characteristic function of the set A. Once we know that the operator
corresponding to the multiplier M+ is bounded, by reflection we also get bound-
edness of that one with symbol M−, hence also the operator with symbol M is
bounded.

Let R denote the Riesz projection, i.e., the operator in Lp with symbol χ[0,∞).
Since by assumption X and Y belong to the class HT , R is bounded in Lp(R;X).
Define Rs = esRe−s where es denotes multiplication with eist. Then we know by
Corollary 4.1.9 that the set {Rs : s ∈ R} is R-bounded. Therefore, also the set of
projections P = {Rσ −Rτ : σ, τ ∈ R, τ > σ} is R-bounded. Note that the symbol
of Rσ is χ[σ,∞), hence for σ < τ the symbol of Rσ −Rτ equals χ[σ,τ).

Next we define the dyadic Schauder decomposition Δ = {Δj : j ∈ Z} by
means of Δj = R2j − R2j+1 . A deep result of Bourgain shows that it is uncondi-
tional in Lp(R;X), provided the Banach space X belongs to the class HT .

Relying on Theorem 4.2.6, we have to show that the set {TMΔm : m ∈ Z}
is R-bounded. To see this, for ξ ∈ [2j , 2j+1) write

M(ξ) = M(2j) +

∫ ξ

2j
M ′(s) ds

= M(2j) +

∫ 2j+1

2j
M ′(s)χ[2j ,ξ)(s) ds

= M(2j) +

∫ 1

0

2jM ′(2j(1 + r))χ[2j ,ξ)(2
j(1 + r)) dr.

Taking inverse Fourier transforms, this means

TMΔj = M(2j)Δj +

∫ 1

0

2jM ′(2j(1 + r))[R2j(1+r) −R2j+1 ] drΔj . (4.13)

By means of this representation we estimate as follows.

R{TMΔj}

≤ R{M(2j)Δj}+R
{∫ 1

0

2jM ′(2j(1 + r))[R2j(1+r) −R2j+1 ]Δj dr
}

≤ κ0R(P) +R{2jM ′(2j(1 + r))[R2j(1+r) −R2j+1 ]Δj : j ∈ Z, r ∈ [0, 1]}
≤ R(P)[κ0 +R{2jM ′(2j(1 + r)) : j ∈ Z, r ∈ [0, 1]}]
≤ R(P)[κ0 +R{sM ′(s) : s ∈ R, s �= 0}]
≤ R(P)[κ0 + κ1],

where we used convexity of R-bounds and the contraction principle. �
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We may strengthen the result in case X and Y also have property (α),
employing Theorem 4.2.9.

Theorem 4.3.4. Suppose X, Y are spaces of class HT (α), let 1 < p < ∞, and
M ⊂ C1(Ṙ;B(X,Y )) be such that the following conditions are satisfied.

(i) R({M(ξ) : ξ ∈ Ṙ, M ∈ M}) =: κ0 < ∞;

(ii) R({ξM ′(ξ) : ξ ∈ Ṙ, M ∈ M}) =: κ1 < ∞.

Then the family T = {TM : M ∈ M} ⊂ B(Lp(R;X), Lp(R;Y )), with TM defined
by (4.12), is R-bounded with R-bound R(T ) ≤ C(κ0 + κ1), where the constant
C > 0 depends only on p, X, and Y .

Proof. Define the operator family T as T = {TM : M ∈ M}. By Theorem 4.3.3
we know T ⊂ B(Lp(R;X);Lp(R;Y )), therefore by Theorem 4.2.9 we only need to
show that

R(TΔ) < ∞, with TΔ = {TMΔj : j ∈ Z,M ∈ M}.

This can be proved in exactly the same way as in the last step of the proof of
Theorem 4.3.3. �

As in Hilbert spaces R-boundedness is equivalent to uniform boundedness,
if X and Y are Hilbert spaces, Theorem 4.3.4 reduces to

Corollary 4.3.5. Suppose X, Y are Hilbert spaces, let 1 < p < ∞, and M ⊂
C1(Ṙ;B(X,Y )) be such that the following conditions are satisfied.

(i) sup{|M(ξ)|B(X,Y ) : ξ ∈ Ṙ, M ∈ M} =: κ0 < ∞;

(ii) sup{|ξM ′(ξ)|B(X,Y ) : ξ ∈ Ṙ, M ∈ M} =: κ1 < ∞.

Then the operator family T := {TM : M ∈ M} ⊂ B(Lp(R;X), Lp(R;Y )) is
R-bounded with R-bound R(T ) ≤ C(κ0 + κ1).

In particular, this corollary covers and strengthens the finite-dimensional
case, i.e., the classical Mikhlin theorem. For the case of scalar multipliers the
assumptions of Theorem 4.3.3 can be relaxed.

Corollary 4.3.6. Suppose X belongs to the class HT and let p ∈ (1,∞). Let m ∈
L∞(R)∩BVloc(Ṙ) be such that supR>0

1
R

∫ R

−R
|ξ||dm(ξ)| < ∞. Then for M = mI,

the operator TM is bounded in Lp(R;X), and

|TM |B(Lp(R;X)) ≤ C[|m|∞ + sup
R>0

1

R

∫ R

−R

|ξ|| dm(ξ)|],

where C only depends on X and p.
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Proof. In the proof of Theorem 4.3.3 we write instead

TM =
∑
j

{
m(2j)−

∫ 2j+1

2j
[R2j+1 −Rs] dm(s)

}
Δj .

Since supj Var m|2j+1

2j < ∞ if and only if supR>0
1
R

∫ R

−R
|ξ|| dm(ξ)| < ∞, the result

follows from unconditionality of the Schauder decomposition Δ = {Δj : j ∈ Z}
and R-boundedness of the family of projections P; cf. Proposition 4.2.6. �

In case X has also property (α) we obtain the following improvement.

Corollary 4.3.7. Suppose X belongs to the class HT (α) and let p ∈ (1,∞). Let
M ⊂ L∞(R) ∩BVloc(Ṙ) be such that

sup{|m|∞ : m ∈ M} < ∞,

and

sup
{ 1

R

∫ R

−R

|ξ||dm(ξ)| : R > 0,m ∈ M
}
< ∞.

Then the operator family T = {TmI : m ∈ M} ⊂ B(Lp(R;X)) is R-bounded.

The proof follows the above line of arguments and is therefore omitted.

3.4. The Multi-Dimensional Case
If X,Y ∈ HT (α), then an operator-valued Fourier multiplier theorem of Lizorkin-
type can be deduced form the one-dimensional case Theorem 4.3.4 by induction.

Lemma 4.3.8. Let 1 < p1, p2 < ∞, X,Y ∈ HT (α), and suppose that the family of
multipliers M ⊂ C2(Ṙ2;B(X,Y )) satisfies

R({ξαDα
ξ M(ξ) : ξ ∈ Ṙ2, α ∈ {0, 1}2, |α| ≤ 2,M ∈ M} =: κ < ∞.

Then the family of bounded linear operators T := {TM : M ∈ M} is R-bounded in
B(Lp1

(R;Lp2
(R;X)), Lp1

(R;Lp2
(R;Y ))), with R-bound less than Cκ, where C > 0

only depends on p1, p2, X, Y .

Proof. As before, let X = Y w.l.o.g. We first consider the family {M(ξ1, ξ2)} in
dependence on ξ2, with parameters ξ1 ∈ Ṙ and M ∈ M, and apply Theorem 4.3.4
to obtain a family of multipliers

K0 := {KM (ξ1) = TM(ξ1,·) : ξ1 ∈ Ṙ,M ∈ M}

which isR-bounded in B(Lp2
(R;X)). Here we useR-bounedness ofM and ξ2∂2M .

As Lp2
(R;X) belongs to HT (α), we may apply Theorem 4.3.4 another time. For

this we have to verify that the set

K1 := {ξ1∂1KM (ξ1) : ξ1 ∈ Ṙ,M ∈ M}

is also R-bounded. But as ξ1∂1KM (ξ1) = Tξ1∂1M(ξ1,·), this follows from R-
boundedness of ξ1∂1M and ξ1ξ2∂1∂2M . �
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By means of this lemma, by induction there follows the operator-valued Li-
zorkin Fourier multiplier theorem in n dimensions.

Theorem 4.3.9. Let 1 < p < ∞, X,Y ∈ HT (α), and suppose that the family of
multipliers M ⊂ Cn(Ṙn;B(X,Y )) satisfies

R({ξαDα
ξ M(ξ) : ξ ∈ Ṙn, α ∈ {0, 1}n, M ∈ M} =: κ < ∞. (4.14)

Then the family of operators T := {TM : M ∈ M} ⊂ B(Lp(R
n;X), Lp(R

n;Y )) is
R-bounded with R-bound less than Cκ, where C > 0 only depends on p,X, Y .

To verify the Lizorkin condition, the following observation is very useful.

Proposition 4.3.10. Let X,Y be Banach spaces and suppose that, for some ϕ > 0,
the family of multipliers M ⊂ H∞((Σϕ ∪ −Σϕ)

n;B(X,Y )) satisfies

R{M(z) : z ∈ (Σϕ ∪ −Σϕ)
n,M ∈ M} =: κ < ∞.

Then
R({ξαDα

ξ M(ξ) : ξ ∈ Ṙn, |α| = k,M ∈ M} ≤ κ/(sinϕ)k,

for each k ∈ N0.

Proof. Fix ξ ∈ Ṙn, w.l.o.g. ξj > 0 for all j, and choose contours Γj = ∂Brj (ξj)
with rj = ξj sinϕ. Then we have

M(ξ) =
1

(2πi)n

∫
Γ1

. . .

∫
Γn

M(z)Πn
j=1(zj − ξj)

−1 dzn . . . dz1,

hence taking α derivatives w.r.t. ξ and parameterizing the contours Γj by means
of zj = ξj + ξje

iθj sinϕ we obtain

ξαDα
ξ M(ξ) =

1

(2π)n(sinϕ)|α|

∫
(−π,π)n

M(z)e−i
∑

j θjαj dθ.

Employing the result on convexity of R-bounds and the contraction principle this
yields the assertion. �

We conclude with the n-dimensional analogue of Theorem 4.3.3.

Theorem 4.3.11. Suppose X, Y are spaces of class HT , 1 < p < ∞, let
M ∈ Cn(Rn \ {0};B(X,Y )) be such that the following R-boundedness condition is
satisfied.

R(|ξ||α||Dα
ξ M(ξ)| : ξ ∈ Rn \ {0}, α ∈ {0, 1}n) =: κ < ∞. (4.15)

Then the operator TM defined by (4.12) is bounded from Lp(R
n;X) into Lp(R

n;Y )
with norm |TM |B(Lp(R;X),Lp(R;Y )) ≤ Cκ, where the constant C > 0 depends only
on p, X, and Y.
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Observe that the Condition (4.15) is stronger than (4.3.9), as the scalar 2D-
example m(ξ) = ξ1/(iξ1 + ξ22) shows. However, in Theorem 4.3.11 we do not need
property (α). Since we rarely use this result in the sequel, we omit the proof here;
cf. the Bibliographical Comments.

3.5 The Derivation Operator
We consider once more the derivation operator Bp in Lp(R;Y ). As we have seen
in (4.9), the Dunford functional calculus for Bp in terms of Fourier-transforms is
given by

F{h(Bp)u}(ξ) = h(iξ)Fu(ξ), ξ ∈ R,

where h ∈ H∞
0 (Σφ) for some φ > π/2. As such functions h(i·) satisfy the Mikhlin

condition, the operator-valued Fourier multiplier theorem 4.3.3 implies that there
is a constant c = c(p, Y, φ) > 0 such that

|h(Bp)|Lp(R;Y ) ≤ c|h|H∞(Σφ), h ∈ H∞(Σφ),

provided Y belongs to the class HT . The same assertion remains valid by causality
on intervals J = R+ or J = (0, a). This yields

Corollary 4.3.12. Let p ∈ (1,∞) and Y ∈ HT .
Then Bp ∈ H∞(Lp(J ;Y )), for each interval J = R,R+, (0, a). In particular

we have D(Bα
p ) = 0H

α
p (R+;Y ) for J = R+.

We want to extend this result to the case of weighted Lp-spaces. For this
purpose we need the following result.

Proposition 4.3.13. Let p ∈ (1,∞) and let 1/p < μ ≤ 1. Let X,Y be Banach
spaces and suppose that K ⊂ C(R+;B(X,Y )) satisfies R{K(t) : K ∈ K} ≤ M/t
for t > 0, where M is a positive constant. Let

(TKf)(t) :=

∫ t

0

K(t− s)[(t/s)1−μ − 1]f(s) ds, f ∈ Lp(R+;X), K ∈ K. (4.16)

Then {TK : K ∈ K} ⊂ B(Lp(R+;X), Lp(R+;Y )) is R-bounded, with R-bound
R{TK : K ∈ K} ≤ cM , where c = c(p, μ).

Proof. Let f ∈ Lp(R+;X) be given. To shorten notation we set

ϕ(r) := (1 + r)1−μ − 1.

It is not difficult to establish the elementary estimate

ϕ(r) ≤ min{r1−μ, (1− μ)r}, r > 0. (4.17)

Observe that by assumption

R{K(t− s)[(t/s)μ − 1] : K ∈ K} ≤ M(t− s)−1[(t/s)μ − 1] =
M

(t− s)
ϕ
( t− s

s

)
.
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Therefore, the R-bound of the kernels of TK is bounded pointwise by the kernel
of the scalar integral operator S given by

(Su)(t) := M

∫ t

0

1

(t− s)
ϕ
( t− s

s

)
u(s) ds, u ∈ Lp(R+).

To apply Proposition 4.1.4, we have to show that this operator S is Lp-bounded.
For this purpose, we use Hölder’s inequality to obtain

|(Su)(t)| ≤ M |u|p
(∫ t

0

[
ϕ
( t− s

s

) 1

(t− s)

]p′

ds
)1/p′

= M |up

(∫ 1

0

[
ϕ
(1− σ

σ

) 1

(1− σ)

]p′

dσ
)1/p′

· t−1/p

for any u ∈ Lp(R
+). Here we have to observe that the integral∫ 1

0
[ϕ( 1−σ

σ ) 1
(1−σ )]

p′
dσ is finite. In fact, this follows from (4.17) due to

∫ 1/2

0

[ (1− σ)1−μ

σ1−μ
· 1

1− σ

]p′

dσ + (1− μ)

∫ 1

1/2

[1− σ

σ
· 1

1− σ

]p′

dσ ≤ c(p, μ).

We conclude that S : Lp(R+) → Lp,weak(R+) is bounded for each p > 1/μ. By the
Marcinkiewicz interpolation theorem, S is bounded in Lp(R+) for each p > 1/μ,
with bound dominated by c(p, μ)M , where c(p, μ) depends only on p and μ. �

We are now in position to prove the main result of this subsection.

Theorem 4.3.14. Let p ∈ (1,∞) and 1/p < μ ≤ 1. Suppose that Y is of class HT .
Then Bp,μ admits an H∞-calculus in Lp,μ(R+;Y ) with H∞-angle φ∞

Bp,μ
= π/2. In

particular, we have D(Bα
p,μ) = 0H

α
p,μ(R+;Y ).

Proof. Let φ > π/2 be fixed and let h ∈ H0(Σφ) be given. As we have seen in
Section 3.2, h(Bp,μ) is also represented by the convolution

[h(Bp,μ)v](t) =

∫ t

0

kh(t− s)v(s) ds, t > 0, (4.18)

where the kernel kh belongs to C(R+)∩L1(R+) and is given by the inverse Laplace
transform of h,

kh(t) =
1

2πi

∫
Γ

h(λ)eλt dλ, t > 0.

To prove the assertion we have to estimate this convolution in Lp,μ(R+;Y ), i.e.,
we have to prove an inequality of the form∣∣∣ ∫ t

0

kh(t− s)(t/s)1−μv(s) ds
∣∣∣
p
≤ Cφ|h|∞|v|p (4.19)
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for v ∈ Lp(R+;Y ) and h ∈ H0(Σφ), with a constant Cφ independent of h.
This will be achieved by comparing h(Bp,μ) with the functional calculus of

Bp in Lp(R+;Y ) which, by Corollary 4.3.12, is bounded as Y is of class HT . So
we know that there is a constant Mφ independent of h such that

|h(Bp)v|p =
∣∣∣ ∫ t

0

kh(t− s)v(s) ds
∣∣∣
p
≤ Mφ|h|H∞(Σφ)|v|p (4.20)

for any v ∈ Lp(R+;Y ) and h ∈ H0(Σφ). One easily verifies that

Φμh(Bp)Φ
−1
μ =

1

2πi

∫
Γ

h(λ)Φμ(λ−Bp)
−1Φ−1

μ dλ

=
1

2πi

∫
Γ

h(λ)(λ− (Bp +B0))
−1 dλ = h(Bp +B0).

Consequently,

(Thv)(t) := [h(Bp +B0)− h(Bp)]v(t) =

∫ t

0

kh(t− s)[(t/s)1−μ − 1]v(s) ds, (4.21)

where v ∈ Lp(R+;Y ). Observe that

|kh(t)| ≤
|h|∞
π

∫ ∞

0

etr cosψ dr ≤
Cφ|h|H∞(Σφ)

t
, h ∈ H0(Σφ).

Therefore, the kernel kh satisfies the assumptions of Proposition 4.3.13 and we
conclude that Th ∈ B(Lp(R+;Y )) with

|Th|B(Lp(R+;Y )) ≤ c(p, μ, φ)|h|H∞(Σφ), h ∈ H0(Σφ),

where the constant c(p, μ, φ) does not depend on h. We can now conclude that
Bp,μ has an H∞-calculus and that the H∞-angle equals π/2. �

4.4 R-Sectoriality

It is a natural idea to replace the uniform norm-bound on the resolvent of a
sectorial operator by the R-bound. Surprisingly, this leads to characterizations of
maximal Lp-regularity.

4.1 R-sectorial Operators
The concept of R-bounded families of operators leads immediately to the notion
of R-sectorial operators.

Definition 4.4.1. A sectorial operator is called R-sectorial if

RA(0) := R{t(t+A)−1 : t > 0} < ∞.
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The R-angle φR
A of A is defined by means of

φR
A := inf{θ ∈ (0, π) : RA(π − θ) < ∞},

where
RA(θ) := R{λ(λ+A)−1 : | arg λ| ≤ θ}.

The class of R-sectorial operators will be denoted by RS(X).

This definition makes sense for the following reason. Suppose RA(0) < ∞.
Then the Taylor series

(λ+A)−1 =

∞∑
n=0

(t− λ)n(t+A)−n−1

is convergent for |λ − t| < t/M . With θ = arg(λ), t = |λ| cos(θ), and M :=
sup{t|(t+A)−1| : t > 0}, we obtain by the convexity of R-bounds

R{λ(λ+A)−1 : | arg λ| ≤ θ} ≤ | cos(θ)|−1
∞∑

n=0

| tan θ|nRA(0)
n+1

= | cos(θ)|−1RA(0)/(1− | tan θ|RA(0)).

Thus whenever | tan θ|RA(0) < 1, then RA(θ) < ∞. This shows that the R-angle
of an R-sectorial operator A is well-defined and it is always not smaller than the
spectral angle of A.

The argument we just presented shows also that R-sectorial operators are
well-behaved under perturbations, like sectorial operators. The classes of operators
with bounded imaginary powers or H∞-calculus do not have this property, as we
have seen in the previous section. This makes the concept of R-sectorial operators
particularly useful.

Proposition 4.4.2. Suppose A is sectorial in a Banach space X, and let B be
closed linear, such that D(A) ⊂ D(B) and |Bx| ≤ b|Ax|, x ∈ D(A), for some
b > 0. Assume

R{A(λ+A)−1 : λ ∈ Σθ} =: c < ∞.

Then
R{λ(λ+A+B)−1 : λ ∈ Σθ} < ∞,

whenever b < 1/c.

Proof. We have

(λ+A+B)−1 = (λ+A)−1(1 +B(λ+A)−1)−1 (4.22)

= (λ+A)−1
∞∑

n=0

[−B(λ+A)−1]n, (4.23)
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and by induction

R{λ(λ+A)−1[B(λ+A)−1]n} ≤ R{λ(λ+A)−1}[R{BA−1A(λ+A)−1}]n

≤ R{λ(λ+A)−1}|BA−1|nR{A(λ+A)−1}n

= γnR{λ(λ+A)−1},

where γ = |BA−1|R{A(λ+A)−1}. Now, if γ ≤ bR{A(λ+A)−1} < 1, then

R{(λ+A+B)−1 : λ ∈ Σθ} ≤ R{λ(λ+A)−1 : λ ∈ Σθ}/(1− γ),

which implies the result. �
In the case of relatively bounded perturbations

D(A) ⊂ D(B), |Bx| ≤ b|Ax|+ a|x|, x ∈ D(A), (4.24)

with small relative bound b, as usual in perturbation theory for sectorial operators,
we have to shift A+B.

Proposition 4.4.3. Suppose A is sectorial in a Banach space X, and let B be closed
linear, such that (4.24) holds with some constants a and b. Assume

R{λ(λ+A)−1 : λ ∈ Σθ} =: c < ∞.

Then
R{λ(λ+ μ+A+B)−1 : λ ∈ Σθ} < ∞,

whenever b < 1/(1 + c)C0(A) and μ > aM0(A)(1 + c)/(1− bC0(A)(1 + c)), where

C0(A) = sup
μ>0

|A(μ+A)−1| and M0(A) = sup
μ>0

|μ(μ+A)−1|.

Proof. As in the proof of Proposition 4.4.2 we have

(λ+ μ+A+B)−1 = (λ+ μ+A)−1(1 +B(λ+ μ+A)−1)−1 (4.25)

= (λ+ μ+A)−1
∞∑

n=0

[−B(λ+ μ+A)−1]n, (4.26)

and by induction

R{λ(λ+ μ+A)−1[B(λ+ μ+A)−1]n}
≤ R{λ(λ+ μ+A)−1}[R{B(μ+A)−1(μ+A)(λ+ μ+A)−1}]n

≤ R{λ(λ+ μ+A)−1}|B(μ+A)−1|nR{(μ+A)(λ+ μ+A)−1}n

(4.24) implies
|B(μ+A)−1| ≤ bC0(A) + aM0(A)/μ.
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On the other hand, by convexity of R-bounds,

R{λ(λ+ μ+A)−1 : λ ∈ Σθ} ≤ R{λ(λ+A)−1 : λ ∈ Σθ} = c,

hence

R{(μ+A)(λ+ μ+A)−1 : λ ∈ Σθ} ≤ 1 +R{λ(λ+ μ+A)−1 : λ ∈ Σθ} ≤ 1 + c.

Thus we obtain
R{λ(λ+ μ+A+B)−1 : λ ∈ Σθ} < ∞,

if (bC0(A) + aM0(A)/μ)(1 + c) < 1. �
4.2 Maximal Lp-regularity
Consider now the Cauchy problem

u̇(t) +Au(t) = f(t), t > 0, u(0) = 0, (4.27)

where A denotes a sectorial operator in a Banach space X with spectral angle
φA < π/2. Then for a given function f ∈ Lp(R+;X) the solution is represented
by the variation of parameters formula

u(t) =

∫ t

0

e−Asf(t− s) ds, t ≥ 0.

Maximal regularity of type Lp is then equivalent to Au ∈ Lp(R+;X), for each
f ∈ Lp(R+;X). Looking at the problem (4.27) on the whole line instead of the
half-line, the question then becomes whether the convolution operator with kernel

K(t) = Ae−Atχ(0,∞)(t), t ∈ R,

is Lp-bounded. The symbol of this convolution operator is given by

M(ξ) = A(iξ +A)−1, ξ ∈ R,

and so by Proposition 4.3.2, R-boundedness of the family {A(iξ + A)−1 : ξ ∈ R}
is necessary for maximal regularity of (4.27) of type Lp, even in a general Banach
space. However, in spaces X of class HT the converse also holds. This explains
the importance of R-sectorial operators.

Theorem 4.4.4. Let X be a Banach space of class HT , 1 < p < ∞, and let A be
a sectorial operator in X with spectral angle φA < π/2.

Then (4.27) has maximal regularity of type Lp if and only if A is R-sectorial
with φR

A < π/2. More precisely, the following statements are equivalent.

(i) The Cauchy problem (4.27) has maximal regularity of type Lp;

(ii) the set {A(iξ +A)−1 : ξ ∈ R} is R-bounded;

(iii) the set {A(λ+A)−1 : λ ∈ Σθ} is R-bounded, for some θ > π/2;
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(iv) the set {e−Az : z ∈ Σϑ} is R-bounded for some ϑ > 0;

(v) the sets {e−At : t > 0} and {tAe−At : t > 0} are R-bounded.

Proof. We have already seen that (i) implies (ii). For the converse we employ
Theorem 4.3.3 with M(ξ) = A(iξ + A)−1. To see that {ξM ′(ξ) : ξ ∈ R, ξ �= 0} is
R-bounded, we only have to observe

ξM ′(ξ) = −iξA(iξ +A)−2 = −A(iξ +A)−1 + [A(iξ +A)−1]2,

and to apply Proposition 4.1.6.

(ii)⇒(iii) Since H(λ) = A(λ+ A)−1 is holomorphic and bounded in a sector Σθ

for some θ > π/2, we may employ the Poisson formula to write for λ = σ + iτ

H(λ) =

∫
R

pσ(τ − ρ)H(iρ) dρ,

where

pσ(τ) =
1

π

σ

σ2 + τ2

denotes the Poisson kernel in one space dimension. By means of a scaling we may
alternatively write

H(λ) =

∫
R

p1(ρ)H(i(τ − ρσ)) dρ.

But since
∫
R
p1(ρ) dρ = 1, and p1(ρ) ≥ 0 we obtain

{H(λ) : λ ∈ Σπ/2} ⊂ co{H(iρ) : ρ ∈ R}.

Thus the R-angle must be smaller than π/2 by the Neumann series argument from
the previous subsection.

(iii)⇒(v) Fix any ϕ ∈ (π/2, θ) and denote by Γr the contour

Γr = {z ∈ C : |z| ≥ r, | arg(z)| = ϕ} ∪ {z ∈ C : |z| = r, | arg(z)| ≤ ϕ},

oriented properly, where r ≥ 0. Then we have as in Section 3.1.4 the representation
formulae

e−At =
1

2πi

∫
Γ1

ez
z

t

(z
t
+A

)−1 dz

z
, t > 0,

and

tAe−At =
1

2πi

∫
Γ0

ezA
(z
t
+A

)−1

dz, t > 0.

Thus we obtain

{e−At : t > 0} ⊂ c0 · aco({λ(λ+A)−1 : λ ∈ Σθ}),
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where

c0 = (2π)−1

∫
Γ1

|ez| |dz||z| < ∞,

and similarly

{tAe−At : t > 0} ⊂ c1 · aco({A(λ+A)−1 : λ ∈ Σθ}),

with

c1 = (2π)−1

∫
Γ0

|ez||dz| < ∞.

Applying Proposition 4.1.10 on the absolute convex hull the implication in question
follows.

(v)⇒(iv) We use the power series expansion for e−Az according to

e−Az =

∞∑
k=0

1

k!
[rA]ke−Ar

(
1− z

r

)k

.

We may choose e.g. r = |z|, for | arg(z)| ≤ ϑ. The series then converges absolutely
provided ϑ is small enough. Then we obtain from Proposition 4.1.6 and Lemma
4.1.7

R({e−Az : | arg(z)| ≤ ϑ}) ≤ R({e−Ar : r > 0})

+

∞∑
k=1

kk

k!
(2 sin(ϑ/2))kR({rAe−Ar : r > 0})k < ∞,

in case 2e sin(ϑ/2)R({rAe−Ar : r > 0}) < 1.

(iv)⇒(ii) Here we employ the Laplace transform to obtain with arg(λ) = ψ

λ(λ+A)−1 = λ

∫ ∞

0

e−λte−At dt

= e−iϕ

∫ ∞

0

λe−λe−iϕte−Ae−iϕt dt

= ei(ψ−ϕ)

∫ ∞

0

e−ei(ψ−ϕ)se−Ae−iϕs/|λ| ds,

where we used Cauchy’s theorem and the scaling s = |λ|t. Now ψ = ±π/2, so fix
an angle ϕ such that |ϕ| < ϑ and cos(ψ − ϕ) > 0. Then the integral is absolutely
convergent and

{iξ(iξ +A)−1 : ξ ∈ R} ⊂ c2 · aco({e−Az : | arg(z)| < ϑ}),

where c2 = 1/ cos(ψ − ϕ). Therefore, Proposition 4.1.10 yields the claim. �
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4.3 A Sufficient Condition for R-Sectoriality
The class of operators with bounded imaginary powers is contained in the class of
R-sectorial operators, at least in case the underlying Banach space X belongs to
the class HT .

Theorem 4.4.5. Suppose X is a space of class HT and let A ∈ BIP(X) with power
angle θA. Then A is R-sectorial and φR

A ≤ θA.

Proof. The proof is based on the representation formulae (3.58) and (3.59) which
have been obtained in Section 3.3. Suppose A ∈ BIP(X) with power angle θA :=
lim|s|→∞|s|−1 log |Ais|B(X). Then the first identity reads

(1 + rA)−1x =
1

2πi

[
PV

∫
R

(rA)−isx
πds

sinh(πs)

]
+

1

2
x, x ∈ X, r > 0, (4.28)

where PV means principal value. The second one is

(1+reiφA)−1 = (1+rA)−1+
1

2πi

∫
R

(rA)−is(eφs−1)
πds

sinh(πs)
, |φ| < π−θA, r > 0.

(4.29)
Suppose n ∈ N, xj ∈ X, λj = rje

iφj , rj > 0, |φj | ≤ π − θ are given, where θ > θA
is fixed. We have to prove that there is a constant C > 0, depending only on θ,
such that ∣∣∣ n∑

j=1

εj(1 + rje
iφjA)−1xj

∣∣∣
Lp(Ω;X)

≤ C
∣∣∣ n∑
j=1

εjxj

∣∣∣
Lp(Ω;X)

is valid, where the functions εj are independent symmetric random variables on
some probability space (Ω,A, μ) with values in {−1, 1}. For this purpose we de-
compose

(1 + rje
iφjA)−1 =

1

2
+ Tj + Sj +Rj ,

where

Tj =

∫
R

(rjA)−isψT
j (s) ds, ψT

j (s) = (eφjs − 1)
1

2πi sinhπs
,

Sj =

∫
R

(rjA)−isψS
j (s) ds, ψS

j (s) =
1

2πi

( π

sinh(πs)
− χ(s)

s

)
,

Rjx =
1

2πi
PV

∫ 1

−1

(rjA)
−isx

ds

s
, x ∈ X.

Here χ means the characteristic function of the the interval [−1, 1]. By the triangle
inequality we estimate separately.

Using Kahane’s contraction principle, in virtue of∣∣ψT
j (s)

∣∣ ≤ ce(|φj |−π)|s| ≤ ce−θ|s|,
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we get for the first term∣∣∣∑
j

εjTjxj

∣∣∣
Lp(Ω;X)

≤
∫
R

∣∣∣A−is
∑
j

r−is
j εjxjψ

T
j (s)

∣∣∣
Lp(Ω;X)

ds

≤ Mη

∫
R

e(θA+η)|s|
∣∣∣∑

j

r−is
j ψT

j (s)εjxj

∣∣∣
Lp(Ω;X)

ds

≤ Mηc

∫
R

e(θA+η−θ)|s|
∣∣∣∑

j

εjxj

∣∣∣
Lp(Ω;X)

ds = M
∣∣∣∑

j

εjxj

∣∣∣
Lp(Ω;X)

,

because of θ > θA, and for η < θ − θA.
The same type of estimate applies to the term involving the Sj . This time

we have ∣∣ψS
j (s)

∣∣ ≤ ce−π|s|, s ∈ R,

and so ∣∣∣∑
j

εjSjxj

∣∣∣
Lp(Ω;X)

≤
∫
R

∣∣∣A−is
∑
j

εjxjr
−is
j ψS

j (s)
∣∣∣
Lp(Ω;X)

ds

≤ Mη

∫
R

e(θA+η)|s|
∣∣∣∑

j

r−is
j ψS

j (s)εjxj

∣∣∣
Lp(Ω;X)

ds

≤ Mηc

∫
R

e(θA+η−π)|s|
∣∣∣∑

j

εjxj

∣∣∣
Lp(Ω;X)

ds = M
∣∣∣∑

j

εjxj

∣∣∣
Lp(Ω;X)

,

when ever η < π − θA.
The third term is more sophisticated, it is only here where we use the HT -

property of the underlying space X.
We begin with Kahane’s contraction principle and also apply the bounded-

ness of Ais for |s| ≤ 1. For t ∈ [−1, 1] we have

∣∣∣ N∑
j=1

εjRjxj

∣∣∣
Lp(Ω;X)

≤ C
∣∣∣Ait

N∑
j=1

εjr
it
j Rjxj

∣∣∣
Lp(Ω;X)

,

hence integrating over t ∈ [−1, 1]

2
∣∣∣ N∑
j=1

εjRjxj

∣∣∣p
Lp(Ω;X)

≤ C

∫ 1

−1

∣∣∣Ait
N∑
j=1

εjr
it
j Rjxj

∣∣∣p
Lp(Ω;X)

dt

= C

∫
Ω

∫ 1

−1

∣∣∣Ait
N∑
j=1

εj(ω)r
it
j Rjxj

∣∣∣p
X
dtdω

= C

∫
Ω

∫ 1

−1

∣∣∣ ∫ 1

−1

[
Ai(t−s)

∑
j

εj(ω)r
i(t−s)
j xj

]ds
s

∣∣∣p
X
dtdω
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≤ C

∫
Ω

∫ 1

−1

∣∣∣∑
j

Aitεj(ω)r
it
j xj

∣∣∣p
X
dtdω

≤ C

∫
Ω

∫ 1

−1

∣∣∣ N∑
j=1

ritj εjxj

∣∣∣p
X
dtdω ≤ C

∣∣∣ N∑
j=1

εjxj

∣∣∣p
Lp(Ω;X)

,

where in the next to last step we used the boundedness of the Hilbert transform,
and then once more Kahane’s contraction principle. These estimates prove the
theorem. �

4.5 Operators with R-Bounded Functional Calculus

The previous subsections have shown that the concept of R-boundedness is im-
portant. We now want to connect this idea to the H∞-calculus of operators.

5.1 The Class RH∞(X)
This class is given by

Definition 4.5.1. Let X be a Banach space and suppose A ∈ H∞(X). The operator
A is said to admit an R-bounded H∞-calculus if the set

{h(A) : h ∈ H∞(Σθ), |h|H∞(Σθ) ≤ 1}

is R-bounded, for some θ > 0. We denote the class of such operators by RH∞(X),
and define the RH∞-angle φR∞

A of A as the infimum of such angles θ > φA.

Note that in Hilbert spaces we have the relations

RH∞(X) = H∞(X) = BIP(X) ⊂ RS(X) = S(X),

and counterexamples show that the inclusion is strict, in general. For general
Banach spaces the equalities will become strict inclusions, too. The same can be
said about the corresponding angles, we have

φR∞
A ≥ φ∞

A ≥ θA ≥ φR
A ≥ φA,

but in general, the inequalities may be strict.
In the next subsection we will see that RH∞(X) = H∞(X) and φR∞

A = φ∞
A

for each A ∈ H∞(X), provided the underlying Banach space has property (α).
The importance of this class of operators lies in the following fact.

Proposition 4.5.2. Let X be a Banach space, A ∈ RH∞(X) and suppose that
{hλ}λ∈Λ ⊂ H∞(Σθ) is uniformly bounded, for some θ > φR∞

A , where Λ is an
arbitrary index set.

Then {hλ(A) : λ ∈ Λ} is R-bounded.
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The proof of this result follows directly from the definition of operators with
R-bounded functional calculus. Nevertheless, this result is useful since it allows
us to verify R-boundedness conditions like that in Theorem 4.3.3. In particular,
we may this way obtain quite directly a joint H∞-calculus for two commuting
sectorial operators; see the next subsection.

Next we consider the derivation operator Bp,μ = d/dt in Lp,μ(R+;Y ), 1 <
p < ∞, 1/p < μ ≤ 1. We have seen in Section 4.3.5 that Bp,μ has bounded H∞-
calculus, provided Y ∈ HT . If, moreover, Y has property (α), then the H∞-calulus
of Bp,μ is also R-bounded.

Theorem 4.5.3. Let 1 < p < ∞, 1/p < μ ≤ 1, and let Y ∈ HT (α).
Then Bp,μ ∈ RH∞(Lp,μ(R+;Y )) with φR∞

Bp,μ
= π/2.

Proof. We first apply Theorem 4.3.4 to see that Bp := Bp,1 ∈ RH∞(Lp(R+;Y ))
with RH∞-angle π/2. Then we proceed as in the proof of Theorem 4.3.14, com-
paring h(Bp +B0) with h(Bp) in Lp. Here we use the full strength of Proposition
4.3.13 to obtain R-boundedness of the set

{h(Bp +B0)− h(Bp) : |h|∞ ≤ 1} = {Th : |h|∞ ≤ 1}

in B(Lp(R+;Y )). �

This result will also be a consequence of Theorem 4.5.6. The second goal here
is the following surprising result.

Theorem 4.5.4. Let X be a Banach space, A ∈ S(X) be invertible, α ∈ (0, 1), and
1 ≤ q < ∞.

Then A ∈ RH∞(DA(α, q)) with RH∞-angle equal to φA.

Proof. Let εj be independent, symmetric {−1, 1}-valued random variables on a
probability space (Ω,A, μ), xj ∈ X, and fix hj ∈ H0(Σφ), where j = 1, . . . , N , and
φ > φA. We have to prove that there is a constant C > 0 such that

∣∣∣ N∑
j=1

εjhj(A)xj

∣∣∣
Lq(Ω;DA(α,q))

≤ C
∣∣∣ N∑
j=1

εjxj

∣∣∣
Lq(Ω;DA(α,q))

.

For this purpose we choose a standard contour Γ with angle θ ∈ (θA, φ), and note
that, by Cauchy’s theorem,

A(t+A)−1hj(A) =
1

2πi

∫
Γ

hj(z)A(t+A)−1(z −A)−1 dz

=
1

2πi

∫
Γ

hj(z)A(z −A)−1 dz/(t+ z).
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First we take 1 < q < ∞. We estimate using Hölder’s inequality, Fubini’s theorem
several times, and the contraction principle.

∣∣∣ N∑
j=1

εjhj(A)xj

∣∣∣q
Lq(Ω;DA(α,q))

≤
∫
Ω

∫ ∞

0

∣∣∣tα∑
j

εj
1

2πi

∫
Γ

hj(z)A(z −A)−1xj
dz

t+ z

∣∣∣q dt/t dμ
≤ C

∫ ∞

0

tαq−1
[ ∫

Γ

|z|−βq′ |dz|
t+ |z|

]q/q′
·

·
∫
Γ

∫
Ω

∣∣∣∑
j

εjhj(z)z
βA(z −A)−1)xj

∣∣∣q dμ |dz|
t+ |z| dt

≤ C sup
j

|hj |q∞
∫ ∞

0

tαq−1−βq

∫
Γ

∫
Ω

∣∣∣∑
j

εjz
βA(z −A)−1xj

∣∣∣q dμ |dz|
t+ |z| dt

= C sup
j

|hj |q∞
∫
Ω

∫
Γ

[ ∫ ∞

0

tαq−1−βq dt

t+ |z|

]∣∣∣zβA(z −A)−1
∑
j

εjxj

∣∣∣q|dz| dμ
≤ C sup

j
|hj |q∞

∫
Ω

∫
Γ

∣∣∣zαA(z −A)−1
∑
j

εjxj

∣∣∣q|dz|/|z| dμ
= C sup

j
|hj |q∞

∣∣∣∑
j

εjxj

∣∣∣q
Lq(Ω;DA(α,q))

.

Here we chose β > 0 such that α − 1/q < β < α. This proves the theorem for
1 < q < ∞. For q = 1 the argument is similar and simpler. �

Specializing to the case X = Lp(R+;Y ) we obtain

Corollary 4.5.5. Let Y be a Banach space, α ∈ (0, 1), p, q ∈ [1,∞).
Then Bp,μ+ω ∈ RH∞(0B

α
pq,μ(R+;Y )) with RH∞-angle π/2, for each ω > 0.

One should compare this result with Theorem 4.5.3.

5.2 The Operator-Valued Functional Calculus
In this section we prove the following result which extends the scalar H∞-calculus
of a sectorial operator to the R-bounded operator-valued case.

Theorem 4.5.6 (Kalton-Weis theorem). Let X be a Banach space, A ∈ H∞(X),
φ > φA, and let F be an operator-valued family F ⊂ H∞(Σφ;B(X)) such that

F (λ)(μ−A)−1 = (μ−A)−1F (λ), μ ∈ ρ(A), λ ∈ Σφ, F ∈ F .

Then there is a constant CA > 0 depending only on A and X such that
(i) If supF∈F R(F (Σφ)) < ∞, then F(A) := {F (A) : F ∈ F} ⊂ B(X) and

|F (A)|B(X) ≤ CAR(F (Σφ)), F ∈ F .
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(ii) If X has property (α) and R{F (z) : z ∈ Σφ, F ∈ F} < ∞, then the operator
family F(A) is R-bounded, and

R(F(A)) ≤ CAR{F (z) : z ∈ Σφ, F ∈ F}.

(iii) In particular, if X has property (α), then A ∈ RH∞(X) with φR∞
A = φ∞

A .

Before we are going into its proof let us discuss some of its consequences.
The first two corollaries concern the so-called joint functional calculus of sectorial
operators.

Corollary 4.5.7. Suppose A ∈ H∞(X) and B ∈ S(X) are commuting, F ⊂
H∞(Σφ × Σψ) with φ > φ∞

A , ψ > φB, and set F(A,B) = {f(A,B) : f ∈ F}.
Then
(i) If supf∈F R(f(Σφ, B)) < ∞, then F(A,B) ⊂ B(X) and

|f(A,B)|B(X) ≤ CAR(f(Σφ, B)), f ∈ F .

(ii) If X has property (α), and R{f(z,B) : z ∈ Σφ, f ∈ F} < ∞, then the
operator family F(A,B) ⊂ B(X) is R-bounded and

R(F(A,B)) ≤ CAR{f(z,B) : z ∈ Σφ, f ∈ F} < ∞.

Corollary 4.5.7 follows from Theorem 4.5.6 by setting F (λ) = f(λ,B). This
corollary takes an especially nice form in case B ∈ RH∞(X).

Corollary 4.5.8 (Joint functional calculus). Suppose A ∈ H∞(X) and B ∈
RH∞(X) are commuting in the resolvent sense, F ⊂ H∞(Σφ×Σψ) with φ > φ∞

A ,
ψ > φB, and let F(A,B) = {f(A,B) : f ∈ F}. Then
(i) F(A,B) ⊂ B(X) and

sup
f∈F

|f(A,B)|B(X) ≤ CA,B sup
f∈F

|f |H∞(Σφ).

(ii) If X has property (α), then F(A,B) ⊂ B(X) is R bounded, and

R(F(A,B)) ≤ CA,B sup
f∈F

|f |H∞(Σφ).

This result follows from Corollary 4.5.7 since f(Σφ, B) is R-bounded because
of B ∈ RH∞(X).

Corollary 4.5.9 (Dore-Venni theorem). Suppose A ∈ H∞(X) and B ∈ RS(X) are
commuting, and such that φ∞

A + φR
B < π.

Then A+B with domain D(A+B) = D(A)∩D(B) is closed, A+B ∈ S(X)
with φA+B ≤ max{φ∞

A , φR
B}, and

|Ax|+ |Bx| ≤ C|(A+B)x|, x ∈ D(A) ∩ D(B),

for some constant C > 0. (A+B) is invertible if A or B are so. If in addition X
has property (α), then A+B ∈ RS(X), and φR

A+B ≤ max{φ∞
A , φR

B}.
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This result follows from Corollary 4.5.7 by setting f(λ, μ) = μ/(λ+ μ) resp.
fz(λ, μ) = z/(z + λ+ μ).

Corollary 4.5.10 (Mixed derivative theorem). Suppose A ∈ H∞(X) and B ∈
RS(X) are commuting, and such that φ∞

A + φR
B < π.

Then AαB1−α(A+B)−1 is bounded, for each α ∈ (0, 1). In particular,

D(A) ∩ D(B) = D(A+B) ↪→ D(AαB1−α),

for each α ∈ (0, 1).

Here we choose F (λ) = λαB1−α(λ + B)−1 and employ Theorem 4.5.6. In
fact, with an appropriate contour Γ, the representation

F (λ) =
1

2πi

∫
Γ

z−α

1 + z
λz(λz −B)−1 dz

shows that F (Σφ) is R-bounded as B is R-sectorial, by convexity of R-bounds.

Corollary 4.5.11. Suppose A ∈ H∞(X) and B ∈ RH∞(X) are commuting, and
such that φ∞

A + φR∞
B < π, α ∈ (0, 1).

Then A+B ∈ H∞(X) and φ∞
A+B ≤ max{φ∞

A , φR∞
B }.

Moreover, D((A+B)α) = D(Aα) ∩ D(Bα).

To see this, choose f(λ, μ) = h(λ + μ) resp. f(λ, μ) = (λ + μ)α/(λα + μα)
and apply Corollary 4.5.8.

Corollary 4.5.12. Suppose A ∈ H∞(X) and B ∈ RS(X) are commuting, 0 ∈ ρ(A),
and such that φ∞

A + φR
B < π. Then

(i) AB with domain D(AB) = {x ∈ D(B) : Bx ∈ D(A)} is closed, AB ∈ S(X)
with φAB ≤ φ∞

A + φR
B.

(ii) In case X has property (α), then AB ∈ RS(X) and φR
AB ≤ φ∞

A + φR
B.

(iii) If B ∈ RH∞ and φ∞
A +φR∞

B < π, then AB ∈ H∞(X) and φ∞
AB ≤ φ∞

A +φR∞
B .

This result follows from Corollary 4.5.7 by setting F (λ) = z(z + λB)−1 and
F (λ) = h(λB), respectively.

5.3 Proof of Theorem 4.5.6.
For the proof of Theorem 4.5.6 we shall use the following lemma on uncondition-
allity which is interesting in itself.

Lemma 4.5.13. Suppose A ∈ H∞(X), h ∈ H0(Σφ), φ > φ∞
A .

Then there is a constant C > 0 such that∣∣∣∑
k∈Z

αkh(2
ktA)

∣∣∣
B(X)

≤ C sup
k∈Z

|αk|

for all αk ∈ C and t > 0.
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Proof. h ∈ H0(Σφ) implies

|h(z)| ≤ c
|z|β

1 + |z|2β , z ∈ Σφ,

for some β > 0. Set f(z) =
∑

k∈Z
αkh(2

ktz); this series is absolutely convergent
as can be seen from the estimate

|f(z)| ≤ |α|∞
∑
k

|h(2ktz)| ≤ C|α|∞,

since ∑
k

|h(2ktz)| ≤ c
∑
k

(r2k)β

1 + (r2k)2β
≤ 2c

1− 2−β
, r = t|z|.

Therefore f ∈ H∞(Σφ) and so by A ∈ H∞(X), φ > φ∞
A we obtain∣∣∣∑

k∈Z

αkh(2
ktA)

∣∣∣
B(X)

= |f(A)|B(X) ≤ CA|f |H∞ ≤ C|α|∞. �

Proof of Theorem 4.5.6. (a) Suppose first F ∈ H0(Σφ;B(X)). Then we have

F (A) =
1

2πi

∫
Γ

F (λ)(λ−A)−1 dλ =
1

2πi

∫
Γ

F (λ)λ−1/2A1/2(λ−A)−1 dλ,

where Γ denotes the contour Γ = {re±iθ : r ∈ R+}, properly oriented, with
φ∞
A < θ < φ. Since the integral defining F (A) is absolutely convergent, we also

have

F (A) = lim
N→∞

1

2πi

∫
ΓN

F (λ)λ−1/2A1/2(λ−A)−1 dλ = lim
N→∞

FN ,

where ΓN = {λ ∈ Γ : 2−N ≤ |λ| ≤ 2N}. We write FN = F+N + F−N , with

F±N =
e±iθ/2

2πi

∫ 2N

2−N

F (re±iθ)A1/2(re±iθ −A)−1 dr/
√
r

=
e±iθ/2

2πi

N−1∑
k=−N

∫ 2k+1

2k
F (re±iθ)(A/r)1/2(e±iθ −A/r)−1 dr/r

=
e±iθ/2

2πi

N−1∑
k=−N

∫ 2

1

F (2kte±iθ)(A/2kt)1/2(e±iθ −A/2kt)−1 dt/t

=
e±iθ/2

2πi

∫ 2

1

N−1∑
k=−N

F (2kte±iθ)h±(A/2kt) dt/t

=
e±iθ/2

2πi

∫ 2

1

T±N
F (t) dt/t,
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where h±(z) =
√
z/(e±iθ − z) belongs to H0(Σπ). So we have to estimate T±N

F (t).

(b) Next we randomize and estimate as follows

∣∣〈T±N
F (t)x|x∗〉

∣∣ = ∣∣∣ N−1∑
k=−N

〈F (2kte±iθ)h±(A/t2k)x|x∗〉
∣∣∣

=
∣∣∣ ∫

Ω

N−1∑
k=−N

ε2k〈F (2kte±iθ)h±(A/t2k)x|x∗〉 dμ
∣∣∣

=
∣∣∣ ∫

Ω

<

N−1∑
k=−N

εkF (2kte±iθ)h
1/2
± (A/t2k)x,

N−1∑
k=−N

εkh
1/2
± (A∗/t2k)x∗ > dμ

∣∣∣
≤
∣∣∣ N−1∑
k=−N

εkF (2kte±iθ)h
1/2
± (A/t2k)x

∣∣∣
L2(Ω;X)

|
( N−1∑

k=−N

εkh
1/2
± (A/t2k)

)∗
x∗|L2(Ω;X∗)

≤ R(F (Σφ))
∣∣∣ N−1∑
k=−N

εkh
1/2
± (A/t2k)x

∣∣∣
L2(Ω;X)

∣∣∣( N−1∑
k=−N

εkh
1/2
± (A/t2k)

)∗
x∗
∣∣∣
L2(Ω;X∗)

≤ C2R(F (Σφ))|x||x∗|,

by Lemma 4.5.13. This shows that T±N
F (t) is uniformly bounded in t ∈ [1, 2] and

in N ∈ N, hence so is F (A), with

|F (A)|B(X) ≤ C2R(F (Σφ)).

For the general case, replace F by Fε(z) = F (z)zε/(1 + z2ε) and let ε → 0.

(c) We can improve this estimate ifX has property (α). Fix independent symmetric
{−1, 1}-valued random variables εk reps. ε′j on probability spaces (Ω,A, μ) resp.

(Ω′,A′, μ′), Fk ∈ F , and xk ∈ X. Then as in (b) we have with Tk = T±N
Fk∣∣∣〈∑

k

εkTkxk|x∗〉
∣∣∣ = ∣∣∣∑

j

∑
k

〈εkFk(2
jte±iθ)h±(A/t2j)xk|x∗〉

∣∣∣
=
∣∣∣ ∫

Ω′

∑
j

(ε′j)
2
∑
k

〈εkFk(2
jte±iθ)h±(A/t2j)xk|x∗〉 dμ′

∣∣∣
≤
∣∣∣∑
k,j

ε′jεkFk(2
jte±iθ)h

1/2
± (A/t2j)xk

∣∣∣
L2(Ω′;X)

∣∣∣(∑
j

ε′jh
1/2
± (A/t2j)

)∗
x∗
∣∣∣
L2(Ω′;X∗)

≤ C|x∗|
∣∣∣∑
k,j

ε′jεkFk(2
jte±θ)h

1/2
± (A/t2j)xk

∣∣∣
L2(Ω′)

,

where we employed Lemma 4.5.13 in the last step. Taking the sup over |x∗| ≤ 1,
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squaring, and integrating over Ω this implies by Proposition 4.2.8∣∣∣∑
k

εkTkxk

∣∣∣
Lp(Ω;X)

≤ C
∣∣∣∑
k,j

ε′jεkFk(2
jte±θ)h

1/2
± (A/t2j)xk

∣∣∣
L2(Ω×Ω′;X)

≤ C
∣∣∣∑
k,j

ε′jεkh
1/2
± (A/t2j)xk

∣∣∣
L2(Ω×Ω′;X)

= C
∣∣∣∑

j

ε′jh
1/2
± (A/t2j)

∑
k

εkxk

∣∣∣
L2(Ω×Ω′;X)

≤
∣∣∣∑

k

εkxk

∣∣∣
L2(Ω;X)

,

where we used Lemma 4.5.13 in the last step. Together with Proposition 4.1.9, the
second assertion of the theorem follows. The last assertion follows by specializing
to the scalar case. �
5.4 Fractional Evolution Equations.
For an illustration of the strength of the results proved above, we consider frac-
tional evolution equations. In the sequel, we assume that we are given a Banach
space X0 of class HT , α ∈ (0, 2) and A ∈ RS(X0) is invertible and has RS-angle
φR
A < π(1 − α/2). We set as usual X1 = D(A) equipped with the graph norm of

A. Consider the fractional evolution equation

∂α
t u+Au = f, t > 0, u(0) = 0 (4.30)

in the space E0,μ := Lp,μ(R+;X0). For this purpose, extend A in the canonical way
to E0,μ with natural domain Lp,μ(R+;X1), and define Bp,μ = d/dt with domain

0H
1
p,μ(R+;X0), as in Section 3.2.4. Then Bp,μ belongs to H∞(E0,μ) and commutes

with A. Setting B = Bα
p,μ, the Kalton-Weis theorem implies that A+B is closed

and invertible on its natural domain

D(A) ∩ D(B) = 0H
α
p,μ(R+;X0) ∩ Lp,μ(R+;X1).

Moreover, A+B is sectorial with angle απ/2.
Therefore, (4.30) admits a unique solution u ∈ 0H

α
p,μ(R+;X0)∩Lp,μ(R+;X1)

whenever f ∈ Lp,μ(R+;X0), and the solution map is bounded between the corre-
sponding spaces.

Note that the same result is true in the case of the line, where we consider
Lp(R;X0) as a base space. If f ∈ Lp(R;X0), then the unique solution of ∂α

t u+Au =
f will belong to Hα

p (R;X0) ∩ Lp(R;X1).
In the half-line situation, the initial value of u is vanishing if u has a trace,

provided α > 1 − μ + 1/p. Moreover, ∂tu also has a trace if α > 2 − μ + 1/p.
What about the case when these traces are nontrivial at zero? To understand this
situation we rewrite (4.30) as the evolutionary integral equation

u(t) + k ∗Au(t) = k ∗ f(t), t > 0,
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where k(t) = tα−1/Γ(α). The simplest way to see the equivalence of this equation
with (4.30) is to use Laplace transforms. To admit nontrivial initial data in case
α > 1−μ+1/p and a nontrivial velocity trace if α > 2−μ+1/p, we add u0+ tu1

to the right-hand side of this convolution equation, which yields the problem

∂α
t (u− u0 − tu1) +Au = f, t > 0, u(0) = u0, ∂tu(0) = u1. (4.31)

Here u0 is redundant if α < 1 − μ + 1/p, and u1 is so in case α < 2 − μ + 1/p;
we exclude the exceptional cases below. By linearity, u = v + w, where v solves
(4.30) and w solves (4.31) with f = 0. Then w(t) = S(t)u0 + 1 ∗ S(t)u1, where
S(t) denotes the resolvent family of the problem. Using Laplace transforms, S(t)
is seen to be defined by the relation

H(λ) := LS(λ) = 1

λ
(1 + λ−αA)−1, λ > 0.

Note that by the assumption φR
A + απ/2 < π, the holomorphic family H(λ) is

well-defined on a sector Σφ with angle φ > π/2. Therefore, using the standard
contour Γ = (−∞, 0]e−iθ ∪ [0,∞)eiθ with π/2 < θ < φ we obtain by the inverse
Laplace transform the representation

S(t) =
1

2πi

∫
Γ

H(λ)eλt dλ.

The function S : R+ → B(X0) is easily seen to be bounded and holomorphic in a
sector Σϕ, strongly continuous on its closure and S(0) = I. In the particular case
α = 1 we have S(t) = e−At, i.e., this is the semigroup case.

The question in case α > 1− μ+ 1/p now is for which initial values u0 does
w = S(t)u0 belong to the space Hα

p,μ(R+;X0) ∩ Lp,μ(R+;X1)? This is a again a
trace space problem and the answer is given in the next proposition.

Proposition 4.5.14. Let X0 be a Banach space of class HT , 1 < p < ∞, 1/p < μ ≤
1, α ∈ (0, 2), and suppose A ∈ RS(X0) is invertible and φR

A + απ/2 < π. Let S(t)
denote the resolvent of (4.31) as defined above, and let α �= 1−μ+1/p, 2−μ−1/p.
Then

(i) if α < 1− μ+ 1/p, then S(·)x ∈ Hα
p,μ(R+;X0) ∩ Lp,μ(R+;X1);

for α > 1−μ+1/p we have S(·)x ∈ Hα
p,μ(R+;X0)∩Lp,μ(R+;X1) if and only

if x ∈ DA(1− (1− μ+ 1/p)/α, p);

(ii) if α < 2− μ+ 1/p, then (1 ∗ S)(·)x ∈ Hα
p,μ(R+;X0) ∩ Lp,μ(R+;X1);

for α > 2−μ+1/p, we have 1 ∗S(t)x ∈ Hα
p,μ(R+;X0)∩Lp,μ(R+;X1) if and

only if x ∈ DA(1− (2− μ+ 1/p)/α, p)).

The corresponding maps x �→ S(·)x resp. x �→ (1 ∗ S)(·)x are continuous between
the relevant spaces
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Proof. We only consider the first statement, as the second one is proved in a
similar way. By Laplace transform we have the relation

rα−1(rα +A)−1x =

∫ ∞

0

e−rtS(t)x dt, r > 0.

Setting w(t) = AS(t)x this yields by Hölder’s inequality and Fubini’s theorem for
β = (1− μ+ 1/p)/α < 1∫ ∞

0

rpα(1−β)|A(rα +A)−1x|p dr/r =

∫ ∞

0

rpμ−2|rα−1A(rα +A)−1x|p dr

≤ C

∫ ∞

0

rpμ−2
[ ∫ ∞

0

|w(t)|e−rt dt
]p

dr

≤ C

∫ ∞

0

tγprpμ−2
[ ∫ ∞

0

e−rt|w(t)|p dt
][ ∫ ∞

0

t−γp′
e−rt dt

]p/p′

dr

= C

∫ ∞

0

rp(μ−1+γ−1/p)
[ ∫ ∞

0

e−rt|w(t)|p dt
]
dr = C

∫ ∞

0

|w(t)|ptp(1−μ) dt,

where γ ∈ (1− μ, 1− 1/p). This shows the first implication.
To obtain the converse implication, we observe

S(t) =
1

2πi

∫
Γ

eztzα−1(zα −A)−1x dz, t > 0,

where Γ denotes a standard contour. Observe also that

|z(z −A)−1x| ≤ C|z||(|z|+A)−1x|

on Γ, as in Section 3.4.3. This yields with some constants c, C > 0, using again
Hölder and Fubini∫ ∞

0

|AS(t)x|ptp(1−μ) dt ≤ C

∫ ∞

0

tp(1−μ)
[ ∫

Γ

eRe zt|z|α−1|A(zα −A)−1x||dz|
]p

dt

≤ C

∫ ∞

0

tp(1−μ)
[ ∫ ∞

0

e−crtrα−1|A(rα +A)−1x| dr
]p

dt

≤ C

∫ ∞

0

tp(1−μ)

∫ ∞

0

e−crtrp(α−1+γ)|A(rα +A)−1x|p dr
[ ∫ ∞

0

r−γp′
e−crt dr

]p/p′

dt

= C

∫ ∞

0

rpα(1−β)|A(rα +A)−1x|p dr/r = C

∫ ∞

0

rp(1−β)|A(r +A)−1x|p dr/r,

where γ ∈ (μ − 2/p, 1 − 1/p). The case β > 1 is simpler and can be proved by a
direct estimate, similar to the last step. �

Having this proposition at our disposal we can now state the final result on
the fractional evolution equation (4.31).
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Theorem 4.5.15. Let 1 < p < ∞, 1/p < μ ≤ 1, 0 < α < 2, X0 a Banach space of
class HT . Suppose that A ∈ RS(X0) is invertible, X1 = XA, φ

R
A + απ/2 < π.

Then (4.31) admits a unigue solution u ∈ Hα
p,μ(R+, X0) ∩ Lp,μ(R+;X1) if

and only if f ∈ Lp,μ(R+;X0) and u0 ∈ DA(1− (1−μ+1/p)/α) if α > 1−μ+1/p,
and in addition u1 ∈ DA(1− (2− μ+ 1/p)/α) in case α > 2− μ+ 1/p.

5.5 Time-Space Embeddings.
In this subsection, we want to exploit the strength of the Mixed derivative theorem,
Corollary 4.5.10, to derive several time-space embedding results. For this, we as-
sume that we are given a Banach space X0 of class HT (α), and that A ∈ H∞(X0)
is invertible and has H∞-angle zero; set as usual X1 = D(A) equipped with the
graph norm of A. Let B = Bα

p,μ be as in the previous section. By Corollary 4.5.11,
A+B belongs to H∞(X0) with the same angle απ/2, and

D((A+B)β) = D(Bβ) ∩ D(Aβ) = 0H
αβ
p,μ(R+;X0) ∩ Lp,μ(R+;D(A

β)), β ∈ [0, 1],

by the reiteration theorem. The same result is also valid for the base space Es,μ :=
D(Bs) = 0H

s
p,μ(R+;X0), for any s ≥ 0, with domain

D((A+B)β) = D(Bβ)∩D(Aβ) = 0H
αβ+s
p,μ (R+;X0)∩0H

s
p,μ(R+;D(A

β)), β ∈ [0, 1].

Next we apply the Mixed derivative theorem 4.5.10 to obtain the embedding

0H
s+α
p,μ (R+;X0) ∩ 0H

s
p,μ(R+;X1) ↪→ 0H

r
p,μ(R+;D(A

1− r−s
α )), (4.32)

which is valid for all all α ∈ (0, 2), 0 ≤ s ≤ r ≤ s+ α.
This is the basic embedding. We may extend it using real interpolation in

the following way. In case s > 0 we apply real interpolation of type (1/2, p) to
(4.32) with s replaced by s + ε and s − ε, and r by r + ε and r − ε, respectively,
to the result

0W
s+α
p,μ (R+;X0) ∩ 0W

s
p,μ(R+;X1) ↪→ 0W

r
p,μ(R+;D(A

1− r−s
α )), (4.33)

which is valid for all α ∈ (0, 2), 0 < s < r < s+ α.
More surprising is the following embedding which is also obtained by real

interpolation of type (1/2, p) to (4.32) with s replaced by s + ε and s − ε, but
keeping r fixed, to the result

0W
s+α
p,μ (R+;X0) ∩ 0W

s
p,μ(R+;X1) ↪→ 0H

r
p,μ

(
R+;DA

(
1− r − s

α
, p
))

, (4.34)

which is also valid for all all α ∈ (0, 2), 0 < s < r < s+ α.
In case s > 0 we may, once more, apply real interpolation of type (1/2, p) to

(4.34) with s replaced by s + ε and s − ε, and r by r + ε and r − ε, respectively,
to the result

0W
s+α
p,μ (R+;X0) ∩ 0W

s
p,μ(R+;X1) ↪→ 0W

r
p,μ

(
R+;DA

(
1− r − s

α
, p
))

, (4.35)
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which is valid for all α ∈ (0, 2), 0 < s < r < s+ α.
Another interesting embedding which will be used below comes from

0H
α
p,μ(R+;X0) ∩ Lp,μ(R+;X1) ↪→ 0H

r
p,μ(R+;D(A

1− r
α )),

interpolated with the real p-method with the trivial embedding

0H
α−r
p,μ (R+;X0) ∩ Lp,μ(R+;D(A

1− r
α )) ↪→ Lp,μ(R+;D(A

1− r
α )),

to the result

0W
s
p,μ(R+;X0) ∩ Lp,μ

(
R+;DA

( s

α
, p
))

↪→ 0W
r+s−α
p,μ (R+;D(A

(1− r
α ))), (4.36)

which is valid for all α ∈ (0, 2), 0 < s, r < α < r + s.
In a similar way, interpolating the embedding

0H
α
p,μ(R+;X0) ∩ Lp,μ(R+;X1) ↪→ 0H

r
p,μ(R+;D(A

1− r
α )),

by the real p-method with the trivial embedding

0H
r
p,μ(R+;X0) ∩ Lp,μ(R+;D(A

r/α)) ↪→ 0H
r
p,μ(R+;X0),

we obtain

0W
s
p,μ(R+;X0) ∩ Lp,μ

(
R+;DA

( s

α
, p
))

↪→ 0H
r
p,μ

(
R+;DA

(s− r

α
, p
))

, (4.37)

which is valid for all α ∈ (0, 2), 0 < r < s < α.
Similar results are obtained when we consider the whole line case Lp(R;X0).

This corresponds to the result for the fractional evolution equation on the line

∂α
t u+Au = f, t ∈ R,

which has been discussed in the previous subsection as well. For this problem, sim-
ilar results as for the half-line case are valid. In the statements derived above, the
symbols Lp,μ(R+; ·) and 0K

s
p,μ(R+; ·) for K ∈ {H,W} only have to be replaced

by Lp(R; ·) resp. Ks
p(R; ·).

Example 4.5.16. (i) Consider the base space X0 = Kσ
p (R

n) for K ∈ {W,H},
p ∈ (1,∞), σ ∈ R, and let A = (I−Δ)m/2, m ≥ 0, with D(A) = Ks+m

p (Rn). Then
A ∈ H∞(X0) is invertible and hasH∞-angle zero. By the embeddings (4.32)-(4.35)
we obtain

0W
s+α
p,μ (R+;K

σ
p (R

n))∩ 0W
s
p,μ(R+;K

σ+m
p (Rn)) ↪→ 0W

r
p,μ(R+;K

σ+m(1− r−s
α )

p (Rn)),

as well as

0H
s+α
p,μ (R+;K

σ
p (R

n)) ∩ 0H
s
p,μ(R+;K

σ+m
p (Rn)) ↪→ 0H

r
p,μ(R+;K

σ+m(1− r−s
α )

p (Rn)),
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valid for all α ∈ (0, 2), 0 < s < r < s+ α.

(ii) Here we chose X0 = Lp(R
n), A = I −Δ, s = 1 − 1/2p, α = 1/2, and r = 1.

Then the embedding (4.34) (or the second embedding in Example (i) with σ = 0
and K = H) yields

0W
3/2−1/2p
p,μ (R+;Lp(R

n)) ∩W 1−1/2p
p,μ (R+;H

2
p (R

n)) ↪→ 0H
1
p,μ(R+;W

2−2/p
p (Rn)).

This result will be used for the Stefan problem in Section 6.6.

(iii) Choosing X0 = H−1
p (Rn), A = I−Δ, α = 1, and s = 0, we obtain from (4.32)

0H
1
p,μ(R+;H

−1
p (Rn)) ∩ Lp,μ(R+;H

1
p (R

n)) ↪→ 0H
1/2
p,μ (R+;Lp(R

n)).

Interpolating this embedding with the trivial embedding

0H
1
p,μ(R+;Lp(R

n)) ∩ Lp,μ(R+;H
2
p (R

n)) ↪→ 0H
1
p,μ(R+;Lp(R

n))

by the real method of type (1/p, p), this yields

0H
1
p,μ(R+;W

−1/p
p (Rn)) ∩ Lp,μ(R+;W

2−1/p
p (Rn)) ↪→ 0W

1−1/2p
p,μ (R+;Lp(R

n)).

This result will be used in Sections 8.3 and 8.6.

As a summary, starting from the basic embedding (4.32) via interpolation
theory one can create a variety of time-space embeddings, which exchange time
and space regularity.

The method of time-space embeddings explained above is a general powerful
tool in modern analysis, which will be used frequently in subsequent chapters.



Chapter 5

Quasilinear Parabolic Evolution
Equations

In this chapter we consider abstract quasilinear parabolic problems of the form

u̇+A(u)u = F (u), t > 0, u(0) = u0, (5.1)

where (A,F ) : Vμ → B(X1, X0)×X0 and u0 ∈ Vμ. The spaces X1, X0 are Banach
spaces such that X1 ↪→ X0 with dense embedding, and Vμ is an open subset of
the real interpolation space

Xγ,μ := (X0, X1)μ−1/p,p, μ ∈ (1/p, 1].

Our goal is to develop a solution theory for (5.1) which parallels that for ODE’s.
We are mainly interested in solutions u(t) of (5.1) having maximal Lp-

regularity, i.e.,
u ∈ H1

p (J ;X0) ∩ Lp(J ;X1).

The trace space of this class of functions is given by Xγ := Xγ,1. However, to see
and exploit the effect of parabolic regularization in the Lp-framework it is also
useful to consider solutions in the class of weighted spaces

u ∈ H1
p,μ(J ;X0) ∩ Lp,μ(J ;X1).

The trace space for this class of weighted spaces is given by Xγ,μ. In our approach
it is crucial to know that the operators A(u) have the property of maximal Lp-
regularity. Observe that we may add a term ωu to both sides of (5.1), so we may
always consider the class MRp(X0) of maximal Lp-regularity.

5.1 Local Well-Posedness

We suppose that the nonlinear mappings A and F satisfy

(A,F ) ∈ C1−(Vμ;B(X1, X0)×X0). (5.2)

© Springer International Publishing Switzerland 2016
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The main result of this section reads as follows.

Theorem 5.1.1. Let p ∈ (1,∞), u0 ∈ Vμ be given and suppose that (A,F ) satisfies
(5.2) for some μ ∈ (1/p, 1]. Assume in addition that A(u0) ∈ MRp(X0).

Then there exist T = T (u0) > 0 and ε = ε(u0) > 0 with B̄Xγ,μ
(u0, ε) ⊂ Vμ

such that (5.1) has a unique solution

u(·, u1) ∈ E1,μ(0, T ) := H1
p,μ((0, T );X0) ∩ Lp,μ((0, T );X1) ∩ C([0, T ];Vμ),

on [0, T ], for any initial value u1 ∈ B̄Xγ,μ(u0, ε). There exists a constant c =
c(u0) > 0 such that for all u1, u2 ∈ B̄Xγ,μ

(u0, ε) the estimate

|u(·, u1)− u(·, u2)|E1,μ(0,T ) ≤ c|u1 − u2|Xγ,μ

is valid. Moreover, for each δ ∈ (0, T ) we have in addition

u ∈ E1(δ, T ) := E1,1(δ, T ) ↪→ C([δ, T ];Xγ),

i.e., the solution regularizes instantaneously.

Proof. Since u0 ∈ Vμ and by (5.2), there exists ε0 > 0 and a constant L > 0 such
that B̄Xγ,μ

(u0, ε0) ⊂ Vμ and

|A(w1)v −A(w2)v|X0
≤ L|w1 − w2|Xγ,μ

|v|X1
, (5.3)

as well as
|F (w1)− F (w2)|X0

≤ L|w1 − w2|Xγ,μ
(5.4)

hold for all w1, w2 ∈ B̄Xγ,μ(u0, ε0), v ∈ X1. W.l.o.g. we may assume that e−A(u0)t is
exponentially stable. Introduce a reference function u∗

0 ∈ E1,μ(0, T ) as the solution
of the linear problem

ẇ +A(u0)w = 0, w(0) = u0.

Define the set Br,T,u1 ⊂ E1,μ(0, T ) by

Br,T,u1 := {v ∈ E1,μ(0, T ) : v(0) = u1 and |v − u∗
0|E1,μ(0,T ) ≤ r}, 0 < r ≤ 1.

Let u1 ∈ B̄Xγ,μ
(u0, ε) with ε ∈ (0, ε0] be given. We will show that v(t) ∈

B̄Xγ,μ(u0, ε0) for all v ∈ Br,T,u1 and all t ∈ [0, T ], provided that r, T, ε > 0 are
sufficiently small. For this purpose we define u∗

1 ∈ E1,μ(0, T ) as the unique solution
of

ẇ +A(u0)w = 0, w(0) = u1.

Note that u∗
0 and u∗

1 are given by e−A(u0)tu0 and e−A(u0)tu1, respectively. Given
v ∈ Br,T,u1

we estimate as follows.

|v − u0|∞,Xγ,μ
≤ |v − u∗

1|∞,Xγ,μ
+ |u∗

1 − u∗
0|∞,Xγ,μ

+ |u∗
0 − u0|∞,Xγ,μ

. (5.5)
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Since u0 is fixed, there exists a number T0 = T0(u0) > 0 such that

sup
t∈[0,T0]

|u∗
0(t)− u0|Xγ,μ

≤ ε0/3.

Observe that v(0)− u∗
1(0)) = 0, hence

|v − u∗
1|∞,Xγ,μ ≤ C1|v − u∗

1|E1,μ(0,T )

and the constant C1 > 0 does not depend on T . Therefore,

|v − u∗
1|∞,Xγ,μ

≤ C1|v − u∗
1|E1,μ(0,T ) ≤ C1(|v − u∗

0|E1,μ(0,T ) + |u∗
0 − u∗

1|E1,μ(0,T ))

≤ C1(r + |u∗
0 − u∗

1|E1,μ(0,T )).

Since by assumption the semigroup e−A(u0)t is exponentially stable it follows that

|u∗
0 − u∗

1|∞,Xγ,μ
+ C1|u∗

0 − u∗
1|E1,μ(0,T ) ≤ Cγ |u0 − u1|Xγ,μ

, (5.6)

with a constant Cγ > 0 which does not depend on T . Choosing ε ≤ ε0/(3Cγ) and
r ≤ ε0/(3C1), we obtain

|v − u0|∞,Xγ,μ ≤ C1r + Cγε+ |u∗
0 − u0|∞,Xγ,μ ≤ ε0. (5.7)

Throughout the remainder of this proof we will assume that u1 ∈ BXγ,μ
(u0, ε),

ε ≤ ε0/(3Cγ), T ∈ [0, T0], and r ≤ ε0/(3C1). Under these assumptions, we may
define a mapping

Tu1
: Br,T,u1

→ E1,μ(0, T ), Tu1
v := u,

where u is the unique solution of the linear problem

u̇+A(u0)u = F (v) + (A(u0)−A(v))v, t > 0, u(0) = u1.

In order to apply the contraction mapping principle, we show that Tu1(Br,T,u1) ⊂
Br,T,u1 , and that Tu1 defines a strict contraction on Br,T,u1 , i.e., there exists κ ∈
(0, 1) such that

|Tu1
v − Tu1

v̄|E1,μ(0,T ) ≤ κ|v − v̄|E1,μ(0,T )

is valid for all v, v̄ ∈ Br,T,u1
. We will first take care of the self-mapping property.

Note that for v ∈ Br,T,u1 we have

(Tu1v)(t)− u∗
0(t) = u∗

1(t)− u∗
0(t) +

(
e−A(u0)· ∗ (F (v) + (A(u0)−A(v))v)

)
(t).

The assumption A(u0) ∈ MRp(X0) then implies

|e−A(u0)· ∗ (F (v) + (A(u0)−A(v))v)|E1,μ(0,T )

≤ C0|F (v) + (A(u0)−A(v))v)|E0,μ(0,T ),
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and C0 > 0 does not depend on T . Let us first estimate (A(u0) − A(v))v in
E0,μ(0, T ). By (5.3) and (5.7) we obtain

|(A(u0)−A(v))v|E0,μ(0,T ) ≤ L|v − u0|∞,Xγ,μ
|v|E1,μ(0,T )

≤ L|v − u0|∞,Xγ,μ(r + |u∗
0|E1,μ(0,T )).

Furthermore, by (5.4)

|F (v)|E0,μ(0,T ) ≤ |F (v)− F (u0)|E0,μ(0,T ) + |F (u0)|E0,μ(0,T )

≤ σ(T )
(
L|v − u0|∞,Xγ,μ

+ |F (u0)|X0

)
with σ(T ) := 1

(1+(1−μ)p)1/p
T 1/p+1−μ. Since

|u∗
0 − u0|∞,Xγ,μ

, |u∗
0|E1,μ(0,T ), σ(T ) → 0 as T → 0,

this yields with (5.7)

|Tu1
v − u∗

0|E1,μ(0,T ) ≤ |u∗
1 − u∗

0|E1,μ(0,T ) + r/2,

provided r > 0, T > 0, ε > 0 are chosen sufficiently small. By (5.6) we obtain in
addition

|Tu1
v − u∗

0|E1,μ(0,T ) ≤ (Cγ/C1)|u1 − u0|Xγ,μ
+ r/2 ≤ r/2 + r/2 = r,

with a possibly smaller ε > 0. This proves the self-mapping property of Tu1
.

Let u1, u2 ∈ B̄Xγ,μ(u0, ε) be given and let v1 ∈ Br,T,u1 , v2 ∈ Br,T,u2 . Then,
since A(u0) ∈ MRp(X1, X0), we have

|Tu1
v1−Tu2

v2|E1,μ(0,T ) ≤ |e−A(u0)·(u1−u2)|E1,μ(0,T )+C0|F (v1)−F (v2)|E0,μ(0,T )

+ C0|(A(v1)−A(u0))(v1 − v2)|E0,μ(0,T ) + C0|(A(v1)−A(v2))v2|E0,μ(0,T ). (5.8)

For the first term on the right-hand side we can make use of (5.6), where u0 and
u∗
0 have to be replaced by u2 and e−A(u0)tu2, respectively. The second term can

be treated as follows. By (5.4), we obtain

|F (v1)− F (v2)|E0,μ(0,T ) ≤ σ(T )L|v1 − v2|∞,Xγ,μ .

Moreover, by (5.6) and the trace theorem we have

|v1 − v2|∞,Xγ,μ
≤ |v1 − v2 − e−A(u0)·(u1 − u2)|∞,Xγ,μ

+ |e−A(u0)·(u1 − u2)|∞,Xγ,μ

≤ C1|v1−v2 − e−A(u0)·(u1−u2)|E1,μ(0,T ) + Cγ |u1 − u2|Xγ,μ

≤ C1|v1 − v2|E1,μ(0,T ) + 2Cγ |u1 − u2|Xγ,μ .

(5.9)
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This yields

|F (v1)− F (v2)|E0,μ(0,T ) ≤ σ(T )L
(
C1|v1 − v2|E1,μ(0,T ) + 2Cγ |u1 − u2|Xγ,μ

)
.

For the remaining terms in (5.8) we make use of (5.3) which results in

|(A(v1)−A(u0))(v1 − v2)|E0,μ(0,T ) + |(A(v1)−A(v2))v2|E0,μ(0,T )

≤ L(|v1 − u0|∞,Xγ,μ
|v1 − v2|E1,μ(0,T ) + |v1 − v2|∞,Xγ,μ

|v2|E1,μ(0,T ).

By (5.7), the term |v1 − u0|∞,Xγ,μ
can be made as small as we wish by decreasing

r > 0, T > 0 and ε > 0. Furthermore, we have

|v2|E1,μ(0,T ) ≤ |v2 − u∗
0|E1,μ(0,T ) + |u∗

0|E1,μ(0,T ) ≤ r + |u∗
0|E1,μ(0,T ),

hence |v2|E1,μ(0,T ) is small, provided r > 0 and T > 0 are small enough. Lastly,
the term |v1 − v2|∞,Xγ,μ

can be estimated by (5.9). In summary, if we choose
r > 0, T > 0 and ε > 0 sufficiently small, we obtain a constant c = c(u0) > 0 such
that the estimate

|Tu1
v1 − Tu2

v2|E1,μ(0,T ) ≤
1

2
|v1 − v2|E1,μ(0,T ) + c|u1 − u2|Xγ,μ

(5.10)

is valid for all u1, u2 ∈ B̄Xγ,μ
(u0, ε) and v1 ∈ Br,T,u1

, v2 ∈ Br,T,u2
. In the very

special case u1 = u2, (5.10) yields the contraction mapping property of Tu1
on

Br,T,u1
. Now we are in a position to apply Banach’s fixed point theorem to obtain

a unique fixed point ũ ∈ Br,T,u1 of Tu1 , i.e., Tu1 ũ = ũ. Therefore ũ ∈ Br,T,u1 is
the unique local solution to (5.1). Furthermore, if u(t, u1) and u(t, u2) denote the
solutions of (5.1) with initial values u1, u2 ∈ B̄Xγ,μ

(u0, ε), respectively, the last
assertion of the theorem follows from (5.10). This completes the proof. �

The next result provides information about the continuation of local solu-
tions.

Corollary 5.1.2. Let the assumptions of Theorem 5.1.1 be satisfied and assume that
A(v) ∈ MRp(X0) for all v ∈ Vμ. Then the solution u(t) of (5.1) has a maximal
interval of existence J(u0) = [0, t+(u0)), which is characterized by

(i) Global existence: t+(u0) = ∞;

(ii) lim inft→t+(u0) distXγ,μ
(u(t), ∂Vμ) = 0;

(iii) limt→t+(u0) u(t) does not exist in Xγ,μ.

Proof. Fix u0 ∈ Xγ,μ, and define

t+(u0) = sup{a > 0 : (5.1) has a solution on [0, a]}.

Suppose that t+(u0) is finite, distXγ,μ
(u(t), ∂Vμ) ≥ η, for some η > 0, and assume

that the solution u(t) converges to some u1 := u(t+(u0)) ∈ Vμ as t → t+(u0).
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Then the set u([0, t+(u0)]) ⊂ Vμ is compact in Xγ,μ. Hence by Theorem 5.1.1 we
find a uniform δ > 0 such that the problem

v̇ +A(v)v = F (v), v(0) = u(s), s ∈ [0, t+(u0)],

has a unique solution in E1,μ(0, δ). Fixing s0 ∈ (t+(u0) − δ, t+(u0)) the corre-
sponding solution v(τ) coincides with u(s0+τ) and extends the solution u beyond
t+(u0), a contradiction. This proves the result. �

5.2 Regularity

In this section we want to show that additional regularity of A and F induces
corresponding regularity of the solutions of (5.1). For this purpose we assume
(A,F ) ∈ Ck(Vμ;B(X1, X0) × X0) and u0 ∈ Vμ, where k ∈ N ∪ {∞, ω}; here ω
means real analytic.

Suppose that we are given a solution u∗ = u(·, u0) ∈ E1,μ(J), and assume that
A(u∗(t)) ∈ MRp(X0) for each t ∈ J = [0, T ]. Then by continuous dependence,
there is a ball BXγ,μ(u0, r0) ⊂ Vμ such that for any v ∈ BXγ,μ(u0, r0) the solutions
u(·, v) exist on the same interval J . Introduce new functions

uλ(t, v) := u(λt, v), λ ∈ (1− ε, 1 + ε), v ∈ BXγ,μ(u0, r0), t ∈ Jε,

where Jε = [0, T/(1+ ε)], ε > 0 fixed but as small as we please. This new function
satisfies u̇λ(t, v) = λu̇(λt, v), and hence

u̇λ(t, v) + λA(uλ(t, v))uλ(t, v) = λF (uλ(t, v)), t ∈ Jε, uλ(0, v) = v.

Now we consider the map

H : (1− ε, 1 + ε)×BXγ,μ
(u0, r0)× E1,μ(Jε) → E0,μ(Jε)×Xγ,μ

defined by

H(λ, v, w)(t) = (ẇ(t) + λA(w(t))w(t)− λF (w(t)), w(0)− v), t ∈ Jε,

with E0,μ(Jε) := Lp,μ(Jε;X0). Since A and F are of class Ck and H is poly-
nomial in λ and linear in v, there follows also H ∈ Ck. Furthermore, we know
H(1, u∗, u0) = 0 and

DλH(λ, v, w) = (A(w)w − F (w), 0),

DvH(λ, v, w) = (0,−I),

and

DwH(λ, v, w)h = (ḣ+ λA(w)h+ λ(A′(w)h)w − λF ′(w)h, h(0)).
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In particular, DwH(1, u∗, u0) : E1,μ(Jε) → E0,μ ×Xγ,μ is given by

DwH((1, u0), u∗)h = (ḣ+A(u∗)h+ (A′(u∗)h)u∗ − F ′(u∗)h, h(0)).

Since A(u∗(t)) has maximal Lp-regularity for each t ∈ J and F ′(u∗(t)) is of lower
order, we obtain with Proposition 4.4.3 and Theorem 4.4.4 that

A(t) = A(u∗(t))− F ′(u∗(t)), t ∈ J,

satisfies the assumptions of Proposition 3.5.6 as u∗ ∈ C(J ;Xγ,μ). Setting

R(t)z := (A′(u∗(t)z))u∗(t), z ∈ Xγ,μ, t ∈ J,

we see that R ∈ Lp,μ(J ;B(Xγ,μ, X0)), with norm in Lp,μ(I;B(Xγ,μ, X0)) dom-
inated by C|u∗|Lp,μ(I,X1) for each subinterval I = [t0, t1] ⊂ J , where C is a
universal constant. This shows that R(t)|I is a small perturbation of A(t)|I in
Lp,μ(I,B(X1, X0), provided the length of I is small enough. A similar argument
as in the proof of Proposition 3.5.6 shows that DwH(1, u0, u∗) is an isomorphism.
Then we may apply the implicit function theorem to obtain a Ck-map

Φ : (1− δ, 1 + δ)×BXγ,μ
(u0, r) → E1,μ(Jε)

such that H(λ, v,Φ(λ, v)) = 0 for each λ ∈ (1 − δ, 1 + δ), v ∈ BXγ,μ
(u0, r) and

Φ(1, u0) = u∗. By the definition of H and by uniqueness we then see that Φ(λ, v) =
uλ(·, v), and

[(λ, v) �→ uλ(·, v)] ∈ Ck((1− δ, 1 + δ)×BXγ,μ(u0, r),E1,μ(Jε)).

The embedding E1,μ(Jε) ↪→ C(Jε;Xγ,μ) then shows that the map

(λ, v) �→ uλ(t, v) = u(λt, v)

is of class Ck for each fixed t. But this implies u ∈ Ck((0, T )×BXγ,μ
(u0, r);Xγ,μ).

To extract more regularity from the map Φ, note that

∂

∂λ
uλ(t, v)|λ=1 = tu̇(t, v), t ∈ Jε,

hence tu̇(·, v) ∈ E1,μ(Jε), and by induction tk∂k
t u(·, v) ∈ E1,μ(Jε), which means

u(·, v) ∈ Hk+1
p ((ε, T );X0) ∩Hk

p ((ε, T );X1),

for each ε ∈ (0, T ). By embedding we obtain from this

u(·, v) ∈ Ck+1−1/p((0, T );X0) ∪ Ck−1/p((0, T );X1).

In particular, if k = ∞, then u(·, v) ∈ C∞((0, T );X1) and in case k = ω we get real
analyticity of u(t, v) ∈ X1 in (0, T ) × BXγ,μ(u0, r). Note that in these assertions
the parameter λ completely disappeared.

Let us summarize the result in
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Theorem 5.2.1. Let 1 < p < ∞, k ∈ N ∪ {∞, ω}, J = [0, T ], and assume (A,F ) ∈
Ck(Vμ;B(X1, X0) × X0). Let u∗ = u(·, u0) ∈ H1

p,μ(J ;X0) ∩ Lp,μ(J ;X1) be the
solution of (5.1) with initial value u0 ∈ Xγ,μ. Suppose A(u∗(t)) ∈ MRp(X0) for
each t ∈ J .

Then there is r > 0 such that the maps

φj : BXγ,μ(u0, r) → H1
p (J ;X0) ∩ Lp(J ;X1), φj(v) = tj+1−μ∂j

t u,

are of class Ck−j, for each j ≤ k, where u = u(·, v) is the unique solution of (5.1)
with initial value v. In particular,

ψ : BXγ,μ
(u0, r) �→ Hj+1

p ((ε, T );X0) ∩Hj
p((ε, T );X1), ψ(v) = u

is of class Ck−j for each ε ∈ (0, T ), and

ψ : BXγ,μ(u0, r) → Cj+1−1/p((0, T );X0) ∩ Cj−1/p((0, T );X1)

is of class Ck−j as well. If k = ∞, then ψ : BXγ,μ(u0, r) → C∞((0, T );X1) is of
class C∞ and if k = ω, then ψ is also real analytic.

Note that, in particular, the flow map ϕ : (t, v) �→ u(t, v) is of class Ck from
(0, a)×BXγ,μ

(u0, r) to Xγ,μ. Furthermore, we obtain from the derivative of Φ with
w = D2Φ(1, u0)v the relation

ẇ(t) +B(t)w(t) = 0, t ∈ (0, T ), w(0) = v,

where B(t) = A(u∗(t)) + (A′(u∗(t))·)u∗(t) − F ′(u∗(t)). In particular, if u∗ is an
equilibrium, then w(t) = e−Btv.

One should also observe that once we have regularity of ∂tu, we may write
(5.1) as

A0(t)u(t) = f(t) := F (u(t))− ∂tu(t), t ∈ J,

with A0(t) = A(u(t)). This is typically an elliptic equation for u(t), where t ∈ J
now serves as a parameter. This reduces the study of regularity “in space” to a
linear elliptic problem.

5.3 Normally Stable Equilibria

Here we assume that there is an open set V ⊂ Xγ such that

(A,F ) ∈ C1(V,B(X1, X0)×X0). (5.11)

Let E ⊂ V ∩X1 denote the set of equilibrium solutions of (5.1), which means that

u ∈ E if and only if u ∈ V ∩X1, A(u)u = F (u).
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Given an element u∗ ∈ E , we assume that u∗ is contained in an m-dimensional
manifold of equilibria. This means that there is an open subset U ⊂ Rm, 0 ∈ U ,
and a C1-function Ψ : U → X1, such that

• Ψ(U) ⊂ E and Ψ(0) = u∗,
• the rank of Ψ′(0) equals m, and

• A(Ψ(ζ))Ψ(ζ) = F (Ψ(ζ)), ζ ∈ U.

(5.12)

For the moment, we assume further that near u∗ there are no other equilibria than
those given by Ψ(U), i.e., E ∩BX1

(u∗, r1) = Ψ(U), for some r1 > 0. Below we show
that this assumption is redundant.

We suppose that the operator A(u∗) has the property of maximal Lp-
regularity. Introducing the deviation v = u − u∗ from the equilibrium u∗, the
equation for v then reads as

v̇(t) +A0v(t) = G(v(t)), t > 0, v(0) = v0, (5.13)

where v0 = u0 − u∗ and

A0v = A(u∗)v + (A′(u∗)v)u∗ − F ′(u∗)v for v ∈ X1. (5.14)

The function G can be written as G(v) = G1(v) +G2(v, v), where

G1(v) = (F (u∗ + v)−F (u∗)−F ′(u∗)v)−(A(u∗ + v)−A(u∗)−A′(u∗)v)u∗,
G2(v, w) = −(A(u∗ + v)−A(u∗))w, w ∈ X1, v ∈ V∗,

with V∗ := V − u∗. It follows from (5.11) that G1 ∈ C1(V∗, X0) and also that
G2 ∈ C1(V∗ ×X1, X0). Moreover, we have

(G1(0), G2(0, 0)) = 0, (G′
1(0), G

′
2(0, 0)) = 0, (5.15)

where G′
1 and G′

2 denote the Fréchet derivatives of G1 and G2, respectively.

Setting ψ(ζ) = Ψ(ζ)−u∗ results in the following equilibrium equation for problem
(5.13)

A0ψ(ζ) = G(ψ(ζ)), for all ζ ∈ U. (5.16)

Taking the derivative with respect to ζ and using the fact that G′(0) = 0 we
conclude that A0ψ

′(0) = 0 and this implies that

Tu∗E ⊂ N(A0), (5.17)

where Tu∗E denotes the tangent space of E at u∗.

After these preparations we can state the following result on convergence
of solutions starting near u∗ which will be termed the generalized principle of
linearized stability.
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Theorem 5.3.1. Let 1 < p < ∞. Suppose u∗ ∈ V ∩X1 is an equilibrium of (5.1),
and suppose that the functions (A,F ) satisfy (5.11). Suppose further that A(u∗)
has the property of maximal Lp-regularity. Let A0, defined in (5.14), denote the
linearization of (5.1) at u∗. Suppose that u∗ is normally stable, which means that

(i) near u∗ the set of equilibria E is a C1-manifold in X1 of dimension m ∈ N,

(ii) the tangent space for E at u∗ is isomorphic to N(A0),

(iii) 0 is a semi-simple eigenvalue of A0, i.e., N(A0)⊕ R(A0) = X0,

(iv) σ(A0) \ {0} ⊂ C+ = {z ∈ C : Re z > 0}.
Then u∗ is stable in Xγ , and there exists δ > 0 such that the unique solution u(t)
of (5.1) with initial value u0 ∈ Xγ satisfying |u0 − u∗|γ < δ exists on R+ and
converges at an exponential rate in Xγ to some u∞ ∈ E as t → ∞.

Proof. (a) Note first that assumption (iii) implies that 0 is an isolated point of
σ(A0), the spectrum of A0. According to assumption (iv), σ(A0) admits a decom-
position into two disjoint nontrivial parts with

σ(A0) = {0} ∪ σs, σs ⊂ C+ = {z ∈ C : Re z > 0}.

The spectral set σc := {0} corresponds to the center part, and σs to the stable
part of the analytic C0-semigroup e−A0t, or equivalently of the Cauchy problem
ẇ +A0w = f .

In the following, we let P l, l ∈ {c, s}, denote the spectral projections accord-
ing to the spectral sets σc = {0} and σs, and we set X l

j := P lXj for l ∈ {c, s} and

j ∈ {0, 1, γ}. The spaces X l
j are equipped with the norms | · |j for j ∈ {0, 1, γ}.

We have the topological direct decomposition

X1 = Xc
1 ⊕Xs

1 , X0 = Xc
0 ⊕Xs

0 ,

and this decomposition reduces A0 into A0 = Ac ⊕ As, where Al is the part
of A0 in X l

0 for l ∈ {c, s}. Since σc = {0} is compact it follows that Xc
0 ⊂ X1.

Therefore, Xc
0 and Xc

1 coincide as vector spaces. In the following, we will just write
Xc = (Xc, | · |j) for either of the spaces Xc

0 and Xc
1 . The operator As inherits the

property of Lp-maximal regularity from A0. Since σ(As) = σs ⊂ C+ we obtain
that the Cauchy problem

ẇ +Asw = f, w(0) = 0, (5.18)

also enjoys the property of maximal regularity, even on the interval J = (0,∞).
In fact the following estimates are true. For any a ∈ (0,∞] let

E0(a) = Lp((0, a);X0), E1(a) = H1
p ((0, a);X0) ∩ Lp((0, a);X1). (5.19)

The natural norms in Ej(a) will be denoted by | · |Ej(a) for j = 0, 1. Then the
Cauchy problem (5.18) has for each f ∈ Lp((0, a);X

s
0) a unique solution

w ∈ H1
p ((0, a);X

s
0) ∩ Lp((0, a);X

s
1),
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and there exists a constantM0 such that |w|E1(a) ≤ M0|f |E0(a) for every a > 0, and
every function f ∈ Lp((0, a);X

s
0). In fact, since σ(As − ω) is still contained in C+

for ω small enough, we see that the operator As−ω enjoys the same properties as
As. Therefore, every solution of the Cauchy problem (5.18) satisfies the estimate

|eσtw|E1(a) ≤ M0|eσtf |E0(a), σ ∈ [0, ω], a > 0, (5.20)

for f ∈ Lp((0, a);X
s
0), where M0 = M0(ω) for ω > 0 fixed. Furthermore, there

exists a constant M1 > 0 such that

|eωte−AstP su|E1(a) + sup
t∈[0,a)

|eωte−AstP su|γ ≤ M1|P su|γ (5.21)

for every u ∈ Xγ and a ∈ (0,∞]. For future use we note that

sup
t∈[0,a)

|w(t)|γ ≤ c0|w|E1(a) for all w ∈ E1(a) with w(0) = 0 (5.22)

with a constant c0 that is independent of a ∈ (0,∞].

(b) It follows from the considerations above and assumptions (i)-(iii) that in fact

N(A0) = Xc and dim(Xc) = m.

As Xc has finite dimension, the norms | · |j for j ∈ {0, 1, γ} are equivalent, and we
equip Xc with one of these equivalent norms, say with | · |0. Let us now consider
the mapping

g : U ⊂ Rm → Xc, g(ζ) := P cψ(ζ), ζ ∈ U.

It follows from our assumptions that g′(0) = P cψ′(0) : Rm → Xc is an isomor-
phism (between the finite dimensional spaces Rm and Xc). By the inverse function
theorem, g is a C1-diffeomorphism of a neighbourhood of 0 in Rm into a neigh-
bourhood, say BXc(0, ρ0), of 0 in Xc. Let g−1 : BXc(0, ρ0) → U be its inverse
mapping. Then g−1 is C1 and g−1(0) = 0. Next we set Φ(x) := ψ(g−1(x)) for
x ∈ BXc(0, ρ0) and we note that

Φ ∈ C1(BXc(0, ρ0), X1), Φ(0) = 0, {Φ(x) + u∗ : x ∈ BXc(0, ρ0)} = E ∩W,

where W is an appropriate neighbourhood of u∗ in X1. One readily verifies that

P cΦ(x) = ((P c ◦ ψ) ◦ g−1)(x) = (g ◦ g−1)(x) = x, x ∈ BXc(0, ρ0),

and this yields Φ(x) = P cΦ(x)+P sΦ(x) = x+P sΦ(x) for x ∈ BXc(0, ρ0). Setting
φ(x) := P sΦ(x) we conclude that

φ ∈ C1(BXc(0, ρ0), X
s
1), φ(0) = φ′(0) = 0, (5.23)

and that
{x+ φ(x) + u∗ : x ∈ BXc(0, ρ0)} = E ∩W,
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where W is a neighbourhood of u∗ in X1. This shows that the manifold E can be
represented as the (translated) graph of the function φ in a neighbourhood of u∗.
Moreover, the tangent space of E at u∗ coincides with N(A0) = Xc. By applying the
projections P l, l ∈ {c, s}, to equation (5.16) and using that x+ φ(x) = ψ(g−1(x))
for x ∈ BXc(0, ρ0), and that Ac ≡ 0, we obtain the following equivalent system of
equations for the equilibria of (5.13)

P cG(x+ φ(x)) = 0, P sG(x+ φ(x)) = Asφ(x), x ∈ BXc(0, ρ0). (5.24)

Finally, let us also agree that ρ0 has already been chosen small enough so that

|φ′(x)|B(Xc,Xs
1 )

≤ 1, |φ(x)|1 ≤ |x|, x ∈ BXc(0, ρ0). (5.25)

This can always be achieved, thanks to (5.23).

(c) Introducing the new variables

x = P cv = P c(u− u∗),
y = P sv − φ(P cv) = P s(u− u∗)− φ(P c(u− u∗))

we then obtain the following system of evolution equations in Xc ×Xs
0{

ẋ = T (x, y), x(0) = x0,

ẏ +Asy = R(x, y), y(0) = y0,
(5.26)

with x0 = P cv0 and y0 = P sv0 − φ(P cv0), where the functions T and R are given
by

T (x, y) = P cG(x+ φ(x) + y),

R(x, y) = P sG(x+ φ(x) + y)−Asφ(x)− φ′(x)T (x, y).

Using the equilibrium equations (5.24), the expressions for R and T can be rewrit-
ten as

T (x, y) = P c
(
G(x+ φ(x) + y)−G(x+ φ(x))

)
,

R(x, y) = P s
(
G(x+ φ(x) + y)−G(x+ φ(x))

)
− φ′(x)T (x, y).

(5.27)

Although the term P cG(x + φ(x)) in T is zero, see (5.24), we include it here for
reasons of symmetry, and for justifying the estimates for T below. Equation (5.27)
immediately yields

(T (x, 0), R(x, 0)) = 0 for all x ∈ BXc(0, ρ0),

showing that the equilibrium set E of (5.1) near u∗ has been reduced to the set
BXc(0, ρ0)× {0} ⊂ Xc ×Xs

1 .
Observe also that there is a unique correspondence between the solutions of

(5.1) close to u∗ in Xγ and those of (5.26) close to 0. We call system (5.26) the
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normal form of (5.1) near its normally stable equilibrium u∗.

(d) From the representation of G and (5.15) we obtain the following estimates for
G1 and G2: for given η > 0 we may choose r = r(η) > 0 small enough such that

|G1(v1)−G1(v2)|0 ≤ η|v1 − v2|γ , v1, v2 ∈ BXγ
(0, r).

Moreover, there is a constant L > 0 such that

|G2(v1, w)−G2(v2, w)|0 ≤ L|w|1 |v1 − v2|γ , w ∈ X1, v1, v2 ∈ BXγ (0, r),

|G2(v, w1)−G2(v, w2)|0 ≤ L r |w1 − w2|1, w1, w2 ∈ X1, v ∈ BXγ (0, r).

We remark that L does not depend on r ∈ (0, r0] with r0 appropriately chosen.
Combining these estimates we have

|G(v1)−G(v2)|0 ≤
(
η + L|v2|1

)
|v1 − v2|γ + Lr|v1 − v2|1

≤ C0

(
η + r + |v2|1

)
|v1 − v2|1

(5.28)

for all v1, v2 ∈ BXγ
(0, r) ∩X1, where C0 is independent of r ∈ (0, r0].

In the following, we will always assume that r ∈ (0, r0] and r0 ≤ 3ρ0. Taking
v1 = x+φ(x)+ y and v2 = x+φ(x) in (5.28) we infer from (5.25) and (5.27) that

|T (x, y)|, |R(x, y)|0 ≤ C1

(
η + r + |x+ φ(x))|1

)
|y|1 ≤ β|y|1, (5.29)

for all x ∈ B̄Xc(0, ρ), y ∈ B̄Xs
γ
(0, ρ)∩X1 and all ρ ∈ (0, r/3), where β = C2(η+r),

and where C1 and C2 are uniform constants. Suppose that η and, accordingly, r
were already chosen small enough so that

M0β = M0C2(η + r) ≤ 1/2. (5.30)

(e) By Theorem 5.1.1 with μ = 1, Problem (5.13) admits for each v0 ∈ BXγ
(0, r) a

unique local strong solution v ∈ E1(a)∩C([0, a];Xγ) for some number a > 0. This
solution can be extended to a maximal interval of existence [0, t+). If t+ is finite,
then either v(t) leaves the ball BXγ

(0, r) at time t+, or the limit limt→t+ v(t) does
not exist in Xγ . We show that this cannot happen for initial values v0 ∈ BXγ

(0, δ),
with δ ≤ r to be chosen later.

Suppose that x0 ∈ BXc(0, Nδ) and y0 ∈ BXs
γ
(0, Nδ) are given, where the

number δ will be determined later and N := |P c|B(X0) + |P s|B(Xγ). Let t+ denote
the existence time for the solution (x(t), y(t)) of System (5.26) with initial values
(x0, y0), or equivalently, for the solution v(t) of (5.13) with initial value v0 =
x0 + φ(x0) + y0. Let ρ be fixed so that the estimates in (5.29) hold. Set

t1 := t1(x0, y0) := sup{t ∈ (0, t+) : |x(τ)|, |y(τ)|γ ≤ ρ, τ ∈ [0, t]}

and suppose that t1 < t+. Due to (5.20)–(5.21) and (5.29) we obtain

|eωty|E1(t1) ≤ M1|y0|γ +M0|eωtR(x, y)|E0(t1)

≤ M1|y0|γ +M0β|eωty|E1(t1).
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This yields with (5.30)

|eσty|E1(t1) ≤ 2M1|y0|γ , σ ∈ [0, ω]. (5.31)

Using this estimate as well as (5.21)–(5.22) we further have for t ∈ [0, t1)

|eσty(t)|γ ≤ |eσty(t)− eσte−Asty0|γ + |eσte−Asty0|γ
≤ c0|eσty(t)− eσte−Asty0|E1(t1) +M1|y0|γ
≤ (3c0M1 +M1)|y0|γ ,

which yields with M2 = (3c0 + 1)M1,

|y(t)|γ ≤ M2e
−σt|y0|γ , t ∈ [0, t1), σ ∈ [0, ω]. (5.32)

We deduce from the equation for x, the estimate for T in (5.29), and Hölder’s
inequality that

|x(t)| ≤ |x0|+
∫ t

0

|T (x(s), y(s))| ds

≤ |x0|+ β

∫ t

0

|y(s)|1 ds

= |x0|+ βc1|eωty|E1(t1)

≤ |x0|+M3|y0|γ , t ∈ [0, t1),

where M3 = 2M1c1β and c1 = (1/[ωp′])1/p
′
. Summarizing, we have shown that

|x(t)| + |y(t)|γ ≤ |x0| + (M2 + M3)|y0|γ for all t ∈ [0, t1). By continuity and the
assumption t1 < t+ this inequality also holds for t = t1. Hence

|x(t1)|+ |y(t1)|γ ≤ |x0|+ (M2 +M3)|y0|γ ≤ (1 +M2 +M3)Nδ < ρ/2,

provided δ ≤ ρ/[2N(1 +M2 +M3)]. This contradicts the definition of t1 and we
conclude that t1 = t+.

In the following, we assume that δ ≤ ρ/[2N(1+M2+M3)]. Then the estimates
derived above and (5.25) yield the uniform bounds

|v|E1(a) + sup
t∈[0,a)

|v(t)|γ ≤ M, (5.33)

for every initial value v0 ∈ BXγ (0, δ) and every a < t+. It follows from Corol-
lary 5.1.2 that the solution v(t) of (5.13) exists on R+.

(f) By repeating the above estimates on the interval (0,∞) we obtain

|x(t)| ≤ |x0|+M3|y0|γ , |y(t)|γ ≤ M2e
−ωt|y0|γ , t ∈ [0,∞), (5.34)

for all x0 ∈ BXc(0, Nδ) and y0 ∈ BXs
γ
(0, Nδ). Moreover,

lim
t→∞x(t) = x0 +

∫ ∞

0

T (x(s), y(s)) ds =: x∞
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exists since the integral is absolutely convergent. Next observe that we in fact
obtain exponential convergence of x(t) towards x∞, as

|x(t)− x∞| =
∣∣∣∣∫ ∞

t

T (x(s), y(s)) ds

∣∣∣∣
≤ β

∫ ∞

t

|y(s)|1 ds

≤ β

(∫ ∞

t

e−ωsp′
ds

)1/p′

|eωsy|E1(∞)

≤ M4e
−ωt|y0|γ , t ≥ 0.

This yields existence of

v∞ := lim
t→∞ v(t) = lim

t→∞x(t) + φ(x(t)) + y(t) = x∞ + φ(x∞).

Clearly, v∞ is an equilibrium for equation (5.13), and v∞+u∗ ∈ E is an equilibrium
for (5.1). Due to (5.25), (5.34) and the exponential estimate for |x(t)−x∞| we get

|v(t)− v∞|γ = |x(t) + φ(x(t)) + y(t)− v∞|γ
≤ |x(t)− x∞|γ + |φ(x(t))− φ(x∞)|γ + |y(t)|γ
≤ (CM4 +M2)e

−ωt|y0|γ
≤ Me−ωt|P sv0 − φ(P cv0)|γ ,

(5.35)

thereby completing the proof of the second part of Theorem 5.3.1. Concerning
stability, note that given r > 0 small enough we may choose 0 < δ ≤ r such that
the solution starting in BXγ

(u∗, δ) exists on R+ and stays within BXγ
(u∗, r). �

Remarks 5.3.2. (a) If m = 0 the equilibrium u∗ is isolated and 0 �∈ σ(A0). In this
case all solutions starting in a neighbourhood of u∗ converge to u∗ in Xγ . This is
the classical principle of linearized stability.

(b) Theorem 5.3.1 shows, given that situation, that near u∗ the set of equilibria
constitutes the (unique) center manifold for (5.1).

(c) It is worthwhile to point out a slightly different way to obtain the function φ
used in the proof of Theorem 5.3.1. Applying the projections P s and P c to the
equilibrium equation (5.16) yields the following equivalent system of equations
near v = 0

Asz = P sG(x+ z), Acx = P cG(x+ z), (5.36)

with z = P sψ(ζ) and x = P cψ(ζ). Since (G(0), G′(0)) = 0 and As is invertible,
by the implicit function theorem we may solve the first equation for z in terms of
x, i.e., there is a C1-function φ : BXc(0, ρ0) → Xs

1 such that

φ(0) = 0 and Asφ(x) = P sG(x+ φ(x)), x ∈ BXc(0, ρ0).
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As x + φ(x) is the unique solution of the first equation in (5.36) we additionally
have Acx = P cG(x + φ(x)), as well as P sψ(ζ) = φ(P cψ(ζ)) for all ζ ∈ U . Since
G′(0) = 0 we obtain Asφ

′(0) = P sG′(0) = 0 and this implies φ′(0) = 0. This shows
that E ⊂ M with M = {x + φ(x) + u∗ : x ∈ BXc(0, ρ0)} in a neighbourhood of
u∗ in X1.

M is a C1-manifold of dimension � := dim (Xc) with tangent space Tu∗M =
Xc and E is a submanifold in M. In general, E has lower dimension than M. Our
assumptions in Theorem 5.3.1 do in fact exactly amount to asserting that E and
M are of equal dimension. Since E ⊂ M we can then conclude that they coincide
in a neighbourhood of u∗.

(d) An inspection of the argument given above shows that in fact all equilibria of
equation (5.1) that are close to the equilibrium u∗ are contained in the manifold
M = {x + φ(x) + u∗ : x ∈ BXc(0, ρ0)} such that φ(0) = φ′(0) = 0, with no
additional assumptions on the structure of the equilibria. To see this, let us once
more consider the equation

Asz = P sG(x+ z), x ∈ Xc, z ∈ Xs
1 . (5.37)

Clearly, (x, z) = 0 is a solution. Exactly as in the remark above, we can solve
(5.37) by the implicit function theorem for z in terms of x, obtaining a C1-function
φ : BXc(0, ρ0) → Xs

1 with (φ(0), φ′(0)) = 0. If v ∈ X1 is an equilibrium for the
evolution equation (5.13) close to 0, then the pair x = P cv, z = P sv necessarily
satisfies equation (5.36), and therefore lies on the graph of φ.

(e) It is well-known even in the 2D-ODE-case that convergence to equilibria fails
if one of the conditions (i)-(iii) in Theorem 5.3.1 does not hold.

5.4 Instability of Equilibria

We consider again the behaviour of (5.1) near an equilibrium u∗ ∈ E . Here we are
interested in instability, and we want to prove the second half of the principle of
linearized stability for (5.1). The result reads as follows.

Theorem 5.4.1. Let (A,F ) ∈ C1(V ;B(X1, X0)×X0), V ⊂ Xγ open, and suppose
u∗ ∈ E ∩ V is such that A(u∗) has the property of maximal Lp-regularity, and
assume that the linearization of (5.1) at u∗ ∈ E

A0 = A(u∗) + [A′(u∗)·]u∗ − F ′(u∗)

satisfies

σ(−A0) ∩ [κ+ iR] = ∅, σ(−A0) ∩ {z ∈ C : Re z > κ} �= ∅,

for some κ ≥ 0. Then the equilibrium u∗ ∈ E is unstable in Xγ .
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Proof. (a) As in the previous section, we transform the equilibrium u∗ to 0 by
setting v = u− u∗. Then as there, (5.1) can be rewritten as the problem

v̇ +A0v = G(v), v(0) = v0, (5.38)

where G : X1 → X0 satisfies the following property. For each η > 0 there is r > 0
such that

|G(v)|0 ≤ η|v|1, for all |v|γ ≤ r, v ∈ V ∩X1.

Next we find μ > 0 such that the strip [κ − 2μ, κ + 2μ] + iR does not intersect
the spectrum of −A0, this is a spectral gap for −A0. Let P+ denote the spectral
projection of A0 corresponding to {z ∈ C : Re z > κ + 2μ} ∩ σ(−A0) and let
P− = I − P+ be the complementary projection. We set A± = P±A0 and observe
that A+ is nontrivial but bounded. Further, there is a constant M0 > 0 such that

|P−e−A−t|0 ≤ M0e
(κ−μ)t, |P+e

A+t|0 ≤ M0e
−(κ+μ)t, t > 0.

As the operator κ+A− belongs to MRp(R(P−)) we find a constant M1 > 0 such
that the solution of

ẇ +A−w = P−f, w(0) = P−w0,

satisfies the estimate

|e−κtw|E1(a) ≤ M1(|P−w0|γ + |e−κtP−f |E0(a)),

and M1 ≥ 1 is independent of a > 0. We may assume w.l.o.g. κ > 0. Further,
we may assume |v|0 = |P−v|0 + |P+v|0, as well as |v|0 ≤ |v|γ ≤ |v|1, by proper
definition of the norms. Observe further that there is a constant C1 ≥ 1 such that

|P+v|0 ≤ |P+v|1 ≤ C1|P+v|0,

as A+ is bounded.

(b) Suppose that u∗ is stable in Xγ for (5.1). Then for each ε > 0 there is δ > 0
such that

|v0|γ ≤ δ ⇒ |v(t)|γ ≤ ε, t ≥ 0.

Fix any η > 0 with ηM1 ≤ 1/2, and let ε = min{r, η(pκ)1/p}. Applying P− to
(5.38) and using maximal Lp-regularity of A− we obtain

|e−κtv|E1(a) ≤ |e−κtP−v|E1(a) + |e−κtP+v|E1(a)

≤ M1(|P−v0|γ + η|e−κtv|E1(a)) + |e−κtP+v|E1(a), a > 0,

and hence

|e−κtv|E1(a) ≤ 2M1(|P−v0|γ + |e−κtP+v|E1(a)), a > 0. (5.39)
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For the part e−κtP+z we use relation

∂t(e
−κtP+z(t)) = −(κ+A+)e

−κtv(t) + e−κtP+G(v(t))

and the fact that A+ is bounded to the result

|e−κtP+v|E1(a) ≤ C2(|e−κtP+v|E0(a) + η|e−κtv|E1(a)). (5.40)

Next we have

|e−κtP+v|E0(a) ≤ ε
( ∫ ∞

0

e−pκt dt
)1/p

= ε(pκ)−1/p ≤ η.

This implies with (5.39) and (5.40)

|e−κtv|E1(a) ≤ C3(|P−v0|γ + η + η|e−κtv|E1(a)), a > 0

and hence, assuming that C3η ≤ 1/2,

|e−κtv|E1(a) ≤ 2C3(η + |P−v0|γ), a > 0.

From this and Hölder’s inequality we deduce∫ ∞

t

|e−A+(t−s)P+G(v(s)|0 ds ≤ M0η e
κt

∫ ∞

t

eμ(t−s)|e−κsv(s)|1 ds

≤ C4η e
κt|e−κtv|E1(∞)

where C4 = M0/(μp
′)1/p

′
. This shows that the integral

∫∞
t

e−A+(t−s)P+G(v(s) ds
exists in X+ = R(P+) for any t ≥ 0. Moreover, its norm in X+ grows no faster than
an exponential function Ceκt. Therefore, by means of the variation of constants
formula we may write

P+v(t) = e−A+tP+v0 +

∫ t

0

e−A+(t−s)P+G(v(s)) ds

= e−A+tw0 −
∫ ∞

t

e−A+(t−s)P+G(v(s)) ds,

with

w0 = P+v0 +

∫ ∞

0

eA+sP+G(v(s)) ds.

The estimate

|eA+t
(
P+v(t)+

∫ ∞

t

e−A+(t−s)P+G(v(s)) ds
)
|X+ ≤ Cηe−(κ+μ)t

(
1+eκt|e−κtv|E1(∞)

)
shows that w0 = 0, i.e we have

P+v(t) = −
∫ ∞

t

e−A+(t−s)P+G(v(s)) ds, t ≥ 0, (5.41)
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hence |e−κtP+v(t)|0 ≤ ηM0

∫∞
t

eμ(t−s)e−κs|Pv(s)|1 ds, and so by Young’s inequal-
ity

|e−κtP+v|E0(∞) ≤
ηM0

μ
|e−κtv|E1(∞).

We may now conclude with (5.39) and (5.40) by similar arguments as above that

|e−κtv|E1(∞) ≤ C6|P−v0|γ .

Finally, with (5.41) for t = 0 we obtain the inequality

|P+v0|γ ≤ C1|P+v0|0 ≤ C1

∣∣∣ ∫ ∞

0

eA+sP+G(v(s))
∣∣∣
0
≤ C1C4η|e−κtv|E1(∞)

≤ C7|P−v0|γ .

This proves instability of u∗ for (5.1). �

Remark 5.4.2. (a) Refining the argument in the above proof, one can even show
the following stronger instability result: there exists ε0 > 0 and a sequence of initial
values u0k → u∗ in X1 and a sequence of times tk such that |u(tk, u0k)|0 ≥ ε0. This
means that u∗ is unstable in a much stronger sense than stated in Theorem 5.4.1.

(b) The proof of Theorem 5.4.1 relies heavily on the existence of a spectral gap in
the right half-plane. It is an open question whether this spectral gap is essential:
does σ(−A0) ∩ C+ �= ∅ already imply instability? The answer is yes, provided A
and F have slightly more regularity: (A,F ) ∈ C1+α, for some α > 0. This can
been shown by a result due to D. Henry [140, Theorem 5.1.5].

5.5 Normally Hyperbolic Equilibria

We return to the setting of Section 5.3 for the case that σ(A0) also contains an
unstable part, i.e., we now assume that

σ(A0) = {0} ∪ σs ∪ σu, with σs ⊂ C+, σu ⊂ C−, (5.42)

such that σu �= ∅. In this situation we can prove the following result.

Theorem 5.5.1. Let 1 < p < ∞. Suppose u∗ ∈ V ∩X1 is an equilibrium of (5.1),
and suppose that the functions (A,F ) satisfy (5.11). Suppose further that A(u∗)
has the property of maximal Lp-regularity. Let A0 be the linearization of (5.1) at
u∗. Suppose that u∗ is normally hyperbolic, which means that

(i) near u∗ the set of equilibria E is a C1-manifold in X1 of dimension m ∈ N0,

(ii) the tangent space for E at u∗ is isomorphic to N(A0),

(iii) 0 is a semi-simple eigenvalue of A0, i.e., N(A0)⊕ R(A0) = X0,

(iv) σ(A0) ∩ iR = {0}, σu := σ(A0) ∩ C− �= ∅.
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Then u∗ is unstable in Xγ . For each sufficiently small ρ > 0 there exists 0 < δ ≤ ρ
such that the unique solution u(t) of (5.1) with initial value u0 ∈ BXγ

(u∗, δ) either
satisfies

• distXγ (u(t0), E) > ρ for some finite time t0 > 0, or

• u(t) exists on R+ and converges at an exponential rate to some u∞ ∈ E in
Xγ as t → ∞.

Proof. The first assertion follows from Theorem 5.4.1, so we only need to prove
the second claim.
(a) Let P l denote the spectral projections corresponding to the spectral sets σl,
where σc = {0} and σs, σu are as in (5.42). Let X l

j = P l(Xj), l ∈ {c, s, u}, where
these spaces are equipped with the norms of Xj for j ∈ {0, 1, γ}. We may assume
that X1 is equipped with the graph norm of A0, i.e., |v|1 := |v|0 + |A0v|0 for
v ∈ X1. Since the operator −A0 generates an analytic C0-semigroup on X0, σu

is a compact spectral set for A0. This implies that Pu(X0) ⊂ X1. Consequently,
Xu

0 and Xu
1 coincide as vector spaces. In addition, since Au, the part of A0 in

Xu
0 , is invertible, we conclude that the spaces Xu

j carry equivalent norms. We set
Xu := Xu

0 = Xu
1 and equip Xu with the norm of X0, that is, X

u = (Xu, | · |0). As
in the proof of Theorem 5.3.1 we obtain the decomposition

X1 = Xc ⊕Xs
1 ⊕Xu, X0 = Xc ⊕Xs

0 ⊕Xu,

and this decomposition reduces A0 into A0 = Ac ⊕As ⊕Au, where Al is the part
of A0 in X l

0 for l ∈ {c, s, u}. It follows that σ(Al) = σl for l ∈ {c, s, u}. Moreover,
due to assumption (iii), Ac ≡ 0. In the sequel, as a norm in Xj we take

|v|j = |P cv|+ |P sv|j + |Puv| for j ∈ {0, γ, 1}. (5.43)

We remind that the spaces X l
j have been given the norm of X l

0 for l ∈ {c, u}. We

also fix constants ω ∈ (0, inf Reσ(−Au)) and M5 > 0 such that |eAut| ≤ M5e
−ωt

for all t > 0. Wlog we may take ω ≤ 1.

(b) Let Φ be the mapping obtained in step (b) of the proof of Theorem 5.3.1, and
set φl(x) := P lΦ(x) for l ∈ {s, u} and for x ∈ BXc(0, ρ0). Then

φl ∈ C1(BXc(0, ρ0), X
l
1), (φl(0), φ

′
l(0)) = 0 for l ∈ {s, u}. (5.44)

These mappings parameterize the manifold E of equilibria near u∗ via

x �→ (x+ φs(x) + φu(x) + u∗), x ∈ BXc(0, ρ0).

We may assume that ρ0 has been chosen small enough so that

|φ′
l(x)|B(Xc,Xl

1)
≤ 1, x ∈ BXc(0, ρ0), l ∈ {s, u}. (5.45)

(c) The equilibrium equation (5.16) now corresponds to the system

P cG(x+ φs(x) + φu(x)) = 0,

P lG(x+ φs(x) + φu(x)) = Alφl(x), x ∈ BXc(0, ρ0), l ∈ {s, u}.
(5.46)
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The canonical variables are

x = P cv, y = P sv − φs(x), z = Puv − φu(x)

and the canonical form of the system is given by⎧⎪⎨⎪⎩
ẋ = T (x, y, z), x(0) = x0,

ẏ +Asy = Rs(x, y, z), y(0) = y0,

ż +Auz = Ru(x, y, z), z(0) = z0.

(5.47)

Here the functions T , Rs, and Ru are given by

T (x, y, z) =P c
(
G(x+ y + z + φs(x) + φu(x))−G(x+ φs(x) + φu(x))

)
,

Rl(x, y, z) =P l
(
G(x+ y + z + φs(x) + φu(x))−G(x+ φs(x) + φu(x))

)
− φ′

l(x)T (x, y, z), l ∈ {s, u},
(5.48)

where we have used the equilibrium equations (5.46). Clearly,

(Rl(x, 0, 0), T (x, 0, 0)) = 0, x ∈ BXc(0, ρ0), l ∈ {s, u},

showing that the equilibrium set E of (5.1) near u∗ has been reduced to the set
BXc(0, ρ0)× {0} × {0} ⊂ Xc ×Xs ×Xu.

There is a unique correspondence between the solutions of (5.1) close to u∗ in Xγ

and those of (5.47) close to 0. We again call (5.47) the normal form of (5.1) near
its normally hyperbolic equilibrium u∗.

(d) The estimates for Rl and T are similar to those derived in Section 5.3, and we
have

|T (x, y, z)|, |Rl(x, y, z)|0 ≤ β(|y|1 + |z|), (5.49)

for all x, z ∈ B̄X l̃(0, ρ), l̃ ∈ {c, u}, and y ∈ B̄Xs
γ
(0, ρ) ∩X1, where ρ ≤ ρ0, r = 5ρ,

and β = C2(η + Lr).

(e) Let us assume for the moment that ρ is chosen so that 4ρ ≤ ρ0. Let u(t) =
u∗ + Φ(x(t)) + y(t) + z(t) be a solution of (5.47) on some maximal time interval
[0, t+) which satisfies distXγ

(u(t), E) ≤ ρ. Set

t1 := t1(x0, y0, z0) := sup{t ∈ (0, t+) : |u(τ)− u∗|γ ≤ 3ρ, τ ∈ [0, t]}

and suppose that t1 < t+. Assuming w.l.o.g. that the embedding constant of
X1 ↪→ Xγ is less or equal to one it follows from (5.43), (5.45) and the definition
of t1 that

|x(t)|, |y(t)|γ , |z(t)| ≤ 3ρ, t ∈ [0, t1], (5.50)

so that the estimate (5.49) holds for (x(t), y(t), z(t)), t ∈ [0, t1].
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Since E is a finite-dimensional manifold, for each u ∈ BXγ (u∗, 3ρ) there is ū ∈
E such that distXγ

(u, E) = |u−ū|γ , and by the triangle inequality ū ∈ BXγ
(u∗, 4ρ).

Thus we may write u = u∗ +Φ(x) + y + z and ū = u∗ +Φ(x̄), and therefore

ρ ≥ distXγ
(u, E) = |u− ū|γ

= |x− x̄|+ |y + φs(x)− φs(x̄)|γ + |z + φu(x)− φu(x̄)|
≥ |x− x̄|+ |z| − |φu(x)− φu(x̄)| ≥ |z|,

since x, x̄ ∈ BXc(0, ρ0) and φs is non-expansive, see (5.45). Therefore we obtain
the improved estimate |z(t)| ≤ ρ for all t ∈ [0, t1].

We begin the estimates with that for the unstable component z(t). Integrat-
ing the equation for z backwards yields

z(t) = eAu(t1−t)z(t1)−
∫ t1

t

eAu(s−t)Ru(x(s), y(s), z(s)) ds. (5.51)

With (5.49) and |z(t1)| ≤ ρ we get

|z(t)| ≤ M5e
−ω(t1−t)ρ+ βM5

∫ t1

t

e−ω(s−t)(|y(s)|1 + |z(s)|) ds

for t ∈ [0, t1]. Gronwall’s inequality yields

|z(t)| ≤ M5e
−ω1(t1−t)ρ+ βM5

∫ t1

t

e−ω1(s−t)|y(s)|1 ds

for t ∈ [0, t1], where ω1 = ω − βM5 > 0 provided β, i.e., η, r are small enough. In
particular, with M6 = M5/ω1, this inequality implies

|z|Lq(J1;X0) ≤ M6ρ+ βM6|y|Lq(J1;X1), (5.52)

where we have set J1 = (0, t1); here q ∈ [1,∞] is arbitrary at the moment. A
similar estimate holds for the time-derivative of z, namely

|ż|Lq(J1;X0) ≤ (|Au|+ β)|z|Lq(J1;X0) + β|y|Lq(J1;X1). (5.53)

Note that
|z(t+ h)− z(t)| ≤ h1/p′ |ż|Lp(J1;X0),∫ t1−h

0

|z(t+ h)− z(t)| dt ≤ h|ż|L1(J1;X0).
(5.54)

Next we consider the equation for x. We have

|x(t)| ≤ |x0|+
∫ t

0

|ẋ(s)| ds = |x0|+
∫ t

0

|T (x(s), y(s), z(s))| ds

≤ |x0|+ β(|y|L1(J1;X1) + |z|L1(J1;X0)).
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Combining this estimate with that for z we obtain

sup
t∈J1

|x(t)| ≤ |x0|+ |ẋ|L1(J1;X0),

|ẋ|Lq(J1;X0) ≤ β(M6ρ+ (1 + βM6)|y|Lq(J1;X1)).

This estimate is best possible and shows that in order to control |x(t)| we must
be able to control |y|L1(J1;X1). Note that

|x(t+ h)− x(t)| ≤ h1/p′ |ẋ|Lp(J1;X0),∫ t1−h

0

|x(t+ h)− x(t)| dt ≤ h|ẋ|L1(J1;X0).
(5.55)

Now we turn to the equation for y, the stable but infinite dimensional part of the
problem. As in the proof of Theorem 5.3.1, part (e), we obtain from (5.49)

|y|E1(t1) ≤ M1|y0|γ + βM0(|y|E1(t1) + |z|E0(t1)).

Employing (5.52) with q = p we get

|y|E1(t1) ≤ M1|y0|γ + βM0M6ρ+ βM0(1 + βM6)|y|E1(t1).

Assuming βM0(1 + βM6)) < 1/2, this yields

|y|E1(t1) ≤ 2M1|y0|γ + 2βM0M6ρ. (5.56)

Repeating the estimates leading up to (5.32) with σ = 0 we now get

|y(t)|γ ≤ C5(|y0|γ + βρ), t ∈ [0, t1], (5.57)

where C5 is a constant independent of ρ, y0 and t1. In particular, we see that
|y(t)|γ ≤ ρ for all t ∈ J1, provided |y0|γ and β, i.e., η and r are sufficiently small.

For later purposes we need an estimate for |y(t+ h)− y(t)|γ . We have

|y(t+ h)− y(t)|γ ≤ C|y(t+ h)− y(t)|1−γ
0 |y(t+ h)− y(t)|γ1

≤ Ch(1−γ)/p′ |ẏ|1−γ
Lp(J1;X0)

(|y(t+ h)|γ1 + y(t)|γ1)
(5.58)

for all t ∈ [0, t1], t+h ∈ [0, t1] with y(t+h), y(t) ∈ X1. We remind that γ = 1−1/p.
Unfortunately, this is not enough to keep |x(t)| small on J1, for this we need

to control |y|L1(J1;X1), and we cannot expect maximal regularity in L1.
To handle |y|L1(J1;X1), we are forced to use another type of maximal regular-

ity, namely that for the vector-valued Besov spaces Bα
11(J1;X), where α ∈ (0, 1).

Before stating the result we remind that

|g|Bα
11(J1;X) := |g|L1(J1;X) + [g]J1;α,X ,

[g]J1;α,X :=

∫ t1

0

h−α

∫ a−h

0

|g(t+ h)− g(t)|X dtdh/h
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defines a norm for g ∈ Bα
11(J1;X), where J1 = (0, t1). The maximal regularity

result, which is valid for all exponentially stable analytic C0-semigroups, reads as
follows: there is a constant M7 depending only on As and on α ∈ (0, 1) such that
the solution y of

ẏ +Asy = f, t ∈ J, y(0) = y0, (5.59)

satisfies the estimate

|y|Bα
11(J;X

s
1 )

≤ M7

(
|y0|DAs (α,1)

+ |f |Bα
11(J;X

s
0 )

)
.

In our situation, this estimate is a consequence of Corollary 4.5.9 as B = d/dt +
ω ∈ RH∞(Bα

11(J ;X
s
0)) for any Banach space by Theorem 4.5.4, and As − ω ∈

MRp(X
s) for ω > 0 sufficiently small implies As−ω ∈ RS(Xs) by Theorem 4.4.4.

Note that this estimate is in particular independent of J1 = (0, a), by exponential
stability of e−Ast. Furthermore we have y0 ∈ Xγ ∩ Xs = DAs(1 − 1/p, p) ↪→
DAs

(α, 1), provided α < 1− 1/p. Another parabolic estimate valid for (5.59) that
we shall make use of reads

|y|Bα
11(J;X

s
1 )

≤ M8

(
|y0|DAs (α,1)

+ |f |L1(J1;Xs
1 )
),

provided α < 1. Here the constant M8 is also independent of J1 = (0, t1). Actually
this result is elementary, it only uses analyticity of the semigroup e−Ast.

We set R1(t) = −φ′
s(x(t))T (x(t), y(t), z(t)) and recall that |φ′

s(x(t))|B(Xc,X1)

≤ 1 for t ∈ [0, t1]. Employing the L1-estimate for z, see (5.52), yields

|R1|L1(J1;X1) ≤
∫ t1

0

|T (x(s), y(s), z(s))| ds ≤ β(|y|L1(J1;X1) + |z|L1(J1;X0))

≤ βM6ρ+ β(1 + βM6)|y|L1(J1;X1).

Therefore, for the solution y1 of (5.59) with f = R1 we obtain

|y1|Bα
1∞(J1;X1) ≤ M8

(
|y0|γ + βM6ρ+ β(1 +M6β)|y|L1(J1;X1)

)
.

Next let R2(t) = P s(G(Φ(x) + y + z)−G(Φ(x))). Then by estimate (5.28)

|R2|L1(J1;X0) ≤ β(|y|L1(J1;X1) + |z|L1(J1;X0))

≤ βM6ρ+ β(1 +M6β)|y|L1(J1;X1),

and with some constant C6

|R2(t)−R2(t̄)|0 ≤ C6β
(
|y(t)− y(t̄)|1 + |z(t)− z(t̄)|+ |x(t)− x(t̄)|

)
+ C6|y(t)|1

(
|y(t)− y(t̄)|γ + |x(t)− x(t̄)|+ |z(t)− z(t̄)|

)
.

Hence we obtain the following estimate

[R2]α,0 ≤ C6β
{
[y]α,1 + [z]α,0 + [x]α,0

}
+ C6

∫ t1

0

h−α−1

∫ t1−h

0

|y(t)|1

·
{
|y(t+ h)− y(t)|γ + |x(t+ h)− x(t)|+ |z(t+ h)− z(t)|

}
dtdh,



5.5. Normally Hyperbolic Equilibria 219

where we set [ · ]α,j := [ · ]J1;α,Xj for j = 0, 1. (5.52)–(5.54) yields for each α ∈ (0, 1)

[z]α,0 ≤ |ż|L1(J1;X0) ≤ C7(ρ+ β|y|L1(J1;X1)),

with some uniform constant C7. In the same way we may estimate [x]α,0. Next we
have again by (5.52)–(5.54)

h−α−1

∫ t1−h

0

|y(t)|1|z(t+ h)− z(t)| dt ≤ h1/p′−α−1|ż|Lp(J1;X0)|y|L1(J1;X1)

≤ h1/p′−α−1C8(|y0|γ + ρ)|y|L1(J1;X1),

hence its integral over h is finite, provided α < 1 − 1/p, and similarly for the
corresponding integral containing the x-difference. Last but not least, for α <
(1− γ)(1− 1/p) we have by (5.58)

h−α−1

∫ t1−h

0

|y(t)|1|y(t+ h)− y(t)|γ dt

≤ 2Ch(1−γ)/p′−α−1|ẏ|1−γ
Lp(J1;X0)

|y|Lp(J1;X1)|y|
γ
L1(J1;X1)

≤ h(1−γ)/p′−α−1C9(|y0|γ + βρ)2−γ |y|γL1(J1;X1)

≤ h(1−γ)/p′−α−1C10

(
(|y0|γ + βρ)2 + (|y0|γ + βρ)|y|L1(J1;X1)

)
,

where we used Young’s inequality in the last line.
Collecting now all terms and choosing α = (1 − γ)/2p′ = 1/2pp′, we find a

uniform constant C11 such that for |y0|γ ≤ δ

|y|Bα
11(J1;Xs

1 )
≤ C11

(
|y0|γ + βρ+ (β + ρ+ δ)|y|Bα

11(J1;Xs
1 )

)
,

hence
|y|L1(J1;Xs

1 )
≤ |y|Bα

11(J1;Xs
1 )

≤ 2C11(|y0|γ + βρ), (5.60)

provided C11(β + ρ + δ) < 1/2. Choosing now first β, i.e., η and r small enough,
and then ρ and δ > 0, we see that |u(t1)− u∗|γ < 3ρ, a contradiction to t1 < t+.
As in (e) of the proof of Theorem 5.3.1 we may then conclude that t+ = ∞, which
means that the solution exists globally and stays in the ball B̄Xγ (u∗, 3ρ).

(f) To prove convergence, let (x(t), y(t), z(t)) be a global solution of (5.47) that
satisfies

|x(t)|, |y(t)|γ , |z(t)| ≤ 3ρ, for all t ≥ 0,

see (5.50). Similarly to the proof of Theorem 5.3.1, part (e), we obtain from (5.49)

|eωty|E1(∞) ≤ 2M1|y0|γ + 2βM0|eωtz|E0(∞), (5.61)

where ω ∈ (0, inf{Reλ : λ ∈ σ(As)}) is a fixed number and β is given in (5.30).
Repeating the estimates leading up to (5.32) we get

|eωty(t)|γ ≤ M2|y0|γ + 2βc0M0|eωtz|E0(∞), t ≥ 0. (5.62)
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From equation (5.51) we infer that

z(t) = −
∫ ∞

t

e−Au(t−s)Ru(x(s), y(s), z(s)) ds, t ≥ 0, (5.63)

since |z(t1)| ≤ ρ for each t1 > 0 and eAu(t1−t) is exponentially decaying for t1 → ∞.
Using (5.63) and the estimate for Ru from (5.49) and proceeding as in the proof
of Young’s inequality for convolution integrals one shows that

|eωtz|E0(∞) ≤ C12β
(
|eωty|E1(∞) + |eωtz|E0(∞)

)
. (5.64)

Making β sufficiently small (by decreasing η and, accordingly, r) it follows from
(5.61) and (5.64) that

|eωty|E1(∞) + |eωtz|E0(∞) ≤ C13|y0|γ .

This estimate in turn, together with (5.62), implies |y(t)|γ → 0 and |z(t)| → 0
exponentially fast as t → ∞. As in the proof of Theorem 5.3.1 part (f) we get

x(t) → x∞ := x0 +

∫ ∞

0

T (x(s), y(s), z(s)) ds.

This yields existence of the limit

u∞ = u∗ + v∞ := u∗ + lim
t→∞ v(t) = u∗ + x∞ + φs(x∞) + φu(x∞) ∈ E .

Similar arguments as in (f) of the proof of Theorem 5.3.1 yield exponential con-
vergence of u(t) to u∞. �

5.6 The Stable and Unstable Foliations

Our intention in this section is to study the behaviour of the semiflow near E in
more detail. If u∗ is normally hyperbolic, then any w ∈ E close to u∗ in Xγ will
be normally hyperbolic as well. Therefore, intuitively, at each point w ∈ E near u∗
there should be a stable manifold Ms

w and an unstable manifold Mu
w such that

Ms
w ∩Mu

w ∩B(u∗, r) = {w}, and these manifolds should depend continuously on
w ∈ B(u∗, r) ∩ E . The tangent spaces of these manifolds are expected to be the
projections with respect to the stable resp. unstable part of the spectrum of the
linearization of (5.1) at w.

We prove these assertions below, and call it the stable resp. unstable foliation
of (5.1) near u∗ ∈ E . The stable resp. unstable manifolds Ms

w and Mu
w are termed

the leaves or fibers of these foliations. They turn out to be positively and also neg-
atively invariant under the semiflow. As a consequence, the convergent solutions
are precisely those which start at initial values sitting on one of the stable fibers.
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Figure 5.1: Foliation and fibers near E .

In the normally stable case where σ(A0) ∩ C− = ∅, this implies that the stable
foliation covers a neighbourhood of u∗ in V .

The fibers of these foliations will be manifolds of class C1 as well, however,
their dependence on w ∈ E is only continuous: here we lose one degree of regularity.
This is quite natural and should be compared to the loss of regularity for the
normal field νΓ of a hypersurface Γ ⊂ Rn. We also show that in case (A,F ) ∈ Ck

the dependence on w is of class Ck−1, for each k ∈ N ∪ {∞, ω}, where ω means
real analytic.

Following the notation of the previous section, we introduce the new variables

x = P cv − ξ = P c(u− u∗)− ξ,

y = P sv − φs(ξ) = P s(u− u∗)− φs(ξ),

z = Puv − φu(ξ) = Pu(u− u∗)− φu(ξ),

where ξ ∈ BXc(0, ρ0), to obtain the following system of evolution equations in
Xc ×Xs

0 ×Xu: ⎧⎪⎨⎪⎩
ẋ = Rc(x, y, z, ξ), x(0) = x0 − ξ,

ẏ +Asy = Rs(x, y, z, ξ), y(0) = y0 − φs(ξ),

ż +Auz = Ru(x, y, z, ξ), z(0) = z0 − φu(ξ),

(5.65)

with x0 = P cv0, y0 = P sv0, z0 = Puv0, and

Rc(x, y, z, ξ) = P cG(x+ y + z + ξ + φ(ξ)),

Rl(x, y, z, ξ) = P lG(x+ y + z + ξ + φ(ξ))−Alφl(ξ)
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for l ∈ {s, u}. Using the equilibrium equations (5.24), the expressions for Rl can
be rewritten as

Rl(x, y, z, ξ) = P l
(
G(x+ y + z + ξ + φ(ξ))−G(ξ + φ(ξ))

)
, (5.66)

where l ∈ {c, s, u}. Although the term P cG(ξ + φ(ξ)) in Rc is zero, see (5.24), we
include it here for reasons of symmetry. Equation (5.66) immediately yields(

Rc(0, 0, 0, ξ), Rs(0, 0, 0, ξ), Ru(0, 0, 0, ξ)
)
= 0 for all ξ ∈ BXc(0, ρ0),

showing that the equilibrium set E of (5.1) near u∗ has been reduced to the set
{0} × {0} × {0} ×BXc(0, ρ0) ⊂ Xc ×Xs

1 ×Xu ×Xc.

Observe also that there is a unique correspondence between the solutions of (5.1)
close to u∗ in Xγ and those of (5.65) close to 0. As u∞ := u∗ + ξ + φ(ξ) ∈ E will
be the limit of u(t) in Xγ as t → ∞, we call system (5.65) the asymptotic normal
form of (5.1) near its normally hyperbolic equilibrium u∗.

6.1 The Stable Foliation
To motivate our approach for the construction of the stable foliation we formally
define a map Hs according to

Hs((x, y, z), (y0, ξ))(t) =

⎡⎢⎢⎣
x(t) +

∫∞
t

Rc(x(τ), y(τ), z(τ), ξ) dτ

y(t)− Ls(Rs(x, y, z, ξ), y0 − φs(ξ))

z(t) +
∫∞
t

e−Au(t−τ)Ru(x(τ), y(τ), z(τ), ξ) dτ

⎤⎥⎥⎦ ,

(5.67)

where t > 0. Here w = Ls(f, y0) denotes the unique solution of the problem

ẇ(t) +Asw(t) = f(t), t > 0, w(0) = y0.

Obviously, we have Hs(0, 0) = 0. Moreover, Hs will be of class C1 w.r.t. to the
variables (x, y, z, y0), but in general only continuous in ξ. The derivative of Hs

w.r.t. (x, y, z) at (0,0) is given by D(x,y,z)Hs(0, 0) = I, and hence the implicit
function theorem formally applies and yields a map

Λs : (y0, ξ) �→ (x, y, z) (5.68)

which is well-defined near 0, such that Hs(Λ
s(y0, ξ), (y0, ξ)) = 0. Λs will be con-

tinuous in (y0, ξ), and of class C1 w.r.t. y0. Given (x, y, z) = Λs(y0, ξ), we set

x0 :=−
∫ ∞

0

Rc(x(τ), y(τ), z(τ), ξ) dτ + ξ,

z0 :=−
∫ ∞

0

eAuτRu(x(τ), y(τ), z(τ), ξ) dτ + φu(ξ).

(5.69)
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For (x, y, z) = Λs(y0, ξ) given, the first component of Hs yields

ẋ(t) = Rc(x(t), y(t), z(t), ξ), t > 0,

the second component implies

ẏ(t) +Asy(t) = Rs(x(t), y(t), z(t), ξ), t > 0, y(0) = y0 − φs(ξ),

and the third one leads to

ż(t) +Auz(t) = Ru(x(t), y(t), z(t), ξ), t > 0.

Moreover, due to (5.69), the initial values of x and z are given by

x(0) = x0 − ξ, z(0) = z0 − φu(ξ).

Assuming, in addition, that (x(t), y(t), z(t)) converges to (0, 0, 0) as t → ∞, we
conclude that

u(t) = u∗ + x(t) + y(t) + z(t) + ξ + φ(ξ), t > 0,

is a solution of (5.1) with limt→∞ u(t) = u∞ := u∗ + ξ + φ(ξ) ∈ E . The map

λs : (y0, ξ) �→ u(0) = u∗ + x(0) + y(0) + z(0) + ξ + φ(ξ) (5.70)

yields a foliation of the stable manifold Ms near u∗, and

Ms
ξ := {λs(y0, ξ) : y0 ∈ BXs(0, r)} (5.71)

are the fibers over BXc(0, r), or equivalently over E near u∗. We note that the fibers
are C1-manifolds, but they will depend only continuously on ξ, or equivalently on
E .

The strategy of our approach can be summarized as follows: given a base point
u∗+ξ+φ(ξ) on the manifold E , and an initial value y0 ∈ Xs

γ , we determine with the
help of the implicit function theorem an initial value u0 and a solution u(t) such
that u(t) converges to the base point u∗+ ξ+φ(ξ) exponentially fast. Exponential
convergence will be obtained by setting up the implicit function theorem in a space
of exponentially decaying functions.

After these heuristic considerations we can state our first main result, em-
ploying the notation introduced above.

Theorem 5.6.1. Consider (5.1) under the assumption (5.11), and let u∗ ∈ E be
a normally hyperbolic equilibrium. Suppose further that A(u∗) has the property of
maximal Lp-regularity. Then there is a number r > 0 and a continuous map

λs : BXs
γ
(0, r)×BXc(0, r) → Xγ with λs(0, 0) = u∗,
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the stable foliation, such that the solution u(t) of (5.1) with initial value λs(y0, ξ)
exists on R+ and converges to u∞ := u∗ + ξ + φ(ξ) in Xγ exponentially fast as
t → ∞. The image of λs defines the stable manifold Ms of (5.1) near u∗.

Furthermore, for fixed ξ ∈ BXc(0, r), the function

λs
ξ : BXs

γ
(0, r) → Xγ , given by λs

ξ(y0) = λs(y0, ξ),

defines the fibers Ms
ξ := λs

ξ(BXs
γ
(0, r)) of the foliation. Moreover, we have

(i) an initial value u0 ∈ Xγ near u∗ belongs to Ms if and only if the solution u(t)
of (5.1) exists globally on R+ and converges to some u∞ ∈ E exponentially
fast as t → ∞;

(ii) λs
ξ is of class C1, and the derivative Dy0

λs is continuous, jointly in (y0, ξ);

(iii) the fibers are C1-manifolds which are invariant under the semiflow generated
by (5.1);

(iv) the tangent space of Ms
u∞ at u∞ ∈ E is precisely the projection of the stable

part of the linearization of (5.1) at u∞;

(v) if u∗ is normally stable, then Ms forms a neighbourhood of u∗ in Xγ .

Proof. For fixed σ ∈ (0, ω] we define the function spaces

Fl
0(σ) : = {f : eσtf ∈ Lp(R+;X

l
0)},

Fl
1(σ) : = {w : eσtw ∈ H1

p (R+;X
l
0) ∩ Lp(R+;X

l
1)}, l ∈ {c, s, u},

equipped with their natural norms. Then we set

Y := Y(σ) := Fc
1(σ)× Fs

1(σ)× Fu
1 (σ), Z := Xs

γ ×Xc,

and we define Hs : BY(0, ρ) × BZ(0, ρ) → Y by (5.67). Observe that Hs is the
composition of the substitution operator

R(x, y, z, ξ) = [(Rc, Rs, Ru)(x+ y + z + ξ + φ(ξ)), φs(ξ)]
T,

which maps BY(0, ρ)×BZ(0, ρ) into Fc
0(σ)×Fs

0(σ)×Fu
0 (σ)×Xs

γ , and the bounded
linear operator

L(x, y, z, y0, ξ, R1, R2, R3, R4) =

⎡⎢⎢⎣
x(t) +

∫∞
t

R1(τ), dτ

y(t)− Ls(R2, y0 −R4)

z(t) +
∫∞
t

e−Au(t−τ)R3(τ) dτ

⎤⎥⎥⎦ ,

which maps

Y× Z × Fc
0(σ)× Fs

0(σ)× Fu
0 (σ)×Xs

γ into Y.
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In order to see that the integral operator [R1 �→
∫∞
t

R1(τ) dτ ] maps Fc
0(σ) into

Fc
1(σ), we set

(KR1)(t) :=

∫ ∞

t

R1(τ) dτ, R1 ∈ Fc
0(σ).

Clearly, eδt(Kg)(t) =
∫∞
t

eδ(t−τ)eδτg(τ) dτ, and Young’s inequality for convolution
integrals readily yields

K ∈ B
(
Fc
0(σ),F

c
1(σ)).

Similar arguments also apply for the term
∫∞
t

e−Au(t−τ)R3(τ) dτ .
As G is of class C1, it is not difficult to see that R is C1 with respect to

the variables (x, y, z, y0), but in general only continuous with respect to ξ. This,
in turn, implies that Hs is of class C1 w.r.t. (x, y, z, y0), and continuous in ξ. In
addition, as (G(0), G′(0)) = 0, we obtain

Hs(0, 0) = 0, D(x,y,z)Hs(0, 0) = IY.

Therefore, by the implicit function theorem, there is a radius r > 0 and a contin-
uous map Λs : BZ(0, r) → Y such that

Hs(Λ
s(y0, ξ), (y0, ξ)) = 0, for all (y0, ξ) ∈ BZ(0, r),

and there is no other solution of Hs((x, y, z), (y0, ξ)) = 0 in the ball BY(0, r) ×
BZ(0, r). Moreover, Λs is also C1 w.r.t. y0, and one shows that

Dy0Λ
s(0, 0)w0 = [0, e−tAsw0, 0]

T. (5.72)

We may now continue as indicated in the heuristic considerations preceding The-
orem 5.6.1 to define the stable manifold Ms and their fibers Ms

ξ near u∗, see
(5.70)–(5.71). Clearly, the fibers are positively and negatively invariant under the
semiflow, as (5.1) is invariant concerning time-translations. As λs

ξ is of class C1,

it is clear that the fibers are C1-manifolds, parameterized over Xs
γ . In fact, the

fibers are diffeomorphic, which can be seen by interchanging the roles of u∗ and
u∞ = u∗ + ξ + φ(ξ).

It follows from (5.72) that Dy0
λs(0, 0) = IXs

γ
. Interchanging the roles of u∗

and u∞, it becomes clear that the tangent space of the fiber Ms
ξ at 0 is precisely

the projection of the stable part of the linearization A∞ = A(u∞)+[A′(u∞)·]u∞−
F ′(u∞) of (5.1) at u∞ ∈ E , yielding assertion (iv).

To obtain the characterization of Ms, observe that we proved that there
are balls BXγ

(u∗, r0) and BXγ
(u∗, r1) such that any solution of (5.1) starting in

BXγ
(u∗, r0) and staying near E stays in BXγ

(u∗, r1) and converges to an equilib-
rium u∞ ∈ E exponentially fast. This implies that its initial value must belong to
Ms by uniqueness of Λs.

If u∗ ∈ E is normally stable, then there are balls BXγ
(u∗, r0) and BXγ

(u∗, r1)
such that any solution of (5.1) starting in BXγ

(u∗, r0) stays in BXγ
(u∗, r1) and

converges to an equilibrium u∞ ∈ E exponentially fast. This implies thatMs forms
a neighbourhood of u∗ in Xγ , thus establishing assertion (v) of the theorem. �
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6.2 The Unstable Foliation
Our second main result concerning the unstable foliation of E reads as follows.

Theorem 5.6.2. Consider (5.1) under the assumption (5.11), and let u∗ ∈ E be
a normally hyperbolic equilibrium. Suppose further that A(u∗) has the property of
maximal Lp-regularity. Then there is a number r > 0 and a continuous map

λu : BXu(0, r)×BXc(0, r) → Xγ with λu(0, 0) = u∗,

the unstable foliation, such that the solution u(t) of (5.1) with initial value
λu(y0, ξ) exists on R− and converges to u∞ := u∗ + ξ + φ(ξ) in Xγ exponen-
tially fast as t → −∞. The image of λu defines the unstable manifold Mu of
(5.1) near u∗.
Furthermore, for fixed ξ ∈ BXc(0, r), the function

λu
ξ : BXu(0, r) → Xγ , given by λu

ξ (y0) = λu(y0, ξ),

defines the fibers Mu
ξ := λu

ξ (BXu(0, r)) of the foliation. Moreover, we have

(i) an initial value u0 ∈ Xγ near u∗ belongs to Mu if and only if the solution u(t)
of (5.1) exists globally on R− and converges to some u∞ ∈ E exponentially
fast as t → −∞;

(ii) λu
ξ is of class C1, and the derivative Dy0

λu is continuous, jointly in (y0, ξ);

(iii) the fibers are C1-manifolds which are invariant under the semiflow generated
by (5.1);

(iv) the tangent space of Mu
u∞ at u∞ ∈ E is precisely the projection of the unstable

part of the linearization of (5.1) at u∞.

Proof. For fixed σ ∈ (0, ω] we define the function spaces

Fl
0(σ) : = {f : e−σtf ∈ Lp(R−;X l

0)},
Fl
1(σ) : = {w : e−σtw ∈ H1

p (R−;X l
0) ∩ Lp(R−;X l

1)}, l ∈ {c, s, u},

equipped with their natural norms. We set

Y := Y(σ) := Fc
1(σ)× Fs

1(σ)× Fu
1 (σ), Z := Xu

γ ×Xc,

and we define Hu : BY(0, ρ)×BZ(0, ρ) → Y by

Hu((x, y, z), (z0, ξ))(t) =

⎡⎢⎢⎢⎣
x(t)−

∫ t

−∞ Rc(x(τ), y(τ), z(τ), ξ) dτ

y(t)−
∫ t

−∞ e−As(t−τ)Rs(x(τ), y(τ), z(τ), ξ) dτ

z(t)− Lu(Ru(x, y, z, ξ), z0 − φu(ξ))

⎤⎥⎥⎥⎦ ,

where t < 0 and w = Lu(f, z0) denotes the unique solution of the backward
problem

ẇ(t) +Auw(t) = f(t), t ≤ 0, w(0) = z0.
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Again, we have Hu(0, 0) = 0, Hu is of class C1 w.r.t. (x, y, z, z0), but only contin-
uous in ξ, and D(x,y,z)Hu(0, 0) = I. As in the previous proof, the implicit function
theorem yields a map Λu : (z0, ξ) �→ (x, y, z) such that Hu(Λ

u(z0, ξ), (z0, ξ)) = 0.
Then

λu : (z0, ξ) �→ u(0) = u∗ + v(0)

yields the foliation of the unstable manifold Mu near u∗, and

Mu
ξ := {λu(z0, ξ) : z0 ∈ BXu(0, r)}

are the fibers over BXc(0, r), or equivalently over E near u∗. Note that the fibers
Mu

ξ are C1-manifolds, but they depend only continuously on ξ or equivalently on
E . The remainder of the proof then follows along similar lines as that of Theorem
5.6.1 and is therefore left to the interested reader. �

Note that the fibers can be extended to global fibers following the backward
or forward flow as long as it exists. Laterally, i.e., along the direction of E , the
foliation can be extended up to equilibria u# ∈ E which are no longer normally
hyperbolic.

Concerning regularity of the foliation we note that the implicit function the-
orem yields the following result.

Corollary 5.6.3. Under the assumptions of Theorem 5.6.1 and Theorem 5.6.2 the
following regularity result is valid: if

(A,F ) ∈ Ck(V,B(X1, X0)×X0),

then the foliations satisfy λl ∈ Ck−1 and the fibers λl
ξ are of class Ck, for all

k ∈ N ∪ {∞, ω}, where l ∈ {s, u} and Cω means real analytic.

Proof. It follows from the regularity assumptions that G ∈ Ck(V,X0). We can
then conclude from the second line in (5.46) that φ ∈ Ck(BXc(0, ρ0), X

s
1 ⊕ Xu

1 ).
Indeed, for this it suffices to observe that φ is implicitly defined by the second line
in (5.46), as As and Au are invertible. The assertions follow now from the proof
of Theorems 5.6.1 and 5.6.2. �

5.7 Compactness and Long-Time Behaviour

7.1 Relative Compactness of Orbits
Let u0 ∈ Vμ be given. Suppose that (A,F ) satisfies (5.2) and A(v) has maximal
Lp-regularity for all v ∈ Vμ and for some μ ∈ (1/p, 1). In the sequel we assume
that the unique solution of (5.1) satisfies u ∈ Cb([τ, t+(u0));Vμ ∩Xγ,μ̄) for some
τ ∈ (0, t+(u0)), 1 ≥ μ̄ > μ and

distXγ,μ
(u(t), ∂Vμ) ≥ η > 0 (5.73)
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for all t ∈ J(u0) = [0, t+(u0)). Suppose furthermore that the embedding

Xγ,μ̄ ↪→ Xγ,μ is compact. (5.74)

It follows from the boundedness of u(t) in Xγ,μ̄ that the set {u(t)}t∈J(u0) ⊂ Vμ

is relatively compact in Xγ,μ. (5.73) implies that V := {u(t)}t∈J(u0)
is a compact

subset of Vμ. Applying Theorem 5.1.1 we find for each v ∈ V numbers ε(v) > 0
and δ(v) > 0 such that BXγ,μ

(v, ε(v)) ⊂ Vμ and all solutions of (5.1) which start
in BXγ,μ

(v, ε(v)) have the common interval of existence [0, δ(v)]. Therefore, the
set ⋃

v∈V
BXγ,μ

(v, ε(v))

is an open covering of V and by compactness of V there exist N ∈ N and vk ∈ V,
k = 1, . . . , N , such that

U :=

N⋃
k=1

BXγ,μ
(vk, εk) ⊃ V = {u(t)}t∈J(u0)

⊃ {u(t)}t∈J(u0),

where εk := ε(vk), k = 1, . . . , N . To each of these balls corresponds an interval of
existence [0, δk], δk := δ(vk) > 0, k = 1, . . . , N . Consider the problem

v̇ +A(v)v = F (v), s > 0, v(0) = u(t), (5.75)

where t ∈ J(u0) is fixed and let δ := min{δk, k = 1, . . . , N}. Since u(t) ⊂ U , t ∈
J(u0), the solution of (5.75) exists at least on the interval [0, δ]. By uniqueness it
holds that v(s) = u(t+ s) if t+ s ∈ J(u0), t ∈ J(u0), s ∈ [0, δ], hence sup J(u0) =
+∞, i.e., the solution exists globally.

By continuous dependence on the initial data, the solution operator G1 :
U → E1,μ(0, δ), which assigns to each initial value u1 ∈ U the unique solution
v(·, u1) ∈ E1,μ(0, δ), is continuous. Furthermore,

(δ/2)1−μ|v|E1(δ/2,δ) ≤ |v|E1,μ(δ/2,δ) ≤ |v|E1,μ(0,δ), μ ∈ (1/p, 1),

wherefore the mapping G2 : E1,μ(0, δ) → E1(δ/2, δ) with v �→ v is continuous.
Finally

|v(δ)|Xγ
≤ |v|Cb((δ/2,δ);Xγ) ≤ C(δ)|v|E1(δ/2,δ),

hence the mapping G3 : E1(δ/2, δ) → Xγ with v �→ v(δ) is continuous. This
yields the continuity of the composition G = G3 ◦ G2 ◦ G1 : U → Xγ , whence
G({u(t)}t≥0) = {u(t + δ)}t≥0 is relatively compact in Xγ , since the continuous
image of a relatively compact set is relatively compact. Since the solution has
relatively compact range in Xγ , it is an easy consequence that the ω-limit set

ω(u0) := {v ∈ Vμ ∩Xγ : ∃ tn ↗ ∞ s.t. u(tn;u0) → v in Xγ} ⊂ Xγ

is nonempty, connected and compact. We summarize the preceding considerations
in the following
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Theorem 5.7.1. Suppose that A(v) has maximal Lp-regularity for all v ∈ Vμ and let
(5.2) as well as (5.74) hold for some fixed μ ∈ (1/p, 1) and some fixed μ̄ ∈ (μ, 1].
Assume furthermore that the solution u(t) of (5.1) satisfies

u ∈ Cb([τ, t+(u0));Vμ ∩Xγ,μ̄)

for some τ ∈ (0, t+(u0)), and

distXγ,μ(u(t), ∂Vμ) ≥ η > 0

for all t ∈ J(u0). Then the solution exists globally, and for each δ > 0 the orbit
{u(t)}t≥δ is relatively compact in Xγ . If, in addition, u0 ∈ Vμ∩Xγ , then {u(t)}t≥0

is relatively compact in Xγ .

7.2 Long-Time Behaviour of Solutions
We want to extend the local result on the qualitative behaviour near a nor-
mally stable or normally hyperbolic equilibrium to a global one, under the slightly
stronger assumption (A,F ) ∈ C1(Vμ;B(X1, X0) ×X0) for some μ ∈ (1/p, 1) and
provided that (5.74) holds. Assume that u ∈ Cb([τ,∞);Xγ,μ̄) is a global solution
to (5.1), satisfying

distXγ,μ(u(t), ∂Vμ) ≥ η > 0

for all t ≥ 0. The mapping (t, u1) �→ S(t)u1, defined by S(t)u1 = u(t, u1), t ≥
0, u1 ∈ Vμ,γ defines a local semiflow in Vμ∩Xγ . Let Φ ∈ C(Vμ∩Xγ ;R) be a strict
Lyapunov function for {S(t)}t≥0, which means that the function t �→ Φ(S(t)u0)
is strictly decreasing along non-constant solutions. Theorem 5.7.1 yields that the
orbit {u(t)}t≥0 is relatively compact in Xγ . Hence the ω-limit set

ω(u0) = {v ∈ Vμ,γ : ∃ tn ↗ +∞ s.t. S(tn)u0 → v in Xγ , as n → ∞} (5.76)

is nonempty, compact, and connected. Moreover, as Φ is a strict Lyapunov func-
tional, dist (S(t)u0, ω(u0)) → 0 in Xγ as t → ∞ and ω(u0) ⊂ E ⊂ Vμ ∩X1, hence
the set of equilibria is nonempty. Let u∗ ∈ ω(u0), then there exists a sequence
tn ↗ +∞ such that S(tn)u0 → u∗ in Xγ as n → ∞. Assuming that u∗ is normally
hyperbolic and tn is large enough, Theorems 5.3.1 and 5.5.1 yield convergence of
S(t)u0 to some equilibrium u∞ ∈ Vμ,γ as t → ∞. Uniqueness of the limit finally
implies u∞ = u∗. We obtain the following result.

Theorem 5.7.2. Let p ∈ (1,∞), μ ∈ (1/p, 1), μ̄ ∈ (μ, 1], Vμ ⊂ Xγ,μ be open.
Assume that (A,F ) ∈ C1(Vμ;B(X1, X0) × X0), and that the embedding Xγ,μ̄ ↪→
Xγ,μ is compact. Suppose furthermore that u ∈ Cb([τ,∞);Vμ ∩ Xγ,μ̄) is a global
solution to (5.1), satisfying

distXγ,μ
(u(t), ∂Vμ) ≥ η > 0, for all t ≥ 0, (5.77)

and let Φ ∈ C(Vμ ∩Xγ ;R) be a strict Lyapunov function for (5.1).
Then the ω-limit set defined by (5.76) is nonempty, compact, connected, and

ω(u0) ⊂ E. If, in addition, there exists u∗ ∈ ω(u0) which is normally stable or
normally hyperbolic, then limt→∞ u(t) = u∗ in Xγ .
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This is the optimal result on the asymptotic behaviour in the presence of a
Lyapunov functional. In practice, it remains to verify (5.77), which is trivial in
case Vμ = Xγ,μ, and to prove boundedness of u in Xγ,μ̄. This depends on the
problem in question.



Part III

Linear Theory



Chapter 6

Elliptic and Parabolic Problems

In this chapter we prove maximal Lp-regularity for various linear parabolic and
elliptic problems. These results will be crucial for our study of quasilinear parabolic
problems, including those introduced in Chapter 1. The proofs are based on the
vector-valued Fourier multiplier theorems and H∞-calculi developed in Chapter 4,
as well as on arguments involving perturbations, domain transformations, and
localizations.

6.1 Elliptic and Parabolic Problems on Rn

We begin with the constant coefficient case.

1.1 Kernel Estimates
Let A(ξ) denote a B(E)-valued polynomial on Rn which is homogeneous of degree
m ∈ N, i.e.,

A(ξ) =
∑

|α|=m

aαξ
α, ξ ∈ Rn,

where we use multi-index notation, and aα ∈ B(E), E a Banach space. We want
to consider the vector-valued partial differential equation

λu(x) +A(D)u(x) = f(x), x ∈ Rn, (6.1)

where the function f is given, λ ∈ C, and D = −i(∂1, . . . , ∂n). The purpose of this
subsection is the derivation of a kernel representation for the solution u(x) of the
form

u(x) =

∫
Rn

γλ(x− x′)f(x′) dx′, x ∈ Rn, (6.2)

as well as estimates for the kernel γλ.
Homogeneity of A of degree m implies that γλ must be of the form

γλ(x) = |λ| n
m−1γθ(|λ|1/mx), x ∈ Rn, arg(λ) = θ, λ �= 0. (6.3)
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Here γθ denotes the fundamental solution of (6.1), i.e., it satisfies the equation

eiθγθ +A(D)γθ = δ0

in the sense of distributions.
In fact, a formal argument, which will become precise later, is as follows.

Taking Fourier transforms we obtain for the solution of (6.1) the expression

Fu(ξ) = (λ+A(ξ))−1Ff(ξ), ξ ∈ Rn.

Taking inverse transforms this yields

u(x) = (2π)−n

∫
Rn

(λ+A(ξ))−1Ff(ξ)eix·ξ dξ.

By the convolution theorem we get

γλ(x) = (2π)−n

∫
Rn

(λ+A(ξ))−1eix·ξ dξ,

which after the scaling ξ = |λ|1/mξ′ leads to the representation (6.3) with

γθ(x) = (2π)−n

∫
Rn

(eiθ +A(ξ′))−1eix·ξ
′
dξ′, (6.4)

where θ = arg(λ).
For all this to make sense we surely must know that λ+A(ξ) is invertible for

all ξ ∈ Rn and for all λ in question. This naturally leads to the basic assumption
we make here, namely that of parameter-ellipticity.

Definition 6.1.1. The B(E)-valued polynomial A(ξ) is called parameter-elliptic if
there is an angle φ ∈ [0, π) such that the spectrum σ(A(ξ)) of A(ξ) satisfies

σ(A(ξ)) ⊂ Σφ for all ξ ∈ Rn, |ξ| = 1. (6.5)

We call
φA := inf{φ : (6.5) holds} = sup

|ξ|=1

| arg σ(A(ξ))|

angle of ellipticity of A. A(ξ) is called normally elliptic if it is parameter-elliptic
with angle φA < π/2. We then call the differential operator A(D) parameter-
elliptic resp. normally elliptic as well.

Some remarks are in order.

Remark 6.1.2. (i) It is easy to see that parameter-ellipticity as well as φA are
invariant under orthogonal transformations, but even more is true. Consider a co-
ordinate transformation of the form Tu(x) = u(Qx) where Q ∈ Rn×n is invertible.
Then the transformed differential operator will be

AQ(D) := T−1A(D)T = A(QTD).
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Hence with A(ξ) also AQ(ξ) = A(QTξ) is parameter-elliptic, and φAQ
= φA.

(ii) Note that m is necessarily even in case φA < π/2. Indeed,

A(−ξ) = −A(ξ), ξ ∈ Rn,

in case m is odd, and hence

σ(A(ξ)) ⊂ Σφ ∩ −Σφ = ∅, |ξ| = 1,

which is impossible.

(iii) On the other hand, there are parameter-elliptic operators of odd order, e.g.
for n = 1, m = 1, A(D) = iD is parameter-elliptic with φA = π/2.

(iv) Recall that the symbol A(ξ) =
∑

|α|=m aαξ
α is called elliptic if 0 �∈ σ(A(ξ))

for all ξ ∈ Rn, ξ �= 0. Obviously, each parameter-elliptic symbol is also elliptic,
but not conversely. A famous counterexample is the Cauchy-Riemann operator
A(ξ) = ξ1 + iξ2 with n = 2, E = C; for this operator we have ∪|ξ|=1σ(A(ξ)) = S1,
the unit sphere in C.

If E is a Hilbert space, there is another notion of ellipticity.

Definition 6.1.3. The B(E)-valued polynomial A(ξ) is called strongly elliptic if
there is a constant c > 0 such that

Re(A(ξ)v|v)E ≥ c|ξ|m|v|2E , ξ ∈ Rn, v ∈ E.

The largest such c will be called the ellipticity constant cA of A(D). The differential
operator A(D) is then also called strongly elliptic.

Also for this notion of ellipticity some remarks are in order.

Remark 6.1.4. (i) Observe that also strong ellipticity as well as cA are invariant
under orthogonal transformations. More generally, strong ellipticity is invariant
also under general coordinate transformations, but the constant cA does not have
this property.

(ii) To understand the condition of strong ellipticity, recall that the numerical
range n(B) of an operator B ∈ B(E) is defined by

n(B) := {z ∈ C : z = (Bv|v)E for some v ∈ E, |v|E = 1}.

It is easy to see that σ(B) ⊂ n(B), and that n(B) ⊂ B̄C(0, |B|) holds. Therefore,
A is strongly elliptic if the numerical range of A(ξ) is contained in the half-space
Re z ≥ c > 0 for each ξ ∈ Rn, |ξ| = 1. Consequently, if A is strongly elliptic then

σ(A(ξ)) ⊂ n(A(ξ)) ⊂ Σφ, ξ ∈ Rn, |ξ| = 1.
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In particular, every strongly elliptic polynomial A is parameter-elliptic with

φA ≤ sup{|arg(A(ξ)v|v)E | : v ∈ E, |v|E = 1, ξ ∈ Rn, |ξ| = 1} < π/2,

hence even normally elliptic.

(iii) The class of strongly elliptic differential operators contains some of the most
common elliptic operators arising in applications.

Now assume that A is parameter-elliptic with angle of ellipticity φA and let
φ > φA. We are going to justify the formal procedure from above for |θ| ≤ π − φ.
For this purpose we consider the Fourier integral

γε
θ(x) = (2π)−n

∫
Rn

(eiθ +A(ξ′))−1eix·ξ
′
e−ε|ξ′| dξ′, (6.6)

with ε > 0 fixed. Note that this integral is absolutely convergent due to the
additional exponential factor, in contrast to (6.4). For the moment we restrict
attention to the case n ≥ 3. We will comment at the end of this section on n = 1, 2.
Fix x ∈ Rn, x �= 0, and choose a rotation Q such that Qx = re1, where r = |x|
and e1 means the first unit vector in Rn. By means of the variable transformation

Qξ′ = (η, sζ), η ∈ R, s > 0, ζ ∈ Sn−2,

where Sk denotes the k-dimensional unit sphere, we obtain the following represen-
tation of γε

θ .

γε
θ(x) =

1

(2π)n

∫ ∞

0

sn−2

∫
Sn−2

∫
R

(eiθ +A(QT(η, sζ)))−1ei|x|ηe−ε(η2+s2)1/2 dηdζds.

Next we employ the scaling η = (1 + s)z for η and observe that by homogeneity
of A we have

A(QT(η, sζ)) =
m∑

k=0

ηm−ksk
∑
|β|=k

bβζ
β

= (1 + s)m
m∑

k=0

zm−k
(
1− 1

1 + s

)k

bk(ζ)

= (1 + s)mP (z, ζ, 1/(1 + s)),

for some bβ ∈ B(E), bk(ζ) =
∑

|β|=k bβζ
β . Then we set

H(z, ζ, σ, θ) = (2π)−n(eiθσm + P (z, ζ, σ)),

and finally obtain the representation

γε
θ(x) =

∫ ∞

0

sn−2

(1 + s)m−1

[ ∫
Sn−2

hε(s, ζ, θ, r)dζ
]
ds, (6.7)
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with

hε(s, ζ, θ, r) =

∫
R

H(z, ζ, 1/(1 + s), θ)−1eir(1+s)ze−ε(1+s)[z2+(s/(1+s))2]1/2 dz.

The function H(z, ζ, σ, θ) is a B(E)-valued polynomial in z, with coefficients de-
pending continuously on p = (ζ, σ, θ) ∈ P := Sn−2 × [0, 1] × [−π + φ, π − φ], a
compact set.

By parameter-ellipticity, the set of z ∈ C such that H(z, p) is not invertible
is compact and does not contain real values. This set is upper-semicontinuous in
p, hence the set of singularities of H(·, p)−1 is a compact set not intersecting the
real line, uniformly for p ∈ P . Since H−1 is holomorphic in z we may therefore
deform the path of integration to a contour Γ of the form

Γ := {z = t+ iκ(1 + |t|) : t ∈ R},

where κ > 0 is small and independent of p ∈ P . Then we obtain by Cauchy’s
theorem

hε(s, ζ, θ, r) =

∫
Γ

H(z, ζ, 1/(1 + s), θ)−1eir(1+s)ze−ε(1+s)[z2+(s/(1+s))2]1/2 dz.

Since H−1 is bounded on Γ, and

|eir(1+s)z| = e−κr(1+s)(1+|t|),

the integral defining hε is absolutely convergent and

|hε(s, ζ, θ, r)| ≤ Ce−κr(1+s)/[r(1 + s)],

independently of ε > 0. Hence we may pass to the limit ε → 0 to the result

γθ(x) =

∫ ∞

0

sn−2

(1 + s)m−1

[ ∫
Sn−2

h(s, ζ, θ, r)dζ
]
ds (6.8)

with

h(s, ζ, θ, r) =

∫
Γ

H(z, ζ, 1/(1 + s), θ)−1eir(1+s)z dz.

Contracting the contour Γ in the set {Im z > κ} ⊂ C into a smooth Jordan curve
Γ0 surrounding the singularities of H−1 in the upper half-plane, we finally get the
following representation for h.

h(s, ζ, θ, r) =

∫
Γ0

H(z, ζ, 1/(1 + s), θ)−1eir(1+s)z dz. (6.9)

This implies the estimate

|h(s, ζ, θ, r)| ≤ Ce−κ(1+s)r, s > 0, ζ ∈ Sn−2, |θ| ≤ π − φ (6.10)

for h. We summarize these considerations in
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Theorem 6.1.5. Let n,m ∈ N, E a Banach space, aα ∈ B(E), and suppose

A(ξ) =
∑

|α|=m

aαξ
α, ξ ∈ Rn,

is parameter-elliptic with angle of ellipticity φA < π. Then for each φ > φA there
is a constant Cφ such that the solution γθ(x) of

eiθu+A(D)u = δ0

satisfies the estimate

|γθ(x)| ≤ Cφp0(|x|), x ∈ Rn, x �= 0, |θ| ≤ π − φ, (6.11)

where p0 is given by

p0(r) =

∫ ∞

0

sn−2

(1 + s)m−1
e−κr(1+s) ds,

for some κ > 0. The function p0 : (0,∞) → (0,∞) is completely monotone, and
satisfies ∫ ∞

0

rn+ρ−1p0(r) dr < ∞ if and only if ρ > −m.

Note that we can estimate p0 further by

p0(r) ≤

⎧⎨⎩
ce−κr if n < m;
ce−κr log(2 + 1/r) if n = m;

c
rn−m e−κr if n > m.

Together with (6.8) and (6.3), Theorem 6.1.5 leads to a Poisson estimate for the
kernel γλ from (6.2), i.e., for each φ > φA there is a constant Cφ > 0 such that

|γλ(x)| ≤ Cφ|λ|
n
m−1p0(|λ|1/m|x|), x ∈ Rn, | arg λ| ≤ π − φ. (6.12)

However, even more is true. Applying the differential operator Dβ to (6.6) and
employing the same arguments as above we obtain

Corollary 6.1.6. In the situation of Theorem 6.1.5 for each k ∈ N0, we have in
addition

|Dβγθ(x)| ≤ Cφ,kpk(|x|), x ∈ Rn, x �= 0, |θ| ≤ π − φ, |β| = k,

where pk is given by

pk(r) =

∫ ∞

0

sn−2

(1 + s)m−k−1
e−κr(1+s) ds,

for some κ > 0.
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Observe that this corollary implies the estimate

|Dβγλ(x)| ≤ Cφ,k|λ|
n+k
m −1pk(|λ|1/m|x|), x ∈ Rn, | arg λ| ≤ π − φ, (6.13)

for the derivatives of the fundamental solution γλ, with k = |β|. This yieldsDβγλ ∈
L1(R

n;B(E)) if |β| < m.
Concluding, some remarks concerning the cases n = 1, 2 have to be made.

For n = 1, instead of the rotation Q we may use reflection; all above arguments
remain valid for this case, simply dropping the integrals over s and ζ. In that case
the functions pk should be replaced by

pk(r) =

∫ ∞

0

1

(1 + s)m−k
e−κr(1+s) ds.

For n = 2 the arguments are also valid if we interpret S0 as the set consisting of
the two points ±1. Therefore the above results are valid for all dimensions n ∈ N.

1.2 Lq-Realizations of Elliptic Differential Operators
Next we consider the Lq-realizations of the differential operator A(D).

Theorem 6.1.7. Let n,m ∈ N, E a Banach space, aα ∈ B(E), 1 < q < ∞,
and suppose A(D) =

∑
|α|=m aαD

α is parameter-elliptic with angle of ellipticity

φA < π. Define the Lq-realization A of A in X0 = Lq(R
n;E) by means of A = A0,

where

[A0u](x) = A(D)u(x), x ∈ Rn, u ∈ D(A0) := Hm
q (Rn;E).

Then A is sectorial with spectral angle φA ≤ φA, and

Hm
q (Rn;E) ⊂ D(A) ⊂ Hm−1

q (Rn;E).

Proof. Obviously, A has dense domain. If f ∈ Lq(R
n;E), choose a sequence fk ∈

D(Rn;E) such that fk → f in Lq(R
n;E). For λ ∈ Σπ−φ, φ > φA, we obtain

uk = γλ ∗ fk ∈ Hm
q (Rn;E) as well as λuk + A(D)uk = fk, by uniqueness of the

Fourier transform. Since uk → u = γλ ∗ f in Lq(R
n;E) as k → ∞, we see that

u ∈ D(A) and λu + Au = f . This shows that λ + A is invertible for each λ ∈ Σφ

and (λ+A)−1f = γλ ∗ f . Thus by Corollary 6.1.6 we obtain the inclusions

Hm
q (Rn;E) = D(A0) ⊂ D(A) ⊂ Hm−1

q (Rn;E),

and Theorem 6.1.5 yields −Σπ−φ ⊂ ρ(A), as well as

|λ(λ+A)−1|B(Lq(Rn;E)) ≤ Mπ−φ, (6.14)

for each φ > φA.
For f ∈ D(Rn;E), supp f ⊂ B(0, R), we have by Theorem 6.1.5

|λγλ ∗ f(x)| ≤
∫
Rn

p0(|y|)|f(x− y/|λ|1/m)| dy → 0
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as λ → 0, uniformly for bounded x. On the other hand, for |x| ≥ 2R we have
|x− y| ≥ |x| − |y| ≥ |y|. Since p0 is non-increasing this yields

|λγλ ∗ f(x)| ≤ |f |∞
∫
BR(0)

|λ|n/mp(|λ|1/m|x− y|) dy

≤ |f |∞
∫
BR(0)

|λ|n/mp(|λ|1/m|y|) dy

= |f |∞
∫ |λ|1/mR

0

p(r) dr → 0

as λ → 0. This implies |λ(λ + A)−1f |∞ → 0 for λ → 0, for each f ∈ D(Rn;E),
but then by interpolation

|λγλ ∗ f |q ≤ |λγλ ∗ f |1/q1 |λγλ ∗ f |1/q′∞ → 0.

Therefore, A(λ + A)−1 → I strongly as λ → 0, i.e., R(A) is dense in Lq(R
n;E)

and N(A) = 0, for each 1 < q < ∞. Thus A is sectorial and φA ≤ φA. �

One can show that we even have

Hm
q (Rn;E) ↪→ D(A) ↪→ Hs

q (R
n;E), for each s < m.

Nevertheless, we cannot prove the elliptic maximal Lq-regularity

D(A) = Hm
q (Rn;E)

unless more is known on the geometry of E. Here harmonic analysis comes into
play.

1.3 H∞-Calculus for Elliptic Operators
If E is a Banach space of class HT , for differential operators with parameter-
elliptic symbols the following result is valid.

Theorem 6.1.8. Let E be a Banach space of class HT , n,m ∈ N, and 1 < q < ∞.
Suppose A(D) =

∑
|α|=m aαD

α with aα ∈ B(E) is a homogeneous differential
operator of order m which is parameter-elliptic with angle of ellipticity φA. Let A
denote its realization in X0 = Lq(R

n;E) with domain D(A) = Hm
q (Rn;E).

Then A ∈ H∞(X0) with H∞-angle φ∞
A ≤ φA. In particular, A is R-sectorial

with φR
A ≤ φA.

Proof. (i) Observe first that the symbol A(ξ) is homogeneous of degree m, i.e.,
A(ξ) = ρmA(ζ), ρ = |ξ|. Parameter-ellipticity implies that A(ζ) is invertible for
each |ζ| = 1 and |A(ζ)−1| ≤ M0, where M0 is independent of ζ, by compactness of
the set |ζ| = 1; this implies in particular |A(ξ)−1| ≤ M0ρ

−m. Hence ξαA(ξ)−1 =
ζαA(ζ)−1 is bounded for each |α| = m. But since A(ζ) is holomorphic, ζαA(ζ)−1

is so as well, and since Sn−1 is compact, {ξαA(ξ)−1 : ξ ∈ Rn \ {0}} is R-bounded
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by Proposition 4.1.12. The same holds true for {|ξ|kDβ [ξαA(ξ)−1] : ξ ∈ Rn \{0}},
|β| = k ∈ N, as a simple calculation shows. The vector-valued Mikhlin theorem,
Theorem 4.3.11, then implies that there is a constant C > 0 such that

C−1|Dαu|X0
≤ |A(D)u|X0

, for all u ∈ Hm
q (Rn;E), |α| = m,

holds. In particular, we have D(A) = Hm
q (Rn;E), and by (6.14) A is sectorial with

spectral angle φA ≤ φA.

(ii) To show that A admits an H∞-calculus such that the H∞-angle satisfies
φ∞
A ≤ φA, let φ > φA be fixed and choose a function h ∈ H0(Σφ). Let Γ denote

the contour Γ = (∞, 0]eiθ ∪ (0,∞)e−iθ, where φA < θ < φ. Then h(A) is well
defined as the Dunford integral

h(A) =
1

2πi

∫
Γ

h(λ)(λ−A)−1 dλ.

For u ∈ D(Rn;E), we may take Fourier transforms, to the result

F [h(A)u](ξ) =
1

2πi

∫
Γ

h(λ)(λ−A(ξ))−1Fu(ξ) dλ

= h(A(ξ))Fu(ξ),

hence the symbol of h(A) is given by h(A(ξ)). Therefore, it is enough to show that
this symbol is a Fourier multiplier for Lq(R

n;E), with norm ≤ C|h|H∞(Σφ). This
will be done employing the vector-valued Mikhlin theorem another time.

By means of the rescalings ξ = ρζ and μ = λρ−m we obtain the representation

h(A(ξ)) =
1

2πi

∫
Γ

h(ρmμ)(μ−A(ζ))−1 dμ.

Since σ0 = ∪|ζ|=1σ(A(ζ)) is compact and contained in Σφ0
, we may deform the

contour Γ within Σθ into a compact simple smooth closed path Γ0 surrounding σ0

counter-clockwise, and by Cauchy’s theorem

h(A(ξ)) =
1

2πi

∫
Γ0

h(ρmμ)(μ−A(ζ))−1 dμ.

By compactness of Γ0 and of Sn−1, in virtue of Proposition 4.1.12, (μ −A(ζ))−1

is R-bounded on Γ0 × Sn−1, hence this representation of h(A(ξ)) yields

R{h(A(ξ)) : ξ ∈ Rn} ≤ (2π)−1|h|H∞(Σφ)l(Γ0)R{(μ−A(ζ))−1 : μ ∈ Γ0, ζ ∈ Sn−1}

where l(Γ0) denotes the length of Γ0. Thus the symbol of h(A) is R-bounded.
To obtain appropriate bounds for the derivatives of h(A(ξ)), observe the

relation

Dξ = −iζ
∂

∂ρ
+

1

ρ
(I − ζ ⊗ ζ)Dζ .
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With G0(μ, ζ) = (2πi)−1(μ−A(ζ))−1 we have

h(A(ξ)) =

∫
Γ0

h(ρmμ)G0(μ, ζ) dμ,

hence differentiating this expression inductively we get

ρ|α|Dα
ξ h(A(ξ)) =

|α|∑
k=0

∫
Γ0

(ρmμ)kh(k)(ρmμ)Gα,k(μ, ζ) dμ,

where the functions Gα,k(μ, ζ) are analytic in a neighbourhood of Γ0 × Sn−1.
Therefore we obtain

R{|ξ||α|Dα
ξ h(A(ξ)) : ξ ∈ Rn} ≤

|α|∑
k=0

Cα,k sup
z∈Σθ

|zkh(k)(z)|.

Finally, by the Cauchy estimates we have supz∈Σθ
|zkh(k)(z)| ≤ ck|h|H∞(Σφ), and

so for each α ∈ Nn
0 there is a constant Cα such that

R{|ξ||α|Dα
ξ h(A(ξ)) : ξ ∈ Rn, ξ �= 0} ≤ Cα|h|H∞(Σφ)

is satisfied. Cα is independent of h, it depends only on A(ξ), on the contour Γ0, and
on φ. By Theorem 4.3.11 we therefore obtain |h(A)|B(Lq(Rn;E)) ≤ Mφ|h|H∞(Σφ),
which implies the assertion. �

In the situation of the last theorem, since A ∈ H∞(X0) we have, by Theo-
rem 3.3.7,

D(Aθ) = (Lq(R
n;E),D(A))θ = Hmθ

q (Rn;E)

for each θ ∈ [0, 1], hence DβA−k/m is bounded for each |β| = k ≤ m. On the other
hand, for each ν ∈ (0, 1) we have the representation

λ1−νAν(λ+A)−1 =

∫ ∞

−∞

λis

2 sinπ(ν + is)
A−is ds, λ ∈ Σπ−φ, φ > φA. (6.15)

Convexity of R-bounds and the contraction principle then show that the sets

{λ1−νAν(λ+A)−1 : λ ∈ Σπ−φ}

are R-bounded. As a consequence we obtain

Corollary 6.1.9. Let the assumptions of Theorem 6.1.7 be satisfied, and let α ∈
(0, 1), q ∈ (1,∞), r ∈ [1,∞]. Then

(i) The set
{λ1−k/mDβ(λ+A)−1 : λ ∈ Σπ−φ, 0 ≤ |β| = k ≤ m}

is R-bounded in X0 = Lq(R
n;E);
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(ii) D(Aα) = (X0,D(A))α = Hαm
q (Rn;E);

(iii) DA(α, r) = (X0,D(A))α,r = Bαm
qr (Rn;E).

1.4 Elliptic Operators with Variable Coefficients
Let E be a Banach space of class HT , and consider the differential operator with
variable B(E)-valued coefficients

[Au](x) = A(x,D)u(x), x ∈ Rn, u ∈ D(A) = Hm
p (Rn;E), (6.16)

where
A(x,D) =

∑
α|≤m

aα(x)D
α. (6.17)

By means of the results on homogeneous parameter-elliptic operators with con-
stant coefficients from the previous sections, perturbation and localization, we will
prove the following result.

Theorem 6.1.10. Let E be a Banach space of class HT , n,m ∈ N, and 1 < q < ∞.
Suppose A(x,D) =

∑
|α|≤m aα(x)D

α with aα(x) ∈ B(E) is a differential operator

of order m with variable coefficients. Assume the following Condition (ra):

(ra1) aα ∈ Cl(R
n;B(E)) for each |α| = m;

(ra2) A#(x, ξ) =
∑

|α|=m aα(x)ξ
α is parameter-elliptic

with angle of ellipticity ≤ φA, for each x ∈ Rn ∪ {∞};
(ra3) aα ∈ [Lrk + L∞](Rn;B(E)) for each |α| = k < m,

with rk ≥ q and m− k > n/rk.

Let A denote the realization of A(x,D) in the base space X0 = Lq(R
n;E) with

domain D(A) = Hm
q (Rn;E).

Then for each φ > φA there is μφ ≥ 0 such that μφ + A is R-sectorial with
φR
μφ+A ≤ φ.

Proof. (a) Freeze the coefficients aα, |α| = m, at an arbitrary x0 ∈ Rn ∪ {∞}
and consider the homogeneous differential operator with constant coefficients
A#(x0, D); let A0 denote its Lq-realization. Then we know from Theorem 6.1.8
that D(A0) = Hm

q (Rn;E) and that A0 is R-sectorial with R-angle φR
A0

≤ φA.
By assumption (ra1) the coefficients aα belong to a compact subset of B(E). By
Corollary 6.1.9(i) and the perturbation results from Section 4.4, we see that the
R-bounds of λ1−|β|/mDβ(λ+A0)

−1 are upper semi-continuous in the coefficients,
where λ ∈ Σπ−φ for φ > φA fixed. Therefore, they are uniform in x0 ∈ Rn ∪ {∞}.

Applying the perturbation argument from Section 4.4 another time, we see
that there is a number η > 0 independent of x0 such that the Lq-realization A0+A1

of A0(D) +A1(x,D) is again R-sectorial, whenever

A1(x,D) =
∑

|α|=m

a1α(x)D
α
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has L∞-coefficients subject to |a1α(x)|B(E) ≤ η, uniformly in x, for each |α| = m.
The corresponding R-bounds are also uniform in x0, and the domain of A0 + A1

equals Hm
q (Rn;E).

(b) Here we assume aα ∈ L∞ for |α| < m and Condition (ra1). Choose a large
ball B(0, r0) such that

|aα(x)− aα(∞)|B(E) ≤ η, for all |x| ≥ r0, |α| = m,

and set U0 = Rn \ B̄(0, r0). Cover B̄(0, r0) by finitely many balls Uj = B(xj , rj)
such that

|aα(x)− aα(xj)|B(E) ≤ η, for all |x− xj | ≤ rj , |α| = m, j = 1, . . . , N.

Define coefficients of local operators Aj e.g. by reflection, i.e.,

a0α(x) =

{
aα(x), x �∈ B̄(0, r0)

aα
(
r20

x
|x|2

)
, x ∈ B̄(0, r0)

and

ajα(x) =

{
aα(x) x ∈ B̄(xj , rj)

aα
(
xj + r2j

x−xj

|x−xj |2
)
, x �∈ B̄(xj , rj)

for each j = 1, . . . , N . Then |ajα(x) − aα(xj)|B(E) ≤ η, for each x ∈ Rn and
j = 0, . . . , N , hence by step (a) above the Lq-realizations Aj of

Aj(x,D) =
∑

|α|=m

ajα(x)D
α

are R-sectorial and the R-bounds of the sets

{λ1−k/mDβ(λ+Aj)
−1 : λ ∈ Σπ−φ, |β| = k ≤ m}

are finite. Next we choose a partition of unity ϕj ∈ D(Rn) such that 0 ≤ ϕj(x) ≤
1 and supp ϕj ⊂ Uj . We may also choose ψj ∈ D(Rn) such that suppψj ⊂
Uj and ψj = 1 on suppϕj . Set B(x,D) =

∑
|α|<m aα(x)D

α. We then obtain a

representation of (λ+A)−1 as follows.

λu+Au = f iff λu+A#(x,D)u = f − B(x,D)u.

Multiply by ϕj to obtain

λ(ϕju) +A#(x,D)(ϕju) = ϕjf + [A#(x,D), ϕj ]u− ϕjB(x,D)u.

Noting that A#(x,D)(ϕju) = Aj(ϕu), we employ the resolvent of Aj to the result

ϕju = (λ+Aj)
−1(ϕjf) + (λ+Aj)

−1{[A#(x,D), ϕj ]u− ϕjB(x,D)u}.
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Observing ψj = 1 on suppϕj , multiplying with ψj and summing over j we finally
get

u =
∑
j

ψj(λ+Aj)
−1ϕjf +

∑
j

ψj(λ+Aj)
−1Cj(x,D)u, (6.18)

where the differential operators

Cj(x,D) := [A#(x,D), ϕj ]− ϕjB(x,D) =
∑

|β|<m

cjβ(x)D
β

are in fact operators of order ≤ m− 1. Hence for each ε > 0 there is Cε > 0 such
that

|Cj(x,D)v|q ≤ ε|Dmv|q + Cε|v|q, for all v ∈ D(A), j = 0, . . . , N.

By a Neumann series argument, (6.18) implies existence of a left inverse Sλ, which
is given by

Sλf = (I −
∑
j

ψj(λ+Aj)
−1Cj(x,D))−1

∑
j

ψj(λ+Aj)
−1ϕjf,

for λ ∈ Σπ−φ, |λ| ≥ λ0 for some sufficiently large λ0, as well as

|λSλf |q + |DmSλf |q ≤ C|f |q, λ ∈ Σπ−φ, |λ| ≥ λ0.

This shows that μ + A is sectorial for μ ≥ λ0, and φμ+A ≤ φ, provided λ + A is
surjective, i.e., there is also a right inverse.

To show the latter we apply λ+A#(x,D) to u = Sλf which yields

(λ+A#(D))Sλ =
∑
j

(λ+A#(D))ψj(λ+Aj)
−1(ϕj + Cj(x,D)Sλ)

=
∑
j

ψj{ϕj + Cj(x,D)Sλ}+
∑
j

[A#(x,D), ψj ](λ+Aj)
−1{ϕj + Cj(x,D)Sλ}.

Since ψj = 1 on suppϕj and
∑

j ϕj = 1, as well as
∑

j [A#(x,D), ϕj ] = 0, we
obtain ∑

j

ψj{ϕj + Cj(x,D)Sλ} =
∑
j

{ϕj + Cj(x,D)Sλ} = I − B(x,D)Sλ.

This yields the following identity

(λ+A(x,D))Sλ = I +
∑
j

[A#(x,D), ψj ](λ+Aj)
−1{ϕj + Cj(x,D)Sλ}. (6.19)

The commutators [A(x,D), ψj ] are differential operators of order m−1, hence the
second term on the right-hand side of (6.19) will be small for large |λ| which as
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above shows that (6.19) gives rise to a right inverse of λ+A; in particular λ+A
is surjective for large |λ|.

Next, with

R0(λ) =

N∑
j=0

ψj(λ+Aj)
−1ϕj , R1(λ) =

N∑
j=0

ψj(λ+Aj)
−1Cj(x,D),

the resolvent of A may be written as the Neumann series

(λ+A)−1 =

∞∑
k=0

R1(λ)
kR0(λ), λ ∈ Σπ−φ, |λ| ≥ λ0.

For j, k = 0, . . . , N we obtain by the contraction principle

R{Cj(x,D)(λ+Ak)
−1 : λ ∈ Σπ−φ, |λ| ≥ λ0}

≤
∑

|β|<m

|cjβ |L∞(Rn;E)R{Dβ(λ+Ak)
−1}

≤
∑

|β|<m

|cjβ |L∞(Rn;E)λ
−1+|β|/m
0 R{λ1−|β|/mDβ(λ+Ak)

−1} ≤ Cε,

(6.20)

provided λ0 is sufficiently large. This then implies

R{λ1−|α|/mDα(λ+A)−1 : λ ∈ Σπ−φ, |λ| ≥ λ0, |α| ≤ m}

≤ (N + 1)C
∞∑
k=0

((N + 1)Cε)k = (N + 1)C/(1− (N + 1)Cε) < ∞, (6.21)

in particular, μ+A is R-sectorial for all μ ≥ λ0.

(c) Let us consider now the case where aβ ∈ Lrk(R
n;B(E)), with |β| = k < m

and rk ≥ q, m − k > n/rk. Then we estimate the terms aβ(x)D
β(λ + Al)

−1 as
follows. With qr = rk, 1/r + 1/r′ = 1, the Gagliardo-Nirenberg inequality yields∣∣∣∑

j

εjaβD
β(λj +Al)

−1fj

∣∣∣
Lq(Rn;E)

≤ |aβ |Lqr(Rn;B(E))

∣∣∣∑
j

εjD
β(λj +Al)

−1fj

∣∣∣
Lqr′ (Rn;E))

≤ C|aβ |Lqr(Rn;B(E))

[ ∑
|α|=m

∣∣∣∑
j

εjD
α(λj +Al)

−1fj

∣∣∣
Lq(Rn;E))

]a
·

·
∣∣∣∑

j

εj(λj +Al)
−1fj

∣∣∣
Lq(Rn;E))

]1−a
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≤ C|aβ |Lqr(Rn;B(E))

[ ∑
|α|=m

∣∣∣∑
j

εjD
α(λj +Al)

−1fj

∣∣∣
Lq(Rn;E))

]a
·

· λ−(1−|β|/m)(1−a)
0

[∣∣∣∑
j

εjλ
1−|β|/m
j (λj +Al)

−1fj

∣∣∣
Lq(Rn;E))

]1−a

,

where am−k = n/qr = n/rk, in particular a < 1 by assumption (ra 3). Integrating
over Ω this yields∣∣∣∑

j

εjaβD
β(λj +Al)

−1fj

∣∣∣
Lq(Ω×Rn;E)

≤ Cλ
−(1−|β|/m)(1−a)
0 |aβ |Lqr(Rn;B(E))

∣∣∣∑
j

εjfj

∣∣∣
Lq(Rn;E)

≤ Cε
∣∣∣∑

j

εjfj

∣∣∣
Lq(Rn;E)

,

whenever λ0 is sufficiently large, and consequently we have

R{aβ(x)Dβ(λ+Ak)
−1 : λ ∈ Σπ−φ, |λ| ≥ λ0} ≤ Cε.

We now may proceed as in Step (b) to obtain the result in the general case. �

As a consequence of the results on maximal regularity from Section 4.5 we
obtain for the time-dependent parabolic equation

∂tu+ ωu+Au = f, t > 0, u(0) = u0, (6.22)

the following result.

Theorem 6.1.11. Let Condition (ra) hold, 1 < p, q < ∞, μ ∈ (1/p, 1], let A(x,D)
be uniformly normally elliptic and, ω ≥ ω0 > s(−A) = supReσ(−A), the spectral
bound of −A.

Then (6.22) has maximal regularity of type Lp,μ−Lq on R+. More precisely,
(6.22) admits a solution u in the class

u ∈ H1
p,μ(R+;Lq(R

n;E)) ∩ Lp,μ(R+;H
2
q (R

n;E)) =: E1μ

if and only if

f ∈ Lp,μ(R+;Lq(R
n;E)) =: E0μ and u0 ∈ Bm(μ−1/p)

qp (Rn;E) =: Xγ,μ.

Moreover, there is a constant C > 0 such that

|u|E1μ
+ ω|u|E0μ

≤ C(|u0|Xγ,μ
+ |f |E0μ

),

for all (f, u0) ∈ E0μ ×Xγ,μ, and all ω ≥ ω0.
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We observe that via the exponential shifts uω = eωtu and fω = eωtf , u is a
solution of (6.22) if and only if uω solves

∂tuω +Auω = fω, t > 0, uω(0) = u0. (6.23)

This way the following result is obtained.

Corollary 6.1.12. Let Condition (ra) hold, 1 < p, q < ∞, μ ∈ (1/p, 1], and let
A(x,D) be uniformly normally elliptic and, ω > s(−A).

Then (6.23) admits a unique solution u in the class

e−ωtu ∈ H1
p,μ(R+;Lq(R

n;E)) ∩ Lp,μ(R+;H
2
q (R

n;E))

if and only if

e−ωtf ∈ Lp,μ(R+;Lq(R
n;E)) and u0 ∈ Bm(μ−1/p)

qp (Rn;E).

Consequently, on finite intervals (6.22) has maximal Lp,μ−Lq-regularity, for each
ω ∈ R.

1.5 Different Spatial Orders
Many times one is in need of maximal regularity results with different spatial
regularity. In this subsection we briefly discuss this topic. We assume below that
A(x,D) satisfies properties (ra1), (ra2), (ra3).

(i) Higher Order Regularity
Here we want to replace the base space Lq(R

n;E) by Ks
q (R

n;E) for s > 0 and
K ∈ {H,W}, where s �∈ N in case K = W . For this purpose we fix any k ∈ N and
consider the operator A(x,D) in Hk

q (R
n;E). Differentiating the equations

(λ+ ω +A(x,D))u = f in Rn,

or
(∂t + ω +A(x;D))u = f, t > 0, u(0) = 0, in Rn

k times in space leads to the problems

(λ+ ω +A(x,D))Dβu− [A(x,D), Dβ ]u = Dβf in Rn,

or

(∂t + ω +A(x;D))Dβu− [A(x,D), Dβ ]u = Dβf, t > 0, Dβu(0) = 0, in Rn.

As the commutator [A(x,D), Dβ ] is of lower order, this yields with Proposi-
tion 4.4.3 the analogues of Theorems 6.1.10 and 6.1.11 with base space Lq(R

n;E)
replaced by Hk

q (R
n;E), provided the coefficients of A(x,D) have enough regu-

larity. Computing the relevant commutator shows that Condition (ra3) must be
replaced by

(ra3k) aα ∈ Hk
rl
(Rn;B(E))+W k

∞(Rn;B(E)), |α| = l ≤ m, rl ≥ q, m+k−l > n/rl.
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Then employing real or complex interpolation, we see that Theorems 6.1.10 and
6.1.11 are also valid for the base spaces Ks

q (R
n;E), for all 0 ≤ s ≤ k, s �∈ N0 in

case K = W . Note that for the parabolic problem we first choose p = q, μ = 1 to
obtain R-sectoriality, and then use Theorems 4.4.4 and 3.5.4 for the general case.

(ii) Lower Order Regularity
Here we want to replace the base space Lq(R

n;E) by K−s
q (Rn;E) where s > 0

and K ∈ {H,W}, s �∈ N in case K = W . Consider first the space H−2
q (Rn;E).

As I −Δ : Lq(R
n;E) → H−2

q (Rn;E) is an isomorphism, it is reasonable to apply
(I − Δ)−1 to the equations under consideration to obtain problems in Lq. This
yields equations for v = (I −Δ)−1u in Lq(R

n;E),

(λ+ ω +A(x,D))v − [A(x,D), (I −Δ)−1]u = (I −Δ)−1f in Rn,

or

(∂t+ω+A(x;D))v−[A(x,D), (I−Δ)−1]u = (I−Δ)−1f, t > 0, u(0) = 0, in Rn.

Looking at the commutator we find

[A(x,D), (I−Δ)−1]u = (I−Δ)−1[Δ,A(x,D)](I−Δ)−1u = (I−Δ)−1[Δ,A(x,D)]v.

Now we have

[Δ, aαD
α] =

n∑
j=1

(∂2
j aα)D

α + 2(∂jaα)∂jD
α,

which implies that the commutator is of lower order in Lq(R
n;E), provided the

coefficients aα are subject to (ra32). Therefore, in this case Theorems 6.1.10 and
6.1.11 are also valid for the base space H−2

q (Rn;E). Induction yields the same

result for H−2k
q (Rn;E) provided the coefficients satisfy (ra32k), for all k ∈ N.

Interpolation finally shows that Theorems 6.1.10 and 6.1.11 hold for the base space
K−s

q (Rn;E), for all s ∈ [0, 2k], provided (ra32k) holds; here s ∈ N0 is excluded in
case K = W .

Remark 6.1.13. A more refined analysis shows that Theorems 6.1.10 and 6.1.11
are valid in K±s

q (Rn;E), s > 0, if the coefficients merely satisfy

(a3s) aα ∈ Hs
rl
(Rn;B(E))+W s

∞(Rn;B(E)), |α| = l ≤ m, rl ≥ q, m+s− l > n/rl.

However, this assertion is more elaborate, and so we refrain here from a proof.

6.2 Elliptic and Parabolic Systems on Rn
+

Let E be a Banach space of class HT , and consider the parabolic problem

∂tu+ ωu+A(x,D)u = f in Rn
+,

Bj(x,D)u = gj on ∂Rn
+, j = 1, . . . ,m,

u(0) = u0 in Rn
+.

(6.24)
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Here A(x,D) =
∑

|α|≤2m aαD
α is a differential operator of degree 2m, Bj(x,D) =∑

|β|≤mj
bjβD

β are differential operators of degree mj < 2m, and the data

(f, gj) and u0 are given. This problem may be reduced to a homogeneous prob-
lem with inhomogeneous boundary conditions as follows. Extend the function
f ∈ Lp,μ(R+;Lq(R

n
+;E)) trivially to a function f̄ ∈ Lp,μ(R+;Lq(R

n;E)), the
coefficients of A(x,D) by symmetry to all of Rn, and extend the initial value

u0 ∈ B
2m(μ−1/p)
qp (Rn

+;E) to some ū0 ∈ B
2m(μ−1/p)
qp (Rn;E). Then we may apply

the results from the previous section, in particular Theorem 6.1.11, to obtain the
solution

ū ∈ H1
p,μ(R+;Lq(R

n;E)) ∩ Lp,μ(R+;H
2m
q (Rn;E)))

of the full space problem

∂tū+ ωū+A(x,D)ū = f̄ in Rn,

ū(0) = ū0 in Rn.
(6.25)

Then the function ũ = u − ū satisfies (6.24) with (f, u0) = 0 and gj replaced by
g̃j = gj − Bj(x,D)ū. This way we have reduced the problem to a homogeneous
parabolic equation with trivial initial data, but inhomogeneous boundary data.
Note that the natural compatibility conditions

Bj(x,D)u0 = gj(0), j = 1, . . .m,

become g̃j(0) = 0. Below we will therefore always consider the case (f, u0) = 0.

Similarly for the elliptic problem

λu+ ωu+A(x,D)u = f in Rn
+,

Bj(x,D)u = gj on ∂Rn
+, j = 1, . . . ,m.

(6.26)

We may assume f = 0, by Theorem 6.1.10 of the previous section.

2.1 The Boundary Symbol
We begin with the constant coefficient case, i.e., we consider

A(D) =
∑

|α|=2m

aαD
α, Bj(D) =

∑
|β|=mj

bjβD
β

with coefficients aα, bjβ ∈ B(E). It is convenient to replace x by (x, y), where
x ∈ Rn−1 are tangential variables and y > 0 is the normal variable. Taking the
Laplace transform in time with covariable λ and Fourier transform in the tangen-
tial direction with covariable ξ ∈ Rn−1, with ν = en we obtain the transformed
problem

(λ+ ω)v1(y) +A(ξ + νDy)v1(y) = 0, y > 0,

Bj(ξ + νDy)v1(0) = hj , j = 1, . . . ,m.
(6.27)
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This is a boundary value problem for an ordinary differential equation on R+,
where the covariables λ and ξ are parameters. We may rewrite the differential
operators in the following form.

A(ξ + νDy) =

2m∑
k=0

ak(ξ)D
2m−k
y , Bj(ξ + νDy) =

mj∑
k=0

bjk(ξ)D
mj−k
y .

Observe that ak(ξ) as well as bjk(ξ) are homogeneous polynomials of degree k.
We shall assume from now on that A(D) is parameter-elliptic with angle φA.

Then a0 = A(0, . . . , 0, 1) is invertible. For λ ∈ Σπ−φ, φ > φA, we introduce the
new variables v = [vj ], and the scaling parameter ρ = (w + λ+ |ξ|2m)1/2m

vj(y) = ρ−j+1Dj−1
y v1(y), j = 1, . . . , 2m,

we may rewrite the differential equation in (6.27) as

∂yv(y) = iρA0(b, σ)v(y), y > 0,

with σ = (ω + λ)/ρ2m, b = ξ/ρ and

A0(b, σ) =

⎛⎜⎜⎜⎜⎜⎝
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

...
...

0 0 . . . 0 I
c2m(b, σ) c2m−1(b) . . . c2(b) c1(b)

⎞⎟⎟⎟⎟⎟⎠ ,

where cj(b) = −a−1
0 aj(b), j = 1, . . . , 2m − 1 and c2m(b, σ) = −a−1

0 (σ + a2m(b)).
Similarly, for homogeneity reasons the boundary conditions become

B0
j (b)v(0) = ρ−mjhj =: h̃j , j = 1, . . . ,m,

with B0
j (b) : E

2m → E defined by

B0
j (b) = (bjmj (b), . . . , bj0(b), 0, . . . , 0), j = 1, . . . ,m.

This way the boundary value problem (6.27) is transformed to the first-order
system

∂yv(y) = iρA0(b, σ)v(y), y > 0,

B0
j (b)v(0) = h̃j , j = 1, . . . ,m.

(6.28)

To solve this boundary value problem we need some preparation.

Lemma 6.2.1. Let b, σ and A0(b, σ) be defined as above. Then

σ(A0(b, σ)) ∩ R = ∅.
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Proof. We first prove that σp(A0(b, σ)) ∩ R is empty, where σp(A0(b, σ)) denotes
the point spectrum of A0(b, σ). To this end, suppose that η ∈ R is an eigenvalue
of A0(b, σ) with eigenvector x = [x0, . . . , x2m−1]

T �= 0. Then

ηx0 = x1, . . . ηx2m−2 = x2m−1, (6.29)

ηx2m−1 = −a−1
0 ((σ + a2m(b))x0 + a2m−1(b)x1 + . . .+ a1(b)x2m−1).

This implies (σ +
∑2m

k=0 ak(b)η
2m−k)x0 = 0. It follows from the first line of (6.29)

that x0 �= 0. Therefore, −σ is an eigenvalue for A(b, η) with eigenvector x0. But
as A is parameter-elliptic this implies −σ ∈ Σφ, which contradicts the assumption
λ ∈ Σπ−φ.

Next, assume that η ∈ R belongs to the residual spectrum σr(A0(b, σ)). Then
η ∈ σp(A

∗
0(b, σ)), hence there is x

∗ = (x∗
0, . . . , x

∗
2m−1)

T �= 0 such that A∗
0(b, σ)x

∗ =
ηx∗. This implies as before x∗

2m−1 �= 0 and

(σ +

2m∑
k=0

ak(b)
∗η2m−k)x∗

2m−1 = 0.

This shows that −σ is an eigenvalue of A∗(b, η), hence belongs to σr(A(b, η)),
which is not possible.

Finally, assume that η ∈ R is in the continuous spectrum σc(A0(b, σ)). Then
we find xn = (xn,0, . . . , xn,2m−1)

T with |xn|E2m = 1 such that A0(b, σ)xn = ηxn+
yn, with yn → 0 as n → ∞. As above this yields

(σ +

2m∑
k=0

ak(b)η
2m−k)xn,0 → 0,

hence −σ belongs to σc(A(b, η)) which yields a contradiction as before. �
This lemma shows that the spectrum of iA0(b, σ) ∈ B(E2m) splits into two

parts, s−(b, σ) contained in the open left half-plane, and s+(b, σ) contained in the
open right half-plane. By compactness, there are constants c± > 0 such that

supRe s−(b, σ) ≤ −c− < 0 < c+ ≤ inf Re s+(b, σ),

for all relevant b, σ. Let P±(b, σ) ∈ B(E2m) denote the associated spectral projec-
tions of iA0(b, σ); these are holomorphic and bounded, uniformly in (b, σ). The
boundary value problem (6.28) admits precisely one solution v ∈ C0(R+;E

2m) if
and only if the system

B0
j (b)w = h̃j , j = 1, . . . ,m, (6.30)

P+(b, σ)w = 0

admits a unique solution w ∈ E2m. The solution v of (6.28) is then given by

v(y) = eiyρA0(b,σ)w, y ≥ 0.
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To ensure this solvability property we assume the equivalent

Lopatinskii-Shapiro Condition (LS)
For each ξ, ν ∈ Rn, λ ∈ Σπ−φ for some φ > φA, where (λ, ξ) �= (0, 0), |ν| = 1,
(ξ|ν) = 0, the problem

λu(y) +A(ξ + νDy)u(y) = 0, y > 0,

Bj(ξ + νDy)u(0) = gj , j = 1, . . . ,m,

has exactly one solution u ∈ C0(R+;E), for any given vectors gj ∈ E, j = 1, . . . ,m.

Remark 6.2.2. (i) It is obvious that also the Lopatinskii-Shapiro condition is in-
variant under orthogonal transformations. But even more, it is invariant w.r.t.
general coordinate transformations as well. In fact, under the coordinate trans-
formation Tu(x) = u(Qx) with invertible Q ∈ Rn×n, the normal ν transforms to
νQ = Q−Tν. Therefore,

AQ(ξ
′ + νQDy) = A(QTξ′ + νDy) = A(ξ + αν + νDy),

where (ξ|ν) = 0 and α = (ξ′|Qν). The same applies to the boundary operators
Bj . The exponential shift v(y) = eiαyw(y) then shows that we may assume α = 0.
This reduces (LS) for the transformed problem to (LS) for the original one.

(ii) The shift argument also shows that the condition (ξ|ν) = 0 in (LS) is redun-
dant, only |ν| = 1 is essential.

(iii) There are versions of the Lopatinskii-Shapiro condition for more refined
boundary value problems which also appear in applications. Each of the m bound-
ary operators may be split into finitely many ones of different order. More pre-
cisely, for fixed j ∈ {1, . . . ,m}, we let E = ⊕nj

k=0Ejk, and replace the condition
Bj(D)u = gj by

Bjk(D)u = gjk, k = 0, . . . , nj ,

where the coefficients of Bjk(D) satisfy bjkβ ∈ B(E,Ejk), and their orders are
mjk ∈ {0, . . . , 2m − 1}. Condition (LS) extends literally to such cases, and the
analysis presented here carries over.

(iv) If E � CN is finite-dimensional, then the kernel of P+ has dimension mN ,
hence if we prescribe mN scalar boundary conditions, it is enough to have unique-
ness in (LS), by a dimensional argument.

The Lopatinskii-Shapiro condition implies the following result.

Proposition 6.2.3. Suppose that A(D) is parameter-elliptic with angle φA, and
assume the Lopatinskii-Shapiro Condition for some φ > φA. Then for each h̃ =
[h̃j ] ∈ Em, j = 1, . . . ,m, problem (6.30) admits a unique solution w ∈ E2m. This

solution is represented as w = M0(b, σ)h̃, where the map M0 : U → B(Em, E2m)
is holomorphic on a neighbourhood U ⊂ Cn+1 of {(b, σ) : (λ, ξ) ∈ Σπ−φ × Rn−1}.
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Proof. Existence, uniqueness and linearity are clear, so we need to show holomor-
phy of M0. For this purpose set z = (b, σ) ∈ U and B(z) = (B0

1(z), . . . , B
0
m(z)).

Then u(z) = M0(z)g defines the unique solution of the system

P+(z)u = 0, B(z)u = g.

Let D denote a compact subset of U . By means of the closed graph theorem, we
obtain uniform boundedness of the maps M0(z) ∈ B(Em, E2m). In fact, the map
g �→ u(z) is a closed linear map from Em into B(D;E2m), the space of bounded
functions from D to E2m, hence bounded, i.e., supz∈D |M0(z)| =: CD < ∞. By
compactness and continuity this also holds on an open neighbourhood – which we
again call U – of D.

Next we use the fact that P+(z) as well as B(z) are holomorphic on U . Fix
any z ∈ U , h ∈ Cn and let 0 �= t ∈ C be small. Then for fixed g ∈ Em we have

P+(z + th)w(z + th) = 0 = P+(z)w(z),

and
B(z + th)w(z + th) = g = B(z)w(z),

hence

P+(z + th)[w(z + th)− w(z)] = −[P+(z + th)− P+(z)]w(z)

B(z + th)[w(z + th)− w(z)] = −[B(z + th)−B(z)]w(z).

Now, P+(z)
2 = P+(z) implies

P+(z + th)− P+(z) = P+(z + th)2 − P+(z)
2

= P+(z + th)[P+(z + th)− P+(z)] + [P+(z + th)− P+(z)]P+(z),

which by P+(z)w(z) = 0 yields

[P+(z + th)− P+(z)]w(z) = P+(z + th)[P+(z + th)− P+(z)]w(z).

From this identity we obtain

P+(z + th)[w(z + th)− w(z) + (P+(z + th)− P+(z))w(z) = 0,

and

B(z + th)[w(z + th)− w(z) + (P+(z + th)− P+(z))w(z)]

= B(z + th)[P+(z + th)− P+(z)]w(z)− [B(z + th)−B(z)]w(z),

which implies

w(z + th)− w(z) + [P+(z + th)− P (z)]w(z) (6.31)

= M0(z + th)[B(z + th)(P+(z + th)− P+(z))w(z)− (B(z + th)−B(z))w(z)].
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By continuity of P+ and B as well as boundedness of M0, this shows continuity
of w on complex lines. Thus M0(z) has this property as well. Dividing (6.31) by t
we get

w(z + th)− w(z)

t
= −P+(z + th)− P (z)

t
w(z)

+M0(z + th)B(z + th)
P+(z + th)− P+(z)

t
w(z)

−M0(z + th)
B(z + th)−B(z)

t
w(z),

which shows that w(z) is complex differentiable on U , thanks to holomorphy of
P+ and B. Therefore, M0 is also holomorphic on U . �

2.2 Harmonic Analysis
The last subsection shows that the unique solution v of (6.28) is given by

v = eiyρA0(b,σ)M0(b, σ)h̃.

To invert the Laplace and Fourier transforms in the right regularity class, we
rewrite this equation as

ρ2mv = M(y, ρ, b, σ)ρe−ηyρρ2m−1h̃ = M(y, ρ, b, σ)g̃, (6.32)

where η > 0 is small,

M(y, ρ, σ, b) = eiyρA0(b,σ)+ηyρM0(b, σ)

and

g̃ = ρe−ηyρρ2m−1h̃.

Here we need a result on analytic C0-semigroups and the vector-valued Triebel-
Lizorkin spaces Fα

pq,μ, which we state now. Define L0 = (ω+ ∂t + (−Δx)
m) in the

space X0 = Lp,μ(R+;Lq(R
n−1;E)) with domain

D(L0) = 0H
1
p,μ(R+;Lq(R

n−1;E)) ∩ Lp,μ(R+;H
2m
q (Rn−1;E)).

This operator, by the Dore-Venni theorem, belongs to the class S(X0) with angle

π/2. Therefore, its root L
1/2m
0 is also in this class, with angle π/4m < π/2. This

implies that L
1/2m
0 is the negative generator of an analytic C0-semigroup e−yL

1/2m
0 .

In the sequel, we denote by L the canonical extension of L0 to the space E0μ =
Lp,μ(R+;Lq(R

n
+;E)). We are here interested in the question for which boundary

values g ∈ X0 the extension u(y) = e−yL
1/2m
0 g satisfies L1/2mu ∈ E0μ. The result

is surprising; it is the content of the following proposition.
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Proposition 6.2.4. Let 1 < p, q < ∞, μ ∈ (1/p, 1], and E be a Banach space
with property HT (α). Moreover, let L0 and L be defined as above, and let u(y) =

e−yL
1/2m
0 g, g ∈ X0, y > 0.
Then the following assertions are equivalent.

(i) u ∈ 0H
1/2m
p,μ (R+;Lq(R+ × Rn−1;E)) ∩ Lp,μ(R+;H

1
q (R+ × Rn−1;E));

(ii) L1/2mu ∈ Lp,μ(R+;Lq(R+ × Rn−1;E)) = E0μ;

(iii) g ∈ 0F
1/2m−1/2mq
pq,μ (R+;Lq(R

n−1;E)) ∩ Lp,μ(R+;B
1−1/q
qq (Rn−1;E)) =: 0F0μ.

Similar statements are valid on R; replace the symbols Lp,μ(R+; ·) and 0Kp,μ(R+; ·)
by Lp(R; ·) and Kp(R; ·), respectively.

Proof. (i)⇒(iii). As the trace operator (tr u)(t, x) := u(t, 0, x) maps the

space H1
q (R+ × Rn−1;E) boundedly into B

1−1/q
qq (Rn−1;E) we see that g ∈

Lp,μ(R+;B
1−1/q
qq (Rn−1;E)). To obtain the time regularity of g we may concen-

trate on the variables (t, y), and hide x in Ẽ = Lq(R
n−1;E) which belongs to the

class HT as E ∈ HT . Then with α = 1/2m, we have

u ∈ Eαμ := 0H
α
p,μ(R+;Lq(R+; Ẽ)) ∩ Lp,μ(R+;H

1
q (R+; Ẽ)).

Define an operator A in E0,μ = Lp,μ(R+;Lq(R+; Ẽ)) by means of Au = ∂yu with

domain D(A) = Lp,μ(R+; 0H
1
q (R+; Ẽ)) and B by means of Bu = (ω + ∂t)

αu with

domain D(B) = 0H
α
p,μ(R+;Lq(R+; Ẽ)). Both operators are inH∞ withH∞-angles

π/2, απ/2, respectively, and B is invertible. They commute in the resolvent sense
and φ∞

A +φ∞
B = (1+α)π/2 < π. Therefore, by Corollary 4.5.11, A+B with domain

D(A+B) = D(A) ∩ D(B) = Eαμ belongs to the class H∞, as well. Next we solve
the problem Av + Bv = ∂yu + Bu ∈ E0μ with maximal regularity to obtain a
unique solution v ∈ D(A + B) = Eαμ. Then w = u − v satisfies ∂yw = −Bw
hence w = e−Byg ∈ Eαμ ⊂ D(B). Therefore, Lemma 6.7.5 in the Appendix to this

section yields g ∈ 0F
α
pq,μ(R+; Ẽ), which proves (iii).

(i)⇔(ii). We know that L = ω+∂t+(−Δx)
m belongs to H∞ with H∞-angle π/2.

Its domain is given by

D(L) = 0H
1
p,μ(R+;Lq(R+;Lq(R

n−1;E))) ∩ Lp,μ(R+;Lq(R+;H
2m
q (Rn−1;E)))

= D(B2m) ∩ D((−Δx)
m).

Then by complex interpolation we have

D(L1/2m) = D(B) ∩ D((−Δx)
1/2)

= 0H
α
p,μ(R+;Lq(R+;Lq(R

n−1;E))) ∩ Lp,μ(R+;Lq(R+;H
1
q (R

n−1;E))),

hence L1/2mu ∈ E0μ if and only if u ∈ D(L1/2m). Furthermore, the representation

u = e−L
1/2m
0 yg implies also ∂yu ∈ E0μ. This proves the equivalence in question.
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(iii)⇒(ii). Suppose

g ∈ 0F
1/2m−1/2mq
pq,μ (R+;Lq(R

n−1;E)) ∩ Lp,μ(R+;B
1−1/q
qq (Rn−1;E)) =: 0F0μ.

Set A0 = (−Δx)
1/2 with D(A0) = Lp,μ(R+;H

1
q (R

n−1;E)) and B0 = (ω + ∂t)
α

with domain D(B0) = 0H
α
p,μ(R+;Lq(R

n−1;E)). These operators are of class H∞

in the base space X0 = Lp,μ(R+;Lq(R
n−1;E)), with H∞ angles 0 and απ/2,

respectively, and they commute in the resolvent sense. Then by Lemma 6.7.5 we
see that e−B0yg ∈ D(B) = 0H

α
p,μ(R+;Lq(R

n
+;E)). On the other hand, e−A0yg ∈

Lp,μ(R+;H
1
q (R

n
+;E)). Define v = e−η(A0+B0)yg; then (A0+B0)v ∈ E0,μ, as e

−A0y

and e−B0y act boundedly in E0,μ.

A0 + B0 is equivalent to L
1/2m
0 as D(L

1/2m
0 ) = D(A0) ∩ D(B0). Moreover, by

perturbation, L
1/2m
0 − η(A0 + B0) is R-sectorial with R-angle απ/2, provided

η > 0 is sufficiently small. By means of Fourier multipliers it is not difficult to see

that e−(L
1/2m
0 −η(A0+B0))y acts boundedly on E0μ.

In fact, we show that the symbol

m(λ, ξ, y) = e−y(λ+ω+|ξ|2m)1/2m−η((ω+λ)1/2m+|ξ|)

is a Fourier multiplier for E0μ. To prove this, we first observe that m is uniformly
bounded and holomorphic in (λ, ξ) ∈ Σπ/2+ε × (Σε ∪−Σε)

n, provided η, ε > 0 are
small. This implies the Mikhlin-condition w.r.t. ξ, uniformly in (λ, y), hence we first
invert the Fourier transform, to obtain an R-bounded family of operators T (λ, y)
on Lq(R

n−1;E), provided E is of class HT and has property (α). Uniformity then
shows that the family Tm(λ) = Tm(λ, ·) is also R-bounded in Lq(R

n
+;E) and then

trivially also in E0μ. Finally, by the Kalton-Weis theorem, T (∂t + ω) is bounded
in E0μ.

Therefore

L1/2me−L
1/2m
0 yg = L1/2m(A+B)−1e−(L

1/2m
0 −η(A0+B0))y · (A0 +B0)v ∈ E0,μ,

which proves the implication (iii) ⇒ (ii). �

Now we may continue the argumentation preceding Proposition 6.2.4. As hj

is the transform of a function in

0Fjμ = 0F
1−mj/2m−1/2mq
pq,μ (R+;Lq(R

n−1;E)) ∩ Lp,μ(R+;B
2m−mj−1/q
qq (Rn−1;E))

we see that ρ2m−1h̃j = ρ2m−mj−1hj is the transform of a function in 0F0μ, for each

j = 1, . . . ,m. Proposition 6.2.4 then implies that ρe−ηyρρ2m−1h̃j is the transform
a function gj ∈ E0μ := Lp,μ(R+;Lq(R

n
+;E)).

Therefore, we need to know that M(y, ρ, b, σ) is a Fourier multiplier for X0.
To prove this, we first observe that M is uniformly bounded and holomorphic in
(λ, ξ). This implies the Mikhlin-condition w.r.t. ξ, hence we first invert the Fourier
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transform, to obtain an R-bounded family of operators T (λ, y) on Lq(R
n−1;E),

provided E is of class HT and has property (α). Uniformity then shows that the
family T (λ) = T (λ, ·) is also R-bounded in Lq(R

n
+;E) and then trivially also in

X0. Finally, by the Kalton-Weis theorem, T (∂t + ω) is bounded in X0.
Summarizing we have proved the sufficiency part of the following result for

the original parabolic half-space problem (6.24).

Theorem 6.2.5. Let 1 < p, q < ∞, ω > 0, μ ∈ (1/p, 1], and E be a Banach space
of class HT (α). Assume that A(D) is a normally elliptic differential operator of
order 2m, let Bj(D), j = 1, . . . ,m, denote differential operators of order mj < 2m,
and suppose the Lopatinskii-Shapiro condition (LS) is satisfied, for some angle
φ < π/2.

Then (6.24) admits a unique solution u in the class

u ∈ E1μ := H1
p,μ(R+;Lq(R

n
+;E)) ∩ Lp,μ(R+;H

2m
q (Rn

+;E)),

if and only if the data are subject to the following conditions.

(a) f ∈ E0μ = Lp,μ(R+;Lq(R
n
+;E)), u0 ∈ Xγ,μ = B

2m(μ−1/p)
qp (Rn

+;E);

(b) gj ∈ Fjμ = F
κj
pq,μ(R+;Lq(R

n−1;E)) ∩ Lp,μ(R+;B
2mκj
qq (Rn−1;E));

(c) Bj(D)u0 = gj(0) if κj > 1/p+ 1− μ, j = 1, . . . ,m.

Here κj = 1−mj/2m− 1/2mq. The solution depends continuously on the data in
the corresponding spaces.

Remark 6.2.6. (i) Note that κj > 1/p+1−μ if and only mj < 2m(μ−1/p)−1/q.

(ii) In the case p = q we have F
κj
pp,μ = B

κj
pp,μ = W

κj
p,μ as well as B

2mκj
pp = W

2mκj
p .

Proof. Necessity. We still need to prove the necessity part of Theorem 6.2.5.
Suppose u ∈ H1

p,μ(R+;Lq(R
n
+;E)) ∩ Lp,μ(R+;H

2m
q (Rn

+;E)) is a solution of
(6.24). Then inserting u into (6.24) we clearly have f ∈ Lp,μ(R+;Lq(R

n
+;E)).

To obtain the regularity of the time trace u0 of u at time t = 0, we ex-
tend u in space by means of a usual extension operator to obtain a function
ū ∈ H1

p,μ(R+;Lq(R
n;E)) ∩ Lp,μ(R+;H

2m
q (Rn;E)). Applying the trace theorem

for the semigroup e−(−Δ)mt with base space Lq(R
n;E) this yields

ū|t=0
∈ (Lq(R

n;E), H2m
q (Rn;E))μ−1/p,p = B2m(μ−1/p)

qp (Rn;E),

which implies by restriction u0 ∈ B
2m(μ−1/p)
qp (Rn

+;E). Next we consider the lateral
traces at y = 0. For this purpose we first replace u by v = t1−μu and extend
v in time by symmetry to R. Then v ∈ H1

p (R;Lq(R
n
+;E)) ∩ Lp(R;H

2m
q (Rn

+;E)),

hence w = (ω + ∂t)
α∂k

yD
β
xu belongs to H

1/2m
p (R;Lq(R

n
+;E)) ∩ Lp(R;H

1
q (R

n
+;E))

if 2mα+ k + |β| = 2m− 1. Next we solve the problem

∂yw̄ + L
1/2m
0 w̄ = ∂yw + L

1/2m
0 w, y > 0, w̄(0) = 0,
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with maximal regularity, which shows that w̄ has the same regularity as w, hence

w− w̄ = e−yL
1/2m
0 w|y=0 has as well. Then Proposition 6.2.4 implies that the trace

of w at y = 0 belongs to F
1/2m−1/2mq
pq (R;Lq(R

n−1;E))∩Lp(R;B
1−1/q
qq (Rn−1;E)).

By the definition of w and proper choices of β and k, this yields

t1−μgj = Bj(D)t1−μv ∈ 0F
κj
pq(R+;Lq(R

n−1;E)) ∩ Lp(R+;B
2mκj
qq (Rn−1;E)),

by restriction to t > 0; therefore we finally obtain gj ∈ F
κj
pq,μ(R+;Lq(R

n−1;E)) ∩
Lp,μ(R+;B

2mκj
qq (Rn−1;E)). This proves the necessity of the conditions in Theo-

rem 6.2.5. �

It is of importance to have estimates on the solution which are also uniform
in ω. This is the content of

Corollary 6.2.7. Let the assumptions of Theorem 6.2.5 be satisfied, and fix any
ω0 > 0. Then there is a constant C > 0 such that the solution of (6.24) satisfies
the estimate

|u|E1μ + ω|u|E0μ ≤ C
(
|u0|Xγ,μ + |f |E0μ (6.33)

+

m∑
j=1

(|gj |Fjμ
+ ω1−mj/2m|e−yLωgj |E0μ

)
)
,

for all ω ≥ ω0, (f, gj , u0) ∈ E0μ ×Fjμ ×Xγ,μ, j = 1, . . . ,m. Here Lω is defined by
Lω = (∂t + ω + (−Δ)m)1/2m.

Proof. To derive the inequality (6.33) we proceed in a similar way as in the proof
of Theorem 6.2.5. We again work in frequency domain. Recall that the symbol
of Lω is ρ = (λ + ω + |ξ|2m)1/2m, and set ρ0 = (λ + ω0 + |ξ|2m)1/2m. Here we
decompose as

ρ2mv = M1 ·M2 · ρ0e−ηyρ0ρ
2m−mj−1
0 hj

+M ·M2ω
1−mj/2me−ηyρhj ,

with

M1 = eiρA0(b,σ)+ηyρ0M0(b, σ), M2 =
ρ2m−mj

ρ
2m−mj

0 + ω1−mj/2m
.

By the arguments at the end of the proof of Theorem 6.2.5, M as well as M1 and
M2 are bounded Fourier multipliers for E0μ, uniformly for ω ≥ ω0 > 0, hence the
result follows by the same arguments. �

Estimate (6.33) is sharp for the half-space case. However, the last term in-
volves a norm which is specific for a half-space. Observing that with some δ > 0,

|e−yLωgj |E0μ
≤ C|e−δω1/2mygj |E0μ

≤ Cω−1/2mq|gj |Lp,μ(Lq),
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we obtain the slightly weaker estimate

|u|E1μ
+ ω|u|E0μ

≤ C
(
|u0|Xγ,μ

+ |f |E0μ
+

m∑
j=1

(|gj |Fjμ
+ ωκj |gj |Lp,μ(Lq))

)
. (6.34)

The advantage of (6.34) lies in the fact that it only involves the norms of the
boundary data. It is not good enough to cover boundary perturbations of highest
order, but it is well suited to handle such of lower order, and is in particular useful
for the localization process in domains.

2.3 Perturbed Coefficients
To consider the case of variable coefficients, on the boundary we have to work
in Besov spaces. Here a result on pointwise multipliers is essential. Therefore we
begin with this topic.

Lemma 6.2.8. Let 1 ≤ p, q ≤ ∞, s > 0, E a Banach space, and assume

a ∈ Bs
rq(R

n;B(E)) +Bs
∞q(R

n;B(E)), (6.35)

with r ≥ p and s > n/r.
Then the multiplication operator v �→ av is bounded in Bs

pq(R
n;E). Moreover,

there are constants α ∈ [0, 1) and C > 0 such that

|av|Bs
pq

≤ |a|L∞ |v|Bs
pq

+ C|v|αBs
pq
|v|1−α

Lp
, (6.36)

for all v ∈ Bs
pq(R

n;E). The constant C depends linearly on the norm of the space
of multipliers defined by (6.35).

Proof. We concentrate on the case s ∈ (0, 1], as the general case can be reduced
to this one by differentiation.

We will use the following norm on Bs
pq(R

n;E):

|v|Bs
pq

= |v|Lp + [v]s,p,q,

where

[v]s,p,q =
(∫

|h|≤1

(|h|−s|τhv − v|Lp)
q dh/|h|n

)1/q

, 1 ≤ q < ∞,

and
[v]s,p,∞ = sup

|h|≤1

|h|−s|τhv − v|Lp
.

Here {τh}h∈Rn denotes the group of translations defined by

(τhv)(x) = v(x+ h), x, h ∈ Rn.

Obviously we have |av|Lp ≤ |a|L∞ |v|Lp , so we concentrate on the estimation of
[av]s,p,q. The identity

τh(av)− av = τha(τhv − v) + (τha− a)v
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yields with Hölder’s inequality and Remark 6.2.9(ii)

[av]s,p,q ≤ |a|L∞ [v]s,p,q + [a]s,r,q|v|Lpρ′ ,

where r = pρ, 1/ρ + 1/ρ′ = 1, and s − n/p > −n/pρ′. The Gagliardo-Nirenberg
inequality implies

|v|Lpρ′ ≤ C|v|αBs
pq
|v|1−α

Lp
,

with some constants C > 0 and α ∈ [0, 1). Alternatively, we may estimate like

[av]s,p,q ≤ |a|L∞ [v]s,p,q + [a]s,∞,q|v|Lp
.

In both cases (6.36) follows. �

Remark 6.2.9. (i) This lemma shows that Bs
pq(R

n) is a Banach algebra w.r.t.
pointwise multiplication, provided s > n/p, i.e., provided it embeds into L∞.

(ii) Observe that the multiplier space defined in (6.35) embeds into the uniform

Hölder spaces C
s−n/r
b (Rn;B(E)).

We now consider problem (6.24) with variable coefficients, applying pertur-
bation arguments. Thus we look at the case

A(x,D) = A0(D) +A1(x,D), Bj(x,D) = B0
j (D) + B1

j (x,D),

where the system (A0(D),B0
1(D), . . . ,B0

m(D)) is normally elliptic and subject to
the Lopatinskii-Shapiro condition.

For perturbations of A0(D) the arguments of Section 6.1.4 apply again, so
we require

a1α ∈ Lrk(R
n
+;B(E)) + L∞(Rn

+;B(E)), |α| = k < 2m, rk ≥ q, 2m− k > n/rk,

and in addition the smallness condition

|a1α|L∞ ≤ η, |α| = 2m.

The essential perturbations to be considered here are the boundary perturbations.
In the sequel we assume

b1jβ ∈ B2mκj
rjkq

(Rn−1;B(E)) +B2mκj∞q (Rn−1;B(E)),

|β| = k ≤ mj , rjk ≥ q, 2mκj > (n− 1)/rjk,

and the smallness condition

|b1jβ |L∞ ≤ η, |β| = mj , j = 1, . . . ,m.

Recall the definition κj = 1−mj/2m− 1/2mq, and observe that

b1jβ ∈ C
2mκj−(n−1)/rjmj

b (Rn−1;B(E)), |β| = mj .
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We estimate the boundary perturbations as follows, employing Lemma 6.2.8. For
the highest order terms we get

|b1jβDβu|
B

2mκj
qq

≤ |b1jβ |L∞ |Dβu|
B

2mκj
qq

+ C|Dβu|α
B

2mκj
qq

|Dβu|1−α
Lp

≤ 2η|u|H2m
q

+ Cη|u|Lq
.

This implies

|B1
j#(x,D)u|

Lp,μ(R+;B
2mκj
qq )

≤ 2η|u|E1μ + Cη|u|E0μ .

In a similar way we can dominate the lower order terms, without any smallness
condition.

Next we need to estimate the terms |e−Lωyb1jβD
βv|Lq(Rn−1), where v = u|y=0

denotes the trace of u on the boundary. For this purpose we write

e−ω1/2myb1jβD
βv = −

∫ ∞

0

∂s(e
−ω1/2m(y+s)b1jβD

βu(s)) ds

=

∫ ∞

0

ω1/2me−ω1/2m(y+s)b1jβD
βu(s) ds

− ω−1/2m

∫ ∞

0

ω1/2me−ω1/2m(y+s)b1jβ∂sD
βu(s) ds.

This implies

|e−ω1/2myb1jβD
βv|Lq ≤ C|b1jβ |L∞

∫ ∞

0

(|Dβu(s)|Lq + ω−1/2m|∂sDβu(s)|Lq )
ds

y + s
,

and as the scalar Hilbert transform is bounded in Lq(R+),

|e−ω1/2myb1jβD
βv|Lq(Rn

+) ≤ C|b1jβ |L∞(|Dβu|Lq(Rn
+) + ω−1/2m|∂sDβu|Lq(Rn

+)),

which yields by the Gagliardo-Nirenberg inequality

ω1−mj/2m|e−ω1/2myb1jβD
βu|Lq(Rn

+) ≤ C|b1jβ |L∞

∑
i=1,2

|u|γi

H2m
q (Rn

+)(ω|u|Lq(Rn
+))

1−γi ,

with some constants C > 0 and γi ∈ [0, 1]. As the coefficients b1jβ do not depend
on time, this estimate implies

ω1−mj/2m|e−ω1/2myB1
j#v|E0μ

≤ Cη[|u|E1μ
+ ω|u|E0μ

].

Finally, as e−(Lω−δω1/2m)y is bounded in E0μ, for some δ > 0, this implies

ω1−mj/2m|e−LωyB1
j#v|E0μ

≤ Cη[|u|E1μ
+ ω|u|E0μ

].
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We now turn to the perturbed initial-boundary value problem. Without loss of
generality, we may assume u0 = 0, solving a whole-space problem. We write the
half-space problem in abstract form as

L0u+ L1u = F,

where
L0u = (∂tu+ ωu+A0(D)u,B0

1(D)u, . . . ,B1
m(D)u)

defines an isomorphism between the spaces 0E1,μ and E0,μ ×Πm
j=10Fjμ,

L1u = (A1(x,D)u,B1(x,D)u, . . . ,B1
m(x,D)u),

and F = (f, g1, . . . , gm) ∈ E0,μ×Πm
j=10Fjμ. If η > 0 is small enough, choosing ω >

0 large enough, we see by the above estimates that L0+L1 is also an isomorphism.
This way we obtain the following result on (6.24).

Theorem 6.2.10. Let E be a Banach space of class HT (α). Assume that A0(D) is
a normally elliptic differential operator of order 2m, let B0

j (D), j = 1, . . . ,m, de-
note differential operators of order mj < 2m, and suppose the Lopatinskii-Shapiro
condition for (A0(D),B0

j (D)) is satisfied, with some angle φ < π/2. Let

A(x,D) = A0(D) +A1(x,D), Bj(x,D) = B0
j + B1

j (x,D),

where the coefficients a1α(x), b
1
jβ(x) satisfy the following conditions.

|a1α|L∞ , |b1jβ |L∞ ≤ η, |α| = 2m, |β| = mj , j = 1, . . . ,m;

a1α ∈ Lrk(R
n
+;B(E)) + L∞(Rn

+;B(E)), |α| = k < 2m, rk ≥ q, 2m− k > n/rk;

b1jβ ∈ B2mκj
rjkq

(Rn−1;B(E)) +B2mκj∞q (Rn−1;B(E)),

|β| = k, rjk ≥ q, 2mκj > (n− 1)/rjk.

Then there is η0 > 0 such that the assertions of Theorem 6.2.5 and estimate (6.33)
remain valid for the perturbed problem, provided η ≤ η0.

2.4 Localization
Here we assume that the top order coefficients aα with |α| = 2m, and bjβ with |β| =
mj are continuous, with limits at infinity. This replaces the smallness condition of
the previous subsection. Choose a large ball B(0, R) ⊂ Rn such that

|aα(x)− aα(∞)| ≤ η, x ∈ R̄n
+ \B(0, R), |α| = 2m,

|bjβ(x)− bjβ(∞)| ≤ η, x ∈ Rn−1, |x| ≥ R, |β| = mj , j = 1, . . . ,m.

Observe that R > 0 exists, as the top order coefficients are continuous and
have limits at infinity. Next we cover the boundary B̄(0, R) ∩ Rn−1 by N1 balls
B(xk, r/2) ⊂ Rn such that

|aα(x)− aα(xk)| ≤ η, x ∈ B(xk, 2r), |α| = 2m,

|bjβ(x)− bjβ(xk)| ≤ η, x ∈ B(xk, 2r) ∩ Rn−1, |β| = mj , j = 1, . . . ,m.
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Finally, we cover the compact set B̄(0, R)\
(
∪N1

k=1B(xk, r/2)
)
by balls B(xk, r/2),

k = N1 + 1, . . . , N2. We then set U0 = Rn \ B̄(0, R), and Uk = B(xk, r), for
k = 1, . . . , N2. Then {Uk}N2

k=0, forms an open covering of R̄n
+. Fix a partition of

unity {ϕk}Nk=0 of class C
∞ subordinate to this open covering, and let ψk ∈ C∞(Rn)

be such that ψk = 1 on suppϕk and suppψk ⊂ Uk.
We assume in the sequel that the operator A#(x0, D) is normally elliptic,

for each x0 ∈ R̄n
+ ∪ {∞}, and that the system (A#(x0, D),Bj#(x0, D)) satisfies

the Lopatinskii-Shapiro Condition (LS), for each x0 ∈ Rn−1 ∪ {∞}, with angle
φ(x0) < π/2. Then the maximal regularity constants for the problems with frozen
coefficients will be uniform in x0 ∈ R̄n

+ ∪ {∞}, by continuity and compactness,
hence η0 in Theorem 6.2.10 will be uniform in x0 as well. Now we fix any η ∈ (0, η0].

Next we define for each k local operators Ak(x,D) on the half-space Rn
+ and

Bjk(x,D) on the boundary Rn−1 in the following way. Choose a function χ ∈ D(R)
such that χ(s) = 1 for all |s| ≤ 1, 0 ≤ χ(s) ≤ 1 and χ(s) = 0 for |s| ≥ 2. Then we
set

akα(x) = aα(xk + χ(|x− xk|2/r2)(x− xk)), x ∈ R̄n
+, |α| = 2m, k = 1, . . . , N2,

bkjβ(x) = bjβ(xk + χ(|x− xk|2/r2)(x− xk)), x ∈ Rn−1, |β| = mj ,

j = 1, . . . ,m, and

a0α(x) = aα(∞) + χ(R2/|x|2)(aα(x)− aα(∞)), x ∈ R̄n
+, |α| = 2m,

b0jβ(x) = bjβ(∞) + χ(R2/|x|2(bjβ(x)− bjβ(∞)), x ∈ Rn−1, |β| = mj .

Here we set a0α(0) = aα(∞) and b0jβ(0) = b0jβ(∞). Then we define the local oper-
ators by means of

Ak(x,D) =
∑

|α|=2m

akα(x)D
α, Bk

j (x,D) =
∑

|β|=mj

bkjβ(x)D
β .

By solving a full space problem, by Theorem 6.1.11, extending all coefficients of
A(x,D) by symmetry to all of Rn, we may assume u0 = 0. Now let the data gj be
given and let u ∈ 0E1μ be a solution of (6.24) in Rn

+. We set uk = ϕku, f
k = ϕkf ,

and gkj = ϕkgj . Then we obtain the following localized problems. For the interior

charts k = N1 + 1, . . . , N2, the functions uk satisfy

∂tu
k + ωuk +Ak(x,D)uk = fk + [A#(x,D), ϕk]u− ϕkA1(x,D)u in Rn,

uk(0) = 0,

where A1(x,D) = A(x,D) − A#(x,D) denotes the lower order part of A(x,D).
Note that Ak(x,D)ϕk = A#(x,D)ϕk by construction, and observe that the
commutators [A#(x,D), ϕk] are of lower order as well. The boundary charts
k = 0, . . . , N1 lead to the following half-space problems.

∂tu
k + ωuk +Ak(x,D)uk = fk + [A#(x,D), ϕk]u− ϕkA1(x,D)u in Rn

+,

Bk
j (x,D)uk = gkj + [Bj#(x,D), ϕk]u− ϕkBj1(x,D)u on Rn−1,

uk(0) = 0,
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where Bj1(x,D) = Bj(x,D)−Bj#(x,D) as well as the commutator [Bj#(x,D), ϕk]
are of order mj − 1, these are trivial in case mj = 0. We write these problems
abstractly as

Lku
k = Gku+ Fk, k = 0, . . . , N2,

where the operators Lk are defined by the left-hand sides of the localized equations,
Gku are the lower order perturbations on the right-hand side, and Fk collects the
data coming from the inhomogeneities (f, gj). More precisely,

Gku = ([A#(x,D), ϕk]u− ϕkA1(x,D)u, [Bj#(x,D), ϕk]u− ϕkBj1(x,D)u)

and Fk = ϕkF = ϕk(f, gj). By Theorem 6.2.10, the operators Lk are invertible
for ω large, hence we obtain

uk = L−1
k Fk + L−1

k Gku, k = 0, . . . , N2, (6.37)

and so the following representation of the solution u. We first write

u =

N2∑
k=0

ϕku =

N2∑
k=0

ψkϕku =

N2∑
k=0

ψku
k,

and then

u =

N2∑
k=0

ψkL
−1
k Fk +

( N2∑
k=0

ψkL
−1
k Gk

)
u.

We estimate in the following way, employing Theorem 6.1.11 for the interior charts
and (6.34) for the boundary charts.

|ψkL
−1
k Gku|E1μ

+ ω|ψkL
−1
k Gku|E0μ

≤ C
(
|Gi

ku|E0μ +

m∑
j=1

(|Gb
kju|Fjμ

+ ωκj |Gb
kju|Lp,μ(Lq)

)
.

Here the boundary terms are absent for the interior charts k = N1 + 1, . . . , N2.
For the interior operators Gi

k defined by

Gi
ku = [A#(x,D), ϕk]u− ϕkA1(x,D)u,

we obtain by the Gagliardo-Nirenberg inequality

|Gi
ku|E0μ ≤ C|u|γ

E1μ
|u|1−γ

E0,μ
,

with some constants C > 0 and γ ∈ (0, 1), hence

|Gi
ku|E0μ

≤ C

ω1−γ

(
|u|E1μ

+ ω|u|E0μ

)
.
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The boundary terms are of the form

Gb
kju = [Bj#(x,D), ϕk]u− ϕkBj1(x,D)u.

Therefore, as in the previous subsection

|Gb
kju|Fjμ

≤ Cj |u|γj

E1μ
|u|1−γj

E0μ
≤ Cj

ω1−γj

(
|u|E1μ

+ ω|u|E0μ

)
,

with constants Cj > 0 and γj ∈ (0, 1). Finally, applying once more arguments of
the previous subsection, we also obtain

ωκj |Gb
kju|Lp,μ(Lq) ≤

Cj

ω1−γj

(
|u|E1μ

+ ω|u|E0μ

)
,

with possibly different constants Cj > 0 and γj ∈ [0, 1).
Summarizing, we see that for ω sufficiently large, the operator GL :=∑N2

k=0 ψkL
−1
k Gk on 0E1μ satisfies the estimate

|GLu|E1μ + ω|GLu|E0μ ≤ C

ω1−γ

(
|u|E1μ + ω|uE0μ

)
with appropriate constants C and γ that do not depend on ω. Equipping 0E1μ

with the parameter-dependent norm |u|ω
E1μ

:= |u|E1μ
+ ω|u|E0μ

we conclude that

the operator I −GL is invertible in (0E1μ, | · |ωE1μ
), provided ω is sufficiently large.

This yields a left inverse S of (6.24), which is given by

S(f, gj) = (I −GL)−1
N2∑
k=0

ψkL
−1
k ϕk(f, gj).

In particular, the operator L defined by the left-hand side of (6.24) is injective
and has closed range. So it remains to prove that L is also surjective. To show this
we construct a right inverse which then by algebra equals its left inverse.

For this purpose we apply L# := (∂t +ω+A#(x,D),Bj#(x,D)) to u = SF ,
observing L# = Lk in Uk. This yields with (6.37)

L#u = L#

N2∑
k=0

ψku
k =

N2∑
k=0

[L#, ψk]L
−1
k (Fk +Gku) +

N2∑
k=0

ψk(Fk +Gku).

Next, as ψk = 1 on the support of ϕk, we may drop ψk in the second term, which
implies in the interior

N2∑
k=0

ψk(Fk +Gku)
i =

∑
k

(fk + [A#(x,D), ϕk]u− ϕkA1(x,D)u) = f −A1(x,D)u,
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and on the boundary

N2∑
k=0

ψk(Fk+Gku)
b =

∑
k

gjk+[Bj#(x,D), ϕk]u−ϕkBj1(x,D)u = gj −Bj1(x,D)u.

Replacing u = SF , this yields

LS = I +
( N2∑

k=0

[L#, ψk]L
−1
k ϕk

)
+
( N2∑

k=0

[L#, ψk]L
−1
k Gk

)
S =: I +GR.

As the commutator [L#, ψk] = ([A#(x,D), ψk], [Bj#(x,D), ψk]) is lower order, we
see as above that the norm of GR in E0μ is smaller than 1, provided ω is chosen
large. Therefore I +GR is invertible, and so R := S(I +GR)−1 is a right inverse
of L. This implies the following result for the half-space.

Theorem 6.2.11. Let 1 < p, q < ∞, μ ∈ (1/p, 1] and E be a Banach space of class
HT (α). Assume that A(x,D) is a differential operator of order 2m, let B0

j (D),
j = 1, . . . ,m, denote differential operators of order mj < 2m. Suppose that the
coefficients aα(x), bjβ(x) satisfy the following conditions.

aα ∈ Cl(R̄
n
+;B(E)), bjβ ∈ Cl(R

n−1;B(E)) |α| = 2m, |β| = mj , j = 1, . . . ,m;

aα ∈ Lrk(R
n
+;B(E)) + L∞(Rn

+;B(E)), |α| = k < 2m, rk ≥ q, 2m− k > n/rk;

bjβ ∈ B2mκj
rjkq

(Rn−1;B(E)) +B2mκj∞q (Rn−1;B(E)),

|β| = k ≤ mj , rjk ≥ q, 2mκj > (n− 1)/rjk.

Assume that A#(x,D) is normally elliptic for each x ∈ R̄n
+ ∪ {∞}, and that

(A#(x,D),Bj#(x,D)) satisfies the Lopatinskii-Shapiro Condition (LS) with some
angle φ(x) < π/2, for each x ∈ Rn−1 ∪ {∞}.

Then the assertions of Theorem 6.2.5 and Corollary 6.2.7 remain valid for
the half-space problem with variable coefficients.

2.5 Normal Strong Ellipticity
We now consider the special case of strongly elliptic second-order operators in a
Hilbert space E with so-called natural boundary conditions. This means, we con-
sider A(D) = aijDiDj , where a

ij = aji, with boundary operator either of Dirichlet
type, i.e., B(D) = I, or of co-normal (Neumann) type B(D) = νia

ijDj ; here we
employ the Einstein summation convention. Assuming that A(D) is strongly el-
liptic, what more conditions are needed for the Lopatinskii-Shapiro condition to
be valid for these natural boundary operators?

To answer this question, let u ∈ L2(R+;E) be a solution of the ODE-
boundary value problem

λu(y) +A(ξ + νDy)u(y) = 0, y > 0, (6.38)

B(ξ + νDy)u(0) = 0.
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Here Reλ ≥ 0, ξ, ν ∈ Rn are fixed, with (λ, ξ) �= (0, 0), |ν| = 1, (ξ|ν) = 0. Take
the inner product with u in E, integrate over R+, and take real parts. By means
of the natural boundary conditions this yields the identity

Reλ|u|22 +
∫ ∞

0

Re(aij(ξj + νjDy)u|(ξi + νiDy)u) dy = 0. (6.39)

To be able to conclude from this identity that u = 0, the following condition is
natural.

Definition 6.2.12. A differential operator A(D) = aijDiDj, with aij = aji ∈ B(E),
is called normally strongly elliptic, if its is strongly elliptic and there is a constant
c > 0 such that

Re(aij(ξju+ νjv)|ξiu+ νiv) ≥ c|Im(u|v)|, u, v ∈ E,

for all ξ, ν ∈ Rn, |ξ| = |ν| = 1, (ξ|ν) = 0.

From this condition we may then conclude Im(u(y)|Dyu(y)) = 0 for all y > 0,
which implies

d

dy
|u(y)|2 = 2Re(u(y)|∂yu(y)) = 2Im(u(y)|Dyu(y)) = 0,

hence |u| is constant on R+, and so must be 0 as u ∈ L2(R+;E).
In case E is finite-dimensional, we are finished, as by strong ellipticity the

dimension of the space of solutions of the homogeneous differential equation (6.38)
has dimension dimE. The map T : u �→ B(ξ+νDy)u(0) is injective, hence also sur-
jective, and so the Lopatinskii-Shapiro condition holds. If E is infinite-dimensional
we have to work a little harder to obtain this result.

For this purpose observe first that the operator T defined above is injective,
but also has dense range, as with A(D) also A∗(D) is normally strongly elliptic.
Therefore we need to show that the range of T is closed. So let u ∈ L2(R+;E) be
a solution of the ODE-problem

λu(y) +A(ξ + νDy)u(y) = 0, y > 0, (6.40)

B(ξ + νDy)u(0) = g ∈ E.

(i) We first consider the Neumann case. Multiplying the equation for u in (6.40)
with u(y), integrating over R+ and integrating by parts, we get by normal strong
ellipticity

c|u0|2 ≤ c

∫ ∞

0

|∂y|u(y)|2| dy ≤ 2|g||u0|,

where u0 = u(0). This implies |u0| ≤ C|g|. Hence we may restrict our attention
to the Dirichlet case, and the goal is to prove that there is a constant C > 0 such
that |u|2 ≤ C|u0|, for each L2-solution u of the homogeneous problem

λu(y) +A(ξ + νDy)u(y) = 0, y > 0.
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(ii) We begin estimating the L2-norm of u′(y) := ∂yu(y) as follows, employing an
integration by parts.

|u′|22 = −(u1|u0)− (u|u′′)2 ≤ |u1||u0|+ |u|2|u′′|2
≤ |u1||u0|+ C|u|2(|u|2 + |u′|2).

Here u1 = u′(0) and we used the equation for u, as well as the fact that the
operator aijνiνj is invertible in E, by strong ellipticity. This implies by Young’s
inequality

|u′|22 ≤ 2|u1||u0|+ C1|u|22. (6.41)

(iii) Next we write

|u1|2 = −2Re

∫ ∞

0

(u′′(y)|u′(y)) dy,

to obtain
|u1|2 ≤ 2|u′|2|u′′|2 ≤ C|u′|2(|u|2 + |u′|2),

hence by Young’s inequality and (6.41)

|u1|2 ≤ C2(|u|22 + |u0|2). (6.42)

(iv) Now we employ once more normal strong ellipticity, to obtain as in (i) the
estimate

|u(y)|2 ≤ C|u0|(|u0|+ |u1|) ≤ (Cε|u0|+ ε|u1|)2, (6.43)

again using Young’s inequality.
The final estimate comes from strong ellipticity. Taking the Laplace transform

of λu(y) +A(ξ + νDy)u(y) = 0 w.r.t. the variable y we obtain

Lu(z) = −(λ+A(ξ − izν))−1[(aklνkνl(zu0 + u1) + 2iaklξkνlu0].

As u ∈ L2(R+;E), by strong ellipticity, the function Lu(z) has only singularities
in a compact subset of the negative half-plane, which only depends on (λ, ξ, ν).
So choosing a contour Γ− surrounding these singularities and lying entirely in the
left half-plane, we obtain the representation

u(y) =
1

2πi

∫
Γ−

ezyLu(z) dz, y > 0.

This implies
eωy|u(y)| ≤ C3(|u0|+ |u1|), (6.44)

with some fixed constants ω > 0 and C3 > 0 independent of u. Interpolating (6.43)
and (6.44) and integrating over y > 0, this implies

|u|22 ≤ C3

ω
(|u0|+ |u1|)(Cε|u0|+ ε|u1|)

≤ C3

ω
(C ′

ε|u0|2 + 2ε|u1|2),
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applying once more Young’s inequality. Finally, choosing ε > 0 small enough,
combining the last estimate with (6.42) yields |u|22 ≤ C|u0|2, which is what we
wanted to prove.

(v) Finally we consider mixed boundary conditions which are also important in
applications. For this purpose let P ∈ B(E) be an orthogonal projection, i.e.,
P = P ∗ = P 2, and consider the boundary conditions

Pu(0) = g0, (I − P )B(D)u(0) = g1.

Then the energy argument yields an estimate of the form

c|u0|2 ≤ C|g0|(|u0|+ |u1|) + |g1||u0|,

which implies
|u0|2 ≤ C(|g0|2 + |g1|2) + ε|u1|2,

and so by (6.42)
|u0|2 ≤ C(|g0|2 + |g1|2) + ε|u|22,

and finally
|u|22 ≤ C(|g0|2 + |g1|2).

This shows that also the case of mixed boundary conditions is covered.
We summarize the result obtained above.

Proposition 6.2.13. Let E be a Hilbert space and suppose that A(D) is a second-
order, normally strongly elliptic differential operator in E.

Then the Lopatinskii-Shapiro condition is satisfied for the natural boundary
conditions, i.e., for Dirichlet, Neumann, or mixed conditions.

The following proposition deals with a very special case which, however, is
frequently met in applications.

Proposition 6.2.14. Let aij = αijb, where the matrix [αij ] is real, symmetric, and
positive definite, and b ∈ B(E) is strongly accretive in the Hilbert space E, i.e.,

Re(bu|u) ≥ c|u|2, u ∈ E,

for some positive constant c > 0.
Then A(D) is normally strongly elliptic.

We leave the proof of this proposition to the interested reader, as it only
involves the Cauchy-Schwarz inequality.

Remark. (i) For E = Cn there is another stronger concept of ellipticity. We say
that a ∈ B(E)n×n satisfies the strong Legendre condition, if there is a constant
C > 0 such that

Re aijkld
l
j d̄

k
i ≥ C|d|22, for all d ∈ B(Cn).
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This condition means that a is strongly accretive on B(Cn).
Obviously, the strong Legendre condition implies normal strong ellipticity, as

for d = ξ ⊗ u+ ν ⊗ v with ξ · ν = 0 we have

|d|22 = |ξ|2|u|2 + |ν|2|v|2 ≥ 2|ξ||ν||(u|v)|.

(ii) For many applications, however, the strong Legendre condition is too strong.
This comes from the fact that the tensor a usually has symmetries like

aijkl = aklij = ailkj = akjil .

These symmetries are called hyperelastic and mean that a only acts on the sym-
metric part of a matrix and yields again a symmetric matrix. This is quite common
in elasticity theory and also in compressible fluids, as there a represents stress-
strain relations like S = aD, where D means the symmetric part of a deformation
gradient, or of a velocity gradient. Then the stress S will also be symmetric. In this
case the operator a maps the space of symmetric matrices Sym(Cn) into itself. For
this situation, the appropriate condition – which we call the Legendre condition –
reads

Re aijkle
l
j ē

k
i ≥ C|e|22, for all e ∈ Sym(Cn).

This means that a is strongly accretive on Sym(Cn), and it will be even selfadjoint
in case aijkl = ājilk.

Obviously, the Legendre condition implies strong ellipticity, but also normal
strong ellipticity. In fact, for d = ξ ⊗ u + ν ⊗ v and e = (d + dT)/2 we have with
|ξ| = |ν| = 1, ξ · ν = 0, and

u = (u|ξ)ξ + (u|ν)ν + u⊥, v = (v|ξ)ξ + (v|ν)ν + v⊥, u⊥, v⊥ ⊥ ξ, ν,

the identity

|e|22 =
1

2
{|u⊥|2 + |v⊥|2 + 2|(u|ξ)|2 + 2|(v|ν)|2 + |(u|ν) + (v|ξ)|2}.

This shows e = 0 if and only if u⊥ = v⊥ = 0, (u|ξ) = (v|ν) = 0, (u|ν) = −(v|ξ),
which implies u = (u|ν)ν, v = (v|ξ)ξ, in particular (u|v) = 0. In other words, if
|ξ| = |ν| = 1, ξ · ν = 0, and Im(u|v) �= 0, then e �= 0. Therefore, the Legendre
condition implies normal strong ellipticity.

(iii) In summary, we have the following implications for a second-order differential
operator A(D) = aijDiDj , with aij = aji ∈ B(Cn):

A(D) satisfies the strong Legendre condition

⇒ A(D) satisfies the Legendre condition

⇒ A(D) is normally strongly elliptic

⇒ A(D) is strongly elliptic

⇒ A(D) is normally elliptic.
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(iv) As an example we consider the well-known Lamé operator L, which is defined
by

Lu :=− div[μs(∇u+∇uT) + μb(div u)I]

=− μsΔu− (μs + μb)∇div u,

which yields

[Lu]k = −aijkl∂i∂jul, with aijkl = μs(δijδkl + δilδjk) + μbδikδjl.

The tensor a is easily checked to be hyperelastic and selfadjoint, and the Legendre
condition is equivalent to

μs > 0, 2μs + nμb > 0.

On the other hand, a is strongly elliptic if and only if

μs > 0, 2μs + μb > 0,

and a is normally strongly elliptic if and only if

μs > 0, μs + μb > 0.

This can be shown by elementary linear algebra.

6.3 General Domains

Let Ω ⊂ Rn be a domain with compact boundary ∂Ω of class C2m. So Ω may be
an interior or an exterior domain. In this section we consider the following general
parabolic initial-boundary problem which is completely inhomogeneous. Let E be
a Banach space of class HT , and consider the parabolic problem

∂tu+ ωu+A(x,D)u = f in Ω,

Bj(x,D)u = gj on ∂Ω, j = 1, . . . ,m,

u(0) = u0 in Ω.

(6.45)

Here A(x,D) =
∑

|α|≤2m aα(x)D
α is a differential operator of order 2m,

Bj(x,D) =
∑

|β|≤mj
bjβ(x)D

β are differential operators of order mj < 2m, ω ∈ R,

and the data (f, gj , u0) are given. We are interested in maximal Lp,μ−Lq-regularity
of (6.45).

3.1 The Main Result
We formulate the assumptions of the main theorem in the following way. The most
essential is the ellipticity assumption.
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Definition 6.3.1. We call the system (A(x,D),B1(x,D), . . . ,Bm(x,D)) uniformly
normally elliptic if

(i) A(x,D) is normally elliptic, for each x ∈ Ω̄ ∪ {∞};
(ii) The Lopatinskii-Shapiro condition (LS) holds, for each x ∈ ∂Ω.

This assumption is crucial, and even necessary, for the main result stated
below; see the Bibliographical Comments.

Next we state the regularity assumptions on the coefficients.

Condition (rA)

(rA1) aα ∈ Cl(Ω̄;B(E)) for each |α| = 2m;

(rA2) aα ∈ Lrk(Ω;B(E)) + L∞(Ω;B(E)) for each |α| = k < 2m,

with rk ≥ q and 2m− k > n/rk.

For the regularity of the coefficients on the boundary we recall the definition
κj = 1−mj/2m− 1/2mq.

Condition (rB)

(rB) bjβ ∈ B
2mκj
rjkq (∂Ω;B(E)) for each |β| = k ≤ mj ,

with rjk ≥ q, and 2mκj > (n− 1)/rjk.

With these assumptions we can state the main theorem of this section.

Theorem 6.3.2. Let Ω ⊂ Rn be open with compact boundary ∂Ω of class C2m,
1 < p, q < ∞, μ ∈ (1/p, 1], and let E be a Banach space of class HT (α). Assume
that (A(x,D),B1(x,D), . . .Bm(x,D)) is uniformly normally elliptic, and satisfies
the regularity conditions (rA) and (rB). Let κj �= 1/p+ 1− μ for all j.

Then there is ω0 ∈ R such that for each ω > ω0, equation (6.45) admits a
unique solution u in the class

u ∈ E1μ := H1
p,μ(R+;Lq(Ω;E)) ∩ Lp,μ(R+;H

2m
q (Ω;E)),

if and only if the data are subject to the following conditions.

(a) f ∈ E0μ = Lp,μ(R+;Lq(Ω;E)), u0 ∈ Xγ,μ = B
2m(μ−1/p)
qp (Ω;E);

(b) gj ∈ Fjμ = F
κj
pq,μ(R+;Lq(∂Ω;E)) ∩ Lp,μ(R+;B

2mκj
qq (∂Ω;E)), j = 1, . . . ,m.

(c) Bj(D)u0 = gj(0) if κj > 1/p+ 1− μ, j = 1, . . . ,m.

The solution depends continuously on the data in the corresponding spaces.

The proof of this result is given in the next subsections.

3.2 Coordinate Transformations
(a) Let Φ ∈ C2m

b (Rn;Rn) be such that

c ≤ |det ∂Φ(x)| ≤ c−1, x ∈ Rn,
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for some constant c > 0, and ∂Φ(x) → I as |x| → ∞. Define the coordinate
transform T by means of

(Tv)(x) = v(Φ(x)), x ∈ Rn.

Then T : Hk
p (R

n;E) → Hk
p (R

n;E) is an isomorphism for each 0 ≤ k ≤ 2m. For
the derivative D = (D1, · · · , Dn) we obtain the transformation law

DTv(x) = ∂ΦT(x)(Dv)(Φ(x)),

hence the differential operator A(x,D) tranforms to AΦ(y,D), given by

AΦ(y,D) = T−1A(x,D)T =
∑

|α|≤2m

aΦα(y)D =
∑

|α|≤2m

aα(Φ
−1(y))(∂ΦT(Φ−1(y))D)α.

Therefore, the coefficients aΦα enjoy the same regularity conditions as aα, and the
principal symbol of AΦ is given by

AΦ
#(y, ξ) = A#(Φ

−1(y), ∂ΦT(Φ−1(y))ξ), y, ξ ∈ Rn.

This shows that parameter-ellipticity of AΦ is equivalent to that of A, with the
same angle of ellipticity.

(b) We consider now the situation of a bent half-space. Replacing the variable
x ∈ Rn

+ by (x, y) ∈ Rn−1 × R+, a bent half-space is defined by a coordinate
transformation of the form Φ(x, y) = (x, y + h(x)), with

h ∈ C2m
b (Rn−1;R), lim

|x|→∞
∂h(x) = 0. (6.46)

Note that the boundary of the transformed domain is the graph (x, h(x)). Clearly,
Φ ∈ C2m

b (Rn;Rn), and with

∂Φ(x, y) =

[
I 0

∂h(x) 1

]
, ∂Φ(x, y)−1 =

[
I 0

−∂h(x) 1

]
satisfies lim|x|+|y|→∞ ∂Φ(x, y) = I. Moreover, det ∂Φ(x, y) = 1. Hence we see that
(a) applies. In a similar way, the boundary operators Bj(x,D) are transformed to
BΦ(·, D) = T−1Bj(·, D)T , hence their principal parts become

BΦ
j#(y, ξ) = Bj#(Φ

−1(y), ∂ΦT(Φ−1(y))ξ), y, ξ ∈ Rn.

Note that the normal of Rn
+ at (x, y) transforms to

ν =
−∂Φ−Ten
|∂Φ−Ten|

=
1√

1 + |∇xh|2
[∇xh(x),−1]T.
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This shows, by the remarks following the definition of the Lopatinskii-
Shapiro Condition (LS), that (LS) holds for the transformed problem
(AΦ(x,D),BΦ

1 (x,D), . . . ,BΦ
m(x,D)) if and only it holds for the original problem.

(c) As the boundary spaces for the half-space are transformed to the corresponding
boundary spaces on the bent half-space, these considerations show that the main
result for the half-space, Theorem 6.2.11 as well as the estimate (6.34) remain
valid for bent half-spaces.

3.3 Localization
If Ω ⊂ Rn is unbounded, i.e., an exterior domain, we choose a large ball B(0, R) ⊃
Ωc and define U0 = Rn \ B̄(0, R). If Ω is bounded then U0 = ∅. We cover the
compact set ∂Ω ⊂ Rn by balls B(xk, r/2) with xk ∈ ∂Ω, k = 1, . . . , N1, such that
each part ∂Ω∩B(xk, 2r) of the boundary ∂Ω can be parameterized by a function
hk ∈ C2m as a C2m-graph over the tangent space Txk

∂Ω. We extend this function
hk to a global function on Txk

∂Ω by a cut-off procedure, and denote the resulting
bent half-space by Hk. This is possible by the regularity assumption ∂Ω ∈ C2m as
well as by compactness of ∂Ω. We set Uk = B(xk, r)∩Ω, k = 1, . . . , N1. We cover
the compact set Ω̄\∪N1

k=0Uk by finitely many balls B(xk, r/2), k = N1+1, . . . , N2,

and set Uk = B(xk, r). Then {Uk}N2

k=0 is a finite open covering of Ω̄. Fix a C∞-

partition of unity {ϕk}N2

k=1 subordinate to the open covering {Uk}N2

k=0 of Ω̄, and
let ψk denote C∞-functions with ψk = 1 on suppϕk, suppψk ⊂ Uk.

To define local operators Ak(x,D) and Bk
j (x,D) we proceed as follows. For

the interior charts k = 0, k = N1+1, . . . , N2, we define the coefficients of Ak(x,D)
by reflection of the top order coefficients at the boundary of Uk. This is the same
trick as in Section 6.1.4. For the boundary charts k = 1, . . . , N1 we first transform
the top order coefficients of A(x,D) and Bj(x,D) in Uk to a half-space, extend
them as in the Section 6.2.4, and then transform them back to the bent half space
Hk.

Having defined the local differential operators, we may proceed as in Section
6.2.4, introducing local problems for the functions uk = ϕku, which for the interior
charts k = 0, and k = N1 + 1, . . . , N2 are problems on Rn, and for the boundary
charts k = 1, . . . , N1 are problems on the bent half-spaces Hk. For the latter,
instead of using Theorem 6.2.10 we employ the extension of Theorem 6.2.11 to
bent half-spaces. This completes the proof of Theorem 6.3.2.

3.4 The Semigroup
To define the semigroup associated with (6.45), we introduce the base space X0 :=
Lq(Ω;E), as well as the operator A by means of

(Au)(x) := A(x,D)u(x), x ∈ Ω,

u ∈ D(A) := {u ∈ H2m
q (Ω;E); Bj(x,D)u = 0 on ∂Ω, j = 1, . . . ,m},

and we set X1 = D(A) equipped with the graph norm. Then the problem

u̇+Au = f, t > 0, u(0) = u0,
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has maximal Lp-regularity, by Theorem 6.3.2, hence ω0+A ∈ MRp(X0), for some
ω0 > 0, and so −A generates an analytic C0-semigroup inX0, by Proposition 3.5.2.
This implies that ω + A is R-sectorial for all ω > s(−A), the spectral bound of
−A. We note that the time-trace space Xγ,μ is given by

Xγ,μ = {u ∈ B2m(μ−1/p)
qp (Ω;E); Bj(x,D)u = 0, if κj > 1/p+1−μ, j = 1, . . . ,m},

where we exclude the degenerate cases κj = 1/p+ 1− μ.
To determine the smallest value ω0 in Theorem 6.3.2, we fix some large

number ω1 and solve (6.45) with ω replaced by ω1 which results in some function
ū ∈ E1μ. Setting ũ = u− ū, the new function ũ must solve the problem

∂tũ+ ωũ+A(x,D)ũ = (ω1 − ω)ū in Ω,

Bj(x,D)ũ = 0 on ∂Ω, j = 1, . . . ,m,

ũ(0) = 0 in Ω,

for t > 0. But this means

˙̃u+ ωũ+Aũ = (ω1 − ω)ū, t > 0, ũ(0) = 0,

and so we see that ω > s(−A) is sufficient, i.e., ω0 = s(−A).

3.5 Higher Order Space Regularity
In many problems maximal Lp-regularity in Hs

q (Ω;E) is required, where s > 0. In
this subsection we consider the case s = 1, and comment later on other values of s.
By localization, coordinate transformation and perturbation, it is again enough to
restrict to the half-space case with constant coefficients. We have to distinguish
two cases, namely (i) mj ≥ 1 for all j, and (ii) mj = 0 for at least one j. We begin
with the first case.

(i) mj ≥ 1 for all j = 1, . . . ,m.
This case is the easy one. So suppose that we have a solution of (6.24) in the class

u ∈ H1
p,μ(R+;H

1
q (R

n
+;E)) ∩ Lp,μ(R+;H

2m+1
q (Rn

+;E)). (6.47)

Then necessarily

f ∈ Lp,μ(R+;H
1
q (R

n
+;E)), u0 ∈ B2m(μ−1/p)+1

qp (Rn
+;E),

and

Dβu ∈ H1−k/2m+1/2m
p,μ (R+;Lq(R

n
+;E)) ∩ Lp,μ(R+;H

2m+1−k
q (Rn

+;E)),

for |β| = k; hence

gj ∈ Fκj+1/2m
pq,μ (R+;Lq(R

n−1;E)) ∩ Lp,μ(R+;B
2mκj+1
qq (Rn−1;E)),
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and the compatibility conditions

Bj(D)u0 = gj(0), κj > 1/p+ 1− μ− 1/2m, j = 1, . . . ,m,

are satisfied.
Conversely, let data (f, gj , u0) with these properties be given, and let

A(D) be normally elliptic and assume that (A(D),B1(D), . . . ,B(D)) satisfies the
Lopatinskii-Shapiro condition. Then we can show that (6.24) admits a unique so-
lution in the class (6.47). In fact, extending f and u0 to all of Rn, we obtain a
solution of the full-space problem in the right class. Thus we may restrict attention
to the case (f, u0) = 0. Looking at the crucial equation for the half-space (6.32),
we see that the solution in this case has regularity (6.47), as we may multiply g̃
in (6.32) by ρ.

Obviously, for variable coefficients and general domains with compact bound-
ary we need to require additional smoothness of the coefficients and Ω. These turn
out to be

(rA1+) aα ∈ Cl(Ω̄;B(E)) for each |α| = 2m;

(rA2+) aα ∈ H1
rk
(Ω;B(E)) +W 1

∞(Ω;B(E)) for each |α| = k ≤ 2m,
with rk ≥ q and 2m+ 1− k > n/rk;

(rB+) bjβ ∈ B
2mκj+1
rjkq (∂Ω;B(E)) for each |β| = k ≤ mj ,

with rjk ≥ q, and 2mκj + 1 > (n− 1)/rjk.

With these assumptions, we have the following result which parallels Theo-
rem 6.3.2.

Theorem 6.3.3. Let Ω ⊂ Rn be open with compact boundary ∂Ω of class C2m+1,
1 < p, q < ∞, μ ∈ (1/p, 1], and let E be a Banach space of class HT (α). Assume
that (A(x,D),B1(x,D), . . .Bm(x,D)) is uniformly normally elliptic, and satisfies
(rA1+), (rA2+) (rB+). Let κj �= 1/p+ 1− μ− 1/2m for all j, and mj ≥ 1.

Then there is ω0 ∈ R such that for each ω > ω0, equation (6.45) admits a
unique solution u in the class

u ∈ E1μ := H1
p,μ(R+;H

1
q (Ω;E)) ∩ Lp,μ(R+;H

2m+1
q (Ω;E)),

if and only if the data are subject to the following conditions.

(a) f ∈ Lp,μ(R+;H
1
q (Ω;E)), u0 ∈ B

2m(μ−1/p)+1
qp (Ω;E);

(b) gj ∈ F
κj+1/2m
pq,μ (R+;Lq(∂Ω;E)) ∩ Lp,μ(R+;B

2mκj+1
qq (∂Ω;E));

(c) Bj(D)u0 = gj(0) if κj > 1/p+ 1− μ− 1/2m, j = 1, . . . ,m.

The solution depends continuously on the data in the corresponding spaces.

(ii) mj = 0, for some j.
So let for simplicity B1(D) = I, a Dirichlet condition, and mj ≥ 1 for j = 2, . . . ,m.
This case is more involved than (i), as an additional compatibility condition shows
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up. In fact, we have κ1 + 1/2m = 1 + (1 − 1/q)/2m > 1, hence ∂tu has a time
trace on the boundary, which by taking the time derivative of the first boundary
condition yields

∂tg1 = ∂tu = f|∂Ω
− [A(D)u]|∂Ω

.

This suggests

g1 ∈ H1
p,μ(R+;B

1−1/q
qq (Rn−1;E)) ∩ Lp,μ(R+;B

2m+1−1/q
qq (Rn−1;E)).

On the other hand, we have

A(D)u ∈ H1/2m
p,μ (R+;Lq(R

n
+;E)) ∩ Lp,μ(R+;H

1
q (R

n
+;E)),

which yields for its trace on ∂Ω

[A(D)u]|∂Ω
∈ F (1−1/q)/2m

pq,μ (R+;Lq(R
n−1;E)) ∩ Lp,μ(R+;B

1−1/q
qq (Rn−1;E)).

This implies the additional regularity

∂tg1 − f|∂Ω
∈ F (1−1/q)/2m

pq,μ (R+;Lq(R
n−1;E)) ∩ Lp,μ(R+;B

2m+1−1/q
qq (Rn−1;E)),

and the additional compatibility condition

∂tg1(0) + [A(D)u0]|∂Ω
= f(0)|∂Ω

, if (1− 1/q)/2m > 1/p+ 1− μ.

The regularity and compatibility of gj for j ≥ 2 is the same as in (i), and g1(0) = u0

on ∂Ω must be satisfied, as well.
Having worked out these higher order compatibilities, we now may proceed

as in (i) to see that these conditions yield also sufficiency for solutions of (6.24)
in the class (6.47).

Theorem 6.3.4. Let Ω ⊂ Rn be open with compact boundary ∂Ω of class C2m+1,
1 < p, q < ∞, μ ∈ (1/p, 1], and let E be a Banach space of class HT (α). Assume
that (A(x,D),B1(x,D), . . .Bm(x,D)) is uniformly normally elliptic, and satisfies
(rA1+), (rA2+), (rB1+), for j = 2, . . . ,m. Let κj �= 1/p + 1 − μ − 1/2m for
all j ≥ 1. Further assume that B1(x,D)u = u, i.e., B1 is a Dirichlet boundary
condition.

Then there is ω0 ∈ R such that for each ω > ω0, equation (6.45) admits a
unique solution u in the class

u ∈ E1μ := H1
p,μ(R+;H

1
q (Ω;E)) ∩ Lp,μ(R+;H

2m+1
q (Ω;E)),

if and only if the data are subject to the following conditions.

(a) f ∈ Lp,μ(R+;H
1
q (Ω;E)), u0 ∈ B

2m(μ−1/p)+1
qp (Ω;E);

(b) gj ∈ F
κj+1/2m
pq,μ (R+;Lq(∂Ω;E)) ∩ Lp,μ(R+;B

2mκj+1
qq (∂Ω;E));

(c) Bj(D)u0 = gj(0) if κj > 1/p+ 1− μ− 1/2m, j = 1, . . . ,m;
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(d) ∂tg1 − f|∂Ω
∈ F

(1−1/q)/2m
pq,μ (R+;Lq(R

n−1;E)) ∩ Lp,μ(R+;B
1−1/q
qq (Rn−1;E));

(f ) ∂tg1(0) + [A(D)u0]|∂Ω
= f(0)|∂Ω

, if (1− 1/q)/2m > 1/p+ 1− μ.

The solution depends continuously on the data in the corresponding spaces.

(iii) General s > 0.
Extending the observations in (i) and (ii), we are able to study solutions in the
class

u ∈ H1
p,μ(R+;H

s
q (R

n
+;E)) ∩ Lp,μ(R+;H

2m+s
q (Rn

+;E)), (6.48)

for any s > 0 excluding the special values si = mi+1/q, and imposing the natural
additional regularities ∂Ω ∈ C2m+s, as well as

aα ∈ Hs
rk
(Ω) +Hs

∞(Ω), rk ≥ q, 2m+ s− k > n/rk, 0 ≤ |α| = k ≤ 2m,

and

bjβ ∈ B2mκj+s
rjkq

(∂Ω), rjk ≥ q, 2mκj + s > (n− 1)/rjk, 0 ≤ |β| = k ≤ mj ,

and imposing the higher order compatibilities as explained above. More precisely,
let m0

1 < m0
2 < . . . < m0

imax
be defined by the different orders mj . Then for

0 ≤ s < m0
1 + 1/q we have no higher order compatibilities, for m0

1 + 1/q < s <
m0

2 + 1/q we have first (time-) order compatibilities, and with increasing s the
number and the order of these higher compatibilities increases, whenever s crosses
one the exceptional numbers si. So if s is large, this leads to a very complicated
set of higher order compatibilities, which one clearly would like to avoid.

As a summary, in parabolic problems, such higher order compatibilities do
not occur if s < min{mj} + 1/q, i.e., if the time derivatives of the boundary
conditions do not have a space trace. For second-order problems this means in the
Dirichlet case if s < 1/q, and in the Neumann case if s < 1 + 1/q.

(iv) The elliptic case.
Finally, we note that for elliptic problems this phenomenon does not occur. If
f ∈ Hs

q (Ω) and gj ∈ B
2mκj+s
qq (∂Ω), then the solution of the elliptic problem

(ω +A(x,D)u = f in Ω, Bj(x,D)u = gj on ∂Ω, j = 1, . . . ,m

has a unique solution in Hs+2m
q (Ω), provided A(x,D) is normally elliptic, the

Lopatinskii-Shapiro condition holds, ω > s(−A), ∂Ω ∈ C2m+s, and the coefficients
satisfy the regularity conditions in (iii).

3.6 Lower Order Space Regularity
In many problems, maximal Lp-regularity in Hs

p(Ω;E) is required, where s < 0.
In this subsection we consider the case s = −1, i.e., we want to consider weak
solutions. By localization, coordinate transformation and perturbation, it is again
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enough to prove the results for the half-space case with constant coefficients. For
all of this, we make the structural assumption

A(x,D) = −i

n∑
�=1

∂�A�(x,D) = −i divA(x,D),

where A�(x,D) =
∑

|α|≤2m−1 a�α(x)D
α are differential operators of order 2m− 1.

We have to distinguish two cases:

(i) mj ≤ 2m− 2 for all j = 1, . . . ,m.

(ii) mj ≤ 2m−2 for all j = 1, . . . ,m−1, but mm = 2m−1; in this case we require

Bm(x,D) = iν · A(x,D).

We begin with the first case.

(i) mj ≤ 2m− 2 for all j = 1, . . . ,m.
We assume thatA is normally elliptic, and that the system (A,B1, . . . ,Bm) satisfies
the Lopatinskii-Shapiro condition. The operator

Grad0 : 0H
1
q′(Ω) → Lq′(Ω;C

n), Grad0 φ := ∇φ,

is well-defined, linear, bounded, and injective. Therefore, its dual

Div0 = −Grad∗0 : Lq(Ω;C
n) → 0H

1
q′(Ω)

∗ =: H−1
q (Ω)

is also well-defined, bounded and has dense range. Note that in case Ω is bounded,
by the Poincaré inequality R(Grad0) is closed, and hence Div0 is surjective. Prob-
lem (6.45) can now be rewritten as

∂t(u|φ)Ω + ω(u|φ)Ω + i(A(x,D)u|∇φ)Ω = (f |φ)Ω, φ ∈ 0H
1
q′(Ω)

Bj(x,D)u = gj on ∂Ω, j = 1, . . . ,m,

u(0) = u0 in Ω.

(6.49)

Abstractly, the first equation in (6.49) can be written as

∂tu+ ωu− iDiv0(A(x,D)u) = f in H−1
q (Ω;E).

So we are looking for solutions in the class

u ∈ H1
p,μ(R+;H

−1
q (Ω;E)) ∩ Lp,μ(R+;H

2m−1
q (Ω;E)). (6.50)

This implies the following necessary regularity conditions for the data.

(a) f ∈ Lp,μ(R+;H
−1
q (Ω;E)), u0 ∈ B

2m(μ−1/p)−1
qp (Ω;E);

(b) gj ∈ F
κj−1/2m
pq,μ (R+;Lq(∂Ω;E)) ∩ Lp,μ(R+;B

2mκj−1
qq (Ω;E)),
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for all j = 1, . . . ,m. Here we require 1 ≥ μ > 1/p + 1/2m. The compatibility
conditions now read

Bj(x,D)u0 = gj(0), κj > 1/p+ 1− μ+ 1/2m, j = 1, . . . ,m.

The assumptions on the coefficients are changed slightly, they read

(rA1-) a�α ∈ Cl(Ω̄;B(E)), � = 1, . . . , n, |α| = 2m− 1;

(rA2-) a�α ∈ [Lrk + L∞](Ω;B(E)), � = 1, . . . , n, k = |α| < 2m− 1,
with rk ≥ q, 2m− k > n/rk;

(rB-) bjβ ∈ B
2mκj−1
rjkq (∂Ω;B(E)), |β| = k ≤ mj ,

with rjk ≥ q, and 2mκj − 1 > (n− 1)/rjk.

Finally, in this situation we only need to require ∂Ω ∈ C2m−1 (in case m > 1
it is even enough to require ∂Ω ∈ C(2m−1)−).

Theorem 6.3.5. Let Ω ⊂ Rn be open with compact boundary ∂Ω of class C2m−1,
1 < p, q < ∞, μ ∈ (1/p, 1], and let E be a Banach space of class HT (α). As-
sume that (A(x,D),B1(x,D), . . .Bm(x,D)), with A(x,D) = −i

∑n
�=1 ∂�A�(x,D),

is uniformly normally elliptic, and (rA1-), (rA2-) and (rB-). Let mj ≤ 2m−2 and
κj �= 1/p+ 1− μ+ 1/2m for all j.

Then there is ω0 ∈ R such that for each ω > ω0, equation (6.45) admits a
unique solution u in the class

u ∈ E1μ := H1
p,μ(R+;H

−1
q (Ω;E)) ∩ Lp,μ(R+;H

2m−1
q (Ω;E)),

if and only if the data are subject to the following conditions.

(a) f ∈ E0μ = Lp,μ(R+;H
−1
q (Ω;E)), u0 ∈ B

2m(μ−1/p)−1
qp (Ω;E);

(b) gj ∈ Fjμ = F
κj−1/2m
pq,μ (R+;Lq(∂Ω;E)) ∩ Lp,μ(R+;B

2mκj−1
qq (∂Ω;E));

(c) Bj(D)u0 = gj(0) if κj > 1/p+ 1− μ− 1/2m, j = 1, . . . ,m.

The solution depends continuously on the data in the corresponding spaces.

(ii) mj ≤ 2m− 2 for all j = 1, . . . ,m− 1, mm = 2m− 1.
In this case, as has been said before, we only consider Bm = iν · A. Here we set

Grad : H̃1
q′(Ω) → Lq′(Ω;C

n), Gradφ := ∇φ,

where H̃ means factorization over the constants, and we define

−Div := Grad∗ : Lq(Ω;C
n) → 0H

−1
q (Ω) := H̃1

q′(Ω)
∗.

As Grad is bounded, linear, injective, its dual Div is bounded, linear, and has
dense range. Note that in case Ω is bounded, by the Poincaré-Wirtinger inequality
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R(Grad) is closed, and hence Div is surjective. Problem (6.45) with f replaced by
f0 can now be rewritten as

∂t(u|φ)Ω + ω(u|φ)Ω + i(A(x,D)u|∇φ)Ω = 〈f |φ〉, φ ∈ H̃1
q′(Ω),

Bj(x,D)u = gj on ∂Ω, j = 1, . . . ,m− 1,

u(0) = u0 in Ω,

(6.51)

with the function f ∈ Lp,μ(R+; 0H
−1
q (Ω;E)) defined by

〈f |φ〉 := (f0|φ)Ω + (gm|φ)∂Ω.

Abstractly, the first equation in (6.49) can be written as

∂tu+ ωu− iDiv(A(x,D)u) = f in 0H
−1
q (Ω).

So we are looking for solutions in the class

u ∈ H1
p,μ(R+; 0H

−1
q (Ω;E)) ∩ Lp,μ(R+;H

2m−1
q (Ω;E)). (6.52)

The necessary regularity conditions on the data (gj , u0) as well as the compatibility
and regularity conditions on the coefficients are the same as in (i), where here
j = 1, . . . ,m− 1. The condition for f changes in an obvious way.

Theorem 6.3.6. Let Ω ⊂ Rn be open with compact boundary ∂Ω of class C2m−1,
1 < p, q < ∞, μ ∈ (1/p, 1], and let E a Banach space of class HT (α). Assume
that (A(x,D),B1(x,D), . . .Bm(x,D)), with A(x,D) = −i

∑n
�=1 ∂�A�(x,D) and

Bm(x,D) = iν ·A(x,D), is uniformly normally elliptic, and (rA1-), (rA2-), (rB-),
mj ≤ 2m− 2, κj �= 1/p+ 1− μ+ 1/2m for j = 1, . . . ,m− 1.

Then there is ω0 ∈ R such that for each ω > ω0, equation (6.45) admits a
unique solution u in the class

u ∈ E1μ := H1
p,μ(R+; 0H

−1
q (Ω;E)) ∩ Lp,μ(R+;H

2m−1
q (Ω;E)),

if and only if the data are subject to the following conditions.

(a) f ∈ Lp,μ(R+; 0H
−1
q (Ω;E)), u0 ∈ B

2m(μ−1/p)−1
qp (Ω;E);

(b) gj ∈ F
κj−1/2m
pq,μ (R+;Lq(∂Ω;E))∩Lp,μ(R+;B

2mκj−1
qq (∂Ω;E)), j = 1, . . . ,m−1;

(c) Bj(D)u0 = gj(0) if κj > 1/p− 1− μ+ 1/2m, j = 1, . . . ,m− 1.

The solution depends continuously on the data in the corresponding spaces.

(iii) Sufficiency of the conditions in Theorems 6.3.5 and 6.3.6 for the half-space
case with constant coefficients.
We first reduce to the case (f, u0) = 0 in the usual way: extend u0 ∈
B

2m(μ−1/p)−1
qp (Ω) to all of Rn and f trivially by zero in case (i) and symmet-

rically in case (ii). Solve the resulting problem in Rn in the proper class, and
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subtract this function from u. Then we consider the central identity (6.32) in the
form

ρ2m−1v = M(y, ρ, b, σ)g̃/ρ,

to see that the solution has regularity (6.50) in case (i) and (6.52) for (ii). As a
result, A(D)u ∈ Lp,μ(R+;Lq(R

n
+;E

n)), hence by construction

∂tu = i divA(D)u = iDiv0A(D)u ∈ Lp,μ(R+;H
−1
q (Rn

+;E)),

in case (i), and similarly in case (ii) we have

∂tu = i divA(D)u = iDivA(D)u ∈ Lp,μ(R+; 0H
−1
q (Rn

+;E)).

(iv) The corresponding analytic C0-semigroups.
Having maximal Lp-regularity of the problems (6.49) and (6.51) at our disposal,
we may now argue as in Section 6.3.4 to derive the corresponding analytic C0-
semigroups in H−1

q (Ω;E) resp. in 0H
−1
q (Ω;E). We omit the details here, how-

ever, note that these semigroups yield also corresponding semigroups in Lq(Ω;E),
defining A0 as the part of A in Lq(Ω;E). Note that D(A) ⊂ H2m−1

q (Ω;E),
but D(A0) is not explicitly known. Therefore it is an interesting question how
the spectra of these extensions change, in particular the spectral bound. Then
as Lq(Ω;E) ⊂ H−1

q (Ω;E), it is easy to see that ρ(A) ⊂ ρ(A0). But the con-
verse is also true. In fact, suppose f ∈ H−1

q (Ω;E) is given and λ ∈ ρ(A0). Set
Jε = (I + εA)−1; then fε = Jεf ∈ H2m−1

q (Ω;E) and fε → f in H−1
q (Ω;E) as

ε → 0. Let uε = (λ−A0)
−1fε, and choose ω large. Then we have

uε = (ω +A0)
−1[−fε + (ω + λ)uε]

= −(ω +A0)
−1fε + (ω + λ)(λ−A0)

−1(ω +A0)
−1fε

= −(ω +A)−1fε + (ω + λ)(λ−A0)
−1(ω +A)−1fε,

as (ω +A)−1fε = (ω +A0)
−1fε. But this implies

uε → u := (−I + (ω + λ)(λ−A0)
−1)(ω +A)−1f.

Since D(A0) ⊂ D(A), we obtain u ∈ D(A) and then (λ−A)u = f . Hence λ ∈ ρ(A).
Therefore ρ(A) = ρ(A0) in case (i), and by the same argument also in case (ii).

6.4 Elliptic and Parabolic Problems on Hypersurfaces

Suppose that Σ is a compact hypersurface without boundary in Rn of class Cl. It
is the purpose of this section to derive solvability results for elliptic and parabolic
problems on Σ.
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Let A : Cm(Σ;E) → C(Σ;E) be a linear operator, where E denotes a Ba-
nach space of class HT . Then A is a differential operator of order m on Σ if all
representations of A in local coordinates (U,ϕ) are given by

ϕ∗Au = A(U,ϕ)(x,D)ϕ∗u :=
∑

|α|≤m

aα(U,ϕ)(x)D
αϕ∗u, (6.53)

where the coefficients aα(U,ϕ) are defined on the open set ϕ(U) in Rn−1, and ϕ∗v =

v ◦ ϕ−1. A is said to be of class Ck if all coefficients are in this class. We may
assume that the charts are normalized in such a way that ϕ(U) = BRn−1(0, 1).

The typical examples we have in mind, and which are used below, are the
negative Laplace-Beltrami operator −ΔΣ and Δ2

Σ; see Section 2.1. A more involved
operator is

A = −divΣ(a(x)∇Σ), a ∈ C1(Σ;B(TΣ⊗ E)).

By using the language of covariant derivatives one can show that a differential
operator defined on Σ is completely determined by the local representations (6.53).

Definition 6.4.1. A differential operator A of order m on Σ is called parameter-
elliptic if all local representations A(U,ϕ) have this property. This means that for
any local representation A(U,ϕ) there is φ < π such that

σ(A#
(U,ϕ)(x, ξ)) ⊂ Σφ, (x, ξ) ∈ BRn−1(0, 1)× Sn−1, (6.54)

where

A#
(U,ϕ)(x, ξ) :=

∑
|α|=m

aα(U,ϕ)(x)ξ
α, (x, ξ) ∈ BRn−1(0, 1)× Sn−1.

By compactness, we then obtain

φA = sup
(U,ϕ)

inf{φ ∈ (0, π) : (6.54) holds} < π.

φA is called the angle of ellipticity of A. Finally, A is called normally elliptic if it
is parameter-elliptic with angle φA < π/2.

It is not difficult to show that the definition of the angle of ellipticity φA is
independent of the local representations. Moreover, A(U,ϕ)(x, ξ) is continuous and
invertible, hence by compactness of Σ, A(U,ϕ)(x, ξ) as well as A(U,ϕ)(x, ξ)

−1 are
uniformly bounded on BRn−1(0, 1)× Sn−1.

By compactness of Σ we find a family of charts {(Uj , ϕj) : 1 ≤ j ≤ N} such
that {Uj}Nj=1 covers Σ. Let {πj : 1 ≤ j ≤ N} ⊂ Cl(Σ) be a family of functions on

Σ such that {(Uj , π
2
j ) : 1 ≤ j ≤ N} is a partition of unity subordinate to the open

cover {Uj : 1 ≤ j ≤ N}, i.e.,

supp(πj) ⊂ Uj ,

N∑
j=1

π2
j = 1 on Σ. (6.55)



6.4. Elliptic and Parabolic Problems on Hypersurfaces 285

Then we call {(Uj , ϕj , πj) : 1 ≤ j ≤ N} a localization system for Σ.

Definition 6.4.2. Given a localization system {(Uj , ϕj , πj) : 1 ≤ j ≤ N} for Σ, let

Rc : L1(Σ;E) → L1(R
n−1;E)N , Rcu := (ψ∗

j (πju)),

R : L1(R
n−1;E)N → L1(Σ;E), R((uj)) :=

N∑
j=1

πjϕ
∗
juj ,

(6.56)

where ϕ∗
jv := v ◦ ϕ and ψj := ϕ−1

j . Moreover, we set

Aj := A(Uj ,ϕj)(x,D), 1 ≤ j ≤ N. (6.57)

We extend the coefficients in the usual way (e.g. as in Section 6.2) to obtain
an extension of Aj to all of Rn−1 with coefficients which have a limit at infinity,
so that we may apply the results of Section 6.1.

It follows that R is a retraction with Rc a co-retraction, i.e., we have

RRcu = u, u ∈ L1(Σ;E). (6.58)

In the sequel, we set u = Rcu, so Ru = u. Moreover,

ψ∗
jAu = Ajψ

∗
ju, 1 ≤ j ≤ N,

and
ψ∗
jπjAu = Ajψ

∗
jπju+ ψ∗

j [πj ,A]u =: Ajψ
∗
jπju+Bju.

Set A = diag[Aj ] and B = [BjR]; then we obtain with (6.58)

Rc(λ+ ω +A)u = (λ+ ω + A+ B)u. (6.59)

By Theorem 6.1.10, ω +Aj is R-sectorial in Lq(R
n−1;E) for ω sufficiently large,

j = 1, . . . , N , and ω+A is R-sectorial for such ω as well. As Bj are of lower order,
it follows by perturbation arguments (choosing ω even larger) that

λ+ ω + A+ B : Hm
q (Rn−1;E)N → Lq(R

n−1;E)N , λ ∈ Σφ,

is invertible, and λ(λ+ω+A+B)−1 is R-bounded in Lq(R
n−1;E)N , where φ > φA

is fixed. Therefore, the operators

Lλ,ω := R(λ+ ω + A+ B)−1Rc : Lq(Σ;E) → Hm
q (Σ;E), λ ∈ Σφ, (6.60)

are well-defined, and with (6.58) and (6.59) we obtain

Lλ,ω(λ+ ω +A)u = RRcu = u, u ∈ Hm
q (Σ;E),

i.e., Lω,λ is a left-inverse for (λ+ ω +A) and in addition, the family {Lλ,ω}λ∈Σφ

is R-bounded in Lq(Σ).



286 Chapter 6. Elliptic and Parabolic Problems

On the other hand, we also have

A(πjϕ
∗
juj) = πjϕ

∗
jAjuj + ϕ∗

j [Aj , ψ
∗
jπj ]uj =: πjϕ

∗
jAjuj + Cjuj

and this yields

(λ+ ω +A)Ru = R(λ+ ω + A+ C)u, Cu := Rc
N∑
j=1

Cjuj . (6.61)

For ω sufficiently large, we can again conclude that

λ+ ω + A+ C : Hm
q (Rn−1;E))N → Lq(R

n−1;E)N , λ ∈ Σφ,

is invertible, and hence

Rλ,ω := R(λ+ ω + A+ C)−1Rc

is well-defined. It follows from (6.58) and (6.61) that

(λ+ ω +A)Rλ,ωu = RRcu = u, u ∈ Hm
q (Σ;E),

and this shows that Rλ,ω is a right-inverse for λ+ ω +A. This implies

Rλ,ω = Lλ,ω = (λ+ ω +A)−1,

and {λ(λ + ω + A)−1 : λ ∈ Σφ} ⊂ B(Lq(Σ)) is R-bounded. Therefore ω + A
is R-sectorial, which in case φA < π/2 implies, by Theorems 4.4.4 and 3.5.4,
A ∈ MRp,μ(Lq(Σ)) for all p, q ∈ (1,∞), 1/p < μ ≤ 1.

Replacing in the above arguments the base space Lq(Σ;E) by Ks
q (Σ;E) and

the regularity space Hm
q (Σ;E) by Ks+m

q (Σ;E), where K = H or K = W , we
obtain the same result, provided we have the corresponding result in Rn−1. Em-
ploying Section 6.1.5, this yields the following maximal regularity result.

Theorem 6.4.3. Let Σ be a compact hypersurface of class Cl without boundary in
Rn, 3 ≤ l ≤ ∞, E ∈ HT , and let p, q ∈ (1,∞), μ ∈ (1/p, 1]. Suppose that A is a
differential operator on Σ of order m ∈ N with coefficients in C2k, where k ∈ N,
2k +m ≤ l. Define the realization A of A in Ks

q (Σ;E) by means of

Au := Au on Σ, u ∈ D(A) := Ks+m
q (Σ; E),

where K ∈ {H,W}, |s| ≤ 2k, s �∈ N0 for K = W . Then we have

(i) Suppose that A is parameter-elliptic. Then there is ω0 ≥ 0 such that the equa-
tion

(λ+ ω +A)u = f in Ks
q (Σ;E)

admits a unique solution u ∈ Ks+m
q (Σ;E) for each ω ≥ ω0 and each f ∈ Ks

q (Σ;E).
For any φ > φA there is a constant Mφ such that the resolvent estimate

|λ(λ+ ω +A)−1|B(Ks
q (Σ;E)) ≤ Mφ, λ ∈ Σφ, ω ≥ ω0, |s| ≤ 2k,
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is valid. In addition, we have ω0 +A ∈ RS(Ks
q (Σ;E)) with φR

A ≤ φA.

(ii) Suppose that A is normally elliptic. Then there is ω0 ≥ 0 such that the equation

(∂t + ω +A)u = f, t > 0, u(0) = 0,

admits a unique solution u ∈ H1
p,μ(R+K

s
q (Σ;E))∩Lp,μ(R+;K

s+m
q (Σ;E)) for each

ω ≥ ω0 and each f ∈ Lp,μ(R+;K
s
q (Σ;E)). Moreover, there is a constant C > 0

independent of ω and s such that

ω|u|Lp,μ(Ks
q )

+ |∂tu|Lp,μ(Ks
q )

+ |u|Lp,μ(K
s+m
q ) ≤ C|u|Lp,μ(Ks

q )
,

for all f ∈ Lp,μ(K
s
q (Σ;E)). In particular, ω0 +A ∈ MRp(K

s
q (Σ;E)).

This result will be used frequently below, to understand moving boundaries
analytically via the Hanzawa transform, and to handle dynamics on moving inter-
faces.

6.5 Transmission Problems

Elliptic and parabolic transmission conditions are present everywhere in mathe-
matical physics, but one hardly finds citable references on this topic in the liter-
ature. For this reason, and also since we need results on transmission problems
below, we consider such problems here, restricting to the second-order but vector-
valued case.

Suppose that Ω ⊂ Rn is a bounded domain with C2-boundary, consisting of
two parts Ω1 and Ω2 which are also open and such that that Ω1 is separated from
the boundary of Ω. Then we call Ω2 the continuous phase and Ω1 the disperse
phase. Let Σ = ∂Ω1 be the interface separating Ω1 and Ω2 such that Ω = Ω1 ∪
Σ ∪ Ω2. This is the typical two-phase situation. We consider in this section the
following transmission problem.

(∂t + ω +A(x,∇x))u = f in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

[[u]] = gΣ, [[B(x,∇x)u]] = g on Σ,

u(0) = u0 on Ω

(6.62)

for t > 0. Here u lives in a finite-dimensional Hilbert space E and

A(x,∇x) = −div(a(x)∇x), B(x,∇x) = −(ν(x)|a(x)∇x),

where ν(x) denotes the outer unit normal at x ∈ Σ directed into the interior of Ω2

(resp. the outer unit normal of Ω at x ∈ ∂Ω) and a ∈ C1
ub(Ω \ Σ;B(E))n×n. The

data (f, gΣ, g, u0) are given.
The purpose of this section is to prove the following result.
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Theorem 6.5.1. Let 1 < p, q < ∞ and 1 ≥ μ > 1/p, let E be a finite-dimensional
Hilbert space, and assume that a ∈ C1

ub(Ω \ Σ;B(E))n×n is uniformly normally
strongly elliptic.

Then there is ω0 ∈ R such that for each ω > ω0, problem (6.62) admits
exactly one solution u in the class

u ∈ H1
p,μ(R+;Lq(Ω;E)) ∩ Lp,μ(R+;H

2
q (Ω \ Σ;E)),

if and only if

(a) f ∈ Lp,μ(R+;Lq(Ω;E));

(b) gΣ ∈ F
1−1/2q
pq,μ (R+;Lq(Σ;E)) ∩ Lp,μ(R+;W

2−1/p
q (Σ;E));

(c) g ∈ F
1/2−1/2q
pq,μ (R+;Lq(Σ;E)) ∩ Lp,μ(R+;W

1−1/p
q (Σ;E));

(d) u0 ∈ B
2μ−2/p
qp (Ω \ Σ;E);

(e) [[u0]] = gΣ(0) for μ > 3/2p, and [[B(x,∇)u0]] = g(0) for μ > 1/2 + 3/2p.

The solution map is continuous between the corresponding spaces.

The next subsections deal with the proof of this result.

5.1 The Model Problem
We consider the constant coefficient case with flat interface Σ = Rn−1 × {0} =
Rn−1, and Ω = Rn \ Σ. As before, it is convenient to replace the variable x ∈ Rn

by (x, y) ∈ Rn−1 × R. Then the problem reads

(∂t + ω +A(∇x + ν∂y))u = f, y �= 0,

[[u]] = gΣ, [[B(∇x + ν∂y)u]] = g, y = 0,

u(0) = u0, y �= 0,

(6.63)

for t > 0, with ν = en the outer unit normal of Ω1 = Rn
−. We first verify the

Lopatinskii-Shapiro condition for this case. For this purpose let u ∈ L2(R;E) be
a solution of the ode-problem

λu(y) +A(iξ + ν∂y)u(y) = 0, y �= 0,

such that
[[u]] = 0, [[B(iξ + ν∂y)u]] = 0 for y = 0.

Here Reλ ≥ 0, ξ ∈ Rn and (ξ|ν) = 0. Taking the inner product with u(y),
integrating over R, and employing an integration by parts we obtain

0 = λ|u|22 +
∫
R

n∑
k,l=1

(akl(ξlu(y)− iνl∂yu(y)|(ξku(y)− iνk∂yu(y))E dy,

as the boundary terms disappear by the jump conditions. Taking real parts, by
normal strong ellipticity this yields

Re(akl(ξlu(y)− iνl∂yu(y)|(ξku(y)− iνk∂yu(y))E = 0, y �= 0.
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Using normal strong ellipticity once more we obtain

∂y|u(y)|2E = 2Re(∂yu(y)|u(y))E = 0, y �= 0,

hence u is constant on (0,∞) and also on (−∞, 0) which implies u = 0 as u ∈
L2(R;E) by assumption. Thus the Lopatinskii-Shapiro condition for the two-phase
problem is valid.

To obtain solvability of the problem in the right regularity class, perform a
transformation to the half-space case as follows. Set

ũ(t, x, y) = [u(t, x, y), u(t, x,−y)]T, ũ0(x, y) = [u0(x, y), u0(x,−y)]T,

f̃(t, x, y) = [f(t, x, y), f(t, x,−y)]T, for t ∈ (0,∞), x ∈ Rn−1, y ∈ (0,∞),

and consider the problem

(∂t + ω + Ã(∇x + ν∂y))ũ = f̃ in Rn
+,

ũ(0) = ũ0 on Rn−1,
(6.64)

with t > 0, where Ã(∇x + ν∂y) = diag[A2(∇x + ν∂y),A1(∇x − ν∂y)], with sub-
scripts 2, 1 referring to the coefficients in the upper resp. lower half-plane. The
boundary conditions now become

ũ2(t, x, 0)− ũ1(t, x, 0) = gΣ(t, x),

B2(∇x + ν∂y)ũ2(t, x, 0) + B1(∇x + ν∂y)ũ1(t, x, 0) = g(t, x).

Then with these boundary conditions, (6.64) is normally strongly elliptic and
satisfies the Lopatinskii-Shapiro condition for the half-space. By the results of the
previous section this problem is uniquely solvable in the right class, hence the
transmission problem (6.63) has this property as well. This proves Theorem 6.5.1
for the constant coefficient case with flat interface.

5.2 Proof of Theorem 6.5.1
To complete the proof of Theorem 6.5.1, we may now proceed as in the one-phase
case.

1. By perturbation, the result for the flat interface with constant coefficients
remains valid for variable coefficients with small deviation from constant
ones.

2. By another perturbation argument, a proper coordinate transformation
transfers the result to the case of a bent interface.

3. The localization technique finally yields the result for the case of general
domains and general coefficients.

One may then employ perturbation arguments another time to include lower order
terms, at the expense of possibly enlarging ω0.
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5.3 The Steady Case
A result like Theorem 6.5.1 also holds for the steady case, i.e., for elliptic trans-
mission problems. We consider here the corresponding result for the problem

(ω +A(x,∇x))u = f in Ω \ Σ,
B(x,∇)u = 0 on ∂Ω,

[[u]] = gΣ, [[B(x,∇)u]] = g on Σ.

(6.65)

Here the data (f, gΣ, g) are given. For this problem we have

Theorem 6.5.2. Let 1 < p < ∞, let E be a finite-dimensional Hilbert space, and
assume that a ∈ C1

ub(Ω \ Σ;B(E))n×n is uniformly normally strongly elliptic.
Then there is ω0 ∈ R such that for each ω > ω0, problem (6.65) admits

exactly one solution u in the class

u ∈ H2
p (Ω \ Σ;E),

if and only if (f, gΣ, g) ∈ Lp(Ω;E)×W
2−1/p
p (Σ;E)×W

1−1/p
p (Σ;E). The solution

map is continuous between the corresponding spaces.

Remark 6.5.3. Higher regularity can be obtained for transmission problems in the
same way as in Section 6.3.5 for the one-phase case, whereas lower regularity is
obtained in the same way as in Section 6.3.6.

A natural question which arises is to determine the minimal value of ω0. For
this purpose, we first solve (6.65) for a large value ω = ω̄, to obtain a function ū.
Then we set ũ = u− ū; ũ then must satisfy the problem

(ω +A(x,∇x))ũ = (ω̄ − ω)ū in Ω \ Σ,
B(x,∇)ũ = 0 on ∂Ω \ Σ,

[[ũ]] = 0, [[B(x,∇)ũ]] = 0 on Σ.

(6.66)

This means that −ω should belong to the resolvent set of the operator A in
Lp(Ω;E) defined by

Au(x) = A(x,∇x)u(x), x ∈ Ω \ Σ, (6.67)

D(A) = {u ∈ H2
p (Ω \ Σ;E) : [[u]] = [[B(x,∇x)u]] = 0 on Σ, B(x,∇x)u = 0 on ∂Ω}.

In virtue of Theorem 6.5.1, this operator has maximal Lp-regularity, hence −A
generates an analytic C0-semigroup. Therefore, ω0 is the spectral bound s(−A) of
−A. By a similar argument, the same is valid for the number ω0 in Theorem 6.5.1.

5.4 Dirichlet-to-Neumann Operators
Dirichlet-to-Neumann operators appear frequently in mathematical physics and
also at several places in this book. Such operators map Dirichlet boundary data
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to Neumann boundary data in several possible ways, and the goal is to obtain
properties of such maps. In this subsection we assume throughout that A(x,∇x)
is uniformly normally strongly elliptic and that B is the corresponding co-normal
derivative, as in the previous subsections.

(i) We begin with the elliptic case. Here there are two types of Dirichlet-to-
Neumann operators, namely one- and two-phase operators. In the following, we
always consider the elliptic problem

(ω +A(x,∇x))u = 0 in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

(6.68)

where at first ω ≥ 0 is sufficiently large. We may now assign Dirichlet data on the
interface.

[[u]] = 0, u = g on Σ, (6.69)

to obtain a unique solution u ∈ H2
p (Ω \ Σ;E) provided g ∈ W

2−1/p
p (Σ;E). These

are actually two one-phase problems, one in Ω1 and one in Ω2. We then may
compute the Neumann-boundary values B(x,∇x)u on either side of Σ. We set
uk = u|Ωk

for k = 1, 2 in the following definition.

Definition 6.5.4. We call the maps Sk : W
2−1/p
p (Σ;E) → W

1−1/p
p (Σ;E) defined by

the one-sided traces of the conormal derivative at Σ

S1g := −B(x,∇x)u1|Σ, S2g := B(x,∇x)u2|Σ,

the one-phase Dirichlet-to-Neumann operators of (6.68)–(6.69).

The operators Sk for k = 1, 2 are well-defined whenever the corresponding
boundary value problem (6.68) with Dirichlet condition on Σ is well-posed. Clearly,
Sk only depends on Ωk, so that these operators are really one-phase. Considering
(6.68) in Ωk with Neumann condition B(x,∇x)u = h on Σ, it becomes apparent
that each Sk, k = 1, 2, is invertible if the corresponding boundary value problem
with Neumann condition on Σ is well-posed. So in this situation S1 and S2 are
isomorphisms.

On the other hand, there are two typical two-phase Dirichlet-to-Neumann
operators for (6.68). The first one, called Sd, is obtained by solving the transmission
problem

(ω +A(x,∇x))u = 0 in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

[[u]] = 0, u = g on Σ,

(6.70)

and setting Sdg := [[B(x,∇x)u]]. Actually we have Sd = S1 + S2, as the normals
of Ωk on Σ have opposite directions. To obtain the inverse of Sd, one has to solve
problem (6.68) with transmission conditions

[[u]] = 0, [[B(x,∇x)u]] = h on Σ,
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yielding g = u|Σ = S−1
d h. Hence Sd is an isomorphism as well.

To define the second two-phase Dirichlet-to-Neumann operator Sn we solve
the transmission problem

(ω +A(x,∇x))u = 0 in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

[[u]] = g, [[B(x,∇x)u]] = 0 on Σ,

(6.71)

and set Sng := B(x,∇x)u. To obtain the inverse of Sn we have to solve (6.68) with
boundary condition

[[B(x,∇x)u]] = 0, B(x,∇x)u = h on Σ,

yielding g = [[u]] = S−1
n h. An easy computation shows the relation

Sn = S1S
−1
d S2 = S2S

−1
d S1.

The two-phase Dirichlet-to-Neumann operators

Sd, Sn : W
2−1/p
p (Σ;E) → W 1−1/p

p (Σ;E)

are well-defined and at the same time isomorphisms if ω is large enough. Observe
that Sk, k ∈ {1, 2, d, n}, are pseudo-differential operators of order 1, while S−1

k

typically are integral operators on Σ with weakly singular kernels.

(ii) In the parabolic case one proceeds similarly. We begin with the problem in the
bulk

(∂t + ω +A(x,∇x))u = 0 in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

u(0) = 0 in Ω,

(6.72)

with t > 0. Here we have to distinguish the case of a finite interval J = [0, a],
from that of the half-line J = R+. We concentrate on the case of the half-line and
assume ω ≥ 0 to be sufficiently large. For a finite interval J = [0, a], no restrictions
on ω ∈ R are necessary. To avoid compatibility conditions here, we assume initial
value u(0) = 0.

Imposing conditions on Σ as for the elliptic case in (i), we obtain the corre-
sponding parabolic Dirichlet-to-Neumann operators, which we call again Sk, for
k ∈ {1, 2, d, n}. The same assertions as in (i) are valid, but now the spaces are of
course also time-dependent. We have isomorphisms

Sk : 0W
1−1/2p
p,μ (R+;Lp(Σ;E)) ∩ Lp,μ(R+;W

2−1/p
p (Σ;E))

→ 0W
1/2−1/2p
p,μ (R+;Lp(Σ;E)) ∩ Lp,μ(R+;W

1−1/p
p (Σ;E))

for k ∈ {1, 2, d, n}, provided ω is sufficiently large. Note that in this case Sk are
pseudo-differential operators jointly in time and space, of order 1/2 in time and
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order 1 in space. These assertions remain valid if A and B are perturbed by lower
order operators, at the expense that one possibly has to enlarge ω.

(iii) We now look closer at the possible values of ω. If A(x,∇x) = −∂ia
ij(x)∂j

and B(x,∇x) = −νi(x)a
ij(x)∂j such that A(x,∇x) is normally strongly elliptic,

uniformly in x ∈ Ω and aij ∈ C1
ub(Ω \ Σ;B(E)), then ω > 0 is sufficient. This

follows from the fact that, as E is finite-dimensional, A(x,∇x) with Neumann
condition on ∂Ω and with each of the interface conditions (6.69), (6.70), (6.71)
has compact resolvent, hence its spectrum consists only of discrete eigenvalues
of finite multiplicity, and is independent of p ∈ (1,∞). By the standard energy
argument it follows that the corresponding spectral bounds are in each case 0.
The case ω = 0 is more involved, as 0 is an eigenvalue. We postpone this case to
Chapter 10, where ω = 0 is essential.

6.6 Linearized Stefan Problems

The following linear problem is essential for the understanding of Problems (P1),
(P3), (P5) and many other problems with moving interface. For its formulation,
let Ω ⊂ Rn be a bounded domain with boundary ∂Ω of class C2. As before, we
assume that Ω consists of two parts, Ω1 and Ω2 such that Σ = ∂Ω1 does not touch
∂Ω. We assume that the hypersurface Σ is a C3-manifold in Rn. Note that in this
section E = C. Consider

(∂t + ω +A(x,∇x))u = fu in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

[[u]] = 0, u− C(x,∇Σ)h = g on Σ,

(∂t + ω)h+ [[B(x,∇x)u]] = fh on Σ,

u(0) = u0 in Ω, h(0) = h0 on Σ.

(6.73)

for t > 0. Here ω ≥ 0,

A(x,∇x)=−div(a(x)∇), B(x,∇x)=−ν(x) · a(x)∇x, C(x,∇Σ)=−divΣ(c(x)∇Σ).

We assume that the coefficients a ∈ C1
ub(Ω \ Σ;B(Rn)) and c ∈ C3(Σ;B(TΣ))

are symmetric and uniformly positive definite. Note that the coefficients of A are
allowed to jump across the interface Σ. The unit normal ν(x) at x ∈ Σ is pointing
from Ω1 into Ω2.

For Problems (P1), (P3), and (P5), the prototype operators will be A = −Δ,
B = −∂ν and C = −ΔΣ. The main result for this problem in the Lp-setting,
3 < p < ∞, is the following.

Theorem 6.6.1. Let p > 3 and 1 ≥ μ > 1/2 + 3/2p. There exists ω0 ∈ R such that
for each ω > ω0, Problem (6.73) admits exactly one solution (u, h) in the class

u ∈ H1
p,μ(R+;Lp(Ω)) ∩ Lp,μ(R+;H

2
p (Ω \ Σ)) =: Eu,

h ∈ W 3/2−1/2p
p,μ (R+;Lp(Σ)) ∩W 1−1/2p

p,μ (R+;H
2
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ)) =: Eh,
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if and only if the data (fu, g, fh, u0, h0) are subject to the following conditions:

(a) fu ∈ Lp,μ(R+;Lp(Ω)) =: Fu;

(b) g ∈ W
1−1/2p
p,μ (R+;Lp(Σ)) ∩ Lp,μ(R+;W

2−1/p
p (Σ)) =: F;

(c) fh ∈ W
1/2−1/2p
p,μ (R+;Lp(Σ)) ∩ Lp,μ(R+;W

1−1/p
p (Σ)) =: Fh;

(d) u0 ∈ W
2μ−2/p
p (Ω \ Σ), h0 ∈ W

2+2μ−3/p
p (Σ);

(e) u0 − C(x,∇Σ)h0 = g(0), [[B(x,∇x)u0]]− fh(0) ∈ W
4μ−2−6/p
p (Σ),

B(x,∇x)u0 = 0 on ∂Ω.

The solution map is continuous between the corresponding spaces.

6.1 Solution Spaces
To show necessity of the conditions in Theorem 6.6.1 and to explain the choice of
the space for h which is illustrated in Figure 6.1, we begin with the regularity of u,
which is the desired regularity in the bulk phases Ω \Σ. So let (u, h) ∈ Eu×Eh be
a solution of (6.73). Then fu ∈ Fu and the trace theory for second-order parabolic

problems yields u0 ∈ W
2μ−2/p
p (Ω \ Σ), and

u|Σ ∈ W 1−1/2p
p,μ (R+;Lp(Σ)) ∩ Lp,μ(R+;W

2−1/p
p (Σ)) = F,

∇u|Σ ∈ W 1/2−1/2p
p,μ (R+;Lp(Σ))

n ∩ Lp,μ(R+;W
1−1/p
p (Σ))n = Fn

h.

This implies (a), and it is natural to assume C(∇Σ)h ∈ F as well, which then
implies (b) and suggests

h ∈ W 1−1/2p
p,μ (R+;H

2
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ)).

Example 3.4.9(iii) then yields h0 ∈ W
2+2μ−3/p
p (Σ). Looking at the equation for h

this implies fh ∈ Fh, hence (c), and suggests

h ∈ W 3/2−1/2p
p,μ (R+;Lp(Σ)) ∩H1

p,μ(R+;W
1−1/p
p (Σ)).

By Example 4.5.16(ii) we have

W 3/2−1/2p
p,μ (R+;Lp(Σ)) ∩W 1−1/2p

p,μ (R+;H
2
p (Σ)) ↪→ H1

p,μ(R+;W
2−2/p
p (Σ)), (6.74)

and we arrive at the natural space Eh for h.
The first compatibility condition in (e) is obviously necessary if the corre-

sponding traces exist, i.e., if 2μ > 3/p. The second compatibility condition is
somewhat hidden, coming from the trace of ∂th. In fact we have by (6.74) and
Example 3.4.9(ii)

W 3/2−1/2p
p,μ (R+;Lp(Σ)) ∩W 1−1/2p

p,μ (R+;H
2
p (Σ)) ↪→ C1

ub(R+;W
4μ−2−6/p
p (Σ)),

hence the trace of ∂th at t = 0 exists if μ > 1/2 + 3/2p. This yields the second
compatibility condition in (e). Note that the time trace of the class Fh merely
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Figure 6.1: Regularity diagram for the Stefan problem.

belongs to W
2μ−1−3/p
p (Σ), as follows from Example 3.4.9(i). We remark that later

on for the nonlinear problems we even have to require μ > 1/2+(n+2)/2p, hence
we cannot avoid this compatibility condition. The next subsections deal with the
proof of sufficiency in Theorem 6.6.1.

6.2 Reductions
It is convenient to reduce problem (6.73) to the homogeneous conditions
(u0, h0, fu, g) = 0 and fh ∈ 0Fh, to simplify the problem and in particular
to trivialize the compatibility conditions. For this purpose we define the operators
A = 1+ω−ΔΣ and B = 1+ω+Δ2

Σ; these are negative generators of exponentially
stable analytic C0-semigroups with maximal Lp-regularity on Lp(Σ), hence also
on Hs

p(Σ) and on W s
p (Σ). We then define

h̄(t) = (2e−At − e−2At)h0 + (e−Bt − e−2Bt)B−1h1,

where h0 ∈ W
2+2μ−3/p
p (Σ) and h1 = fh(0)− [[B(x,∇x)u0]]−ωh0 ∈ W

4μ−2−6/p
p (Σ).

Obviously we have

h̄(0) = h0, (∂t + ω)h̄(0) = h1 + ωh0,

hence h̃ = h− h̄ has vanishing traces at t = 0.
We have to show that h̄ belongs to Eh. For this purpose we only need to

consider the functions e−Ath0 and e−Bth1.

(i) Choosing as a base space X0 = H2
p (Σ), Proposition 3.4.3 yields

e−Ath0 ∈ W 1−1/2p
p,μ (R+;H

2
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ)) ⇔ h0 ∈ W 2+2μ−3/p

p (Σ).

This then implies

∂te
−Ath0 = −Ae−Ath0 ∈ W 1−1/2p

p,μ (R+;Lp(Σ)),
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which yields e−Ath0 ∈ Eh.

(ii) Next we look at e−BtB−1h1 in the base space X0 = Lp(Σ). Proposition 3.4.3
yields

e−Bth1 ∈ W 1/2−1/2p
p,μ (R+;Lp(Σ))∩Lp,μ(R+;W

2−2/p
p (Σ)) ⇔ h1 ∈ W 4μ−2−6/p

p (Σ).

This implies

e−BtB−1h1 ∈ W 3/2−1/2p
p,μ (R+;Lp(Σ)) ∩H1

p,μ(R+;W
2−2/p
p (Σ)) ∩ Lp,μ(R+;W

6−2/p
p (Σ)),

which is easily seen to embed into Eh.

Having the function h̄ at our disposal, we solve the problem

(∂t + ω +A(x,∇x))ū = fu in Ω \ Σ,
B(x,∇x)ū = 0 on ∂Ω,

[[ū]] = 0, ū− C(x,∇Σ)h̄ = g on Σ,

ū(0) = u0 in Ω,

in the class Eu. Then the pair (ũ, h̃) = (u− ū, h− h̄) must satisfy (6.73) with data
(fu, g, u0, h0) = 0 and fh replaced by f̃h, defined by

f̃h = fh − [[B(x,∇x))ū]]− (∂t + ω)h̄ ∈ 0Fh.

6.3 The Boundary Symbol
In this subsection we consider the constant coefficient case in Ω = Rn with flat
interface Σ = Rn−1 × {0} = Rn−1. This means that we consider the problem

(∂t + ω +A(∇x))u = fu in R̂n,

[[u]] = 0, u− C(∇Σ)h = g on Rn−1,

(∂t + ω)h+ [[B(∇x)u]] = fh on Rn−1,

u(0) = u0 in R̂n, h(0) = h0 on Rn−1.

(6.75)

Here once more we use the notation R̂n = Rn−1× Ṙ. As explained in the previous
subsection, we may assume (fu, g, u0, h0) = 0. We want to show that this problem
admits a unique solution h ∈ Eh once we have fh ∈ 0Fh; then u is determined by
its boundary value uΣ = C(∇x)h as explained in the previous subsection. It is also
convenient to replace the variable x ∈ Rn by (x, y) ∈ Rn−1×R, which means that
we split into the tangential variable x and the normal variable y.

Taking Laplace transforms in time and Fourier transforms in the tangential
variables we obtain the problem

(λ+ a(ξ, ξ))ũ− 2ia(ξ, ν)∂yũ− a(ν, ν)∂2
y ũ = 0, y > 0,

[[ũ]] = 0, ũ− C(ξ)h̃ = 0, y = 0,

λh̃− [[a(ν, ν)∂yũ+ ia(ξ, ν)ũ]] = f̃h, y = 0,

(6.76)
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where the tilde indicates Laplace transform in t with λ the co-variable of ∂t+ω and
Fourier transform in the tangential variable x with co-variable ξ. Here we employed
the notation ν = en for the normal at the interface; observe that ξ ⊥ ν. Note that
the coefficients of A(∇x) may jump across the interface. As the forms ak, k = 1, 2
defining A(∇x) are real symmetric and positive-definite, given uΣ = C(ξ)h̃, we
may solve the equations in the region y �= 0 to the result

ũ(y) = e−yr2(λ,ξ)uΣ, y > 0,

and
ũ(y) = eyr1(λ,ξ)uΣ, y < 0.

The symbols rkare defined by rk(λ, ξ) = ak(ν|ν)−1[nk(λ, ξ)+(−1)kiak(ξ, ν)], with

nk(λ, ξ) =
√
(λ+ ak(ξ, ξ))ak(ν, ν)− ak(ξ, ν)2, k = 1, 2.

This implies

−[[a(ν, ν)∂yũ+ ia(ξ, ν)ũ]] =
(
n1(λ, ξ) + n2(λ, ξ)

)
uΣ.

For the equation on the boundary this yields

s(λ, ξ)h̃ = f̃h, with s(λ, ξ) = λ+ C(ξ)
(
n1(λ, ξ) + n2(λ, ξ)

)
. (6.77)

So the main task is to show that this boundary symbol is invertible, and to obtain
lower bounds of the form

|s(λ, ξ)| ≥ c(|λ|+ |ξ|2
√
λ+ |ξ|2|), λ ∈ Σπ/2, ξ ∈ Rn−1.

Observe that a multiple of the lower bound in the line above yields trivially also an
upper bound for s(λ, ξ). Actually, as |ak(ξ, ν)|2 ≤ ak(ξ, ξ)ak(ν, ν), with equality
only if ξ and ν are linearly dependent - which is not possible as ξ ⊥ ν - this is very
easy since the second and third terms in the definition of s(λ, ξ) lie in the sector
Σπ/4 if λ ∈ Σπ/2, and C(ξ) is positive and scales like |ξ|2. As a consequence, the
symbol

m(λ, ξ) :=
λ+ |ξ|2

√
λ+ |ξ|2

s(λ, ξ)

is bounded from above and below even on a larger set

λ ∈ Σπ/2+ε, ξ ∈ Σn−1
ε ∪ −Σn−1

ε ,

and it is a holomorphic function in λ and ξ. Therefore, m satisfies the scalar
Mikhlin-condition w.r.t. ξ, uniformly w.r.t. λ ∈ Σπ/2+ε. Inverting the Fourier
transform, we obtain a holomorphic family of operators M(λ) on Lp(R

n−1), hence
also on W s

p (R
n−1) for any real number s. The Kalton-Weis Theorem implies that

M(∂t + ω) is bounded in each space 0H
m
p,μ(R+;W

s
p (R

n−1), m ≥ 0, hence by real
interpolation also on 0W

r
p,μ(R+;W

s
p (R

n−1)), r > 0, and so Theorem 6.6.1 is valid
for this model problem.
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Remark 6.6.2. The argument given above shows that the boundary symbol s(λ, ξ)
is equivalent to the essential symbol of the problem which is given by

sess(λ, ξ) = λ+ |ξ|2
√

λ+ |ξ|2, Reλ > 0, ξ ∈ Rn−1.

The essential symbol is responsible for the ‘strange’ solution space of h. The symbol
does not come from an evolution equation, but from an evolutionary integral
equation. In fact, sess(λ, ξ) is the symbol of the pseudo-differential operator

Less = ∂t + (−Δx)
√
∂t −Δx,

which in different form may be written as

Less = ∂t + (−Δx)(∂t −Δx)kt�,

where kt denotes the heat kernel and � convolution in space and time.

6.4 General Coefficients and Domains
To complete the proof of Theorem 6.6.1, we may now proceed as before.

1. By perturbation, the result for the flat interface with constant coefficients
remains valid for variable coefficients with the required regularity and small
deviation from constant ones.

2. By another perturbation argument, the usual coordinate transformation
transfers the result to the case of a bent interface.

3. The localization technique yields the case of general domains and general
coefficients.

4. Employing perturbation arguments another time, we may include lower order
terms, at the expense of possibly enlarging ω0.

We refrain here from working out details, this is left to the interested reader.

6.5 The Stefan Semigroup
As problem (6.73) is a linear well-posed system of differential equations, there
should be an underlying semigroup. However, it is not straightforward to formulate
this, and to show that its negative generator has maximal regularity. To extract the
semigroup, we indeed need another type of maximal regularity. For this purpose
observe that by (6.74)

W 3/2−1/2p
p,μ (R+;Lp(Σ)) ∩W 1−1/2p

p,μ (R+;H
2
p (Σ)) ↪→ H1

p,μ(R+;W
2−2/p
p (Σ)).

Therefore it makes sense to consider as the base space

(u, h) ∈ X0 := Lp,μ(R+;Lp(Ω))× Lp,μ(R+;W
2−2/p
p (Σ)),
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and to ask for solutions

(u, h) ∈ Eu × E
sg
h , with E

sg
h = H1

p,μ(R+;W
2−2/p
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ)).

This means that, given (fu, g, u0, h0) = 0, but now with fh ∈ Lp,μ(R+;W
2−2/p
p (Σ))

instead of fh ∈ Fh, we want to find a unique solution (u, h) ∈ Eu × E
sg
h satisfying

(6.73). Clearly, if such a solution exists then the extra condition

[[B(x,∇x)u]] ∈ Lp,μ(R+;W
2−2/p
p (Σ)) (6.78)

must be satisfied. As we also have [[B(x,∇x)u]] ∈ W
1/2−1/2p
p,μ (R+;Lp(Σ)), by Exam-

ple 3.4.9(ii) we obtain the compatibility condition [[B(x,∇x)u0]] ∈ W
4μ−2−6/p
p (Σ).

This property allows again reduction to the case (fu, g, u0, h0) = 0, by first solving
(6.73) by means of Theorem 6.6.1 with fh = 0 and (fu, g, u0, h0) satisfying the
assumptions of the theorem, to obtain functions (ū, h̄) ∈ Eu × Eh. The residual
functions (ũ, h̃) = (u − ū, h − h̄) must then satisfy (6.73) with (fu, g, u0, h0) = 0,
as contemplated. Note that ū has the property (6.78), hence ũ will also have this

property if h̃ ∈ E
sg
h and fh ∈ Lp,μ(R+;W

2−2/p
p (Σ)). Thus we need to show that

for such fh, problem (6.73) admits a unique solution in Eu × E
sg
h . Actually, this

follows immediately from the mapping properties of the symbol s(λ, ξ) for the
constant coefficient case with flat interface, and by perturbation and localization
in general, as in the previous subsections. As a result we obtain

Theorem 6.6.3. Let p > 3 and 1 ≥ μ > 1/2 + 3/2p. There exists ω0 ∈ R such that
for each ω > ω0, Problem (6.73) admits exactly one solution (u, h) in the class

u ∈ H1
p,μ(R+;Lp(Ω)) ∩ Lp,μ(R+;H

2
p (Ω \ Σ)) =: Eu,

[[B(x,∇x)u]] ∈ Lp,μ(R+;W
2−2/p
p (Σ)),

h ∈ H1
p,μ(R+;W

2−2/p
p (Σ)) ∩W 1−1/2p

p,μ (R+;H
2
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ)),

if and only if the data (fu, g, fh, u0, h0) are subject to the following conditions:

(a) fu ∈ Lp,μ(R+;Lp(Ω)) =: Fu;

(b) g ∈ W
1−1/2p
p,μ (R+;Lp(Σ)) ∩ Lp,μ(R+;W

2−1/p
p (Σ)) =: F;

(c) fh ∈ Lp,μ(R+;W
2−2/p
p (Σ)) =: Fsg

h ;

(d) u0 ∈ W
2μ−2/p
p (Ω \ Σ), h0 ∈ W

2+2μ−3/p
p (Σ);

(e) u0 − C(x,∇Σ)h0 = g(0), [[B(x,∇x)u0]] ∈ W
4μ−2−6/p
p (Σ),

B(x,∇x)u0 = 0 on ∂Ω.

The solution map is continuous between the corresponding spaces.

By means of Theorem 6.6.3, we may define the Stefan semigroup in X0 in

the following way. We set z = [u, h]T, X1 = H2
p (Ω \ Σ) ×W

4−1/p
p (Σ), and define
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an operator A in X0 = Lp(Ω)×W
2−2/p
p (Σ) by means of

A =

[
A(x,∇x) 0
[[B(x,∇x)]] 0

]
,

D(A) = {z ∈ X1 :B(x,∇x)u = 0 on ∂Ω, u− C(x,∇Σ)h = 0 on Σ,

[[B(x,∇x)u]] ∈ W 2−2/p
p (Σ)}.

(6.79)

Problem (6.73) for g = 0 is equivalent to the abstract evolution equation

ż +Az = f, t > 0, z(0) = z0, (6.80)

where we employed the abbreviations z0 = [u0, h0]
T and f = [fu, fh]

T. Then
maximal Lp-regularity of (6.80) is equivalent to maximal Lp-regularity of (6.73)
for g = 0 in the modified setting. Theorem 6.6.3 and Proposition 3.5.2 imply that
−A is the generator of an analytic C0-semigroup with maximal Lp-regularity. This
completes the construction of the semigroup.

Again we are interested in the smallest possible value of ω in Theorem 6.6.3.
For this purpose we first solve the problem for a large value of ω, say ω̄, to obtain
a solution (ū, h̄) ∈ Eu ×E

sg
h , and we set ũ = u− ū, h̃ = h− h̄. Then we obtain the

reduced system for these new functions

(∂t + ω +A(x,∇x))ũ = (ω̄ − ω)ū in Ω \ Σ,
B(x,∇x)ũ = 0 on ∂Ω,

[[ũ]] = 0, u− C(x,∇Σ)h̃ = 0 on Σ,

(∂t + ω)h̃+ [[B(x,∇x)ũ]] = (ω̄ − ω)h̄ on Σ,

ũ(0) = 0 in Ω, h̃(0) = 0 on Σ.

(6.81)

Employing the semigroup this yields

˙̃z + ωz̃ +Az̃ = f̃ , t > 0, z̃(0) = 0,

with z̃ = [ũ, h̃]T and f̃ = (ω̄ − ω)[ū, h̄]T. Therefore, the lower bound of ω is the
spectral bound ω0 = s(−A). We are going to discuss this number in more detail
in Chapter 10.

6.6 The Linearized Mullins-Sekerka Problem
In this subsection we consider the quasi-steady problem

(η +A(x,∇x))u = fu in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

[[u]] = 0, u− C(x,∇Σ)h = g on Σ,

(∂t + ω)h+ [[B(x,∇x)u]] = fh on Σ,

h(0) = h0 on Σ.

(6.82)
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Here ω, η ≥ 0, A(x,∇x) = −div(a(x)∇x), B(x,∇x) = −(ν(x)|a(x)∇x) and
C(x,∇Σ) = −divΣ(c(x)∇Σ) are differential operators with a ∈ C1

ub(Ω \Σ;B(Rn)),
c ∈ C3(Σ;B(TΣ)), with both a and c symmetric and uniformly positive definite.
Note that the coefficients of A are allowed to jump across the interface Σ. Here
the unit normal ν(x) at x ∈ Σ is pointing from Ω1 into Ω2.

The main result for this problem in the Lp-setting, 1 < p < ∞, is the
following.

Theorem 6.6.4. Let p ∈ (1,∞) and 1 ≥ μ > 1/p. There exists ω0, η0 ∈ R such that
for each ω > ω0, η > η0, problem (6.82) admits exactly one solution (u, h) in the
class

u ∈ Lp,μ(R+;H
2
p (Ω \ Σ)) =: Eu,

h ∈ H1
p,μ(R+;W

1−1/p
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ)) =: Eh,

if and only if the data (fu, g, fh, h0) are subject to the following conditions:

(a) fu ∈ Lp,μ(R+;Lp(Ω)) =: Fu;

(b) g ∈ Lp,μ(R+;W
2−1/p
p (Σ)) =: F;

(c) fh ∈ Lp,μ(R+;W
1−1/p
p (Σ)) =: Fh;

(d) h0 ∈ W
1+3μ−4/p
p (Σ).

The solution map is continuous between the corresponding spaces.

This result is proved in the same way as Theorem 6.6.1. As the bulk problem
is stationary, the proof is even simpler, so we skip the details here.

We are interested in the parameters η and ω. For this purpose we define an
operator A in X = Lp(Ω) by means of

Au(x) = A(x,∇x)u(x), x ∈ Ω \ Σ, (6.83)

D(A) = {u ∈ H2
p (Ω \ Σ) : u = 0 on Σ, B(x,∇x)u = 0 on ∂Ω}.

As A is uniformly strongly elliptic by assumption, Theorem 6.5.1 shows that −A is
the generator of an analytic C0-semigroup with maximal Lp-regularity. Moreover,
as Ω is bounded and Σ and ∂Ω are of class C2 and do not intersect, the semigroup
as well as the resolvent of A are compact. Therefore, the spectrum of A consist
only of eigenvalues of finite algebraic multiplicity, and is independent of p. So we
only need to consider p = 2. If z is an eigenvalue of A with eigenfunction u �= 0,
the usual energy argument yields

z|u|2L2
=

∫
Ω

aij∂ju ∂iu dx,

we see that z must be real, and employing uniform strong ellipticity,

z|u|2L2
≥ c|∇u|2L2

,
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hence z ≥ 0. If z = 0 then ∇u = 0 in Ω hence u is constant, as Ω is connected,
and u has no jump across Σ, and so u = 0. This shows that 0 ∈ ρ(A).

We now may proceed as follows. Solve the problem

(η +A(x,∇x))u = 0 in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

[[u]] = 0, u = g on Σ,

and denote the solution by uη = Tηg. The Dirichlet-to-Neumann operator for
this problem is given by Sd,ηg = [[B(x,∇x)Tηg]]. Then we define Aη in X0 :=

W
1−1/p
p (Σ) by means of

Aηh = Sd,ηC(x,∇Σ)h, X1 := D(Aη) = W 4−1/p
p (Σ). (6.84)

It is clear that (6.82) with η = 0, and (fu, g) = 0 is equivalent to the evolution
equation

∂th+ ωh+A0h = fh, t > 0, h(0) = h0.

We can easily show that −A0 generates an analytic C0-semigroup with maximal
Lp-regularity, the Mullins-Sekerka semigroup. In fact, for this purpose note that
by Theorem 6.6.4, Aη has maximal Lp-regularity for η large. Now we have the
identity

T0g = Tηg + η(η +A)−1T0g,

which follows from

η(η +A)−1T0g = (η +A)(η +A)−1T0g −A(η +A)−1T0g

= T0g − (η +A)−1A(T0g − Tηg)−A(η +A)−1Tηg

= T0g + (η +A)−1A(x,∇x)Tηg −A(η +A)−1Tηg

= T0g − (η +A)(η +A)−1Tηg.

Hence,

A0 = Sd,0C(x,∇Σ) = Aη + η[[B(x,∇x)]](η +A)−1T0C(x,∇x).

As the second term is a compact perturbation of the first one, the claim follows.
We summarize these considerations.

Corollary 6.6.5. The Mullins-Sekerka operator A0 defined above is the negative
generator of an analytic C0-semigroup e−A0t, the Mullins-Sekerka semigroup, with

maximal Lp-regularity in the base space X0 = W
1−1/p
p (Σ) and domain X1 =

D(A0) = W
4−1/p
p (Σ).

We note thatA0 is a pseudo-differential operator of order three. The spectrum
of this operator will be considered in Chapter 12.
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6.7 The Linearized Verigin Problem

The following linear problem arises as the linearization of the Verigin problem. It
can be treated analytically in the same way as the linearized Stefan problem with
surface tension. Therefore we will keep this section quite short. For the formulation,
as in the previous section, let Ω ⊂ Rn be a bounded domain with boundary ∂Ω of
class C2. Ω consists of two parts, Ω1 and Ω2 such that Σ = ∂Ω1 does not touch
∂Ω. We assume that the hypersurface Σ is a C3-manifold in Rn. Consider

(∂t + ω +A(x,∇x))u = fu in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

[[u]] + C(x,∇Σ)h = g on Σ,

[[B(x,∇x)u]] = 0 on Σ,

(∂t + ω)h− B(x,∇x)u = fh on Σ,

u(0) = u0 in Ω, h(0) = h0 on Σ.

(6.85)

Here ω ≥ 0, A(x,∇x) = −div(a(x)∇), B(x,∇x) = −(ν(x)|a(x)∇x) and
C(x,∇Σ) = −divΣ(c(x)∇Σ) are differential operators with a ∈ C1

ub(Ω \Σ;B(Rn)),
c ∈ C3(Σ;B(TΣ)), where a and c are both symmetric and uniformly positive def-
inite. The coefficients of A are allowed to jump across the interface Σ. The unit
normal ν(x) at x ∈ Σ is pointing from Ω1 into Ω2.

The main result for this problem in the Lp-setting, 3 < p < ∞, is the
following.

Theorem 6.7.1. Let p > 3 and 1 ≥ μ > 1/2 + 3/2p. There exists ω0 ∈ R such that
for each ω ≥ ω0, problem (6.85) admits exactly one solution (u, h) in the class

u ∈ H1
p,μ(R+;Lp(Ω)) ∩ Lp,μ(R+;H

2
p (Ω \ Σ)) =: Eu,

h ∈ W 3/2−1/2p
p,μ (R+;Lp(Σ)) ∩W 1−1/2p

p,μ (R+;H
2
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ)) =: Eh,

if and only if the data (fu, g, fh, u0, h0) are subject to the following conditions:

(a) fu ∈ Lp,μ(R+;Lp(Ω)) =: Fu;

(b) g ∈ W
1−1/2p
p,μ (R+;Lp(Σ)) ∩ Lp,μ(R+;W

2−1/p
p (Σ)) =: F;

(c) fh ∈ W
1/2−1/2p
p,μ (R+;Lp(Σ)) ∩ Lp,μ(R+;W

1−1/p
p (Σ)) =: Fh;

(d) u0 ∈ W
2μ−2/p
p (Ω \ Σ), h0 ∈ W

2+2μ−3/p
p (Σ);

(e) [[u0]] + C(x,∇Σ)h0 = g(0), B(x,∇x)u0 + fh(0) ∈ W
4μ−2−6/p
p (Σ),

[[B(x,∇x)u]] = 0, B(x,∇x)u0 = 0 on ∂Ω.

The solution map is continuous between the corresponding spaces.

There is no need to discuss the solution spaces, as they are the same as in the
previous section, similar reductions are available, and the process of localization
will also be the same. Therefore we will concentrate on the model problem.
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7.1 The Boundary Symbol
In this subsection we consider the constant coefficient case in Ω = Rn with flat
interface Σ = Rn−1 × {0} = Rn−1, for short. This means that we consider the
problem which is already in reduced form

(∂t + ω +A(∇x))u = 0 in R̂n,

[[u]] + C(∇Σ)h = 0 on Rn−1,

[[B(∇x)u]] = 0 on Rn−1,

(∂t + ω)h− B(∇x)u = fh on Rn−1,

u(0) = 0 in R̂n, h(0) = 0 on Rn−1.

(6.86)

As in the previous section, it is convenient to replace the variable x ∈ Rn by
(x, y) ∈ R̂ := Rn−1 × Ṙ, which means that we split into the tangential variables x
and the normal variable y.

Taking Laplace transform in time and Fourier transform in the tangential
variables we obtain the problem

(λ+ a(ξ, ξ))ũ− 2ia(ξ, ν)∂yũ− a(ν, ν)∂2
y ũ = 0, y > 0,

[[ũ]] + C(ξ)h̃ = 0, y = 0,

[[a(ν, ν)∂yũ+ ia(ξ, ν)ũ]] = 0, y = 0,

λh̃+ (a(ν, ν)∂yũ+ ia(ξ, ν)ũ) = f̃h, y = 0,

(6.87)

where, as before, the tilde indicates Laplace transform in t with co-variable τ ,
λ = τ + ω, and Fourier transform in the tangential variable x with co-variable
ξ, and ν = en is the normal at the interface. Note that the coefficients of A(∇x)
may jump across the interface. As the forms ak, k = 1, 2, defining A(∇x) are real
symmetric and positive definite, and given uΣ = C(ξ)h̃, we may solve the equations
in the region y �= 0 to the result

ũ(y) = e−yr2(λ,ξ)u2
Σ, y > 0, and ũ(y) = eyr1(λ,ξ)u1

Σ, y < 0,

where uk
Σ denote the unknown boundary values of u in Ωk. The symbols rk, k =

1, 2, are defined as in Section 6.6.3. The interface conditions imply

u2
Σ − u1

Σ = −C(ξ)h̃,

and with the notation

nk(λ, ξ) =
√
(λ+ ak(ξ, ξ))ak(ν, ν)− ak(ξ, ν)2,

the second interface condition reads

n1(λ, ξ)u
1
Σ + n2(λ, ξ)u

2
Σ = 0.
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For the equation on the boundary this yields

s(λ, ξ)h̃ = f̃h, with s(λ, ξ) = λ+ C(ξ) n1(λ, ξ)n2(λ, ξ)

n1(λ, ξ) + n2(λ, ξ)
. (6.88)

As the harmonic mean n1n2/(n1 + n2) = 1/(1/n1 + 1/n2) is leaving each sector
Σθ, θ ≤ π/2, invariant we may conclude as in Section 6.6.3 that the symbol

m(λ, ξ) :=
λ+ |ξ|2

√
λ+ |ξ|2

s(λ, ξ)

is bounded from above and below even on a larger set λ ∈ Σπ/2+ε, ξ ∈ Σn−1
ε ∪

−Σn−1
ε , and as in Section 6.6.3 this proves the assertion for the case of constant

coefficients and flat interface. Note that the essential symbol of the Verigin problem
is the same as that for the Stefan problem considered in the previous section.

7.2 The Verigin Semigroup
As problem (6.85) is a linear well-posed system of differential equations there
should be an underlying semigroup. This semigroup can be constructed in a similar
way as the Stefan semigroup in the previous section.

Theorem 6.7.2. Let p > 3 and 1 ≥ μ > 1/2 + 3/2p. There exists ω0 ∈ R such that
for each ω ≥ ω0, Problem (6.85) admits exactly one solution (u, h) in the class

u ∈ H1
p,μ(R+;Lp(Ω)) ∩ Lp,μ(R+;H

2
p (Ω \ Σ)) =: Eu,

B(x,∇x)u ∈ Lp,μ(R+;W
2−2/p
p (Σ)),

h ∈ H1
p,μ(R+;W

2−2/p
p (Σ)) ∩W 1−1/2p

p,μ (R+;H
2
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ)),

if and only if the data (fu, g, fh, u0, h0) are subject to the following conditions:

(a) fu ∈ Lp,μ(R+;Lp(Ω)) =: Fu;

(b) g ∈ W
1−1/2p
p,μ (R+;Lp(Σ)) ∩ Lp,μ(R+;W

2−1/p
p (Σ)) =: F;

(c) fh ∈ Lp,μ(R+;W
2−2/p
p (Σ)) =: Fh;

(d) u0 ∈ W
2μ−2/p
p (Ω \ Σ), h0 ∈ W

2+2μ−3/p
p (Σ);

(e) [[u0]] + C(x,∇Σ)h0 = g(0).

The solution map is continuous between the corresponding spaces.

Proof. The proof of this result involves similar ideas as the proof of Theorem 6.6.1
and we will hence skip the details. �

By means of Theorem 6.7.2, we may define the Verigin semigroup in X0 in

the following way. We set z = [u, h]T, X1 = H2
p (Ω \ Σ) ×W

4−1/p
p (Σ), and define
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an operator A in X0 = Lp(Ω)×W
2−2/p
p (Σ) by means of

A =

[
A(x,∇x) 0
B(x,∇x) 0

]
, (6.89)

D(A) = {z ∈ X1 :B(x,∇x)u = 0 on ∂Ω, [[u]] + C(x,∇Σ)h = 0 on Σ,

B(x,∇x)u ∈ W 2−2/p
p (Σ)}.

Then (6.85) for g = 0 is equivalent to the abstract evolution equation

ż +Az = f, t > 0, z(0) = z0, (6.90)

where we employed the abbreviations z0 = [u0, h0]
T and f = [fu, fh]

T. Maximal
Lp-regularity of (6.90) is equivalent to maximal Lp-regularity of (6.85) for g = 0
in the modified setting. Theorem 6.7.2 and Proposition 3.5.2 then imply that −A
is the generator of an analytic C0-semigroup with maximal Lp-regularity. This
completes the construction of the Verigin semigroup.

In the same way as in the previous section, employing the semigroup this
yields that the lower bound of ω is the spectral bound ω0 = s(−A).

7.3 The Linearized Muskat Problem
In this subsection we consider the quasi-steady problem

(η +A(x,∇x))u = fu in Ω \ Σ,
B(x,∇x)u = 0 on ∂Ω,

[[u]] + C(x,∇Σ)h = g on Σ,

[[B(x,∇x)u]] = 0 on Σ,

(∂t + ω)h− B(x,∇x)u = fh on Σ,

h(0) = h0 on Σ.

(6.91)

The main result for this problem in the Lp-setting, 3 < p < ∞, is the
following.

Theorem 6.7.3. Let p ∈ (1,∞) and 1 ≥ μ > 1/p. There exists ω0, η0 ∈ R such that
for each ω > ω0, η > η0, Problem (6.91) admits exactly one solution (u, h) in the
class

u ∈ Lp,μ(R+;H
2
p (Ω \ Σ)) =: Eu,

h ∈ H1
p,μ(R+;W

1−1/p
p (Σ)) ∩ Lp,μ(R+;W

4−1/p
p (Σ)) =: Eh,

if and only if the data (fu, g, fh, h0) are subject to the following conditions:

(a) fu ∈ Lp,μ(R+;Lp(Ω)) =: Fu;

(b) g ∈ Lp,μ(R+;W
2−1/p
p (Σ)) =: F;

(c) fh ∈ Lp,μ(R+;W
1−1/p
p (Σ)) =: Fh.

(d) h0 ∈ W
1+3μ−4/p
p (Σ);

The solution map is continuous between the corresponding spaces.
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Proof. This result is proved in the same way as Theorem 6.7.1. �

We are interested in the parameters η and ω. For this purpose we define the
operator A in X = Lp(Ω) by means of

Au(x) = A(x,∇x)u(x), x ∈ Ω \ Σ, (6.92)

D(A) = {u ∈ H2
p (Ω \ Σ) : B(x,∇x)u = 0 on ∂Ω, [[B(x,∇x)u]] = [[u]] = 0 on Σ}.

As A is uniformly strongly elliptic by assumption, Theorem 6.5.1 shows that −A is
the generator of an analytic C0-semigroup e−At with maximal Lp-regularity. The
semigroup as well as the resolvent of A are compact. Therefore the spectrum of
A consists only of eigenvalues of finite algebraic multiplicity, which do not depend
on p. By the energy argument, we obtain σ(A) ⊂ R+. However, in contrast to the
case of the linearized Mullins-Sekerka problem, here 0 is an eigenvalue of A, it is
algebraically simple and spanned by the function e which is constant 1, e ⊥ R(A)
as the divergence theorem shows. To circumvent this difficulty in the construction
of the Muskat semigroup, we observe that in Theorem 6.7.3 the solution u has
mean value 0 if fu has this property. So instead of X = Lp(Ω) we employ

X = Lp,0(Ω) = {u ∈ Lp(Ω) : (u|e)Ω = 0}.

This removes 0 from the spectrum of A. Then we proceed as in Section 6.6.6 to
construct the Muskat operator as follows.

Define the Muskat operator A0 in X0 := W
1−1/p
p (Σ) with help of the

Dirichlet-to-Neumann operator Sn by means of

A0h = SnC(x,∇Σ)h, X1 := D(A0) = W 4−1/p
p (Σ). (6.93)

Then it is obvious that (6.91) with η = 0, and (fu, g) = 0 is equivalent to the
evolution equation

∂th+ ωh+A0h = fh, t > 0, h(0) = h0.

As for the Mullins-Sekerka case, we can show that −A0 generates an analytic
C0-semigroup with maximal Lp-regularity.

Corollary 6.7.4. The Muskat operator A0 defined above is the negative gener-
ator of an analytic C0-semigroup e−A0t, the Muskat semigroup, with maximal

Lp-regularity in X0 = W
1−1/p
p (Σ) and domain X1 = D(A0) = W

4−1/p
p (Σ).

The spectrum of this operator will be considered in Chapter 12.

Appendix

The Triebel-Lizorkin spaces Fα
pq(R;E) and 0F

α
pq,μ(R+;E) for α ∈ (0, 1), p, q ∈ (1,∞),

and 1/p < μ ≤ 1 can be characterized as follows.
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Lemma 6.7.5. Let 1 < p, q < ∞, 1/p < μ ≤ 1, α ∈ (0, 1), and suppose E is a Banach
space of class HT . Define B = (∂t)

α in Lp,μ(R+;Lq((0, 1);E)) with domain D(B) =

0H
α
p,μ(R+;Lq((0, 1);E)).

Then, for any g ∈ Lp,μ(R+;E),

w := e−Byg ∈ 0H
α
p,μ(R+;Lq((0, 1);E))

if and only if g ∈ 0F
α(1−1/q)
pq,μ (R+;E).

The same result is valid for the whole line case, i.e.,

w ∈ Hα
p (R;Lq((0, 1);E)) ⇔ g ∈ Fα(1−1/q)

pq (R;E).

These results hold for R+ instead of (0, 1) if we replace ∂α
t by (ω+∂t)

α, for some ω > 0.

Actually, we might have taken the assertion of this lemma for the whole line case
as a definition for the vector-valued spaces Fα

pq(R;E). However, to draw the connection
with the definition of Fα

pq given in Triebel [284], we add a proof. Observe that

u ∈ 0F
α
pq,μ(R+;E) ⇔ t1−μ

+ u ∈ Fα
pq(R;E),

where t1−μ
+ = max{t1−μ, 0}. Therefore we may concentrate on the whole line case, and

we restrict to the case ω = 0.

Proof. For E = C, Theorem 2.4.1 of [284] proves Lemma 6.7.5 with the choices
φ(x) = (ix)αe−(ix)α and φ0(x) = 1, s0 = 0, s1 = α. The proof given there car-
ries over to the vector-valued case since E is assumed to be of class HT , provided
α > a > 1/min{p, q}. For general p, q ∈ (1,∞) Theorem 2.4.1 of [284] does not apply
since the moment condition (8) in that reference does not hold.

To see sufficiency of the condition in the general case, assume that w0 := Be−Byg ∈
Lp(R;Lq((0, 1);E)). Using maximal regularity we solve successively the problems

∂ywk +Bwk = Bwk−1, wk|y=0 = 0,

to obtain
Bwk = ykBk+1e−yBg ∈ Lp(R;Lq((0, 1);E)), k ∈ N0.

Now we have with the variable transformation y = τα

∫ 1

0

|ykBk+1e−yBg|qE dy = α

∫ 1

0

τ−qα(1−1/q)|(ταB)k+1e−(ταB)g|qE
dτ

τ

= α

∫ 1

0

τ−qα(1−1/q)|φ(τD)g|qE
dτ

τ
,

where we used the notation in [284], Section 2.4.1, with φ(ξ) = (iξ)α(k+1)e−(iξ)α . It is
not difficult to check that the relevant conditions (7) and (9) are valid for all k ∈ N0 with
s0 = 0. On the other hand, (8) holds in case αk ≥ 1. In fact, the inverse Fourier transform
pk+1(t) of φ(iξ), with contour Γ = e−iθ(∞, 0]∪eθ[0,∞), θ ∈ (π/2, π), αθ < π/2, becomes

pk+1(t) =
1

2πi

∫
Γ

zαk+1e−zαezt dz, t ≥ 0.
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Note that the support of pk+1 is contained in R+, thanks to holomorphy. This formula
is valid for all α(k + 1) > −1, and it implies that pk+1(t) is bounded and behaves
asymptotically like t−(1+α(k+1)) as t → ∞. Therefore (1 + ta)pk+1 ∈ L1(R+) if and
only if a < α(k + 1). Choosing s1 = α and 1/min{p, q} < a < 1, and k ≥ 1/α, the

vector-valued version of Theorem 2.4.1 of [284] implies g ∈ F
α(1−1/q)
pq (R;E).

For the converse statement we need to choose k = 0. Since the critical condition
(8) does not hold, we have to modify Steps 1 and 4 of the proof of Theorem 2.4.1 of
[284], the only places where (8) is used. We concentrate on the modification of Step 1,
and employ the notation used there. Let s = α(1 − 1/q) and fix a resolution of unity
{ρj}j∈N0 in the sense of [284] Section 2.3.1. Then by definition, g ∈ 0F

s
pq(R;E) if and

only if
(2sjρj(D)g)j∈N0 ∈ Lp(R; lq(N0;E)).

Now we have as in [284], proof of Theorem 2.4.1, Step 1

2jsF−1Lp1(2−jiξ)F =
∞∑

l=−∞
2jsF−1Lp1(2−jiξ)ρl+j(ξ)Fg.

Here L denotes the Laplace transform. Splitting the sum into two parts, we have to
estimate in Step 1 the part running from l = −∞ to l = k. We write

2jsF−1Lp1(2−jiξ)ρl+j(ξ)Fg

= 2αl/qF−1Lp0(2−jiξ) · (2−(j+l)iξ)αχ(2−(j+l)ξ) · 2s(j+l)ρj+lFg,

where χ(r) denotes a cut off function which is 1 on |r| ≤ 2. Since
∑k

l=−∞ 2αl/q < ∞, it
suffices to estimate

F−1Lp0(2−jiξ) · (2−(j+l)iξ)αχ(2−(j+l)ξ) · 2s(j+l)ρj+lFg

in Lp(R; lq(N0;E)), uniformly w.r.t. l. By assumption we have

|(2s(j+l)F−1ρj+lFg)j≥0|Lp(R;lq(N0;E)) ≤ |g|Fs
pq(R+;E),

hence its is enough to show that the sequences (Lp0(2−jiξ))j∈N0 and
((2−(j+l)iξ)αχ(2−(j+l)ξ))j∈N0 define Fourier multipliers for Lp(R; lq(N0;E)) with
bounds independent of l.

For the first sequence, observe that Lp0(λ) = e−λα

is completely monotonic, hence
p0(t) is nonnegative and integrable with integral equal to 1, i.e., p0 is a probability
density. Therefore, the operator defined by the first sequence is given by

(T1f)j(t) = 2jp0(2j ·) ∗ fj(t), t > 0, j ∈ N0.

Thus we obtain
|(T1f)j(t)|E ≤ M |fj |E(t), t > 0, j ∈ N0,

where M denotes the usual maximal operator. Since M is bounded in Lp(R; lq(N0)), the
assertion follows for the first sequence, i.e., T1 is bounded in Lp(R; lq(N0;E)).

The second sequence is treated in a similar way. We write

(iξ)αχ(ξ) =
(iξ)α

(1 + iξ)2
+

(iξ)α

(1 + iξ)2
(χ(ξ)− 1) +

(iξ)1+α(2 + iξ)

(1 + iξ)2
χ(ξ).
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The first term belongs to the Hardy space H∞(C+) and its derivative belongs to H1(C+),
therefore by Hardy’s inequality it is the Laplace transform of a function k1 ∈ L1(R+). The
second and the third terms belong to L2(R) as well as their derivatives, hence by means
of Bernstein’s theorem they are Fourier transforms of functions kj ∈ L1(R), j = 2, 3.
This shows that (iξ)αχ(ξ) = Fk(ξ), for some k ∈ L1(R). Now we may argue as before
to see that also the second sequence defines a bounded operator T2 in Lp(R; lq(N0;E)),
with bound independent of l. This completes the proof of Lemma 6.7.5. �



Chapter 7

Generalized Stokes Problems

This chapter is devoted to maximal Lp-regularity of one-phase linear generalized
Stokes problems on domains Ω ⊂ Rn which are either Rn, Rn

+, or domains with
compact boundary ∂Ω of class C3, i.e., interior or exterior domains. Here we
only consider the physically natural boundary conditions no-slip, pure slip, out-
flow, and free. As in Chapter 6, our approach is based on vector-valued Fourier
multiplier theory, perturbation, and localization. It turns out that due to the di-
vergence condition (and the pressure), the analysis for the half-space as well as
the localization procedure are much more involved than in the previous chapter.
Nevertheless, besides some extra compatibility condition which comes from the
divergence condition, the main results will parallel those in Chapter 6.

7.1 The Generalized Stokes Problem on Rn

1.1 Constant Coefficients
We consider the problem

∂tu(t, x) +A(D)u(t, x) +∇π(t, x) = f(t, x) in Rn,

div u(t, x) = g(t, x) in Rn,

u(0, x) = u0(x) in Rn,

(7.1)

Here A(D) =
∑n

k,l=1 a
klDkDl denotes a differential operator with constant coeffi-

cient matrices akl acting on Cn-valued functions. We assume that A(D) is strongly
elliptic. As we have seen in the previous chapter, this implies that the problem

∂tu(t, x) +A(D)u(t, x) = f(t, x) in Rn,

u(0, x) = u0(x) in Rn.
(7.2)

has maximal Lp,μ−Lq-regularity, 1 < p, q < ∞, μ ∈ (1/p, 1]. We want to show
that the same assertion is valid for the generalized Stokes problem (7.1). More
precisely, we have the following result.
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Theorem 7.1.1. Let 1 < p, q < ∞, μ ∈ (1/p, 1], and assume that A(D) is strongly
elliptic.

Then (7.1) has maximal Lp,μ−Lq-regularity in the following sense. There is
a unique solution (u, π) of (7.1) with u ∈ L1,loc(R+;H

2
q (R

n;Cn)) such that

∂tuk, ∂i∂juk ∈ Lp,μ(R+;Lq(R
n)), π ∈ Lp,μ(R+; Ḣ

1
q (R

n)),

if and only if the data (f, g, u0) satisfy the subsequent conditions.

(a) f ∈ Lp,μ(R+;Lq(R
n;Cn));

(b) ∂tg ∈ Lp,μ(R+; Ḣ
−1
q (Rn)) and ∇g ∈ Lp,μ(R+;Lq(R

n;Cn));

(c) u0 ∈ B
2(μ−1/p)
qp (Rn;Cn) and div u0 = g(0) in D′(Rn).

The solution (u, π) depends continuously on the data in the corresponding spaces.

Proof. Necessity follows easily by trace theory. To prove sufficiency of the condi-
tions, note that by the open mapping theorem, the continuity assertion follows as
soon as the solvability assertion is proved. So let data (f, g, u0) be given which are
subject to conditions (a), (b), and (c). We first solve the parabolic problem

∂tv +A(D)v = f, v(0) = u0,

with maximal Lp,μ−Lq-regularity, applying Theorem 6.1.8 and Theorem 4.4.4.
Then w = u− v must be a solution of the system

∂tw +A(D)w +∇π = 0, div w = g0, w(0) = 0,

where g0 = g − div v has the same regularity as g and trace 0 at time t = 0.
Suppose the pressure π is already known. Taking Fourier transform in the

space variables and Laplace transform in the time variable we obtain the system

λŵ +A(ξ)ŵ = −iξπ̂,

i(ŵ|ξ) = ĝ0.
(7.3)

Solving for ŵ this yields
ŵ = −i(λ+A(ξ))−1ξπ̂,

and inserting this relation into the second equation of (7.3) we obtain

ĝ0 = ((λ+A(ξ))−1ξ|ξ)π̂.

Set η = (λ+A(ξ))−1ξ. Then η �= 0 unless ξ = 0, and

α(λ, ξ) := ((λ+A(ξ))−1ξ|ξ) = λ|η|2 + (η|A(ξ)η).

Therefore, strong ellipticity of A(D) implies α(λ, ξ) �= 0 for all ξ ∈ Rn, Reλ ≥ 0,
with |ξ|+ |λ| �= 0. We may now solve for π̂ to the result

π̂(λ, ξ) = ĝ0(λ, ξ)/α(λ, ξ),
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and for ŵ we get

ŵ(λ, ξ) = −i
(λ+A(ξ))−1ξ

α(λ, ξ)
ĝ0(λ, ξ).

Choose v0 ∈ Lp,loc(R+;H
2
q (R

n;Cn)) such that

∂tv0k, ∂i∂jv0k ∈ Lp,μ(R+;Lq(R
n)), div v0 = g0.

This is possible by assumption (b) on the function g. In fact, setting

g1 = (−Δ)−1/2∂tg0 + (−Δ)1/2g0 ∈ Lp,μ(R+;Lq(R
n))

we obtain g0 = −div R(∂t−Δ)−1g1, where R denotes the Riesz transform defined
by the symbol iξ/|ξ|, i.e., we may choose v0 = −R(∂t −Δ)−1g1. Therefore,

(∂t −Δ)w = T1(∂t −Δ)v0, ∇π = T2(∂t −Δ)v0,

where Tj are defined by means of their Fourier-Laplace symbols

T̂1(λ, ξ) =
(λ+A(ξ))−1ξ ⊗ ξ

α(λ, ξ)
, T̂2(λ, ξ) = − ξ ⊗ ξ

(λ+ |ξ|2)α(λ, ξ) .

Thus, to prove the theorem, it is enough to show that the operators Tj with

symbols T̂j(λ, ξ) are bounded in Lp,μ(R+;Lq(R
n;Cn)).

This in turn will follow by an application of the Kalton-Weis theorem and R-
boundedness of families of Fourier multipliers. By the scaling μ = λ/|ξ|2, ζ = ξ/|ξ|,
we may rewrite the symbols as

T̂1(λ, ξ) =
(μ+A(ζ))−1ζ ⊗ ζ

α(μ, ζ)
, T̂2(λ, ξ) = − ζ ⊗ ζ

(1 + μ)α(μ, ζ)
.

By strong ellipticity, we already know α(μ, ζ) �= 0 for all ζ ∈ Rn, |ζ| = 1,
and Reμ ≥ 0. As |μ| → ∞ we have μα(μ, ζ) → 1, while α(μ, ζ) → α(0, ζ) =
(A(ζ)−1ζ|ζ) �= 0 as μ → 0. This shows that we may extend the range of μ ∈ C to
some sector Σφ, with φ > π/2. Furthermore, by compactness, |(1 + μ)α(μ, ζ)| ≥
α0 > 0 for all such ζ and μ, where α0 denotes a constant. This implies bounded-
ness of the symbols T̂j(μ|ξ|2, ξ), uniformly in ξ and μ. Furthermore, T̂j(μ|ξ|2, ξ)
are homogeneous in ξ of degree 0, and so |ξ||β|Dβ

ξ T̂j(μ|ξ|2, ξ) are also uniformly
bounded in ξ and μ, for each multi-index β ∈ Nn

0 . The Lizorkin multiplier the-
orem, Theorem 4.3.9, then implies that these symbols are Fourier multipliers
in Lq(R

n;Ej) w.r.t. ξ, which yields a holomorphic R-bounded family of opera-
tors {Tj(μ)}μ∈Σφ

⊂ B(Lq(R
n;Ej)) for j = 1, 2, where E1 = Cn, E2 = C. By

canonical extension, it is also R-bounded in Lp,μ(R+;Lq(R
n;Ej)). Since the op-

erator L := ∂t(−Δ)−1 admits an H∞-calculus in Lp,μ(R+;Lq(R
n;Ej)) of angle

π/2, the Kalton-Weis theorem, Theorem 4.5.6, implies boundedness of Tj(L) in
Lp,μ(R+;Lq(R

n;Ej)). This completes the proof of Theorem 7.1.1. �
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1.2 The Generalized Stokes Operator
Let A(D) be strongly elliptic as in the previous section and consider (7.1) with
(div f, g, u0) = 0. Then, according to Theorem 7.1.1, Problem (7.1) admits a
unique solution (u, π) with maximal Lp,μ−Lq-regularity, which means

u ∈ L1,loc(R+;H
2
q (R

n;Cn)), π ∈ Lp,μ(R+; Ḣ
1
q (R

n)),

∂tuk, ∂i∂juk ∈ Lp,μ(R+;Lq(R
n)),

whenever f ∈ Lp,μ(R+;Lq(R
n;Cn)).

Define the base space X0 by means of

X0 = Lq,σ(R
n) := {u ∈ Lq(R

n;Cn) : div u = 0 in D′(Rn)},

and let PH := I−R⊗R denote the Helmholtz projection from Lq(R
n;Cn) onto X0,

where R means the Riesz operator defined via its symbol R̃ = iξ/|ξ|, as before.
The generalized Stokes operator A associated to A(D) is defined according to

(Au)(x) := [PHA(D)u](x), x ∈ Rn, (7.4)

with domain
D(A) := H2

q (R
n;Cn) ∩ Lq,σ(R

n).

Then u ∈ L1,loc(R+;X0) is the unique solution of the evolution equation

u̇+Au = f, t > 0, u(0) = u0, (7.5)

in the base space X0. It belongs to the maximal regularity class ∂tu,Au ∈
Lp,μ(R+;X0), i.e., (7.5) has maximal Lp,μ-regularity. Then Theorem 4.4.4 and
Proposition 3.5.2 imply that A is R-sectorial with angle φA < π/2. But even more
is true.

Theorem 7.1.2. Let 1 < p, q < ∞, μ ∈ (1/p, 1], and assume that A(D) is strongly
elliptic. Let A be defined by (7.4) in X0 = Lq,σ(R

n).
Then A ∈ H∞(X0) with H∞-angle φ∞

A ≤ φA, where

φA ≤ max{|arg (A(ξ)v|v)| : ξ ∈ Rn, v ∈ Cn} < π/2.

In particular, A ∈ RS(X0) with R-angle φR
A ≤ φA, and (7.5) has maximal Lp,μ−

Lq-regularity.

Proof. From the previous subsection we have for the resolvent (λ+A)−1 of A the
symbolic representation

F(λ+A)−1(ξ) = [I − (λ+A(ξ))−1ξ ⊗ ξ/α(λ, ξ)](λ+A(ξ))−1, ξ ∈ Rn,

where α(λ, ξ) = ((λ+A(ξ))−1ξ|ξ). We proceed as in the proof of Theorem 6.1.8.
So let h ∈ H0(Σφ) with φ > φA be given. Then the symbol of h(A) reads

Fh(A)(ξ) =
1

2πi

∫
Γ

h(λ)F(λ−A)−1(ξ) dλ, ξ ∈ Rn,
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where Γ denotes the contour Γ = (∞, 0]eiθ ∪ [0,∞)e−iθ with θ ∈ (φA, φ). Employ-
ing the scaling ξ = ρζ, ρ = |ξ|, and λ = μρ2, we obtain

Fh(A)(ξ) =
1

2πi

∫
Γ

h(ρ2μ)
(
I − (μ−A(ζ))−1ζ ⊗ ζ/α(μ, ζ)

)
(μ−A(ζ))−1 dμ.

As n0 = ∪|ζ|=1n(A(ζ)), where n denotes the numerical range, is compact and
contained in Σ̄φA , according to Cauchy’s theorem, we may deform the contour
within Σθ into a closed compact contour Γ0 surrounding n0 counter-clockwise to
obtain the representation

Fh(A)(ξ) =
1

2πi

∫
Γ0

h(ρ2μ)
(
I − (μ−A(ζ))−1ζ ⊗ ζ/α(μ, ζ)

)
(μ−A(ζ))−1 dμ.

By compactness of Γ0 and Sn−1 this implies boundedness of the symbol Fh(A)(ξ)
in terms of |h|H∞(Σφ). As in the proof of Theorem 6.1.8 we also obtain bounds

for the derivatives |ξ||α||Dα
ξ Fh(A)(ξ)|, hence by the classical Mikhlin multiplier

theorem we obtain

|h(A)|B(Lq) ≤ C|h|H∞(Σφ), h ∈ H0(Σφ).

Therefore, the generalized Stokes operator A admits a bounded H∞-calculus with
H∞-angle φ∞

A ≤ φA. �
We observe that for the trace spaces Xγ,μ of A we obtain

Xγ,μ := (X0,D(A))μ−1/p,p = (Lq(R
n;Cn) ∩X0, H

2
q (R

n;Cn) ∩X0)μ−1/p,p

= (Lq(R
n;Cn), H2

q (R
n;Cn))μ−1/p,p ∩X0 = B2(μ−1/p)

qp (Rn;Cn) ∩X0,

for 1 < p, q < ∞ and μ ∈ (1/p, 1]. For the fractional power spaces we have

D(Aα) = (X0,D(A))α = (Lq(R
n;Cn) ∩X0, H

2
q (R

n;Cn) ∩X0)α

= (Lq(R
n;Cn), H2

q (R
n;Cn))α ∩X0 = H2α

q (Rn;Cn) ∩X0,

for each α ∈ (0, 1), as A admits an H∞-calculus.

1.3 Variable Coefficients
(i) We can easily extend Theorem 7.1.1 to the case of variable coefficients with
small deviation from constant ones. To see this, let A(x,D) = A0(D) +A1(x,D),
where A1(x,D) =

∑
k,l a

kl
1 (x)DkDl with

sup{|akl1 (x)| : k, l = 1, . . . n, x ∈ Rn} ≤ η.

Let S denote the solution operator of the generalized Stokes problem (7.1) from
Theorem 7.1.1 for A0(D), and T that of the perturbed problem. Then we obtain
the identity

T = S − SBT, where B =

[
A1(x,D) 0
0 0

]
.
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The norm of B as an operator from H2
q (R

n;Cn) into Lq(R
n;Cn) is bounded by

Cη, where C > 0 denotes a constant independent of η. Let |S| stand for the norm
of the solution operator from the data space to the maximal regularity space. If
|S|Cη < 1, then a Neumann series argument shows that T = (I + SB)−1S in fact
exists and is bounded as a map from the data space to the maximal regularity
space as well. Let us state this as

Corollary 7.1.3. The assertions of Theorem 7.1.1 remain valid in the case of vari-
able coefficients A(x,D) = A0(D) + A1(x,D), provided the coefficients akl1 (x) of
A1(D) are subject to

sup{|akl1 (x)| : k, l = 1, . . . n, x ∈ Rn} ≤ η,

for some sufficiently small η > 0, which only depends on p, q, μ, maxk,l |akl0 |, and
the ellipticity constant of A0(D).

(ii) Below we will need a certain decomposition of the solution operator. For this
purpose observe that from the proof of Theorem 7.1.1 we have the representations

û = [I − (λ+A(ξ))−1ξ ⊗ ξ/α(λ, ξ)](λ+A(ξ))−1(f̂ + ũ0)− iα−1(λ+A(ξ))−1ξĝ,

and
π̂ = −iα−1((λ+A(ξ))−1(f̂ + ũ0)|ξ) + ĝ/α.

Let us have a closer look at the term 1/α(λ, ξ). We may write

1

α(λ, ξ)
= (μ+ 1)

1

(μ+ 1)((μ+A(ζ))−1ζ|ζ)

= μ+ 1 + (μ+ 1)[
1

(μ+ 1)((μ+A(ζ))−1ζ|ζ) − 1]

= μ+ 1 +
(μ+ 1)[((μ+A(ζ))− (μ+ 1)](μ+A(ζ))−1ζ|ζ)

(μ+ 1)((μ+A(ζ))−1ζ|ζ)

= μ+ 1 +
([A(ζ)− 1](μ+ 1)(μ+A(ζ))−1ζ|ζ)

(μ+ 1)((μ+A(ζ))−1ζ|ζ)
= λ/|ξ|2 + 1 +M22(λ, ξ),

where we used again the notation μ = λ/|ξ|2 and ζ = ξ/|ξ|. As in the proof
of Theorem 7.1.1, ξ �→ M22(μ|ξ|2, ξ) is homogeneous of degree 0 and bounded,
uniformly in ξ ∈ Rn and λ ∈ Σφ. The arguments given there apply again to the
result that there is an Lp,μ(R+;Lq(R

n;Cn)))-bounded operator S22 with symbol

Ŝ22 = M22. In a similar way we decompose

−iα−1(λ+A(ξ))−1ξ = −iξ/|ξ|2 + (λ+ |ξ|2)−1|ξ|M21(λ, ξ),

where M21 is the symbol of an Lp,μ−Lq-bounded operator S21, as well as

−i((λ+A(ξ))−1 · |ξ)/α(λ, ξ) = −i(ξ/|ξ|2|·) + (λ+ |ξ|2)−1|ξ|M12(λ, ξ),
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and M12 is the symbol of an Lp,μ−Lq-bounded operator S12. Last but not least,
in the same way we obtain the decomposition

[I − (λ+A(ξ))−1ξ ⊗ ξ/α(λ, ξ)](λ+A(ξ))−1 = (λ+ |ξ|2)−1(I − ξ ⊗ ξ/(λ+ |ξ|2))
+ (λ+ |ξ|2)−2|ξ|2M11(λ, ξ),

with M11 the symbol of an Lp,μ−Lq-bounded operator S11. Thus the solution
operator S of the generalized Stokes problem splits as S = S0 + S1, where the
symbols of Sj are given by

Ŝ0 =

[
(λ+ |ξ|2)−1(I − ξ ⊗ ξ/(λ+ |ξ|2)) −iξ/|ξ|2
−iξT/|ξ|2 (λ+ |ξ|2)/|ξ|2

]
, (7.6)

and

Ŝ1 =

[
(λ+ |ξ|2)−2|ξ|2M11(λ, ξ) (λ+ |ξ|2)−1|ξ|M12(λ, ξ)
(λ+ |ξ|2)−1|ξ|M21(λ, ξ) M22(λ, ξ)

]
. (7.7)

It is interesting to note that S0 is independent of the coefficients of A(D), in fact,
it is the solution of the classical Stokes problem where A(D) = −Δ. The operator
S1 factors as

Ŝ1 =

[
1

λ+|ξ|2 0

0 1
|ξ|

] [
M11 M12

M21 M22

] [ |ξ|2
λ+|ξ|2 0

0 |ξ|

]
.

Here M = [Mij ] is the symbol of an Lp,μ−Lq-bounded operator matrix.
It is a remarkable fact that such a decomposition remains valid in the vari-

able coefficient case of Corollary 7.1.3. This can be seen as follows. We have the
Neumann series for T which reads

T = S +
∑
n≥1

(SB)nS = S0 + S1 +
∑
n≥1

(SB)nS.

By induction we obtain

(SB)n =

[
(S11A1)

n 0
S21A1(S11A1)

n−1 0

]
,

and

(SB)nS =

[
(S11A1)

nS11 (S11A1)
nS12

S21A1(S11A1)
n−1S11 S21A1(S11A1)

n−1S12

]
.

In symbolic notation, using the factorization of S this yields for the first entry

(S11A1)
nS11

=
1

λ+ |ξ|2 (1 +
|ξ|2

λ+ |ξ|2M11)(A1(D)S11)
n−1A1(ζ)(1 +

|ξ|2
λ+ |ξ|2M11)

|ξ|2
λ+ |ξ|2 .
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Similarly, for the second entry we get

(S11A1)
nS12

=
1

λ+ |ξ|2 (1 +
|ξ|2

λ+ |ξ|2M11)(A1(D)S11)
n−1A1(ζ)(

−iξ

|ξ| +
|ξ|2

λ+ |ξ|2M12)|ξ|.

In the same way the third entry becomes

S21(A1S11)
n

=
1

|ξ| (
−iξ

|ξ| +
|ξ|2

λ+ |ξ|2M21)(A1(D)S11)
n−1A1(ζ)(1 +

|ξ|2
λ+ |ξ|2M11)

|ξ|2
λ+ |ξ|2 ,

and finally the last entry is

S21A1(S11A1)
n−1S12

=
1

|ξ| (
−iξ

|ξ| +
|ξ|2

λ+ |ξ|2M12)(A1(D)S11)
n−1A1(ζ)(

−iξ

|ξ| +
|ξ|2

λ+ |ξ|2M12)|ξ|.

This proves the assertion.

(iii) It is very useful to consider also the shifted Stokes problem

∂tu(t, x) + ωu(t, x) +A(D)u(t, x) +∇π(t, x) = f(t, x) in Rn,

div u(t, x) = g(t, x) in Rn,

u(0, x) = u0(x) in Rn,

(7.8)

for t > 0, where ω > 0 is fixed. One should note that the substitutions uω = e−ωtu,
fω = e−ωtf , and gω = e−ωtg transform the system (7.1) into (7.8). The advantage
lies in the fact that we also obtain estimates for the Lp,μ−Lq-norm. In fact, we
get the following estimates for the solution u of (7.8). Setting

E0μ = Lp,μ(R+;Lq(R
n;Cn)), G1μ = H1

p,μ(R+; Ḣ
−1
q (Rn)) ∩ Lp,μ(R+;H

1
q (R

n)),

and Xγ,μ = B
2(μ−1/p)
qp (Rn;Cn), there is a constant C > 0 such that

ω|u|E0μ
+ |∂tu|E0μ

+ |∇2u|E0μ
+ |∇π|E0μ

(7.9)

≤ C
(
|u0|Xγ,μ

+ |f |E0,μ
+ |g|G1μ

+ ω|g|Lp,μ(Ḣ
−1
q )

)
,

for all (f, g, u0) ∈ E0,μ ×G1μ ×Xγ,μ such that div u0 = g(0) in D′(Rn). Here the
constant C depends only on p, q, μ and on the symbol A(ζ). This result follows
directly from the representation of the symbol of S, one only has to observe that
the exponential shift replaces λ by λ+ ω.

(iv) At several places it will be convenient to reduce the full Stokes problem to a
problem for the Stokes operator. This can be achieved as follows. We first solve
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the problem
∂tv + ωv +A(D)v +∇π = f in Rn,

div v = g in Rn,

v(0) = v0 in Rn,

(7.10)

for t > 0, with ω sufficiently large. Then w = u− v must satisfy

ẇ +Aw = ωv, t > 0, w(0) = 0.

This reduction will be useful in several situations.

1.4 Localization
Now we are in position for the general case, i.e., we consider the problem

∂tv + ωv +A(x,D)v +∇q = f in Rn,

div v = g in Rn,

v(0) = v0 in Rn.

(7.11)

As before the data (f, g, v0) are given, and we assume that the differential operator
A(x,D) =

∑
k,l a

kl(x)DkDl has coefficients akl ∈ Cl(R
n;B(Cn)) and that A(x,D)

is uniformly strongly elliptic, i.e.,

Re(A(x, ξ)v|v) ≥ c0|ξ|2|v|2, ξ ∈ Rn, v ∈ Cn, x ∈ Rn,

with some constant c0 > 0. The parameter ω ≥ 0 will be chosen later. Observe
that maximal regularity on finite intervals does not depend on ω.

First, we reduce the problem as above to the case (f, u0) = 0, employing the
results of Chapter 6. To solve the remaining problem we employ the method of
localization. Choose a large ball B(0, R) such that

sup{|a(x)− a(∞)| : |x| ≥ R} ≤ η.

Cover the ball B̄(0, R) by finitely many balls B(xk, r), k = 1, . . . , N , such that

sup{|a(x)− a(xk)| : x ∈ B(xk, r)} ≤ η.

Fix a C∞-partition of unity φk which is subordinate to the covering B̄(0, R)c ∪
∪N
k=1B(xk, r) of Rn. The index k = 0 corresponds to the chart at infinity. De-

fine local operators Ak(D) = A(x,D) for each chart B(xk, r), k = 1, . . . , N , and
A0(D) = A(x,D), extend these coefficients to all of Rn, say by reflection at the
boundary of the corresponding ball. Corollary 7.1.3 shows that each of these oper-
ators has maximal regularity, provided η > 0 is sufficiently small, but independent
of k.

Suppose (v, q) is a solution of (7.11) (with (f, v0) = 0). In the sequel we
normalize the pressure by

∫
B(0,2R)

q(t, x) dx = 0. Setting vk = φkv, qk = φkq,
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gk = φkg we obtain the following problem for the functions vk and qk.

∂tvk + ωvk +Ak(D)vk +∇qk = (∇φk)q + [A, φk]v in Rn,

div vk = gk + (∇φk|v) in Rn,

vk(0) = 0 in Rn,

(7.12)

where [A(x,D), φk]v = A(x,D)(φkv) − φkA(x,D)v means the commutator of
A(x,D) and φk. Denote the solution operator of the generalized Stokes problem
for ω +Ak by Sk. Then we have the representation[

vk
qk

]
= Sk

[
(∇φk)q + [A, φk]v
gk + (∇φk|v)

]
.

Summing over all charts k we deduce

[
v
q

]
=

N∑
k=0

[
vk
qk

]
=

N∑
k=0

Sk

[
(∇φk)q + [A, φk]v
gk + (∇φk|v)

]
.

We decompose this representation of the solution as

[
v
q

]
=

N∑
k=0

Sk

[
0
gk

]
+ T

[
q
v

]
+Rv,

where

T =

N∑
k=0

Sk∇φk and R =

N∑
k=0

Sk

[
[A, φk]
0

]
.

We estimate T and R separately. For this purpose, we define the maximal regu-
larity space

E1μ := [H1
p,μ(R+;Lq(R

n;Cn)) ∩ Lp,μ(R+;H
2
q (R

n;Cn))]× Lp,μ(R+; Ḣ
1
q (R

n)),

and recall the definition of the spaces E0μ and G1μ from above. To begin with T ,
recall that each Sk splits into Sk = S0 + Sk

1 , with the same S0 for each k, since
the latter does not depend on the coefficients of Ak. Hence

T =
N∑

k=0

Sk∇φk =
N∑

k=0

Sk
1∇φk + S0∇

N∑
k=0

φk =
N∑

k=0

Sk
1∇φk,

since φk forms a partition of unity. Let us decompose T into its components,
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employing the factorization of S1 obtained in Section 7.1.3. We have

T11q = (∂t + ω −Δ)−1
∑
k

Sk
11(−Δ)(∂t + ω −Δ)−1(q∇φk),

T21q = (−Δ)−1/2
∑
k

Sk
21(−Δ)(∂t + ω −Δ)−1(q∇φk),

T12v = (∂t + ω −Δ)−1
∑
k

Sk
12(−Δ)1/2(∇φk|v),

T22v = (−Δ)−1/2
∑
k

Sk
22(−Δ)1/2(∇φk|v).

Since ∇φk has compact support also for k = 0, we see that (∇φk)q belongs to
Lp,μ(R+;H

1
q (R

n)), and

|(−Δ)1/2(q∇φk)|E0,μ
≤ C|∇q|E0,μ

holds with some constant C > 0; recall the normalization of the pressure∫
B(0,2R)

q(t, x) dx = 0, hence Poincaré’s inequality is valid. Therefore,

|(−Δ)(∂t + ω −Δ)−1(q∇φk)|E0,μ ≤ C√
ω
|∇q|E0,μ .

Similarly, there is a constant C > 0 such that

|(−Δ)1/2(∇φk|v)|E0μ
≤ C√

ω
|(∂t + ω −Δ)v|E0,μ

.

As a consequence, the operator T satisfies

ω

∣∣∣∣T [
q
v

]∣∣∣∣
E0μ

+

∣∣∣∣T [
q
v

]∣∣∣∣
E1μ

≤ C√
ω

( ∣∣∣∣[ v
q

]∣∣∣∣
E1μ

+ ω

∣∣∣∣[ v
q

]∣∣∣∣
E0μ

)
.

Next, R is given by

R

[
q
v

]
=
∑
k

Sk

[
[A, φk]v
0

]
.

The commutator [A(x,D), φk] is a differential operator of first order, hence

ω

∣∣∣∣R [
q
v

]∣∣∣∣
E0μ

+

∣∣∣∣R [
q
v

]∣∣∣∣
E1μ

≤ C√
ω

( ∣∣∣∣[ v
q

]∣∣∣∣
E1μ

+ ω

∣∣∣∣[ v
q

]∣∣∣∣
E0μ

)
.

The above arguments show that, choosing first η > 0 small and then ω > 0 large
enough, there is a constant C > 0 such that the estimate

ω|v|E0μ + |v|E1μ + |∇π|E0μ ≤ C
(
|g|G1μ + ω|g|Lp,μ(Ḣ

−1
q

)
(7.13)
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holds. Therefore, the operator L defined by the first two lines of the left-hand side
of (7.11) is injective and has closed range, hence it is semi-Fredholm, for each set
of coefficients which are continuous on Rn, admit uniform limits as |x| → ∞, and
are uniformly strongly elliptic. Define the family Aτ = τA + (1 − τ)(−Δ). By
strong ellipticity, we then may conclude that for each τ ∈ [0, 1], the corresponding
operator Lτ is injective and has closed range. By the continuity of the Fredholm
index, it must be constant, i.e., the index is zero for all τ ∈ [0, 1] since L0 is
bijective by Theorem 7.1.1. This shows that L = L1 is also surjective.

Summarizing, for the problem with variable coefficients

∂tv + ωv +A(x,D)v +∇π = f in Rn,

div v = g in Rn,

v(0) = v0 in Rn,

(7.14)

we have proved the following result.

Theorem 7.1.4. Let 1 < p, q < ∞, μ ∈ (1/p, 1], and assume that A(x,D) is a
second-order differential operator with coefficients akl ∈ Cl(R

n;B(Cn)) which is
uniformly strongly elliptic.

Then there is ω0 ∈ R such that for all ω > ω0, (7.14) has maximal Lp,μ−Lq-
regularity in the following sense. There is a unique solution (u, π) of (7.14) with

u ∈ H1
p,μ(R+;Lq(R

n;Cn)) ∩ Lp,μ(R+;H
2
q (R

n;Cn)), π ∈ Lp,μ(R+; Ḣ
1
q (R

n)),

if and only if the data f, g, u0 satisfy the subsequent conditions.

(a) f ∈ Lp,μ(R+;Lq(R
n;Cn));

(b) g ∈ H1
p,μ(R+; Ḣ

−1
q (Rn)) ∩ Lp,μ(R+;H

1
q (R

n));

(c) u0 ∈ B
2(μ−1/p)
qp (Rn;Cn) and div u0 = g(0) in D′(Rn).

The solution (u, π) depends continuously on the data in the corresponding spaces.
Moreover, the estimate (7.9) is valid.

We may now define the generalized Stokes operator A in the case of variable
coefficients as in Section 1.2, to the result that ω + A ∈ MRp(X0) for ω > ω0.
The lower bound for ω0 is easily seen to be s(−A), the spectral bound of −A.

7.2 Generalized Stokes Problems in a Half-Space

In this section we consider the generalized Stokes problem in Rn
+ = Rn−1 × R+

with either one of the four boundary conditions explained below. Thus we consider
the problem

(∂t + ω)u+A(D)u+∇π = f(t, x) in Rn
+,

div u = g(t, x) in Rn
+,

u(0, x) = u0(x) in Rn
+,

(7.15)
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with t > 0. Here, as in Section 7.1, A(D) =
∑n

k,l=1 a
klDkDl denotes a strongly el-

liptic differential operator with constant coefficients acting on Cn-valued functions,
J = R+, and ω ≥ 0.

In the sequel, PΣ denotes the projection onto the tangent bundle of Σ; more
precisely, PΣ(p) means the orthogonal projection onto the tangent space TpΣ.
With ν = −en, the n-th unit vector in Rn, the boundary conditions are either
(i) no slip

u = h0 on ∂Rn
+, (7.16)

(ii) pure slip

(u|ν) = h0ν , PΣνka
klDlu = hΣ on ∂Rn

+, (7.17)

(iii) outflow

PΣu = h0Σ, (νka
klDlu|ν) + iπ = hν on ∂Rn

+, (7.18)

(iv) free

νka
klDluν + iπν = h on ∂Rn

+. (7.19)

Of course, appropriate compatibility conditions have to be satisfied. Assuming
normal strong ellipticity, as in Section 6.2.5, it is easily verified that the parabolic
problem without pressure and divergence condition satisfies the Lopatinskii-
Shapiro condition for these boundary conditions, hence is well-posed and has
maximal Lp-regularity for 1 < p < ∞. The main result of this section states
that these properties carry over to the generalized Stokes problem.

For this we need some notation. If Ω ⊂ Rn is a C1 domain, Σ ⊂ ∂Ω open,
1 < q < ∞, we define

Ḣ1
q (Ω) = {w ∈ L1,loc(Ω) : ∇w ∈ Lq(Ω)}.

By means of standard arguments in the theory of function spaces, Ḣ1
q (Ω) embeds

into H1
q (Ω ∩ B(0, R)), for each R > 0. This shows that traces of functions in

Ḣ1
q (Ω) are well defined, and that in this space localization is possible. In fact,

if χ is D(Rn), then by the Poincaré-Wirtinger inequality, χu ∈ H1
q (Ω) for each

u ∈ Ḣ1
q (Ω). In the case of Ω = Rn it is true that

Ḣ1
q (R

n) = {u ∈ S ′(Rn) : ∇u ∈ Lq(R
n)}.

We next define

Ḣ1
q,Σ(Ω) = {w ∈ L1,loc(Ω) : ∇w ∈ Lq(Ω), w = 0 on Σ};

in particular, Ḣ1
q,∅(Ω) = Ḣ1

q (Ω). Then Ḣ−1
q,Σ(Ω) is defined as

Ḣ−1
q,Σ(Ω) := [Ḣ1

q′,∂Ω\Σ(Ω)]
∗.
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Especially,

Ḣ−1
q (Ω) = Ḣ−1

q,∅(Ω), 0Ḣ
−1

q (Ω) = Ḣ−1
q,∂Ω(Ω).

Observe that Ḣ−1
q (Ω) consists solely of distributions in Ω, but 0Ḣ

−1

q (Ω) does
not have this property.

Assume that (7.15) admits a solution (u, π) in the regularity class

u ∈ H1
p,μ(J ;Lq(Ω))

n ∩ Lp,μ(J ;H
2
q (Ω))

n, π ∈ Lp,μ(J ; Ḣ
1
q (Ω)).

By trace theory, the conditions for the right-hand side f and for the initial value
u0 are the same as in the previous section. They are collected in condition (D)

(a) f ∈ Lp,μ(R+;Lq(R
n
+;C

n)), u0 ∈ B
2μ−2/p
qp (Rn

+;C
n).

For g, trace theory yields

(b) g ∈ H1
p,μ(R+; Ḣ

−1
q (Rn

+)) ∩ Lp,μ(R+;H
1
q (R

n
+)), div u0 = g(0).

The boundary data must satisfy

(d0) for no-slip (Dirichlet) boundary conditions:

h0 ∈ F
1−1/2q
pq,μ (R+;Lq(R

n−1;Cn)) ∩ Lp,μ(R+;B
2−1/q
qq (Rn−1;Cn)) and

for μ > 3/2p in addition h(0) = u0.

Similarly, we have

(ds) for pure slip boundary conditions:

h0ν ∈ F
1−1/2q
pq,μ (R+;Lq(R

n−1)) ∩ Lp,μ(R+;B
2−1/q
qq (Rn−1));

hΣ ∈ F
1/2−1/2q
pq,μ (R+;Lq(R

n−1;Cn−1)) ∩ Lp,μ(R+;B
1−1/q
qq (Rn−1;Cn−1)) and

PΣνka
klDlu0 = hΣ(0) for μ > 3/p;

(do) for outflow boundary conditions:

h0Σ ∈ F
1−1/2q
pq,μ (R+;Lq(R

n−1;Cn−1)) ∩ Lp,μ(R+;B
2−1/q
qq (Rn−1;Cn−1));

hν ∈ F
1/2−1/2q
pq,μ (R+;Lq(R

n−1)) ∩ Lp,μ(R+;B
1−1/q
qq (Rn−1)) and

PΣu0 = h0Σ(0) for μ > 3/2p;

(dn) for free (Neumann) boundary conditions:

h ∈ F
1/2−1/2q
pq,μ (R+;Lq(R

n−1;Cn)) ∩ Lp,μ(R+;B
1−1/q
qq (Rn−1;Cn)) and

PΣνka
klDlu0 = PΣh(0) for μ > 3/p.

In case of outflow or Neumann conditions these are all requirements needed.
In case of slip or Dirichlet conditions we have the additional property

(e) (g, h0ν) ∈ H1
p,μ(R+; 0Ḣ

−1

q (Rn
+)) and h0ν(0) = (ν|u0).
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Observe that the last condition is a compatibility condition which comes from
the divergence equation, as the identity

−
∫
Rn

+

u · ∇φ d(x, y) =

∫
Rn

+

div uφ d(x, y)−
∫
Rn−1

u · ν φ dx

=

∫
Rn

+

gφ d(x, y)−
∫
Rn−1

h0νφ dx =: 〈(g, h0ν)|φ〉

shows. Here φ ∈ Ḣ1
q′(R

n
+).

After these preliminaries we can state the main result of this section.

Theorem 7.2.1. Let 1 < p, q < ∞, 1 ≥ μ > 1/p, μ �= 3/2p, 3/p, and assume
that A(D) =

∑n
k,l=1 a

klDkDl is normally strongly elliptic. Then for each ω > 0,
(7.15) with boundary conditions (7.16) or (7.17) or (7.18) or (7.19) has maximal
Lp,μ−Lq-regularity in the following sense. There is a unique solution (u, π) of
(7.15) in the class

u ∈ H1
p,μ(J ;Lq(R

n
+;C

n)) ∩ Lp,μ(J ;H
2
q (R

n
+;C

n)), π ∈ Lp,μ(J ; Ḣ
1
q (R

n
+)),

satisfying the corresponding boundary condition, and in addition

π ∈ F 1/2−1/2q
pq,μ (J ;Lq(∂R

n
+))

in case of outflow or Neumann boundary condition, if and only if the data
(f, g, h, u0) satisfy the conditions (D). The solution u depends continuously on
the data in the corresponding spaces.

The next subsections are devoted to the proof of this result.

2.1 Reductions
According to the discussion above, we only need to show the sufficiency part.
Let data (f, g, u0) and boundary data h with the corresponding regularity be
given. Without loss of generality we may assume (f, g, u0) = 0 and trace 0 of
h at t = 0 in case it exists. This can be seen as follows. Firstly, extend the

initial value to all of Rn in the class B
2μ−2/p
qp (Rn)n, and extend f trivially to f ∈

Lp,μ(J ;Lq(R
n))n. Solving the parabolic initial-boundary value problem without

pressure and divergence condition on all of Rn yields a function u1 in the right
regularity class. Then u2 := u − u1 and π2 := π should solve the problem with
(f, u0) = 0 and g replaced by g1 := g−div u1, which belongs to the same regularity
class but has trace 0 at t = 0. Extend g1 evenly in xn to all of J × Rn, and solve
the full-space generalized Stokes problem (7.1) with (f, u0) = 0 to obtain a pair
(u3, π3) in the right regularity class. Then the pair (u4, π4) defined by u4 := u2−u3,
π4 := π2 − π3 should solve (7.15) with the boundary condition in question, where
(f, g, u0) = 0 and h4 = h − B(D)(u1 + u3, π3); here B(D) denotes the boundary
operator under consideration. Note that the new boundary datum h belongs to the
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right regularity class and has trace 0 at t = 0 whenever it exists. The compatibility
condition (e) becomes now

h0,ν ∈ 0H
1
p,μ(J ; Ẇ

−1/q
q (Rn−1)).

So we have to solve the homogeneous problem (7.15) with one of the inhomo-
geneous boundary conditions. It is convenient to replace the spatial variables by
(x, y), where x ∈ Rn−1 and y > 0; recall that ν = −en. Similarly we decompose
u = (v, w), with v ∈ Rn−1 the tangential and w ∈ R the normal velocity.

2.2 Fourier-Laplace Transform
Taking Fourier transform in the tangential space directions, Laplace transform in
t we obtain the parameter dependent ODE-problem

(λ+A11(ξ + enDy))v̂ +A12(ξ + enDy)ŵ + iξπ̂ = 0, y > 0,

A21(ξ + enDy)v̂ + (λ+A22(ξ + enDy))ŵ + ∂yπ̂ = 0, y > 0,

iξTv̂ + iDyŵ = 0, y > 0,

B11(ξ + enDy)v̂(0) + B12(ξ + enDy)ŵ(0) = ĥv,

B21(ξ + enDy)v̂(0) + B22(ξ + enDy)ŵ(0) + B23π̂(0) = ĥw,

(7.20)

where B is defined by one of the boundary conditions (7.16), (7.17), (7.18) or
(7.19). The parameters ξ and λ satisfy (ξ, λ) ∈ Rn × Σφ, for some φ > π/2 and
ξn = 0. Here and below we identify ξ ∈ Rn−1 with (ξ, 0) ∈ Rn. Introducing the
vector

x = [v̂, ŵ, ∂y v̂, ∂yŵ, π̂]
T,

we rewrite this problem as the first-order system

E∂yx+Ax = 0, y > 0, Bx(0) = ĥ, (7.21)

where the dependence on (λ, ξ) has been dropped. Here the (2n+ 1)-dimensional
square matrix E is defined as

E =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 A0

11 A0
12 0

0 0 A0
21 A0

22 −1
0 1 0 0 0

⎤⎥⎥⎥⎥⎦
and A by

A =

⎡⎢⎢⎢⎢⎣
0 0 −1 0 0
0 0 0 −1 0

−(λ+A2
11) −A2

12 A1
11 A1

12 −iξ
−A2

21 −(λ+A2
22) A1

21 A1
22 0

iξT 0 0 0 0

⎤⎥⎥⎥⎥⎦ .
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We used the abbreviations

A2 = (aklξkξl), A1 = i(aklνkξl + aklνlξk), A0 = (aklνkνl)

recalling the summation convention. Observe that Ak are homogeneous in ξ of
order k; in particular A0 is constant and invertible by ellipticity. Also note that E
does neither depend on λ nor on ξ. The boundary matrices B are

B =

[
1 0 0 0 0
0 1 0 0 0

]
in case of Dirchlet conditions,

B =

[
B1

11 B1
12 B0

11 B0
12 0

0 1 0 0 0

]
for slip conditions,

B =

[
1 0 0 0 0

B1
21 B1

22 B0
21 B0

22 −1

]
for outflow conditions, and

B =

[
B1

11 B1
12 B0

11 B0
12 0

B1
21 B1

22 B0
21 B0

22 −1

]
in the case of Neumann conditions. Here Bk

ij are homogeneous of order k in ξ, and

B0 = A0. Recall that the Lopatinskii-Shapiro condition means that system (7.21)

admits at most one solution x ∈ C0(R+;C
2n+1), for each ĥ ∈ Cn and ξ ∈ Rn−1,

Reλ ≥ 0, ξ �= 0. This follows from normal strong ellipticity as in Section 6.2.5,
as the crucial identity (6.39) holds also in the Stokes cases for the four boundary
conditions under consideration

2.3 The DAE-System
It is our purpose to derive a representation formula of the function x in terms
of the given data ĥ, which is accessible to inversion of the Fourier and Laplace
transform.

So, assume that x ∈ C0(R+;C
2n+1) is a solution of (7.21). Taking Laplace

transform L in y, this yields

(zE +A)Lx(z) = Ex0, Re z > 0, Bx0 = ĥ,

where x0 = x(0) denotes the initial value of x. To obtain a representation of x we
have to study the operator pencil zE+A. To this end note that E is not invertible
but its kernel N(E) is one-dimensional, and N(E2) = N(E), hence N(E)⊕R(E) =
C2n+1. Therefore, (7.21) is a differential-algebraic system of index≥ 1. This implies
that the characteristic polynomial p(z) = det (zE +A) has at most order 2n. Let
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us show that it is precisely of order 2n, i.e., that the index is 1. This can be seen
as follows. Expand det (zE + A) first w.r.t. the last column and the last row and
then w.r.t. the second row. This yields up to a sign

p(z) = z2det

[
z −1

−(λ+A2
11) zA0

11 +A1
11

]
+ q(z),

where q(z) is of order less than 2n. Asymptotically this yields for large z

p(z) ∼ z2det

[
z 0
0 zA0

11

]
= z2ndetA0

11,

and detA0
11 �= 0 by strong ellipticity. Therefore, p(z) is of order 2n. Ellipticity

shows also that p(z) has no zeros on the imaginary axis, for ξ �= 0. Now consider
the case ξ = 0. Then we see by the same procedure that p(z) is in fact a function
of z2, i.e., if z0 is a zero of p then −z0 is one as well. Unfortunately, z = 0 is a
solution in case ξ = 0, here the degeneracy of the Stokes problem shows up. We
have to look at this zero more closely.

The eigenvalue problem for these small zeros z(ξ) for small ξ (or large λ)
becomes

(A(z, ξ)− λ)

[
x1
x2

]
=

[
iξ
z

]
, (iξ|x1) + zx2 = 0,

where
A(z, ξ) = z2A0 + zA1(ξ)−A2(ξ).

Since by λ �= 0 we have invertibility of A(z, ξ)− λ, this implies the condition([
iξ
z

] ∣∣∣(A(z, ξ)− λ)−1

[
iξ
z

])
= 0

for the small eigenvalues. Writing (A(z, ξ) − λ)−1 as a Neumann series, this con-
dition becomes

z2 − |ξ|2 +O((|ξ|+ |z|)4) = 0,

which shows that z = ±|ξ|+O(|ξ|2) near ξ = 0. Therefore, the double zero z(0) = 0
for ξ = 0 splits into two simple real zeros which behave like z±1 (ξ) ∼ ±|ξ| near
ξ = 0.

Varying now ξ we may conclude that p(z) has exactly n roots with positive
real parts, counting with multiplicity, for each ξ ∈ Rn−1, Reλ > 0, ξ �= 0, since
none of them can cross the imaginary axis by ellipticity.

We may now write

Lx(z) = (zE +A)−1Ex0, Bx0 = ĥ,

for the Laplace transform of x. The initial value x0 thus must be chosen in such a
way that Lx(z) has no poles in the right half-plane, and Bx0 = ĥ holds.
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Define the projection P+ by means of

P+ =
1

2πi

∫
Γ+

(zE +A)−1E dz,

where Γ+ denotes a closed simple contour in the right half-plane surrounding
the poles of (zE + A)−1, i.e., the zeros of p(z) in the right half-plane. Let zk,
k = 1, . . . ,m+, denote the zeros of p(z) in the right and for k = −m−, . . . ,−1 in
the left half-plane. Set

Pk =
1

2πi

∫
|z−zk|=r

(zE +A)−1E dz.

These operators are mutually disjoint projections and by Cauchy’s theorem we
have

P+ =

m+∑
k=1

Pk.

It can be seen e.g. by Cramer’s rule that (zE +A)−1 is a rational function which
is bounded at ∞, hence admits a limit as |z| → ∞. Therefore

z(zE +A)−1E = I − (zE +A)−1A

is bounded at ∞ as well and admits the limit

Q0 = lim
z→∞ z(zE +A)−1E,

which is a projection, too. We set P0 = I − Q0. Obviously, Q0x = 0 for each
x ∈ N(E), and on the other hand, we have

EQ0 = lim
z→∞ zE(zE +A)−1E = lim

z→∞(E −A(zE +A)−1E) = E.

This implies that P0 projects onto the kernel of E. Moreover,∑
k

Pk = P0 + lim
R→∞

1

2πi

∫
|z|=R

(zE +A)−1E dz = P0 +Q0 = I,

which also shows that P0Pk = PkP0 = 0 for all k �= 0. Linear algebra implies
further that the dimension of the range of Pk is mk, hence P+ has dimension n.
Since

x0 = x(0) = lim
t→0+

x(t) = lim
R�z→∞

zLx(z) = lim
z→∞ z(zE +A)−1Ex0 = Q0x

0,

we must have P0x
0 = 0. It is not difficult to compute the projection P0, it is given

by

P0x =
x4 + (iξ|x1)

α0

⎡⎢⎢⎣
0

A0−1
[

0
−1

]
1

⎤⎥⎥⎦ ,
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where

α0 :=
([

0
1

] ∣∣∣A0−1
[

0
1

])
is nonzero by ellipticity. Observe that

P0x
0 = 0 ⇔ x04 + (iξ|x01) = 0.

For later purposes we also compute the projection P±
1 corresponding to the small

eigenvalue z±1 (ξ) ∼ ±|ξ| for small ξ. The analysis of z±1 given above shows that an
eigenvector is given by

e±1 = [(A(z±1 )− λ)−1

[
iξ
z±1

]
, z±1 (A(z±1 )− λ)−1

[
iξ
z±1

]
, 1]T ∼ [

1

λ

[
−iξ
∓|ξ|

]
, 0, 1]T.

For a dual eigenvector we get similarly

e∗1
± = [(z±1 A0 +A1)T(A(z±1 )T − λ)−1

[
iξ
z±1

]
, (A(z±1 )T − λ)−1

[
iξ
z±1

]
,−1]T,

hence

e∗1
± ∼ [0,

1

λ

[
−iξ
∓|ξ|

]
,−1]T.

The projections are then P±
1 x =

(e∗1
±|Ex)

(e∗1
±|Ee±1 )

e±1 . Note that (e∗1
±|Ee±1 ) ∼ ±2|ξ|/λ for

small ξ, and the asymptotics of z±1 , e±1 and e∗1
± do not depend on the coefficients

aklij . Note also that

P+
1 x0 = 0 ⇔ (e∗1

+|Ex0) = 0,

which asymptotically yields the condition

x05 −
λ

|ξ|x
0
2 ∼

([ iξ/|ξ|
1

] ∣∣∣A0

[
x03
x04

])
.

2.4 The Boundary Value Problem for the DAE-System
To determine the initial value x0 we therefore have to solve the linear system

Bx0 = ĥ, P+x0 = 0, P0x
0 = 0. (7.22)

The Lopatinskii-Shapiro condition is equivalent to the uniqueness of the solution
x0 of this system, for ξ �= 0. To see that it is solvable for each ĥ ∈ Cn, observe
that the kernel N of P+ + P0 has dimension n. B : N → Cn is injective, hence
the rank theorem implies that it is also surjective. Thus there is a linear operator
M0(λ, ξ) such that x0 = M0(λ, ξ)ĥ gives the unique solution of (7.22). We have
the explicit representation

x0 = (B∗B + (P+)∗P+ + P ∗
0 P0)

−1B∗ĥ,
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which shows that M0(λ, ξ) is holomorphic as B, P0, and P+ have this property.
By homogeneity, λ can even be taken from a sector Σφ for some φ > π/2, but
ξ �= 0, in general.

Therefore, we have to look more closely at ξ = 0. Note that the projections
P±
1 are not holomorphic at ξ = 0. However, P 0

1 := P+
1 + P−

1 does have this
property. A simple calculation shows that for ξ = 0 we have

P 0
1 x = x2

⎡⎢⎢⎢⎢⎣
0
1
0
0
0

⎤⎥⎥⎥⎥⎦+ (x5 −A0
21x3 −A0

22x4)

⎡⎢⎢⎢⎢⎣
0
0
0
0
1

⎤⎥⎥⎥⎥⎦ .

Therefore, it is convenient to decompose x0 = y0+αe−1 , with α ∈ C and P−
1 y0 = 0.

Setting P = P0 + P+ + P−
1 , we therefore have to solve the system

By0 + αBe−1 = ĥ, P y0 = 0.

From P y0 = 0 we obtain y02 = 0, y04 = 0 and y05 = A0
21y

0
3. Solving the system

(zE + A)x = Ex0, we obtain with e−1 = [0, 0, 0, 0, 1]T and x02 = y02 = x04 = y04 = 0
the relations x2 = x4 = 0 and

(z2A0
11 − λ)x1 = A0

11(x
0
3 + zx01), x3 = zx1 − x01, x5 = A0

21x3 + α/z,

since x05 −A0
21x

0
3 = α+ y05 −A0

21y
0
3 = α. By strong ellipticity, A0

11 is invertible and
has spectrum in the open right half-plane. Hence we may compute further

x1(z) =
1

2
(z +

√
λ(A0

11)
−1/2)−1(y01 + (A0

11)
1/2y03/

√
λ)

+
1

2
(z −

√
λ(A0

11)
−1/2)−1(y01 − (A0

11)
1/2y03/

√
λ).

Now, x1(z) must be holomorphic in the right half-plane, which means that nec-
essarily we have y03 = −

√
λ(A0

11)
−1/2y01. The boundary condition yields in the

Dirichlet and outflow cases x01 = y01 = ĥ1, and in the slip or Neumann case

x03 = y03 = (A0
11)

−1ĥ3. Note that in the outflow and Neumann cases, α = −ĥ4

is uniquely determined, in contrast to the Dirichlet or slip case, where α is not
unique. In fact, the function α(λ, ξ) is discontinuous at ξ = 0 for the latter, but
holomorphic in the outflow and Neumann case.

Now, for ξ �= 0 small, we may parameterize the kernel of P by a holomorphic
map

y �→ R(λ, ξ)y := [y, 0,−
√
λ(A0

11)
−1/2y, 0,−A0

21

√
λ(A0

11)
−1/2y]T +R1(λ, ξ)y,

where R1 = O(|ξ|) near ξ = 0, with y ∈ Cn−1. Then we have to solve the equation

BRy + αBe−1 = ĥ. For the outflow and Neumann cases it then follows that y
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and α are uniquely determined and holomorphic near ξ = 0, hence M0(λ, ξ) is
holomorphic also at ξ = 0.

However, in the other cases things are more involved. We begin with the
Dirichlet case. Then the system becomes

y − iαξ/λ = ĥ1 +O(|ξ|)y +O(|ξ|2)α, α|ξ|/λ = ĥ2 +O(|ξ|)y +O(|ξ|2)α,

hence

α ∼ λĥ2/|ξ|, y ∼ ĥ1 +
iξ

|ξ| ĥ2.

In the case of slip conditions we have similarly

−
√
λA0

11
1/2

y − αA0
11iξ/

√
λ = ĥ3 +O(|ξ|)y +O(|ξ|2)α,

α|ξ|/λ = ĥ2 +O(|ξ|)y +O(|ξ|2)α,

and so

α ∼ λĥ2/|ξ|, y ∼ −A0
11

1/2
(
A0

11
−1

ĥ3 +
iξ

|ξ| ĥ2

)
/
√
λ.

Thus there are holomorphic functions M00(λ, ξ) and α0(λ, ξ) such that

M0(λ, ξ)ĥ = M00(λ, ξ)ĥ+
[ λ

|ξ| ĥ2 + (α0(λ, ξ)|ĥ)
]
e−1 ,

where ĥ2 denotes the normal component of û at the boundary ∂Rn
+ = Rn−1.

2.5 Harmonic Analysis
We may now write the following representation of the solution x(y) = x(y, λ, ξ) of
(7.21).

x(y, λ, ξ) =
1

2πi

∫
Γ−

ezy(zE +A(λ, ξ))−1EM0(λ, ξ)ĥ(λ, ξ) dz, (7.23)

where Γ− denotes a closed simple contour in the open left half-plane surrounding
the zeros of p(z) = p(z, λ, ξ) in the left half-plane. Employing residue calculus this
representation can be rewritten as

x(y, λ, ξ) =
∑

Rezk<0

Resz=zk(λ,ξ)[e
zy(zE +A(λ, ξ))−1E]M0(λ, ξ)ĥ(λ, ξ),

hence it is an exponential polynomial in y.
Note that the zeros zk of p(z) = p(z, λ, ξ) depend on ξ and λ, hence the inte-

gration path in (7.23) cannot be chosen independently of ξ and λ. To remove this
defect a scaling argument will help. With ρ =

√
λ+ |ξ|2, the standard parabolic

symbol, and σ = λ/ρ2, ζ = ξ/ρ, the pair (σ, ζ) belongs to a compact subset of

Cn \ {0}. Replace π̂(y) by π̂(ρy)/ρ, x(y) by x(ρy), Neumann data ĥk by ĥk/ρ, and
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leave Dirichlet data unchanged. Then homogeneity of A and B yield the modified
representation formula

x(y, λ, ξ) =
1

2πi

∫
Γ−

eρzy(zE +A(σ, ζ))−1EM0(σ, ζ)ĥ(λ, ξ) dz. (7.24)

Since the poles of (zE+A(σ, ζ))−1 stay in a compact set in the left half-plane, we
may now choose the contour Γ− independently of (σ, ζ). This argument parallels
the scaling employed in Section 6.2 for the parabolic case.

Observe that the scaling of h induces

h ∈ 0F1μ := 0F
1−1/2q
pq,μ (J ;Lq(R

n−1;Cn)) ∩ Lp,μ(J ;B
2−1/q
qq (Rn−1;Cn)),

which is independent of the choice of the boundary conditions. Let

L := (∂t+ω−Δx)
1/2, D(L) = 0H

1/2
p,μ (J ;Lq(R

n−1;Cn))∩Lp,μ(J ;H
1
q (R

n−1;Cn)).

Then by Lemma 6.2.4 with m = 1, h ∈ Y implies v̂(y) := L2e−L·h ∈ E0μ. The

symbol of L is
√
λ+ |ξ|2 which is precisely ρ. By means of the identity

ĥ =

∫ ∞

0

2ρe−2ρȳĥ dȳ =
2

ρ

∫ ∞

0

e−ρȳ v̂(ȳ) dȳ,

we may rewrite the representation of x(y) in the following way.

x(y, λ, ξ) = diag

[
1

ρ2
,
1

ρ2
,
1

ρ2
,
1

ρ2
,

1

ρ|ξ|

] ∫ ∞

0

k̂(y, ȳ, λ, ξ)v̂(ȳ, λ, ξ) dȳ, (7.25)

where the Fourier-Laplace transform of k is given by

k̂(y, ȳ, λ, ξ) =
1

iπ

∫
Γ−

eρ(yz−ȳ)D(ρ, |ξ|)(zE +A(σ, ζ))−1EM0(σ, ζ) dz, (7.26)

where D(ρ, |ξ|) = diag[ρ, ρ, ρ, ρ, |ξ|].
It remains to be shown that the integral operator K(λ) with operator-

valued kernel k(y, ȳ, λ,Dx) is R-bounded from Lq(R+;Lq(R
n−1;Cn)) to

Lq(R+;Lq(R
n−1;C2n+1), where the symbol of K(y, ȳ, λ,Dx) is k̂(y, ȳ, λ, ξ) from

(7.26). This will imply that u belongs to the maximal regularity space, and the
remaining regularity statements concerning the pressure π follow from the equa-
tions.

2.6 Large Frequencies
However, due to the presence of the small eigenvalues z±1 (ξ) introduced above,
there are difficulties at ζ = 0. We have to deal with the cases |ζ| ≤ η and |ζ| > η
for some small η > 0 separately. For this purpose we introduce a cut-off function
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χ(|ζ|2), where χ belongs to C∞, is 1 in B(0, η), 0 outside of B(0, 2η) and between

0 and 1 elsewhere. Then we may decompose k̂(y, ȳ, λ, ξ) as k̂ = k̂S + k̂R, where

k̂R(y, ȳ, λ, ξ) =
1

2πi

∫
Γ−

(1− χ(ζ))D(ρ, |ξ|)eρ(zy−ȳ)(zE +A(σ, ζ))−1EM0(σ, ζ) dz.

(7.27)

Let us first deal with k̂R and invert the Fourier transform via Mikhlin’s theorem.
Since Γ− is compact and contained in the open left half-plane, for |ζ| > η, (σ, ζ)
runs through a compact subset of Cn, and

Re ρ ≤ |ρ| ≤ cφRe ρ,

we obtain

|k̂R(y, ȳ, λ, ξ)| ≤ C|ρ|e−c|ρ|(y+ȳ) ≤ C

y + ȳ
, y, ȳ > 0,

where C, c > 0 are independent of y, ȳ, λ and ξ. This is already sufficient in case
p = 2, by Plancherel’s theorem. For the case of general p ∈ (1,∞), note first that

|ξ||1
ρ
∂ξkρ| = |ξ||ξk/ρ2| ≤ |ξ|2/ρ2 ≤ 1,

and similarly we have by induction |ξ||α||Dα
ξ ρ| ≤ Mα, for each multiindex α ∈

Nn−1
0 . Next,

|ξ||∂ξkζj | = |ξ||δkj/ρ− ζj∂ξkρ/ρ
2| ≤ M1,

and similarly for higher derivatives, by induction. The relation σ = 1 − |ξ|2/ρ2
shows that also |ξ||α||Dα

ξ σ| is uniformly bounded for each α. Next

|ξ||∂ξkeρ(yz−ȳ)| ≤ |ξ||∂ξkρ/ρ2||ρ2(yz − ȳ)eρ(yz−ȳ)| ≤ C|ρ|e−c|ρ|(y+ȳ) ≤ C

y + ȳ
,

and similarly by induction also for all higher derivatives. Therefore we may con-
clude that

|ξ||α||Dα
ξ k̂R(y, ȳ, λ, ξ)| ≤

Mα

y + ȳ
, y, ȳ > 0,

for each multi-index α, where Mα is independent of y, ȳ, and of λ and ξ.

2.7 Small Frequencies
Now we deal with the other part of k̂. Since we have enough information about the
small eigenvalue z1(ξ) we may use residue calculus to decompose k̂S = k̂S0 + k̂S1,
where

k̂S1(y, ȳ, λ, ξ) =
1

iπ

∫
Γ−
χ(ζ)eρ(yz−ȳ)D(ρ, |ξ|)(zE+A(σ, ζ))−1E(I−P−

1 )M0(σ, ζ)dz,

with a fixed contour Γ− contained in the open left half-plane. The part k̂S1 can
then be treated as above.
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The essential part is k̂S0, which is given by

k̂S0(y, ȳ, λ, ξ) = χ(ζ)eρ(z
−
1 (σ,ζ)y−ȳ)D(ρ, |ξ|)P−

1 (σ, ζ)M0(σ, ζ).

Using the decomposition x0 = y0 + αe−1 as above, this yields

k̂S0(y, ȳ, λ, ξ) = χ(ζ)|ξ|eρ(z
−
1 (σ,ζ)y−ȳ)D(ρ/|ξ|, 1)e−1 (λ, ξ)⊗ α(λ, ξ).

In the outflow and Neumann cases, α is holomorphic and

D(ρ/|ξ|, 1)e−1 (λ, ξ) = [0, 0,−iξTρ/λ,−|ξ|ρ/λ, 1]T

is bounded and satisfies the Mikhlin condition. Since z−1 ∼ −|ξ| we obtain as above
an estimate of the form

|ξ||α||Dα
ξ k̂S0(y, ȳ, λ, ξ)| ≤

Mα

y + ȳ
,

where Mα is independent of y, ȳ, ξ and λ.
The argument is more involved in the case of Dirichlet or slip conditions. It is

here where the extra time regularity of the normal velocity h2 comes in. As shown
above, α decomposes as

α(λ, ξ) = α0(λ, ξ) +
λ

|ξ|

[
0
1

]
,

where α0(λ, ξ) is holomorphic. Since the term containing α0 can be treated as
before, we concentrate on the extra term. This yields the kernel kS00, defined by

k̂S00(y, ȳ, λ, ξ) = χ(ζ)|ξ|eρ(z
−
1 (σ,ζ)y−ȳ)D(ρ/|ξ|, 1)e−1 (λ, ξ)

λ

|ξ|

[
0
1

]
.

Since by assumption ĥ2 is the Fourier-Laplace transform of a function of class

0H
1
p,μ(R+; Ẇ

−1/q
q (Rn−1)), we see that λĥ2/|ξ| is the Fourier-Laplace transform of

a function in Lp,μ(R+; Ẇ
1−1/q
q (Rn−1)). Thus we obtain g0 ∈ Lp,μ(R+;Lq(R

n
+))

such that
ĝ0(ȳ, λ, ξ) = |ξ|e−|ξ|ȳλĥ2(λ, ξ)/|ξ|.

Writing

(λ/|ξ|)ĥ2 = 2

∫ ∞

0

|ξ|e−2|ξ|ȳλĥ2/|ξ| dȳ = 2

∫ ∞

0

e−|ξ|ȳg0(ȳ) dȳ,

we have

|ξ|eρz
−
1 yD(ρ/ξ, 1)e−1 λĥ2/|ξ| =

∫ ∞

0

|ξ|eρz
−
1 y−|ξ|ȳD(ρ/ξ, 1)e−1 ĝ0(ȳ, λ, ξ) dȳ
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and the kernel of this representation can be estimated as before.

2.8 End of the Proof
Summarizing, we have obtained kernels k(y, ȳ, λ, ξ) ∈ B(Cn) such that the family
{k(y, ȳ, λ, ξ) : ξ ∈ Rn−1, y, ȳ > 0, λ ∈ Σφ} satisfies the uniform Mikhlin condition

|ξ||α||Dα
ξ k̂(y, ȳ, λ, ξ)| ≤

Mα

y + ȳ
, y, ȳ > 0, ξ ∈ Rn−1, λ ∈ Σφ.

The Lizorkin Fourier multiplier theorem, Theorem 4.3.9, implies that the family
of operators

{(y + ȳ)k(y, ȳ, λ,Dx) : y, ȳ > 0, λ ∈ Σφ} ⊂ B(Lq(R
n−1;Cn);Lq(R

n−1;C2n+1))

is R-bounded. As the Hilbert transform with kernel k0(y, ȳ) = 1/(y + ȳ)
is bounded on Lq(R+), Proposition 4.1.5 shows that the family of inte-
gral operators {K(λ) : λ ∈ Σφ} ⊂ B(Lq(R

n
+;C

n);Lq(R
n
+;C

2n+1)) with
kernels k(λ, y, ȳ) is also R-bounded, hence by canonical extension also in
B(Lp,μ(R+;Lq(R

n
+;C

n)), Lp,μ(R+;Lq(R
n
+;C

2n+1))). In addition, this operator
family is holomorphic on Σφ, and as Lq(R

n
+) is of class HT , the Kalton-Weis the-

orem, Theorem 4.5.6, implies that K(∂t + ω) is bounded in E0μ. This completes
the proof of Theorem 7.2.1.

2.9 Estimates for the Solution
As in the whole space case it is useful to have estimates for the solution in terms
of the data which are uniform in the parameter ω ≥ ω0 > 0. These follow directly
from the proof of Theorem 7.2.1 but are more elaborate than those for the case
Ω = Rn, as they depend on the boundary conditions in question. For this purpose
we fix some function spaces as follows.

E0μ := Lp,μ(R+;Lq(R
n
+)

n), E1μ := H1
p,μ(R+;Lq(R

n
+)

n) ∩ Lp,μ(R+;H
2
q (R

n
+)

n),

G0μ := Lp,μ(R+; Ḣ
−1
q (Rn

+)), G1μ := H1
p,μ(R+; Ḣ

−1
q (Rn

+)) ∩ Lp,μ(R+;H
1
q (R

n
+)),

G0
μ := Lp,μ(R+; 0Ḣ

−1

q (Rn
+)), G1

μ := H1
p,μ(R+; 0Ḣ

−1

q (Rn
+)),

F0μ := F 1/2−1/2q
pq,μ (R+;Lq(R

n−1)) ∩ Lp,μ(R+;B
1−1/q
qq (Rn−1)),

F1μ := F 1−1/2q
pq,μ (R+;Lq(R

n−1)) ∩ Lp,μ(R+;B
2−1/q
qq (Rn−1)),

and Xγ,μ = B
2(μ−1/p)
qp (Rn

+;C
n). The estimates read as follows. For each ω0 > 0

there is a constant C > 0 such that for all ω ≥ ω0 and all data subject to the
corresponding compatibility conditions, the solution (u, π) satisfies

(i) no-slip

ω|u|E0μ
+ |u|E1μ

+ |∇π|E0μ
≤ C{|u0|Xγ,μ

+ |f |E0μ
+ (|g|G1μ

+ ω|g|G0μ
) (7.28)

+ (|h0|Fn
1μ

+ ω|e−Lωyh0|E0μ) + (|(g, h0ν)|G1
μ
+ ω|(g, h0ν)|G0

μ
)}.
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(ii) pure slip

ω|u|E0μ
+ |u|E1μ

+ |∇π|E0μ
≤ C{|u0|Xγ,μ

+ |f |E0μ
+ (|g|G1μ

+ ω|g|G0μ
) (7.29)

+ (|h0ν |F1μ
+ ω|e−Lωyh0ν |E0μ

) + (|hΣ|Fn
0μ

+ ω1/2|e−LωyhΣ|E0μ
)

+ (|(g, h0ν)|G1
μ
+ ω|(g, h0ν)|G0

μ
)}.

(iii) outflow

ω|u|E0μ
+ |u|E1μ

+ |∇π|E0μ
≤ C{|u0|Xγ,μ

+ |f |E0μ
+ (|g|G1μ

+ ω|g|G0μ
) (7.30)

+ (|hν |F0μ + ω1/2|e−Lωyhν |E0μ) + (|h0Σ|Fn
1μ

+ ω|e−Lωyh0Σ|E0μ)}

(iv) free

ω|u|E0μ
+ |u|E1μ

+ |∇π|E0μ
≤ C{|u0|Xγ,μ

+ |f |E0μ
+ (|g|G1μ

+ ω|g|G0μ
)

+ (|h|Fn
0μ

+ ω1/2|e−Lωyh|E0μ
)} (7.31)

We recall that Lω = (∂t + ω −Δ)−1/2. As in the previous chapter, we may
estimate

|e−Lωyh|E0μ
≤ ω−1/2q|h|Lp,μ(Lq),

which has the advantage that only norms of the boundary data are involved, but
slightly loosing sharpness. For perturbations of highest order we have to use the
sharp estimates, but for localization the weaker version is sufficient.

7.3 General Domains

In this section we state and prove the main result of this chapter, which is
maximal Lp,μ−Lq-regularity of the generalized Stokes problem on interior and
exterior domains. To state the result, let Ω ⊂ Rn be a domain with compact
boundary Σ := ∂Ω of class C3−, and assume that the coefficients akl of the nor-
mally strongly elliptic differential operator A(x,D) =

∑n
k,l=1 Dka

kl(x)Dl belong

to C1−(Ω̄;B(Cn)). Consider the Stokes problem

(∂t + ω)u+A(x,D)u+∇π = f(t, x) in Ω,

div u = g(t, x) in Ω,

u(0, x) = u0(x) in Ω,

(7.32)

for t > 0, with the following types of natural boundary conditions
(i) no-slip

u = h0 on Σd;
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(ii) pure slip

u · ν = h0ν , PΣνka
kl(x)Dlu = hΣ on Σs;

(iii) outflow

PΣu = h0Σ, (νka
kl(x)Dlu|ν) + iπ = hν on Σo;

(iv) free

νka
kl(x)Dlu+ iπν = h on Σn.

Here we assume that Σ decomposes disjointly into four parts, i.e.,

Σ = Σd ∪ Σs ∪ Σo ∪ Σn,

where each set Σj is open and closed in Σ. Note that up to three of these sets may
be empty. As before, PΣ denotes the orthogonal projection onto the tangent bundle
of Σ. By trace theory, the necessary conditions for solvability of this problems are
the following conditions (DΩ).

(a) f ∈ Lp,μ(R+;Lq(Ω;C
n)), u0 ∈ B

2μ−2/p
qp (Ω;Cn).

(b) g ∈ H1
p,μ(R+; Ḣ

−1
q (Ω)) ∩ Lp,μ(R+;H

1
q (Ω)), div u0 = g(0).

(d0) for no-slip (Dirichlet) boundary conditions:

h0 ∈ F
1−1/2q
pq,μ (R+;Lq(Σd;C

n)) ∩ Lp,μ(R+;B
2−1/q
qq (Σd;C

n)) and
for μ > 3/2p in addition h0(0) = u0 on Σd.

(ds) for pure slip boundary conditions:

h0ν ∈ F
1−1/2q
pq,μ (R+;Lq(Σs)) ∩ Lp,μ(R+;B

2−1/q
qq (Σs));

hΣ ∈ F
1/2−1/2q
pq,μ (R+;Lq(Σs;TΣ) ∩ Lp,μ(R+;B

1−1/q
qq (Σs;TΣ)) and

PΣνka
klDlu0 = hΣ(0) for μ > 3/p;

(do) for outflow boundary conditions:

h0Σ ∈ F
1−1/2q
pq,μ (R+;Lq(Σo;TΣ)) ∩ Lp,μ(R+;B

2−1/q
qq (Σ0;TΣ));

hν ∈ F
1/2−1/2q
pq,μ (R+;Lq(Σo)) ∩ Lp,μ(R+;B

1−1/q
qq (Σo)) and

PΣu0 = h0Σ(0) for μ > 3/2p;

(dn) for free (Neumann) boundary conditions:

h ∈ F
1/2−1/2q
pq,μ (R+;Lq(Σn;C

n)) ∩ Lp,μ(R+;B
1−1/q
qq (Σn;C

n)) and
PΣνka

klDlu0 = PΣh(0) for μ > 3/p.

In addition,

(e) (g, h0ν) ∈ H1
p,μ(R+; Ḣ

−1
q,Σd∪Σs

(Ω)) and h0ν(0) = (ν|u0) on Σd ∪ Σs.

After these preliminaries we can state the main result of this section.
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Theorem 7.3.1. Let Ω ⊂ Rn be a domain with compact boundary Σ := ∂Ω of class
C3−, 1 < p, q < ∞, 1 ≥ μ > 1/p, μ �= 3/2p, 3/p, and assume that A(x,D) =∑n

k,l=1 Dka
kl(x)Dl is uniformly normally strongly elliptic with coefficients

akl ∈ C1−(Ω̄;B(Cn))) ∩ Cl(Ω̄;B(Cn)).

Then there is ω0 ∈ R such that for each ω > ω0, (7.32) with the boundary con-
ditions explained above has maximal Lp,μ−Lq-regularity in the following sense.
There is a unique solution (u, π) of (7.32) in the class

u ∈ H1
p,μ(J ;Lq(Ω;C

n)) ∩ Lp,μ(J ;H
2
q (Ω;C

n)), π ∈ Lp,μ(J ; Ḣ
1
q (Ω)),

satisfying the corresponding boundary condition, and in addition with

π ∈ F 1/2−1/2q
pq,μ (J ;Lq(Σo ∪ Σn)),

if and only if the data (f, g, hj , u0) satisfy the conditions (DΩ). The solution u
depends continuously on the data in the corresponding spaces.

Observe that the pressure π is unique for Σo ∪ Σn �= ∅, but otherwise only
unique up to a constant.

By means of this result we can introduce the generalized Stokes operator for
the four natural boundary conditions. For this, we employ the Helmholtz-Weyl
projection on Lq(Ω;C

n) w.r.t. the given decomposition of Σ, cf. Corollary 7.4.4
below. It is defined in the following way. Given f ∈ Lq(Ω;C

n), solve the following
weak mixed Dirichlet-Neumann problem according to Theorem 7.4.3.

Δφ = div f in Ω,

∂νφ = f · ν on Σd ∪ Σs,

φ = 0 on Σo ∪ Σn,

(7.33)

and set PHW f = f − ∇φ. This is a bounded projection in Lq(Ω;C
n) along the

gradients onto X0 := {u ∈ Lq(Ω;C
n) : ∇∗u = 0}, where

∇ : Ḣ1
q′,Σo∪Σn

→ Lq′(Ω;C
n).

Thus X0 = N(∇∗), which formally reads

X0 = {u ∈ Lq(Ω;C
n); div u = 0 in Ω, u · ν = 0 on Σd ∪ Σs}.

Then we define
Au := PHWA(x,D)u, u ∈ D(A),

with

D(A) = {u ∈ H2
q (Ω;C

n)∩X0 : PΣu = 0 on Σd∪Σo, PΣνka
klDlu = 0 on Σs∪Σn}.
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Problem (7.32) with trivial data except for f and u0 is equivalent to the abstract
evolution equation

u̇+ ωu+Au = f, t > 0, u(0) = u0. (7.34)

In fact, one implication is obvious. To obtain the reverse one, we have to recover
the pressure π from the weak mixed Dirichlet-Neumann problem

Δπ = div
(
f − ∂tu− ωu−A(x,D)u

)
in Ω,

∂νπ =
(
f − ∂tu− ωu−A(x,D)u

)
· ν on Σd ∪ Σs,

π = (ν · a∇u|ν) on Σo ∪ Σn.

(7.35)

By Theorem 7.4.3 this problem admits a unique solution π ∈ Ḣ1
q (Ω). By Theo-

rem 7.3.1 it follows that (7.34) has the property of maximal Lp-regularity, hence
the generalized Stokes operators A is the negative generator of an analytic C0-
semigroup in X0. More precisely we have

Theorem 7.3.2. Let Ω ⊂ Rn a domain with compact boundary Σ := ∂Ω of class
C3−, 1 < p, q < ∞, μ ∈ (1/p, 1], and assume that A(x,D) is uniformly normally
strongly elliptic with coefficients in the class

akl ∈ C1−
b (Ω̄;B(Cn))) ∩ Cl(Ω̄;B(Cn)),

and let the Stokes operator A be defined as above in X0.
Then (7.34) has maximal Lp,μ−Lq-regularity; hence ω+A ∈ MRp(X0), for

any ω > ω0 := s(−A).

Consequently the minimal ω0 in Theorem 7.3.1 is the spectral bound s(−A).
The next subsections are devoted to the proof of Theorem 7.3.1.

3.1 Half-Space: Variable Coefficients
We can easily extend Theorem 7.2.1 to the case of variable coefficients with small
deviation from constant ones. To see this, let A(x,D) = A0(D)+A1(x,D), where
akl1 ∈ C1−

b (Rn
+;B(Cn)) and

sup{|akl1 | : k, l = 1, . . . n, x ∈ Rn} ≤ η.

Let S denote the solution operator of the generalized Stokes problem (7.15) from
Theorem 7.2.1 for A0(D) with one of the boundary conditions under consideration,
and let T be that of the perturbed problem. Then we obtain the identity

T = S + SBT, where B =

⎡⎣ −A1(x,D) 0
0 0

−B1(x,D) 0

⎤⎦ .

Here B1 has the obvious meaning of the corresponding boundary operator gener-
ated by the perturbation A1. The norm of the first component of B as an operator
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from the maximal regularity space E1μ into E0μ is bounded by Cη, where C > 0
denotes a constant independent of η, and the norm of its third component in the
boundary space F0μ is estimated as in Section 6.2 to the result

|B1(·, D)u|F0μ
≤ η|u|E1μ

+ C|a1|C1−
b

|u|γ
E1μ

|u|1−γ
E0μ

,

for some γ ∈ (0, 1].
Therefore, as in Section 6.2, a Neumann series argument shows that T =

(I − SB)−1S in fact exists, is bounded as a map from the data space to the
maximal regularity space as well, and the estimates from Section 7.2.9 remain
valid. Let us state this as

Corollary 7.3.3. The assertions of Theorem 7.2.1 as well as the estimates (7.28),
(7.29), (7.30), (7.31) remain valid in the case of variable coefficients

A(x,D) = A0(D) +A1(x,D),

provided

akl1 ∈ C1−
b (Rn

+;B(Cn)) and sup{|akl1 (x)| : k, l = 1, . . . n, x ∈ Rn} ≤ η,

uniformly for 0 < η ≤ η0.

3.2 Bent Half-Spaces
In contrast to the parabolic case, we only are able to consider bent half-spaces
which are tangentially close to a planar boundary. This comes from the fact that
the Stokes-problem has no invariance properties except for the trivial ones, i.e.,
translation and rotation. As before, replacing the variable x ∈ Rn

+ by (x, y), the
bent half-space is defined by the mapping

Φ(x, y) = [x, y + φ(x)]T, x ∈ Rn−1, y ≥ 0.

Then Ω = Φ(Rn
+) and Γ := ∂Ω = Φ(Rn−1 × {0}) = Φ(Σ), where Σ = Rn−1 × {0}.

For the normal of Γ we obtain

νΓ(x, φ(x)) = β(x)[∇φ(x),−1]T, β(x) = (1 + |∇φ(x)|2)−1/2, x ∈ Rn−1.

We employ the transformation to the domain Rn−1 by means of

u(Φ(x, y)) = ū(x, y), π(Φ(x, y)) = π̄(x, y), x ∈ Rn−1, y ≥ 0.

This implies the relations

∇π ◦ Φ(x, y) = (M∇)π̄, ∇u ◦ Φ(x, y) = (M∇)ū,

where

M(x, y) = (∂Φ)−1(x, y) =

[
I −∇φ
0 1

]
= M(x).
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Similarly,
div u ◦ Φ(x, y) = tr(M(x)∇ū(x, y)).

In more explicit form, these identities read

∇π ◦ Φ = ∇π̄ −∇φ∂yπ̄, div u ◦ Φ = div ū−∇φ · ∂yū.

Using these transformation laws, the problem on a bent half-space transforms to
a problem on a half-space, which reads as follows, dropping the bars.

(∂t + ω)u+AΦ(D)u+∇π = f +A1(D)u+B1π in Rn
+,

div u = g +B2u in Rn
+,

u(0) = u0 in Rn
+,

(7.36)

for t > 0. Here AΦ is defined by its coefficients aΦ = ∂Φ−1(a ◦ Φ)∂Φ−T, and A1

is lower order, but contains second-order derivatives of φ. The natural boundary
conditions are perturbed in the following way.
(i) no-slip

u = h0 on Σd;

(ii) pure slip

u · νΣ = h0ν/β +B3u, PΣνΣaΦ(x)Du = PΣhΣ +B4u on Σs;

(iii) outflow

PΣu = PΣh0Σ +B5u, (νΣaΦ(x)Du|νΣ) + iπ = hν +B6u on Σo;

(iv) free

PΣνΣaΦ(x)Du = PΣh+B4u, (νΣaΦ(x)Du|νΣ) + iπ = hν +B6u on Σn.

Here the perturbation operators are defined as follows.

B1φ = ∇φ∂yπ, B2u = ∇φ · ∂yu,
B3u = u · (νΣ − νΓ/β), B4u = PΣ(PΣ − PΓ)νΣaΦ∇u,

B5u = PΣ(PΣ − PΓ)u, B6u = νΣaΦ∇u(νΣ − νΓ).

Observe that

νΣ − νΓ = [−β∇φ, |∇φ|2/(1 + β)]T,

PΣ − PΓ = νΓ ⊗ νΓ − νΣ ⊗ νΣ.

Both are analytic in ∇φ and of order ∇φ if the latter is close to zero, hence all
perturbation operators Bj are of order ∇φ.

This is a perturbation of the half-space problem. The estimates for the right-
hand sides are the same as in Section 6, they are small if |∇φ|L∞ is small. The



7.3. General Domains 343

exception is that we need to consider B2u in Lp,μ(R+;H
1
q (R

n
+)), as well as the

pair (B2u,B3u) in H1
p,μ(R+; Ḣ

−1
q (Rn

+)). We easily obtain

|B2u|Lp,μ(H1
q )

+ ω|B2u|Lp,μ(Ḣ
−1
q ) ≤ |∇φ|L∞ |u|Lp,μ(H2

q )
+ |∇2φ|L∞ |u|Lp,μ(H1

q )

≤
(
|∇φ|L∞ + η +

Cη

ω1/2

)
(|u|E1μ + ω|u|E0μ

)
.

Further, as∫
Rn

+

B2uψd(x, y)−
∫
Rn−1

B3uψdx = −
∫
Rn

+

u · ∇φ∂yψ d(x, y),

it is also clear that

|(B2u,B3u)|H1
p,μ(Ḣ

−1
q ) + ω|(B2u,B3u)|Lp,μ(Ḣ

−1
q ) ≤ |∇φ|L∞ [|u|E1μ

+ ω|u|E0μ
].

Therefore, by perturbation, the half-space result Theorem 7.2.1 is also true in bent
half-spaces, provided φ ∈ C3−

b (Rn−1) and |∇φ|L∞ is small enough.

Corollary 7.3.4. The assertions of Theorem 7.2.1 as well as the estimates (7.28),
(7.29), (7.30), (7.31) remain valid in the case of variable coefficients

A(x,D) = A0(D) +A1(x,D)

in bent half-spaces provided

akl1 ∈ C1−
b (Rn

+;B(Cn)) and sup{|akl1 (x)| : k, l = 1, . . . n, x ∈ Rn
+} ≤ η,

and
φ ∈ C3−

b (Rn−1) and |∇φ|L∞ ≤ η,

uniformly for 0 < η ≤ η0.

3.3 Pressure Regularity
The pressure π has in general no time regularity. But in special situations we do
have regularity in time.

Proposition 7.3.5. In the situation of Theorem 7.3.1, assume further

u0 = 0, g = 0, div f = 0 in Ω,

h0ν = 0, f · ν = 0 on Σ0 ∪ Σs.

Then
(i) If Ω is bounded, P0π ∈ Hα

p,μ(R+;Lq(Ω)), for α ∈ (0, 1/2− 1/2q),
and for any fixed s > 1/q

|P0π|Lp,μ(Lq) ≤ C
(
|hν |Lp,μ(Lq(Σ)) + |u|Lp,μ(H

1+s
q (Ω))

)
,
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where P0 = I in case Σo ∪ Σn �= ∅, and P0π denotes the mean zero part of π
otherwise.

(ii) If Ω is unbounded, with ΩR = Ω ∩ B(0, R), R large, then P0Rπ ∈
0H

α
p,μ(R+;Lq(ΩR) for α < 1/2− 1/2q, and for s > 1/q

|P0Rπ|Lpμ(Lq(ΩR) ≤ CR

(
|hν |Lp,μ(Lq(Σ)) + |u|Lp,μ(H

1+s
q (Ω))

)
,

where P0R = I in case Σo ∪ Σn �= ∅, and P0Rπ denotes the mean zero part of π
w.r.t. ΩR otherwise.

Proof. (i) First we assume that Ω is bounded. In case Σo ∪Σn = ∅ we normalize
the pressure by zero mean value. Fix any φ ∈ Lq′(Ω) with mean zero and solve
the elliptic problem

Δψ = φ in Ω,

∂νψ = 0 on Σd ∪ Σs,

ψ = 0 on Σo ∪ Σn,

to obtain a unique solution ψ ∈ H2
q (Ω) with mean zero, according to Corollary

7.4.5. Then we obtain with two integrations by parts

(π|φ)Ω = (π|Δψ)Ω = (π|∂νψ)Σ − (∇π|∇ψ)Ω

= (π|∂νψ)Σ + (∂tu+ ωu− f |∇ψ)Ω − (∂ka
kl∂lu|∇ψ)Ω

= (π|∂νψ)Σo∪Σn
+ (akl∂lu|∇∂kψ)Ω − (νka

kl∂lu|∇ψ)Σ

= (hν |∂νψ)Σo∪Σn
+ (akl∂lu|∇∂kψ)Ω − (νka

kl∂lu|∇Σψ)Σ

as (f · ν, div f, g, h0,ν) = 0. As u0 = 0 we may apply the fractional time derivative
∂α
t to the result

(∂α
t π|φ)Ω = (∂α

t π|∂νψ)Σo∪Σn
+ (akl∂l∂

α
t u|∇∂kψ)Ω − (νka

kl∂l∂
α
t u|∇ψ)Σ,

which shows that π ∈ Hα
p,μ(R+;Lq(Ω)) provided 0 < α < 1/2 − 1/2q. This also

implies the claimed estimate.

(ii) If Ω is an exterior domain, we choose any ball B(0, R) ⊂ Rn such that Σ ⊂
B(0, R), and let ΩR = Ω ∩ B(0, R). Take any function φ ∈ Lq′(ΩR), with mean

value 0 in case Σ0∪Σn = ∅. Then φ ∈ Ḣ−1
q,Σd∩Σs

(Ω), by Poincaré’s inequality. This
implies by Theorem 7.4.3 that there is a solution ψ of the elliptic problem

Δψ = φ in Ω,

∂νψ = 0 on Σd ∪ Σs,

ψ = 0 on Σo ∪ Σn,

where φ is extended trivially to all of Ω. ψ is unique in case Σo ∪ Σn �= ∅, but
∇ψ ∈ H1

q′(Ω) is always unique, and there is a constant C > 0 such that

|∇ψ|H1
q′ (Ω) ≤ C|φ|Lq′ (ΩR).
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Now we can perform the same computation as in (i), to the result

(π|φ)ΩR
= (hν |∂νψ)Σo∪Σn

+ (akl∂lu|∇∂kψ)Ω − (νka
kl∂lu|∇Σψ)Σ.

This implies π ∈ 0H
α
pμ(R+;Lq(ΩR)) for each R sufficiently large, and also the

asserted estimate. �
To be able to apply Proposition 7.3.5, it is convenient to reduce the case of

general data to such data for which the assumptions of Proposition 7.3.5 are valid.
This will be achieved in two steps. First we extend u0 to some globally defined

u0 ∈ B
2(μ−1/p)
pq (Rn;C)n and solve the whole space problem

∂tu1 + ωu1 +A(x,D)u1 = f, t > 0, u1(0) = u0.

This removes the initial condition and trivializes the compatibility conditions at
t = 0, while the regularity of the data remains unchanged. So we may assume
u0 = 0. In the second step we remove g and h0ν , as well as the compatibility
condition (e). For this purpose, by Corollary 7.4.5 we solve the elliptic problem

Δφ = g in Ω,

∂νφ = h0ν on Σd ∪ Σs,

φ = 0 on Σo ∪ Σn.

Then we set u2 = u−∇φ and π2 = π+(∂t+ω)φ+ψ, where, using Theorem 7.4.3,
ψ solves the problem

Δψ = div
(
A(x,D)∇φ

)
in Ω,

∂νψ = ν ·
(
A(x,D)∇φ

)
on Σd ∪ Σs,

ψ = 0 on Σo ∪ Σn.

Then (u2, π2) satisfies (7.32) with the boundary conditions in question, with data
subject to

(f · ν, div f, g, h0ν , u0) = 0,

hence π2 has the time regularity asserted in Proposition 7.3.5. So the only remain-
ing data are

(i) f ∈ Lp,μ(R+;X0);

(ii) h0Σ ∈ 0F
1−1/2q
pq,μ (R+;Lq(Σ;TΣ)) ∩ Lp,μ(R+;W

2−1/q
q (Σ;TΣ));

(iii) h ∈ 0F
1/2−1/2q
pq,μ (R+;Lq(Σ;R

n)) ∩ Lp,μ(R+;W
1−1/q
q (Σ;Rn)).

Here we have set h0Σ = 0 on Σo ∪Σn and h = 0 on Σd ∪Σs, for convenience.
We remark, that in case A = −Δ, we can even achieve f = 0. Indeed, as ∇
commutes with A = −Δ we may choose π2 = π + (∂t + ω)φ−Δφ.

3.4 Localization
Here we employ the notation of Sections 6.2.4 and 6.3.3, to introduce the charts
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and the local operators Ak. If Ω ⊂ Rn is unbounded, i.e., an exterior domain,
we choose a large ball B(0, R) ⊃ ∂Ω and define U0 = Rn \ B̄(0, R); otherwise
U0 is void. We cover the compact set Σ := ∂Ω ⊂ Rn by balls B(xk, r/2) with
xk ∈ ∂Ω, k = 1, . . . , N1, such that each part ∂Ω∩B(xk, 2r) of the boundary Σ can
be parameterized by a function ρk ∈ C3− as a graph over the tangent space Txk

Σ.
We extend this function ρk to a global function by a cut-off procedure, and denote
the resulting bent half-space by Hk. This is possible by the regularity assumption
Σ ∈ C3− as well as by compactness of Σ. Define Uk = B(xk, r)∩Ω, k = 1, . . . , N1.
We cover the compact set Ω̄ \ ∪N1

k=0Uk by finitely many balls B(xk, r/2), k =

N1 + 1, . . . , N2, and set Uk = B(xk, r). Then {Uk}N2

k=0 is a finite open covering of

Ω̄. Fix a C∞-partition of unity {ϕk}N2

k=1 subordinate to this open covering of Ω̄,
and let χk denote C∞-functions with χk = 1 on suppϕk, suppχk ⊂ Uk.

We assume in the sequel that the operator A(x0, D) is strongly elliptic, for
each x0 ∈ Ω̄ ∪ {∞}, and normally strongly elliptic for each x0 ∈ Σ. Then the
maximal regularity constants for the problems with frozen coefficients will be
uniform in x0 ∈ Ω̄ ∪ {∞}, by continuity and compactness, hence η0 in Corollaries
7.3.3 and 7.3.4 will be uniform in x0 as well. Now we fix any η ∈ (0, η0], and choose
the radius of the chart r > 0 so small that the assumptions of these corollaries are
met, and each chart only intersects one of the boundary parts Σj . According to
the previous subsection, we may also assume

(div f, g, u0) = 0 in Ω, h0,ν = f · ν = 0 on Γd ∪ Γs, hν = 0 on Γo ∪ Γn.

Therefore Proposition 7.3.5 is available.

To define local operators Ak(x,D) and Bk
j (x,D) we proceed as follows. For

the interior charts k = 0, k = N1+1, . . . , N2, we define the coefficients of Ak(x,D)
by reflection of the coefficients at the boundary of Uk. This is the same trick as
in Section 6.1.4. For the boundary charts k = 1, . . . , N1 we first transform the
coefficients of A(x,D) and Bj(x,D) in Uk to a half-space, extend them as in
Section 6.2.4, and then transform them back to the bent half-space Hk. Having
defined the local differential operators, we may proceed as in Section 6.2.4, intro-
ducing local problems for the functions uk = ϕku, which for the interior charts
k = 0, and k = N1 + 1, . . . , N2 are problems on Rn, and for the boundary charts
k = 1, . . . , N1 are problems on the bent half-spaces Hk with boundary ∂Hk. This
yields the following problems. For k = 0 and k = N1+1, . . . , N2 we have the whole
space problems

∂tu
k + ωuk +Ak(x,D)uk +∇πk = fk + Fk(u, π) in Rn,

div uk = u · ∇ϕk in Rn,

uk(0) = 0 in Rn,

for t > 0, where fk = fϕk and Fk(u, π) = [A(x,D), ϕk]u+π∇ϕk. For the boundary
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charts k = 1, . . . , N1 we have the problems

∂tu
k + ωuk +Ak(x,D)uk +∇πk = fk + Fk(u, π) in Hk,

div uk = ∇ϕk · u in Hk,

uk(0) = 0 in Hk,

for t > 0, together with the following boundary conditions

P∂Hk
uk = hk

0Σ on ∂Hk, if Uk ∩ (Σd ∪ Σ0) �= ∅;
(uk|ν) = 0 on ∂Hk, if Uk ∩ (Σd ∪ Σs) �= ∅;

PΣνa : ∇uk = hk
Σ +HΣk(u) on ∂Hk, if Uk ∩ (Σs ∪ Σn) �= ∅;

−νa : ∇ukν + πk = Hνk(u) on ∂Hk if Uk ∩ (Σo ∪ Σn) �= ∅.

Here hk
0Σ = h0Σϕk, h

k
Σ = hΣϕk, HΣku = PΣνa∇ϕku, and Hνk(u) = −νa∇ϕkuν.

In short-hand notation we may write this problem as

Lkzk = gk + [L,ϕk]z,

where z = (u, π), zk = ϕkz, gk = ϕk(f, 0, h), and the notations L and Lk are
obvious.

Unfortunately, the commutator [L, φk] in this case is not lower order, so we
cannot continue as in Section 6.2.2 and some additional arguments are needed. It
turns out that all perturbation terms on the right-hand sides of these equations
are lower order, hence can be estimated as in Section 6.2.2, except for ∇ϕk · u in
the divergence equation. In fact, as in Section 6.2.2 we have

|[A, ϕk]u|E0μ(Hk) ≤ Cω−1/2
(
ω|u|E0μ(Ω) + |u|E1μ(Ω)

)
, (7.37)

as well as

|Hk|F0μ(∂Hk) + ω1/2|Hk|Lp,μ(Lq(∂Hk)) ≤ Cω−1/2
(
ω|u|E0μ(Ω) + |u|E1μ(Ω)

)
. (7.38)

Further, by Proposition 7.3.5,

|π∇ϕk|E0μ(Hk) ≤ Cω−γ
(
ω|u|E0μ(Ω) + |u|E1μ(Ω)

)
, (7.39)

for some γ > 0, here the additional pressure regularity comes in.
Next we remove the inhomogeneous part ϕk[f, 0, h] by solving the corre-

sponding bent half-space problems to obtain z0k = (u0
k, π

0
k) in the right regularity

classes.
To remove the inhomogeneity u · ∇ϕk in the divergence equation, we decom-

pose uk = u0
k + ũk +∇φk, where φk solves the elliptic problem

Δφk = u · ∇ϕk = div (uϕk) in Hk,

∂νφk = 0 on ∂Hk, if Uk ∩ (Σd ∪ Σs) �= ∅,
φk = 0 on ∂Hk, if Uk ∩ (Σo ∪ Σn) �= ∅,

(7.40)
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where Hk = Rn for k = 0, N1+1, . . . , N2. By Corollary 7.4.2, this problem admits
a solution φk such that ∇φk is unique, with regularity

∇φk ∈ 0H
1
p,μ(R+;H

1
q (Hk)) ∩ Lp,μ(R+;H

2
q (Hk)).

Moreover, we have the estimates

|∇φk|Lp,μ(H1
q (Hk)) ≤ C|u|E0μ(Ω),

|∇φk|E1μ(Hk) + |∇2φk|E1μ(Hk) ≤ C|u|E1μ(Ω), (7.41)

|∇φk|H1/2
p,μ (Lq(Hk)

+ |∇φk|Lp,μ(H2
q (Hk)) ≤ Cω−1/2

(
ω|u|E0μ(Ω) + |u|E1μ(Ω)

)
.

Next we employ the Helmholtz projection in case Uk ∩ (Σd ∪ Σs) �= ∅ resp. the
Weyl projection in case Uk ∩ (Σo ∪ Σn) �= ∅, denoted by Pk, to decompose

F̃k(u, π) := Fk(u, π)−Ak∇φk = ∇ψk + PkF̃k(u, π).

Introducing a new pressure π̃k by means of

π̃k = πk + (∂t + ω)φk − ψk − π0
k,

we arrive at the modified problems

∂tũk + ωũk +Ak(x,D)ũk +∇π̃k = PkF̃k(u, π) in Hk,

div ũk = 0 in Hk,

ũk(0) = 0 in Hk.

For the boundary charts k = 1, . . . , N1 these problems are complemented by the
boundary conditions

P∂Hk
ũ = −∇Σφk on ∂Hk, if Uk ∩ (Σd ∪ Σo) �= ∅;

(ũk|ν) = 0 on ∂Hk, if Uk ∩ (Σd ∪ Σs) �= ∅;
P∂Hk

νa∇ũk = H̃Σk(u) on ∂Hk, if Uk ∩ (Σs ∪ Σn) �= ∅;
−νa∇ũkν + πk = H̃νk(u) on ∂Hk, if Uk ∩ (Σo ∪ Σn) �= ∅.

Here H̃Σk(u) = HΣk(u) − PΣνak∇2φk, and H̃νk(u) = Hνk(u) + νak∇2φkν. Note
that F̃k, PkF̃k and H̃k are subject to the same estimates as Fk and Hk, with
probably larger constants C, thanks to (7.41).

Next, we introduce the operators

Tkz = (∇φk, (∂t + ω)φk − ψk).

With this notation we can rewrite the localized solution as

zk = z0k + z̃k + Tkz,
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where z̃k solves the problem
Lkz̃k = Gkz,

with

Gkz = [L,ϕk]z − LkTkz

= [Pk([A, ϕk]u+ π∇ϕk −Ak∇φk, 0, [B, ϕk]u− Bk∇φk]
T,

where Bk denotes the appropriate boundary operator. More precisely, [ϕk,B]u = 0
if Uk ∩ (Σo ∪ Σn) = ∅ and [ϕk,B]u = νa∇2ϕku, otherwise.

It is useful to introduce norms for the solutions and for the data which depend
on ω. We set

‖zk‖ = ω|uk|E0μ(Hk) + |uk|E1μ(Hk) + |∇πk|E0μ(Hk),

and similarly we define ‖z‖ on Ω. For the data we set

‖gk‖ = |fk|E0μ(Hk) + ω1−1/2q|hk
0 |Lp,μ(Lq(∂Hk)) + |hk

0 |F1μ(∂Hk)

+ ω1/2−1/2q|hk|Lp,μ(Lq(∂Hk)) + |hk|F0μ(∂Hk),

and similarly for g on Ω. Then we obtain by maximal regularity on a bent half-
space

‖z0k‖ ≤ C‖gk‖ ≤ C‖g‖, ‖z̃k‖ ≤ Cω−γ‖z‖,

with a constant C > 0 independent of ω and k. Here we employed estimates (7.37),
(7.38), (7.39), and (7.41).

To estimate Tkz, we employ again (7.37), (7.38), (7.39), and (7.41) to obtain

|∇φk|Lp,μ(H1
q (Hk)) + |∇ψk|E0μ(Hk) ≤ Cω−γ‖z‖.

Finally, it remains to estimate (∂t + ω)∇φk. For this purpose, we employ the
identity

(∂t + ω)φk = π̃k − πk + ψk − π0
k.

Applying Poincaré’s inequality to π0
k and ψk, and Proposition 7.3.5 to π and π̃k,

we obtain

|(∂t + ω)φk|Lp,μ(Lq(Uk)) ≤ |π̃k|Lp,μ(Lq(Uk))+ |πk|Lp,μ(Lq(Uk))+ |π0
k + ψk|Lp,μ(Lq(Uk))

≤ |π̃k|E0(Hk∩B(0,R)) + |πk|E0μ(Ω∩B(0,R))

+ C(|∇π0
k|E0μ(Hk) + |∇ψk|E0μ(Hk))

≤ C
(
‖g‖+ ω−γ‖z‖

)
.

By interpolation with (7.41) this yields

|(∂t + ω)∇φk|E0μ(Uk) ≤ C‖g‖+ Cω−γ/2‖z‖.
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Summing over k yields the a priori estimate for z =
∑

k χkzk, which reads

‖z‖ ≤
∑
k

‖χkzk‖ ≤ C‖g‖+ Cω−γ‖z‖,

for some γ > 0, and a constant C > 0 which is independent of ω. Choosing ω > 2C
this implies

‖z‖ ≤ 2C‖g‖.
Therefore, the operator L on Ω is injective and has closed range. We even can
write down a left inverse S as follows. From the identity

z =
∑
k

χkzk =
∑
k

χk(z
0
k + z̃k + Tkz)

=
∑
k

χkL
−1
k ϕkg +

∑
k

χk(L
−1
k Gk + Tk)z

=
∑
k

χkL
−1
k ϕkg +GLz,

we obtain
z = Sg := (I −GL)−1

(∑
k

χkL
−1
k ϕk

)
g,

as ‖GL‖ < 1 for ω large.
So it remains to prove surjectivity of L. For this purpose, we assume f = 0

for the moment. Set z = Sg as just defined, i.e.,

z =
∑
k

χkL
−1
k ϕkg +

∑
k

χk(L
−1
k Gk + Tk)z

=
∑
k

χkL
−1
k ϕg +GLz,

and apply L, to the result

L(z −GLz) =
∑
k

χkLkL
−1
k ϕkg +

∑
k

[L, χk]L
−1
k ϕkg

= g +
∑
k

G̃kL
−1
k ϕkg + L

∑
k

T̃kϕkg,

where G̃k = [L, χk] − LT̃k and T̃k is defined in the same way as Tk, replacing ϕk

by χk. This implies

L(z −GLz −
∑
k

T̃kϕkg) = g +
∑
k

G̃kL
−1
k ϕkg = (I +GR)g.

To conclude the argument, we only have to show that the operator GR in the data
space has norm smaller than 1, as this implies surjectivity of L, and then

(S −GLS −
∑
k

T̃kϕk)(I +GR)−1
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is a right inverse of L. Now G̃k can be estimated in the same way as Gk, as f = 0,
hence we have surjectivity in this case.

To deal with general f , we employ a homotopy argument. Replacing A by
τA− (1− τ)Δ, we see that the corresponding operators Lτ are injective and have
closed ranges for all τ ∈ [0, 1], as these operators are uniformly normally strongly
elliptc, uniformly w.r.t. τ . Therefore the Fredholm index of Lτ is constant, and
this shows that L1 is surjective if and only if L0 is surjective. For τ = 0 we have
the classical case A = −Δ, and as we have noted above, we may then assume
f = 0. This completes the proof of Theorem 7.3.1.

7.4 Boundary Value Problems for the Laplacian

Here we state and prove some results for the Laplace equation which have been
employed in Section 7.3.

4.1 Whole Space
We begin with the case Ω = Rn. By the very definition of the homogeneous Bessel
potential spaces Ḣs

q (R
n), namely

Ḣs
q (R

n) := {u ∈ S ′(Rn) : F−1|ξ|sFu ∈ Lq(R
n)},

where 1 < q < ∞ and s ∈ R, it is clear that Δ is an isomorphism between the
spaces Ḣs+2

q (Rn) and Ḣs
q (R

n).

4.2 Half Space
The half-space case Ω = Rn

+ is a little more involved.

(i) We first consider the Dirichlet problem

Δu = 0 in Rn
+, u = h on ∂Rn

+ = Rn−1.

Defining the Poisson semigroup P (y) by means of

P (y)h = F−1e−y|ξ|Fh,

u = P (y)h is the unique solution of the Dirichlet problem. This shows that u ∈
Ḣk

q (R
n
+) if and only if h ∈ Ẇ

k−1/q
q (Rn−1), for all q ∈ (1,∞) and k ≥ 0.

(ii) In the next step we consider the Neumann problem

Δu = 0 in Rn
+, −∂yu = g on ∂Rn

+.

Denoting the generator of the Poisson semigroup by Ḋ, the unique solution of the
Neumann problem is given by u = P (y)Ḋ−1g. As Ḋ has symbol |ξ|, it is clear that
Ḋ is an isomorphism from Ḣs+1

q (Rn−1) to Ḣs
q (R

n−1), for all q ∈ (1,∞), s ∈ R.

Therefore the solution u of the Neumann problem belongs to the class Ḣk
q (R

n
+) if

and only if g ∈ Ẇ
k−1−1/q
q (Rn−1), for all q ∈ (1,∞), k ≥ 0.
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(iii) Now we consider the inhomogeneous Dirichlet problem

−Δu = f in Rn
+, u = 0 on ∂Rn

+.

The unique solution of this problem is given by

u = GDf :=
Ḋ−1

2

∫ ∞

0

(
P (|y − s|)− P (y + s)

)
f(s) ds.

This representation shows u ∈ Ḣ2
q (R

n
+) if and only if f ∈ Lq(R

n
+).

(iv) Similarly, the solution of the inhomogeneous Neumann problem

−Δu = f in Rn
+, ∂yu = 0 on ∂Rn

+.

is given by

u = GNf :=
Ḋ−1

2

∫ ∞

0

(
P (|y − s|) + P (y + s)

)
f(s) ds.

This representation shows u ∈ Ḣ2
q (R

n
+) if and only if f ∈ Lq(R

n
+).

(v) Higher order regularity.
If f ∈ Ḣ1

q (R
n
+) then differentiating the equations (or the solution formulas) first

tangentially we obtain ∇xu ∈ Ḣ2
q (R

n
+), and then normally, we find u ∈ Ḣ3

q (R
n
+).

In the Dirichlet case we also use (i) with g = f |Rn−1 ∈ Ẇ
1−1/q
q (Rn−1).

(vi) Weak solutions.
Finally, we consider the weak Dirichlet problem

Δu = div f in Rn
+, u = 0 on ∂Rn

+,

where f = [fx, fy]
T ∈ Lq(R

n
+;C

n). In this case the solution u is given by

u = ∇x ·GDfx + ∂yGNfy,

hence u ∈ Ḣ1
q (R

n
+). Similarly, for the weak Neumann problem

Δu = div f in Rn
+, ∂yu = fy on ∂Rn

+,

we have
u = ∇x ·GNfx + ∂yGDfy,

and so also in this case u ∈ Ḣ1
q (R

n
+).

4.3 Bent Half Spaces
In the next step we extend the results from the previous subsection to the case of
certain bent half-spaces.
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(a) Coordinate Transformations.
Let Ω ⊂ Rn be a domain with boundary of class C1, such that ∂Ω =: Σ decomposes
disjointly as Σ = Σ0 ∪ Σ1 with Σj open and closed in Σ. Suppose Φ : Ω → Rn is
bijective, of class C1 such that

0 < c ≤ |det ∂Φ(x)| ≤ 1/c, x ∈ Ω,

and assume Φ(Σ) = ∂Φ(Ω). We set ΩΦ = Φ(Ω) and ΣΦ
j = Φ(Σj), j = 0, 1.

Consider the weak Dirichlet-Neumann problem

(∇u|∇v)ΩΦ = (f |∇v)ΩΦ , v ∈ Ḣ1
q′,ΣΦ

0
(ΩΦ), (7.42)

u = h on ΣΦ
0 .

By means of the transformation Φ, this problem can be reformulated as a weak
problem on Ω in the following way. By means of the pull backs

ū(x) = u(Φ(x)), v̄(x) = v(Φ(x)), h̄(x) = h(Φ(x)),

and with
∇xū(x) = ∇xu(Φ(x)) = ∂Φ(x)T∇yu ◦ Φ(x),

the transformation rule yields for a weak solution u on ΩΦ

0 = (∇u− f |∇v)ΩΦ =

∫
Φ(Ω)

(
∇yu(y)− f(y)

)
· ∇yv(y) dy

=

∫
Ω

(
∇yu(Φ(x))− f(Φ(x))

)
· ∇yv(Φ(x))|det ∂Φ(x)| dx

=

∫
Ω

(
(|det ∂Φ(x)|∂Φ(x)−1∂Φ(x)−T)∇xū(x)− f̄(x)

)
· ∇xv̄(x) dx,

where
f̄(x) = |det ∂Φ(x)|∂Φ(x)−Tf(Φ(x)), x ∈ Ω.

This shows that Problem (7.42) becomes

0 = (A∇ū− f̄ |∇v̄), v̄ ∈ Ḣ1
q′,Σ0

(Ω), (7.43)

ū = h̄ on Σ0.

Here the coefficient matrix A(x) is defined by

A(x) = |det ∂Φ(x)|∂Φ(x)−1∂Φ(x)−T,

hence A is continuous and bounded.
Note that by the assumptions on Φ, the map TΦ defined by Tφu := ū is an

isomorphism from Lq(Ω
Φ) to Lq(Ω) and from Ḣ1

q,ΣΦ
0
(ΩΦ) to Ḣ1

q,Σ0
(Ω), hence by

interpolation also from Ḣs
q,ΣΦ

0
(ΩΦ) to Ḣs

q,Σ0
(Ω), s ∈ [0, 1], and from Hs

q,ΣΦ
0
(ΩΦ)
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to Hs
q,Σ0

(Ω), s ∈ [0, 1]. As TΦ respects boundary traces by assumption, we also

see that h ∈ Ẇ
1−1/q
q (ΣΦ

0 ) if and only if h̄ ∈ Ẇ
1−1/q
q (Σ0). Finally, we have f ∈

Lq(Ω
Φ;Rn) if and only if f̄ ∈ Lq(Ω;R

n).
These arguments show that (7.42) is well-posed in ΩΦ if and only if (7.43) is

well-posed in Ω.

(b) Perturbed Half-Spaces
Now we consider the special case where Ω = Rn

+ and Φ(x, y) = [x, y+ h(x)]T with
x ∈ Rn−1 and y > 0, as well as h ∈ C1

b (R
n−1). This means that ΩΦ is a bent

half-space. Easy computations show det ∂Φ(x, y) = 1, as well as

A(x, y) = ∂Φ(x, y)−1∂Φ(x, y)T =

[
I −∇xh(x)

−∇xh(x)
T 1 + |∇xh|22

]
,

hence A(x, y) = I − B(x), where |B(x)| ≤ C|∇xh|∞. So, dropping the bars, the
transformed problem can be rewritten as the problem

(∇u|∇v)Rn
+
= (f |∇v)Rn

+
+ (B∇u|∇v)Rn

+
, v ∈ 0Ḣ

1

q′(R
n
+),

u = h on ∂Rn
+,

(7.44)

in the Dirichlet case, i.e., Σ1 = ∅, and

(∇u|∇v)Rn
+
= (f |∇v)Rn

+
+ (B∇u|∇v)Rn

+
, v ∈ Ḣ1

q′(R
n
+), (7.45)

in the Neumann case, i.e., Σ0 = ∅. These are perturbations of the half-space
problems in Section 7.4.2, provided |∇xh|∞ is small.

More precisely, let LD : Lq(R
n
+;R

n) × Ẇ
1−1/q
q (Rn−1) → Ḣ1

q (R
n
+) denote

the bounded solution map from Section 7.4.2 for the Dirichlet problem and LN :
Lq(R

n
+;R

n) → Ḣ1
q (R

n
+) that for the Neumann problem in the half-space. Then the

perturbed problems can rewritten abstractly as

u = LD(f, h) + LD(B∇u, 0), u = LNf + LNB∇u,

respectively. Thus by a Neumann series argument, there is a number η0 > 0
such that whenever |∇xh|∞ ≤ η0, then the perturbed equations are also uniquely
solvable.

Note that this number η0 > 0 is universal for the Laplacian, it only depends
on q. Bent half-spaces will be called perturbed half-spaces if the corresponding
height function h is subject to |∇xh|∞ ≤ η0. If in addition the support of h is
compact, then we use the term compactly perturbed half-space.

Let us summarize.

Theorem 7.4.1. Let Ω = H denote a perturbed half-space, and q ∈ (1,∞). Then

(i) Neumann problem
For each f ∈ Lq(H) there is a unique solution of

(∇u|∇v)H = (f |∇v)H, v ∈ Ḣ1
q′(H). (7.46)
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There is a constant c > 0 such that

c|∇u|q ≤ |f |q, f ∈ Lq(H),

and

c|∇u|q ≤ sup{|(∇u|∇v)H : v ∈ Ḣ1
q′(H), |∇v|q′ ≤ 1}. (7.47)

(ii) Dirichlet problem

For each f ∈ Lq(H) and h ∈ Ẇ
1−1/q
q (∂H), there is a unique solution of

(∇u|∇v)H = (f |∇v)H, v ∈ 0Ḣ
1

q′(H), u = h on ∂H. (7.48)

There is a constant c > 0 such that

c|∇u|q ≤ |f |q + |h|
Ẇ

1−1/q
q

, f ∈ Lq(H), h ∈ Ẇ 1−1/q
q (∂H).

Furthermore, in case h = 0,

c|∇u|q ≤ sup{|(∇u|∇v)H : v ∈ 0Ḣ
1

q′(H), |∇v|q′ ≤ 1}. (7.49)

For the proof of the variational inequalities note that (7.46) is equivalent
to ∇∗

q′∇qu = ∇∗
q′f , and the right-hand side of (7.47) is precisely the norm of

this quantity in 0H
−1
q (H). A similar argument is valid for the Dirichlet problem,

provided h = 0.
Concerning higher regularity, the results for perturbed half-spaces are not as

precise as those for the half-space case, as lower order terms occur. However, the
assertions in the next corollary follow from the corresponding half-space results,
again by Neumann series arguments.

Corollary 7.4.2. Let Ω = H denote a perturbed half-space, q ∈ (1,∞), s ∈ {0, 1},
and h ∈ C

(2+s)−
b (Rn−1).

(i) Neumann problem

If f ∈ Hs
q (H), g ∈ W

1+s−1/q
q (∂H) such that (f, g) ∈ 0Ḣ

−1

q (H)), then the problem

Δu = f in H, ∂νu = g on ∂H

has a unique solution u such that ∇u ∈ H1+s
q (H).

(ii) Dirichlet problem

If f ∈ Hs
q (H), h ∈ W

2+s−1/q
q (∂H) such that f ∈ Ḣ−1

q (H)), then the problem

Δu = f in H, u = h on ∂H

has a unique solution u such that ∇u ∈ H1+s
q (H).
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4.4 General Domains
Now we are ready to consider domains with compact boundary, which means
domains which are either bounded or exterior.

Theorem 7.4.3. Suppose that Ω is domain in Rn with compact boundary ∂Ω := Σ
of class C1, and suppose that Σ decomposes disjointly into Σ = Σ0 ∪Σ1, where Σj

are open and closed in Σ. Let f ∈ Lq(Ω), h ∈ W
1−1/q
q (Σ0), with q ∈ (1,∞).

Then the problem

(∇u|∇v)Ω = (f |∇v)Ω, v ∈ Ḣ1
q′,Σ0

(Ω),

u = h on Σ0,
(7.50)

admits a unique solution u ∈ Ḣ1
q (Ω). There is a constant C > 0 such that

|∇u|Lq
≤ C

(
|f |Lq

+ |h|
W

1−1/q
q

)
(7.51)

holds for all f ∈ Lq(Ω) and h ∈ W
1−1/q
q (Σ0).

Recall Ḣ1
q,∅(Ω) = Ḣ1

q (Ω)/constants, hence uniqueness in Ḣ1
q,Σ0

(Ω) means

uniqueness up to a constant in case Σ0 = ∅, and even uniqueness otherwise. If
Σ0 = ∅, we normalize the solution by mean value zero if Ω is bounded, and by
mean zero on Ω ∩B(0, R), for some large fixed ball B(0, R) which contains Σ.

Proof. The proof consists of several steps. The first step concerns uniqueness.

(a) Uniqueness
Suppose

(∇u|∇v)Ω = 0, v ∈ Ḣ1
q′,Σ0

(Ω), u = 0 on Σ0.

We show that this implies u = 0 in Ḣ1
q,Σ0

(Ω). For this purpose, we prove two
assertions, namely

(i) For each x0 ∈ Ω there is a ball B(x0, r) such that ∇u ∈ L2(B(x0, r)).

(ii) There is a ball B(0, r) ⊃ Σ, such that ∇u ∈ L2(R
n \B(0, r)).

Here (ii) is void in case Ω is bounded.
Assuming (i) and (ii), by compactness we obtain ∇u ∈ L2(Ω) and so we may

use v = u as a test function to obtain |∇u|22 = 0, which yields the assertion.

(i) If q ≥ 2 this is obvious, as Lq(B(x0, r)) ⊂ L2(B(x0, r)), for each r > 0. So let
q ∈ (1, 2). Set q0 = q and define inductively qj by

1

qj
=

1

qj−1
− 1

n
=

1

q
− j

n
;

clearly qk ≥ 2 if k ≥ n(2 − q)/2q. Choose a radius r0 > 0 small enough so that
B(x0, r0) ⊂ Ω in case x0 ∈ Ω – then we set Hx0

= Rn –, and if x0 ∈ ∂Ω, such that
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Ω∩B(x0, r0) is part of the boundary of a perturbed half-space Hx0 . Below we will
be using the inequalities (7.47) and (7.49) for perurbed half-spaces as well as for
the whole space.

Next we choose cut-off functions χj with suppχj ⊂ B(x0, rj), χj = 1
on B(x0, rj+1). We proceed by induction. By assumption we know ∇u ∈
Lq0(B(x0, r0)). Assume ∇u ∈ Lqj (B(x0, r0)), and consider ∇(χju). We have

|∇(χju)|qj+1
≤ c sup{(∇(χju)|∇v)Hx0

: |∇v|q′j+1
≤ 1},

where we may normalize v by mean value zero on B(x0, rj), in case x0 ∈ Ω ∪ Σ1.
hence with

(∇(χju)|∇v)Hx0
= (∇u|∇(χjv))Hx0

− (∇u|v∇χj)Hx0
+ (u∇χj |∇v)Hx0

= −(∇u|v∇χj)Hx0
+ (u∇χj |∇v)Hx0

,

by assumption, as χjv belongs to 0Ḣ
1

q′(Hx0
) if x0 ∈ Σ0, and to Ḣ1

q′(Hx0
) otherwise.

Since ∇χj has support in B̄(x0, rj) \B(x0, rj+1), we obtain

|(∇u|v∇χj)Hx0
| ≤ C|∇u|Lqj

(B(x0,rj))|v|Lq′ (B(x0,rj)),

and also

|(u∇χj |∇v)Hx0
| ≤ C|u|Lqj

(B(x0,rj))|∇v|Lq′ (B(x0,rj)).

Consequently, by Poincaré’s inequlity we have

|∇(χju)|qj+1 ≤ C|u|H1
qj

(B(x0,rj))|v|H1
q′
j
(B(x0,rj))

≤ C|u|H1
qj

(B(x0,rj))|∇v|Lq′
j
(B(x0,rj))

≤ C|u|H1
qj

(B(x0,rj))|∇v|Lq′
j
(Hx0

)) ≤ C|u|H1
qj

(B(x0,rj)),

and as χj = 1 on B(x0, rj+1) this yields

|∇u|Lqj+1
(B(x0,rj+1)) ≤ C|u|H1

qj
(B(x0,rj)).

This proves (i).

(ii) We have to distinguish the cases q ≥ 2 and 1 < q < 2. If q ≥ 2, choose a ball
B(0, r0) such that Σ ⊂ B(0, r0 − 1), and fix a cut-off function χ0 which equals 0
in B(0, r0 − 1) and equals one outside the ball B(0, r0). Then we have

c|∇(χ0u)|L2(Rn) ≤ sup{(∇(χ0u)|∇v)Rn : |∇v|L2(Rn) ≤ 1}.

As above

(∇(χ0u)|∇v)Rn = −(∇u|v∇χ0)Rn + (u∇χ0|∇v)Rn ,
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hence

|(∇(χ0u)|∇v)Rn | ≤ C|u|H1
2 (A0)|v|H1

2 (A0)

≤ C|u|H1
q (A0)|v|H1

2 (A0),

where A0 = B(0, r0) \ B(0, r0 − 1). As we may normalize v by mean value zero
over A0, and χ0 = 1 on Rn \B(0, r0) this shows ∇u ∈ L2(R

n \B(0, r0)).
On the other hand, if 1 < q < 2 then we set rj = jr0, and choose cut-offs

such that suppχj ⊂ Rn \B(0, rj), and χj = 1 on Rn \B(0, rj+1). Then by

c|∇(χju)|qj+1 ≤ sup{(∇(χju)|∇v)Rn : |∇v|q′j+1
≤ 1},

we obtain as before

|(∇(χju)|∇v)Rn | ≤ C|u|H1
2 (Aj)|v|H1

2 (Aj)

≤ C|u|H1
q (Aj)|v|H1

2 (Aj),

and so the same argument as in (i) implies ∇u ∈ L2(R
n \B(0, rk)), by induction.

As a consequence, we obtain u ∈ L2(R
n \B(0, r)) for some r > 0.

(b) Lower Bound
(i) Suppose that the inequality (with h = 0)

c|∇u|q ≤ sup{|(∇u|∇v)Ω| : |∇v|q′ ≤ 1}

does not hold. Then there is a sequence (uk) ⊂ Ḣ1
q,Σ0

(Ω) with |∇uk|q = 1 such
that

εk := sup{|(∇uk|∇v)Ω| : |∇v|q′ ≤ 1} → 0 as k → ∞.

Since Lq(Ω) is reflexive, there is a subsequence (w.l.o.g. the whole sequence) such
that ∇uk ⇀ ∇u in Lq(Ω). This implies with εk → 0

(∇uk|∇v)Ω → (∇u|∇v)Ω = 0, for all v ∈ Ḣ1
q′,Σ0

(Ω).

Then (a) implies u = 0.

(ii) Next we localize as e.g. in Section 6.3.3; below we use the notation from there.
Then by the previous subsection we know

c|∇(ϕjuk)|q ≤ sup{|(∇(ϕjuk)|∇v)Hj
| : |∇v|q′ ≤ 1} =: dkj

on each perturbed half-space or whole space Hj , j = 0, . . . , N . We want to prove
dkj → 0 as k → ∞, for each j. If this is true, then

|∇uk|q = |
N∑
j=0

∇(ϕjuk)|q ≤
N∑
j=0

|∇(ϕjuk)|q ≤ C

N∑
j=0

dkj → 0
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as k → ∞, a contradiction as |∇uk|q = 1 by assumption.

(iii) For a fixed j ∈ {0, . . . , N} choose vkj ∈ Ḣ1
q′(Hj) normalized by |∇vkj |q′ = 1,

and by mean value zero over Uj in case Uj ∩ Σ0 = ∅, such that

dkj ≤
1

k
+ (∇(ϕjuk)|∇vkj)Hj .

We have

(∇(ϕjuk)|∇vkj)Hj
= (∇uk|∇(ϕjvkj)Hj

− (∇uk|∇ϕjvkj)Hj
+ (uk∇ϕj |vkj)Hj

,

hence

dkj ≤
1

k
+ εk|∇(ϕjvkj)|q′ + |(∇uk|∇ϕjvkj)Hj |+ |(uk∇ϕj |∇vkj)Hj |.

Clearly the first two terms on the right-hand side of this inequality converge to
zero as k → ∞. The third term tends to zero, as ∇uk ⇀ 0 in Lq(Ω) and by
Poincaré’s inequality and compact embedding, the set {∇ϕjvkj}k≥0 is relatively
compact in Lq′(Ω). Finally, the last term converges also to zero, as uk∇ϕj → 0 as
k → ∞ by compact embedding, and ∇vkj is bounded in Lq′ , by construction.

(c) The Isomorphism
Let

∇q : Ḣ1
q,Σ0

(Ω) → Lq(Ω)

be defined by (∇qu)(x) = (∇u)(x), x ∈ Ω. This operator is bounded, linear,
injective, and has closed range. Therefore its dual

∇∗
q : Lq′(Ω) → [Ḣ1

q,Σ0
(Ω)]∗ = Ḣ−1

q′,Σ1
(Ω)

is linear, bounded, and surjective. Define

Aq : Ḣ1
q,Σ0

(Ω) → Ḣ−1
q,Σ1

(Ω)

by means of Aqu := ∇∗
q′∇q; then Aq is bounded linear, and A∗

q = Aq′ . We have

Aqu = f ⇔ (∇u|∇v)Ω = (f |∇v)Ω for all v ∈ Ḣ1
q′,Σ0

(Ω), u = 0 on Σ0.

By (a) we see that Aq is injective, for q ∈ (1,∞), and (b) implies that Aq has
closed range. Therefore, as A∗

q = Aq′ is also injective, it is bijective, i.e., Aq is an
isomorphism for each q ∈ (1,∞).

(d) Inhomogeneous Dirichlet Data
Finally we consider the case f = 0 but h �= 0. For this purpose we first solve

u0 −Δu0 = 0 in Ω, ∂νu0 = 0 on Σ1, u0 = h on Σ0.
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Section 6.3.6 yields a unique u0 ∈ H1
q (Ω). Then u1 = u− u0 must solve

Aqu1 = Δu0 ∈ Ḣ−1
q,Σ1

(Ω),

which by (c) admits a unique solution u1 ∈ Ḣ1
q,Σ0

(Ω). This completes the proof.
�

As a first consequence we obtain the Helmholtz-Weyl projection.

Corollary 7.4.4. Let 1 < q < ∞, Ω be either the whole space Rn, or a perturbed half-
space, or a domain with compact C1-boundary ∂Ω =: Σ. Suppose that Σ = Σ0∪Σ1

with disjoint parts Σj which are open and closed in Σ.

Then given f ∈ Lq(Ω;C
n), there are unique functions φ ∈ Ḣ1

q,Σ0
(Ω) and w ∈

N(∇∗
q′) such that

f = ∇φ+ w,

and there is a constant such that

|w|Lq
≤ C|f |Lq

, for all f ∈ Lq(Ω).

The bounded linear operator PHW ∈ B(Lq(Ω)) defined by PHW f := w is a
projection, called the Helmholtz-Weyl projection associated to the decomposition
Σ = Σ0 ∪ Σ1 of the boundary Σ = ∂Ω of Ω.

This result follows by solving the problem Aqφ = ∇∗
q′f according to Theorem

7.4.3. Then obviously w = f −∇φ ∈ N(∇∗
q′).

The final result concerns higher regularity.

Corollary 7.4.5. Suppose that Ω is a domain in Rn with compact boundary ∂Ω := Σ
of class C(2+s)−, s = 0, 1, and suppose that Σ decomposes disjointly into Σ =

Σ0 ∪ Σ1, where Σj are open and closed in Σ. Let f ∈ Hs
q (Ω), g ∈ W

1+s−1/q
q (Σ1),

h ∈ W
2+s−1/q
q (Σ0), and assume (f, g) ∈ Ḣ−1

q,Σ1
(Ω).

Then the problem

Δu = f in Ω,

∂νu = g on Σ1,

u = h on Σ0,

(7.52)

admits a unique solution u with ∇u ∈ H1+s
q (Ω). There is a constant C > 0 such

that

|∇u|H1+s
q

≤ C
(
|(f, g)|Ḣ−1

q,Σ1

+ |f |Hs
q
+ |g|

W
1+s−1/q
q

+ |h|
W

2+s−1/q
q

)
(7.53)

holds for all (f, g, h) ∈ Hs
q (Ω)×W

1+s−1/q
q (Σ1)×W

2+s−1/q
q (Σ0), s = 0, 1.
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Proof. First we may reduce to the case (g, h) = 0, solving the problem

u0 −Δu0 = 0 in Ω,

∂νu0 = g on Σ1,

u0 = h on Σ0,

as in (d) above.
Let Hj and ϕj , j = 0, . . . , N, be as above. Let v ∈ Ḣ1

q′(Hj) if xj ∈ Ω ∪ Σ1,

and v ∈ 0Ḣ
1

q′(Hj) otherwise. Then we have

(∇(ϕju)|∇v)Hj
= (∇u|∇(ϕjv))Hj

− (∇u∇ϕj |v)Hj
+ (u∇ϕj |∇v)Hj

= (∇u|∇(ϕjv)))Hj
− (∇u∇ϕj |v)Hj

− (div(u∇ϕj)|v)Hj

= −(fϕj + 2∇u∇ϕj + uΔϕj |v)Hj
= −(fj |v)Hj

,

with fj := fϕj + 2∇u∇ϕj + uΔϕj ∈ Lq(Hj). This shows that ϕju is the weak
solution in Hj with right-hand side fj ∈ Lq(Hj). The results in Section 7.4.3 show
that ∇(ϕju) ∈ H1+s

q (Hj), hence summing over j we obtain the assertion. �
Remark. In all of this section we restricted our analysis to the Laplacian. How-
ever, Δ can be replaced by any uniformly strongly elliptic operator div(A(x)∇)
with coefficients A ∈ Cl(Ω;R

n×n) for weak solutions, and additionally A ∈
W 1+s

∞ (Ω;Rn×n) for higher regularity. This extension is straightforward, and its
implementation is left for the curious reader as well as to researchers who are in
need of such results.



Chapter 8

Two-Phase Stokes Problems

Now we are in position to study maximal Lp-regularity for linear two-phase Stokes
problems. There are two problems of relevance, the standard one, and another,
nonstandard problem, which we call the asymmetric two-phase Stokes problem.
The first one is important for problems (P2), (P3), (P5), while the asymmetric
problem arises in (P4), (P6), which means for problems with phase transitions and
different densities. We also study the various induced two-phase Stokes operators
in detail, as well as the dynamic surface conditions needed for the analysis of
Problems (P2)∼(P6). In the analysis, several Neumann-to-Dirichlet operators for
Stokes problems will play an important role.

8.1 Two-Phase Stokes Problems

We consider now the inhomogeneous linear problem which is of central importance
for Problem (P2), but will also be needed for the analysis of (P3) and (P5).

Let Ω ⊂ Rn be a bounded domain with boundary of class C3, and let Σ ⊂ Ω
be a closed hypersurface. We consider the problem

�(∂t + ω)u− μ(x)Δu+∇π = �fu in Ω\Σ,
div u = gd in Ω\Σ,

u = gb on ∂Ω,

[[u]] = gu on Σ,

[[−2μ(x)D(u) + π]]νΣ − σ(x)(ΔΣh)νΣ = g on Σ,

(∂t + ω)h− (u|νΣ) + (b(t, x)|∇Σh) = fh on Σ,

u(0) = u0 in Ω\Σ, h(0) = h0 on Σ,

(8.1)

on the time-interval J = R+, where ω ≥ 0 will be chosen sufficiently large. Here
as before D(u) = (∇u+ [∇u]T)/2 denotes the rate of strain tensor.
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Remark 8.1.1. We will occasionally replace the operator μ(x)Δu in the first line
of (8.1) by div(2μ(x)D(u)). Observe that with the condition div u = gd we have

div(2μ(x)D(u)) = μ(x)Δu+ 2D(u)∇μ(x) + μ(x)∇gd.

Therefore, div(2μ(x)D(u)) and μ(x)Δ have the same principal part, and the re-
sults developed for Problem (8.1), and variants thereof, will also hold with μ(x)Δ
replaced by div(2μ(x)D(u)).

We employ the same regularity classes for u and π as in Chapter 7, i.e.,

u ∈ Eu := H1
p,μ(J ;Lp(Ω)

n) ∩ Lp,μ(J ;H
2
p (Ω\Σ)n),

and

π ∈ Eπ := Lp,μ(J ; Ḣ
1
p (Ω\Σ)).

Then

gu ∈ Fn
h = W 1−1/2p

p,μ (J ;Lp(Σ)
n) ∩ Lp,μ(J ;W

2−1/p
p (Σ)n),

and

gb ∈ W 1−1/2p
p,μ (J ;Lp(∂Ω)

n) ∩ Lp,μ(J ;W
2−1/p
p (∂Ω)n).

Therefore, the equation for the height function h lives in the trace space for the
components of u, i.e.,

fh ∈ Fh := W 1−1/2p
p,μ (J ;Lp(Σ)) ∩ Lp,μ(J ;W

2−1/p
p (Σ)),

hence the natural space for h is given by

h ∈ Eh := W 2−1/2p
p,μ (J ;Lp(Σ)) ∩H1

p,μ(J ;W
2−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ)).

Here the last space comes from the curvature term in the stress boundary con-
dition, which induces an additional order in spatial regularity. Assuming that g
belongs to the trace space of ∇u, i.e.,

g ∈ Fn
u := W 1/2−1/2p

p,μ (J ;Lp(Σ)
n) ∩ Lp,μ(J ;W

1−1/p
p (Σ)n),

we have the additional regularity [[π]] ∈ Fu for the pressure jump across the inter-
face Σ. The function b ∈ Fh is given; it is needed later on for local well-posedness,
but not for stability.

There is another hidden regularity which comes from the divergence equation.
To identify it, let φ ∈ Ḣ1

p′(Ω). An integration by parts yields

(u|∇φ)Ω = −(div u|φ)Ω + (u · ν∂Ω|φ)∂Ω − ([[u · νΣ]]|φ)Σ
= −(gd|φ)Ω + (gb · ν∂Ω|φ)∂Ω − (gu · νΣ|φ)Σ.
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Set 0Ḣ
−1

p (Ω) = (Ḣ1
p′(Ω))∗ and define the space Ĥ−1

p (Ω) as the set of all triples

(ϕ, ψ, χ) ∈ Lp(Ω)×W
2−1/p
p (∂Ω)n×W

2−1/p
p (Σ)n, which enjoy the regularity prop-

erty (ϕ, ψ · ν∂Ω, χ · νΣ) ∈ 0Ḣ
−1

p (Ω), where

〈(ϕ, ψ · ν∂Ω, χ · νΣ)|φ〉 := −(ϕ|φ)Ω + (ψ · ν∂Ω|φ)∂Ω − (χ · νΣ|φ)Σ, φ ∈ Ḣ1
p′(Ω).

Employing this notation we have

〈(gd, gb · ν∂Ω, gu · νΣ)|φ〉 = (u|∇φ)Ω.

Since u ∈ H1
p,μ(J ;Lp(Ω)

n) this implies (gd, gb · ν∂Ω, gu · νΣ) ∈ H1
p,μ(J ; Ĥ

−1
p (Ω)).

Observe that this condition contains the compatibility condition∫
Ω

gd dx =

∫
∂Ω

gb · ν∂Ω d(∂Ω)−
∫
Σ

gu · νΣ dΣ, (8.2)

which shows up when choosing φ ≡ 1.
In the particular case gd = 0 we have (gd, gb ·ν∂Ω, gu ·νΣ) ∈ H1

p,μ(J ; Ĥ
−1
p (Ω))

if and only if gb · ν∂Ω ∈ H1
p,μ(J ; Ẇ

−1/p
p (∂Ω)) and gu · νΣ ∈ H1

p,μ(J ; Ẇ
−1/p
p (Σ)), as

Σ and ∂Ω are separated.

1.1 The Main Result
The main theorem of this section states that Problem (8.1) admits maximal regu-
larity. In particular, it defines an isomorphism between the solution space and the
space of data.

Theorem 8.1.2. Let p > n + 2, 1 ≥ μ > 1/p, Ω ⊂ Rn a bounded domain with
∂Ω ∈ C3, Σ ⊂ Ω a closed hypersurface of class C3 and �j be positive constants,
j = 1, 2. Assume that μ ∈ C1−

b (Ω \ Σ), σ ∈ C1−(Σ) such that μ, σ are positive,
uniformly in x. Set J = R+, and suppose b = b0 + b1 with b0 ∈ Rn, and

b1 ∈ W 1−1/2p
p,μ (J ;Lp(Σ)

n) ∩ Lp,μ(J ;W
2−1/p
p (Σ)n).

Then there is ω0 ≥ 0 such that for each ω > ω0, the two-phase Stokes problem
(8.1) admits a unique solution (u, π, h) with regularity

u ∈ H1
p,μ(J ;Lp(Ω)

n) ∩ Lp,μ(J ;H
2
p (Ω\Σ)n), π ∈ Lp,μ(J ; Ḣ

1
p (Ω\Σ)),

[[π]] ∈ W 1/2−1/2p
p,μ (J ;Lp(Σ)) ∩ Lp,μ(J ;W

1−1/2p
p (Σ)),

h ∈ W 2−1/2p
p,μ (J ;Lp(Σ)) ∩H1

p,μ(J ;W
2−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ)),

if and only if the data (fu, gd, gb, gu, g, fh, u0, h0) satisfy the following regularity
and compatibility conditions:

(a) fu ∈ Lp,μ(J ;Lp(Ω)
n);

(b) gd ∈ Lp,μ(J ;H
1
p (Ω\Σ));
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(c) gb ∈ W
1−1/2p
p,μ (J ;Lp(∂Ω)

n) ∩ Lp,μ(J ;W
2−1/p
p (∂Ω)n);

(d) gu ∈ W
1−1/2p
p,μ (J ;Lp(Σ)

n) ∩ Lp,μ(J ;W
2−1/p
p (Σ)n);

(e) g ∈ W
1/2−1/2p
p,μ (J ;Lp(Σ)

n) ∩ Lp,μ(J ;W
1−1/p
p (Σ)n);

(f ) (gd, gb · ν∂Ω, gu · νΣ) ∈ H1
p,μ(J ; Ĥ

−1
p (Ω));

(g) fh ∈ W
1−1/2p
p,μ (J ;Lp(Σ)) ∩ Lp,μ(J ;W

2−1/p
p (Σ));

(h) u0 ∈ W
2μ−2/p
p (Ω\Σ)n, h0 ∈ W

2+μ−2/p
p (Σ);

(i) div u0 = gd(0), u0|∂Ω
= gb(0), [[u0]] = gu(0), 2PΣ[[μ(x)D(u0)νΣ]] = PΣg(0).

The solution map (fu, gd, gb, gu, g, fh, b, u0, h0) �→ (u, π, [[π]], h) is continuous be-
tween the corresponding spaces.

The proof of this result will be carried out in Section 8.2.

It is possible to reduce the regularity of fh to fh ∈ Lp,μ(J ;W
2−1/p
p (Σ)), in

which case the highest time regularity of h is dropped. This is the content of

Corollary 8.1.3. Let the assumptions of Theorem 8.1.2 be valid. Then the result of
that theorem remains valid when replacing the spaces for h and fh by

h ∈ H1
p,μ(J ;W

2−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ)), fh ∈ Lp,μ(J ;W

2−1/p
p (Σ)).

In addition, the result also remains valid with μ(x)Δ replaced by div(2μ(x)D(u)).

This corollary is important for the semigroup associated to (8.1), the two-
phase Stokes semigroup with free boundary. To construct this semigroup, we spe-
cialize to the case of homogeneous boundary and interface conditions as well as to
the solenoidal situation

(gd, gb, gu, g, b) = 0, (div fu, fu · ν∂Ω, [[fu · νΣ]]) = 0.

Then the semigroup is given in the following way. We have

∇ : Ḣ1
p′(Ω \ Σ) → Lp′(Ω)n

is bounded, hence ∇∗ : Lp(Ω;C)
n → 0Ḣ

−1

p (Ω) is so as well. Define

X0 := [Lp(Ω)
n ∩ N(∇∗)]×W 2−1/p

p (Σ),

X1 := [H2
p (Ω \ Σ)n ∩ N(∇∗)]×W 3−1/p

p (Σ),

and A by means of

A(u, h) := (�−1(−div(2μ(x)D(u)) +∇π),−u · νΣ),

with domain

D(A) := {(u, h) ∈ X1 : u|∂Ω
= 0, [[u]] = 0, PΣ[[μ(x)D(u)νΣ]] = 0}.
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Here π = π(u, h) is given by the solution of the weak transmission problem

(�−1∇π|∇φ)Ω = (�−1div(2μ(x)D(u))|∇φ)Ω, φ ∈ Ḣ1
p′(Ω),

[[π]] = σ(x)ΔΣh+ [[2μ(x)∂νu · νΣ]] on Σ.
(8.3)

Note that this problem admits for each (u, h) ∈ H2
p (Ω\Σ)n×W

3−1/p
p (Σ) a solution

in Ḣ1
p (Ω \ Σ) which is unique up to a constant, see Proposition 8.6.2.
Then, with z = (u, h), z0 = (u0, h0), and f = (fu, fh), Problem (8.1) is

equivalent to the abstract evolution equation

ż +Az = f, t > 0, z(0) = z0.

Corollary 8.1.3 shows that this problem has maximal Lp-regularity, i.e., ω + A ∈
MRp(X0). Therefore, −A generates an analytic C0-semigroup in X0. As the do-
main of A is compactly embedded into X0, the spectrum of A consists only of
eigenvalues of finite algebraic multiplicity, which are independent of p. Therefore,
the number ω0 in Theorem 8.1.2 is precisely the spectral bound s(−A), which will
be shown to be 0 in Chapter 10.

1.2 The Two-Phase Stokes Operator
We specialize now to the case h = 0. This means that we consider the following
pure two-phase Stokes problem.

�(∂t + ω)u− div(2μ(x)D(u)) +∇π = �fu in Ω\Σ,
div u = gd in Ω\Σ,

u = gb on ∂Ω,

[[u]] = gu on Σ,

[[−2μ(x)D(u) + π]]νΣ = g on Σ,

u(0) = u0 in Ω

(8.4)

on the time-interval J = R+, where ω ≥ 0 will be chosen sufficiently large. By
Remark 8.1.1, Theorem 8.1.2 remains valid for the problem with μ(x)Δu replaced
by div(2μ(x)D(u)).

By the same arguments as above we obtain the following result for the pure
two-phase Stokes problem (8.4).

Theorem 8.1.4. Let p > n + 2, 1 ≥ μ > 1/p, Ω ⊂ Rn a bounded domain with
∂Ω ∈ C3, Σ ⊂ Ω a closed hypersurface of class C3 and �j be positive constants,
j = 1, 2. Assume μ ∈ C1−

b (Ω \ Σ), μ > 0, and set J = R+. Then there is ω0 ≥ 0
such that for each ω > ω0, the pure two-phase Stokes problem (8.4) admits a
unique solution (u, π) with regularity

u ∈ H1
p,μ(J ;Lp(Ω)

n) ∩ Lp,μ(J ;H
2
p (Ω\Σ)n), π ∈ Lp,μ(J ; Ḣ

1
p (Ω\Σ)),

[[π]] ∈ W 1/2−1/2p
p,μ (J ;Lp(Σ)) ∩ Lp,μ(J ;W

1−1/2p
p (Σ)),
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if and only if the data (fu, gd, gb, gu, g, u0) satisfy the following regularity and com-
patibility conditions:

(a) fu ∈ Lp,μ(J ;Lp(Ω)
n);

(b) gd ∈ Lp,μ(J ;H
1
p (Ω\Σ));

(c) gb ∈ W
1−1/2p
p,μ (J ;Lp(∂Ω)

n) ∩ Lp,μ(J ;W
2−1/p
p (∂Ω)n);

(d) gu ∈ W
1−1/2p
p,μ (J ;Lp(Σ)

n) ∩ Lp,μ(J ;W
2−1/p
p (Σ)n);

(e) g ∈ W
1/2−1/2p
p,μ (J ;Lp(Σ)

n) ∩ Lp,μ(J ;W
1−1/p
p (Σ)n);

(f ) (gd, gb · ν∂Ω, gu · νΣ) ∈ H1
p,μ(J ; Ĥ

−1
p (Ω));

(g) u0 ∈ W
2μ−2/p
p (Ω\Σ)n;

(h) div u0 = gd(0), u0|∂Ω
= gb(0), [[u0]] = gu(0), 2PΣ[[μ(x)D(u0)νΣ]] = PΣg(0).

The solution map (fu, gd, gb, gu, g, u0) �→ (u, π, [[π]]) is continuous between the cor-
responding spaces.

Having this result at our disposal, we define the two-phase Stokes operator
in divergence form in the following way. We set

X0 = Lp,σ(Ω) := Lp(Ω)
n ∩ N(∇∗), X1 := H2

p (Ω \ Σ) ∩X0,

and define AS by means of

ASu = �−1(−div(2μ(x)D(u)) +∇π), u ∈ D(AS), (8.5)

where

D(AS) := {u ∈ X1 : u|∂Ω
= 0, [[u]] = 0, PΣ[[μ(x)D(u)νΣ]] = 0}.

In this definition the pressure π = π(u) is defined as the solution of the weak
transmission problem

(�−1∇π|∇φ)Ω = (�−1div(2μ(x)D(u))|∇φ)Ω, φ ∈ Ḣ1
p′(Ω),

[[π]] = [[2μ(x)∂νu · νΣ]] on Σ.
(8.6)

Note that π ∈ Ḣ1
p (Ω \ Σ) is well-defined by Proposition 8.6.2. Then (8.4), for

(ω, gd, gb, gu, g) = 0 and (div fu, fu ·ν∂Ω, [[fu ·νΣ]]) = 0, is equivalent to the abstract
evolution equation

u̇+ASu = fu, t > 0, u(0) = u0. (8.7)

Theorem 8.1.4 implies that this problem has maximal Lp-regularity, hence −AS is
the generator of an analytic C0-semigroup in X0 with maximal Lp-regularity. As
D(AS) embeds compactly into X0, the two-phase Stokes operator AS has compact
resolvent. Therefore, its spectrum consists only of eigenvalues of finite algebraic
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multiplicity, and is independent of p. So it is enough to study these eigenvalues
for the case p = 2.

For this purpose we employ the energy method. Assume that λ ∈ C is an
eigenvalue of AS with eigenfunction u and corresponding pressure π. Taking the
inner product in L2(Ω;C)

n of the equation with u, after an integration by parts
we get

λ

∫
Ω

�|u|2 dx = (�ASu|u)Ω = 2

∫
Ω

μ(x)|D(u)|22 dx.

This implies that λ is real and nonnegative. But by means of Korn’s inequality
and the no-slip condition on the outer boundary ∂Ω, all eigenvalues are strictly
positive. In particular, AS is invertible.

This further implies that the Neumann-to-Dirichlet operator NS
λ :

W
1−1/p
p (Σ) → W

2−1/p
p (Σ) defined by the map NS

λ : g �→ (u|νΣ), where u solves
the problem

λ�u− div(2μ(x)D(u)) +∇π = 0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on ∂Ω,

[[u]] = 0 on Σ,

−[[2μ(x)D(u)]]νΣ + [[π]]νΣ = gνΣ on Σ,

is well-defined and an isomorphism, for each λ ≥ 0. This operator will be studied
in more detail in Chapter 10 in case μ = constant.

1.3 The Quasi-Steady Two-Phase Stokes Problem
In this subsection we consider the Stokes flow problem, which reads

−div(2μ(x)D(u)) +∇π = 0 in Ω\Σ,
div u = 0 in Ω\Σ,

u = 0 on ∂Ω,

[[u]] = 0 on Σ,

[[−2μ(x)D(u) + π]]νΣ − σ(x)(ΔΣh)νΣ = 0 on Σ,

(∂t + ω)h− (u|νΣ) = fh on Σ,

h(0) = h0 on Σ,

(8.8)

on the time-interval J = R+, where ω ≥ 0 will be chosen sufficiently large. Here
the regularity classes for u and π are given by

u ∈ Eu := Lp,μ(J ;H
2
p (Ω\Σ)n), π ∈ Eπ := Lp,μ(J ; Ḣ

1
p (Ω\Σ)),

and that for h is

h ∈ H1
p,μ(J ;W

2−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ)).
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For X0 = W
2−1/p
p (Σ), with the Neumann-to-Dirichlet operator NS

0 defined in the
previous subsection, this problem is equivalent to the abstract evolution equation

ḣ+ ωh−NS
0 σΔΣh = fh, t > 0, h(0) = h0,

in X0. Defining the operator A in X0 by means of

A = −NS
0 σΔΣh, D(A) = W 3−1/p

p (Σ),

we show that −A generates an analytic C0-semigroup with maximal regularity.
For this purpose, we begin with the shifted quasi-stationary problem.

�ηu− div(2μ(x)D(u)) +∇π = �fu in Ω\Σ,
div u = gd in Ω\Σ,

u = gb on ∂Ω,

[[u]] = gu on Σ,

[[−2μ(x)D(u) + π]]νΣ − σ(x)(ΔΣh)νΣ = g on Σ,

(∂t + ω)h− (u|νΣ) = fh on Σ,

u(0) = u0 in Ω\Σ, h(0) = h0 on Σ.

(8.9)

This can be solved by means of the same methods as in the previous subsections;
the analysis is even simpler due to the missing time-derivatives in the bulk. In this
way we obtain the following result.

Theorem 8.1.5. Let p ∈ (1,∞), 1 ≥ μ > 1/p, Ω ⊂ Rn a bounded domain with
∂Ω ∈ C3, Σ ⊂ Ω a closed hypersurface of class C3. Assume that μ ∈ C1−

b (Ω \ Σ),
σ ∈ C1−(Σ) such μ, σ are positive, uniformly in x, and set J = R+.

Then there are ω0, η0 ≥ 0 such that for each ω > ω0, η > η0, the quasi-steady
two-phase Stokes problem (8.9) admits a unique solution (u, π, h) with regularity

u ∈ Lp,μ(J ;H
2
p (Ω\Σ)n), π ∈ Lp,μ(J ; Ḣ

1
p (Ω\Σ)),

h ∈ H1
p,μ(J ;W

2−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ)),

if and only if the data (fu, gd, gb, gu, g, fh, h0) satisfy the following regularity and
compatibility conditions:

(a) fu ∈ Lp,μ(J ;Lp(Ω)
n);

(b) gd ∈ Lp,μ(J ;H
1
p (Ω\Σ));

(c) gb ∈ Lp,μ(J ;W
2−1/p
p (∂Ω)n);

(d) gu ∈ Lp,μ(J ;W
2−1/p
p (Σ)n);

(e) g ∈ Lp,μ(J ;W
1−1/p
p (Σ)n);

(f ) fh ∈ Lp,μ(J ;W
2−1/2p
p (Σ));

(g) h0 ∈ W
2+μ−2/p
p (Σ).

The solution map (fu, gd, gb, gu, g, fh, h0) �→ (u, π, h) is continuous between the
corresponding spaces.
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Having this result at our disposal, by the above arguments it is evident that
−NS

λ σΔΣ ∈ MRp(X0). Next we proceed as in Section 6.6. We write u = Tηg for
the solution of

�ηu− div(2μ(x)D(u)) +∇π = 0 in Ω\Σ,
div u = 0 in Ω\Σ,

u = 0 on ∂Ω,

[[u]] = 0 on Σ,

[[−2μ(x)D(u) + π]]νΣ = gνΣ on Σ.

(8.10)

Then
T0g = Tηg + η(η +AS)

−1T0g,

hence with NS
η g = [[(Tηg|νΣ)]]

NS
0 = NS

η + η[[((η +AS)
−1T0g|νΣ)]].

This shows that NS
0 is a compact perturbation of NS

η , and so with −NS
η σΔΣ also

−NS
0 σΔΣ ∈ MRp(X0).
The spectrum of −NS

0 σΔΣ will be investigated in Chapter 10.

8.2 Proof of Theorem 8.1.2

2.1 Regularity of the Pressure
In general the pressure π has no more regularity than stated in Theorem 8.1.2.
However, there are situations where π enjoys extra time-regularity, as stated in
the following

Proposition 8.2.1. Assume in addition to the hypotheses of Theorem 8.1.2 that

(gd, u0, h0, div fu) = 0, (gb|ν∂Ω) = (fu|ν∂Ω) = 0, (gu|νΣ) = [[(fu|νΣ)]] = 0.

Let (u, π, h) be a solution of (8.1). Then π ∈ 0H
α
p,μ(J ;Lp(Ω)), for each α ∈

(0, 1/2− 1/2p). In addition, we have the following estimate

|π|Lp,μ(R+;Lp(Ω)) ≤ C
(
|∇u|Lp,μ(R+;Lp(Ω)) + |∇u|Lp,μ(R+;Lp(Σ∪∂Ω)) (8.11)

+ |[[π]]|Lp,μ(R+;Lp(Σ))

)
,

where C > 0 is a constant independent of ω.

Proof. Let ψ ∈ Lp′(Ω) be given and solve the problem

�−1Δφ = ψ − ψ̄ in Ω\Σ,
∂νφ = 0 on ∂Ω,

[[φ]] = 0 on Σ,

[[�−1∂νφ]] = 0 on Σ,

(8.12)
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where ψ̄ = (ψ|1)Ω/|Ω|. By Proposition 8.6.1, (8.12) has a unique solution φ ∈
H2

p′(Ω) with average zero and we have

|∇φ|p′ + |∇2φ|p′ ≤ C|ψ|p′ .

As π is unique up to a constant, we may assume that π has average zero, and by
(fu|∇φ) = (u|∇φ) = 0 we then obtain by an integration by parts

(π|ψ)Ω = (π|ψ − ψ̄)Ω = (�−1π|Δφ)Ω

= −
∫
Σ

[[π]]�−1∂νφ dΣ− (�−1div(2μ(x)D(u))|∇φ)Ω

=

∫
Ω

∇u : ∇�−1μ∇φ dx−
∫
∂Ω

�−1μ(∂νu|∇φ) d(∂Ω)

+

∫
Σ

{[[�−1μ∂νu∇φ]]− [[π]]�−1∂νφ} dΣ

Since ∇u ∈ 0H
1/2
p,μ (J ;Lp(Ω)

n×n) and [[π]], ∂kul ∈ 0W
1/2−1/2p
p,μ (J ;Lp(Σ)), and ∂νu ∈

0W
1/2−1/2p
p,μ (J ;Lp(∂Ω)), applying ∂α

t to this identity, we obtain the estimate

|∂α
t π|Lp,μ(Lp) ≤ C{|∂α

t ∇u|Lp,μ(Lp) + |∂α
t [[π]]|Lp,μ(Lp)

+ |∂α
t ∂νu|Lp,μ(Lp) + |∂α

t ∂νu|Lp,μ(Lp)},

for each α ∈ (0, 1/2 − 1/2p), hence π ∈ 0H
α
p,μ(J ;Lp(Ω)). The estimate (8.11)

follows by an obvious argument. �
2.2 Reductions
It is convenient to reduce the problem to the case

(fu, gd, gb · ν∂Ω, gu · νΣ, u0, h0) = 0.

This can be achieved as follows. Suppose (u, π, h) is a solution of (8.1). Let us
introduce a further dummy variable q := [[π]]; note that q ∈ Fu. We use the
decomposition (u, π, q, h) = (u∗ + u1, π∗ + π1, q∗ + q1, h∗ + h1), where

eωth∗(t) = [2e−(I−ΔΣ)1/2t − e−2(I−ΔΣ)1/2t]h0

+ [e−(I−ΔΣ)t − e−2(I−ΔΣ)t](I −ΔΣ)
−1{(u0|νΣ)− (b(0)|∇Σh0)+ fh(0)}, t ≥ 0.

By Proposition 3.4.3, the function h∗ belongs to Eh and satisfies h∗(0) = h0 and

∂th∗(0) + ωh∗(0) = (u0|νΣ)− (b(0)|∇Σh0) + fh(0).

Then h1 has initial value zero, and also ∂th1(0) = 0. We have the estimate

|h∗|Eh
+ ω|h∗|Fh

≤ C
(
|h0|W 2+μ−2/p

p
+ |u0|W 2μ−2/p

p
+ |fh(0)|W 2μ−3/p

p

+ |b(0)|
W

2μ−3/p
p

|∇Σh0|W 2μ−3/p
p

)
≤ C

(
(1 + |b|Fh

)|h0|W 2+μ−2/p
p

+ |u0|W 2μ−2/p
p

+ |fh|Fh

)
.
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Next we set q∗(t) = e−(ω−ΔΣ)tq0, where

q0 := ([[2μ∂νu0]]|νΣ) + σΔΣh0 + (g(0)|νΣ)

is determined by the data, and define π∗ as the solution of

Δπ∗ = 0 in Ω\Σ,
∂νπ∗ = 0 on ∂Ω,

[[∂νΣπ∗/�]] = 0 on Σ,

[[π∗]] = q∗ on Σ.

Note that q∗ ∈ Fu and π∗ ∈ Eπ, by Proposition 8.6.2, and we have the estimates

|π∗|Eπ
≤ C|q∗|Lp,μ(W

1−1/p
p )

,

|q∗|Fu
+ ω1/2−1/2p|q∗|Lp,μ(Lp) ≤ C|q0|W 2μ−1−3/p

≤ C
(
|u0|W 2μ−2/p

p
+ |h0|W 2+μ−2/p

p
+ |g|Fu

)
.

The function u∗ ∈ Eu is defined as the solution of the parabolic problem

�(∂t + ω)u− μ(x)Δu = −∇π∗ + �fu in Ω\Σ,
u = gb on ∂Ω,

[[u]] = gu on Σ,

[[−2μ(x)D(u) + π]]νΣ = g − q∗νΣ + σ(ΔΣh∗)νΣ on Σ,

u(0) = u0 in Ω\Σ,

(8.13)

which is uniquely solvable since the appropriate Lopatinskii-Shapiro condi-
tions are satisfied; see Section 6.5. Thus, (u1, π1, q1, h1) solves (8.1) with data
(fu, gb, g, gu, u0, h0) = 0, and fh replaced by f̃h = fh − [(∂t + ω)h∗ − (u∗|νΣ) +
(b|∇Σh∗)] ∈ 0Fh. Finally, to remove gd, we solve the transmission problem

Δψ = g̃d in Ω\Σ,
[[�ψ]] = 0 on Σ,

[[∂νΣ
ψ]] = 0 on Σ,

∂ν∂Ω
ψ = 0 on ∂Ω,

according to Proposition 8.6.1, as g̃d := gd−div u∗ has mean value zero thanks to
the compatibility condition (8.2). Since ∂Ω ∈ C3, the solution satisfies ∇ψ ∈ Eu.
We note that ψ has trace zero at time zero, as g̃d(0) = 0. Then setting

(u2, π2, h2) = (u1 −∇ψ, π1 + �(∂tψ + ωψ)− μ(x)Δψ, h1)

we see that we may assume (fu, gd, gb · ν∂Ω, gu · νΣ, u0, h0) = 0. The only non-
vanishing data which remain are (g, gb, gu, fh); note that the time traces at t = 0 of
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these functions are zero as ψ(0) = 0. So for the reduced problem, Proposition 8.2.1
applies.

2.3 Flat Interface
In this subsection we consider the linear problem with constant coefficients for a
flat interface. We use the identification Rn−1 = Rn−1×{0}, (x, y) ∈ R̂n = Rn−1×Ṙ

and we write u = (v, w), with v the tangential component of u.

�(∂t + ω)u− μΔu+∇π = �fu in R̂n,

div u = gd in R̂n,

[[u]] = gu on Rn−1,

−[[μ∂yv]]− [[μ∇xw]] = gv on Rn−1,

−[[2μ∂yw]] + [[π]]− σΔh = gw on Rn−1,

(∂t + ω)h− w + (b|∇h) = fh on Rn−1,

u(0) = u0 in R̂n, h(0) = h0 on Rn−1.

(8.14)

It will be convenient to also use the decomposition fu = (fv, fw), g = (gv, gw) into
tangential and normal components.

The following result states that problem (8.14) admits maximal regularity.
In particular, it defines an isomorphism between the solution space

E := Eu × Eπ × Fu × Eh

and the product space of data (fu, gd, gu, g, fh, b, u0, h0), which we denote for
short by F.

Theorem 8.2.2. Let p ∈ (1,∞), 1 ≥ μ > 1/p be fixed, and assume that �j, μj, σ,
b ∈ Rn are positive constants for j = 1, 2, and let J = R+. Then there is ω0 ≥ 0
such that for each ω > ω0, the Stokes problem with flat boundary (8.14) admits a
unique solution (u, π, h) with regularity

u ∈ H1
p,μ(J ;Lp(R

n)n) ∩ Lp,μ(J ;H
2
p (R̂

n)n), π ∈ Lp,μ(J ; Ḣ
1
p (R̂

n)),

[[π]] ∈ W 1/2−1/2p
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1)),

h ∈ W 2−1/2p
p,μ (J ;Lp(R

n−1)) ∩H1
p,μ(J ;W

2−1/p
p (Rn−1)) ∩ Lp,μ(J ;W

3−1/p
p (Rn−1))

if and only if the data (fu, gd, gu, g, fh, u0, h0) satisfy the following regularity and
compatibility conditions:

(a) fu ∈ Lp,μ(J ;Lp(R
n)n);

(b) gd ∈ Lp,μ(J ;H
1
p (R̂

n));

(c) g = (gv, gw) ∈ W
1/2−1/2p
p,μ (J ;Lp(R

n−1)n) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1)n);

(e) gu ∈ W
1−1/2p
p,μ (J ;Lp(R

n−1)n) ∩ Lp,μ(J ;W
2−1/p
p (Rn−1)n);
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(e) (gd, gu · νΣ) ∈ H1
p,μ(J ; Ĥ

−1
p (Rn));

(f ) fh ∈ W
1−1/2p
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;W
2−1/p
p (Rn−1));

(g) u0 ∈ W
2μ−2/p
p (R̂n)n, h0 ∈ W

2+μ−2/p
p (Rn−1);

(h) div u0 = gd(0), [[u0]] = gu(0), −[[μ∂yv0]]− [[μ∇xw0]] = gv(0).

The solution map (fu, gd, gu, g, fh, b, u0, h0) �→ (u, π, [[π]], h) is continuous between
the corresponding spaces.

As in the previous chapter, for the localization procedure we also need esti-
mates for the solution in terms of the data which are uniform in the parameter
ω ≥ ω0 > 0. These follow directly from the proof of Theorem 8.2.2 but are elab-
orate in formulation, as they depend on all the many boundary data in question.
For this purpose we fix some function spaces as follows.

Eu
0μ := Lp,μ(R+;Lp(R

n)n), Eu
1μ := H1

p,μ(R+;Lp(R
n)n) ∩ Lp,μ(R+;H

2
p (R̂

n)n),

Eh
1μ := W 2−1/p

p,μ (R+Lp(R
n−1)) ∩H1

p,μ(R+;Lp(R
n−1)) ∩ Lp,μ(R+;W

3−1/p
p (Rn−1)),

G0μ := Lp,μ(R+; Ḣ
−1
p (Rn)), G1μ := H1

p,μ(R+; Ḣ
−1
p (Rn)) ∩ Lp,μ(R+;H

1
p (R̂

n)),

G0
μ := Lp,μ(R+; Ĥ

−1
p (Rn)), G1

μ := H1
p,μ(R+; Ĥ

−1
p (Rn)),

F0μ := W 1/2−1/2p
p,μ (R+;Lp(R

n−1)) ∩ Lp,μ(R+;W
1−1/p
p (Rn−1)),

Eh
0μ := F1μ := W 1−1/2p

p,μ (R+;Lp(R
n−1)) ∩ Lp,μ(R+;W

2−1/p
p (Rn−1)),

and Xγ,μ = W
2(μ−1/p)
p (R̂n)×W

2+μ−2/p
p (Rn−1). The estimates read as follows. For

each ω0 > 0 there is a constant C > 0 such that for all ω ≥ ω0 and all data subject
to the corresponding compatibility conditions, the solution (u, π, h) satisfies

ω|u|Eu
0μ

+ |u|Eu
1μ

+ |∇π|Eu
0μ

+ |[|π]]|F0μ + ω|h|Eh
0μ

+ |h|Eh
1μ

≤ C
{
|(u0, h0)|Xγ,μ

+ |fu|Eu
0μ

+ |fh|Eh
0μ

+ (|gd|G1μ
+ ω|gd|G0μ

)

+ (|gu|F1μ + ω|e−Lωygu|E0μ) + (|(gv, gw)|F0μ + ω1/2|e−Lωy(gv, gw)|E0μ)

+ (|(gd, gu · νΣ)|G1
μ
+ ω|(gd, gu · νΣ)|G0

μ
)
}
,

(8.15)

where Lω = (∂t + ω −Δx)
−1/2.

These results are the main tool for the proof of of Theorem 8.1.2. Observe that
by the reductions explained above we may concentrate on the case (fu, gd, u0, h0) =
0. As the proof is quite involved and leads to some further interesting results on
the two-phase Neumann-to-Dirchlet operator for the Stokes problem, we postpone
it to the next section.

Remark 8.2.3. By means of a perturbation argument, we can easily extend The-
orem 8.2.2 to the case

(μ, σ) ∈ C1−
b (R̂n)× C1−

b (Rn−1) with |μ(x)− μ0| ≤ ε, |σ(x)− σ0| ≤ ε
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for x ∈ R̂n and x ∈ Rn−1, respectively, where μ0 > 0 is constant in the phases,
σ0 > 0 is constant, and ε > 0 is sufficiently small.

2.4 Bent Interfaces
Next we consider the case of a bent interface. So let the interface Σ be given as a
graph of a function φ : Rn−1 → R of class C3

b ; thus Σ = {(x, φ(x)) : x ∈ Rn−1}.
The normal νΣ is then given by

νΣ(x) = β(x)

[
−∇xφ(x)

1

]
, β(x) = 1/

√
1 + |∇xφ(x)|2,

and the Laplace-Beltrami operator for such a surface with

h̄(t, x) = h(t, (x, φ(x)))

reads as

ΔΣh = Δh̄− β2(∇2h̄∇φ|∇φ)− β2[Δφ− β2(∇2φ∇φ|∇φ)](∇φ|∇h̄).

By the reduction argument explained above we may assume

(fu, gd, gu · νΣ, u0, h0) = 0.

Set

ū(t, x, y) = u(t, x, y + φ(x)), π̄(t, x, y) = π(t, x, y + φ(x)),

for t ∈ J = R+, x ∈ Rn−1, y �= 0, and observe

∇u = ∇ū−∇φ⊗ ∂yū.

Then we obtain for the new variables (ū, π̄, h̄) the following problem. For conve-
nience we drop the bars, and write u = (v, w), g = (gv, gw) as before.

�(∂t + ω)u− μΔu+∇π = μB1(u, π) in R̂n,

div u = B2u in R̂n,

[[u]] = gu on Rn−1,

−[[μ∂yv]]− [[μ∇xw]] = (gv +∇φgw)/β +B3(u) on Rn−1,

−[[2μ∂yw]] + [[π]]− σΔh = (gw/β) +B4(u, h) on Rn−1,

(∂t + ω)h− w + (b|∇h) = fh +B5u+B6h on Rn−1,

u(0) = 0 in R̂n, h(0) = 0 on Rn−1.

(8.16)
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Here we have set

B1(u, π) = |∇φ|2∂2
yu− 2(∇φ|∇x)∂yu+ (∇φ)∂yπ − (Δφ)∂yu

B2u = (∇φ|∂yu),
B3(u) = −[[μ(∇xv + [∇xv]

T)]]∇φ+ ∂yv|∇φ|2

+ ([[μ∂yw]]/β
2 − ([[μ∇xw]]|∇φ))∇φ

B4(u, h) = −([[μ(∂yv +∇xw)]]|∇φ) + [[μ∂yw]]|∇φ|2 + σ(ΔΣh−Δh)

B5u = (β − 1)w − β(∇φ|v) = −β2|∇φ|2
1 + β

w − β(∇φ|v)

B6h = β2[(b|∇φ)− (b|en)|∇φ|2](∇φ|∇h).

Now suppose (u, π, h) belongs to the maximal regularity class. We estimate the
perturbations Bj as follows:

|B1(u, π)|Lp,μ(Lp) ≤ ‖∇φ‖L∞ [(2 + |∇φ|L∞)|∇2u|Lp,μ(Lp) + |∇π|Lp,μ(Lp)]

+ |Δφ|L∞ |∇u|Lp,μ(Lp),

|B2u|Lp,μ(H1
p)

≤ |∇φ|L∞ |∇2u|Lp,μ(Lp) + (|∇2φ|L∞ + |∇φ|L∞)|∇u|Lp,μ(Lp),

|∂tB2u|Lp,μ(H
−1
p ) ≤ |∇φ∂tu|Lp,μ(Lp) ≤ |∇φ|L∞ |∂tu|Lp,μ(Lp),

|B3(u)|W s
p,μ(Lp) ≤ C|∇φ|L∞(1 + |∇φ|L∞)|∇u|W s

p,μ(Lp)

|B4(u, h)|W s
p,μ(Lp) ≤ C|∇φ|L∞(1 + ‖∇φ‖L∞)[|∇u|W s

p,μ(Lp) + |∇2h|W s
p,μ(Lp)]

+ C|∇2φ|L∞ |∇φ|L∞ |∇h|W s
p,μ(Lp),

|B5u|W 1−1/2p
p,μ (Lp)

≤ 2|∇φ|L∞ |u|
W

1−1/2p
p,μ (Lp)

.

Here C denotes a constant only depending on the parameters μ and σ, and we

have set s = 1/2− 1/2p. For the estimates in Lp,μ(J ;W
1−1/p
p (Rn−1)) we obtain

|B3(u)|Lp,μ(W 2s
p ) ≤ C|∇φ|L∞(1 + |∇φ|L∞)∇u|Lp,μ

(W 2s
p )

+ C(1 + |∇φ|L∞)|∇2φ|∞|∇u|Lp,μ(Lp)

|B4(u, h)|Lp,μ(W 2s
p ) ≤ C(1 + |∇φ|L∞){|∇φ|L∞ |∇u|Lp,μ(W 2s

p )

+ |∇φ|L∞ |∇2h|Lp,μ(W 2s
p ) + |∇2φ|L∞ [|∇u|Lp,μ(Lp)

+ |∇h|Lp,μ(H1
p)
]

+ C(|∇3φ|L∞ + |∇2φ|2L∞)|∇φ|L∞ |∇h|Lp,μ(Lp)}.
|B5u|Lp,μ(W

1+2s
p ) ≤ C|∇φ|L∞{|u|Lp,μ(W

1+2s
p ) + |∇2φ|L∞ |u|Lp,μ(H1

p)
}

+ C(|∇3φ|L∞ + |∇2φ|2L∞)|u|Lp,μ(Lp).

Here C denotes a constant only depending on μ, σ, p, and 2s = 1 − 1/p. To
estimate B6h we note that Fh is a Banach algebra since p > n+ 2. This yields

|B6h|Fh
≤ C|∇φ|L∞ |b||h|Eh

.
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To solve the problem (8.16), let z = (u, π, [[π]], h) ∈ 0E, where 0E means the
solution space with zero time trace at t = 0, f := (0, 0, gu, gv/β, gw/β, fh) ∈ 0F,
the space of data with zero time trace, and let B : 0E → 0F is defined by

Bz = (B1(u, π), 0, B2u,B3(u, [[π]], h), B4(u, h), B5u+B6h).

Denoting the isomorphism from 0E to 0F defined by the left-hand side of (8.16)
by L, we may rewrite problem (8.16) in abstract form as

Lz = Bz + f. (8.17)

The above estimates for the components of B imply

|Bz|F ≤ C|∇φ|L∞ |z|E +M [|u|Lp,μ(H1
p)

+ |∇h|W s
p,μ(Lp)∩Lp,μ(H1

p)
],

with a constant C > 0 depending only on the parameters and M > 0 also de-
pending on |∇φ|BUC2 . Let η > 0 be given and suppose |∇φ|L∞ < η. By means of
an interpolation argument we find a constant γ > 0, depending only on p and a
constant M(η) > 0, such that

|Bz|F ≤ C[2η + ω−γM(η)]|z|E, z ∈ 0E.

Choosing first η > 0 small and then ω > 0 large enough, we can solve (8.17) by a
Neumann series argument.

Remark 8.2.4. (i) By means of a perturbation argument, we can extend the above
results for bent half-spaces to the case

(μ, σ) ∈ C1−
b (Rn \ Σ)× C1−

b (Σ) with |μ(x)− μ0| ≤ ε, |σ(x)− σ0| ≤ ε

for x ∈ Rn \ Σ and x ∈ Σ, respectively, where μ0 > 0 is constant in the phases,
σ0 > 0 is constant, and ε > 0 is sufficiently small.

(ii) Estimates (8.15) remain valid in the case of a bent half-space, and as we have
seen in Chapter 7, we may replace the terms involving the semigroup e−Lωy by
the weaker norms involving only the norms of the boundary data, e.g. the terms
ω|e−Lωygu|E0μ

can be weakend to ω1−1/p|gu|Lp
. Only these estimates are needed

for the localization in the next subsection.

2.5 General Bounded Domains
Here we use once more the method of localization. By assumption, ∂Ω is of class C3

and Σ will eventually be even real analytic, so in particular of class C4. We cover Σ
by N balls B(xj , r/2) with radius r > 0 and centers xj ∈ Σ such that Σ∩B(xj , r)
can be parameterized over the tangent space TxjΣ by a function θj ∈ C3 such
that |∇θj |L∞ ≤ η, with η > 0 small, as in the previous subsection. We extend
these functions θj to all of Txj

Σ retaining the bound on ∇θj . This way we have
created N bent interfaces Σj to which the result proved in the previous subsection
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applies. We also suppose that B(xj , r) ⊂ Ω for each j. Set U := Ω\
⋃N

j=1 B̄r/2(xj)
and Uj = B(xj , r), j = 1, . . . , N . The open set U consists of one component U0

characterized by ∂Ω ⊂ Ū0 and an open set, say UN+1, which is interior to Σ,
i.e., UN+1 ⊂ Ω1. Fix a partition of unity {ϕj}N+1

j=0 subordinate to the covering

{Uj}N+1
j=0 of Ω, i.e., ϕj ∈ D(Rn), 0 ≤ ϕj ≤ 1, and

∑N+1
j=0 ϕj ≡ 1. Note that ϕ0 = 1

in a neighbourhood of ∂Ω. Let ϕ̃j denote cut-off functions with support in Uj such
that ϕ̃j = 1 on the support of ϕj . We extend the coefficients μ, σ in each chart
Uj as in Section 6.4.

Let z := (u, π, q, h) with q = [[π]] be a solution of (8.1) where we may assume
(fu, gd, u0, h0) = 0 and (gb · ν∂Ω, gu · νΣ) = 0. We then set uj = ϕju, πj = ϕjπ,
qj = ϕjq, hj = ϕjh, as well as gbj = ϕjgb, guj = ϕjgu, gj = ϕjg, and fhj = ϕjfh.
Then for j = 1, . . . , N , zj := (uj , πj , qj , hj) satisfies the problem

�(∂t + ω)uj − μjΔuj +∇πj = Fj(u, π) in Rn\Σj ,

div uj = (∇ϕj |u) in Rn\Σj ,

[[uj ]] = guj on Σj ,

[[−μj([∇uj ] + [∇uj ]
T) + πj ]]νΣj

− σj(ΔΣj
hj)νΣj

= gj +Gj(u, h) on Σj ,

(∂t + ω)hj − (uj |νΣj
) + (b0|∇Σhj) = fhj + Fhj(h) on Σj ,

uj(0) = 0 in Rn\Σj , hj(0) = 0 on Σj .
(8.18)

Here we used the abbreviations

Fj(u, π) = π∇ϕj − μ[Δ, ϕj ]u,

−Gj(u, h) = [[μ(∇ϕj ⊗ u+ u⊗∇ϕj)]]νΣj
− σj [ΔΣj

, ϕj ]hνΣj
,

where [A,B] = AB −BA, and

Fhj(h) = (b1|∇Σh)ϕj .

For j = 0 we have the standard one-phase Stokes problem with parameters �2,μ2

on Ω with Dirichlet boundary conditions on ∂Ω, i.e.,

�2(∂t + ω)u0 − μ0Δu0 +∇π0 = F0(u, π) in Ω,

div u0 = (∇ϕ0|u) in Ω,

u0 = gb0 on ∂Ω,

u0(0) = 0 in Ω.

For j = N + 1 we obtain the one-phase Stokes problem on Rn with parameters
�1,μ1, i.e.,

�1(∂t + ω)uN+1 − μ1ΔuN+1 +∇πN+1 = FN+1(u, π) in Rn,

div uN+1 = (∇ϕN+1|u) in Rn,

uN+1(0) = 0 in Rn.
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Concentrating on j = 1, . . . , N , we first note that [Δ, ϕj ] are differential operators
of order 1, hence if u ∈ 0Eu then

[Δ, ϕj ]u ∈ 0H
1/2
p,μ (J ;Lp(R

n)n) ∩ Lp,μ(J ;H
1
p (R

n \ Σj)
n).

Since (fu, gd, u0, h0) = 0 and (gb · ν∂Ω, gu · νΣ) = 0, the pressure π belongs to

π ∈ 0H
α
p,μ(J ;Lp(Ω)) ∩ Lp,μ(J ;H

1
p (Ω \ Σ))

by Proposition 8.2.1, hence we have

Fj(u, π) ∈ 0H
α
p,μ(J ;Lp(R

n)n) ∩ Lp,μ(J ;H
1
p (R

n \ Σj)
n),

for some fixed 0 < α < 1
2 − 1

2p . Similarly we have

∇ϕj(u|νΣj
) + (∇ϕj |νΣj

)u ∈ 0W
1−1/2p
p,μ (J ;Lp(Σj)

n) ∩ Lp,μ(J ;W
2−1/p
p (Σj)

n),

and since [ΔΣj , ϕj ] is of order 1 as well, we obtain

[ΔΣj , ϕj ]h ∈ 0H
1
p,μ(J ;W

1−1/p
p (Σj)) ∩ Lp,μ(J ;W

2−1/p
p (Σj)).

This shows

Gj(u, h) ∈ 0W
1−1/2p
p,μ (J ;Lp(Σj)

n) ∩ Lp,μ(J ;W
2−1/p
p (Σj)

n).

The terms Fhj(h) can be estimated in the following way.

|Fhj(h)|Fh
≤ C|b1|Fh

|h|Fh
≤ Cη|h|Eh

,

by the Banach algebra property of Fh, provided |b1|Fh
≤ η. We assume this for

a moment, and return later to the general case. In order to be able to apply
Proposition 8.2.1, we decompose

Fj(u, π) = F̃j(u, π) +∇ψj ,

such that divF̃j(u, π) = 0 in Rn\Σj and ([[F̃j(u, π)]]|νΣj
) = 0 on Σj . We may take

F̃j(u, π) as the Helmholtz projection of Fj(u, π) in Rn. Then

F̃j(u, π) ∈ 0H
α
p,μ(J ;Lp(R

n)n) ∩ Lp,μ(J ;H
2α
p (Rn)n).

Also, we decompose uj = ũj +∇φj , where φj solves the transmission problem

Δφj = (∇ϕj |u) in Rn\Σj ,

[[�φj ]] = 0 on Σj ,

[[∂νφj ]] = 0 on Σj .

(8.19)
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Note that

∇φj ∈ 0H
1
p,μ(J ;H

1
p (R

n \ Σj)
n) ∩ 0H

1/4
p,μ (J ;H

2
p (R

n \ Σj)
n), (8.20)

by Proposition 8.6.1 as Σj is C3. For the jump of its trace on Σj we then have

[[∇φj ]] ∈ 0H
1
p,μ(J ;W

1−1/p
p (Σj)

n) ∩ 0H
1/4
p,μ (J ;W

2−1/p
p (Σj)

n),

and its normal part vanishes, by construction. Furthermore, we have

[[μ∇2φj ]] ∈ 0W
1−1/2p
p,μ (J ;Lp(Σj)

n×n) ∩ 0H
1/4
p,μ (J ;W

1−1/p
p (Σj)

n×n).

Then we set
π̃j = πj − ψj + �(∂t + ω)φj − μΔφj ,

and observe that on Σj

q̃j := [[π̃j ]] = [[πj ]]− [[μΔφj ]] = [[πj ]]− [[μ(∇ϕj |u)]],

since by construction ψj and �φj have no jump across Σj . Now z̃j := (ũj , π̃j , q̃j , hj)
satisfies the problem

�(∂t + ω)ũj − μjΔũj +∇π̃j = F̃j(u, π) in Rn\Σj ,

div ũj = 0 in Rn\Σj ,

[[ũj ]] = guj − [[∇φj ]] on Σj ,

[[−μ([∇ũj ] + [∇ũj ]
T) + π̃j ]]νΣj − σj(ΔΣjhj)νΣj = gj + G̃j(u, h) on Σj ,

(∂t + ω)hj − (ũj |νΣj
) + (b0|∇Σhj) = fhj + F̃hj(h) on Σj ,

ũj(0) = 0 in Rn\Σj , hj(0) = 0 on Σj .
(8.21)

Here G̃j and G̃hj are given by

G̃j(u, h) = Gj(u, h) + [[2μ∇2φj ]]νΣj
− [[μ(∇ϕj |u)]]νΣj

,

F̃hj(h) = Fhj(h) + ∂νΣj
φj .

For the remaining charts with index j = 0, N + 1, i.e., the one-phase problems,
the procedure is similar.

We write (8.21) abstractly as

Lj z̃j = Hj +Bjz,

and by Theorem 8.1.2 for bent interfaces we obtain an estimate of the form

|z̃j |E ≤ C0(|Hj |F + |Bjz|F),

with some constant C0 independent of j. Here E means the space of solutions and
F the space of data, equipped with the norms including the terms containing ω, as
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defined by (8.15); see also Remark 8.2.4(ii). Since all components of Bjz (except

for F̃hj(h)) have some extra regularity, there is an exponent γ > 0 and a constant
C1 independent of j such that

|Bjz|F ≤ ω−γC1|z|E.

In addition, by Proposition 8.2.1 we obtain

|π̃j |Lp,μ(J;Lp(Ω)) ≤ C1|z̃|γE0μ
|z̃|1−γ

E1μ
≤ C2(|Hj |F + ω−γ |z|E).

Applying ∂t +ω to (8.19) and using the equation for u and the regularity of π, we
also obtain

|(∂t + ω)φj |Lp,μ(J;Lp(Ω)) ≤ C3(|Hj |F + ω−γ |z|E),
and then also

|zj |E ≤ C4|Hj |F + ω−γ |z|E.
Summing up over all j yields z =

∑
j zj , hence

|z|E ≤ C5|H|F + ω−γC7|z|E.

Therefore, choosing ω > 0 large enough, we obtain the a priori estimate

|z|E ≤ C6|H|F. (8.22)

Hence we may conclude that the operator L : 0E → 0F which maps solutions to
their data is injective and has closed range, i.e., L is a semi-Fredholm operator.

In case |b1|Fh
is not small, we also have to localize in time. For this purpose

we first find K ∈ N such that |τ3Kb1|Fh
≤ η/2, where τc denotes translation by c.

Then we decompose the interval [0, a] into equal parts [tl, tl+1), where tl = δl, l =
0, . . . , 3K−1, δ = a/3K and introduce a partition of unity for this decomposition,
for example with

χ(s) = 1 , |s| ≤ 1, χ(s) = 2− |s|, 1 ≤ |s| ≤ 2, χ(s) = 0, |s| ≥ 2,

we set

χ0(s) = χ(s/δ), χK(s) = 1−
K−1∑
l=0

χl(s),

χl(s) = χ(s/δ − 3l), l = 1, . . . ,K − 1,

and we let χ̃l ∈ D(R) denote cut off functions with are 1 on the support of χl. Then
localizing also in time we obtain as above problems for ujl = uϕjχl, πjl = πϕjχl,
hjl = hϕjχl. The price we have to pay are extra terms coming from the time
derivatives of u and h, i.e., u∂tχl and h∂tχl, which do not matter. Then if δ > 0
is sufficiently small we obtain for

Fhjl = χl(bjl|∇Σϕj)h− χlϕj(b− bjl|∇Σh)
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an estimate of the form

|Fhjl|Fh
≤ C

(
|χlϕj(b− bjl)|∞|h|Fh

+ C|b|Fh
|h|

Lp,μl
(R+;W

1−1/p
p (Σ))

,

where μ0 = μ, and μl = 1 for l ≥ 1. This implies by interpolation, with some
γ > 0

|Fhjl|Fh
≤ C(δ + ω−γ)|h|Eh

≤ η|h|Eh
,

provided δ > 0 is sufficiently small and ω > 0 is sufficiently large. Now we may
proceed as before.

It remains to prove surjectivity of L. For this we employ again the con-
tinuation method for semi-Fredholm operators. The estimates derived above are
uniform in the densities �j and also in the viscosities μj , as long as these param-
eters are bounded and bounded away from zero. Hence L = L(�1, �2,μ1,μ2) is
surjective, if L(1, 1, 1, 1) has this property. Next we introduce an artificial con-
tinuation parameter τ ∈ [0, 1] by replacing the equation for the free boundary h
with

(∂t + ω)h+ τ(−ΔΣ)
1/2h+ (1− τ){−(u|νΣ) + (b|∇Σh)} = fh on Σ.

The arguments in the next section show that the corresponding problem is well-
posed for each τ ∈ [0, 1] in the case of a flat interface, with bounds independent
of τ ∈ [0, 1]. Therefore, the same is true for bent interfaces and then by the above
estimates also for a general geometry. Thus we only need to consider the case
�1 = �2 = μ1 = μ2 = τ = 1.

To prove surjectivity in this case, note that the equation for h is decoupled
from those for u and π, and it is uniquely solvable in the right regularity class
because of maximal regularity for the Laplace-Beltrami operator, see Section 6.4.
So we may now set h = 0. Next we solve the parabolic transmission problem to
remove the jump of u across Σ and the inhomogeneity g in the stress boundary
condition. The remaining problem is a one-phase Stokes problem on the domain
Ω, which is solvable by Theorem 7.3.1. This shows that we have surjectivity in the
case �1 = �2 = μ1 = μ2 = τ = 1, hence also for arbitrary �, μ and τ = 0 and the
proof of Theorem 8.1.2 is complete.

8.3 The Model Problem: Harmonic Analysis

The proof of Theorem 8.2.2 for constant coefficients and flat interface is divided
into several steps, wherein the Dirichlet-to-Neumann operator for the two-phase
Stokes problem will play an essential role.
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3.1 The Transmission Problem
Let us consider the problem

�(∂t + ω)u− μΔu+∇π = 0 in R̂n,

div u = 0 in R̂n,

[[u]] = 0, u = ub on Rn−1,

u(0) = 0 in R̂n,

(8.23)

and prove the following result.

Proposition 8.3.1. Let 1 < p < ∞, 1 ≥ μ > 1/p, and assume that �j and μj are
positive constants, j = 1, 2, and set J = R+. Then for each ω > 0, Problem (8.23)
admits a unique solution (u, π) with

u ∈ 0H
1
p,μ(J ;Lp(R

n)n) ∩ Lp,μ(J ;H
2
p (R̂

n)n), π ∈ Lp,μ(J ; Ḣ
1
p (R̂

n))

if and only if the data ub = (vb, wb) satisfy the following regularity assumptions

(a) vb ∈ 0W
1−1/2p
p,μ (J ;Lp(R

n−1)n−1) ∩ Lp,μ(J ;W
2−1/p
p (Rn−1)n−1),

(b) wb ∈ 0H
1
p,μ(J ; Ẇ

−1/p
p (Rn−1)) ∩ Lp,μ(J ;W

2−1/p
p (Rn−1)).

Proof. (i) Assume that we have a solution in the proper regularity class. Then we
may employ the Laplace transform in t and the Fourier transform in the tangential
variables x ∈ Rn−1, to obtain the following boundary value problem for a system
of ordinary differential equations on Ṙ :

ω2
j v̂j − μj∂

2
y v̂j + iξπ̂j = 0, (−1)jy > 0,

ω2
j ŵ − μj∂

2
yŵj + ∂yπ̂j = 0, (−1)jy > 0,

(iξ|v̂) + ∂yŵ = 0, y �= 0,

v̂(0) = v̂b, ŵ(0) = ŵb.

Here we have set ω2
j = �jλ+ μj |ξ|2, j = 1, 2, and we note that the co-variable of

∂t + ω is called λ, hence Reλ ≥ ω > 0 in the sequel. This system of equations is
easily solved to the result⎡⎣ v̂2

ŵ2

π̂2

⎤⎦ = e−ω2y/
√
μ2

⎡⎣ a2√
μ2

ω2
(iξ|a2)
0

⎤⎦+ α2e
−|ξ|y

⎡⎣ −iξ
|ξ|
�2λ

⎤⎦ , (8.24)

for y > 0, and⎡⎣ v̂1
ŵ1

π̂1

⎤⎦ = eω1y/
√
μ1

⎡⎣ a1

−
√
μ1

ω1
(iξ|a1)
0

⎤⎦+ α1e
|ξ|y

⎡⎣ −iξ
−|ξ|
�1λ

⎤⎦ , (8.25)
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for y < 0. Here ai ∈ Rn−1 and αi have to be determined by the boundary condi-
tions v̂(0) = v̂b and ŵ(0) = ŵb. We have

a2 − iξα2 = v̂b = a1 − iξα1,

and √
μ2

ω2
(iξ|a2) + |ξ|α2 = ŵb = −

√
μ1

ω1
(iξ|a1)− |ξ|α1.

This yields

aj = v̂b + iξαj , j = 1, 2,

α2 = −ω2 +
√
μ2|ξ|

�2λ|ξ|
(
√
μ2(iξ|v̂b)− ω2ŵb),

α1 = −ω1 +
√
μ1|ξ|

�1λ|ξ|
(
√
μ1(iξ|v̂b) + ω1ŵb).

(8.26)

(ii) According to Chapter 6, the velocity u has the correct regularity provided the
pressure gradient is in Lp,μ(J ;Lp(R

n)), and provided

ub ∈ 0W
1−1/2p
p,μ (J ;Lp(R

n−1,Rn)) ∩ Lp,μ(J ;W
2−1/p
p (Rn−1,Rn)).

In particular this regularity of ub is also necessary. Note that Ẇ
−1/p
p (Rn−1) ↪→

W
−1/p
p (Rn−1) and Example 4.5.16(iii) yields the embedding

0H
1
p,μ(J ; Ẇ

−1/p
p (Rn−1)) ∩ Lp,μ(J ;W

2−1/p
p (Rn−1)) ↪→ 0W

1−1/2p
p,μ (J ;Lp(R

n−1)).
(8.27)

(iii) We will now recall some operators that will play a crucial role in our subse-
quent analysis. We set G := ∂t + ω in X0 := Lp,μ(J ;Lp(R

n−1)) with domain

D(G) = 0H
1
p,μ(J ;Lp(R

n−1)).

Then by Proposition 3.2.9 we know that G is closed, invertible and sectorial with
angle π/2. Moreover, by Proposition 3.3.9 and Theorem 4.3.14, G admits an H∞-
calculus in X0 with H∞-angle π/2, the symbol of G is λ.

Next we set Dn := −Δ, the Laplacian in Lp(R
n−1) with domain D(Dn) =

H2
p (R

n−1). We know from Theorem 6.1.8 that Dn is closed and sectorial with
angle 0, and it admits a bounded H∞-calculus, which is even R-bounded with
RH∞-angle 0. These results also hold for the canonical extension of Dn to X0,

and also for the fractional power D
1/2
n of Dn. Note that the domain of D

1/2
n is

D(D
1/2
n ) = Lp,μ(J ;H

1
p (R

n−1)). The symbol of Dn is |ξ|2, that of D1/2
n is given by

|ξ|, where ξ means the covariable of x. By the Dore-Venni theorem, Theorem 4.5.9,
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and Corollary 4.5.11, the parabolic operators Lj := �jG + μjDn with natural
domain

D(Lj) = D(G) ∩ D(Dn) = 0H
1
p,μ(J ;Lp(R

n−1)) ∩ Lp,μ(J ;H
2
p (R

n−1))

are closed, invertible and sectorial with angle π/2. Moreover, Lj also admits a
bounded H∞-calculus in X0 with H∞-angle π/2. The same results are valid for

the operators Fj = L
1/2
j , their H∞-angle is π/4, and their domains are

D(Fj) = D(G1/2) ∩ D(D1/2
n ) = 0H

1/2
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;H
1
p (R

n−1)).

The symbol of Lj is ω2
j = �jλ+ μj |ξ|2 and that of Fj is ωj =

√
�jλ+ μj |ξ|2.

Let R denote the Riesz operator with symbol ζ = ξ/|ξ|, which is a bounded
linear operator on W s

p (R
n), and hence also on Lp,μ(J ;W

s
p (R

n)) by canonical ex-
tension.

(iv) Let β2 = �2λα2. Then the transform of the pressure π2 in Rn
+ is given

by e−|ξ|yβ2. The pressure gradient will be in X0 provided the inverse transform b2
of β2 is in the space Lp,μ(J ; Ẇ

1−1/p
p (Rn−1)). In fact, e−|ξ|y is the symbol of the

Poisson semigroup P (·) in Lp,μ(R
n−1), and its negative generator is D

1/2
n , hence

D
1/2
n P (·)b2 ∈ Lp,μ(R+;Lp(R

n−1)) if and only b2 ∈ Ẇ
1−1/p
p (Rn−1). This result

extends canonically to Lp,μ(J ;Lp(R
n
+)).

Therefore, let us look more closely at β2. We easily obtain

β2 = �2
λ

|ξ| ŵb + (
√
μ2ω2 + μ2|ξ|)(ŵb − (iζ|v̂b)),

where ζ = ξ/|ξ|. We recall that Ḋ
1/2
n := F−1(|ξ|F ·) : Ẇ s

p (R
n−1) → Ẇ s−1

p (Rn−1)
is an isomorphism.

With the operators introduced above, b2 can be represented by

b2 = �2GḊ−1/2
n wb + (

√
μ2F2 + μ2D

1/2
n )(wb − i(R|vb)) =: b21 + b22.

Due to (8.27) and

0W
1−1/2p
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;W
2−1/p
p (Rn−1)) = DFj

(2− 1/p, p),

see Definition 3.4.1 for the spaces DA(k + α, p), and the second term b22 is in

DFj
(1− 1/p, p) = 0W

1/2−1/2p
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1)),

which embeds into Lp,μ(J ; Ẇ
1−1/p
p (Rn−1)).

Thus it remains to look at the first term b21 = �2GD
−1/2
n wb. Since

GḊ−1/2
n : 0H

1
p,μ(J ; Ẇ

−1/p
p (Rn−1)) → Lp,μ(J ; Ẇ

1−1/p
p (Rn−1))

is bounded and invertible, we see that the condition wb ∈ 0H
1
p,μ(J ; Ẇ

−1/p
p (Rn−1))

is necessary and sufficient for b21 ∈ Lp,μ(J ; Ẇ
1−1/p
p (Rn−1)). Of course, similar

arguments apply for the lower half-plane. �
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3.2 The Dirichlet-to-Neumann Operator for the Two-Phase Stokes Equation
The main ingredient in analyzing Problem (8.14) is the Dirichlet-to-Neumann op-
erator for this problem. It is defined as follows. Let (u, π) be the solution of the
Stokes problem (8.23) with Dirichlet boundary condition ub on Rn, see Proposi-
tion 8.3.1. We then define the Dirichlet-to-Neumann operator by means of

(DN )ub = −[[S(u, π)]]en = −[[μ
(
∇u+ [∇u]T

)
]]en + [[π]]en. (8.28)

As above we split u into u = (v, w), and ub into ub = (vb, wb). Then we obtain

(DN )ub = (−[[μ∂yv]]− [[μ∇xw]],−[[2μ∂yw]] + [[π]]). (8.29)

We will now formulate and prove the main result of this subsection.

Theorem 8.3.2. The Dirichlet-to-Neumann operator DN for the Stokes problem is
an isomorphism from the Dirichlet space ub = (vb, wb) with

vb ∈ 0W
1−1/2p
p,μ (J ;Lp(R

n−1,Rn−1)) ∩ Lp,μ(J ;W
2−1/p
p (Rn−1,Rn−1)),

wb ∈ 0H
1
p,μ(J ; Ẇ

−1/p
p (Rn−1)) ∩ Lp,μ(J ;W

2−1/p
p (Rn−1))

onto the Neumann space g = (gv, gw) with

gv ∈ 0W
1/2−1/2p
p,μ (J ;Lp(R

n−1,Rn−1)) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1,Rn−1)),

gw ∈ Lp,μ(J ; Ẇ
1−1/p
p (Rn−1)).

Proof. (i) Let (v̂1, ŵ1, π̂1) and (v̂2, ŵ2, π̂2) be as in (8.24)–(8.25). We may now
compute the symbol of the Dirichlet-to-Neumann operator to the result

(DN )ûb =

[
ω1

√
μ1a1 + ω2

√
μ2a2 − (α1μ1 + α2μ2)|ξ|iξ − [[μ]]iξŵb

2i(μ2a2 − μ1a1|ξ) + 2(α2μ2 − α1μ1)|ξ|2 + λ(α2�2 − α1�1)

]
where the functions αj and aj are given in (8.26). Simple algebraic manipulations
then yield the following symbol

(DN )(λ, ξ) =

[
α+ βζ ⊗ ζ iγζ
−iγζT α+ δ

]
, (8.30)

where ζ = ξ/|ξ| and

α =
√
μ1ω1 +

√
μ2ω2, β = (μ1 + μ2)|ξ|,

γ = (
√
μ2ω2 −

√
μ1ω1)− [[μ]]|ξ|,

δ = (ω2
1 + ω2

2)/|ξ| = β + (�1 + �2)λ/|ξ|.
(8.31)

Next we want to compute the inverse of the Dirichlet-to-Neumann operator.
Thus we have to solve the equation (DN )ub = g. As before we use the decompo-
sition ub = (vb, wb) and g = (gv, gw). Then in transformed variables we have the
system

αv̂b + βζ(ζ|v̂b) + iγζŵb = ĝv,

−iγ(ζ|v̂b) + (α+ δ)ŵb = ĝw.
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This yields
v̂b = α−1[ĝv − ζβ(ζ|v̂b) + iγŵb)]. (8.32)

(ii) This last equation shows that it is sufficient to determine (v̂b|ζ) and ŵb. If the
inverse transforms of β(v̂b|ζ) and γŵb belong to the class of gv, then vb is uniquely
determined and has the claimed regularity. Indeed, α is the symbol of

F :=
√
μ1F1 +

√
μ2F2, D(F ) = 0H

1/2
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;H
1
p (R

n−1)),

which is a bounded invertible operator from its domain into Lp,μ(J ;Lp(R
n)), and

hence also from DF (2− 1/p, p) into DF (1− 1/p, p). Here we note that

DF (θ, p) = DFj (θ, p) = 0W
θ/2
p (J ;Lp(R

n)) ∩ Lp(J ;W
θ
p (R

n)),

for θ ∈ (0, 2), θ �= 1. Therefore, F−1gv belongs to DF (2 − 1/p, p) if and only if

gv ∈ DF (1−1/p, p). Next we note that γ is the symbol of
√
μ2F2−

√
μ1F1−[[μ]]D

1/2
n

which is bounded from DF (2 − 1/p, p) to DF (1 − 1/p, p), and β is the symbol of

(μ1 + μ2)D
1/2
n which has the same mapping properties.

(iii) It remains to show that wb and (R|vb) belong to DF (2− 1/p, p). For ŵb and
(ζ|v̂b) we have the equations

(α+ β)(ζ|v̂b) + iγŵb = (ζ|ĝv),
−iγ(ζ|v̂b) + (α+ δ)ŵb = ĝw

since |ζ| = 1. Solving this 2-D system we obtain

ŵb = m−1[iγ(ζ|ĝv) + (α+ β)ĝw],

(ζ|v̂b) = m−1[(α+ δ)(ζ|ĝv)− iγĝw],
(8.33)

where
m = (α+ β)(α+ δ)− γ2.

Since δ = β + (�1 + �2)λ/|ξ| we obtain the following relation for m

m = (α+ β)[(�1 + �2)
λ

|ξ| + 4
( 1

η1
+

1

η2

)−1

] =: (α+ β)n,

where η1 =
√
μ1ω1 + μ2|ξ| and η2 =

√
μ2ω2 + μ1|ξ|. This yields

ŵb =
iγ

(α+ β)n
(ζ|ĝv) +

ĝw
n
,

(ζ|v̂b) =
(�1 + �2)λ/|ξ|

(α+ β)n
(ζ|ĝv) +

1

n
[(ζ|ĝv)−

iγ

α+ β
ĝw].

(8.34)

We define the operators Tj by means of their symbols ηj , i.e.,

T1 :=
√
μ1F1 + μ2D

1/2
n , T2 :=

√
μ2F2 + μ1D

1/2
n , D(Tj) = D(Fj) = D(F ).
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Then by the Dore-Venni theorem, the operators Tj are invertible, sectorial with
angle π/4. Moreover, due to Corollary 4.5.11 they admit an H∞-calculus with
H∞-angle π/4. The harmonic mean T of T1 and T2, i.e.,

T := 2T1T2(T1 + T2)
−1 = 2(T−1

1 + T−1
2 )−1

enjoys the same properties, as another application of the Dore-Venni theorem
shows. The symbol of T is given by η := 2η1η2/(η1 + η2).

Next we consider the operator GD
−1/2
n with domain

D(GD−1/2
n ) = {h ∈ R(D1/2

n ) : D−1/2
n h ∈ D(G)}

= 0H
1
p,μ(J ; Ḣ

−1
p (Rn−1)) ∩ Lp,μ(J ;Lp(R

n−1)).

The inclusion from left to right in the last equality is obvious. The converse can
be seen as follows. Let h ∈ 0H

1
p,μ(J ; Ḣ

−1
p (Rn−1)) ∩ Lp,μ(J ;Lp(R

n−1)) and define

g := Ḋ
−1/2
n h. Then

g ∈ 0H
1
p,μ(J ;Lp(R

n−1)) ∩ Lp,μ(J ; Ḣ
1
p (R

n−1)) ↪→ Lp,μ(J ;H
1
p (R

n−1)),

and D
1/2
n g = Ḋ

1/2
n g = h ∈ Lp,μ(J ;Lp(R

n−1)), which implies that h ∈ R(D
1/2
n )

and g = Ḋ
−1/2
n h = D

−1/2
n h ∈ D(G). By Corollary 4.5.12 the operator GD

−1/2
n is

closed, sectorial and also admits a bounded H∞-calculus with H∞-angle π/2 on
X0 = Lp,μ(J ;Lp(R

n−1)). Its symbol is given by λ/|ξ|.
Finally, we consider the operator

N := (�1 + �2)GD−1/2
n + 2T, (8.35)

with domain

D(N) = D(GD−1/2
n ) ∩ D(T ) = 0H

1
p,μ(J ; Ḣ

−1
p (Rn−1)) ∩ Lp,μ(J ;H

1
p (R

n−1));

recall (8.27). By the Dore-Venni theorem N is closed, invertible, and admits a
bounded H∞-calculus as well, with H∞-angle π/2. Its symbol is n.

The operator with symbol γ is given by T2−T1, and the operator with symbol
α + β by T1 + T2. For the inverse transforms wb and (R|vb) of ŵb and (ζ|v̂b) we
therefore obtain the representations

wb = N−1[(T2 − T1)(T1 + T2)
−1i(R|gv) + gw]

(R|vb) = (T1 + T2)
−1(�1 + �2)GD−1/2

n N−1(R|gv)
+N−1(R|gv)− (T2 − T1)(T1 + T2)

−1N−1igw .

(8.36)

We note that N−1 has the following mapping properties

N−1 : Lp,μ(J ;Lp(R
n−1)) → 0H

1
p,μ(J ; Ḣ

−1
p (Rn−1)) ∩ Lp,μ(J ;H

1
p (R

n−1))

↪→ Lp,μ(J ;Lp(R
n−1)),

N−1 : Lp,μ(J ; Ḣ
1
p (R

n−1)) → 0H
1
p,μ(J ;Lp(R

n−1)) ∩ Lp,μ(J ; Ḣ
2
p (R

n−1))

↪→ Lp,μ(J ;Lp(R
n−1)).
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Therefore by three-fold real interpolation

N−1 : Lp,μ(J ; Ẇ
1−1/p
p (Rn−1))

→ 0H
1
p,μ(J ; Ẇ

−1/p
p (Rn−1)) ∩ Lp,μ(J ;W

2−1/p
p (Rn−1)).

(8.37)

Moreover, N−1 maps 0W
1/2−1/2p
p,μ (J ;Lp(R

n−1)) into

0W
3/2−1/2p
p,μ (J ; Ḣ−1

p (Rn−1)) ∩ 0W
1/2−1/2p
p,μ (J ;H1

p (R
n−1)). (8.38)

Next we note that the operators Tj(T1 + T2)
−1 are bounded in DF (1− 1/p, p), as

is the Riesz transform R, and the assertion for wb follows now from (8.36)–(8.37)
and

0W
1/2−1/2p
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1)) ↪→ Lp,μ(J ; Ẇ

1−1/p
p (Rn−1)).

The assertions for (R|vb) follow readily from (8.27) and (8.36)–(8.38). �

We can now formulate our second main result of this section concerning the
solvability of the problem

�(∂t + ω)u− μΔu+∇π = 0 in R̂n,

div u = 0 in R̂n,

−[[μ∂yv]]− [[μ∇xw]] = gv on Rn−1,

−[[2μ∂yw]] + [[π]] = gw on Rn−1,

[[u]] = 0 on Rn−1,

u(0) = 0 in R̂n.

(8.39)

Corollary 8.3.3. Let 1 < p < ∞, 1 ≥ μ > 1/p, and assume that �j and μj are
positive constants, j = 1, 2, and set J = R+. Then for each ω > 0, (8.39) admits
a unique solution (u, π) with

u ∈ 0H
1
p,μ(J ;Lp(R

n,Rn)) ∩ Lp,μ(J ;H
2
p (R̂

n,Rn)), π ∈ Lp,μ(J ; Ḣ
1
p (R̂

n)),

if and only if g = (gv, gw) satisfies the following regularity assumptions

(a) gv ∈ 0W
1/2−1/2p
p,μ (J ;Lp(R

n−1,Rn−1)) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1,Rn−1)),

(b) gw ∈ Lp,μ(J ; Ẇ
1−1/p
p (Rn−1)).

Proof. Let ub := (vb, wb) := (DN )−1(gv, gw), and let (u, π) be the solution of
(8.23). Thanks to Theorem 8.3.2 and Proposition 8.3.1, (u, π) satisfies the regu-
larity assertion of the Corollary, and it is the unique solution of (8.39) due to the
definition of DN . �
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3.3 The Two-Phase Stokes Problem with Free Boundary
Next we consider the problem

�(∂t + ω)u− μΔu+∇π = 0 in R̂n,

div u = 0 in R̂n,

−[[μ∂yv]]− [[μ∇xw]] = 0 on Rn−1,

−[[2μ∂yw]] + [[π]]− σΔh = 0 on Rn−1,

[[u]] = 0 on Rn−1,

(∂t + ω)h− w = fh on Rn−1,

u(0) = 0, h(0) = 0,

(8.40)

with fh ∈ 0Fh = 0W
1−1/2p
p,μ (J ;Lp(R

n−1) ∩ Lp,μ(J ;W
2−1/p
p (Rn−1)). It remains to

show that (8.40) admits a unique solution (u, π, h) in the proper regularity class.
We note that once h has been determined, Corollary 8.3.3 yields the corresponding
pair (u, π) in problem (8.40).

To determine h we extract the boundary symbol for this problem as follows.
Applying the Neumann-to-Dirichlet operator (DN )−1 to (gv, gw) = (0, σDnh)
yields

ub = (DN )−1[gv, gw]
T = (DN )−1[0, σDnh]

T.

According to (8.34), the transform of the normal component wb of ub is given by

ŵb =
−σ|ξ|2

(�1 + �2)λ/|ξ|+ 4η1η2/(η1 + η2)
ĥ.

Let us now consider the dynamic equation on the interface. We note once more
that λ refers here to the co-variable of ∂t+ω. Inserting this expression for ŵb into
the transformed equation λĥ − ŵb = f̂h results in the equation s(λ, |ξ|)ĥ = f̂h,
where the boundary symbol s(λ, |ξ|) is given by

s(λ, |ξ|) = λ+
σ|ξ|2

(�1 + �2)λ/|ξ|+ 4η1η2/(η1 + η2)
. (8.41)

The operator corresponding to this symbol is

S = G+ σDnN
−1. (8.42)

S has the following mapping properties:

S : 0H
r+1
p,μ (J ;Ks

p(R
n−1))∩ 0H

r
p,μ(J ;K

s+1
p (Rn−1)) → 0H

r
p,μ(J ;K

s
p(R

n−1)), (8.43)

where K ∈ {H,W}. In order to find h we need to solve the equation Sh = fh,
that is, we need to show that S is invertible in appropriate function spaces.

All operators in the definition of S commute, and admit an H∞-calculus. The
H∞-angle of Dn is zero, that of N is π/2 and that of G is π/2 as well. Thus we
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can a priori not guarantee that the sum of the power-angles of the single operators
in S is strictly less than π, and the Dore-Venni theroem is therefore not directly
applicable. We will instead apply the Kalton-Weis theorem.

For this purpose note that for complex numbers wj with argwj ∈ [0, π/2),
we have arg (w1w2)/(w1 + w2) = arg (1/w1 + 1/w2)

−1 ∈ [0, π/2) as well. This
implies that s(λ, |ξ|) has strictly positive real part for each λ in the closed right
halfplane and for each ξ ∈ Rn, (λ, ξ) �= (0, 0), hence s(λ, |ξ|) does not vanish for
such λ and ξ.

We write s(λ, |ξ|) in the following way:

s(λ, τ) = λ+ στk(z), z = λ/τ2, λ ∈ C, τ ∈ C \ {0}, (8.44)

where

k(z) =
[
(�1 + �2)z + 4

( 1
√
μ1

√
�1z + μ1 + μ2

+
1

√
μ2

√
�2z + μ2 + μ1

)−1]−1

.

The asymptotics of k(z) are given by

k(0) =
1

2(μ1 + μ2)
, zk(z) → 1

�1 + �2
for z ∈ C \ R− with |z| → ∞.

This shows that for any ϑ ∈ [0, π) there is a constant C = C(ϑ) > 0 such that

|k(z)| ≤ C

1 + |z| , z ∈ Σ̄ϑ.

Hence we see that

|s(λ, |ξ|)| ≤ C(|λ|+ |ξ|), Reλ ≥ 0, ξ ∈ Rn,

is valid for some constant C > 0. Next we are going to prove that for each λ0 > 0
there are η > 0, c > 0 such that

|s(λ, τ)| ≥ c[|λ|+ |τ |], for all λ ∈ Σπ/2+η, |λ| ≥ ω0, τ ∈ Ση. (8.45)

This can be seen as follows: since Re k(z) > 0 for Re z ≥ 0, by continuity of the
modulus and argument we obtain an estimate of the form

|s(λ, τ)| ≥ c0[|λ|+ |τ ||k(z)|] ≥ c[|λ|+ |τ |], λ ∈ Σπ/2+η, τ ∈ Ση,

provided |z| ≤ M , with some η > 0 and c > 0 depending on M , but not on λ
and τ . On the other hand, for m > 0 fixed we consider the case with |λ| ≥ m|τ |,
|z| ≥ M . We then have

|s(λ, τ)| ≥ |λ| − σ|τ ||k(z)| ≥ 1

2
[|λ|+m|τ |]− σC|τ |/(1 +M) ≥ c[|λ|+ |τ |],
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provided m > 2σC/(1 +M), and then by extension

|s(λ, τ)| ≥ c[|λ|+ |τ |], λ ∈ Σπ/2+η, τ ∈ Ση, |λ| ≥ m|τ |, |z| ≥ M,

provided η > 0 and c > 0 are sufficiently small. One easily sees that the intersection
point of the curves y = Mx2 and y = mx in R2 has distance d = (m/M)

√
1 +m2

from the origin. By choosing M large enough so that d ≤ ω0, (8.45) follows by
combining the two estimates.

By means of the R-boundedness of the functional calculus for Dn in
Ks

p(R
n−1), we see that

(λ+D1/2
n )s−1(λ,D1/2

n )

is of class H∞ and R-bounded on Σπ/2+η \ B(0, ω0). The operator-valued H∞-
calculus for G = ∂t + ω on 0H

r
p,μ(J ;K

s
p(R

n−1)) implies boundedness of

(G+D1/2
n )s−1(G,D1/2

n ) in 0H
r
p,μ(J ;K

s
p(R

n−1)).

This shows that s−1(G,D
1/2
n ) has the following mapping properties:

s−1(G,D1/2
n ) : 0H

r
p,μ(J ;K

s
p(R

n−1))

→ 0H
r+1
p,μ (J ;Ks

p(R
n−1)) ∩ 0H

r
p,μ(J ;K

s+1
p (Rn−1)).

(8.46)

We conclude that S is invertible and that S−1 = s−1(G,D
1/2
n ). Choosing r = 0

and s = 2− 1/p and K = W in (8.46) yields

S−1 : Lp,μ(J ;W
2−1/p
p (Rn−1))

→ 0H
1
p,μ(J ;W

2−1/p
p (Rn−1)) ∩ Lp,μ(J ;W

3−1/p
p (Rn−1)).

(8.47)

Moreover, we also obtain from (8.46)

S−1 : Lp,μ(J ;Lp(R
n−1)) → 0H

1
p,μ(J ;Lp(R

n−1))

S−1 : 0H
1
p,μ(J ;Lp(R

n−1)) → 0H
2
p,μ(J ;Lp(R

n−1)).

Interpolating with the real method (· , ·)1−1/p,p then yields

S−1 : 0W
1−1/p
p,μ (J ;Lp(R

n−1)) → 0W
2−1/p
p,μ (J ;Lp(R

n−1)). (8.48)

(8.47), (8.48) shows that the equation Sh = fh has for each fh ∈ 0Fh a unique
solution h in the regularity class of Theorem 8.2.2.
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3.4 The Modified Problem
We need also to consider the modified linear problem

�∂tu− μΔu+∇π = 0 in R̂n+1,

div u = 0 in R̂n+1,

−[[μ∂yv]]− [[μ∇xw]] = 0 on Rn−1,

−[[2μ∂yw]] + [[π]] = σΔh on Rn−1,

[[u]] = 0 on Rn−1,

∂th+ r(−Δ)1/2 + (1− r){−γw + (b|∇)h} = fh on Rn−1,

u(0) = 0, h(0) = 0,

(8.49)

where r ∈ [0, 1], fh ∈ 0Fh, and b ∈ Rn−1. The corresponding boundary symbol
sr,b(λ, ξ) is given by

sr,b(λ, ξ) = λ+ r|ξ|+ (1− r){σ|ξ|k(z) + (b|iξ)}. (8.50)

Obviously, also sr,b has an upper bound of the form

|sr,b(λ, ξ)| ≤ C(|λ|+ |ξ|), λ ∈ Σπ/2+η, ξ ∈ (Ση ∪ −Ση)
n−1.

To obtain a lower bound, observe that Imλ and Im k(z) have opposite signs.
Therefore, if Imλ ≥ 0 and Im i(b|ξ) ≥ 0 we have

|sr,b(λ, ξ)| ≥ c(|λ+ r|τ |+ (1− r)i(b|ξ)|+ (1− r)|τ ||k(z)|)
≥ c(|λ|+ r|τ |+ (1− r)|τk(z)| ≥ c(|λ|+ |τ |),

in case |z| ≤ M , and if Imλ ≥ 0 and Im i(b|ξ) ≤ 0 then

|sb(λ, ξ)| ≥ c(|λ|+ r|τ |+ (1− r)|τk(z) + i(b|ξ)|)
≥ c(|λ|+ r|τ |+ (1− r)|τk(z)|) ≥ c(|λ|+ |τ |)).

For |λ| ≥ m|τ |, |z| ≥ M we proceed as in the previous subsection. So in summary,
the symbol

m(λ, ξ) =
λ+ |ξ|
sr,b(λ, ξ)

is bounded above and below uniformly in λ ∈ Σπ/2+η, ξ ∈ (Ση∪−Ση)
n−1, r ∈ [0, 1]

for some small η > 0. Therefore, by the Kalton-Weis theorem, the conclusion is
the same as in the previous subsection.
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8.4 Asymmetric Two-Phase Stokes Problems

4.1 The Main Result
For the linearization of Problems (P4) and (P6) it is essential to understand max-
imal regularity for the following linear problem.

�(∂t + ω)u− μ(x)Δu+∇π = �fu in Ω \ Σ,
div u = gd in Ω \ Σ,

u = gb on ∂Ω,

PΣ[[u]] + c(t, x)∇Σh = PΣgu on Σ,

−[[2μ(x)D(u) + π]]νΣ − σ(x)ΔΣhνΣ = g on Σ,

−[[2μ(x)D(u)νΣ · νΣ/�]] + [[π/�]] = gh on Σ,

[[�]](∂t + ω)h− [[�u · νΣ]] + b(t, x) · ∇Σh = [[�]]fh on Σ,

u(0) = u0 in Ω \ Σ,
h(0) = h0 on Σ.

(8.51)

Here μj , j = 1, 2, are functions of x, continuous on Ω̄j , and c, b depend on t and x.
A central assumption in this section is [[�]] �= 0! For this problem we have maximal
regularity result in the Lp-setting.

Theorem 8.4.1. Let p > n + 2, 1 ≥ μ > 1/p, Ω ⊂ Rn a bounded domain with
∂Ω ∈ C3, Σ ⊂ Ω a closed hypersurface of class C3 and �j, �1 �= �2, be positive
constants, j = 1, 2. Assume that μ ∈ C1−

b (Ω \ Σ), σ ∈ C1−(Σ) are positive,
uniformly in x. Set J = R+, and suppose b = b0+b1, c = c0+c1, with (b0, c0) ∈ Rn,
and

(b1, c1) ∈ [W 1−1/2p
p,μ (J ;Lp(Σ)) ∩ Lp,μ(J ;W

2−1/p
p (Σ))]n+1.

Then there is ω0 ∈ R such that for each ω > ω0, the assymetric Stokes problem
with free boundary (8.51) admits a unique solution (u, π, h) with regularity

u ∈ H1
p,μ(J ;Lp(Ω)

n) ∩ Lp,μ(J ;H
2
p (Ω \ Σ)n), π ∈ Lp,μ(J ; Ḣ

1
p (Ω \ Σ)),

πj := π|∂Ωj∩Σ
∈ W 1/2−1/2p

p,μ (J ;Lp(Σ)) ∩ Lp,μ(J ;W
1−1/p
p (Σ)), j = 1, 2,

h ∈ W 2−1/2p
p,μ (J ;Lp(Σ)) ∩H1

p,μ(J ;W
2−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ))

if and only if the data (fu, gd, gb,PΣgu, g, gh, fh, u0, h0) satisfy the following regu-
larity and compatibility conditions:

(a) fu ∈ Lp,μ(J ;Lp(Ω)
n);

(b) gd ∈ H
1/2
p,μ (J ;Lp(Ω)) ∩ Lp,μ(J ;H

1
p (Ω \ Σ));

(c) gb ∈ W
1−1/2p
p,μ (J ;Lp(∂Ω)

n) ∩ Lp,μ(J ;W
2−1/p
p (∂Ω)n);

(d) (gd, gb · ν) ∈ H1
p,μ(J ;H

−1
p,∂Ω(Ω \ Σ);
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(e) (g, gh) ∈ W
1/2−1/2p
p,μ (J ;Lp(Σ)

n+1) ∩ Lp,μ(J ;W
1−1/p
p (Σ)n+1);

(f ) (PΣgu, fh) ∈ W
1−1/2p
p,μ (J ;Lp(Σ)

n+1) ∩ Lp,μ(J ;W
2−1/p
p (Σ)n+1);

(g) u0 ∈ W
2μ−2/p
p (Ω \ Σ)n, h0 ∈ W

2+μ−2/p
p (Σ);

(h) div u0 = gd(0) in Ω \ Σ, u0|∂Ω = gb(0) on ∂Ω;

(i) PΣ[[u0]] + c(0, ·)∇Σh0 = PΣgu(0) on Σ;

(j) −PΣ[[μ(x)(∇u0 + [∇u0]
T)νΣ]] = PΣg(0) on Σ.

The solution map (fu, gd, gb,PΣgu, g, gh, fh, u0, h0) �→ (u, π, h) is continuous be-
tween the corresponding spaces.

Here we again have the liberty to replace μ(x)Δ with div(2μ(x)D(u)) in the
first line of Problem (8.51), see Remark 8.1.1 This result is proved in a similar way
as Theorem 8.1.2. However, there are some significant differences, so we explain
the details in the next sections, following the scheme of Section 8.2 and 8.3.

As in Section 8.1, it is possible to reduce the regularity of fh to fh ∈
Lp,μ(J ;W

2−1/p
p (Σ)), in which case the highest time regularity of h is dropped.

This is the content of

Corollary 8.4.2. Let the assumptions of Theorem 8.4.1 be valid. Then the result of
this theorem remains valid when replacing the spaces for h and fh by

h ∈ H1
p,μ(J ;W

2−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ)), fh ∈ Lp,μ(J ;W

2−1/p
p (Σ)).

This is important for the semigroup associated to (8.51), the asymmetric
two-phase Stokes semigroup with free boundary. To construct this semigroup, we
specialize to the case of homogeneous boundary and interface conditions as well
as to a solenoidal situation

(gd, gb, gu, g, gh, b, c) = 0, (div fu, fu · ν∂Ω, [[fu · νΣ]]) = 0.

Then the semigroup is given in the following way. We have ∇ : H1
p′,Σ(Ω \ Σ) →

Lp′(Ω)n is bounded, and hence ∇∗ : Lp(Ω) → H−1
p,∂Ω(Ω \ Σ) is as well. Define

X0 := [Lp(Ω)
n∩N(∇∗)]×W 2−1/p

p (Σ), X1 := [H2
p (Ω\Σ)n∩N(∇∗)]×W 3−1/p

p (Σ),

and A by means of

A(u, h) := ((−div(2μ(x)D(u)) +∇π)/�,−[[�u · νΣ]]/[[�]]),

with domain

D(A) := {(u, h) ∈ X1 : u|∂Ω
= 0, PΣ[[u]] = 0, PΣ[[μ(x)D(u)νΣ]] = 0}.
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Here π = π(u, h) is given by the solution of the weak problem

(∇π|∇φ/�)Ω = (div(2μ(x)D(u))|∇φ/�)Ω, φ ∈ H1
p′,Σ(Ω \ Σ),

[[π]] = σΔΣh+ [[2μ(x)∂νu · νΣ]] on Σ,

[[π/�]] = [[2μ(x)∂νu · νΣ/�]] on Σ.

(8.52)

Note that π ∈ H1
p (Ω\Σ) is the solution of two one-phase problems with Dirichlet-

data on Σ, hence π is well-defined by Proposition 7.4.3.
Then, with z = (u, h), z0 = (u0, h0), and f = (fu, fh), Problem (8.51) is

equivalent to the abstract evolution equation

ż +Az = f, t > 0, z(0) = z0.

Corollary 8.4.2 shows that this problem has maximal Lp-regularity, i.e., ω + A ∈
MR(Lp(X0)). Therefore, −A generates an analytic C0-semigroup in X0. As the
domain of A is compactly embedded into X0, the spectrum of A consists only of
eigenvalues of finite algebraic multiplicity, which are independent of p. Therefore,
the number ω0 in Theorem 8.4.1 is precisely the spectral bound s(−A), which will
be shown to be 0 in Chapter 10.

4.2 The Asymmetric Two-Phase Stokes Operator
Setting h = 0 and ignoring the equation for h and switching to divergence form,
i.e., replacing μ(x)Δu by div(2μ(x)D(u)) we obtain the pure asymmetric two-
phase Stokes problem in divergence form. Note that Remark 8.1.1 also applies
here. The resulting problem reads

�(∂t + ω)u− div(2μ(x)D(u)) +∇π = �fu in Ω \ Σ,
div u = gd in Ω \ Σ,

u = gb on ∂Ω,

PΣ[[u]] = PΣgu on Σ,

−[[2μ(x)D(u)νΣ]] + [[π]]νΣ = g on Σ,

−[[2μ(x)D(u)νΣ · νΣ/�]] + [[π/�]] = gh on Σ,

u(0) = u0 in Ω \ Σ.

(8.53)

Here μj , j = 1, 2, are functions of x. A central assumption in this section is [[�]] �= 0!
For this problem we have maximal regularity in the Lp-setting as well.

Theorem 8.4.3. Let p ∈ (1,∞), 1 ≥ μ > 1/p be fixed, �j > 0, �2 �= �1, j = 1, 2.
Assume that μ ∈ C1−

b (Ω \ Σ), μ(x) > 0 uniformly in x and set J = R+.
Then there is ω0 ∈ R such that for each ω > ω0, the pure asymmetric two-

phase Stokes problem (8.53) admits a unique solution (u, π) with regularity

u ∈ H1
p,μ(J ;Lp(Ω)

n) ∩ Lp,μ(J ;H
2
p (Ω \ Σ)n), π ∈ Lp,μ(J ; Ḣ

1
p (Ω \ Σ)),

πj := π|∂Ωj∩Σ
∈ W 1/2−1/2p

p,μ (J ;Lp(Σ)) ∩ Lp,μ(J ;W
1−1/p
p (Σ)), j = 1, 2,
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if and only if the data (fu, gd, gb,PΣgu, g, gh, u0) satisfy the following regularity
and compatibility conditions:

(a) fu ∈ Lp,μ(J ;Lp(Ω)
n);

(b) gd ∈ H1
p,μ(J ;H

−1
p,∂Ω(Ω \ Σ)) ∩ Lp,μ(J ;H

1
p (Ω \ Σ));

(c) gb ∈ W
1−1/2p
p,μ (J ;Lp(∂Ω)

n) ∩ Lp,μ(J ;W
2−1/p
p (∂Ω)n);

(d) PΣgu ∈ W
1−1/2p
p,μ (J ;Lp(Σ)

n) ∩ Lp,μ(J ;W
2−1/p
p (Σ)n);

(e) (g, gh) ∈ W
1/2−1/2p
p,μ (J ;Lp(Σ)

n+1) ∩ Lp,μ(J ;W
1−1/p
p (Σ)n+1);

(f ) u0 ∈ W
2μ−2/p
p (Ω \ Σ, )n;

(g) div u0 = gd(0) in Ω \ Σ, u0 = gb on ∂Ω;

(h) PΣ[[u0]] = PΣgu(0) on Σ;

(i) −PΣ[[μ(x)(∇u0 + [∇u0]
T)νΣ]] = PΣg(0) on Σ.

The solution map (fu, gd, gb,PΣgu, g, gh, u0) �→ (u, π) is continuous between the
corresponding spaces.

Having this result at disposal, we define the asymmetric two-phase Stokes
operator in divergence form in the following way. As in Section 7, let ∇ : Ḣ1

p′(Ω) →
Lp′(Ω)n, set

X0 = Lp(Ω)
n ∩ N(∇∗) = {u ∈ Lp(Ω;R

n) : div u = 0 in Ω, u · ν = 0 on ∂Ω},

and define A by means of

Au = (−div(2μ(x)D(u)) +∇π)/�, u ∈ D(A) := X1, (8.54)

with

X1 := {u ∈ H2
p (Ω \ Σ) ∩X0 : u|∂Ω

= 0, PΣ[[u]] = PΣ[[μ(∇u+ [∇u]T)νΣ]] = 0}.

In this definition the pressure π is defined as the solution of the weak problem

(∇π|∇φ/�) = (div(2μ(x)D(u))|∇φ/�), φ ∈ H1
p′,Σ(Ω \ Σ),

[[π]] = [[2μ(x)D(u)νΣ]] · νΣ on Σ, (8.55)

[[π/�]] = [[2μ(x)D(u)νΣ/�]] · νΣ on Σ.

Note that π ∈ H1
p (Ω \ Σ) is the solution of two one-phase problems with Dirich-

let data on Σ, hence π is well-defined by Proposition 7.4.3. Then (8.53), for
(gd, gb, g, gu, gh) = 0, fu ∈ X0, is equivalent to the abstract evolution equation

u̇+Au = fu, t > 0, u(0) = u0. (8.56)
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Theorem 8.4.3 implies that this problem has maximal Lp-regularity, hence −A is
the generator of an analytic C0-semigroup in X0 with maximal Lp-regularity. As
D(A) embeds compactly into X0, the two-phase Stokes operator A has compact
resolvent. Therefore, its spectrum consists only of eigenvalues of finite algebraic
multiplicity, and is therefore independent of p. So it is enough to study these
eigenvalues for the case p = 2.

For this purpose we employ once more the energy method. Suppose that
λ ∈ C is an eigenvalue of A with eigenfunction u and corresponding pressure π.
Taking the inner product in L2(Ω;C)

n of the equation with u, after an integration
by parts we get

λ

∫
Ω

�|u|2 dx = (�Au|u)L2 = 2

∫
Ω

μ(x)|D(u)|22 dx.

This implies that λ is real and non-negative. But by means of the modified Korn
inequality in Lemma 1.2.1 and the no-slip condition on the outer boundary ∂Ω,
all eigenvalues are strictly positive. In particular, A is invertible.

This further implies that the Neumann-to-Dirichlet operator

Sλ : W 1−1/p
p (Σ)2 → W 2−1/p

p (Σ)2

defined by the map

Sλ : [g, gh]
T �→ [[[�u · νΣ]]/[[�]], [[u · νΣ]]/[[1/�]]]T,

where u solves the problem

λ�u− div(2μ(x)D(u)) +∇π = 0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on ∂Ω,

PΣ[[u]] = 0 on Σ,

−[[2μ(x)D(u)]]νΣ + [[π]]νΣ = gνΣ on Σ,

−[[2μ(x)∂νu/�]] + [[π/�]] = gh on Σ,

is well-defined, for each λ ≥ 0. This operator will be studied in more detail in
Chapter 10.

4.3 Quasi-Steady Asymmetric Stokes Problem
In this subsection we consider the asymmetric quasi-steady Stokes flow problem,
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which reads

−div(2μ(x)D(u)) +∇π = 0 in Ω\Σ,
div u = 0 in Ω\Σ,

u = 0 on ∂Ω,

PΣ[[u]] = 0 on Σ,

[[−2μ(x)D(u) + π]]νΣ − σ(x)(ΔΣh)νΣ = 0 on Σ,

−[[2μ(x)∂νu/�]]νΣ + [[π/�]] = 0 on Σ,

(∂t + ω)h− [[�u · νΣ]]/[[�]] = fh on Σ,

h(0) = h0 on Σ,

(8.57)

on the time-interval J = R+, where ω ≥ 0 will be chosen sufficiently large. As
before, the regularity classes for u and π are given by

u ∈ Eu := Lp,μ(J ;H
2
p (Ω \ Σ)n),

and
π ∈ Eπ := Lp,μ(J ; Ḣ

1
p (Ω \ Σ)),

and that for h is

h ∈ H1
p,μ(J ;W

2−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ)).

Setting X0 = W
2−1/p
p (Σ), with the Neumann-to-Dirichlet operator S11

0 defined
in the previous subsection, this problem is equivalent to the abstract evolution
equation

ḣ+ ωh− S11
0 σΔΣh = fh, t > 0, h(0) = h0,

in X0. Defining the operator A in X0 by means of

A = −S11
0 σΔΣh, D(A) = W 3−1/p

p (Σ), (8.58)

it turns out that −A generates an analytic C0-semigroup with maximal regularity.
This can be proved in the same way as in Section 8.1.3.

8.5 Proof of Theorem 8.4.1

5.1 Regularity of the Pressure
As in Section 8.2, under certain conditions the pressure has more time-regularity.
For the asymmetric Stokes problem the following result differs from that in Section
8.2.

Proposition 8.5.1. Assume in addition to the hypotheses of Theorem 8.4.1 that

(gd, u0, h0, div fu) = 0, gb · ν∂Ω = fu · ν∂Ω = 0.



8.5. Proof of Theorem 8.4.1 401

Let (u, π, h) be a solution of (8.51). Then π ∈ 0H
α
p,μ(J ;Lp(Ω)), for each α ∈

(0, 1/2− 1/2p), and there is a constant C > 0 independent of ω ≥ ω0 such that

|π|Lp,μ(J;Lp(Ω)) ≤ C
(
|∇u|Lp,μ(J;Lp(Ω)) + |∇u|Lp,μ(J;Lp(Σ∪∂Ω)) (8.59)

+ |π1|Lp,μ(J;Lp(Σ)) + |π2|Lp,μ(J;Lp(Σ))

)
.

Proof. Let ψ ∈ Lp′(Ω) be given and solve the problem

�−1Δφ = ψ in Ω\Σ,
∂νφ = 0 on ∂Ω,

[[φ]] = 0, φ = 0 on Σ,

(8.60)

by Proposition 7.4.5. Note that this problem consists of two one-phase problems.
As in the proof of Proposition 8.2.1, we obtain by an integration by parts

(π|ψ)Ω =
(
�−1π|Δφ

)
Ω
= −

∫
Σ

[[�−1π∂νφ]] dΣ−
(
�−1∇π|∇φ

)
Ω

=

∫
Ω

∇u : ∇�−1μ∇φ dx−
∫
∂Ω

�−1μ(∂νu|∇φ) (d∂Ω)

+

∫
Σ

[[�−1μ(∂νu|∇φ)]]− [[�−1π�∂νφ]] dΣ.

This implies (8.59). Moreover, since ∇u ∈ 0H
1/2
p,μ (J ;Lp(Ω)

n×n) and πk, ∂jul ∈
0W

1/2−1/2p
p,μ (J ;Lp(Σ)), and ∂νu ∈ 0W

1/2−1/2p
p,μ (J ;Lp(∂Ω)), applying ∂α

t to this
identity, we obtain the estimate

|∂α
t π|Lp,μ(J;LpΩ)) ≤ C{|∂α

t ∇u|Lp,μ(J;Lp(Ω)) + |∂α
t (|π1|+ |π2|)]|Lp,μ(J;Lp(Σ))

+ |∂α
t ∂νΣ

u|Lp,μ(J;Lp(Σ)) + |∂α
t ∂νu|Lp,μ(J,Lp(∂Ω))},

for each α ∈ (0, 1/2− 1/2p), hence π ∈ 0H
α
p,μ(J ;Lp(Ω)). �

5.2 Flat Interface
In this subsection, we consider the linear problem with constant coefficients for a
flat interface. Due to the jump in the velocity, this problem differs from that in
Section 8.2 considerably.

�(∂t + ω)u− μΔu+∇π = �fu in R̂n,

div u = gd in R̂n,

[[v]] + c∇xh = gu on Rn−1,

−[[2μD(u)ν]] + [[π]]ν − σΔxhν = g on Rn−1,

−[[2μD(u)ν · ν/�]] + [[π/�]] = gh on Rn−1,

(∂t + ω)h− [[�w]]/[[�]] + b · ∇xh = fh on Rn−1,

u(0) = u0 in R̂n,

h(0) = h0 on Rn−1.

(8.61)
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Here (μj , �j), j = 1, 2, are constants, ν = en, and recall [[�]] = �2 − �1 �= 0. With
u = (v, w)T, we first look at the asymmetric Stokes problem, setting h = 0 and
ignoring the problem for h.

�(∂t + ω)u− μΔu+∇π = �fu in R̂n,

div u = gd in R̂n,

[[v]] = gu on Rn−1,

−[[2μD(u)ν]] + [[π]]ν = g = (gv, gw)
T on Rn−1,

−[[2μD(u)ν · ν/�]] + [[π/�]] = gh on Rn−1,

u(0) = u0 in R̂n.

(8.62)

For this problem we have

Theorem 8.5.2. Let 1 < p < ∞, 1 ≥ μ > 1/p be fixed, and assume that �j and μj

are positive constants for j = 1, 2, �2 �= �1, and set J = R+. Then there is ω0 ≥ 0
such that for each ω > ω0, the assymetric Stokes problem (8.62) admits a unique
solution (u, π) with regularity

u ∈ H1
p,μ(J ;Lp(R

n)n) ∩ Lp,μ(J ;H
2
p (R̂

n)n), π ∈ Lp,μ(J ; Ḣ
1
p (R̂

n)),

if and only if the data (fu, fd, gu, gv, gw, gh, u0) satisfy the following regularity and
compatibility conditions:

(a) fu ∈ Lp,μ(J ;Lp(R
n)n);

(b) gd ∈ H1
p,μ(J ; Ḣ

−1
p (Rn)) ∩ Lp,μ(J ;H

1
p (R̂

n));

(c) gu ∈ W
1−1/2p
p,μ (J ;Lp(R

n−1)n) ∩ Lp,μ(J ;W
2−1/p
p (Rn−1)n);

(d) gv ∈ W
1/2−1/2p
p,μ (J ;Lp(R

n−1)n−1) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1)n−1);

(e) (gw, gh) ∈ Lp,μ(J ; Ẇ
1−1/p
p (Rn−1)2);

(f ) u0 ∈ W
2μ−2/p
p (R̂n)n;

(g) div u0 = fd(0) in R̂n and [[v0]] = gu(0) on Rn−1;

(h) −[[μ∂yv0]]− [[μ∇xw0]] = gv(0) on Rn−1.

In addition, for the pressure traces πj on the interface we have

πj ∈ W 1/2−1/2p
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1))

if and only if

gw, gh ∈ W 1/2−1/2p
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1)).

The solution map (fu, gd, gu, gv, gw, gh, u0) �→ (u, π) is continuous between the
corresponding spaces.
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For Problem (8.61) we also prove a maximal regularity result in the Lp-
setting.

Theorem 8.5.3. Let 1 < p < ∞, 1 ≥ μ > 1/p be fixed, and assume that �j and μj

are positive constants for j = 1, 2, �2 �= �1, c ∈ R, b ∈ Rn−1, and set J = R+.
Then there is ω0 ∈ R such that for each ω > ω0, the asymmetric Stokes problem
with free boundary (8.61) admits a unique solution (u, π, h) with regularity

u ∈ H1
p,μ(J ;Lp,μ(R

n)n) ∩ Lp,μ(J ;H
2
p (R̂

n)n),

π ∈ Lp,μ(J ; Ḣ
1
p (R̂

n)), (8.63)

π1, π2 ∈ W 1/2−1/2p
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1)),

h ∈ W 2−1/2p
p,μ (J ;Lp(R

n−1)) ∩H1
p,μ(J ;W

2−1/p
p (Rn−1)) ∩ Lp,μ(J ;W

3−1/p
p (Rn−1)),

if and only if the data (fu, gd, gu, g, gh, fh, u0, h0) satisfy the following regularity
and compatibility conditions:

(a) fu ∈ Lp,μ(J ;Lp(R
n)n);

(b) gd ∈ H1
p,μ(J ; Ḣ

−1
p (Rn)) ∩ Lp,μ(J ;H

1
p (R̂

n));

(c) (g, gh) ∈ W
1/2−1/2p
p,μ (J ;Lp(R

n−1)n+1) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1)n+1);

(d) (gu, fh) ∈ W
1−1/2p
p,μ (J ;Lp(R

n−1)n+1) ∩ Lp,μ(J ;W
2−1/p
p (Rn−1)n+1);

(e) u0 ∈ W
2μ−2/p
p (R̂n)n, h0 ∈ W

2+μ−2/p
p (Rn−1);

(f ) div u0 = fd(0) in R̂n, [[v0]] = gj(0) on Rn−1;

(g) −[[μ∂yv0]]− [[μ∇xw0]] = gv(0) on Rn−1.

The solution map (fu, gd, gu, g, gh, fh, u0, h0) �→ (u, π, h) is continuous between the
corresponding spaces.

As the proofs of these results are quite involved we outsource them to the
next section.

5.3 General Bounded Domains
The linear problem with variable coefficients but small deviations for a flat in-
terface, i.e can be handled by a perturbation argument in the same way as in
Section 8.1; the same is true for the case of a bent interface. However, the local-
ization argument needs some significant modifications, which we explain in some
detail now. We follow the notation in Section 8.2.5.

Let z = (u, π, h) be a solution of (8.51) where we assume without loss of
generality (fu, gd, gu · νΣ, gb · ν∂Ω, u0, h0) = 0. We then set uk = ϕku, πk = ϕkπ,
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hk = ϕkh. Then for k = 1, . . . , N, zk = (uk, πk, [[πk]], hk) satisfies the problem

�(∂t + ω)uk − μ(x)Δuk +∇πk = Fk(u, π) in Rn \ Σk,

div uk = (∇ϕk|u) in Rn \ Σk,

PΣk
[[uk]] + c(t, x)∇Σk

hk = ϕkPΣk
gu +Guk

(h) on Σk,

[[−μ(x)(∇uk + [∇uk]
T) + πk]]νΣk

− σ(ΔΣhk)νΣk
= ϕkgk +Ggk(u, h) on Σk,

− [[μ(x)(∇uk + [∇uk]
T)νΣk

· νΣk
/�]] + [[πk/�]] = ϕkgh +Ghk

(u) on Σk,

(∂t + ω)hk − [[�uk · νΣk
]]/[[�]] + b(t, x) · ∇Σk

hk/[[�]] = ϕkfh + Fhk
(h) on Σk,

uk(0) = 0 in Rn \ Σk,

hk(0) = 0on Σk,
(8.64)

where

Fk(u, π) = (∇ϕk)π − μ(x)[Δ, ϕk]u,

Guk
(h) = c(t, x)(∇Σk

ϕk)h

Ggk(u, h) = −[[μ(x)(∇ϕk ⊗ u+ u⊗∇ϕk)]]νΣk
− σ(x)[ΔΣk

, ϕk]hνΣk
,

Ghk
(u) = −[[μ(x)(∇ϕk ⊗ u+ u⊗∇Σk

ϕk)νΣk
· νΣk

/�]],

Fhk
(h) = (b(t, x)|(∇Σk

ϕk)h)/[[�]].

For k = 0 we have the standard one-phase Stokes problem with parameters �2,
μ2(x) on Ω with no-slip boundary condition on ∂Ω, i.e.,

�2(∂t + ω)u0 − μ2(x)Δu0 +∇π0 = F0(u, π) in Ω,

div u0 = (∇ϕ0|u) in Ω,

u0 = 0 on ∂Ω,

u0(0) = 0 in Ω.

For k = N+1 we have the Cauchy problem of the Stokes equation with parameters
�1, μ1(x), i.e.,

�1(∂t + ω)uN+1 − μ1(x)ΔuN+1 +∇πN+1 = FN+1(u, π) in Rn,

div uN+1 = (∇ϕN+1|u) in Rn,

uN+1(0) = 0 in Rn.

In the sequel we concentrate on the charts at the interface, i.e., k = 1, . . . , N .

Though the right members Guk
(h), Ggk(u, h), Ghk

(u), Fhk
(h) have more

time regularity than the corresponding data class, the terms (∇ϕk)π in Fk(u, π)
and (∇ϕk|u) unfortunately do not have this property. In order to remove this
difficulty, we have to decompose the problem. Here is one major change compared
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to Section 8.2.5. Consider the following problem for the functions φk, ψk.

Δφk = u · ∇ϕk = div(uϕk) in Rn \ Σk,

[[φk]] = 0, φk = 0 on Σk,

Δψk = divFk in Rn \ Σk,

[[ψk]] = 0, ψk = 0 on Σk,

(8.65)

Problem (8.65) is uniquely solvable and its solution satisfies

ψk, ∂tφk ∈ Lp,μ(J ; Ḣ
1
p (R

n \ Σk)), φk ∈ H1/2
p,μ (J ; Ḣ

3
p (R

n \ Σk)),

which implies

∇φk ∈ H1
p,μ(J ;Lp(R

n)) ∩H1/4
p,μ (J ;H

2
p (R

n \ Σk)).

Furthermore, by the additional time regularity of π we obtain

∇ψk ∈ Hα
p,μ(J ;Lp(R

n)) ∩ Lp,μ(J ;H
1
p (Ω)).

Defining
ũk = uk −∇φk, F̃k(u, π) = Fk(u, π)−∇ψk,

π̃k = πk − ψk + �(∂t + ω)φk − μΔφk,

we see that div F̃k(u, π) = 0 and div ũk = 0 in Rn \ Σk. Now z̃k = (ũk, π̃k, hk)
satisfies the problem

�(∂t + ω)ũk − μ(x)Δũk +∇π̃k = F̃k(u, π) in Rn \ Σk,

div ũk = 0 in Rn \ Σk,

PΣk
[[ũk]] + c(t, x)∇Σk

hk = ϕkPΣk
gu + G̃uk

(h) on Σk,

[[−μ(x)(∇ũk + [∇ũk]
T) + π̃k]]νΣk

− σ(ΔΣhk)νΣk
= ϕkgk + G̃gk(u, h) on Σk,

− [[μ(x)(∇ũk + [∇ũk]
T)νΣk

· νΣk
/�]] + [[π̃k/�]] = ϕkgh + G̃hk

(u) on Σk,

(∂t + ω)hk − [[�ũk · νΣk
]]/[[�]] + b(t, x) · ∇Σk

hk/[[�]] = ϕkfh + F̃hk
(h) on Σk,

uk(0) = 0 in Rn \ Σk,

hk(0) = 0 on Σk,
(8.66)

where
G̃uk

(h) = Guk
(h)− PΣk

[[∇φk]]

G̃gk(u, h) = Ggk(u, h) + [[μ(x)∇2φk]]νΣk

G̃hk
(u) = Ghk

(u) + 2νΣk
· [[μ(x)∇2φk/�]]νΣk

F̃hk
(h) = Fhk

(h) + [[�∂νk
φk]]/[[�]].

Now we know that the data in (8.66) satisfy the assumption of Proposition 8.5.1.
Therefore, the solution π̃k of (8.66) has more time regularity, and we have (8.59)
at our disposal. We may now proceed as in Section 8.2.5.
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It remains to prove surjectivity of L; here we have the second important
modification. For this we employ the continuation method for semi-Fredholm op-
erators, which states that the Fredholm index remains constant under homotopies
L(λ), as long as the ranges of L(λ) stay closed. For this purpose, we introduce a
first continuation parameter α ∈ [0, 1] by replacing the 7th equation of (8.51) into

(∂t + ω)h+ α(−ΔΣ)
1
2h− (1− α) ([[�u · ν]]/[[�]] + b(t, x) · ∇Σh/[[�]]) = fh on Σ.

With minor modifications, the analysis in the next subsection shows that the cor-
responding problem is well-posed for each α ∈ [0, 1] in the case of a flat interface
with bounds independent of α ∈ [0, 1]. Therefore, the same is true for bent inter-
faces and then by the above localization procedure also for a general geometry.
Thus we only need to consider the case α = 1.

To prove surjectivity in this case, note that the equation for h is independent
from those for u and π, and it is uniquely solvable in the right regularity class
because of maximal regularity for the Laplace-Beltrami operator, see Section 6.4.
So we may set now h = 0.

Next we introduce a second continuation parameter β ∈ [0, 1] by

PΣu2 = βPΣu1 + PΣgu, −βPΣT2(u, π)ν + PΣT1(u, π)ν = PΣg

with T (u, π) = μ(x)(∇u + [∇u]T) − π. The remaining normal stress boundary
conditions decouple as �1 �= �2.

Again, we can prove that the a priori estimates are uniform for β ∈ [0, 1].
The remaining problem for β = 0 decouples into a one-phase Stokes problem with
mixed Dirichlet-Neumann boundary condition in Ω2, Dirichlet condition on ∂Ω
and outflow conditions on Σ, and a one-phase Stokes problem with pure Neumann
boundary condition in Ω1. According to Section 7.3, these are uniquely solvable.
This shows that we have surjectivity in the case α = 1 and β = 0, hence by the
continuation method also for α = 0 and β = 1. The proof of Theorem 8.4.1 is now
complete.

8.6 The Asymmetric Model Problem

Here we present the algebra and harmonic analysis needed to prove Theorem 8.4.1
for the flat interface case with constant coefficients.

6.1 The Reduced Asymmetric Stokes Problem
By the reduction arguments from Section 8.2, we need to study the problem
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�(∂t + ω)u− μΔu+∇π = 0 in R̂n,

div u = 0 in R̂n,

− [[μ(∇u+ (∇u)T)ν]] + [[π]]ν = (0, g1)
T on Rn−1,

[[v]] = 0 on Rn−1,

− [[2μ∇uν · ν/�]] + [[π/�]] = g2 on Rn−1,

u(0) = 0 in R̂n.

(8.67)

The remaining data satisfy

g1, g2 ∈ 0W
1/2−1/2p
p,μ (J ;Lp(R

n−1)) ∩ Lp,μ(J ;W
1−1/p
p (Rn−1)).

To prove this result, suppose that we have a solution of (8.67) in the proper
regularity class on the half-line J = R+. Then we may employ the Laplace trans-
form in t and the Fourier transform in the tangential variables x ∈ Rn−1, to
obtain the following boundary value problem for a system of ordinary differential
equations on Ṙ. ⎧⎪⎨⎪⎩

ω2
kv̂ − μk∂

2
y v̂ + iξπ̂ = 0, (−1)ky > 0,

ω2
kŵ − μk∂

2
yŵ + ∂yπ̂ = 0, (−1)ky > 0,

(iξ|v̂) + ∂yŵ = 0, y �= 0.

Here we have set ω2
k = �kλ + μk|ξ|2, k = 1, 2. As in Section 8.3, this system of

equations is easily solved to the result⎡⎣ v̂2
ŵ2

π̂2

⎤⎦ = e−ω2y/
√
μ2

⎡⎣ a2√
μ2

ω2
(iξ|a2)
0

⎤⎦+ α2e
−|ξ|y

⎡⎣ −iξ
|ξ|
�2λ

⎤⎦ , (8.68)

for y > 0, and⎡⎣ v̂1
ŵ1

π̂1

⎤⎦ = eω1y/
√
μ1

⎡⎣ a1

−
√
μ1

ω1
(iξ|a1)
0

⎤⎦+ α1e
|ξ|y

⎡⎣ −iξ
−|ξ|
�1λ

⎤⎦ , (8.69)

for y < 0. Here ak ∈ Cn−1 and αk ∈ C have to be determined by the interface
conditions which in frequency domain read

v̂1(0)− v̂2(0) = 0,

μ2(∂y v̂2(0) + iξŵ2(0))− μ1(∂y v̂1(0) + iξŵ1(0)) = 0,

−2μ2∂yŵ2(0) + π̂2(0) + 2μ1∂yŵ1(0)− π̂1(0) = ĝ1,

−2(μ2/�2)∂yŵ2(0) + π̂2(0)/�2 + 2(μ1/�2)∂yŵ1(0)− π̂1(0)/�2 = ĝ2.
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Inserting the representation of the transformed solution into the first two of these
equations we obtain the following system.

a2 − a1 = iξ(α2 − α1),
√
μ2ω2a2 +

√
μ1ω1a1 = iξ

(
2|ξ|(μ1α1 + μ2α2) + (μ1

√
μ1/ω1)β1 + (μ2

√
μ2/ω2)β2

)
,

where we have set βk = iξ · ak, k = 1, 2. This system can be solved for ak to the
result

a1 = iξ
2|ξ|(μ1α1 + μ2α2) + (μ1

√
μ1/ω1)β1 + (μ2

√
μ2/ω2)β2 −

√
μ2ω2(α2 − α1)√

μ1ω1 +
√
μ2ω2

,

and

a2 = iξ
2|ξ|(μ1α1 + μ2α2) + (μ1

√
μ1/ω1)β1 + (μ2

√
μ2/ω2)β2 +

√
μ1ω1(α2 − α1)√

μ1ω1 +
√
μ2ω2

.

Multiplying the former equations with iξ we obtain

β2 − β1 = |ξ|2(α1 − α2),

γ1β1 + γ2β2 = −2|ξ|3(μ1α1 + μ2α2),

where γk =
√
μkωk + μk|ξ|2

√
μk/ωk, k = 1, 2. We solve this system for βk, con-

cluding [
β1

β2

]
= − |ξ|2

γ1 + γ2

[
2μ1|ξ|+ γ2 2μ2|ξ| − γ2
2μ1|ξ| − γ1 2μ2|ξ|+ γ1

] [
α1

α2

]
. (8.70)

Inserting the transformed solution into the two remaining stress conditions leads
to

2(μ2β2 + μ2|ξ|2α2) + �2λα2 − 2(μ1β1 + μ1|ξ|2α1)− �1λα1 = ĝ1,

2(μ2β2 + μ2|ξ|2α2)/�2 + λα2 − 2(μ1β1 + μ1|ξ|2α1)/�1 − λα1 = ĝ2.

Using the formulas for βk and solving the resulting system in terms of αk we arrive
after some elementary algebra at the expressions[

α1

α2

]
=

1

[[�]]λε

[
1 + 2�2[[μ/�]]ε2 −�2(1 + [[2μ]]ε2)
1− 2�1[[μ/�]]ε1 −�1(1− [[2μ]]ε1)

] [
ĝ1
ĝ2

]
, (8.71)

where we have set εk = �kλ
√
μk|ξ|2/

(
ωk(γ1 + γ2)(ωk +

√
μk|ξ|)2

)
, k = 1, 2, and

ε = 1 + 2(μ1ε1 + μ2ε2).

Here we observe that the surface pressures πk have transforms λ�kαk. Since the
entries in the matrix defining λ�kαk are bounded and holomorphic we may con-
clude that πk have the same regularity as gk, and that the pressure π belongs
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to Lp,μ(J ; Ḣ
1
p (Ṙ

n)). Next let us compute the interface velocities vb1 = vb2 and wb
k.

Their transforms are given by

v̂bk = ak − iξαk, ŵb
k = (−1)k

(√μk

ωk
βk + |ξ|αk

)
.

Some algebra yields for wb
k[

ŵb
1

ŵb
2

]
=

|ξ|
ω1ω2

[ −�1ω2

γ1+γ2
(
√
μ1 +

γ2

ω1+
√
μ1|ξ| )

−�2
√
μ1μ2|ξ|

γ1+γ2

ω2−√
μ2|ξ|

ω2+
√
μ2|ξ|

�1
√
μ1μ2|ξ|

γ1+γ2

ω1−√
μ1|ξ|

ω1+
√
μ1|ξ|

�2ω1

γ1+γ2
(
√
μ2 +

γ1

ω2+
√
μ2|ξ| )

][
λα1

λα2

]
.

(8.72)

This representation shows that ŵb
k is bounded by |ξ|ĝ/ω1ω2. Therefore, we see that

the operator with symbol |ξ|/ω1ω2 maps into the right space for the boundary
values of w, i.e., we have

wb
k ∈ 0H

1
p,μ(J ; Ẇ

−1/p
p (Rn−1)) ∩ Lp,μ(J ;W

2−1/p
p (Rn−1)).

To obtain the regularity of the boundary values vbk of v we write

v̂b1 = v̂b2 = a2 − iξα2

=
iξ

√
μ1ω1 +

√
μ2ω2

{
μ1(

√
μ1

ω1
β1 + α1|ξ|) + μ2(

√
μ2

ω2
β2 + α2|ξ|)

}
− iξ

√
μ1ω1 +

√
μ2ω2

{ �1
√
μ1

ω1 +
√
μ1|ξ|

λα1 +
�1
√
μ1

ω1 +
√
μ1|ξ|

λα2

}
.

This representation shows that also v̂bk is bounded by |ξ|ĝi/ω1ω2, and the same
argument as in (8.27) yields

vbk ∈ 0H
1
p,μ(J ; Ẇ

−1/p
p (Rn−1;Rn−1)) ∩ Lp,μ(J ;W

2−1/p
p (Rn−1;Rn−1))

↪→ 0W
1−1/2p
p,μ (J ;Lp(R

n−1;Rn−1)).

Therefore, the boundary values of u from either side of Σ have the required regu-
larity, hence solving the Stokes problem with these boundary values separately in
the upper and the lower half-space, u has maximal Lp-regularity. This completes
the proof of Theorem 8.5.2.

6.2 The Asymmetric Stokes Problem with Free Boundary
To extract the boundary symbol for the full problem, we set ĝ1 = −σ|ξ|2ĥ, ĝ2 = 0,

and observe that the transformed equation for ĥ reads

λĥ− [[�ŵ(0)]]/[[�]] = ĝ3.

We have

[[�ŵ(0)]] = �2(
√
μ2β2/ω2 + |ξ|α2)− �1(−

√
μ1β1/ω1 − |ξ|α1), (8.73)
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hence inserting the expressions for αk and βk we obtain after some more algebra

s(λ, |ξ|)ĥ = ĝ4. (8.74)

Here g4 is determined by the data alone and has the same regularity as g3. The
boundary symbol s(λ, τ) is defined by

s(λ, τ) = λ+
στ

[[�]]2
m(z), (8.75)

where we again employed the scaling z = λ/|ξ|2. The holomorphic function m(z)
in turn is given by

(μ1ϕ1(z) + μ2ϕ2(z))m(z) = 2
�1�2

ω1(z)ω2(z)

ω1(z)− 1

ω1(z) + 1

ω2(z)− 1

ω2(z) + 1

+
�21μ2ϕ2(z)

μ1ω1(z)(ω1(z) + 1)
+

�22μ1ϕ1(z)

μ2ω2(z)(ω2(z) + 1)
+

�21
ω1(z)

+
�22

ω2(z)
, (8.76)

with the abbreviations

ωk(z) =
√
1 + �kz/μk, ϕk(z) = ωk(z) +

3

ωk(z) + 1
− 1

ωk(z)(ωk(z) + 1)
.

We derive this formula in the next subsection.
Note that ωk(z) is holomorphic in the sliced plane C \ (−∞,−μk/�k], hence

the function ϕk(z) has this property as well. This function has exactly one zero
zk in this set, it is real and satisfies −μk/�k < zk < −8μk/9�k < 0. It is easy
to see that ϕk maps C̄+ into C+, and as ϕk(0) = 2 and ϕk(z) ∼

√
�kz/μk as

z → ∞, we see that ϕk(C̄+) ⊂ Σφk
, for some angle φk < π/2. By continuity

of the argument function, this implies that ϕk(Σπ/2+η) ⊂ C+, for some η > 0.
Therefore, ϕ(z) := μ1ϕ1(z) + μ2ϕ2(z) also has this property, in particular ϕ(z)
cannot vanish in Σπ/2+η. This implies that m(z) is holomorphic in this sector and
in a ball B(0, r0) for some r0 > 0. We obtain for the asymptotics of m(z)

m(0) =
1

2

�21
μ1

+
�22
μ2

> 0, lim
z→∞ z m(z) = �1 + �2.

Thus there is a constant M = M(r, φ) > 0 such that

|m(z)| ≤ M

1 + |z| , z ∈ Σφ ∪B(0, r),

for each φ < π/2 + η and r < r0. From this estimate it is easy to conclude

|s(λ, τ)| ≤ Cη(|λ|+ |τ |), λ ∈ Σπ2+η, τ ∈ Ση,

whenever η > 0 is small enough. Conversely, since m(0) > 0, given a small η > 0
we find rη ∈ (0, r0) such that m(z) ∈ Σπ/2−3η and |m(z)| ≥ m(0)/2, for all
z ∈ B(0, rη). This implies that there is a constant cη > 0 such that

|s(λ, τ)| ≥ cη(|λ|+ |τ |), λ ∈ Σπ/2+η, |λ| ≤ rη|τ |2.
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On the other hand, choosing |λ| ≥ C|τ | we obtain

|s(λ, τ)| ≥ |λ| − σ[[�]]−2M |τ |

≥ 1

2
|λ|+

(C
2
− σ[[�]]−2M

)
|τ | ≥ cη(|λ|+ |τ |),

for all λ ∈ Σπ/2+η, τ ∈ Ση such that |λ| ≥ C|τ |. If C is chosen large enough this
implies that we have a lower bound

|s(λ, τ)| ≥ c(|λ|+ |τ |), λ ∈ Σπ/2+η, τ ∈ Ση, |λ| ≥ ω0.

Thus the boundary symbol for the asymmetric Stokes problem has the same prop-
erties for |λ| > ω0 as that for the standard two-phase Stokes problem obtained in
Section 8.3. We may now follow the arguments given there to complete the proof
of Theorem 8.5.3.

6.3 Derivation of the Boundary Symbol
Here we compute the function m(z) introduced in the previous subsection. By

(8.73), (8.70), and (8.71) with ĝ1 = −σ|ξ|2ĥ and ĝ2 = 0, we obtain with τ = |ξ|

−[[�ŵ(0)]]/[[�]]

= −[[�]]
−1

(τα1�1 + τα2�2 + �1
√
μ1β1/ω1 + �2

√
μ2β2/ω2)

= −[[�]]
−1[

α1

{
τ�1 − τ2/γ

(
�1
√
μ1/ω1(2μ1τ + γ2) + �2

√
μ2/ω2(2μ1τ − γ1)

)}
+ α2

{
τ�2 − τ2/γ

(
�1
√
μ1/ω1(2μ2τ − γ2) + �2

√
μ2/ω2(2μ2τ + γ1)

)}]
=

στ3ĥ

γ[[�]]2λε

[
(1 + 2�2ε2[[μ/�]])

×
{
γ�1 −

(
�1τ

√
μ1/ω1(2μ1τ + γ2) + �2τ

√
μ2/ω2(2μ1τ − γ1)

)}
+ (1− 2�1ε1[[μ/�]])

×
{
γ�2 −

(
�1τ

√
μ1/ω1(2μ2τ − γ2) + �2τ

√
μ2/ω2(2μ2τ + γ1)

)}]
,

(8.77)

where we have set γ := γ1 + γ2. The scaling z := λ/τ2, τ := |ξ|, yields

ωk =
√
�kλ+ μkτ2 =

√
μkτωk(z), ωk(z) =

√
1 + �kz/μk,

γk =
√
μk + μkτ

2√μk/ωk = μkτ (ωk(z) + 1/ωk(z)) ,

εk = �kλ
√
μkτ

2/(ωkγ(ωk +
√
μkτ)

2) = (γωk(z))
−1(ωk(z)− 1)/(ωk(z) + 1),
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hence

2μkτ − γk = − μkτ

ωk(z)
(ωk(z)− 1)2 = − �kz

ωk(z)
τ
ωk(z)− 1

ωk(z) + 1
,

�1γ2 − �1τ
√
μ1γ2/ω1 = �21

μ2

μ1

(
ω2(z) +

1

ω2(z)

)
z

ω1(z)(ω1(z) + 1)
,

�1γ1 − �1τ
√
μ12μ1τ/ω1 = �21τz/ω1(z),

γε = γ + 2μ1γε1 + 2μ2γε2 = μ1ϕ1(z) + μ2ϕ2(z),

where

ϕk(z) = ωk(z)+
1

ωk(z)
+

2

ωk(z)

ωk(z)− 1

ωk(z) + 1
= ωk(z)+

3

ωk(z) + 1
− 1

ωk(z)(ωk(z) + 1)
.

Substituting these expressions into (8.77), we obtain

− [[�ŵ(0)]]

[[�]]
=

στĥ

[[�]]2(μ1ϕ1 + μ2ϕ2)

×
[
(1 + 2�2ε2[[μ/�]])

(
�21
ω1

+
�21μ2

μ1
(ω2 +

1

ω2
)

1

ω1(ω1 + 1)
+

�1�2
ω1ω2

ω1 − 1

ω1 + 1

)
+ (1− 2�1ε1[[μ/�]])

(
�22
ω2

+
�22μ1

μ2
(ω1 +

1

ω1
)

1

ω2(ω2 + 1)
+

�1�2
ω1ω2

ω2 − 1

ω2 + 1

)]
.

Expanding and collecting terms we see that the coefficients of �21, �1�2, �
2
2 in the

square brackets on the right-hand side eventually become

1

ω1
+

μ2ϕ2

μ1ω1(ω1 + 1)
,

2

ω1ω2

ω1 − 1

ω1 + 1

ω2 − 1

ω2 + 1
,

1

ω2
+

μ1ϕ1

μ2ω2(ω2 + 1)
.

Note that εk contains γ in the denominator; in it is important to recognize that
it factors. Finally, we obtain

− [[�ŵ(0)]]

[[�]]
=

στĥ

[[�]]2(μ1ϕ1(z) + μ2ϕ2(z))

[
2

�1�2
ω1(z)ω2(z)

ω1(z)− 1

ω1(z) + 1

ω2(z)− 1

ω2(z) + 1

+
�21μ2ϕ2(z)

μ1ω1(z)(ω1(z) + 1)
+

�22μ1ϕ1(z)

μ2ω2(z)(ω2(z) + 1)
+

�21
ω1(z)

+
�22

ω2(z)

]
,

which proves (8.76).

6.4 The Modified Problem
Here we consider the case where b0, c0 �= 0 are constant. As before we have the
transformed equation for the function h.

λĥ− [[�ŵ(0)]]

[[�]]
+

b0 · iξĥ
[[�]]

= f̂h.
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We obtain after some linear algebra

s(λ, |ξ|)ĥ = f̂h.

Setting τ = |ξ| and employing the scaling z = λ/τ2, we obtain the boundary symbol
s(λ, τ) in the form

s(λ, τ) = λ+
στ

[[�]]2
m(z) +

c0τ

[[�]]
�(z) +

iτ

[[�]]
(b0 ·

ξ

|ξ| ). (8.78)

To prove this, it is enough to seek the solution of the problem

v̂2(0)− v̂1(0) = −c0iξĥ,

μ2(∂y v̂2(0) + iξŵ2(0))− μ1(∂y v̂1(0) + iξŵ1(0)) = 0,

−2μ2∂yŵ2(0) + π̂2(0) + 2μ1∂yŵ1(0)− π̂1(0) = 0, (8.79)

−2(μ2/�2)∂yŵ2(0) + π̂2(0)/�2 + 2(μ1/�2)∂yŵ1(0)− π̂1(0)/�2 = 0.

Multiplying the 1st and the 2nd equations by iξ, and setting βj = iξ · aj for
aj ∈ Cn−1, j = 1, 2, we have

β2 − β1 = −|ξ|2{(α2 − α1)− c0ĥ}, (8.80)

√
μ2ω2β2 +

√
μ1ω1β1 = −|ξ|2

(
2|ξ|(μ1α1 + μ2α2) +

(μ1
√
μ1

ω1

)
β1 +

(μ2
√
μ2

ω2

)
β2

)
.

Combining the 3rd and the 4th equations of (8.80), we obtain

αj = −2μjβj/(ω
2
j + μj |ξ|2). (8.81)

Substituting this formula into (8.80) and using the scaling ωj =
√
μj |ξ|ωj(z),

γj = μj |ξ|γj(z), we solve the system for βj[
−1 + 2/(ω1(z)

2 + 1) 1− 2/(ω2(z)
2 + 1)

μ1{γ1(z)− 4/(ω1(z)
2 + 1)} μ2{γ2(z)− 4/(ω2(z)

2 + 1)}

] [
β1

β2

]
=

[
c0τ

2ĥ
0

]
,

where we set τ = |ξ| and z = λ/τ2. Therefore, substituting βj and αj from (8.80)
and (8.81) into

− [[�w(0)]]

[[�]]
= − (�1α1 + �2α2)τ + (�2/τω2)β2 + (�1/τω1)β1

[[�]]
,

we obtain (8.78). The first and the second terms in (8.78) as well as the holomor-
phic function m(z) are the same as in Section 8.2, and �(z) is given by

ψ(z)�(z) = �1μ2
ω1(z)− 1

ω1(z)(ω1(z)2 + 1)

(
ω2(z)− 1

ω2(z)
+ 2

ω2(z) + 1

ω2(z)2 + 1

)
− �2μ1

ω2(z)− 1

ω2(z)(ω2(z)2 + 1)

(
ω1(z)− 1

ω1(z)
+ 2

ω1(z) + 1

ω1(z)2 + 1

)
.
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Here the function ψ(z) is given by

ψ(z) =
ω1(z) + 1

ω1(z)2 + 1
μ2

(
ω2(z)− 1

ω2(z)
+ 2

ω2(z) + 1

ω2(z)2 + 1

)
+

ω2(z) + 1

ω2(z)2 + 1
μ1

(
ω1(z)− 1

ω1(z)
+ 2

ω1(z) + 1

ω1(z)2 + 1

)
.

Now we may argue as in Section 8.3.3. ωj(z) is holomorphic in the sliced plane
C \ (−∞,−μj

�j
], hence the function ψ(z) has this property in C \ (−∞, η], with

η = min{μj/�j}. It is not difficult to see that ψ maps C+ into C+, and with

ψ(0) = 2(μ1 + μ2),
√
zψ(z) → μ1

√
μ2

�2
+ μ2

√
μ1

�1
, as |z| → ∞, we may conclude

ψ(C+) ⊂ Σφ for some angle φ < π
2 . By continuity of the argument function, this

implies ψ(Σπ
2 +η) ⊂ C+ for some η > 0. Therefore, ψ(z) cannot vanish in Σπ

2 +η.
This implies that �(z) is holomorphic in this sector and in a ball B(0, r0) for some
r0 > 0. For the asymptotics of �(z) we have

�(0) = 0, lim
|z|→∞

z�(z) =
2μ1μ2

(√
μ2/�2 −

√
μ1/�1

)
μ1

√
μ2/�2 + μ2

√
μ1/�1

for z ∈ C \ R−.

Thus there is a constant L = L(r, φ) > 0 such that

|�(z)| ≤ L

1 + |z| , z ∈ Σφ ∪B(0, r),

for each φ < π
2 + η and r < r0. Combining this estimate with the estimate for

m(z) from Section 8.6.2, it is easy to conclude

|s(λ, τ)| ≤ cη(|λ|+ |τ |), λ ∈ Σπ
2 +η, τ ∈ Ση,

whenever η > 0 is small enough. Conversely, since m(0) > 0, given a small η > 0

we find τη ∈ (0, r0) such thatm(z) ∈ Σπ
2 −3η and |m(z)| ≥ m(0)

2 for all τ ∈ B(0, rη).
This implies that there is a constant cη > 0 such that

|s(λ, τ)| ≥ |λ|+ |τ | σ

2[[�]]2
m(0), λ ∈ Σπ

2 +η, |λ| ≤ rη|τ |2.

On the other hand, choosing |λ| ≥ C|τ | we obtain

|s(λ, τ)| ≥ |λ|
2

+

(
C

2
− σ

[[�]]2
M − |c0|

[[�]]
L− |b0|

[[�]]

)
|τ | ≥ cη(|λ|+ |τ |)

for all λ ∈ Σπ
2 +η, τ ∈ Ση, with |λ| ≥ C|τ | and

C > 2(σM/[[�]]2 + |c0|L/[[�]] + |b0|/[[�]]).
Therefore, if λ0 is chosen large enough this implies the lower bound

|s(λ, τ)| ≥ cη(|λ|+ |τ |), λ ∈ Σπ
2 +η, τ ∈ Ση, |λ| ≥ λ0.

Thus this boundary symbol has the same regularity for |λ| ≥ λ0 as that for the
problem for the case b0 = c0 = 0.
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Appendix: Transmission Problems for the Laplace Equation

Here we state and prove two results on transmission problems for the Laplace equation
which have been employed in Section 8.2.

Proposition 8.6.1. Suppose that Ω is bounded domain in Rn with boundary ∂Ω of class
C3−, and let Σ ⊂ Ω be a closed hypersurface of class C3−, s = 0, 1. Let f ∈ Hs

q (Ω \ Σ),

gb ∈ W
1+s−1/q
q (∂Ω), g ∈ W

1+s−1/q
q (Σ), h ∈ W

2+s−1/q
q (Σ), such that the compatibility

condition ∫
Ω

f dx+

∫
Σ

g dΣ =

∫
∂Ω

gb d(∂Ω)

is satisfied.

Then the problem

−1Δψ = f in Ω \ Σ,
−1∂νψ = gb on ∂Ω,

[[−1∂νψ]] = g on Σ,

[[ψ]] = h on Σ.

(8.82)

admits a unique solution ψ ∈ H2+s
q (Ω \ Σ) with mean value zero. There is a constant

C > 0 such that

|ψ|
H2+s

q
≤ C

(
|f |Hs

q
+ |gb|W1+s−1/q

q
+ |g|

W
1+s−1/q
q

+ |h|
W

2+s−1/q
q

)
(8.83)

holds for all f ∈ Hs
q (Ω \ Σ), gb ∈ W

1+s−1/q
q (∂Ω), g ∈ W

1+s−1/q
q (Σ), and h ∈

W
2+s−1/q
q (Σ).

Proof. We first reduce to the case (gb, g, h) = 0 by solving the problem

−ωψ + −1Δψ = f in Ω \ Σ,
−1∂νψ = gb on ∂Ω,

[[−1∂νψ]] = g on Σ,

[[ψ]] = h on Σ,

for some (large) ω. The solution of this problem is in the right class, combining the results
in Section 6.3.5 with those in Section 6.4.3. Therefore, we may assume (gb, g, h) = 0 and
the mean value of f is zero. Set X0 := {v ∈ Lq(Ω) :

∫
Ω
v dx = 0}, and define an operator

A0 in X0 by means of

A0v = −−1Δv, D(A0) = {v ∈ H2
q (Ω \ Σ) ∩X0 : −1∂νψ = 0, [[−1∂νψ]] = [[ψ]] = 0}.

Then −A0 generates an analytic C0-semigroup, and by Poincarés inequality A0 is invert-
ible. Therefore, Problem (8.82) admits a unique solution in H2

q (Ω \ Σ) with mean value
zero; this proves the case s = 0. For s = 1 it is enough to consider the regularity of this
solution, replacing the equation by −ωu+Δu = f1 := f − ωu, and applying the results
of Section 6.3.5 and 6.4.3 once more. �

The second result we used above concerns weak solutions.
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Proposition 8.6.2. Suppose that Ω is a bounded domain in Rn with boundary ∂Ω of class
C1, and let Σ ⊂ Ω be a closed hypersurface of class C1. Let f ∈ Lq(Ω)

n, h ∈ W
1−1/q
q (Σ).

Then the weak problem

(−1∇ψ|∇φ) = (f |∇φ), φ ∈ H1
q′(Ω), (8.84)

[[ψ]] = h on Σ,

admits a unique solution ψ ∈ Ḣ1
q (Ω \ Σ). There is a constant C > 0 such that

|∇ψ|Lq ≤ C
(
|f |Lq + |h|

W
1−1/q
q

)
(8.85)

holds for all f ∈ Lq(Ω) and h ∈ W
1−1/q
q (Σ).

Note that uniqueness in Ḣ1
q (Ω) means uniqueness in Lq(Ω) up to a constant. Ob-

serve that for f ∈ H1
p(Ω \ Σ)n, Problem (8.84) is equivalent to (8.82), with f replaced

by div f , and g = [[f · ν]], gb = f · ν.

Proof. We first solve the problem

−ωψ1 + −1Δψ1 = div f in Ω \ Σ,
−1
2 ∂νψ1 = f · ν on ∂Ω,

[[−1∂νψ1]] = [[f · ν]] on Σ,

[[ψ1]] = h on Σ,

for ω large, according to Remark 6.5.3. The remaining problem then becomes

−1Δψ2 = −ωψ1 in Ω \ Σ,
∂νψ1 = 0 on ∂Ω,

[[−1∂νψ2]] = 0 on Σ,

[[ψ1]] = 0 on Σ,

(8.86)

where ψ2 = ψ − ψ1. Note that ψ1 has mean value zero. The corresponding generator
A in H−1

q (Ω) has compact resolvent, as Ω is bounded, hence its spectrum consists of
eigenvalues of finite multiplicity. Denote by A0 the part of A in Lq(Ω); the function 1 is
an eigenfunction for eigenvalue zero, and any eigenfunction v for A is in D(A) ⊂ Lq(Ω),
hence is also an eigenfunction of A0. For q ≥ 2, surely v ∈ H1

2 (Ω). If 1 < q < 2, we have
v ∈ H1

q (Ω) ⊂ Lq1(Ω), with 1/q1 = 1/q−1/n. By induction this yields v ∈ Lqk (Ω), 1/qk =
1/q− k/n, and so belongs to L2(Ω), choosing k large enough. But then |∇v|22 = 0, which
implies that v = constant. This shows that N(A) = N(A0) = span{1}. As the problem
A0w = 1 has no solution, 0 is a simple eigenvalue of A0, hence N(A0)⊕ R(A0) = Lq(Ω),
and f ∈ R(A0) if and only if f has mean value 0. Therefore, there is a unique solution
ψ2 ∈ Ḣ1

q (Ω) of (8.86), which proves Proposition 8.6.2. �



Part IV

Nonlinear Problems



Chapter 9

Local Well-Posedness and
Regularity

In this chapter we study local well-posedness and regularity of the solutions of
Problems (P1)∼(P6). Here we employ without further comments the notations
introduced in Chapters 1 and 2, in particular those in connection with Conditions
(H1)∼(H6) from Chapter 1, the Hanzawa transform, and the transformed prob-
lems on the fixed domain Ω \ Σ in Section 1.3. In the first section of this chapter
we reformulate Problems (P1)∼(P6) in a way which is amenable to a joint anal-
ysis, which will be based on maximal Lp-regularity as well as on the contraction
mapping principle in Section 9.2, and on the implicit function theorem for de-
pendence on the data in Section 9.3. For regularity we employ in Section 9.4 the
so-called parameter trick, which is also based on maximal Lp-regularity and the
implicit function theorem. This way we can show that the solutions obtained in
Section 9.2 are in fact classical solutions. The proofs for the technical results on
the nonlinearities are postponed to the last section of this chapter.

9.1 Reformulation on the Fixed Domain

The main goal of this section is the reformulation of the transformed problems
(P1)∼(P6) in abstract form Lz = N(z). We call L the principal linearization.
The mapping N collects all nonlinear and lower order terms. We have to set up
function spaces such that L has the property of maximal regularity, and N is
Lipschitz continuous. Furthermore, we use the decomposition z = z̄ + z̃, where z̄
resolves the compatibility conditions and satisfies the initial condition, and z̃ has
vanishing trace at time t = 0. This has to be done separately for each problem in
question. We begin with the simplest one.

© Springer International Publishing Switzerland 2016
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1.1 The Stefan Problem with Surface Tension
In the sequel we assume Condition (H1), and the compatibility condition

(C1) �[[ψ(θ0)]] + σHΓ0
= 0 on Γ0, [[d(θ0)∂νθ0]] ∈ W 2−6/p

p (Γ0).

The transformed problem (P1) reads as follows (w.l.o.g. � = 1).

∂tθ +Aθ(θ, h) : ∇2θ = Fθ(θ, h) in Ω \ Σ,
∂νθ = 0 on ∂Ω,

[[θ]] = 0, ϕ(θ) + σHΓ(h) = 0 on Σ,

∂th+ [[Bθ(θ, h)∇θ]] = 0 on Σ,

h(0) = h0 on Σ, θ(0) = θ0 in Ω.

(9.1)

Recall that ϕ(θ) = [[ψ(θ)]], where ψ denotes the free energy, and l(θ) = θϕ′(θ) is
the latent heat. We assume here that l(θ0) �= 0. The map Fθ collects lower order
terms and we have

κ(θ)Fθ(θ, h) = κ(θ)m0(h)∂th ◦ΠΣ(νΣ · ∇θ) + d′(θ)|(1−M1(h))∇θ|2

− d(θ)
[
(I −M1(h))∇]M1(h)

)
· ∇θ.

Note that the time derivative of h appears in Fθ. On the other hand, the curvature
operator according to Section 2.2.5 is given by

HΓ(h) = β(h){tr[M0(h)(LΣ +∇Σ(M0(h)∇Σh))]

− β2(h)(M2
0 (h)∇Σh|∇Σ

(
M0(h)∇Σ(h)

)
M0(h)∇Σh)}.

Finally, Aθ(θ, h) and Bθ(θ, h) are defined by

Aθ(θ, h) = −
(
d(θ)/κ(θ)

)
(I −M1(h)

T)(I −M1(h)),

Bθ(θ, h) = −
(
d(θ)/l(θ)

)
(1−M1(h)

T)(νΣ −M0(h)∇Σh).

To formulate the problem abstractly, let J = (0, a) where a > 0 will be fixed later.
We first set

Eθ,μ(J) = H1
p,μ(J ;Lp(Ω)) ∩ Lp,μ(J ;H

2
p (Ω \ Σ)),

Eθ
h,μ(J) = W 3/2−1/2p

p,μ (J ;Lp(Σ)) ∩W 1−1/2p
p,μ (J ;H2

p (Σ)) ∩ Lp,μ(J ;W
4−1/p
p (Σ)),

and define the solution space for z = (θ, h) by

E1
μ(a) = {z = (θ, h) ∈ Eθ,μ(J)× Eθ

h,μ(J) : [[θ]] = 0 on Σ, ∂νθ = 0 on ∂Ω}.

The space of data for (fθ, gθ, fh) will be

F1
μ(a) = Fθ,μ(J)× Fθ

h,μ(J)× Fu
h,μ(J),
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with
Fθ,μ(J) = Lp,μ(J ;Lp(Ω)),

Fθ
h,μ(J) = W 1−1/2p

p,μ (J ;Lp(Σ)) ∩ Lp,μ(J ;W
2−1/p
p (Σ)),

Fu
h,μ(J) = W 1/2−1/2p

p,μ (J ;Lp(Σ)) ∩ Lp,μ(J ;W
1−1/p
p (Σ)).

Recall from Subsection 3.4.6 that the time trace space X1
γ,μ of E1

μ(a) is given by

X1
γ,μ={(θ, h)∈W 2μ−2/p

p (Ω \ Σ)×W 2+2μ−3/p
p (Σ) : [[θ]]=0 on Σ, ∂νθ=0 on ∂Ω}.

We observe that

X1
γ,μ ↪→ C1

ub(Ω \ Σ)× C3(Σ), provided 1 ≥ μ >
1

2
+

n+ 2

2p
. (9.2)

We will use this restriction in the sequel, although it would be enough to require

X1
γ,μ ↪→ Cub(Ω \ Σ)× C2(Σ), valid for 1 ≥ μ >

n+ 2

2p
.

However, this would involve more technical efforts, and we refrain from carrying
this out here. Observe that the last restriction cannot be relaxed, since we definitely
need continuity of temperature and of curvature; the interfaces ought to be of class
C2.

Unfortunately, (θ0, h0) ∈ X1
γ,μ do not have enough regularity for the space

Fθ
h,μ(J), as ϕ

′(θ0) fails to be a pointwise multiplier for this space. For this reason
we cannot freeze coefficients in the stationary interface equation. Therefore, we
extend the initial value θ0 to some function θ̄ in Eθ,μ(R+), for instance by solving
the problem

∂tθ̄ −Δθ̄ = 0 in Ω,

∂ν θ̄ = 0 on ∂Ω,

θ̄(0) = θ0 in Ω.

Similarly, we extend h0 and h1 := −[[B(θ0, h0)∇θ0]] as in Section 6.6.2 to a function
h̄ ∈ Eθ

h,μ(R+) such that h̄(0) = h0 and ∂th̄(0) = h1. Further we set θ̃ = θ − θ̄ and

h̃ = h − h̄. This way, we have trivialized the initial conditions and at the same
time resolved the compatibility conditions. Writing

ϕ(θ) = ϕ(θ̄) + ϕ′(θ̄)θ̃ + rθ(θ̃, θ̄)

and

HΓ(h) = HΓ(h̄) +H ′
Γ(h0)h̃+ rh(h̃, h̄)

we may replace the stationary interface condition by

ϕ′(θ̄)θ̃ + σH ′
Γ(h0)h̃ = ḡθ − rθ(θ̃, θ̄)− σrh(h̃, h̄)
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where
ḡθ = −

(
ϕ(θ̄) + σHΓ(h̄)

)
∈ 0F

θ
h,μ(R+)

by the compatibility condition (C1). Now we can rewrite the problem abstractly
as

L1z̃ = N1(z̃, z̄), z̃(0) = 0, (9.3)

with N1 : 0E
1
μ(a)×E1

μ(∞) → 0F
1
μ(a), and L1 : E1

μ(a) → F1
μ(a) linear and bounded,

given by

L1z̃ =

⎡⎣ ∂tθ̃ +Aθ(θ0, h0) : ∇2θ̃

ϕ′(θ̄)θ̃ − σ CΣ(h0)h̃

∂th̃+ [[Bθ(θ0, h0)∇ϑ̃]]

⎤⎦ ,

where CΣ(h0) denotes the principal part of the curvature operator −H ′
Γ(h0). The

operator L1 has maximal Lp-regularity by Section 6.6.
The nonlinearity N1 is given by

N1(z̃, z̄) =

⎡⎣ Fθ(θ, h)− ∂tθ̄ −Aθ(θ, h) : ∇2θ̄ + (Aθ(θ0, h0)−Aθ(θ, h)) : ∇2θ̃

ḡθ + rθ(θ̃, θ̄) + σrh(h̃, h̄)− σ(CΣ(h0) +H ′
Γ(h̄))h̃

[[(Bθ(θ0, h0)− Bθ(θ, h))∇θ̃ − Bθ(θ, h)∇θ̄]]− ∂th̄

⎤⎦ .

Observe that

N1(0, z̄) =

⎡⎣ Fθ(θ̄, h̄)− ∂tθ̄ −Aθ(θ̄, h̄) : ∇2θ̄
ḡθ
−∂th̄− [[Bθ(θ̄, h)∇θ̄]]

⎤⎦
satisfies |N1(0, z̄)|Fμ(a) → 0 as a → 0.

1.2 The Two-Phase Navier-Stokes Problem with Surface Tension
In the sequel we assume Condition (H2) and the compatibility condition

(C2) div u0 = 0 in Ω \ Γ0, [[d(θ0)∂νθ0]], PΓ0 [[μ(θ0)D(u0)νΓ0 ]] = 0 on Γ0.

The transformed problem (P2) reads as follows.

∂tu+Au(θ, h) : ∇2u+ (I −M1(h))∇π/� = Fu(u, θ, h) in Ω \ Σ,
(I −M1(h))∇ · u = 0 in Ω \ Σ,

∂tθ +Aθ(θ, h) : ∇2θ = Fθ(θ, h) in Ω \ Σ,
u, ∂νθ = 0 on ∂Ω,

[[u]], [[θ]], [[Bθ(θ, h)∇θ]] = 0 on Σ,

−[[S(u, θ, h)]]νΓ +
(
[[π]]− σHΓ(h)

)
νΓ = 0 on Σ,

∂th− (u|νΣ −M0(h)∇Σh) = 0 on Σ,

h(0) = h0 on Σ, u(0) = u0, θ(0) = θ0 in Ω.

(9.4)
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Note that here we used the abbreviations

Au(θ, h) = (μ(θ)/�)(I −M1(h)
T)(I −M1(h)),

Aθ(θ, h) = (d(θ)/�κ(θ))(I −M1(h)
T)(I −M1(h)),

Bθ(θ, h) = d(θ)(1−M1(h)
T)(νΣ −M0(h)∇Σh).

The nonlinearities Fu and Fθ collect all lower order terms, i.e.,

�Fu =− �u · (I −M1(h))∇u+ �m0(h)∂th ◦ΠΣ(νΣ · ∇θ)

+ μ′(θ)(I −M1(h))∇θ ·D(u, h)

+ μ(θ)
(
(I −M1(h))∇ ·M1(h)∇u+ [∇u]T : (I −M1(h))∇M1(h)

− (I −M1(h))∇⊗M1(h) : ∇u
)
,

and

�κ(θ)Fθ = �κ(θ)m0(h)∂th ◦ΠΣ(νΣ · ∇θ)− �κ(θ)u · (I −M1(h))∇θ

+ d′(θ)|(1−M1(h))∇θ|2 − d(θ)
[
(I −M1(h))∇]M1(h)

)
· ∇θ + 2μ(θ)|D|2.

Note that Fθ(0, θ, h) coincides with Fθ from the previous subsection. Furthermore,
recall that

S = S(u, θ, h) = 2μ(θ)D(u, h), 2D(u, h) = (I−M1(h))∇u+[∇u]T(I−M1(h))
T.

To obtain the abstract formulation of the problem, we choose as the system
variable z = (u, θ, h, π, q), where q = [[π]] is a dummy variable which we introduce
for convenience. The regularity space for z is

z ∈ E2
μ(a) := {z ∈ Eu,μ(J)× Eθ,μ(J)× Eu

h,μ(J)× Eπ,μ(J)× Eq,μ(J) : [[π]] = q,

[[θ]], [[u]] = 0 on Σ, u, ∂νθ = 0 on ∂Ω},

where

Eu,μ(J) = Eθ,μ(J)
n, Eπ,μ(J) = Lp,μ(J ; Ḣ

1
p (Ω \ Σ)), Eq,μ(J) = Fu

h,μ(J).

Here we set

Eu
h,μ(J) = W 2−1/2p

p,μ (J ;Lp(Σ)) ∩H1
p,μ(J ;W

2−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ)),

which differs from the space for h in the previous subsection. Note that, according
to Section 8.2, the time-trace space of (u, θ, h) in this case reads

X2
γ,μ = {(u, θ, h) ∈ W 2μ−2/p

p (Ω \ Σ)n+1 ×W 2+μ−2/p
p (Σ) : [[u]], [[θ]] = 0 on Σ,

u, ∂νθ = 0 on ∂Ω}.
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The data space F2
μ(a) is given by

F2
μ(a) = Fu,μ(J)× F2

π,μ(J)× Fθ,μ(J)× Fu
h,μ(J)

n+1 × Fθ
h,μ(J),

with

Fu,μ(J) = Fθ,μ(J)
n, F2

π,μ(J) = H1
p,μ(J ; 0Ḣ

−1

p (Ω)) ∩ Lp,μ(J ;H
1
p (Ω \ Σ)),

Next we define suitable extensions of z0 ∈ X2
γ,μ in the following way. We solve the

diffusion problem
∂tū−Δū = 0 in Ω,

ū = 0 on ∂Ω,

ū(0) = u0 in Ω,

to obtain a function ū ∈ Eu,μ(R+). Also we define θ̄ ∈ Eθ,μ(R+) as in the previous
subsection. Next we extend the initial values h0 and

h1 := u0 · (νΣ −M0(h0)∇Σh0) ∈ W 2μ−3/p
p (Σ)

as in Section 8.2.2 to obtain a function h̄ ∈ Eu
h,μ(R+) with initial values h̄(0) = h0

and ∂th̄(0) = h1. Finally, we extend the pressure jump q0 defined by

q0 := σHΓ(h0) + ([[S(u0, θ0, h0]]νΓ(h0)|νΓ(h0)) ∈ W 2μ−1−3/p
p (Σ)

by means of
q̄ = e−(I−ΔΣ)tq0 ∈ Eq,μ(R+),

and define π̄ ∈ Eπ,μ(R+) as the solution of the elliptic transmission problem

Δπ̄ = 0 in Ω \ Σ,
∂ν π̄ = 0 on ∂Ω,

[[∂ν π̄]] = 0, [[π̄]] = q̄ on Σ,

see Proposition 8.6.2, We denote the projection onto mean value zero by P0. Then
with z̄ = (ū, θ̄, h̄, π̄, q̄), we decompose as in the previous section z = z̄ + z̃, and
obtain the abstract equation

L2z̃ = N2(z̃, z̄), z̃(0) = 0,

with L2 : E2
μ(a) → F2

μ(a) linear and bounded, N2 : 0E
2
μ(a) × E2

μ(∞) → 0F
2
μ(a).

Here L2 is given by

L2z̃ =

⎡⎢⎢⎢⎢⎢⎢⎣

∂tũ+Au(θ0, h0) : ∇2ũ+ (1−M1(h0))∇π̃/�
(I − P0M1(h0))∇ · ũ)
∂tθ̃ +Aθ(θ0, h0) : ∇2θ̃

−[[S(ũ, θ0, h0)]]νΣ + (q̃ + σCΣ(h0) : ∇2
Σh̃)νΣ

[[Bθ(θ0, h0)∇θ̃]]

∂th̃− ũ · (νΣ −M0(h0)∇Σh̄) + ū ·M0(h0)∇Σh̃

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Note that the temperature decouples completely from the problem for
(u, π, h), it has maximal Lp-regularity by Section 6.5. The remaining problem
for (u, π, h) has been analyzed in Chapter 8 for the case h0 = 0. There, maximal
Lp-regularity has been shown for (h0, h1) = 0 which, by perturbation, extends to
nontrivial h0 with small norm in C1(Σ), and also to arbitrary h1 provided the
time interval J = (0, a) is small. Observe that in the part for h we cannot replace
h̄ by h0 everywhere, as h0 does not have enough regularity.

The nonlinearity N2 reads

N2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fu(u, θ, h)− ∂tū− (I −M1(h))∇π̄/�+ (M1(h)−M1(h0))∇π̃
+(Au(θ0, h0)−Au(θ, h)) : ∇2ũ−Au(θ, h) : ∇2ū

P0(M1(h)−M1(h0))∇ · ũ+ P0(M1(h)− I)∇ · ū
Fθ(u, θ, h)− ∂tθ̄ − (Aθ(θ0, h0)−Aθ(θ, h)) : ∇2θ̃ −A(θ, h) : ∇2θ̄

T̃0M0(h)∇Σh+
(
[[S(u, θ, h)− S(ũ, θ0, h0)− π̄]]

+σ(HΓ(h̄) +H ′
Γ(h̄)−H ′

Γ(h0))h̃+ rh(h̄, h̃)
)
νΓ(h)/β

[[(Bθ(θ0, h0)− Bθ(θ, h))∇θ̃ − B(θ, h)∇θ̄

−∂th̄+ ū · (νΣ −M0(h)∇Σh̄) + ū · (M0(h0)−M0(h))∇Σh̃

+ũ · ((M0(h0)−M0(h))∇Σh̄−M0(h)∇Σh̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

here we employed the abbreviation

T̃0 = −[[S(ũ, θ0, h0)− π̃]]− σH ′
Γ(h0)h̃.

Note that

N2(0, z̄) =

⎡⎢⎢⎢⎢⎢⎢⎣
Fu(ū, θ̄, h̄)− ∂tū− (I −M1(h̄))∇π̄/ρ−Au(θ̄, h̄) : ∇2ū
P0((M1(h̄)− I)∇ · ū)
Fθ(ū, θ̄, h̄)− ∂tθ̄ −A(θ̄, h̄) : ∇2θ̄(
[[S(ū, θ̄, h̄)− π̄]] + σHΓ(h̄

)
νΓ(h̄)/β

−[[B(θ̄, h̄)∇θ̄
−∂th̄+ ū · (νΣ −M0(h̄)∇Σh̄)

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then we see that |N2(0, z̄)|Fμ(a) → 0 as a → 0.

1.3 Phase Transitions: Equal Densities
In the sequel we assume Condition (H3) and the compatibility condition

(C3) �[[ψ(θ0)]] + σHΓ0 = 0 on Γ0, [[d(θ0)∂νθ0]] ∈ W 2−6/p
p (Γ0),

div u0 = 0 in Ω \ Γ0, PΓ0
[[μ(θ0)D(u0)νΓ0

]] = 0 on Γ0.

Here we have �1 = �2 = 1 w.l.o.g. and we may express the phase flux jΣ by

jΣ = [[Bθ(θ, h)∇θ]],

insert it into the VΓ-equation, and the Gibbs-Thomson relation into interface stress
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balance to the result

∂tu+Au(θ, h) : ∇2u+ (I −M1(h))∇π = Fu(u, θ, h) in Ω \ Σ,
(I −M1(h))∇ · u = 0 in Ω \ Σ,

∂tθ +Aθ(θ, h) : ∇2θ = Fθ(θ, h) in Ω \ Σ,
u, ∂νθ = 0 on ∂Ω,

[[u]], [[θ]] = 0 on Σ,

−[[S(u, θ, h)]]νΓ +
(
[[π]] + ϕ(θ)

)
νΓ = 0 on Σ,

ϕ(θ) + σHΓ(h) = 0 on Σ,

∂th− (u|νΣ −M0(h)∇Σh) + [[Bθ(θ, h)∇θ]] = 0 on Σ,

h(0) = h0 on Σ, u(0) = u0, θ(0) = θ0 in Ω.

Here (Au,Aθ,Bθ) are as before. The extensions (ū, θ̄) are as in the previous sub-
section, whereas the extension h̄ is that from Section 9.1.1. As a result we obtain
again a problem of the form

L3z̃ = N3(z̃, z̄), z̃ = 0,

where L3 is defined by

L3z̃ =

⎡⎢⎢⎢⎢⎢⎢⎣

∂tũ+Au(θ0, h0) : ∇2ũ+ (1−M1(h0))∇π̃
(I − P0M1(h0))∇ · ũ)
∂tθ̃ +Aθ(θ0, h0) : ∇2θ̃
−[[S(ũ, θ0, h0)]]νΣ + [[π̃]]νΣ
ϕ′(θ̄)θ̃ − σCΣ(h0)h̃

∂th̃+ [[Bθ(θ0, h0)∇θ̃]]

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that the term ϕ(θ) in the stress balance on the interface as well the term
u · νΓ in the equation for h are lower order and can be subsumed in N3. Here we
define with z = (u, θ, h, π, q) the regularity space as

z ∈ E3
μ(a) := {z ∈ Eu,μ(J)× Eθ,μ(J)× Eθ

h,μ(J)× Eπ,μ(J)× Eq,μ(J) :

[[θ]], [[u]] = 0, [[π]] = q on Σ, u, ∂νθ = 0 on ∂Ω},

and the space of data by

F3
μ(a) = Fu,μ(J)× F2

π,μ(J)× Fθ,μ(J)× Fu
h,μ(J)× Fθ

h,μ(J)× Fu
h,μ(J).

Observe that up to lower order terms, the problems for (u, π) and (θ, h) decouple.
Therefore, for (u, π) we have at the linear level a two-phase Stokes problem on a
fixed domain, and for (θ, h) we have the same principal part as in Section 9.1.1.
By the previous subsections, L3 has maximal regularity and L3 : 0Eμ(a) → 0Fμ(a)

is an isomorphism with |L−1
3 | uniformly bounded for a ∈ (0, 1]. The nonlinearity
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N3 is similar to N2 and N1. In particular, we have again |N3(0, z̄)|Fμ(a) → 0 as
a → 0.

1.4 Phase Transitions: Different Densities
In the sequel we assume Condition (H4) and the compatibility condition

(C4) div u0 = 0 in Ω \ Γ0, PΓ0 [[u0]] = 0,

PΓ0 [[μ(θ0)D(u0)νΓ0 ]], l(θ0)[[u0 · νΓ0 ]] + [[1/�]][[d(θ0)∂νθ0]] = 0 on Γ0,

As shown in Chapter 1, with [[�]] �= 0, we may eliminate jΣ to obtain

jΣ(u, h) = [[u · νΣ]]/β(h)[[1/�]], VΓ = β(h)∂th = [[�u · νΓ]]/[[�]].

Then the transformed problem (P4) becomes

∂tu+Au(θ, h) : ∇2u+ (I −M1(h))∇π/� = Fu(u, θ, h) in Ω \ Σ,
(I −M1(h))∇ · u = 0 in Ω \ Σ,

∂tθ +Aθ(θ, h) : ∇2θ = Fθ(θ, h) in Ω \ Σ,
u, ∂νθ = 0 on ∂Ω,

[[θη(θ)]]jΣ − [[d(θ)νΓ · (I −M1(h))∇θ]] = 0 on Σ,

PΓ[[u]], [[θ]] = 0 on Σ,

−[[S(u, θ, h)]]νΓ +
(
[[π]] + [[1/�]]j2Σ − σHΓ(h)

)
νΓ = 0 on Σ,

ϕ(θ) + [[1/2�2]]j2Σ − [[S(u, θ, h)νΓ · νΓ/�]] + [[π/�]] = 0 on Σ,

∂th− [[(�u|νΣ −M0(h)∇Σh)]]/[[�]] = 0 on Σ,

h(0) = h0 on Σ, u(0) = u0, θ(0) = θ0 in Ω.

(9.5)

Here the heat problem is only weakly coupled to the system for (u, π, h). However,
the system for (u, π, h) leads to the asymmetric Stokes problem, which differs from
the one considered above. The regularity of h is the same as in Section 9.1.2; the
problem is velocity dominated. We proceed as before, extending the initial values
(u0, θ0, h0) ∈ X4

γ,μ as in Section 9.1.2 to obtain (ū, θ̄, h̄). Furthermore, we solve
the Gibbs-Thomson relation combined with the normal component of the stress
transmission condition on the interface at time t = 0, to obtain unique initial
values qj0 for the pressures πj on the interface. We extend these by defining

q̄j = e−(1−ΔΣ)tqj0, t > 0, j = 1, 2,

and then solve the two elliptic problems

Δπ̄2 = 0 in Ω2,

∂ν π̄2 = 0 on ∂Ω,

π̄2 = q̄2 on Σ,



428 Chapter 9. Local Well-Posedness and Regularity

and
Δπ̄1 = 0 in Ω1,

π̄1 = q̄1 on Σ.

From the above construction it is evident that z̄ ∈ E4
μ(∞) trivializes the initial

conditions and resolves the compatibilities. The relevant variables are here z =
(u, θ, h, π, q1, q2), where qj denote the surface pressures on Σ, and the solution
space z ∈ E4

μ(a) is

E4
μ(a) :={z ∈ Eu,μ × Eθ,μ(J)× Eu

h,μ(J)× Eπ,μ(J)× Eq,μ(J)× Eq,μ(J) :

[[θ]] = 0, πj = qj on Σ, u, ∂νθ = 0 on ∂Ω}.
The image space in this case will be

F4
μ(a) := Fu,μ(J)×F4

π,μ(J)×Fθ,μ(J)×Fu
h,μ(J)×PΣF

θ
h,μ(J)

n×Fu
h,μ(J)

n+1×Fθ
h,μ(J),

with
F4
π,μ(J) = H1

p,μ(J ;H
−1
p,∂Ω(Ω \ Σ)) ∩ Lp,μ(J ;H

1
p (Ω \ Σ)).

Compared to the previous cases, the equation for h is different from that in Sec-
tion 9.1.2, but it has a similar structure and hence needs no additional comments.
On the other hand, the transmission condition [[u]] = 0 is replaced by PΓ[[u]] = 0,
which by application of PΣ leads to the decomposition

PΣ[[u]] + β(h)M0∇Σh[[νΓ(h) · u]] = 0.

This equation is linearized in the same way as the equation for h. Furthermore,
note that the terms ϕ(θ) and [[1/2�2]]j2Σ in the Gibbs-Thomson law are lower order.
The remaining part is linearized in the same way as the stress boundary condition.

As a result we obtain again a problem of the form

L4z̃ = N4(z̃, z̄), z̃ = 0,

where L4 is defined by

L4z̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tũ+Au(θ0, h0)∇2ũ+ (1−M1(h0))∇π̃
(I −M1(h0))∇ · ũ)
∂tθ̃ +Aθ(θ0, h0) : ∇2θ̃

[[Bθ(θ0, h0)∇θ̃]]

PΣ[[ũ]] + [[ũ · νΣ]]M0(h0)∇Σh̄+ [[ū · νΣ]]M0(h0)∇Σh̃

−[[S(ũ, θ0, h0)]]νΣ + ([[π̃]] + σCΣ(h0)h̃)νΣ
−[[S(ũ, θ0, h0)νΣ · νΣ/�]] + [[π̃/�]]

∂th̃− ([[�ũ · (νΣ −M0(h0)∇Σh̄)]]− [[�ū ·M0(h0)∇Σh̃]])/[[�]]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

On the linear level we have an asymmetric Stokes problem for (u, π, h) and a
transmission problem for θ. Maximal Lp-regularity of the transmission problem
follows from Section 6.5, and the asymmetric Stokes problem has been studied in
Chapter 8. As shown there, it has maximal Lp-regularity in case (h0, h1) = 0. By
perturbation, this extends to nontrivial h0 which are small in C1(Σ), as well as to
arbitrary h1 provided the interval J = (0, a) is small.
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1.5 Phase Transitions and Marangoni Forces: Different Densities
In the sequel we assume Condition (H6) and the compatibility condition

(C6) div u0 = 0 in Ω \ Γ0, PΓ0
[[u0]] = 0,

2PΓ0
[[μ(θ0)D(u0)νΓ0

]] + σ′(θ0)∇Γ0
θ0 = 0 on Γ0.

We eliminate jΣ as before and obtain the transformed problem (P6)

∂tu+Au(θ, h) : ∇2u+ (I −M1(h))∇π/� = Fu(u, θ, h) in Ω \ Σ,
(I −M1(h))∇ · u = 0 in Ω \ Σ,

∂tθ +Aθ(θ, h) : ∇2θ = Fθ(θ, h) in Ω \ Σ,
u, ∂νθ = 0 on ∂Ω,

∂tθΣ +AθΣ(θΣ, h) : ∇2
ΣθΣ = FθΣ(u, θ, h, θΣ) on Σ,

θ = θΣ, PΓ[[u]], [[θ]] = 0 on Σ,

−[[S(u, θ, h)]]νΓ +
(
[[π]] + [[1/�]]j2Σ − σ(θΣ)HΓ(h))νΓ = σ′(θΣ)∇ΓθΓ on Σ,

ϕ(θ) + [[1/2�2]]j2Σ − [[S(u, θ, h)νΓ · νΓ/�]] + [[π/�]] = 0 on Σ,

∂th+ [[�u · (νΣ −M0(h)∇Σh)]]/[[�]] = 0 on Σ,

h(0) = h0 on Σ, u(0) = u0, θ(0) = θ0 in Ω.
(9.6)

The differential operators (Au,Aθ,Bθ) are defined as previously, and with Sec-
tion 2.2, AθΣ is given by

AθΣ : ∇2
Σ = −(dΓ(θΣ)/κΓ(θΣ))M0(h)PΓ(h)M0(h) : ∇2

Σ.

Here we employed the relation

D

Dt
θΣ = ∂tθΣ + (I −MT

1 (h))uΣ · ∇ΣθΣ,

taken from Section 1.3.2. FθΣ = FθΣ(u, θ, θΣ, h) is defined by

κΓ(θΣ)FθΣ

= M0(h)PΓ(h)∇Σ · (dΓ(θΣ)PΓ(h)M0(h))∇ΣθΣ − κΓ(θΣ)(I −MT
1 (h))uΣ · ∇ΣθΣ

+ θΣσ
′(θΣ)(PΓ(h)M0(h)∇Σ · PΣu−HΓ(h)VΓνΓ)− [[θη(θ)]]jΣ − [[Bθ(θ, h)∇θ]],

it collects all lower order terms. Recall that

jΣ = [[u · νΓ]]/[[1/�]], VΓ = [[�u · νΓ]]/[[�]].
We extend (u0, h0) as in Section 9.1.4, but we have to be more careful with

θ0 due to the dynamic equation for θΣ on Σ. We first extend θΣ0 = θ0|Σ on Σ by
θ̄Σ = e−(1−ΔΣ)tθΣ0 and then solve the two one-phase parabolic problems

∂tθ̄ −Δθ̄ = 0 in Ω \ Σ,
∂ν θ̄ = 0 on ∂Ω,

θ̄ = θ̄Σ on Σ,

θ̄(0) = θ0 in Ω.
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Observe that the heat equation on Σ decouples to highest order from the remaining
equations, and the heat problem in Ω \Σ decouples from the system for (u, π, h).
The latter is as in the previous subsection governed by an asymmetric Stokes
problem. The solution space for z = (u, θ, θΣ, h, π, q1, q2) is here defined by

E6
μ(a) :={z ∈ Eu,μ × Eθ,μ(J)× EθΣ,μ(J)× Eu

h,μ(J)× Eπ,μ(J)× Fu
u,μ(J)

2 :

PΣ[[u]], [[θ]] = 0, θ = θΣ, π|∂Ωj
= qj on Σ, u, ∂νθ = 0 on ∂Ω},

with
EθΣ,μ(J) = H1

p,μ(J ;W
−1/p
p (Σ)) ∩ Lp,μ(J ;W

2−1/p
p (Σ)).

For the space of data we may take here

F6
μ(a) = Fu,μ(J)×F4

π,μ(J)×Fθ,μ(J)×FθΣ,μ(J)×PΣF
θ
h,μ(J)

n×Fu
h,μ(J)

n+1×Fθ
h,μ(J),

where
FθΣ,μ(J) = Lp,μ(J ;W

−1/p
p (Σ)).

This way we obtain the abstract form

L6z̃ = N6(z̃, z̄), z̃ = 0,

with N6 : 0E
6
μ(a)×E6

μ(∞) → 0F
6
μ(a) and L6 : E6

μ(a) → F6
μ(a) linear and bounded.

More precisely, L6 is defined by

L6z̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tũ+Au(θ0, h0)∇2ũ+ (1−M1(h0))∇π̃
(I −M1(h0))∇ · ũ)
∂tθ̃ +Aθ(θ0, h0) : ∇2θ̃

∂tθ̃Σ +AθΣ(θ0, h0) : ∇2
Σθ̃Σ

PΣ[[ũ]] + [[ũ · νΣ]]M0(h0)∇Σh̄+ [[ū · νΣ]]M0(h0)∇Σh̃

−[[S(ũ, θ0, h0)]]νΣ + ([[π̃]] + σ(θ0)CΣ(h0))νΣ − σ′(θ0)∇Σθ̃Σ
−[[S(ũ, θ0, h0)νΣ · νΣ/�]] + [[π̃/�]]

∂th̃− ([[�ũνΣ]]− [[�ũ ·M0(h0)∇Σh̄]]− [[�ū ·M0(h0)∇Σh̃]])/[[�]]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

As the operator for θΣ has maximal Lp-regularity by Section 6.3, that for θ has
this property by Section 6.3, and the remaining asymmetric Stokes operator does
so as we have seen in the previous subsection, we conclude that L6 has maxi-
mal regularity, which shows that L6 : 0E

6
μ(a) → 0F

6
μ(a) is an isomorphism, with

uniform bounds in a ∈ (0, 1].

1.6 Phase Transitions and Marangoni Forces: Equal Densities
In the sequel we assume Condition (H5) and the compatibility condition

(C5) [[ψ(θ0)]] + σ(θ0)HΓ0 = 0 on Γ0, div u0 = 0 in Ω \ Γ0,

PΓ0 [[2μ(θ0)D(u0)νΓ0 ]] + σ′(θ0)∇Γ0θ0 = 0 on Γ0.

Here we have once more �1 = �2 = 1 w.l.o.g, and we solve for jΓ according to
jΓ = u · νΓ − VΓ, and insert this into the interface energy balance.
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The case where undercooling is present is the simpler one, as both equations
on the interface are dynamic equations, however it can be used as a guide. In
particular, the Gibbs-Thomson identity

γ(θΓ)VΓ − σ(θΓ)HΓ(h) = ϕ(θΓ)

can be understood as a mean curvature flow for the evolution of the surface,
modified by physics.

If there is no undercooling, there is a hidden mean curvature flow which,
however, is more complex. For the derivation, it is convenient to eliminate the time
derivative of θΓ from the energy balance on the interface. In fact, differentiating
the Gibbs-Thomson law w.r.t. time t and with λ(s) = ϕ(s)/σ(s) we obtain

λ′(θΓ)
Dn

Dt
θΓ +H ′

Γ(h)VΓ = 0 on Γ(t),

hence substitution into surface energy balance yields with

TΓ(θΓ) := ωΓ(θΓ)−H ′
Γ(h), ωΓ(θΓ) :=

λ′(θΓ)
κΓ(θΓ)

(l(θΓ)− lΓ(θΓ)λ(θΓ)) (9.7)

the relation

TΓ(θΓ)VΓ =
λ′(θΓ)
κΓ(θΓ)

{
divΓ(dΓ(θΓ)∇ΓθΓ)− κΓuΓ∇ΓθΓ + [[d(θ)∂νθ]]

+ lΓdivΓu+ l0(θ)u · νΓ
}
. (9.8)

As VΓ should be determined only by the state of the system and should
not depend on time derivatives of other variables, this indicates that the problem
without undercooling is not well-posed if the operator TΓ(θΓ) is not invertible in
L2(Γ), as VΓ might not be well-defined. On the other hand, if TΓ(θΓ) is invertible,
then

VΓ = T−1
Γ

λ′(θΓ)
κΓ(θΓ)

{
divΓ(dΓ(θΓ)∇ΓθΓ)− κΓuΓ∇ΓθΓ + [[d(θ)∂νθ]]

+ lΓdivΓu+ l0(θ)u · νΓ
}
. (9.9)

uniquely determines the interfacial velocity VΓ, gaining two derivatives in space,
and showing that all terms on the right-hand side of surface energy balance are of
lower order. Note that

ωΓ(s) = sσ(s)[λ′(s)]2/κΓ(s) ≥ 0 in (0, θc), (9.10)

and ωΓ(s) = 0 if and only if λ′(s) = 0. The well-posedness condition appears to
be more complex, compared to the case κΓ ≡ 0.

Going one step further, taking the surface gradient of the Gibbs-Thomson
relation yields the identity

κΓ(θΓ)VΓ − dΓ(θΓ)HΓ = κΓ(θΓ){fΓ(θΓ) + FΓ(u, θ, θΓ)}, (9.11)
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as will be shown below. Here the function fΓ is the antiderivative of λ(dΓ/κΓ)
′

vanishing at s = θm, and FΓ is nonlocal in space and of lower order. So also in the
case where undercooling is absent we obtain a mean curvature flow, modified by
physics.

To derive (9.11), note that

λ′(θΓ)
κΓ(θΓ)

divΓ(dΓ(θΓ)∇ΓθΓ)

=
1

κΓ(θΓ)
divΓ(dΓ(θΓ)∇Γλ(θΓ))−

dΓ(θΓ)

κΓ(θΓ)
λ′′(θΓ)|∇ΓθΓ|2

= divΓ

(dΓ(θΓ)
κΓ(θΓ)

∇Γλ(θΓ)
)
− dΓ(θΓ)

κΓ(θΓ)

{
λ′′(θΓ)− λ′(θΓ)

κ′
Γ(θΓ)

κΓ(θΓ)

}
|∇ΓθΓ|2

= ΔΓgΓ(θΓ)−
dΓ(θΓ)

κΓ(θΓ)

{
λ′′(θΓ)− λ′(θΓ)

κ′
Γ(θΓ)

κΓ(θΓ)

}
|∇ΓθΓ|2,

where gΓ denotes the antiderivative of dΓλ
′/κΓ with gΓ(θm) = 0. We note that by

a partial integration

gΓ(s) = λ(s)
dΓ(s)

κΓ(s)
−
∫ s

θm

λ(τ)
(dΓ
κΓ

)′
(τ) dτ =: λ(s)

dΓ(s)

κΓ(s)
− fΓ(s).

Now employing λ(θΓ) = −HΓ, (9.8) leads to the identity

TΓ(θΓ){VΓ − dΓ(θΓ)

κΓ(θΓ)
HΓ − fΓ(θΓ)}

=
λ′(θΓ)
κΓ(θΓ)

{[[d(θ)∂νθ]]− κΓuΓ∇ΓθΓ + lΓdivΓu+ l0(θ)u · νΓ}

− dΓ(θΓ)

κΓ(θΓ)

{
λ′′(θΓ)− λ′(θΓ)

κ′
Γ(θΓ)

κΓ(θΓ)

}
|∇ΓθΓ|2 + {ωΓ(θΓ)− trL2

Γ}gΓ(θΓ),

hence applying the inverse of TΓ(θΓ) we arrive at (9.11), with

FΓ(u, θ, θΓ) = [κΓ(θΓ)TΓ(θΓ)]
−1(λ′(θΓ){[[d(θ)∂νθ]]− κΓuΓ∇ΓθΓ + lΓdivΓu+ l0(θ)u · νΓ}

− dΓ(θΓ){(λ′′(θΓ)− λ′(θΓ)κ
′
Γ(θΓ)/κΓ(θΓ)}|∇ΓθΓ|2

+ κΓ(θΓ){ωΓ(θΓ)− trL2
Γ}gΓ(θΓ)

)
.

In the sequel we replace the Gibbs-Thomson law by the dynamic equation (9.11)
plus the compatibility condition ϕ(θΓ0) + σ(θΓ0)HΓ0

= 0 at time t = 0.

Now we perform the Hanzawa transform to obtain a problem on Ω with fixed
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interface Σ. This yields the following problem.

∂tu+Au(θ, h) : ∇2u+ (I −M1(h))∇π/� = Fu(u, θ, h) in Ω \ Σ,
(I −M1(h))∇ · u = 0 in Ω \ Σ,

∂tθ +Aθ(θ, h) : ∇2θ = Fθ(θ, h) in Ω \ Σ,
u, ∂νθ = 0 on ∂Ω,

∂tθΣ +AθΣ(θΣ, h) : ∇2
ΣθΣ = FθΣ(u, θ, θΣ, h) on Σ,

θ = θΣ, [[u]], [[θ]] = 0 on Σ,

−[[S(u, θ, h)]]νΓ +
(
[[π]]− σ(θΣ)HΓ(h))νΓ = σ′(θΣ)∇ΣθΣ on Σ,

κΓ(θΣ)VΓ − dΓHΓ(h)− κΓ(θΣ)f(θΣ) = κΓ(θΣ)FΓ(θ, θΣ, h)) on Σ,

h(0) = h0 on Σ, u(0) = u0, θ(0) = θ0 in Ω.
(9.12)

The abstract setting of this problem differs from the previous cases. As variables
we choose z = (u, θ, θΣ, h, π, q) in the regularity space

E5
μ(a) ={z ∈ Eu,μ × Eθ,μ(J)××EθΣ,μ(J)× E5

h,μ(J)× Eπ,μ(J)× Eq,μ(J) :

[[u]], [[θ]] = 0, θ = θΣ, [[π]]|Σ = q on Σ, u, ∂νθ = 0 on ∂Ω},

with
E5
h,μ(J) = H1

p,μ(J ;W
1−1/p
p (Σ)) ∩ Lp,μ(J ;W

3−1/p
p (Σ)).

For the space of data we may take here

F5
μ(a) = Fu,μ(J)× F2

π,μ(J)× Fθ,μ(J)× FθΣ,μ(J)× Fu
h,μ(J)

n × F5
h,μ(J),

where
F5
h,μ(J) = Lp,μ(J ;W

1−1/p
p (Σ)).

This way we obtain the abstract form of the problem

L5z̃ = N5(z̃, z̄), z̃(0) = 0,

with N5 : 0E
5
μ(a)×E5

μ(∞) → 0F
5
μ(a) and L5 : E5

μ(a) → F5
μ(a) linear and bounded.

More precisely, L5 is defined by

L5z̃ =

⎡⎢⎢⎢⎢⎢⎢⎣

∂tũ+Au(θ0, h0)∇2ũ+ (1−M1(h0))∇π̃
(I − P0M1(h0))∇ · ũ)
∂tθ̃ +Aθ(θ0, h0) : ∇2θ̃

∂tθ̃Σ +AθΣ(θΣ0, h0) : ∇2
Σθ̃Σ

−[[S(ũ, θ0, h0)]]νΣ + q̃νΣ + σ(θΣ0)CΣh̃− σ′(θΣ0)∇Σθ̃Σ
∂th̃+ c0(θΣ0, h0)CΣh̃+ c1(θΣ0)θ̃Σ

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here we have set

c0(θΣ0, h0) = dΓ(θΣ0)/κΓ(θΣ0), c1(θΣ0) = −λ(θΣ0)(dΓ/κΓ)
′(θΣ0).

The operator L5 also has maximal regularity, as it has triangular structure, and
each diagonal entry has maximal Lp-regularity.



434 Chapter 9. Local Well-Posedness and Regularity

9.2 The Fixed Point Argument

In the previous section we have seen that on the fixed domain all six problems can
be reformulated as the abstract problem

Lz̃ = N(z̃, z̄), z̃(0) = 0, (9.13)

where L : Eμ(a) → Fμ(a) is bounded linear, and N : 0Eμ(a) × Eμ(∞) → 0Fμ(a)
is nonlinear. Of course, the specific spaces and operators differ from problem to
problem, but they all share the following properties.

(MR) For each a ∈ (0, 1], the operator L : 0Eμ(a) → 0Fμ(a) is an isomorphism,
and the norm of L−1 is bounded by some constant M independent of a ∈ (0, 1].

(NL) For each a ∈ (0, 1], the nonlinearity N is of class C1. Moreover,

(i) |N(0, z̄)|Fμ(a) → 0 as a → 0, for each fixed z̄ ∈ Eμ(∞);

(ii) |D1N(0, z̄)|B(0Eμ(a),0Fμ(a)) → 0 as a → 0, for each fixed z̄ ∈ Eμ(∞).

Condition (NL) will be verified in Section 9.5. It implies that for a given
z̄ ∈ Eμ(∞),

η(a, r) := sup{|D1N(z̃, z̄)|B(0Eμ(a),0Fμ(a)) : |z̃|Eμ(a) ≤ r}

satisfies η(a, r) → 0 as a, r → 0. This in turn implies

|N(z̃1, z̄)−N(z̃2, z̄)|Fμ(a) ≤ η(a, r)|z̃1 − z̃2|Eμ(a), |z̃j |Eμ(a) ≤ r,

and
|N(z̃, z̄)|Fμ(a) ≤ |N(0, z̄)|Fμ(a) + η(a, r)r, |z̃|Eμ(a) ≤ r.

As |L−1|B(0Eμ(a),0Fμ(a)) is uniformly bounded for a ∈ (0, 1], say by C, we see

that T (z̃) = L−1N(z̃, z̄) will be a contracting self-map on the ball B̄
0Eμ(a)(0, r),

by choosing a, r small enough. The contraction mapping principle then yields a
unique fixed point z̃� ∈ B̄

0Eμ(a)(0, r), which means that (9.13) admits the unique
solution z̃�. This completes the proof of local existence and uniqueness for the six
Problems (P1)∼(P6). This way we have proved

Theorem 9.2.1. Let p > n + 2, 1 ≥ μ > 1
2 + n+2

2p , and suppose the following
conditions are satisfied.

(i) Regularity: Condition (Hj) holds for Problem (Pj).

(ii) Well-Posedeness: θ0 > 0; l(θ0) �= 0 for Problems (P1), (P3),

0 < θ0 < θc for Problems (P5), (P6),

TΓ0(θ0) is invertible in L2(Γ0) for Problem (P5).

(iii) Compatibilities: Condition (Cj) holds for Problem (Pj).

Then each Problem (Pj), j = 1, . . . , 6, is locally uniquely solvable in the sense that
for any initial value z0 ∈ Xj

γ,μ, there is a = a(z0) > 0 such that the transformed

problems admit a unique solution z ∈ Ej
μ(a).
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9.3 Dependence on the Data

To study the dependence of the solution of (9.13) on the initial data, we will
employ the implicit function theorem. For this purpose note that the map E :
Xγ,μ → Eμ(∞) defined by Ez0 = z̄ is linear and bounded, hence real analytic. We
rewrite problem (9.13) as

G(z̃, z1) := L(z1, Ez1)z̃ −N(z̃, Ez1) = 0,

where L(z1, Ez1) indicates the dependence of L on the initial value z1 and, where
applicable, on the pertinent extensions z̄1 = Ez1 subsumed in the definition of Lj .
Here

G : 0Eμ(a)×BXγ,μ
(z0, r) → 0Fμ(a)

is at least of class C1. We have G(z̃�, z0) = 0, and the Fréchet-derivative
D1G(z̃�, z0) ∈ B(0Eμ(a), 0Fμ(a)) is invertible, as we have seen in the previous
section. Therefore, there is a radius δ > 0 and a C1-map z̃ : BXγ,μ

(z0, δ) → 0Eμ(a)
such that

z̃(z0) = z̃� and G(z̃(z1), z1) = 0 for all z1 ∈ BXγ,μ
(z0, δ).

Moreover, by uniqueness there are no other solutions close to z̃�, and so by causal-
ity there are no other solutions, at all.

Further, if G is of class Ck, k ∈ N ∪ {∞, ω}, then z̃ has the same regularity;
here ω means real analytic. We observe that L,N , and hence G, are of class Ck

provided
ψ, σ ∈ Ck+2(0,∞) and d, dΓ,μ ∈ Ck+1(0,∞).

Note that the maps h �→ (m0(h),M0(h),M1(h), β(h)) are real analytic. This im-
plies the following result.

Theorem 9.3.1. In addition to the assumptions of Theorem 9.2.1 assume that

ψ, σ ∈ Ck+2(0,∞) and d, dΓ,μ ∈ Ck+1(0,∞),

for some k ∈ N ∪ {∞, ω}.
Then the solution map is of class Ck from the data space Xj

γ,μ into the

solution space Ej
μ(a), for each j = 1, . . . , 6.

9.4 Regularity: The Parameter Trick

In Section 5.3 we used a scaling argument for time t to extract more time regularity
from the regularity properties of the nonlinearity A(u)u−F (u) for the solution of
the quasilinear parabolic evolution equation

u̇+A(u)u = F (u), t ∈ J, u(0) = u0.
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In this section we extend this method to obtain regularity of z in the 6 problems
studied above. The implicit function theorem as well as maximal Lp-regularity
will again be the main tools.

9.4.1 Interior Regularity
Let G : Eμ(a) → Fμ(a) denote the functions Gj from the previous section, where
we now fix the initial values and suppress them in our notation, with the corre-
sponding function spaces Ej

μ(a) and Fj
μ(a). We assume that G is in the class Ck,

with k ∈ N ∪ {∞, ω}, where, as before, ω means real analytic. We want to show

(u, θ), ∂i(u, θ) ∈ Ck((0, a)× (Ω \ Σ))n+1, i = 1, . . . , n.

This then implies also pressure regularity π, ∂iπ ∈ Ck−1((0, a) × (Ω \ Σ)), for all
i = 1, . . . , n, by the equation for u.

For this purpose we fix (t0, x0) ∈ (0, a)×(Ω\Σ). Recall that regularity is a lo-
cal property, so we need only to show regularity of (u, θ) in (t0−r, t0+r)×B(x0, r)
where r > 0 is small enough. We fix R > 0 such that 3R < t0 < a − 3R, and
B(x0, 3R) ⊂ Ω \Σ. Further we may let a ≤ a0 by causality; otherwise we shift the
time interval in question, and repeat the argument finitely many times. Further-
more, we assume that B(x0, 3R) does not intersect the tubular neighbourhood of
width 3aΣ around Σ; we comment on this assumption later.

Next we choose standard C∞-cut-off functions χt0 and χx0
, which are 1 for

|t − t0| < R, resp. |x − x0| < R, and 0 for |t − t0| > 2R, resp. |x − x0| > 2R,
between 0 and 1 elsewhere.

We introduce a coordinate transform τ(λ,ξ) by means of

τλ,ξ(t, x) = (t+ λχt0(t), x+ tξχx0
(x)), (t, x) ∈ (0, a)× Ω).

It is easy to see that τ(λ,ξ) : (0, a) × Ω is a diffeomorphism of class C∞, so that
the map

τ : (λ, ξ) �→ τλ,ξ, (−r, r)×BRn(0, r) → Diff∞((0, a)× Ω)

is well-defined, provided r is sufficiently small. Observe that τ0,0 = id, and that
τ(λ,ξ) = id outside the cube (−2R, 2R)×BRn(0, 2R).

In the next step we introduce the lifted coordinate transforms Tλ,ξ by

Tλ,ξz(t, x) = z(τλ,ξ(t, x)) = z(t+ λχt0(t), x+ tξχx0
(x)), t ∈ (0, a), x ∈ Ω,

where (λ, ξ) ∈ (−r, r)×BRn(0, r). It is not difficult to show that Tλ,ξ is an isomor-
phism in Eμ(a) as well as in Fμ(a); one only needs to recall the transformation
rules from Section 6.3. Note that Tλ,ξ is leaving the initial values unchanged. This
property is very important, as it will show that the obtained regularity does not
depend on the regularity of the initial value z0.

By the transformation rules from Section 6.3, we obtain the relations

Tλ,ξ∇z = ∇z ◦ τλ,ξ = (I −m1(λ, ξ))∇Tλ,ξz,
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and

Tλ,ξ∂tz = ∂tz ◦ τλ,ξ = (1 + λχ′
t0)

−1[∂tTλ,ξz −m0(λ, ξ)(ξ|∇)Tλ,ξz],

where

m0(λ, ξ) =
χx0

1 + t(ξ|∇χx0
)
, m1(λ, ξ) =

t∇χx0 ⊗ ξ

1 + t(ξ|∇χx0
)
.

Note that m0,m1 are real analytic in (λ, ξ) and of class C∞ in (t, x).
Given the solution z� of G(z�) = 0 from the previous section, we see that

0 = Tλ,ξG(z�) = Tλ,ξG(T−1
λ,ξTλ,ξz�),

hence with

G(λ, ξ, z̄) = Tλ,ξG(T−1
λ,ξ z̄)

and setting z̄� = Tλ,ξz� = z� ◦ τλ,ξ, it is obvious that z̄� satisfies the equation

G(λ, ξ, z̄�) = 0.

So it is natural to employ the implicit function theorem to solve for z̄�. As we are
interested in the regularity of solutions for t > 0, we may, and we will, assume
that the fixed initial value z0 is in the regularity space X1. We then consider

G : (−r, r)×BRn(0, r)× E
z0
1 (a) → 0F1(a),

where E
z0
1 (a) denotes the affine linear subspace of E1(a) with fixed initial values

u(0) = u0, θ(0) = θ0, h(0) = h0, ∂th(0) = h1, where these data are subject to the
appropriate compatibility conditions. Employing the transformation rules for ∇
and ∂t from above, as in the previous subsection it follows from Section 9.5 that
G is of class Ck, k ∈ N ∪ {∞, ω}, whenever

ψ, σ ∈ Ck+2(0,∞) and d, dΓ,μ ∈ Ck+1(0,∞).

Furthermore, we have G(0, 0, z�) = 0 and

DzG(0, 0, z�) = DzG(z�) : 0E1(a) → 0F1(a)

is invertible, by maximal regularity, as known from Section 9.2. Hence by the
implicit function theorem, there is a neighbourhood (−δ, δ) × BRn(0, δ) of (0, 0)
and a map

Φ : (−δ, δ)×BRn(0, δ) → E1(a),

of class Ck with Φ(0, 0) = z� such that G(λ, ξ,Φ(λ, ξ)) = 0. By uniqueness, this
implies Φ(λ, ξ) = z� ◦ τλ,ξ. As a consequence, the projection-embedding

E1(a) → Cα((0, a);C1+α(Ω \ Σ))n+1, z �→ (u, θ),
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with α ∈ (0, 1) sufficiently small, shows that

(λ, ξ) �→ (u, θ)(t+ λχt0(t), x+ tξχx0
(x))

is of class Ck. But this implies that this map is even Ck+α with image space
C((0, a);C1(Ω \Σ))n+1; this is a transfer of regularity induced by the definition of
τ . Setting t = t0 and x = x0 this shows that the function

(λ, ξ) �→ (u, θ)(t0 + λ, x0 + t0ξ)

is of class Ck+α near (t0, x0). Repeating the same argument with ∇x(u, θ) we see
in the same way that ∇x(u, θ) ∈ Ck+α near (t0, x0).

If x0 does belong to the tubular neighbourhood of Σ, we re-parameterize near
t0 in such a way that x0 does not belong to the new tubular neighbourhood, and
proceed as before. This yields the following result on interior regularity.

Theorem 9.4.1. Let the assumptions of Theorems 9.2.1 and Theorem 9.3.1 be valid,
for some k ∈ N ∪ {∞, ω}.

Then there is α ∈ (0, 1) such that in all 6 problems we have

(u, θ), ∂i(u, θ) ∈ Ck+α((0, a)× (Ω \ Σ))n+1,

and
π, ∂iπ ∈ Ck−1+α((0, a)× (Ω \ Σ)),

where i = 1, . . . , n. In particular, in each problem we have classical solutions in
the interior, even for k = 1.

9.4.2 Regularity on the Interface
By means of the parameter trick it is also possible to prove regularity in time and
tangential directions on the interface. However, here the construction of the map
τλ,ξ is more involved, but also quite natural. We fix a point (t0, x0) ∈ (0, a) × Σ
and choose a parameterization ϕ : BRn−1(0, 3R) → Rn for Σ near x0; as Σ is real
analytic we may choose ϕ real analytic. Here the chosen optimal smoothness of
the reference Σ pays off! Next we extend ϕ by means of

φ(p, q) = ϕ(p) + qνΣ(ϕ(p)), (p, q) ∈ BRn−1(0, 3R)× (−3aΣ, 3aΣ),

to a neighbourhood of x0 ∈ Σ, with 3aΣ the with of the tubular neighbourhood of Σ
as chosen in Section 2.3. This map is again real analytic and it is a diffeomorphism
onto its image if R > 0 is small enough. Observe that ΠΣφ(p, q) = ϕ(p). Then we
define the truncated shift

τξ(p, q) = (p+ ξχ0(p)ζ0(q), q), (p, q) ∈ BRn−1(0, 3R)× (−3aΣ, 3aΣ).

Here, χ0 is a smooth cut-off function on Rn−1 which is one for |p| ≤ R and zero
for |p| > 2R, while ζ0 is a smooth cut-off function on R which is one for |q| ≤ 2aΣ
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and 0 for |q| ≥ 5aΣ/2. Note that here ξ ∈ BRn−1(0, r) acts only tangentially. Then
we set

τλ,ξ(t, x) = (t+ λχt0(t), φ(τtξ(φ
−1(x)))) = (τ1λ,ξ, τ

2
λ,ξ), (t, x) ∈ (0, a)× U,

and

τλ,ξ(t, x) = (t+ λχt0(t), x), (t, x) ∈ (0, a)× (Ω \ U).

Here U := φ
(
BRn−1(0, 3R) × (−3aΣ, 3aΣ)

)
is an open tubular neighbourhood

of x0 ∈ Σ. Observe that τλ,ξ commutes with ΠΣ on U2aΣ
= φ

(
BRn−1(0, 3R) ×

(−2aΣ, 2aΣ)
)
, which implies

h ◦ (id,ΠΣ) ◦ τλ,ξ(t, x) = h(τ1λ,ξ(t),ΠΣτ
2
λ,ξ(t, x))

= h(τλ,ξ(t,ΠΣx)) = h ◦ τλ,ξ ◦ (id,ΠΣ)(t, x),

for each (t, x) ∈ (0, a)× U2aΣ
. Recalling the definition of Ξh from Section 1.3, we

then have(
[χ ◦ (dΣ/aΣ)] [h ◦ (id,ΠΣ)]

)
◦ τλ,ξ = [χ ◦ (dΣ/aΣ)] [h ◦ τλ,ξ ◦ (id,ΠΣ)]

on (0, a) × U , as dΣ ◦ τλ,ξ = dΣ on U , and χ ◦ (dΣ/aΣ) = 0 on U \ U2aΣ
. If we

choose r > 0 sufficiently small, then

τ : (λ, ξ) �→ τλ,ξ, (−r, r)×BRn(0, r) → Diff∞((0, a)× Ω),

as in the simpler previous case of Section 9.4.1. Note that we do not shift in the
vertical direction, as this would distort the interface Σ which needs to be kept
fixed.

Then as before, we lift the coordinate transform τλ,ξ to an operator Tλ,ξ,
which is a linear and bounded isomorphism in the spaces E1(a) of solutions as well
as in the space of date F1(a). The function G is then defined as in the previous
section, and we see that G is of class Ck, provided G has this property.

Hence again by the implicit function theorem, there is a ball (−δ, δ) ×
BRn−1(0, δ) and a map

Φ : (−δ, δ)×BRn−1(0, δ) → E
z0
1 (a),

of class Ck with Φ(0, 0) = z� such that G(λ, ξ,Φ(λ, ξ)) = 0. By uniqueness, we
have again Φ(λ, ξ) = z� ◦ τλ,ξ.

Now we extract the height function h on the interface to obtain (λ, ξ) �→
h ◦ τ(λ,ξ) ∈ E

j
h,1(a), where with J = (0, a), and for some α ∈ (0, 1) small,

Eθ
h,1(a) = W 3/2−1/2p

p (J ;Lp(Σ)) ∩W 1−1/2p
p (J ;H2

p (Σ)) ∩ Lp(J ;W
4−1/p
p (Σ)

↪→ Cα((0, a);C3+α(Σ)) ∩ C1+α((0, a);C1+α(Σ)),
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for Problems (Pj), j = 1, 3, 5. where we need to assume p > n+5 for the embedding
into C1+α((0, a);C1+α(Σ)). Moreover,

Eu
h,1(a) = W 2−1/2p

p (J ;Lp(Σ)) ∩H1
p (J ;W

2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ)

↪→ Cα((0, a);C2+α(Σ)) ∩ C1+α((0, a);C1+α(Σ)),

for Problems (Pj), j = 2, 4, 6. Employing exchange of regularity as before, point
evaluation implies

h ∈ Ck+1+α((0, a)× Σ),∇i
Σh ∈ Ck+α((0, a)× Σ)i×n,

i ≤ 3 for (P1), (P3), (P5), with p > n + 5, i ≤ 2 for (P2), (P4), (P6), (P5) with
p > n+ 2.

In the same way, we obtain regularity of the boundary pressures q = [[π]] in
Problems (P2), (P3), (P5) and also of the on-sided pressures π1, π2 in Problems
(P4), (P6). In fact, [[π]], π1, π2 ∈ Fu

h,1(a) yields

[[π]], π1, π2 ∈ Ck+α((0, a)× Σ).

As in all problems we have for the surface temperature θΣ ∈ Fθ
h,1(a), this technique

yields
(θΣ,∇ΣθΣ) ∈ Ck+α((0, a)× Σ)n+1.

Similarly, (the one-sided) traces ui of u at the interface satisfy

(ui,∇Σui) ∈ Ck+α((0, a)× Σ)n×(n+1).

This shows that all equations in each Problem (Pj) are satisfied pointwise, i.e., the
solutions obtained in Section 9.2 are all classical.

We summarize these results in

Theorem 9.4.2. Let the assumptions of Theorems 9.2.1 and Theorem 9.3.1 be valid
for some k ∈ N ∪ {∞, ω}.

Then there is α ∈ (0, 1) such that in all 6 problems we have

h ∈ C1+k+α((0, a)× Σ), ∇i
Σh ∈ Ck+α((0, a)× Σ)i×n

i ≤ 3 for (P1), (P3), (P5) with p > n + 5, and i ≤ 2 for (P2), (P4), (P6) with
p > n+ 2. Furthermore,

[[π]], π1, π2, θΣ ∈ Ck+α((0, a)× Σ),

and
u,∇Σθ ∈ Ck+α((0, a)× Σ)n, ∇Σu ∈ Ck+α((0, a)× Σ)n×n.

In particular, in each problem the solutions are classical also on the interface, even
for k = 1.

Observe that in case k = ω, which means that all coefficient functions are
real analytic, then h will be so jointly in time and space, hence the interfaces Γ(t)
become real analytic, instantaneously. This shows the strong regularizing effect
which is inherent in quasilinear parabolic problems.
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9.5 Estimates for the Nonlinearities

The basis of all considerations below are the following embeddings which are due
to the restriction 1 ≥ μ > 1

2 + n+2
2p .

Eu,μ(a)× Eθ,μ(a) ↪→ C1/2([0, a];Cub(Ω \ Σ))n+1,

Eu,μ(a)× Eθ,μ(a) ↪→ C([0, a];C1
ub(Ω \ Σ))n+1,

Eθ
h,μ(a) ↪→ C1−([0, a];C(Σ)) ∩ C([0, a];C3(Σ)), (9.14)

Eu
h,μ(a) ↪→ C1−([0, a];C1(Σ)) ∩ C([0, a];C2(Σ))).

In general, the embedding constants will blow up as a → 0, however, they do
not depend on a, provided we restrict to time trace 0. This can be seen by the
following simple extension argument. If a function v is defined on [0, a], say for
a ≤ 1, and has time trace 0, we may extend it by

Ev(t) =

⎧⎨⎩
v(t), 0 ≤ t ≤ a,

v(2a− t), a ≤ t ≤ 2a,
0, 2a ≤ t ≤ 2.

Then sup0≤t≤a |v(t)| ≤ sup0≤t≤2 |Ev(t)| can be estimated by the relevant embed-
ding for the fixed interval [0, 2]. This simple observation is very important, and
besides of the compatibilities this is another reason to reduce all problems to the
case of vanishing time traces at t = 0.

5.1. The Nonlinearities in Fθ,μ and Fu,μ

(a) The nonlinearities Fθ and the components of Fu live in Lp,μ((0, a);Lp(Ω)).
They consist of sums and products of ∇θ, u, ∇u, as well as of d(θ), d′(θ), μ(θ),
μ′(θ), 1/κ(θ), M1(h), ∇M1(h), and m0(h)∂th ◦ΠΣ. As the functions μ and d are
C2 and κ ∈ C1, the maps θ �→ μ(θ),μ′(θ), d(θ), d′(θ), κ(θ) are of class C1 from
C([0, a] × Ω̄) into itself, hence by the embeddings (9.14) it follows easily that Fθ

and Fu are of class C1, for all six problems under consideration.
Moreover, Fθ(z), Fu(z) belong to L∞((0, a)× Ω), for each z ∈ Ej

μ, hence we
obtain estimates of the form

|Fk(z)|Fk,μ(a) ≤ |Fk(z)|∞|Ω|[
∫ a

0

tp(1−μ)dt]1/p ≤ C(|z̄|Ek,μ
+R)ma1−μ+1/p,

with some constants m ∈ N, C > 0, for all z̃ ∈ B̄
E
j
μ
(0, R), where z = z̃ + z̄.

Therefore, these terms become small by choosing the time interval J = (0, a)
small. The same argument also applies to their Fréchet derivatives DFk.

(b) On the other hand, there appear terms of highest order in the θ- and u-
components of Nj ; however these are only linear in the highest order derivative.

For instance, we have the terms F1(z̃, z̄) = (Aθ(θ, h) − Aθ(θ0, h0) : ∇2θ̃ and
F2(z̃, z̄) = ∂tθ̄ + Aθ(θ, h) : ∇2θ̄ in the θ-component of Nj , and similar terms in
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the u-components. For the analysis of such terms we first observe that bilinear
mappings

b : L∞((0, a)× Ω)× Fθ,μ(J) → Fθ,μ(J), (m, f) �→ mf,

are bounded, since |b(m, f)|Fθ,μ(J) ≤ |m|∞|f |Fθ,μ(J); hence this map is real ana-
lytic. Therefore, composite mappings like

(z̄, z̃) �→ (Aθ(θ, h),∇2θ̄) �→ Aθ(θ, h) : ∇2θ̄

are as smooth as the coefficients d, κ, in particular of class Ck if d, κ are Ck. The
Fréchet derivatives are given by

D1F1(0, z̄) = (Aθ(θ̄, h̄)−Aθ(θ0, h0)) : ∇2,

and
D1F2(0, z̄)z̃ = [∂θAθ(θ̄, h̄)θ̃ + ∂hAθ(θ̄, h̄)h̃] : ∇2θ̄.

Therefore, we obtain

|D1F1(0, z̄)z̃|Fθ,μ(J) ≤ |(Aθ(θ̄, h̄)−Aθ(θ0, h0)|∞|∇2θ̃|
F
n×n
θ,μ (J) ≤ η|z|

E
j
μ(a)

,

provided a is sufficiently small, depending only on the fixed function z̄ which is
continuous.

Similarly, we have

|D1F2(0, z̄)z̃|Fθ,μ(J) ≤ C(|θ̃|∞ + |h̃|∞)|∇2θ̄|
F
n×n
θ,μ (J),

where C dos not depend on z̃. By the embeddings (9.14) and trace 0 for z̃ we
obtain further

|D1F2(0, z̄)z̃|Fθ,μ(J) ≤ C|z̃|
E
j
μ(a)

|∇2θ̄|Fθ,μ(J) ≤ η|z̃|
E
j
μ(a)

,

whenever a is chosen small enough, depending only on z̄, but not on z̃.
This proves Condition (NL) for the θ-part of Nj , and similarly it also holds

for the u-part of Nj .

5.2. The Nonlinearity in Fj
π,μ

The corresponding term appearing in Nj , j = 4, 6, reads

F (z̃, z̄) = (M1(h)− I)∇ · ū+ (M1(h)−M1(h0))∇ · ũ = F1 + F2,

and for j = 2, 3, 5 we apply the projection P0 onto mean value zero. Note that Fi,
i = 1, 2, are linear in the terms of highest order, namely ∇u. We consider first

(a) Lp,μ(J ;H
1
p (Ω \ Σ)

The coefficients depend on h and∇Σh, hence belong to C([0, a];C1(Ω̄)), and vanish
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outside a tubular neighbourhood of Σ. Therefore, we may use here the bilinear
map

C([0, a];C1(Ω̄))× Lp,μ(J ;H
1
p (Ω \ Σ)) → Lp,μ(J ;H

1
p (Ω \ Σ)), (m,u) �→ mu,

which is easily seen to be bounded. Therefore,

F : 0Eμ(a)× Eμ(∞) → Lp,μ((0, a);H
1
p (Ω \ Σ))

belongs to the class Ck. Moreover, we have F (0, z̄) = (M1(h̄)− I)∇ · ū, and

D1F1(0, z̄)z̃ = M ′
1(h̄)h̃∇ · ū, D1F2(0, z̄)z̃ = (M1(h̄)−M1(h0))∇ · ũ.

This implies

|F (0, z̄)|Lp,μ(J;H1
p)

≤ |M1(h̄)− I)|C(J;C1
b )
|∇ū|Lp,μ(J;H1

p)
→ 0,

as a → 0. Similarly

|D1F2(0, z̄)z̃|Lp,μ(J;H1
p)

≤ |M1(h̄)−M1(h0))|C(J;C1
b )
|ũ|Lp,μ(J;H2

p)
≤ η|z̃|Eμ(a),

provided a > 0 is small enough. Moreover, we also have

|D1F1(0, z̄)z̃|Lp,μ(J;H1
p)

= |M ′
1(h̄)|C(J;C1)|z̃|C(J;C2)|∇ū|Lp,μ(H1

p)
≤ η|z̃|Eμ(a),

if a > 0 is small enough, as ū is a fixed function, and the embedding

0E
u
h,μ(J) ↪→ C(J ;C2(Σ))

is uniform in a.

As P0 is bounded linear, the same assertions hold for P0F .

(b) H1
p,μ(J ; 0Ḣ

−1

p (Ω))
This space is needed for Problems (P2), (P3), (P5). Here we observe that for given
φ ∈ Ḣ1

p′(Ω) we have∫
Ω

(P0Fj)φ dx =

∫
Ω

P0FjP0φ dx =

∫
Ω

FjP0φ dx,

hence ∫
Ω

P0F1φ dx =

∫
Ω

(M1(h)− I)∇ · ūP0φ dx

=

∫
Ω

ū · [(I −M1(h))∇φ− (divM1(h)
T)P0φ] dx,
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and similarly∫
Ω

P0F2φ dx =

∫
Ω

(M1(h)−M1(h0))∇ · ũP0φ dx

=

∫
Ω

ũ · [(M1(h0)−M1(h))∇φ+ (div(M1(h0)−M1(h))
T)P0φ] dx.

Now we may differentiate in time, apply Hölder’s inequality and Poincaré’s in-
equality to see as in 5.1 above that Condition (NL) holds for this nonlinearity.

(c) H1
p,μ(J ;H

−1
p,∂Ω(Ω \Σ)). Here the same arguments as in (b) are valid, as in this

case φ vanishes on Σ, and so the projection P0 is not needed.

5.3 Analysis in Fractional Sobolev Spaces
Before we continue, note that Fu

h,μ(a) as well as F
θ
h,μ(a) are Banach algebras, due

to the restriction 1 ≥ μ > 1
2 +

n+2
2p . In fact, this follows easily from the embeddings

Fu
h,μ(a) ↪→ C([0, a];C(Σ)),

Fθ
h,μ(a) ↪→ C([0, a];C1(Σ)). (9.15)

As above, the embedding constants do not depend on a, provided we restrict to
functions with time-trace 0 at t = 0. Recall that a norm for W s

p (Σ), s ∈ (0, 1), is
given by

|v|W s
p (Σ) = |v|Lp + [

∫
Σ

∫
Σ

|v(x)− v(y)|p
|x− y|sp+n−1

dΣ(x)dΣ(y)]1/p.

There are several well-known fundamental estimates in fractional Sobolev spaces,
which we want to recall here.

(i) The first one, which we already used before, concerns products and reads as

|mw|W s
p
≤ |m|∞|w|W s

p
+ |w|∞|m|W s

p
,

valid for all functions m,w ∈ W s
p ∩ L∞, s ∈ (0, 1). In case W s

p (Σ) ↪→ C(Σ) and
m ∈ C1(Σ) it simplifies to

|mw|W s
p
≤ C|m|C1 |w|W s

p
.

This estimate can easily be extended to the space Fu
h,μ(J) with 1 ≥ μ > 1/2 +

(n+ 2)/2p. If
m ∈ Gθ(J) := C1/2(J ;C(Σ)) ∩ C(J ;C1(Σ)),

w ∈ Fu
h,μ(J), we have

|mw|Fu
h,μ(J)

≤ C|m|Gθ(J)|w|Fu
h,μ(J)

.

However, we emphasize that the constant C will depend on the length of the
interval a, unless w has trace 0 at t = 0.
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(ii) In the sequel, we will need the following little trick. Let m ∈ Gθ(J), v ∈
0F

θ
h,μ(J), w ∈ Fu

h,μ(R+) and suppose the trace of w vanishes at time t = 0. Then
with s = 1− 1/p

|mvw|Fu
h,μ(J)

≤ C|m|Gθ(J)|vw|Fu
h,μ(J)

≤ C|m|Gθ(J)|v|W s/2
p,μ (J;W s

p (Σ))
|w|Fu

h,μ(R+),

with a constant C independent of a. On the other hand,

0F
θ
h,μ(J) ↪→ 0W

1/2
p,μ (J ;W

s
p (Σ)) ↪→ 0W

s/2
p,μ(J ;W

s
p (Σ))

with uniform embedding constant, and with

|v|
W

s/2
p,μ (J;W s

p (Σ))
≤ ca1/2p|v|

W
1/2
p,μ (J;W s

p (Σ))

this yields
|mvw|Fu

h,μ(J)
≤ a1/2pC|m|Gθ(J)|v|Fθ

h,μ(J)
|w|Fu

h,μ(R+).

(iii) In a similar, but more elaborate way we also obtain the estimate

|bw|Fθ
h,μ(J)

≤ C|b|Gh(J)|w|Fθ
h,μ(R+),

with a constant independent of a, provided

b ∈ Gh(h) := W s
p,μ((0, a);C(Σ)) ∩ C([0, a];W 2s

p (Σ)), s = 1− 1/2p,

has vanishing time trace and w ∈ Fθ
h,μ(R+). Of course, 0F

θ
h,μ(J) is also a Banach

algebra, as 0F
θ
h,μ(J) ↪→ C([0, a];C1(Σ)).

Next we consider substitution operators in W s
p of the form φ(v) with φ ∈ C2.

(iv) Based on the identity

[φ(v(x))− φ(w(x))]− [φ(v(y))− φ(w(y))]

=

∫ 1

0

∫ 1

0

d

dt

d

ds
φ(s[tv(x) + (1− t)w(x)] + (1− s)[tv(y) + (1− t)w(y)]) dsdt

=

∫ 1

0

∫ 1

0

φ′(ξ(t, s))([v(x)− w(x)]− [v(y)− w(y)]) dsdt

+

∫ 1

0

∫ 1

0

φ′′(ξ(t, s))([tv(x) + (1− t)w(x)]− [tv(y) + (1− t)w(y)])·

· (s[v(x)− w(x)] + (1− s)[v(y)− w(y)]) dtds

we obtain

|[φ(v(x))− φ(w(x))]− [φ(v(y)− φ(w(y)]| ≤ |φ′|∞|(v(x)− w(x))− (v(y)− w(y))|
+ |φ′′|∞{|(v(x)− w(x))− (v(y)− w(y))|+ |w(x)− w(y)|}|v − w|∞
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This implies

|φ(v)− φ(w)|W s
p
≤ |φ|C2

b

[
|v − w|W s

p
(1 + |v − w|∞) + |v − w|∞|w|W s

p

]
.

This estimate implies that the substitution operator v �→ φ(v) is locally Lipschitz
in W s

p ∩ L∞.

(v) We have

l(r, h) := φ(r + h)− φ(r)− φ′(r)h =

∫ 1

0

(φ′(r + sh)− φ′(r)) dsh,

hence with δh = h− h̄, δr = r − r̄, δl = l(r, h)− l(r̄, h̄)

δl =

∫ 1

0

d

dt

(∫ 1

0

[φ′(t(r + sh) + (1− t)(r̄ + sh̄))

− φ′(tr + (1− t)r̄]ds(th+ (1− t)h̄)
)
dt

=

∫ 1

0

∫ 1

0

[φ′(t(r + sh) + (1− t)(r̄ + sh̄))− φ′(tr + (1− t)r̄)] dsdt δh

+

∫ 1

0

∫ 1

0

[[φ′′(t(r + sh) + (1− t)(r̄ + sh̄))

− φ′′(tr + (1− t)r̄)]δr(h̄+ tδh) dsdt

+

∫ 1

0

∫ 1

0

φ′′(t(r + sh) + (1− t)(r̄ + sh̄))sδh(h̄+ tδh) dsdt.

This implies by continuity of φ′ and φ′′

|δl| ≤ ε|δh|+ ε|δr|max{|h|, |h̄|}+ |φ′′|∞|δh|max{|h̄|, |h|},

provided |h|, |h̄| are small enough. Setting r = w(x), r̄ = w(y), h = h(x), h̄ = h(y),
we obtain

|[φ(w(x) + h(x))− φ(w(x))− φ′(w(x))h(x)]
− [φ(w(y) + h(y))− φ(w(y))− φ′(w(y))h(y)]|

≤ ε|h(x)− h(y)|+ ε|w(x)− w(y)||h|∞ + |φ′′|∞|h|∞|h(x)− h(y)|.

From this estimate the Fréchet-differentiability of the substitution operator Φ :
v �→ φ(v) in W s

p ∩ L∞ follows, as soon as φ ∈ C2. The derivative is given by

(Φ′(w)h)(x) = φ′(w(x)h(x), x ∈ Σ, w, h ∈ W s
p ∩ L∞,

and so Φ is of class C1. By induction we easily get Φ ∈ Ck if φ ∈ Ck+1, for all
k ∈ N ∪ {∞}, and also Φ ∈ Cω in case φ ∈ Cω, estimating the remainders in the
Taylor expansions.
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(vi) Let again s ∈ (0, 1), and consider a substitution operator Φ : v �→ φ(v) in
W 1+s

p (Σ) ∩W 1
∞(Σ). Here the main estimate concerns the derivative of φ(v), i.e.,

φ′(v)v′. This case is simpler, as v has more regularity and so φ′(v) has so as
well. By the results of the previous paragraphs it implies that Φ ∈ Ck, provided
φ ∈ Ck+2, for all k ∈ N ∪ {∞, ω}.
5.4. The Nonlinearities in FθΣ,μ

Here we may argue for the lower order nonlinearities FθΣ as in the previous sub-

section in Lp(Σ) and then use the embedding Lp(Σ) ↪→ W
−1/p
p (Σ).

For the highest order terms recall the definition of the norm in W−s
p (Σ).

|v|W−s
p (Σ) = sup{

∫
Σ

vϕ dΣ : ϕ ∈ W s
p′(Σ), |ϕ|W s

p′ (Σ) ≤ 1}.

This implies the estimate

|(mv|ϕ)| = |(v|mϕ)| ≤ |v|W−s
p (Σ)|mϕ|W s

p′ (Σ) ≤ C|m|C1(Σ)|v|W−s
p (Σ)|ϕ|W s

p′ (Σ),

which yields

|mv|W−s
p (Σ) ≤ C|m|C1(Σ)|v|W−s

p (Σ), |mv|FθΣ,μ
≤ C|m|C(J;C1(Σ))|v|FθΣ,μ

.

The highest order terms are

F1(z̃, z̄) = (AθΣ(θΣ, h)−AθΣ(θΣ0, h0)) : ∇2
Σθ̃Σ

and F2(z̃, z̄) = ∂tθ̄Σ +AθΣ(θΣ, h) : ∇2
Σθ̄Σ. As in the previous subsection these are

linear in the highest derivative, fortunately.
Here the bilinear map (m, g) �→ mg is bounded from C([0, a];C1(Σ))×FθΣ,μ

to FθΣ,μ, hence it is real analytic, and so the composition maps

(z̃, z̄) �→ (AθΣ(θΣ, h),∇2
Σθ̃Σ,∇2

Σθ̄Σ) �→ Fj(z̃, z̄)

are of class Ck, provided the coefficient functions dΣ, κΣ are of class Ck+1. Then
we may estimate similarly as in Section 9.5.1

|D1F1(0, z̄)z̃|FθΣ,μ(J) ≤ |(AθΣ(θ̄Σ, h̄)−AθΣ(θΣ0, h0)|C([0,a];C1(Σ))

· |∇2
Σθ̃Σ|FθΣ,μ(J) ≤ η|z|

E
j
μ(a)

,

and
|D1F2(0, z̄)z̃|FθΣ,μ(J) ≤ C|z̃|

E
j
μ(a)

|∇2
Σθ̄Σ|FθΣ,μ(J) ≤ η|z̃|

E
j
μ(a)

,

provided a is sufficiently small, depending only on the fixed function z̄. This shows
Condition (NL) for the θΣ-components of N5 and N6.

5.5. The Nonlinearities in Fu
h,μ

There are only few lower order terms appearing in this boundary space. These
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are u · νΓ in the h-component of N3, N5, [[θη(θ)]]jΣ in N4, and [[ψ(θ)]], [[1/�]]j2ΣνΓ,
[[1/2�2]]j2Σ in N4, N6. These terms can be handled in the same way as the lower
order terms in Sections 9.5.1 and 9.5.4. We now study the highest order terms in
the same way as above.

(a) [[Bθ(θ, h)∇θ]]
We set F1(z̃, z̄) = [[(Bθ(θ, h) − Bθ(θ0, h0))∇θ̃]] and F2(z̃, z̄) = ∂tθ̄ + [[Bθ(θ, h)∇θ̄]].
Since θ ∈ Gθ(J) = C1/2([0, a];C(Σ)) ∩ C([0, a];C1(Σ)) we may employ here the
bilinear map (m, g) �→ mg from Gθ(J) × Fu

h,μ(J) to Fu
h,μ(J) which is bounded,

to see as before that Fk are of class Ck provided d, l are of class Ck+1. For their
Fréchet derivatives, by Section 9.5.3(i),(ii), we have the estimates

|D1F1(0, z̄)z̃|Fu
h,μ(J)

≤ C|Bθ(θ̄, h̄)− Bθ(θ0, h0))|Gθ(J)|∇θ̃|Fu
h,μ(J)

≤ η|z̃|Eμ(a),

and

|D2F2(0, z̄)z̃|Fu
h,μ(J)

≤ a1/2pC{|∂θBθ(θ̄, h̄)|Gθ(J)|θ̃|Eθ,μ(J)

+ |∂hBθ(θ̄, h̄)|Gθ(J)|h̃|Ek
h,μ(J)

}|∇θ̄|Fu
h,μ(R+) ≤ η|z̃|Eμ(a),

provided a is chosen small enough, independently of z̃, as 0Eθ,μ(J) embeds into
Gθ(J) with uniform embedding constant. This shows Condition (NL) for this
nonlinearity.

(b) σ′(θΣ)∇ΣθΣ
This term can be handled in the same way. We employ the technique from (a) to
the functions

F1(z̃, z̄) = (σ′(θΣ)− σ′(θΣ0)∇Σθ̃Σ, F2(z̃, z̄) = σ′(θΣ)∇Σθ̄Σ.

As a result we obtain that this term is of class Ck, provided σ ∈ Ck+2, and so
Condition (NL) is valid.

(c) S(u, θ, h)νΓ(h)
We rewrite this term as Bu(θ, h)∇u, where Bu is a tensor of degree 3 which depends
only on θ, h,∇Σh, hence is of lower order. Here we define

F1(z̃, z̄) = (Bu(θ, h)− Bu(θ0, h0))∇ũ, F2(z̃, z̄) = Bu(θ, h)∇ū.

Then we have the same structure as in (a) and so the same argument as there
proves (NL) for the jump of the normal stress. A similar argument can be employed
for [[S(u, θ, h)νΓ(h) · νΓ(h)/�]].

(d) HΓ(h)
According to Section 2.2.5, the curvature reads as

HΓ(h) = C0(h) : ∇2
Σh+ C1(h),
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where Cj(h) depend only on h and ∇Σh, and hence are of lower order. Therefore,
HΓ(h) fortunately has a quasilinear structure. Note that

CΣ(h) = −C0(h) : ∇2
Σ. (9.16)

In the following we concentrate on the first term C0(h) : ∇2
Σh. Here

C0(h) = β(h)(M2
0 (h)− β2(h)M2

0 (h)∇Σh⊗M2
0 (h)∇Σh)

is real analytic in h and ∇Σh. The highest order contribution of the term

HΓ(h)−HΓ(h̄)−H ′(h0)h̃

to Nj in the normal stress condition on Σ is given by F (h̃, h̄) = F1(h̃, h̄)+F2(h̃, h̄),
where

F1(h̃, h̄) = (C0(h)− C0(h0)) : ∇2
Σh̃, F2(h̃, h̄) = (C0(h)− C0(h̄)) : ∇2

Σh̄,

and so Fi(0, h̄) = 0, and

D1F1(0, h̄)h̃ = (C0(h̄)− C0(h0)) : ∇2
Σh̃, D1F2(0, h̄)h̃ = C0(h̄)h̃ : ∇2

Σh̄.

As in any of the 6 problems,

∇Σh ∈ W 1−1/2p
p,μ (J ;W 1−1/p

p (Σ)) ∩ Lp,μ(J ;W
2−1/p
p (Σ) ↪→ Fu

h,μ(J),

and we may estimate as in (a) to see that

|D1F (0, h̄)h̃|Fu
h,μ(a)

≤ η|z̃|Eμ(a),

if a is small, hence Condition (NL) holds also for this nonlinearity.

5.6. The Nonlinearities in Fθ
h,μ

(a) First we focus on the term u · νΓ/β from the equation for h in Problem (P2).
The terms [[�u · νΓ/β]] and PΓ[[u]] = [[u]] − [[u · νΓ]]νΓ appearing in (P4) and (P6)
can be estimated in the same way.

The corresponding term in N2 looks like F = F1 + F2, with

F1(z̃, z̄) = ū · (M0(h0)−M0(h))∇Σh̃+ ũ · (M0(h0)−M0(h))∇Σh̄− ũ ·M0(h)∇Σh̃,

and
F2(z̃, z̄) = ū · (νΣ −M0(h0)∇Σh̄).

Since Fθ
h,μ(a) is a multiplication algebra and M0 is real analytic, it follows easily

that F is also real analytic. To verify (NL) (ii) for F1, it is sufficient to show that
triple products of the form bvw become small if a is small, where b ∈ Gh(J) and
w ∈ Fθ

h,μ(J) have zero trace, and v ∈ Fθ
h,μ(R+). Here b = M0(h0) − M0(h), and
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v = ū, w = ∇Σh̃, or bar and tilde in the latter ones interchanged. To do so we
first use the Banach algebra property to obtain

|bvw|Fθ
h,μ(J)

≤ C|bv|Fθ
h,μ(J)

|w|Fθ
h,μ(J)

,

with a constant C independent of a, as bv and w have both trace zero. Then we
apply Section 9.5.3(iii) to obtain

|bv|Fθ
h,μ(J)

≤ C|b|Gh(J)|v|Fθ
h,μ(R+).

As |b|Gh(J) → 0 as a →, the claim follows for F1.
Further, we have

D1F2(0, z̄)z̃ = −ū ·M ′
0(h̄)h̃∇Σh̄,

hence we obtain by 5.3(i),(iii), as 0E
u
h,μ(J) ↪→ Gh(J),

|h̃M ′
0(h̄)∇Σh̄ · ū|Fθ

h,μ(J)
≤ C|h̃M ′

0(h̄)∇Σh̄|Fθ
h,μ(J)

|ū|E2
μ(R+)

≤ C|h̃|Gh(J)|M ′
0(h̄)∇Σh̄|Fθ

h,μ(R+)|ū|E2
μ(R+)

≤ C|h̃|Gh(J)|h̄|E2
μ(R+)|ū|E2

μ(R+).

In the last step we used fact that M ′
0(h̄) is a multiplier for Fh,μ(R+). Finally, there

is some α > 0 such that

0E
u
h,μ(J) ↪→ C1+α([0, a];C(Σ)) ∩ Cα([0, a];C2(Σ)) =: Gα

h(J),

therefore
|h̃|Gh(J) ≤ aα|h̃|Gα

h(J) ≤ Caα|h̃|E2
h,μ

.

This shows that F2 is also subject to (NL) (ii).

(b) ϕ(θ)
We consider the term ϕ(θ) appearing in the Gibbs-Thomson condition in Problems
(P1) and (P3). The corresponding term in Nj , j = 1, 3, is given by

F (z̃, z̄) = rθ(θ̃, θ̄) = ϕ(θ)− ϕ(θ̄)− ϕ′(θ̄)θ̃.

From Section 9.5.3(v),(vi) we see that F is of class Ck provided ϕ belongs to Ck+2,
i.e., if ψ ∈ Ck+2. Further we obtain D1F (0, z̄)z̃ = 0, hence (NL) (ii) is satisfied
trivially.

(c) HΓ(h)
Employing the same decomposition of the relevant nonlinearity F as in Section
9.5.5(d), we may argue as in (a) above to obtain

|F (0, z̄)|Fθ
h,μ(J)

+ |D1F (0, z̄)|B(0Eμ(a);Fμ(a) → 0,

as a → 0, as the function z̄ is fixed.



Chapter 10

Linear Stability of Equilibria

In this chapter we investigate the spectral properties of the linearizations Lj of
the six problems at a given equilibrium. We show that the dimension of the kernel
N(Lj) equals the dimension of the tangent space of the manifold of equilibria E ,
the eigenvalue 0 is semi-simple for Lj , and the intersection of the spectrum of
Lj with the imaginary axis is {0}. This shows that the equilibria are normally
hyperbolic. In the case of no phase transitions, i.e., Problem 2, or in case the
phases are connected and for �1 = �2 the stability condition (1.32) holds, we
show that the spectrum of −Lj does not intersect the open right half-plane C+,
hence the equilibrium is even normally stable. These results are the basis for the
application of the generalized principle of linearized stability which will be carried
out in the next chapter.

10.1 Linearization at Equilibria

The full linearization at an equilibrium e∗ = (0, θ∗,Σ) in the general case reads

�∂tu− μ∗Δu+∇π = �fu in Ω \ Σ,
div u = gd in Ω \ Σ,

u = 0 on ∂Ω,

u− (uΣ + jΣνΣ/�) = gu/� on Σ,

−[[TνΣ]] + σ∗AΣhνΣ = (σ′
∗∇Σ + σ′

∗HΣνΣ)ϑΣ + gΣ on Σ,

u(0) = u0 in Ω,

(10.1)

where T = μ∗(∇u+ [∇u]T)− πI, μ∗ = μ(θ∗), σ∗ = σ(θ∗), and σ′
∗ = σ′(θ∗). Here,

jΣ and uΣ are the pull-backs of jΓ and uΓ, respectively, and the operator AΣ is
the negative derivative of the curvature, defined by

AΣ = −H ′
Σ(0) = −n− 1

R2∗
−ΔΣ.
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The relative temperature ϑ = θ − θ∗ is subject to

�κ∗∂tϑ− d∗Δϑ = �κ∗fθ in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0, ϑ = ϑΣ on Σ,

ϑ(0) = ϑ0 in Ω,

(10.2)

with κ∗ = κ(θ∗) and d∗ = d(θ∗). On the interface we have the following equations

κΣ∗∂tϑΣ − dΣ∗ΔΣϑΣ − [[d∗∂νϑ]]− θ∗σ′
∗divΣuΣ − l∗jΣ = fΣ on Σ,

(l∗/θ∗)ϑΣ − [[TνΣ · νΣ/�]] = gθ on Σ,

∂th− u · νΣ + jΣ/� = fh on Σ,

ϑΣ(0) = ϑΣ0, h(0) = h0 on Σ,

(10.3)

setting l∗ = l(θ∗) = θ∗[[ψ′(θ∗)]], κΣ∗ = κΓ(θ∗) and dΣ∗ = dΓ(θ∗). For future use
we note here that combining the dynamic equation for h in (10.3) with the jump
condition for u in (10.1) yields ∂th− fh − uΣ · νΣ = �−1gu · νΣ, which implies

gu · νΣ = 0 in case �1 �= �2. (10.4)

We introduce now the functional analytic frameworks for the spectral analysis of
the problems under consideration.

Problem 1. This results in the linear problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�κ∗∂tϑ− d∗Δϑ = �κ∗fθ in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0 on Σ,

(�l∗/θ∗)ϑ− σ∗AΣh = gθ on Σ,

�l∗∂th− [[d∗∂νϑ]] = �l∗fh in Σ,

ϑ(0) = ϑ0, h(0) = h0.

(10.5)

We define the operator L1 in X1
0 := Lp(Ω)×W

2−2/p
p (Σ) by

X1
1 = D(L1) =

{
(ϑ, h) ∈ [H2

p (Ω \ Σ) ∩ C(Ω̄)]×W 4−1/p
p (Σ) :

∂νϑ = 0, (�l∗/θ∗)ϑ+ σ∗AΣh = 0, [[d∗∂νϑ]] ∈ W 2−2/p
p (Σ)

}
,

L1(ϑ, h) = ((−d∗/�κ∗)Δϑ,−[[(d∗/�l∗)∂νϑ]]).
(10.6)

Here the principal variable is z = (ϑ, h), for the dynamic inhomogeneities we have
f = (fθ, fh), and the static one is g = gθ. For well-posedness of this problem we
require l∗ �= 0.
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Problem 2. The fully linearized problem at an equilibrium is the following.

�∂tu− μ∗Δu+∇π = �fu in Ω \ Σ,
div u = gd in Ω \ Σ,

u = 0 on ∂Ω,

[[u]] = 0 on Σ,

−[[TνΣ]] + σ∗(AΣh)νΣ = gΣ on Σ,

u(0) = u0 in Ω;

(10.7)

�κ∗∂tϑ− d∗Δϑ = �κ∗fθ in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0 on Σ,

−[[d∗∂νϑ]] = fΣ on Σ,

ϑ(0) = ϑ0 in Ω \ Σ;

(10.8)

∂th− u · νΣ = fh on Σ,

h(0) = h0 on Σ.
(10.9)

Set

X2
0 = Lp,σ(Ω)× Lp(Ω)×W 2−1/p

p (Σ),

where the subscript σ means solenoidal, and define the operator L2 by

L2(u, ϑ, h) =
(
− (μ∗/�)Δu+∇π/�,−(d∗/�κ∗)Δϑ,−u · νΣ

)
.

To define the domain D(L2) of L2, we set

X2
1 = D(L2) = {(u, ϑ, h) ∈ H2

p (Ω \ Σ)n+1 ×W 3−1/p
p (Σ) : div u = 0 in Ω \ Σ,

[[u]], [[ϑ]],PΣ[[μ∗DνΣ]], [[d∗∂νϑ]] = 0 on Σ, u, ∂νϑ = 0 on ∂Ω}.

Here π is determined as the solution of the following weak transmission problem,
uniquely up to a constant.

(∇π|∇φ/�)Ω = (μ∗Δu|∇φ/�)Ω, φ ∈ Ḣ1
p′(Ω),

[[π]] = −σ∗AΣh+ [[2μ∗∂νu · νΣ]] on Σ.

In this problem the principal variable is z = (u, ϑ, h), for the dynamic inhomo-
geneities we have f = (fu, fθ, fh), and the static one is g = (gd, gΣ, gθ). Note that
the problem for ϑ decouples completely.
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Problem 3. Eliminating jΣ by means of surface energy balance, the fully linearized
problem at an equilibrium in this case reads

�∂tu− μ∗Δu+∇π = �fu in Ω \ Σ,
div u = gd in Ω \ Σ,

u = 0 on ∂Ω,

[[u]] = 0 on Σ,

−[[TνΣ]] + σ∗AΣhνΣ = gΣ on Σ,

u(0) = u0 in Ω;

(10.10)

�κ∗∂tϑ− d∗Δϑ = �κ∗fθ in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0 on Σ,

(�l∗/θ∗)ϑ− σ∗AΣh = gθ on Σ,

�l∗(∂th− u · νΣ)− [[d∗∂νϑ]] = �l∗fh on Σ,

ϑ(0) = ϑ0, h(0) = h0.

(10.11)

Here we redefined gθ by �gθ − gΣ · νΣ. Set

X3
0 = Lp,σ(Ω)× Lp(Ω)×W 2−2/p

p (Σ),

and define the operator L3 by

L3(u, ϑ, h) =
(
− μ∗Δu/�+∇π/�,−(d∗/�κ∗)Δϑ,−u · νΣ − [[(d∗/�l∗)∂νϑ]]

)
.

To define the domain D(L3) of L3, we set

X3
1 = {(u, ϑ, h) ∈ H2

p (Ω \ Σ)n+1 ×W 4−1/p
p (Σ) : div u = 0 in Ω \ Σ,

[[u]], [[ϑ]] = 0 on Σ, u, ∂νϑ = 0 on ∂Ω},

and

D(L3) = {(u, ϑ, h) ∈ X3
1 : PΣ[[μ∗DνΣ]], (�l∗/θ∗)ϑ− σ∗AΣh = 0 on Σ,

[[d∗∂νϑ]] ∈ W 2−2/p
p (Σ)}.

The pressure π is determined, uniquely up to a constant, as the solution of the
weak transmission problem

(∇π|∇φ)Ω = (μ∗Δu|∇φ)Ω, φ ∈ Ḣ1
p′(Ω),

[[π]] = −σ∗AΣh+ [[2μ∗∂νu · νΣ]] on Σ.

The principal variable is again z = (u, ϑ, h), for the dynamic inhomogeneities we
have f = (fu, fθ, fh), and the static one is g = (gd, gΣ, gθ). Here we have to assume,
as in Problem 1, l∗ �= 0 for well-posedness.
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Problem 4. The linearized problem at an equilibrium reads

�∂tu− μ∗Δu+∇π = �fu in Ω \ Σ,
div u = gd in Ω \ Σ,

u = 0 on ∂Ω,

[[u]]− [[1/�]]jΣνΣ = [[1/�]]gu on Σ,

−[[TνΣ]] + σ∗AΣhνΣ = gΣ on Σ,

u(0) = u0 in Ω;

(10.12)

�κ∗∂tϑ− d∗Δϑ = �κ∗fθ in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0 on Σ,

−l∗jΣ − [[d∗∂νϑ]] = fΣ on Σ,

ϑ(0) = ϑ0 in Ω;

(10.13)

(l∗/θ∗)ϑΣ − [[TνΣ · νΣ/�]] = gθ on Σ,

∂th− u · νΣ + jΣ/� = fh on Σ,

h(0) = h0 on Σ.

(10.14)

We eliminate jΣ to the result

jΣ = [[u · νΣ]]/[[1/�]], u · νΣ − jΣ/� = [[�u · νΣ]]/[[�]],

since gu · νΣ = 0 by (10.4). Set

X4
0 = Lp,σ(Ω)× Lp(Ω)×W 2−1/p

p (Σ)

and define the operator L4 by

L4(u, ϑ, h) =
(
− (μ∗/�)Δu+∇π/�,−(d∗/�κ∗)Δϑ,−[[�u · νΣ]]/[[�]]

)
.

To define the domain D(L4) of L4, we set

X4
1 = {(u, ϑ, h) ∈ H2

p (Ω \ Σ)n+1 ×W 3−1/p
p (Σ) : div u = 0 in Ω \ Σ,

PΣ[[u]], [[ϑ]] = 0 on Σ, u, ∂νϑ = 0 on ∂Ω},

and

D(L4) = {(u, ϑ, h) ∈ X4
1 : PΣ[[μ∗DνΣ]], (l∗/[[1/�]])[[u · νΣ]] + [[d∗∂νϑ]] = 0 on Σ}.

Here π is determined uniquely as the solution of the weak transmission problem

(∇π|∇φ/�)Ω = ((μ∗/�)Δu|∇φ)Ω, φ ∈ H1
p′,Σ(Ω \ Σ),

[[π]] = −σ∗AΣh+ [[2μ∗∂νu · νΣ]] on Σ,

[[π/�]] = −(l∗/θ∗)ϑ+ [[2μ∗(∂νu · νΣ)/�]] on Σ.
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Actually, this transmission problem boils down to two one-phase problems with
Dirichlet data. In this model the principal variable is again z = (u, ϑ, h), for
the dynamic inhomogeneities we have f = (fu, fθ, fh), and the static one is g =
(gd, [[1/�]]gu, gΣ, gθ).

Problem 5. As [[1/�]] = 0 we may combine the normal stress condition and the
Gibbs-Thomson relation to the result

−(l0/θ∗)ϑΣ + σ∗AΣh = gΣ · νΣ − �gθ,

where
l0 := �l∗ + θ∗σ′

∗HΣ.

We may use this relation to eliminate ϑΣ provided l0 �= 0. Furthermore, assuming
w.l.o.g. gu = 0, with

divΣuΣ = divΣPΣuΣ −HΣuΣ · νΣ

and PΣuΣ = PΣu, uΣ · νΣ = u · νΣ − jΣ/� we obtain

divΣuΣ = divΣu+HΣjΣ/�.

Inserting this identity into the surface energy balance and solving for jΣ leads to

κΣ∗∂tϑΣ − dΣ∗ΔΣϑΣ − [[d∗∂νϑ]]− θ∗σ′
∗divΣu = l0jΣ/�+ fΣ.

Taking these observations into account, and eliminating jΣ and ϑΣ, the linearized
problem at an equilibrium reads

�∂tu− μ∗Δu+∇π = �fu in Ω \ Σ,
div u = gd in Ω \ Σ,

u = 0 on ∂Ω,

[[u]] = 0 on Σ,

−[[TνΣ]] + σ∗(AΣh)νΣ − σ′
∗(∇Σ +HΣνΣ)ϑ = gΣ on Σ,

u(0) = u0 in Ω;

(10.15)

�κ∗∂tϑ− d∗Δϑ = �κ∗fθ in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0, ϑ = (θ∗/l0)(σ∗AΣh+ �gθ − gΣ · νΣ) on Σ,

ϑ(0) = ϑ0 in Ω;

(10.16)

(l20/θ∗ + κΣ∗σ∗AΣ)∂th− dΣ∗σ∗ΔΣAΣh

−(l0/θ∗)[[d∗∂νϑ]]− (l20/θ∗)u · νΣ − l0σ
′
∗divΣu = f̃h on Σ,

h(0) = h0 on Σ.

(10.17)
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Set

X5
0 = Lp,σ(Ω)× Lp(Ω)×W 2−1/p

p (Σ)

and define the operator L5 by

L5(u, ϑ, h) =
(
− (μ∗/�)Δu+∇π/�,−(d∗/�κ∗)Δϑ,−(l20/θ∗ + κΣ∗σ∗AΣ)

−1

· (dΣ∗σ∗ΔΣAΣh+ (l0/θ∗)[[d∗∂νϑ]] + (l20/θ∗)u · νΣ + l0σ
′
∗divΣu)

)
.

To define the domain D(L5) of L5, we set

X5
1 = {(u, ϑ, h) ∈ H2

p (Ω \ Σ)n+1 ×W 4−1/p
p (Σ) : div u = 0 in Ω \ Σ,

[[u]], [[ϑ]] = 0 on Σ, u, ∂νϑ = 0 on ∂Ω},

and

D(L5) = {(u, ϑ, h) ∈ X5
1 : PΣ[[μ∗DνΣ]] + σ′

∗∇Σϑ, (l0/θ∗)ϑ− σ∗AΣh = 0 on Σ}.

Here π is determined as the solution of the weak transmission problem

(∇π|∇φ)Ω = (μ∗Δu|∇φ)Ω, φ ∈ Ḣ1
p′(Ω),

[[π]] = −σ∗AΣh+ σ′
∗HΣϑΣ + [[2μ∗∂νu · νΣ]] on Σ.

This reformulation is valid provided l20/θ∗+κΣ∗σ∗AΣ is invertible, which is true if
l0 �= 0 and l20/θ∗ �= κΣ∗σ∗(n− 1)/R2

∗ holds. In this model the principal variable is
again z = (u, ϑ, h), for the dynamic inhomogeneities we have f = (fu, fθ, fh) with
f̃h = (l20/θ∗ + κΣ∗σ∗AΣ)

−1fh and the static one is g = (gd, gΣ, gθ).

Problem 6. Eliminate jΣ and uΣ from the fourth line of (10.1) to the result

uΣ = [[�u]]/[[�]], jΣ = [[u · νΣ]]/[[1/�]],

where we again used (10.4). Inserting into the equations, the linearized problem
at an equilibrium reads

�∂tu− μ∗Δu+∇π = �fu in Ω \ Σ,
div u = gd in Ω \ Σ,

u = 0 on ∂Ω,

PΣ[[u]] = [[1/�]]PΣgu on Σ,

−PΣ[[TνΣ]]− σ′
∗∇ΣϑΣ = PΣgΣ on Σ,

−[[TνΣ · νΣ]] + σ∗AΣh− σ′
∗HΣϑΣ = gΣ · νΣ on Σ,

−[[TνΣ · νΣ/�]] + (l∗/θ∗)ϑΣ = gθ on Σ,

u(0) = u0 in Ω;

(10.18)
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�κ∗∂tϑ− d∗Δϑ = �κ∗fθ in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0, ϑ = ϑΣ on Σ,

ϑ(0) = ϑ0 in Ω;

(10.19)

κΣ∗∂tϑΣ − dΣ∗ΔΣϑΣ − [[d∗∂νϑ]]−l∗[[u · νΣ]]/[[1/�]]−
−(θ∗σ′

∗/[[�]]) divΣ[[�u]] = fΣ on Σ,

∂th− [[�u · νΣ]]/[[�]] = fh on Σ,

h(0) = h0 on Σ.

(10.20)

Set
X6

0 = Lp,σ(Ω)× Lp(Ω)×W−1/p
p (Σ)×W 2−1/p

p (Σ)

and define the operator L6 by

L6(u, ϑ, ϑΣ,h) =
(
− (μ∗/�)Δu+∇π/�,−(d∗/�κ∗)Δϑ,

(−dΣ∗ΔΣϑΣ − [[d∗∂νϑ]]− (θ∗σ′
∗/[[�]])divΣ[[�u]]− l∗[[u · νΣ]]/[[1/�]])/κΣ∗,

− [[�u · νΣ]]/[[�]]
)
.

To define the domain D(L6) of L6, we set

X6
1 = {(u, ϑ, ϑΣ, h) ∈ H2

p (Ω \ Σ)n+1 ×W 2−1/p
p (Σ)×W 3−1/p

p (Σ) :

div u = 0 in Ω \ Σ, PΣ[[u]], [[ϑ]] = 0, ϑ = ϑΣ on Σ, u, ∂νϑ = 0 on ∂Ω},

and

D(L6) = {(u, ϑ, ϑΣ, h) ∈ X6
1 : PΣ[[μ∗DνΣ]] + σ′

∗∇Σϑ = 0 on Σ}.

Here π is determined as the unique solution of the weak transmission problem

(∇π|∇φ/�)Ω = ((μ∗/�)Δu|∇φ)Ω, φ ∈ H1
p′,Σ(Ω \ Σ),

[[π]] = −σ∗AΣh+ σ′
∗HΣϑΣ + [[2μ∗∂νu · νΣ]] on Σ,

[[π/�]] = −(l∗/θ∗)ϑΣ + [[2μ∗(∂νΣ
u · νΣ)/�]] on Σ.

As for Problem 4, this consists of two weak one-phase Dirichlet problems. In this
model the principal variable is again z = (u, ϑ, ϑΣ, h), for the dynamic inhomo-
geneities we have f = (fu, fθ, fΣ, fh), and the static one is g = (gd, gu, gΣ, gθ).

This way, the linearized problems (Pj) can be rewritten as abstract evolution
problems in Xj

0 .
ż + Ljz = f, t > 0, z(0) = z0, (10.21)

provided g = 0. According to Chapters 6, 7, 8, the linearized problems have
maximal Lp-regularity, hence (10.21) has this property as well, provided l∗ �= 0 for
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Problems P1 and P3, and l0 �= 0, δ∗ := σ∗(n− 1)θ∗κΣ∗/l20R
2
∗ �= 1 for Problem P5.

Therefore, by Proposition 3.5.2, −Lj generates an analytic C0-semigroup in Xj
0 .

Since the embeddings Xj
1 ↪→ Xj

0 are compact, the semigroups e−Ljt as well
as the resolvents (λ+Lj)

−1 of −Lj are compact, too. Therefore the spectra σ(Lj)
of Lj consists only of countably many eigenvalues of finite algebraic multiplicity.
Moreover, by Sobolev embedding the spectrum σ(Lj) is independent of p.

So we have to study the following general eigenvalue problem.

�λu− μ∗Δu+∇π = 0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on ∂Ω,

[[PΣu]] = 0, PΣu = PΣuΣ on Σ,

−[[TνΣ]] + σ∗AΣhνΣ = σ′
∗∇ΣϑΣ + σ′

∗ϑΣHΣνΣ on Σ,

[[u · νΣ]]− [[1/�]]jΣ = 0 on Σ,

(10.22)

where T = μ∗(∇u+ [∇u]T)− πI,

�κ∗λϑ− d∗Δϑ = 0 in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0, ϑ = ϑΣ on Σ,

(10.23)

κΣ∗λϑΣ − dΣ∗ΔΣϑΣ − θ∗σ′
∗divΣuΣ − l∗jΣ − [[d∗∂νϑ]] = 0 on Σ,

(l∗/θ∗)ϑΣ − [[TνΣ · νΣ/�]] = 0 on Σ,

λh = uΣ · νΣ = u · νΣ−jΣ/� on Σ.

(10.24)

Since the eigenvalues are independent of p it is enough to study this eigenvalue
problem in an L2-setting. This will be the subject of the remaining sections of this
chapter.

10.2 The Spectrum of the Laplace-Beltrami Operator

We need to prepare the eigenvalue analysis, deducing some properties of the op-
erator AΣ from those of the Laplace-Beltrami operator on spheres.

Proposition 10.2.1. Let Σ = SR(x0) ⊂ Rn be a sphere of radius R and center x0,
and let

AΣ = −n− 1

R2
−ΔΣ

be defined on L2(Σ) with domain H2
2 (Σ). Then

(a) AΣ is self-adjoint. The spectrum of AΣ consists entirely of eigenvalues of finite
algebraic multiplicity and is given by

σp(AΣ) =
{ 1

R2∗

(
k(k + n− 2)− (n− 1))

)
: k ∈ N0

}
.
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(b) There is precisely one negative eigenvalue, namely −(n − 1)/R2, with eigen-
function e ≡ 1, which is simple.

(c) The kernel of AΣ is given by N(AΣ) = span{Y1, . . . , Yn}, where Yj denote the
spherical harmonics of degree 1 on Σ, normalized by (Yi|Yj)Σ = δij.

(d) AΣ is positive semi-definite on L2,0(Σ) = {h ∈ L2(Σ) : (h|e)Σ = 0} and
positive definite on

L2,0(Σ) ∩ R(AΣ) = {h ∈ L2(Σ) : (h|e)Σ = (h|Yj)Σ = 0, j = 1, . . . , n}.

(e) The range of AΣ is closed, and we have L2(Σ) = N(AΣ)⊕ R(AΣ).

Proof. We can assume without loss of generality that Σ = SR(0) = R Sn−1, where
Sn−1 denotes the standard unit sphere in Rn. Let Φ : Σ → Sn−1 be defined by
p �→ (1/R)p. Then Φ is a smooth diffeomorphism of Σ onto Sn−1 and one readily
verifies

(g|h)L2(Σ) = Rn−1(Φ∗g|Φ∗h)L2(Sn−1), ΔΣ = (1/R2) Φ∗ΔSn−1 Φ∗ (10.25)

where Φ∗ and Φ∗ are the pull-back and push-forward operators, respectively. We
then have

(λ−AΣ)h = 0 ⇐⇒
(
λ+

1

R2

(
(n− 1) + ΔSn−1

))
Φ∗h = 0 (10.26)

and this shows that λ is an eigenvalue of AΣ iff

λ =
1

R2

(
μ− (n− 1)

)
(10.27)

with μ an eigenvalue of −ΔSn−1 . The assertions in (a)-(d) follow now from (10.25)–
(10.27) and well-known results for the Laplace-Beltrami operator on Sn−1, see for
instance [281, Section 31]. Since AΣ has compact resolvent we conclude that R(AΣ)
is closed, and the fact that AΣ is self-adjoint then implies the remaining assertion
in (e). �
Note that this result extends to the case where Σ is a finite union of disjoint
spheres. More precisely, if Σ = ∪m

k=1SRk
(xk) where the spheres SRk

(xk) do not
intersect, then L2(Σ) =

⊕m
k=1 L2(Σk), with Σk = SRk

(xk). Furthermore, AΣ =⊕m
k=1 AΣk

, hence Proposition 10.2.1 implies in particular that AΣ is positive semi-
definite on functions which have zero mean on each component Σk of Σ.

10.3 Nontrivial Eigenvalues

Suppose that λ with Re λ ≥ 0, λ �= 0 is an eigenvalue of Lj . Here we do not
need to distinguish the problems and so we consider the most general one, namely
Problem 6. We exclude here for the moment Problem 2, i.e., the case without phase
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transition. Taking the inner product of the equation for u with u and integrating
by parts we get

0 = λ|�1/2u|22 − (div T |u)Ω

= λ|�1/2u|22 +
∫
Ω

T : ∇ū dx+

∫
Σ

(T2νΣ · ū2 − T1νΣ · ū1) dΣ

= λ|�1/2u|22 + 2|μ1/2
∗ D|22 + ([[TνΣ]]|uΣ)Σ + ([[TνΣ · νΣ/�]]|jΣ)Σ

= λ|�1/2u|22 + 2|μ1/2
∗ D|22 + σ∗λ̄(AΣh|h)Σ + ([[TνΣ · νΣ/�]]|jΣ)Σ

− σ′
∗(∇ΣϑΣ|uΣ)Σ − σ′

∗HΣ(ϑΣνΣ|uΣ),

since PΣ[[u]] = 0, [[TνΣ]] = σ∗AΣhνΣ−σ′
∗(∇ΣϑΣ+HΣνΣϑΣ) and uΣ · νΣ = λh. On

the other hand, the inner product of the equation for ϑ with ϑ and an integration
by parts leads to

0 = λ|(�κ∗)1/2ϑ|22 + |d1/2∗ ∇ϑ|22 + ([[d∗∂νϑ]]|ϑ)Σ
= λ(|(�κ∗)1/2ϑ|22 + |κ1/2

Σ∗ ϑΣ|22) + |d1/2∗ ∇ϑ|22 + |d1/2Σ∗ ∇ΣϑΣ|22
− θ∗(jΣ|[[TνΣ · νΣ/�]])Σ − θ∗σ′

∗(divΣuΣ|ϑΣ)Σ),

where we employed the relations

[[d∗∂νϑ]] = λκΣ∗ϑΣ − dΣ∗ΔΣϑΣ − l∗jΣ − θ∗σ′
∗divΣuΣ,

and (l∗/θ∗)ϑ = (l∗/θ∗)ϑΣ = [[TνΣ · νΣ/�]]. Adding theses identities, employing the
surface divergence theorem, and taking real parts yields the important identity

0 = Reλ|�1/2u|22 + 2|μ1/2
∗ D|22 + σ∗Reλ(AΣh|h)Σ

+
(
Reλ(|(�κ∗)1/2ϑ|22 + |κ1/2

Σ∗ ϑΣ|22) + |d1/2∗ ∇ϑ|22 + |d1/2Σ∗ ∇ΣϑΣ|22
)
/θ∗. (10.28)

On the other hand, if β := Imλ �= 0, then taking imaginary parts separately we
get with

a = ([[TνΣ · νΣ/�]]|jΣ)Σ − σ′
∗(∇ΣϑΣ|uΣ)Σ − σ′

∗HΣ(ϑΣνΣ|uΣ)

the system

0 = β|�1/2u|22 − σ∗β(AΣh|h)Σ + Im a,

0 = β(|(�κ∗)1/2ϑ|22 + |κ1/2
Σ∗ ϑΣ|22)/θ∗ + Im a,

hence
σ∗(AΣh|h)Σ = |�1/2u|22 − (|(�κ∗)1/2ϑ|22 + |κ1/2

Σ∗ ϑΣ|22)/θ∗.
Inserting this equation into (10.28) leads to

0 = 2Reλ|�1/2u|22 + 2|μ1/2
∗ D|22 + (|d1/2∗ ∇ϑ|22 + |d1/2Σ∗ ∇ΣϑΣ|22)/θ∗,
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which shows that if λ is an eigenvalue of −Lj with Reλ ≥ 0, then λ is real. In
fact, the last identity shows ∇ϑ = 0 and D = 0, hence ϑ = 0 by the equation
for ϑ, u = 0 by Lemma 1.2.1, and so also jΣ = h = 0 by the equations, provided
either [[�]] �= 0 or l0 �= 0.

Supposing now that λ > 0 is an eigenvalue, we use the decomposition ϑ =
ϑ0 + ϑ̄, ϑΣ = ϑΣ0 + ϑ̄Σ, h = h0 + h̄, and jΣ = (jΣ)0 + j̄Σ, where

ϑ̄ = (�κ∗|ϑ)Ω/(κ∗|�)Ω, ϑ̄Σ = (ϑΣ|1)Σ/|Σ|, h̄ = (h|1)Σ/|Σ|, j̄Σ = (jΣ|1)Σ/|Σ|

are weighted means. Then

|(�κ∗)1/2ϑ|22 = |(�κ∗)1/2ϑ0|22 + (κ∗|�)Ωϑ̄2, |ϑΣ|2Σ = |ϑΣ0|2Σ + |Σ|ϑ̄2
Σ,

and
|h|2Σ = |h0|2Σ + |Σ|h̄2, |jΣ|2Σ = |(jΣ)0|2Σ + |Σ| j̄2Σ.

Therefore (10.28) becomes

0 = λ|�1/2u|22 + 2|μ1/2
∗ D|22 + σ∗λ(AΣh0|h0)Σ

+ (λ|(�κ∗)1/2ϑ0|22 + λ|κ1/2
Σ∗ ϑΣ0|22 + |d1/2∗ ∇ϑ0|22 + |d1/2Σ∗ ∇ΣϑΣ0|22)/θ∗ (10.29)

+ λ
(
(κ∗|�)Ωϑ̄2 + κΣ∗|Σ|ϑ̄2

Σ − σ∗θ∗
n− 1

R2∗
|Σ|h̄2

)
/θ∗.

Assume now that the densities are equal, i.e., �1 = �2 =: �. Then we further have

λ

∫
Σ

h dΣ =

∫
Σ

(u · νΣ − jΣ/�) dΣ = −
∫
Σ

jΣ/� dΣ,

since div u = 0 and u = 0 on ∂Ω. Therefore, λh̄ = −j̄Σ/�. Also, integrating the
equation for ϑ we get

λ(κ∗|�)Ωϑ̄ = −
∫
Σ

[[d∗∂νϑ]] dΣ,

and integrating that for ϑΣ we obtain

λκΣ∗|Σ|ϑ̄Σ =

∫
Σ

[[d∗∂νϑ]] dΣ+ l∗|Σ|j̄Σ − λθ∗σ′
∗HΣ|Σ|h̄.

Adding the last two identities, replacing jΣ and dividing by λ we arrive at the
relation

(κ∗|�)Ωϑ̄+ κΣ∗|Σ|ϑ̄Σ = −(l∗�+ θ∗σ′
∗HΣ)|Σ|h̄ = l0|Σ|h̄. (10.30)

As AΣ is positive semi-definite on functions with mean zero if Σ is connected, in
this case Lj has no positive eigenvalues if the form

(κ∗|�)Ωϑ̄2 + κΣ∗|Σ|ϑ̄2
Σ − σ∗θ∗

n− 1

R2∗
|Σ|h̄2
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in the variables (ϑ̄, ϑ̄Σ, h̄) with the constraint (10.30) is nonnegative. This way we
derive the stability condition

ζ∗ :=
θ∗σ∗(n− 1)

l20R
2∗|Σ|

(
(κ∗|�)Ω + κΣ∗|Σ|

)
≤ 1. (10.31)

This condition applies to Problems (P1), (P3), (P5). On the other hand, if �1 �= �2
we have in addition

0 =

∫
Ωi

−div u dx = (−1)i
∫
Σ

u · νΣ dΣ = (−1)i
∫
Σ

(λh+ jΣ/�i) dΣ,

for i = 1, 2, and hence −j̄Σ/�1 = λh̄ = −j̄Σ/�2 which implies j̄Σ = h̄ = 0. In this
case, i.e., for Problems (P4) and (P6), the stability condition is redundant. We
will show below that there is always at least one positive eigenvalue if Σ is not
connected.

Finally, we look at Problem (P2), the case without phase transition. Then
with jΣ ≡ 0 we may proceed as above to show that eigenvalues with nonnega-
tive real part are real and we obtain again identity (10.29). Let Ωk

1 denote the
components of Ω1 and set Σk = ∂Ωk

1 . Then we have

0 =

∫
Ωk

1

div u dx =

∫
Σk

u · νΣ dΣ = λ

∫
Σk

h dΣ,

hence the mean values of h vanish even over the components of Σ. In particular,
h̄ = 0 and since AΣ is positive semi-definite on functions which have mean values
zero over each component of Σ, we see that (10.29) implies λ = 0. Hence in this
case there are no eigenvalues with nonnegative real part, except for λ = 0.

10.4 Eigenvalue Zero

Next we look at the eigenvalue λ = 0. Then (10.28) yields

2|μ1/2
∗ D|22 + (|d1/2∗ ∇ϑ|22 + |d1/2Σ∗ ∇ΣϑΣ|2Σ)/θ∗ = 0,

hence ϑ = ϑΣ is constant and D = 0. Lemma 1.2.1 implies u = 0, hence jΣ = 0
by the equation for h. This implies further that the pressures are constant in the
components of the phases, and [[π]] = −σ∗AΣh+ σ′

∗HΣϑΣ, as well as (l∗/θ∗)ϑΣ =
−[[π/�]]. Thus the dimension of the eigenspace for the eigenvalue λ = 0 is the same
as the dimension of the manifold of equilibria, namely mn + 2 if Ω1 has m ≥ 1
components and [[�]] �= 0, otherwise it is mn+ 1. The kernel of the linearization L
is spanned by eθ = (0, 1, 1, 0), eh = (0, 0, 0, 1), ejk = (0, 0, 0, Y k

j ) with the spherical

harmonics Y k
j of degree one for the spheres Σk, j = 1, . . . , n, k = 1, . . . ,m, if the

densities are not equal. Otherwise eh has to be dropped, and eθ has to be replaced
by eθ = (0, 1, 1,−l0R

2
∗/θ∗σ∗(n− 1)).
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If there is no phase transition, instead of eh we have the elements e0,k =
(0, 0, 0, Y k

0 ) in the kernel, where Y k
0 equals one on Σk and zero elsewhere. In this

case the dimension of the null space is m(n + 1) + 1. Thus we see that in all
cases the dimension of the eigenspace equals the dimension of the corresponding
component of the manifold of equilibria E .

To show that the equilibria are normally stable or hyperbolic, it remains to
prove that λ = 0 is semi-simple. Here we have to distinguish three cases.

Case 1: �1 �= �2 with phase transition.
So suppose we have a solution of Lj(u, ϑ, ϑΣ, h) =

∑
j,k αjkejk + βeθ + γeh. This

means

−μ∗Δu+∇π = 0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on ∂Ω,

u− uΣ − jΣνΣ/� = 0 on Σ,

−[[TνΣ]] + σ∗AΣhνΣ − σ′
∗(∇ΣϑΣ +HΣϑΣνΣ) = 0 on Σ.

(10.32)

− d∗Δϑ = �κ∗β in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0, ϑ = ϑΣ on Σ.

(10.33)

−dΣ∗ΔΣϑΣ − θ∗σ′
∗divΣuΣ − l∗jΣ − [[d∗∂νϑ]] = κΣ∗β on Σ,

−[[TνΣ · νΣ/�]] + (l∗/θ∗)ϑΣ = 0 on Σ,

−uΣ · νΣ =
∑
j,k

αjkY
k
j + γ on Σ.

(10.34)

We want to show (αjk, β, γ) = 0 for all j, k. Integrating the divergence equation
for u over Ω we get

0 = −
∫
Ω

div u dx =

∫
Σ

[[u · νΣ]] dΣ = [[1/�]]

∫
Σ

jΣ dΣ,

hence
∫
Σ
jΣ dΣ = 0, and

0 =

∫
Ω1

div u dx =

∫
Σ

u · νΣ dΣ =

∫
Σ

uΣ · νΣ dΣ.

Since the spherical harmonics have mean zero this implies γ = 0.
Integrating the equation for ϑ yields

β(κ∗|�)Ω = −
∫
Ω

d∗Δϑ dx =

∫
Σ

[[d∗∂νϑ]] dΣ,

and integrating that for ϑΣ we get

βκΣ∗|Σ| = −
∫
Σ

[[d∗∂νϑ]] dΣ+ θ∗σ′
∗HΣ

∫
Σ

uΣ · νΣ dΣ = −
∫
Σ

[[d∗∂νϑ]] dΣ.
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Combining these identities yields β = 0.
Taking the inner product of the equation for u with u, that for ϑ with ϑ and

that for ϑΣ with ϑΣ we obtain as in the previous section

0 = 2|μ1/2
∗ D|22 − σ′

∗(∇ΣϑΣ|uΣ)Σ − σ′
∗HΣ(ϑΣνΣ|uΣ) + ([[TνΣ · νΣ/�]]|jΣ)Σ,

and
0 = |d1/2∗ ∇ϑ|22 + ([[d∗∂νϑ]]|ϑ)Σ,

as well as

0 = |d1/2Σ∗ ∇ΣϑΣ|2Σ − ([[d∗∂νϑ]]|ϑ)Σ − l∗(jΣ|ϑΣ)Σ − θ∗σ′
∗(divΣuΣ|ϑΣ).

Adding these equations and employing the linear Gibbs-Thomson law (l∗/θ∗)ϑΣ =
[[TνΣ · νΣ/�]] yields

2|μ1/2
∗ D|22 + (|d1/2∗ ∇ϑ|22 + |d1/2Σ∗ ∇ΣϑΣ|2Σ)/θ∗ = 0.

This implies D = 0, ϑ constant, hence u = 0 by Lemma 1.2.1 and then jΣ = 0, as
[[1/�]]jΣ = [[u · νΣ]] = 0. This, in turn, yields

0 = −u · νΣ = −uΣ · νΣ =
∑
j,k

αjkY
k
j .

Thus αjk = 0 for all j, k since the spherical harmonics Y k
j are linearly independent.

Therefore, the eigenvalue λ = 0 is semi-simple.

Case 2: �1 = �2 =: � with phase transition.
The argument is similar to that in Case 1. However, due to the different kernel of
Lj we have to replace γ by −βl0R

2
∗/θ∗σ∗(n− 1). Integrating the equations for ϑ,

ϑΣ and h we obtain the identity

β
(
(κ∗|�)Ω + κΣ∗|Σ|

)
= β|Σ|l20R2

∗/θ∗σ∗(n− 1),

since the mean values of Y k
j are zero. This relates to equality in the stability

condition (10.31); if equality in (10.31) does not hold we may conclude β = 0, and
proceed as in Case 1 to show that 0 is semi-simple.

Case 3: No phase transition.
Here we can argue exactly in the same way as in Case 1. Note that in this case
the Gibbs-Thomson relation is not needed as jΣ = 0.

Concluding we see that in all cases the eigenvalue 0 is semi-simple and N(Lj) is
isomorphic to the tangent space of E , hence −Lj is normally stable or normally
hyperbolic, provided ζ∗ �= 1 in case �1 = �2.

Remark. In the case of equal densities, if ζ∗ = 1 in (10.31), then we can show that
0 is no longer a semi-simple eigenvalue, the dimension of its generalized eigenspace
raises by 1.

We conclude by summarizing our results for Problem (P2).
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Theorem 10.4.1. Let L2 denote the linearization at the equilibrium e∗ = (0, θ∗,Σ) ∈
E as defined above. Then −L2 generates a compact analytic C0-semigroup in X2

0

which has maximal Lp-regularity. The spectrum of L2 consists only of eigenvalues
of finite algebraic multiplicity. Moreover, the following assertions are valid.

(i) The operator −L2 has no eigenvalues λ �= 0 with nonnegative real part.
(ii) λ = 0 is an eigenvalue of L2 and it is semi-simple.
(iii) The kernel N(L2) of L2 is isomorphic to the tangent space Te∗E of the manifold
of equilibria E2 at e∗.

Consequently, e∗ ∈ E is normally stable.

10.5 Unstable Eigenvalues: Problems 1 and 3

We assume in this section �1 = �2 =: � and σ > 0 constant. If the stability
condition (10.31) does not hold, or if Σ is disconnected, then there is always at
least one positive eigenvalue. To prove this we proceed as follows. Suppose λ > 0
is an eigenvalue, solve the Stokes problem

�λu− μ∗Δu+∇π = 0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on ∂Ω,

[[u]] = 0 on Σ,

−[[TνΣ]] = gνΣ on Σ,

(10.35)

to obtain as an output NS
λ g := u · νΣ.

Next we solve the heat problem

�κ∗λϑ− d∗Δϑ = 0 in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0, ϑ = g on Σ,

(10.36)

to obtain DH
λ g := −[[d∗∂νϑ]], where DH

λ denotes the two-phase Dirichlet-to-
Neumann operator for the heat problem. Inserting the relation

(l0/θ∗)ϑΣ := (�l∗/θ∗)ϑΣ = σAΣh,

into the equation for h in (10.11) we obtain

0 = λh+ [NS
λ + (θ∗/l20)D

H
λ ]σAΣh,

hence with

Tλ = [NS
λ + (θ∗/l20)D

H
λ ]−1,
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we finally arrive at the equation

λTλh+ σAΣh = 0. (10.37)

λ > 0 is an eigenvalue of −Lj , j = 1, 3, if and only if (10.37) admits a nontrivial
solution.

We consider this problem in L2(Σ). The operator AΣ is selfadjoint and

σ(AΣh|h)L2(Σ) ≥ −σ(n− 1)

R2∗
|h|2L2(Σ).

On the other hand, we will see below that NH
λ = [DH

λ ]−1 and NS
λ are selfadjoint

and positive semi-definite on L2(Σ) hence Tλ is selfadjoint and positive semi-
definite as well. Moreover, since AΣ has compact resolvent, the operator

Bλ := λTλ + σAΣ

has compact resolvent, for each λ > 0. Therefore the spectrum of Bλ consists only
of eigenvalues which in addition are real. We intend to prove that in case either Σ
is disconnected or the stability condition does not hold, Bλ0

has 0 as an eigenvalue,
for some λ0 > 0.

To proceed, we need properties of the relevant Neumann-to-Dirichlet opera-
tors. Firstly, we consider the heat problem

�κ∗λϑ− d∗Δϑ = 0 in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0 on Σ,

−[[d∗∂νϑ]] = g on Σ,

(10.38)

to obtain ϑ = NH
λ g, where NH

λ denotes the Neumann-to-Dirichlet operator for this
heat problem. The properties of NH

λ are summarized in the following proposition.
We denote by e the function which is identically one on Σ.

Proposition 10.5.1. The Neumann-to-Dirichlet operator NH
λ = [DH

λ ]−1 for the
diffusion problem (10.38) admits a compact selfadjoint extension to L2(Σ) which
has the following properties.
(i) If ϑ denotes the solution of (10.38), then

(NH
λ g|g)L2(Σ) = λ|√�κ∗ϑ|2L2(Ω) + |

√
d∗∇ϑ|2L2(Ω), λ > 0, g ∈ L2(Σ);

in particular, NH
λ is injective for λ > 0.

(ii) For each α ∈ (0, 1/2) and λ0 > 0 there is a constant C > 0 such that

(NH
λ g|g)L2(Σ) ≥

λα

C
|NH

λ g|2L2(Σ), g ∈ L2(Σ), λ ≥ λ0;
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hence

|NH
λ |B(L2(Σ)) ≤

C

λα
, λ ≥ λ0.

(iii) On L2,0(Σ) := {g ∈ L2(Σ) : (g|e)L2(Σ) = 0}, we even have

(NH
λ g|g)L2(Σ) ≥

(1 + λ)α

C
|NH

λ g|2L2(Σ), g ∈ L2,0(Σ), λ > 0,

and

|NH
λ |B(L2,0(Σ),L2(Σ)) ≤

C

(1 + λ)α
, λ > 0.

In particular, for λ = 0, (10.38) is solvable if and only if (g|e)L2(Σ) = 0, and then
the solution is unique up to a constant.

Proof. We refer to Section 6.5.4 for background on elliptic Dirichlet-to-Neumann
operators.

(a) By the divergence theorem and elliptic theory, the assertion in (i) holds true

for all functions g ∈ H
1/2
2 (Σ), and all λ > 0.

(b) Let g ∈ H
1/2
2 (Σ) be given and let ϑ = ϑλ ∈ H2

2 (Ω \ Σ) be the solution of
(10.38) with λ > 0. It follows from complex interpolation and trace theory that

|ϑ|L2(Σ) ≤ C|ϑ|H1−α
2 (Ωk)

≤ C

λα/2
|λ1/2ϑ|αL2(Ωk)

|ϑ|1−α
H1

2 (Ωk)

≤ C

λα/2
(λ1/2|ϑ|L2(Ωk) + |ϑ|L2(Ωk) + |∇ϑ|L2(Ωk)),

where C is a generic constant and α ∈ (0, 1/2). For λ0 > 0 fixed we then obtain

λα|ϑ|2L2(Σ) ≤ C(λ|√�κ∗ϑ|2L2(Ω) + |
√
d∗∇ϑ|2L2(Ω)), λ ≥ λ0,

and hence

(NH
λ g|g)L2(Σ) ≥

λα

C
|NH

λ g|2L2(Σ), g ∈ H
1/2
2 (Σ), λ ≥ λ0,

which implies the estimate

|NH
λ g|L2(Σ) ≤

C

λα
|g|L2(Σ), g ∈ H

1/2
2 (Σ), λ ≥ λ0. (10.39)

As H
1/2
2 (Σ) is dense in L2(Σ) we can now conclude that Nλ admits a bounded

extension to L2(Σ). Therefore, the assertions in (i) and (ii) are also valid for func-
tions g ∈ L2(Σ). Finally, the third assertion follows from the Poincaré-Wirtinger
inequality. �
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Secondly, we consider the Neumann-to-Dirichlet operator NS
λ for the Stokes prob-

lem. It is defined as follows. Given a function g ∈ W
1−1/p
p (Σ), we solve the Stokes

problem
�λu− μ∗Δu+∇π = 0 in Ω \ Σ,

div u = 0 in Ω \ Σ,
u = 0 on ∂Ω,

[[u]] = 0 on Σ,

−[[TνΣ]] = gνΣ on Σ,

(10.40)

and define NS
λ g := u · νΣ on Σ. For this well-defined operator we have

Proposition 10.5.2. The Neumann-to-Dirichlet operator NS
λ for the Stokes problem

(10.35) admits a compact selfadjoint extension to L2(Σ) which has the following
properties.
(i) If u denotes the solution of (10.35), then

(NS
λ g|g)L2(Σ) = λ

∫
Ω

�|u|2 dx+ 2

∫
Ω

μ∗|D|22 dx, λ ≥ 0, g ∈ L2(Σ).

(ii) For each α ∈ (0, 1/2) there is a constant C > 0 such that

(NS
λ g|g)L2(Σ) ≥

(1 + λ)α

C
|NS

λ g|2L2(Σ), g ∈ L2(Σ), λ ≥ 0.

In particular,

|NS
λ |B(L2(Σ)) ≤

C

(1 + λ)α
, λ ≥ 0.

(iii) Let Σk denote the components of Σ and let ek be the function which is one
on Σk, zero elsewhere. Then (NS

λ g|ek)L2(Σ) = 0 for each g ∈ L2(Σ). In particular,
NS

λ ek = 0 for each k, and NS
λ g has mean value zero for each g ∈ L2(Σ).

Proof. For g ∈ H
1/2
2 (Σ), the first assertion follows from the divergence theorem.

The second assertion follows by Korn’s inequality and trace theory, and the third
one comes from div u = 0. The arguments are similar to those in the proof of
Proposition 10.5.1. Note that NS

λ even on L2,0(Σ) is not injective in case Σ is
disconnected. �

(a) Consider vλ := Tλe, or equivalently e = NS
λ vλ + (c∗NH

λ )−1vλ, where we used
the abbreviation c∗ = l20/θ∗. Denoting the orthogonal projection from L2(Σ) to
L2,0(Σ) by P0, the equation for vλ is equivalent to

vλ + c∗NH
λ P0N

S
λ vλ = c∗NH

λ e,

due to Proposition 10.5.2. Multiplying this identity in L2(Σ) by NS
λ vλ we obtain

with Propositions 10.5.2 and 10.5.1

c(λ)|NS
λ vλ|2L2(Σ) ≤ (vλ + c∗NH

λ NS
λ vλ|NS

λ vλ)L2(Σ) = (c∗NH
λ e|NS

λ vλ)L2(Σ)

= c∗(e|NH
λ P0N

S
λ vλ)L2(Σ) ≤ C(λ)|NS

λ vλ|L2(Σ),



470 Chapter 10. Linear Stability of Equilibria

where c(λ) and C(λ) are bounded near λ = 0. This shows that NS
λ vλ is bounded

near λ = 0. This implies

lim
λ→0

λTλe = lim
λ→0

λvλ = c∗ lim
λ→0

λNH
λ e,

provided the latter limit exists.
To compute this limit, we proceed as follows. First we solve the problem

−d∗Δϑ = −�κ∗a0 in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0 on Σ,

−[[d∗∂νϑ]] = e on Σ,

(10.41)

where a0 = |Σ|/(κ∗|�)Ω, which is solvable since the necessary compatibility condi-
tion holds. We denote the solution by ϑ0 and normalize it by (�κ∗|ϑ0)Ω = 0. Then
ϑλ = NH

λ e− ϑ0 − a0/λ satisfies the problem

�κ∗λϑ− d∗Δϑ = −�κ∗λϑ0 in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0 on Σ,

−[[d∗∂νϑ]] = 0 on Σ.

(10.42)

By the normalization (�κ∗|ϑ0)Ω = 0 we see that ϑλ is bounded in H2
2 (Ω \ Σ) as

λ → 0. This then implies

lim
λ→0

λNH
λ e = lim

λ→0
[λϑλ + λϑ0 + a0] = a0 = |Σ|/(κ∗|�)Ω,

and therefore

lim
λ→0

(Bλe|e)L2(Σ) = c∗
|Σ|2

(κ∗|�)Ω
− σ|Σ| (n− 1)

R2∗
< 0,

if the stability condition does not hold, that is, if ζ∗ > 1.

(b) Next suppose that Σ is disconnected, i.e., Σ = ∪m
k=1Σ

k, and set g =
∑

k akek �=
0 with

∑
ak = 0, where ek = 1 on Σk, and zero elsewhere. Hence P0g = g. Then

for vλ := Tλe we have as in (a) boundedness of NS
λ vλ and furthermore

lim
λ→0

λTλg = lim
λ→0

λvλ = c∗ lim
λ→0

λNH
λ P0g = 0,

as NH
λ P0 is bounded as λ → 0. This implies

lim
λ→0

(Bλg|g)L2(Σ) = −σ(n− 1)

R2∗

∑
k

|Σk|a2k < 0.



10.5. Unstable Eigenvalues: Problems 1 and 3 471

(c) Next we consider the behaviour of (Bλg|g)L2(Σ) as λ → ∞. With c∗ = l20/θ∗
as above we first have

Tλ = (I + c∗NH
λ NS

λ )
−1c∗NH

λ = c∗NH
λ − c∗NH

λ NS
λ (I + c∗NH

λ NS
λ )

−1c∗NH
λ ,

hence by Propositions 10.5.1, 10.5.2 for λ ≥ λ0, with λ0 sufficiently large,

(Tλg|g)L2(Σ) = c∗(NH
λ g|g)L2(Σ) − c2∗(N

S
λ (I + c∗NH

λ NS
λ )

−1NH
λ g|NH

λ g)L2(Σ)

≥ c∗[(NH
λ g|g)L2(Σ) − c2∗

|NS
λ |L2(Σ)

1− c∗|NH
λ |L2(Σ)|NS

λ |L2(Σ)

|NH
λ g|2L2(Σ)]

≥ c∗[(NH
λ g|g)L2(Σ) −

Cλ−α
0 |NS

λ |L2(Σ)

1− c∗|NH
λ |L2(Σ)|NS

λ |L2(Σ)

(NH
λ g|g)L2(Σ)]

≥ c∗[(NH
λ g|g)L2(Σ) −

1

2
(NH

λ g|g)L2(Σ)] =
c∗
2
(NH

λ g|g)L2(Σ).

Therefore, it is sufficient to show that there are constants c > 0 and λ1 > 0 such
that

(c∗/2)λ(NH
λ g|g)L2(Σ)+σ(AΣg|g)L2(Σ) ≥ c|g|2L2(Σ), g ∈ H2

2 (Σ), λ ≥ λ1. (10.43)

For this purpose we introduce the orthogonal projections P and Q by

Pg =

m(n+1)∑
k=1

(g|ak)L2(Σ)ak, Q = I − P,

where ak are normalized orthogonal eigenfunctions coming from the eigenvalues
−(n− 1)/R2

∗ and 0 of AΣ in L2(Σ).

Suppose on the contrary that (10.43) does not hold. Then there is a sequence
λj → ∞ and gj ∈ H2

2 (Σ) with |gj |L2(Σ) = 1, such that

(c∗/2)λj(N
H
λj
gj |gj)L2(Σ) + σ(AΣQgj |Qgj)L2(Σ) ≤

1

j
+ C|Pgj |2L2(Σ).

As AΣ is positive definite on R(Q) this implies that λj(N
H
λj
gj |gj)L2(Σ) is bounded.

Then the corresponding solution ϑj of (10.38) is such that vj := λjϑj and
∇vj/

√
λj are bounded in L2(Ω), as by Proposition 10.5.1,

λj

(
λj |

√
κ∗ϑj |2L2(Ω) + |

√
d∗∇ϑj |2L2(Ω)

)
= λj(N

H
λj
gj |gj)L2(Σ).

Hence vj has a weakly convergent subsequence, and we can assume w.l.o.g. that
vj → v∞ weakly in L2(Ω). Fix a test function ψ ∈ D(Ω \ Σ). Then

(�κ∗vj |ψ)L2(Ω) = (d∗Δϑj |ψ)L2(Ω) = (ϑj |d∗Δψ)L2(Ω) = (vj |d∗Δψ)L2(Ω)/λj → 0
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as j → ∞, hence v∞ = 0 in L2(Ω). On the other hand we have for φ ∈ 0H
1
2 (Ω)

extending ak

(gj |ak)L2(Σ) = −
∫
Σ

[[d∗∂νϑj ]]ak dΣ =

∫
Ω

div(d∗∇ϑjφ) dx

= (�κ∗vj |φ)L2(Ω) + (d∗∇ϑj |∇φ)L2(Ω) → 0

as j → ∞. Therefore, Pgj → 0 in L2(Σ) as j → ∞, and as AΣQ is positive
definite, we also obtain Qgj → 0, which contradicts |gj |L2(Σ) = 1. This implies
that (10.43) is valid.

(d) Summarizing, we have shown that Bλ is not positive semi-definite for small
λ > 0 if either Σ is not connected or the stability condition does not hold, and Bλ

is always positive semi-definite for large λ. Set

λ0 = sup{λ > 0 : Bμ is not positive semi-definite for each μ ∈ (0, λ]}.

Since Bλ has compact resolvent, Bλ has a negative eigenvalue for each λ < λ0.
This implies that 0 is an eigenvalue of Bλ0

, thereby proving that −L admits the
positive eigenvalue λ0.

Moreover, we have also shown that

B0h = lim
λ→0

λTλh+ σAΣh = c∗
|Σ|

(κ∗|1)Ω
(I − P0)h+ σAΣh.

Therefore, B0 has eigenvalue

c∗
|Σ|

(κ∗|1)Ω
− σ(n− 1)

R2∗
=

l20|Σ|
θ∗(κ∗|1)Ω

[1− ζ∗]

with eigenfunction e, and in case m > 1 it also has eigenvalue −σ(n − 1)/R2
∗

with precisely m−1 linearly independent eigenfunctions of the form
∑

k akek with∑
k ak = 0.

As λ varies from 0 to λ0, all the negative eigenvalues of B0 identified above
will eventually have to cross 0 along the real axis. At each of these occasions, −L
will inherit at least one positive eigenvalue, which will then remain positive. This
implies that −L has exactly m positive eigenvalues if the stability condition does
not hold, and m− 1 otherwise.

(e) For Problem (P1), we only have to set u ≡ 0 in the previous derivations, to
obtain the same results as for Problem (P3).

Let us summarize what we have proved.

Theorem 10.5.3. Let Lj, j = 1, 3, denote the linearization at e∗ := (0, θ∗,Σ) ∈ E as

defined above. Then −Lj generates a compact analytic C0-semigroup in Xj
0 which

has maximal Lp-regularity. The spectrum σ(Lj) of Lj consists only of eigenvalues
of finite algebraic multiplicity. Moreover, the following assertions are valid.
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(i) The operator −Lj has no eigenvalues λ �= 0 with nonnegative real part if and
only if Σ is connected and

ζ∗ :=
θ∗σ(n− 1)

l20R
2∗|Σ|

(κ∗|1)Ω ≤ 1. (10.44)

(ii) If Σ has m ≥ 2 components and (10.44) holds, then −Lj has precisely m− 1
positive eigenvalues.
(iii) If Σ has m ≥ 1 components and (10.44) does not hold, then −Lj has precisely
m positive eigenvalues.
(iv) λ = 0 is an eigenvalue of Lj. It is semi-simple as long as ζ∗ �= 1.
(v) The kernel N(Lj) of Lj is isomorphic to the tangent space Te∗E of the manifold
of equilibria E at e∗.

Consequently, e∗ = (0, θ∗,Σ) ∈ E is normally stable if and only if Σ is connected
and ζ∗ < 1, and normally hyperbolic if and only if Σ is disconnected or ζ∗ > 1.

10.6 Unstable Eigenvalues: Problem 5

Assume that λ > 0 is an eigenvalue. Then as in the previous section we have
−[[d∗∂νϑ]] = DH

λ ϑΣ. Next we solve the extended Stokes problem

�λu− μ∗Δu+∇π = 0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on Σ,

[[u]] = 0 on Σ,

−[[TνΣ · νΣ]] = g1 on Σ,

−PΣ[[TνΣ]] = g2 on Σ,

(10.45)

to obtain as output

Nλ =

[
u · νΣ
PΣu

]
.

For this problem we have the following result which extends Proposition 10.5.2.

Proposition 10.6.1. The extended Neumann-to-Dirichlet operator Nλ for the Stokes
problem (10.45) admits a compact selfadjoint extension to L2(Σ;R × TΣ) which
has the following properties.
(i) If u denotes the solution of (10.45), then

(Nλg|g)L2
= λ

∫
Ω

�|u|2 dx+ 2

∫
Ω

μ∗|D|22 dx, λ ≥ 0, g ∈ L2(Σ,R× TΣ).

(ii) For each α ∈ (0, 1/2) there is a constant C > 0 such that

(Nλg|g)L2 ≥ (1 + λ)α

C
|Nλg|2L2

, g ∈ L2(Σ;R× TΣ), λ ≥ 0.
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In particular,

|Nλ|B(L2) ≤
C

(1 + λ)α
, λ ≥ 0.

(iii) Let Σk denote the components of Σ and let ek be the function which is one
on Σk, zero elsewhere. Then the kernel N(Nλ) consists of functions g such that
g2 = 0 and g1 =

∑m
k=1 αkek with arbitrary numbers αk.

Proof. The proof is similar to that of Proposition 10.5.2: the assertion in (i) is first

established for functions g ∈ H
1/2
2 (Σ;R × TΣ). In a second step, one shows that

Nλ admits an extension to L2(Σ;R× TΣ) which, in turn, allows us to extend the
relation in (i) for functions g ∈ L2(Σ;R× TΣ). �

Now we define the operator Q : H1
2 (Σ) → L2(Σ,R× TΣ) by means of

Qw := σ′
∗

[
HΣw
∇Σw

]
.

In the following we identify [v1, v2]
T ∈ R × TΣ with v ∈ NΣ ⊕ TΣ by means of

v = v1νΣ + v2. Then

Q∗v = σ′
∗(HΣv · νΣ − divΣPΣv) = −σ′

∗divΣ v.

Set Pv := v · νΣ. As

divΣuΣ = divΣPΣu−HΣuΣ · νΣ = divΣu+HΣjΣ/�,

we obtain the following system for (h, jΣ, ϑΣ).

λh+ jΣ/�− PNλQϑΣ + PNλP
∗σ∗AΣh = 0

(l0/θ∗)ϑΣ − σ∗AΣh = 0

(κΣ∗λ− dΣ∗ΔΣ +DH
λ + θ∗Q∗NλQ)ϑΣ − l0jΣ/�− θ∗Q∗NλP

∗σ∗AΣh = 0.

This implies

ϑΣ =
θ∗
l0
σ∗AΣh,

and with

Lλ = κΣ∗λ− dΣ∗ΔΣ +DH
λ + θ∗Q∗NλQ := L0

λ + θ∗Q∗NλQ

then for jΣ

jΣ/� =
[θ∗
l20
Lλ − θ∗

l0
Q∗NλP

∗
]
σ∗AΣh.
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Inserting these relations into the equation for h, after some easy computations we
finally obtain the fundamental equation

0 = λh+
[θ∗
l20
L0
λ +R∗NλR

]
σ∗AΣh. (10.46)

Here the operator R is defined as R = P ∗− θ∗
l0
Q. A number λ > 0 is an eigenvalue

if and only if this equation admits a nontrivial solution. As for λ > 0 the operator
L0
λ is positive definite and Nλ is positive semi-definite, the operator in front of

the second term in (10.46) is invertible, we call its inverse Tλ. Then (10.46) is
equivalent to

Bλh := λTλh+ σ∗AΣh = 0. (10.47)

Note that Tλ is compact in L2(Σ). Now we have to analyze Bλ in a similar way
as in the previous section.

(a) Let as above denote by e the function identically one on Σ. As in the previous
section we want to compute limλ→0+ λ(Tλe|e)Σ. For this purpose we set vλ = Tλe.
Then vλ satisfies

λκΣ∗vλ − dΣ∗ΔΣvλ +DH
λ vλ +

l20
θ∗

R∗NλRvλ =
l20
θ∗

e.

Applying the orthogonal projection P0 in L2(Σ) onto L2,0(Σ) we obtain, observing
NλRe = 0,

λκΣ∗P0vλ−dΣ∗P0ΔΣvλ+P0D
H
λ P0vλ+

l20
θ∗

P0R
∗NλRP0vλ = −P0D

H
λ e(vλ|e)Σ/|Σ|,

hence

P0vλ = −
(
λκΣ∗ − dΣ∗ΔΣ + P0D

H
λ P0 +

l20
θ∗

P0R
∗NλRP0

)−1

P0D
H
λ e(vλ|e)Σ/|Σ|.

As λ → 0+, we obtain(
λκΣ∗ − dΣ∗ΔΣ + P0D

H
λ P0 +

l20
θ∗

P0R
∗NλRP0

)−1

→
(
− dΣ∗ΔΣ + P0D

H
0 P0 +

l20
θ∗

P0R
∗N0RP0

)−1

in B(L2,0(Σ)). From Step (a) in the previous section we may deduce

DH
λ e/λ → (κ∗|�)/|Σ| as λ → 0+,

hence
P0vλ = o(1)λ(vλ|e)Σ as λ → 0+.
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On the other hand, applying the projection I − P0 yields[
(κΣ∗ + (DH

λ e|e)Σ/(λ|Σ|)
]
λ(vλ|e)Σ + (DH

λ e|P0vλ)Σ = l20|Σ|/θ∗,

hence

lim
λ→0+

λ(Tλe|e)Σ = lim
λ→0+

λ(vλ|e)Σ =
l20|Σ|2

θ∗(κΣ∗|Σ|+ (κ∗|�)Ω)
.

Therefore,

lim
λ→0+

(Bλe|e)Σ = |Σ|
[ l20|Σ|
θ∗(κΣ∗|Σ|+ (κ∗|�)Ω)

− σ∗
n− 1

R2∗

]
< 0,

if the stability condition (10.31) is violated. Thus, in this case, for small λ > 0,
Bλ is not positive semi-definite.

(b) On the other hand, if Σ is not connected, then we may use functions h of the
form h =

∑m
k=1 akek such that

∑
ak = 0; then h ∈ L2,0(Σ), hence

lim
λ→0+

(Bλh|h) = σ∗(AΣh|h) = −σ∗(n− 1)|Σ|
R2∗m

m∑
k=1

|hk|2 < 0,

showing that also in this case Bλ is not positive semi-definite for small λ > 0.

(c) To describe the behaviour of Bλ for large λ, note that for λ → ∞

λTλ =
l20

θ∗κΣ∗
λκΣ∗

(
λκΣ∗ − dΣ∗ΔΣ +DH

λ +
l20
θ∗

R∗NλR
)−1

→ l20
θ∗κΣ∗

strongly, as DH
λ and R∗NλR are of lower order. This implies for h �= 0 and

δ∗ = θ∗σ∗κΣ∗(n− 1)/l20R
2
∗ < 1,

(Bλh|h) →
l20

θ∗κΣ∗
[1− δ∗]|h0|2Σ +

l20
θ∗κΣ∗

|h1|2Σ + σ∗(AΣh1|h1)Σ > 0,

where we employed the decomposition h = h0 + h1, h0 ∈ N(ΔΣ) and h1 ∈ R(ΔΣ).
By compactness, this shows that Bλ is positive semi-definite for large λ, and so we
may proceed as in the previous section to obtain existence of positive eigenvalues.

(d) Finally, in case δ∗ > 1, taking the inner product of (10.46) with AΣh in L2(Σ)
yields

0 = λ(AΣh|h)Σ+
θ∗σ∗
l20

[
λκΣ∗|AΣh|2Σ

+ dΣ∗ |∇ΣAΣh|2Σ + (DH
λ AΣh|AΣh)Σ

]
+ σ∗(NλRAΣh|RAΣh)Σ.

With the decomposition h = h0 + h1, h0 ∈ N(ΔΣ) and h1 ∈ R(ΔΣ) we obtain

(AΣh|h)Σ = −n− 1

R2∗
|h0|2Σ + (AΣh1|h1)Σ,
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and

|AΣh|2Σ =
(n− 1)2

R4∗
|h0|2Σ + |AΣh1|2Σ,

hence

0 ≥ −λ
n− 1

R2∗
|h0|2Σ + λ(AΣh1|h1)Σ +

θ∗σ∗
l20

λκΣ∗|AΣh|2Σ

≥ λ
n− 1

R2∗

[θ∗σ∗(n− 1)

l20R
2∗

κΣ∗ − 1
]
|h0|2Σ ≥ 0,

and so h0 = 0 as δ∗ > 1 by assumption. But then h = 0, which means that in this
case there are no positive eigenvalues.

We summarize.

Theorem 10.6.2. Let L5 denote the linearization of Problem 5 at e∗ := (0, θ∗,Σ) ∈
E as defined above. Assume l0 := �l∗ + θ∗σ′

∗HΣ �= 0 and

δ∗ :=
θ∗σ∗(n− 1)

l20R
2∗

κΣ∗ �= 1.

Then −L5 generates a compact analytic C0-semigroup in X5
0 which has maximal

Lp-regularity. The spectrum of L5 consists only of eigenvalues of finite algebraic
multiplicity. Moreover, the following assertions are valid.

(i) The operator −L5 has no eigenvalues λ �= 0 with nonnegative real part if and
only if δ∗ > 1, or Σ is connected and

ζ∗ :=
θ∗σ∗(n− 1)

l20R
2∗|Σ|

(
(κ∗|�)Ω + κΣ∗|Σ|

)
≤ 1. (10.48)

(ii) If Σ has m ≥ 2 components and (10.48) holds, but δ∗ < 1, then −L5 has
precisely m− 1 positive eigenvalues.
(iii) If Σ has m ≥ 1 components and (10.48) does not hold, but δ∗ < 1, then −L5

has precisely m positive eigenvalues.
(iv) λ = 0 is an eigenvalue of L5. It is semi-simple as long as ζ∗ �= 1.
(v) The kernel N(L5) of L5 is isomorphic to the tangent space Te∗E of the manifold
of equilibria E at e∗.

Consequently, e∗ = (0, θ∗,Σ) ∈ E is normally stable if and only if δ∗ > 1, or Σ is
connected and ζ∗ < 1, and it is normally hyperbolic if and only if δ∗ < 1, and Σ
is disconnected or ζ∗ > 1.

10.7 Unstable Eigenvalues: Problem 4

We want to prove that in case Σ is disconnected, there is always a positive eigen-
value. To prove this we need some more preparation concerning the asymmetric
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Stokes problem. Solve

�λu− μ∗Δu+∇π = 0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on ∂Ω,

PΣ[[u]] = PΣ[[TνΣ]] = 0 on Σ,

−[[TνΣ · νΣ]] = g1 on Σ,

−[[TνΣ · νΣ/�]] = g2 on Σ,

(10.49)

to obtain as output

k := S11
λ g1 + S12

λ g2 := [[�u · νΣ]]/[[�]], j := S21
λ g1 + S22

λ g2 := [[u · νΣ]]/[[1/�]].

For this problem we have the following result.

Proposition 10.7.1. The operator Sλ for the Stokes problem (10.49) admits a
bounded extension to L2(Σ)

2 for λ ≥ 0 and has the following properties.
(i) If u denotes the solution of (10.49), then

(Sλg|g)L2(Σ)2 = λ

∫
Ω

�|u|2 dx+ 2

∫
Ω

μ∗|D|22 dx, λ ≥ 0, g ∈ L2(Σ)
2.

(ii) Sλ ∈ B(L2(Σ)
2) is selfadjoint, positive semi-definite, and compact. In partic-

ular,

S11
λ = [S11

λ ]∗, S22
λ = [S22

λ ]∗, S12
λ = [S21

λ ]∗.

(iii) S11
λ and S22

λ are injective in L2,0(Σ), and with Gλ = [S22
λ ]−1 we have

NS
λ = S11

λ − S12
λ GλS

21
λ .

Gλ is selfadjoint and positive definite on L2,0(Σ), its resolvent is compact in
L2,0(Σ), for each λ ≥ 0.

(iv) There is a constant C > 0 such that

(1 + λ)1/2|Sλ|B(L2,0(Σ)2) + |Sλ|B(L2,0(Σ)2,H1
2 (Σ)2) ≤ C λ ≥ 0.

(v) S11
λ , S22

λ : L2,0(Σ) → H1
2 (Σ) ∩ L2,0(Σ) are isomorphisms, for each λ ≥ 0.

Proof. (a) First observe that for the traces ui of u on Σ we have

ui = PΣu+ ([[�u · νΣ]]/[[�]])νΣ + ([[u · νΣ]]/[[1/�]]�i)νΣ
= PΣu+ kνΣ + (j/�i)νΣ = ub + (j/�i)νΣ.
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To prove assertion (i), let (u, π) denote the solution of (10.49) for g ∈ H
1/2
2 (Σ).

Multiply with u and integrate by parts to the result

λ

∫
Ω

�|u|2 dx+ 2

∫
Ω

μ∗|D|22 dx =

∫
Ω

div (T ū) dx

= −
∫
Σ

[[ū · TνΣ]] dΣ = −
∫
Σ

[[(ub + jνΣ/�) · TνΣ]] dΣ

= −
∫
Σ

ub · [[TνΣ]] dΣ−
∫
Σ

j̄[[TνΣ · νΣ/�]] dΣ

=

∫
Σ

k̄g1 dΣ+

∫
Σ

j̄g2 dΣ = (g|Sλg)L2(Σ)2 .

A similar computation yields

(Sλg|h)L2(Σ)2 = (g|Sλh)L2(Σ)2 , (g, h) ∈ H
1/2
2 (Σ;R2),

hence Sλ is symmetric in L2(Σ)
2, thereby proving the first part of (ii) for functions

in H
1/2
2 (Σ).

(b)To prove injectivity of S22
λ , let g1 = 0 and j = 0. Then (i) implies λu = D = 0

hence ∇π = 0 in Ω\Σ, and so π is constant in the components of the phases. Next

0 = g1 = −[[TνΣ · νΣ]] = [[π]], g2 = −[[TνΣ · νΣ/�]] = [[π/�]]

shows that π is even constant in the phases, and so g2 is constant on Σ hence zero
since its mean value vanishes. Injectivity of S11

λ is shown in a similar way. This
proves the first assertion in (iii), the second one follows from the definitions of NS

λ

and Sλ, and the third one is a consequence of (ii).

(c) To establish the boundedness properties of Sλ, we proceed as follows. Suppose

g1, g2 ∈ H
1/2
2 (Σ) are given. We decompose the pressure into π = q+ q0, where the

one-sided traces qj0 on Σ are uniquely determined by

[[q0]] = g1, [[q0/�]] = g2;

then qj0 ∈ H
1/2
2 (Σ). Extend q0 to all of Ω inH1

2 (Ω\Σ), by solving the two one-phase
problems

Δqj = 0 in Ωj , qj = qj0 on Σ, ∂νq
2 = 0 on ∂Ω, j = 1, 2.

According to Appendix B below, there is a constant c0 > 0 such that

|q0|H1
2 (Ω\Σ) ≤ c0|g|H1/2

2 (Σ)
.
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Then (u, q) satisfies the asymmetric Stokes problem

�λu− μ∗Δu+∇q = −∇q0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on ∂Ω,

PΣ[[u]] = PΣ[[μ∗DνΣ]] = 0 on Σ,

−[[2μ∗DνΣ · νΣ]] + [[q]] = 0 on Σ,

−[[2μ∗DνΣ · νΣ/�]] + [[q/�]] = 0 on Σ.

(10.50)

Note that the interface conditions are now homogeneous. Let −A denote the gen-
erator of the associated analytic C0-semigroup in L2,σ(Ω), which is exponentially
stable, see Section 8.4.2. Then we have

u = uλ = −(λ+A)−1[∇q0/�],

and with
Sλg = (k, j) = ([[�uλ · νΣ]]/[[�]], [[uλ · νΣ]]/[[1/�]])

we estimate using trace theory and the resolvent estimate for A and Reσ(−A) < 0

|Sλg|H3/2
2 (Σ)

≤ C|uλ|H2
2 (Ω\Σ) ≤ C|q0|H1

2 (Ω\Σ) ≤ C|g|
H

1/2
2 (Σ)

,

as well as

|Sλg|H1/2
2 (Σ)

≤ C|uλ|H1
2 (Ω\Σ) ≤ C(1+λ)−1/2|q0|H1

2 (Ω\Σ) ≤ C(1+λ)−1/2|g|
H

1/2
2 (Σ)

.

This shows that

Sλ : H
1/2
2 (Σ)2 → H

3/2
2 (Σ)2, (1 + λ)1/2Sλ : H

1/2
2 (Σ)2 → H

1/2
2 (Σ)2

are uniformly bounded w.r.t. λ ≥ 0. But then the dual operator S∗
λ has the same

boundedness properties, and as Sλ is symmetric this yields an extension of Sλ,
denoted by Sλ again,

Sλ : H
−3/2
2 (Σ)2 → H

−1/2
2 (Σ)2, (1 + λ)1/2Sλ : H

−1/2
2 (Σ)2 → H

−1/2
2 (Σ)2,

with norms bounded by C. Complex interpolation implies

Sλ : L2(Σ)
2 → H1

2 (Σ)
2, (1 + λ)1/2Sλ : L2(Σ)

2 → L2(Σ)
2,

with norms bounded by C. In particular, Sλ is bounded and self-adjoint in L2(Σ)
2.

(d) The proof of (v) is more involved. To obtain surjectivity of S11
λ we have to

solve the problem

�λu− μ∗Δu+∇π = 0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on ∂Ω,

PΣ[[u]] = PΣ[[TνΣ]] = 0 on Σ,

[[�u · νΣ]] = [[�]]k on Σ,

−[[TνΣ · νΣ/�]] = 0 on Σ,

(10.51)



10.7. Unstable Eigenvalues: Problem 4 481

for given k ∈ H1
2 (Σ)∩L2,0(Σ) with output [S11

λ ]−1k = g1 = −[[TνΣ ·νΣ]]. Similarly,
to prove surjectivity of S22

λ the problem to solve is

�λu− μ∗Δu+∇π = 0 in Ω \ Σ,
div u = 0 on Ω \ Σ,

u = 0 on ∂Ω,

PΣ[[u]] = PΣ[[TνΣ]] = 0 on Σ,

[[u · νΣ]] = [[1/�]]j on Σ,

−[[TνΣ · νΣ]] = 0 on Σ,

(10.52)

for given j and the output will be [S22
λ ]−1j = g2 = −[[TνΣ · νΣ/�]].

Solvability of (10.51) and (10.52) is proved in Appendix A of this chapter. �

Now suppose that λ > 0 is an eigenvalue of L4. We set g1 = −σAΣh and g2 =
−l∗ϑ/θ∗ = −c∗NH

λ jΣ, c∗ = l2∗/θ∗ > 0 to obtain

jΣ = −S21
λ σAΣh− c∗S22

λ NH
λ jΣ, λh = −S11

λ σAΣh− S12
λ c∗NH

λ jΣ.

Observing that I + c∗S22
λ NH

λ is injective, hence boundedly invertible in L2,0(Σ)
by compactness of Sλ, we may solve the first equation for jΣ to the result

jΣ = −σ(I + c∗S22
λ NH

λ )−1S21
λ AΣh.

Inserting this into the second, the equation for h becomes

0 = λh+ σ(S11
λ − S12

λ c∗NH
λ (I + c∗S22

λ NH
λ )−1S21

λ )AΣh,

or equivalently with Rλ = GλS
21
λ

0 = λh+ σ(NS
λ +R∗

λ(c∗N
H
λ +Gλ)

−1Rλ)AΣh.

Next we observe that the operators NS
λ + R∗

λ(c∗N
H
λ + Gλ)

−1Rλ are injective for
λ ≥ 0; in fact if

NS
λ h+R∗

λ(c∗N
H
λ +Gλ)

−1Rλh = 0,

then with vλ = (c∗NH
λ +Gλ)

−1Rλh, forming the inner product with h in L2,0(Σ)
we obtain

0 = (NS
λ h|h)Σ + (R∗

λ(c∗N
H
λ +Gλ)

−1Rλh|h)Σ
≥ c|NS

λ h|2Σ + ((c∗NH
λ +Gλ)vλ|vλ)Σ

hence NS
λ h = 0 and vλ = 0, which implies S21

λ h = S11
λ h = 0, hence h = 0 by

injectivity of S11
λ . Setting now

Tλ = [NS
λ +R∗

λ(c∗N
H
λ +Gλ)

−1Rλ]
−1
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in L2,0(Σ) we arrive at the equation

λTλh+ σAΣh = 0. (10.53)

λ > 0 is an eigenvalue of −L if and only if Problem (10.53) admits a nontrivial
solution, i.e., if and only if 0 is an eigenvalue for Bλ := λTλ + σAΣ. Here the
domain of Bλ is that of AΣ, Tλ is a relatively compact perturbation of AΣ.

We consider this problem in L2,0(Σ). Then AΣ is selfadjoint and

σ(AΣh|h)L2(Σ) ≥ −σ(n− 1)

R2∗
|h|2L2(Σ).

On the other hand, NH
λ , NS

λ are selfadjoint, compact and positive semi-definite on
L2,0(Σ), and Gλ is selfadjoint, positive definite, and has compact inverse. Hence
Tλ is selfadjoint, positive semi-definite and T−1

λ is compact as well. If μ > 0 is an
eigenvalue of Tλ, then

μ−1h = T−1
λ h = [S11

λ − c∗S12
λ NH

λ (I + c∗S22
λ NH

λ )−1S21
λ ]h,

hence we get
μ−1|h|Σ ≤ C|h|Σ,

since by Propositions 10.7.1 and 10.5.1, Sλ, N
H
λ and (I+c∗S22

λ NH
λ )−1 are bounded

in L2,0(Σ), uniformly for large λ. Therefore μ = μ(λ) ≥ c0 > 0, for large λ, and so

(Bλh|h)Σ = λ(Tλh|h)Σ + σ(AΣh|h)Σ ≥
(
c0λ− σ(n− 1)

R2∗

)
|h|2Σ.

This proves that Bλ is positive definite, hence (10.53) has no nontrivial solution,
for large λ.

But for small λ > 0 we have with h =
∑

k akek �= 0,
∑

k ak = 0,

λ(Tλh|h)−
σ(n− 1)|Σ|

R2∗m

∑
k

a2k < 0,

since with h ∈ H
3/2
2 (Σ) ∩ L2,0(Σ)

Tλh =
(
I − c∗[S11

λ ]−1S12
λ NH

λ (I + c∗S22
λ NH

λ )−1S21
λ

)−1
[S11

λ ]−1h → T0h

in L2,0(Σ) as λ → 0. This shows that Bλ has nontrivial kernel for some λ0 > 0,
which implies that −L has a positive eigenvalue.

Even more is true. We have seen that Bλ is positive definite for large λ and
B0 = σAΣ has −(n−1)/R2

∗ as an eigenvalue of multiplicity m−1 in L2,0(Σ), with
eigenfunctions of the form

∑
k akek,

∑
k ak = 0.

Therefore, as λ increases to infinity, m−1 eigenvalues μk(λ) of Bλ must cross
through zero along the real axis, this way inducing m − 1 positive eigenvalues of
−L4.



10.8. Unstable Eigenvalues: Problem 6 483

Finally, we consider the case l∗ = 0. Then the temperature equation decouples
completely from that for u and h. It only induces one dimension in the kernel of
L4, but no positive eigenvalues. In this case, as now c∗ = 0 the derivation above
yields the equivalent problem

λh+ σS11
λ AΣh = 0.

As S11
λ is positive semi-definite and injective, this equation admits no nontrivial

solutions if Reλ ≥ 0 and λ is non-real. If λ > 0, then Tλ = [S11
λ ]−1 and we may

employ the same arguments as above to obtain the same conclusions as in case
l∗ �= 0.

Let us summarize.

Theorem 10.7.2. Let L4 denote the linearization at e∗ := (0, θ∗,Σ) ∈ E as defined
above. Then −L4 generates a compact analytic C0-semigroup in X4

0 which has
maximal Lp-regularity. The spectrum of L4 consists only of eigenvalues of finite
algebraic multiplicity. Moreover, the following assertions are valid.

(i) The operator −L4 has no eigenvalues λ �= 0 with nonnegative real part if and
only if Σ is connected.
(ii) If Σ is disconnected and has m components, then −L4 has precisely m − 1
positive eigenvalues.
(iii) λ = 0 is an eigenvalue of L4 and it is semi-simple.
(iv) The kernel N(L4) of L4 is isomorphic to the tangent space Te∗E of the manifold
of equilibria E at e∗.

Consequently, e∗ = (0, θ∗,Σ) ∈ E is normally stable if and only if Σ is connected,
and normally hyperbolic if and only if Σ is disconnected.

10.8 Unstable Eigenvalues: Problem 6

Here we mostly follow the arguments of the preceding section. So let λ > 0 be
an eigenvalue. As before we have −[[d∗∂νϑ]] = DH

λ ϑΣ. Next observe that on Σ we
have

u = PΣu+ ([[�u · νΣ]]/[[�]])νΣ + ([[u · νΣ]]/[[1/�]]�)νΣ
= PΣu+ λhνΣ + (jΣ/�)νΣ.
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Then we solve the extended asymmetric Stokes problem

�λu− μ∗Δu+∇π = 0 in Ω \ Σ,
div u = 0 in Ω \ Σ,

u = 0 on ∂Ω,

PΣ[[u]] = 0 on Σ,

−[[TνΣ · νΣ]] = g1 on Σ,

−[[TνΣ · νΣ/�]] = g2 on Σ,

−PΣ[[TνΣ]] = g3 on Σ

(10.54)

to obtain as output

Sλg :=

⎡⎣ [[�u · νΣ]]/[[�]]
[[u · νΣ]]/[[1/�]]
PΣu

⎤⎦ =

⎡⎣ λh
jΣ
PΣu

⎤⎦ .

For this problem we have the following result.

Proposition 10.8.1. The operator Sλ for the extended asymmetric Stokes problem
(10.54) admits a bounded extension to L2(Σ;R

2 × TΣ) for λ ≥ 0 and has the
following properties.
(i) If u denotes the solution of (10.54), then

(Sλg|g)L2
= λ

∫
Ω

�|u|2 dx+ 2

∫
Ω

μ∗|D|22 dx, λ ≥ 0, g ∈ L2(Σ,R
2 × TΣ).

(ii) Sλ ∈ B(L2(Σ;R
2 × TΣ)) is self-adjoint, positive semi-definite, and compact;

in particular

S11
λ = [S11

λ ]∗, S22
λ = [S22

λ ]∗, S33
λ = [S33

λ ]∗

S12
λ = [S21

λ ]∗, S13
λ = [S31

λ ]∗, S23
λ = [S32

λ ]∗.

(iii) There is a constant C > 0 such that

(1 + λ)1/2|Sλ|B(L2) + |Sλ|B(L2,H1
2 )

≤ C, λ ≥ 0.

(iv) S11
λ , S22

λ : L2,0(Σ) → H1
2 (Σ) ∩ L2,0(Σ) are isomorphisms, for each λ ≥ 0.

Proof. This result is proved in a similar way as Proposition 10.7.1 and we omit
the details. �
Next we define Q : H1

2 (Σ) → L2(Σ;R
2 × TΣ) by means of

Q :=

⎡⎣ σ′
∗HΣ

−l∗/θ∗
σ′
∗∇Σ

⎤⎦ ;
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note that

Q∗

⎡⎣ k
j
v

⎤⎦ = σ′
∗HΣk − (l∗/θ∗)j − σ′

∗divΣv.

Let P denote the projection onto the first component, as in Section 10.6. Setting
g = QϑΣ − P ∗σ∗AΣh we obtain from the surface heat equation the following
equation for ϑΣ.

LλϑΣ := (λκΣ∗ − dΣ∗ΔΣ +DH
λ + θ∗Q∗SλQ)ϑΣ = θ∗Q∗SλP

∗σ∗AΣh.

Inserting this relation into the equation for λh = k = PSλg, we deduce the identity

λh+ PSλ

[
I − θ∗QL−1

λ Q∗Sλ

]
P ∗σ∗AΣh = 0.

λ > 0 is an eigenvalue if and only if this equation admits a nontrivial solution h.
The operator T−1

λ in front of the the second term is compact and selfadjoint in
L2(Σ). We show below that it is positive semi-definite and injective on L2,0(Σ),
and hence we arrive again at a problem of the form

Bλh := λTλh+ σ∗AΣh = 0,

with Tλ selfadjoint positive definite and unbounded. The operator Bλ can be
handled in the same way as in the proceeding section, showing that Bλ is positive
definite for large λ, B0 is indefinite, and it depends continuously on λ, to obtain
the same conclusion as in the previous section. Thus it remains to show that T−1

λ

is positive semi-definite and bijective.
To exploit the structure of T−1

λ , recall that Sλ is selfadjoint and positive

semi-definite, hence admits a square root S
1/2
λ . We factor as follows:

T−1
λ = PS

1/2
λ [I − θ

1/2
∗ S

1/2
λ Q(L0

λ + θ∗Q∗SλQ)−1Q∗θ1/2∗ S
1/2
λ ]S

1/2
λ P ∗

= U∗
λ [I −Rλ(L

0
λ +R∗

λRλ)
−1R∗

λ]Uλ = U∗
λ [I −Kλ]Uλ,

with Uλ = S
1/2
λ P ∗, which maps L2(Σ) into H

1/2
2 (Σ)n+2, and Rλ = θ

1/2
∗ S

1/2
λ Q,

which maps H1
2 (Σ) into H

1/2
2 (Σ)n+2.

We claim that |Kλ|B(Ln+1
2 ) ≤ 1. In fact, for v ∈ H

1/2
2 (Σ)n+2 we obtain, using

the abbreviation w = (L0
λ +R∗

λRλ)
−1R∗

λv,

|Kλv|2Σ = (Rλ(L
0
λ +R∗

λRλ)
−1R∗

λv|Rλ(L
0
λ +R∗

λRλ)
−1R∗

λv)Σ

= (R∗
λRλ(L

0
λ +R∗

λRλ)
−1R∗

λv|w)Σ
= (R∗

λv|w)Σ − (L0
λw|w)Σ = (R∗

λv|(L0
λ +R∗

λRλ)
−1R∗

λv)− (L0
λw|w)Σ

= (v|Kλv)Σ − (L0
λw|w) ≤ (v|Kλv)Σ ≤ |Kλv|Σ|v|Σ,

hence |Kλv|Σ ≤ |v|Σ, and so |Kλ|B(Ln+1
2 ) ≤ 1 as H

1/2
2 (Σ) is dense in L2(Σ).

Therefore

((I −Kλ)v|v)Σ = |v|2Σ − (Kλv|v)Σ ≥ (1− |Kλ|B(Ln+1
2 ))|v|

2
Σ ≥ 0,
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which shows that T−1
λ is positive semi-definite.

To prove injectivity of T−1
λ on L2,0(Σ), assume T−1

λ h = 0. Multiplying
scalarly with h and setting again v = Uλh this yields 0 = (v − Kλv|v)Σ which
implies Kλv = v, as Kλ is selfadjoint and compact. But then as above with
w = (L0

λ +R∗
λRλ)

−1R∗
λv we have

|v|2Σ = |Kλv|2Σ = (Kλv|v)Σ − (L0
λw|w)Σ = |v|2Σ − (L0

λw|w)Σ

hence (L0
λw|w)Σ = 0, and so w = 0 as L0

λ is positive definite on L2,0(Σ), thus
Kλv = Rλw = 0. Therefore, we obtain

S11
λ h = PSλP

∗h = U∗
λUλh = U∗

λv = 0,

which yields h = 0 by injectivity of S11
λ . Finally, we observe that T−1

λ can be
written as T−1

λ = S11
λ (I−Cλ) on L2,0(Σ), with Cλ a compact operator. Since T−1

λ

is injective on L2,0(Σ) the operator (I − Cλ) must be so as well. Consequently,
(I − Cλ) ∈ B(L2,0(Σ)) is a bijection, as it has Fredholm index zero. We can now
conclude that T−1

λ : L2,0(Σ) → L2,0(Σ) ∩H1
2 (Σ) is a bijection.

Summarizing, we have proved the following result.

Theorem 10.8.2. Let L6 denote the linearization at e∗ := (0, θ∗,Σ) ∈ E as defined
above. Then −L6 generates a compact analytic C0-semigroup in X6

0 which has
maximal Lp-regularity. The spectrum of L6 consists only of eigenvalues of finite
algebraic multiplicity. Moreover, the following assertions are valid.

(i) The operator −L6 has no eigenvalues λ �= 0 with nonnegative real part if and
only if Σ is connected.
(ii) If Σ is disconnected and has m components, then −L6 has precisely m − 1
positive eigenvalues.
(iii) λ = 0 is an eigenvalue of L6 and it is semi-simple.
(iv) The kernel N(L6) of L6 is isomorphic to the tangent space Te∗E of the manifold
of equilibria E at e∗.

Consequently, e∗ = (0, θ∗,Σ) ∈ E is normally stable if and only if Σ is connected,
and normally hyperbolic otherwise.

Appendix A: The Asymmetric Neumann-to-Dirichlet Operator

The asymmetric Neumann-to-Dirchlet operator Sλ is defined by

Sλ =

[
S11
λ S12

λ

S21
λ S22

λ

]
, (10.55)

Sλ[g1, g2]
T = [k, j]T,

where k = [[(u|νΣ)]]/[[]] and j = [[(u|νΣ)]]/[[1/]]. For the stability analysis in this chapter
we used the invertibility of Sjj

λ , j = 1, 2. Here we prove this result for the case of a flat
interface.
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(a) The symbol of S11
λ . To obtain the algebraic system for the symbol of [S11

λ ]−1 we set
g2 = 0 and let k be given. Then (8.70) remains valid as well as the formulas for a1, a2.
For α1, α2 we have here the equations

2
√
μ2

ω2
β2 +

1
√
μ1

ω1
β1 + (1α1 + 2α2)|ξ| = [[]]k̂

2

2
(μ2β2 + μ2α2|ξ|2) + λα2 −

2

1
(μ1β1 + μ1α1|ξ|2)− λα1 = 0.

Inserting βk from (8.70), this system becomes

p1α1 − p2α2 = 0, (10.56)

q1α1 + q2α2 = [[]]k̂,

where

p1 = 1λ
[ 1

1
− 2[[μ/]]

1

γ(z)ω1(z)

ω1(z)− 1

ω1(z) + 1

]
=: 1λp

0
1,

p2 = 2λ
[ 1

2
+ 2[[μ/]]

1

γ(z)ω2(z)

ω2(z)− 1

ω2(z) + 1

]
=: 2λp

0
2,

and

q1 =
1λ

|ξ|γ(z)
[ 1
ω1(z)

+
1μ2γ2(z)

μ1ω1(z)(ω1(z) + 1)
+

2
ω1(z)ω2(z)

ω1(z)− 1

ω1(z) + 1

]
=:

1λ

|ξ|γ(z)2 q
0
1

q2 =
2λ

|ξ|γ(z)
[ 2
ω2(z)

+
2μ1γ1(z)

μ2ω2(z)(ω2(z) + 1)
+

1
ω1(z)ω2(z)

ω2(z)− 1

ω2(z) + 1

]
=:

2λ

|ξ|γ(z)2 q
0
2 ,

where the scaling z = λ/|ξ|2 is employed. Recall

ωk(z) =
√

1 + kz/μk, γk(z) = ωk(z) + 1/ωk(z), γ(z) = μ1γ1(z) + μ2γ2(z).

This yields the transformed interface pressures

π̂1 = 1λα1 = [[]]
p02

p01q
0
2 + p02q

0
1

|ξ|γ(z)2k̂ (10.57)

π̂2 = 2λα2 = [[]]
p01

p01q
0
2 + p02q

0
1

|ξ|γ(z)2k̂.

Note that p0k, q
k
0 are holomorphic in C \ (−∞,−η], η = min{μk/k} > 0, and we have

p0k(0) = 1/k, q0k(0) = 2(μ1 + μ2)
2k/μk,

and
p0k(∞) = 1/k, q0k(∞) = (1 + 2)

√
kμk.

Therefore p0k, q
0
k are holomorphic and bounded on Σπ/2+ε ∪B(0, ε), for small ε > 0.

So we need to show that the Lopatinskii-Determinant r0(z) := p01(z)q
0
2(z) +

p02(z)q
0
1(z) has no zeros in Re z ≥ 0. After some tedious algebra, expanding and col-

lecting terms, we obtain the factorization r0(z) = r01(z)r
0
2(z), where

r01(z) = γ(z)/[ω1(z)ω2(z)(ω1(z) + 1)(ω2(z) + 1)],
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and

r02(z) = (
2
1

ω1(z) +
1
2

ω2(z))(ω1(z) + 1)(ω2(z) + 1)

+ 2(ω1(z)− 1)(ω2(z)− 1) + 2
μ21
μ12

(ω2(z)− 1) + 2
μ12
μ21

(ω1(z)− 1)

+
μ21
μ12

(ω2
2(z) + 1)(ω2(z) + 1) +

μ12
μ21

γ1(z)ω1(z)(ω1(z) + 1).

Obviously, r01(z) has no zeros in C\(−∞, 0]); so we only have to look at r02(z). One easily
checks that each summand of r02(z) has nonnegative imaginary part, provided z ∈ C is
such that Re z, Im z ≥ 0, so r02(z) can only be zero if each summand is zero. But this is
not possible, as already the first term shows.

(b) The symbol of S22
λ . To obtain the algebraic system for the symbol of [S22

λ ]−1 we set
g1 = 0 and let j be given. Then (8.70) remains valid as well as the formulas for a1, a2.
For α1, α2 we have here the equations

2μ2(β2 + |ξ|2α2) + 2λα2 − 2μ1(β1 + |ξ|2α1) + 1λα1 = 0,
√
μ2

ω2
β2 + |ξ|α2 +

√
μ1

ω1
β1 + |ξ|α1 = [[1/]]ĵ.

Inserting βk from (8.70), this system becomes

p1α1 − p2α2 = 0, (10.58)

q1α1 + q2α2 = [[1/]]ĵ,

where

p1 = 1λ
[
1 + 2[[μ]]

1

γ(z)ω1(z)

ω1(z)− 1

ω1(z) + 1

]
=: 1λp

0
1,

p2 = 2λ
[
1− 2[[μ]]

1

γ(z)ω2(z)

ω2(z)− 1

ω2(z) + 1

]
=: 2λp

0
2,

and

q1 =
1λ

|ξ|ω1(z)γ(z)

[
1 +

1

ω2(z)

ω1(z)− 1

ω1(z) + 1
+

γ2(z)

μ1(ω1(z) + 1)

]
=:

1λ

|ξ|γ(z)2 q
0
1 ,

q2 =
2λ

|ξ|ω2(z)γ(z)

[
1 +

1

ω1(z)

ω2(z)− 1

ω2(z) + 1
+

γ1(z)

μ2(ω2(z) + 1)

]
=:

2λ

|ξ|γ(z)2 q
0
2 .

This yields

π̂1 = 1λα1 = [[1/]]
p02

p01q
0
2 + p02q

0
1

|ξ|γ(z)2ĵ, (10.59)

π̂2 = 2λα2 = [[1/]]
p01

p01q
0
2 + p02q

0
1

|ξ|γ(z)2ĵ.

As in (a) the functions p0k, q
0
k are holomorphic in C \ (−∞,−η], η = min{μk/k} > 0,

and we have
p0k(0) = 1, q0k(0) = 2(μ1 + μ2)

2/μk,
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and

p0k(∞) = 1, q0k(∞) = (
√
1μ1 +

√
2μ2)

2k.

Therefore p0k, q
0
k are holomorphic and bounded on Σπ/2+ε ∩B(0, ε), for small ε > 0.

So we need to show that the Lopatinskii-determinant r0(z) := p01(z)q
0
2(z) +

p02(z)q
0
1(z) has no zeros in Re z ≥ 0. After another tedious algebra, expanding and col-

lecting terms, we obtain as in (a) the factorization r0(z) = r01(z)r
0
2(z), where

r01(z) = γ(z)/[ω1(z)ω2(z)(ω1(z) + 1)(ω2(z) + 1)],

and

r02(z) = (ω1(z) + ω2(z))(ω1(z) + 1)(ω2(z) + 1) + 2(ω1(z)− 1)(ω2(z)− 1)

+
μ2

μ1
[2(ω2(z)− 1) + (ω2

2(z) + 1)(ω2(z) + 1)]

+
μ1

μ2
[2(ω1(z)− 1) + (ω2

1(z) + 1)(ω1(z) + 1)].

Obviously, r01(z) has no zeros in C\(−∞, 0]); so we only have to look at r02(z). One easily
checks that each summand of r02(z) has nonnegative imaginary part, provided z ∈ C is
such that Re z, Im z ≥ 0, so r02(z) can only be zero if each summand is zero. But this is
not possible, as already the first term shows.

Using the usual arguments of perturbation, domain perturbation and localization these

results prove (v) of Proposition 10.7.1.

Appendix B: The Dirichlet Extension Operator

Consider the problem

Δu = 0 in Ω, u = g on ∂Ω, (10.60)

where Ω ⊂ Rn is bounded domain with boundary Σ := ∂Ω ∈ C2−. We know from
Chapter 6 that the Dirichlet extension operator T : W

2−1/q
q (Σ) → H2

q (Ω) defined by
Tg = u, where u denotes the unique solution of (10.60), is well-defined and bounded.
We want to prove that this operator has a unique bounded extension – again denoted
by T – from Bs

qq(Σ) to H
s+1/q
q (Ω), for all s ∈ [−1/q, 2− 1/q]. By complex interpolation,

it is enough to prove this for s = −1/q. Observe that Bs
qq(Σ) = W s

q (Σ) for s �∈ N0, and

B0
22(Σ) = L2(Σ). In particular, this proves that T : Hs

2(Σ) → H
s+1/2
2 (Ω) is bounded, for

any s ∈ [−1/2, 3/2].

For this purpose, we define operators Lq : Yq → Lq(Ω) by means of

Lqu := −Δu, u ∈ Yq := {u ∈ H2
q (Ω) : u = 0 on Σ}.

Then we know that Lq is linear bounded, bijective, hence its inverse is also bounded, by
the open mapping theorem of Banach, for each q ∈ (1,∞). This implies that its dual
L∗
q′ : Lq′(Ω) → Y ∗

q′ is also bijective, and we also see that L∗
q′ = Lq on Yq, which is a dense

subset of Lq(Ω). Therefore, L
∗
q′ is a bounded linear bijective extension of Lq from Lq(Ω)

to Y ∗
q′ .
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Now we consider the solution u ∈ H2
q (Ω \ Σ) of (10.60) for some given g ∈

W
2−1/q
q (Ω). For φ ∈ Yq′ we obtain integrating by parts twice

0 = (−Δu|φ)Ω = (u| −Δφ)Ω + (g|∂νφ)Σ = (u|Lq′φ)Ω + (g|∂νφ)Σ.

The estimate

|(g|∂νφ)Σ| ≤ |g|
W

−1/q
q (Σ)

|∂νφ|W1/q

q′ (Σ)
≤ C|g|

W
−1/q
q (Σ)

|φ|H2
q′ (Ω) = C|g|

W
−1/q
q (Σ)

|φ|Yq′

shows that there is ḡ ∈ Y ∗
q′ such that

(g|∂νφ)Σ = 〈ḡ|φ〉, for all φ ∈ Yq′ .

As L∗
q′ is bijective, there is a unique u ∈ Lq(Ω) such that L∗

q′u = −ḡ, and

|u|Lq ≤ C|ḡ|Y ∗
q′

≤ C|g|
W

−1/q
q (Σ)

.

As we have u = Tg for g ∈ W
2−1/q
q (Σ), and W

2−1/q
q (Σ) is dense in W

−1/q
q (Σ), this shows

that the extension T : W
−1/q
q (Σ) → Lq(Ω) is unique and also bounded, thereby proving

the assertion.



Chapter 11

Qualitative Behaviour of the
Semiflows

Building on the previous Chapters 9 and 10, we take up the question of the long
time behaviour of solutions of the six problems (Pj) defined in Chapter 1. We
begin by showing in Section 11.1 that these problems generate local semiflows in
their generic state manifolds SMj . The local structure of these manifolds near
equilibria is analyzed in Section 11.2, where by means of a Hanzawa transform a
local representation is derived. This allows the computation of the corresponding
tangent spaces SX j

∗ at a given equilibrium e∗ = (0, θ∗,Γ∗). The main result of
this chapter is proved in Section 11.3. It tells that such an equilibrium is stable
resp. unstable in SMj , provided the corresponding linearized problem has this
property. The latter has been the content of Chapter 10. For the proof we use an
adapted version of the generalized principle of linearized stability which has been
proved in Chapter 5 for quasilinear parabolic evolution equations; actually this
amounts to a considerable extension of the result in Chapter 5. The chapter ends
with a conditional result, Theorem 11.4.1, on global existence and convergence to
equilibria. Theorem 11.4.1 can also be read as a blow-up criterion for the local
semiflow, as the conditions are necessary and sufficient for global existence and
convergence.

11.1 The Local Semiflows

Recall from Chapter 2 that the closed C2-hypersurfaces contained in Ω form a
C2-manifold, which we denote by MH2(Ω). Also recall the Hausdorff metric on
the set K of compact subsets of Rn given by

dH(K1,K2) = max{ sup
x∈K1

d(x,K2), sup
x∈K2

d(x,K1)}.

© Springer International Publishing Switzerland 2016
J. Prüss and G. Simonett,Moving Interfaces and Quasilinear Parabolic
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We consider the second normal bundle of the C2-hypersurface Γ

N 2Γ = {(p, νΓ(p),∇ΓνΓ(p)) : p ∈ Γ}.

Here ∇Γ denotes the surface gradient on Γ. The metric on MH2(Ω) is defined by

d(Γ1,Γ2) := dH(N 2Γ1,N 2Γ2), Γ1,Γ2 ∈ MH2(Ω).

The charts are the parameterizations over a given real analytic hypersurface Σ, as
described in Chapter 2, and the tangent space of Γ consists of the normal vector
fields on Γ of class C2. This way MH2(Ω) becomes a Banach manifold.

Let dΓ(x) denote the signed distance for Γ as introduced in Chapter 2. Recall
also the definition of the level function ϕΓ given by

ϕΓ(x) :=

{
dΓ(x)χ(3dΓ(x)/a) + sign dΓ(x)(1− χ(3dΓ(x)/a)), x ∈ Ua,

χΩex
(x)− χΩin

(x), x /∈ Ua,

where χ ∈ C∞ denotes a cut-off function with χ(s) = 1 for |s| ≤ 1, χ(s) = 0 for
|s| ≥ 2, 0 ≤ χ(s) ≤ 1. Then we have seen that Γ = ϕ−1

Γ (0), and ∇ϕΓ(x) = νΓ(x),
for each x ∈ Γ. Moreover, κ = 0 is an eigenvalue of ∇2ϕΓ(x) with eigenfunction
νΓ(x); the remaining eigenvalues of ∇2ϕΓ(x) are the principal curvatures κj(x) of
Γ at x ∈ Γ.

Consider the subset MH2(Ω, r) of MH2(Ω) which consists of all hypersur-
faces Γ ∈ MH2(Ω) such that Γ ⊂ Ω satisfies the ball condition with fixed radius
r > 0. This implies in particular that dist(Γ, ∂Ω) ≥ 2r and all principal curvatures
of Γ ∈ MH2(Ω, r) are bounded by 1/r. Furthermore, the level functions ϕΓ are
well defined for Γ ∈ MH2(Ω, r), and form a bounded subset of C2(Ω̄). The map
Φ : MH2(Ω, r) → C2(Ω̄), defined by Φ(Γ) = ϕΓ, is a homeomorphism of the
metric space MH2(Ω, r) onto Φ(MH2(Ω, r)) ⊂ C2(Ω̄).

Let s − (n − 1)/p > 2; for Γ ∈ MH2(Ω, r), we define Γ ∈ W s
p (Ω, r) if

ϕΓ ∈ W s
p (Ω). In this case the local charts for Γ can be chosen of class W s

p as well.
A subset A ⊂ W s

p (Ω, r) is said to be (relatively) compact, if Φ(A) ⊂ W s
p (Ω) is

(relatively) compact.

We now introduce the state manifolds for the six problems in question.

Problem 1. As an ambient space for the state manifold SM1 of Problem 1 we
consider the product space C(Ω̄)×MH2(Ω). We define SM1 by means of

SM1 : =
{
z := (θ,Γ) ∈ C(Ω̄)×MH2(Ω) : θ ∈ W 2−2/p

p (Ω \ Γ), Γ ∈ W 4−3/p
p ,

θ > 0 in Ω̄, ∂νθ = 0 on ∂Ω,

�[[ψ(θ)]] + σHΓ = 0, l(θ) �= 0 on Γ, [[d(θ)∂νθ]] ∈ W 2−6/p
p (Γ)

}
.
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Problem 2. As an ambient space for the state manifold SM2 of Problem 2 we
consider the product space C(Ω̄)n+1 ×MH2(Ω). We define SM2 as follows.

SM2 : =
{
z := (u, θ,Γ) ∈ C(Ω̄)n+1 ×MH2(Ω) : (u, θ) ∈ W 2−2/p

p (Ω \ Γ)n+1,

Γ ∈ W 3−2/p
p , div u = 0 in Ω \ Γ, θ > 0 in Ω̄, u, ∂νθ = 0 on ∂Ω,

PΓ[[μ(θ)(∇u+ [∇u]T)νΓ]], [[d(θ)∂νθ]] = 0 on Γ
}
.

Problem 3. As an ambient space for the state-manifold SM3 of Problem 3 we
consider again the product space C(Ω̄)n+1×MH2(Ω). We define SM3 as follows.

SM3 : =
{
z := (u, θ,Γ) ∈ C(Ω̄)n+1 ×MH2(Ω) : (u, θ) ∈ W 2−2/p

p (Ω \ Γ)n+1,

Γ ∈ W 4−3/p
p , div u = 0 in Ω \ Γ, θ > 0 in Ω̄, u, ∂νθ = 0 on ∂Ω,

PΓ[[μ(θ)(∇u+ [∇u]T)νΓ]] = 0 on Γ,

�[[ψ(θ)]] + σHΓ = 0, l(θ) �= 0 on Γ, [[d(θ)∂νθ]] ∈ W 2−6/p
p (Γ)

}
.

Problem 4. As an ambient space for the state manifold SM4 of Problem 4 we
consider the product space Lp(Ω)

n+1 × MH2(Ω), to account for the jump of u
across the interface. We define the state manifold SM4 as follows.

SM4 : =
{
z := (u, θ,Γ) ∈ Lp(Ω)

n+1 ×MH2(Ω) : (u, θ) ∈ W 2−2/p
p (Ω \ Γ)n+1,

Γ ∈ W 3−2/p
p , div u = 0 in Ω \ Γ, θ > 0 in Ω̄, u, ∂νθ = 0 on ∂Ω,

PΓ[[μ(θ)(∇u+ [∇u]T)νΓ]], PΓ[[u]], [[θ]] = 0 on Γ,

l(θ)[[u · νΓ]] + [[1/�]][[d(θ)∂νθ]] = 0 on Γ
}
.

Problem 5. As an ambient space for the state-manifold SM5 of Problem 5 we
consider again the product space C(Ω̄)n+1×MH2(Ω). We define SM5 as follows.

SM5 : =
{
z := (u, θ,Γ) ∈ C(Ω̄)n+1 ×MH2(Ω) : (u, θ) ∈ W 2−2/p

p (Ω \ Γ)n+1,

Γ ∈ W 4−3/p
p , div u = 0 in Ω \ Γ, 0 < θ < θc in Ω̄, u, ∂νθ = 0 on ∂Ω,

PΓ[[μ(θ)(∇u+ [∇u]T)νΓ]] + σ′(θ)∇Γθ, �[[ψ(θ)]] + σ(θ)HΓ = 0 on Γ,

TΓ := ωΓ(θ)−H ′
Γ is invertible in L2(Γ)

}
.

Here we used the abbreviation ωΓ(θ) = (�l(θ) + lΓHΓ)
2/θσ(θ)κΓ(θ).

Problem 6. As an ambient space for the state manifold SM6 of Problem 6 we
consider the product space Lp(Ω)

n+1 × MH2(Ω). We define the state manifold
SM6 as follows.

SM6 : =
{
z := (u, θ,Γ) ∈ Lp(Ω)

n+1 ×MH2(Ω) : (u, θ) ∈ W 2−2/p
p (Ω \ Γ)n+1,

Γ ∈ W 3−2/p
p , div u = 0 in Ω, 0 < θ < θc in Ω̄, u, ∂νθ = 0 on ∂Ω,

PΓ[[μ(θ)(∇u+ [∇u]T)νΓ]] + σ′(θ)∇Γθ, PΓ[[u]], [[θ]] = 0 on Γ
}
.
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The charts for these manifolds are obtained by the charts induced by
MH2(Ω), followed by a Hanzawa transformation as introduced in Chapter 1.

Observe that the relevant compatibility conditions as well as regularity are
preserved by the solutions. We also note that we do neither use the surface tem-
perature θΓ nor the pressure π as system variables, as these are determined at
each instant by the state variable z.

Applying the well-posedness results from Chapter 9 and re-parameterizing
repeatedly, we obtain for the Problem (Pj) a local semiflow on SMj , j = 1, . . . , 6.

Theorem 11.1.1. Let p > n+ 2, j = 1, . . . , 6, and suppose Conditions (Hj) holds.
Then the two-phase problem (Pj) generates a local semiflow in the state manifold
SMj. Each solution z exists on a maximal time interval [0, t+).

Observe that our definition of the state manifolds is invariant under coor-
dinate transformations. Therefore, this result answers in particular the question
in which sense a solution of a problem with moving boundary can be unique.
This should be compared with the case of an ordinary differential equation on a
manifold.

The maximal time t+ of existence will be characterized below in Section 11.4.

11.2 Tangent Spaces at Equilibria

We now fix a non-degenerate equilibrium e∗ = (0, θ∗,Γ∗) ∈ E . In this section we
study the state manifolds SMj in a neighbourhood of this equilibrium. Gener-
ically, in the sequel the value of a scalar function f(θ) at the equilibrium value
θ = θ∗ will be denoted by f∗.

2.1 Local Representations
We perform a Hanzawa transform where the reference hypersurface Σ is here
taken to be Σ = Γ∗. This leads to the following local representations of the state
manifolds. In the sequel we will employ the relative temperature ϑ = θ−θ∗. We use
the notation for the spaces E and F from Chapter 9, with a minor change. Ej(a)

denotes E
j
1(a) without pressure components, while Êj(a) contains the pressure,

and Fj(a) = F
j
1(a).

Problem 1. We consider the trace space X1
γ of E1(a) which is given by

X1
γ = {z = (ϑ, h) ∈ W 2−2/p

p (Ω\Σ)×W 4−3/p
p (Σ) : [[ϑ]] = 0 on Σ, ∂νϑ = 0 on ∂Ω}.

As in Chapter 9 we linearize the Gibbs-Thomson law ϕ(θ)+σHΓ(h) = 0 according
to

(�l∗/θ∗)ϑ− σAΣh = Gγ(ϑ, h),

where as in Chapter 10,

AΣ = −(n− 1)/R2
∗ −ΔΣ
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denotes the curvature operator on Σ. The jump of the heat flux is linearized as

[[Bθ(θ, h)∇θ]] = [[d∗∂νϑ]] +Gθ(ϑ, h)∇ϑ.

Then near the equilibrium e∗ the state manifold SM1 reads

SM1
∗ =

{
(ϑ, h) ∈ X1

γ : (�l∗/θ∗)ϑ− σAΣh = Gγ(ϑ, h) on Σ,

[[d∗∂νϑ]] +Gθ(ϑ, h)∇ϑ ∈ W 2−6/p
p (Σ)

}
.

Furthermore, we set

SX 1
∗ := {(ϑ, h) ∈ X1

γ : (�l∗/θ∗)ϑ− σAΣh = 0 on Σ, [[d∗∂νϑ]] ∈ W 2−6/p
p (Σ)}.

For further use, we also introduce the boundary trace space Y 1
γ = W

2−3/p
p (Σ) as

well as the linear stationary boundary operator

B1z = (�l∗/θ∗)ϑ− σAΣh,

and the stationary boundary nonlinearity

G1(z) = Gγ(ϑ, h).

Problem 2. The trace space X2
γ of E2(a) is given by

X2
γ =

{
z = (u, ϑ, h) ∈ W 2−2/p

p (Ω \ Σ)n+1 ×W 3−2/p
p (Σ) : [[u]], [[ϑ]] = 0 on Σ,

u, ∂νϑ = 0 on ∂Ω
}
.

We linearize the divergence condition as

div u = M1(h)∇ · u,

and the tangential part of the normal stress condition, see (1.62), as

PΣ[[μ∗(∇u+ [∇u]T)νΣ]] = Gτ (ϑ, h)∇u.

Then near the equilibrium e∗ the state manifold SM2 reads

SM2
∗ =

{
(u, ϑ, h) ∈ X2

γ : div u = M1(h)∇ · u in Ω \ Σ,
PΣ[[μ∗(∇u+ [∇u]T)νΣ]] = Gτ (ϑ, h)∇u, −[[d∗∂νϑ]] = Gθ(ϑ, h)∇ϑ on Σ

}
.

Furthermore, we set

SX 2
∗ =

{
(u, ϑ, h) ∈ X2

γ : div u = 0 in Ω \ Σ,
PΣ[[μ∗(∇u+ [∇u]T)νΣ]] = 0, [[d∗∂νϑ]] = 0 on Σ

}
.
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Let

W
1−2/p
p,0 (Ω\Σ) := W 1−2/p

p (Ω\Σ)/constants ∼= {v ∈ W 1−2/p
p (Ω\Γ) :

∫
Ω

v dx = 0},

and
Y 2
γ = W

1−2/p
p,0 (Ω \ Σ)×W 1−3/p

p (Σ;TΣ)×W 1−3/p
p (Σ),

and define the linear stationary boundary operator

B2z = (div u,PΣ[[μ∗(∇u+ [∇u]T)νΣ]],−[[d∗∂νϑ]]),

and the stationary boundary nonlinearity

G2(z) = (M1(h)∇ · u,Gτ (ϑ, h)∇u,Gθ(ϑ, h)∇ϑ).

Problem 3. The trace space X3
γ of E3(a) is given by

X3
γ =

{
z = (u, ϑ, h) ∈ W 2−2/p

p (Ω \ Σ)n+1 ×W 4−3/p
p (Σ) : [[u]], [[ϑ]] = 0 on Σ,

u, ∂νϑ = 0 on ∂Ω
}
.

Then near the equilibrium e∗ the state manifold SM3 reads

SM3
∗ =

{
(u, ϑ, h) ∈ X3

γ : div u = M1(h)∇ · u in Ω \ Σ,
PΣ[[μ∗(∇u+ [∇u]T)νΣ]] = Gτ (ϑ, h)∇u,

(�l∗/θ∗)ϑ−σAΣh = Gγ(ϑ, h) on Σ, [[d∗∂νϑ]] +Gθ(ϑ, h)∇ϑ ∈ W 2−6/p
p (Σ)

}
.

Furthermore, we set

SX 3
∗ =

{
(u, ϑ, h) ∈ X3

γ : div u = 0 in Ω \ Σ, PΣ[[μ∗(∇u+ [∇u]T)νΣ]] = 0,

(�l∗/θ∗)ϑ− σAΣh = 0 on Σ, [[d∗∂νϑ]] ∈ W 2−6/p
p (Σ

)
},

and
Y 3
γ = W

1−2/p
p,0 (Ω \ Σ)×W 1−3/p

p (Σ;TΣ)×W 2−3/p
p (Σ),

and define the linear stationary boundary operator

B3z =
(
div u,PΣ[[μ∗(∇u+ [∇u]T)νΣ]], (�l∗/θ∗)ϑ− σAΣh

)
,

and the stationary boundary nonlinearity

G3(z) = (M1(h)∇ · u,Gτ (ϑ, h)∇u,Gγ(ϑ, h)).

Problem 4. The trace space X4
γ of E4(a) is given by

X4
γ =

{
z = (u, ϑ, h) ∈ W 2−2/p

p (Ω \ Σ)n+1 ×W 3−2/p
p (Σ) : [[ϑ]] = 0 on Σ,

u, ∂νϑ = 0 on ∂Ω
}
.



11.2. Tangent Spaces at Equilibria 497

We linearize the jump condition PΓ[[u]] = 0 as in Chapter 9.

PΣ[[u]] = Gu(h)u := −M0(h)∇Σh[[u · νΣ]],

and the term l(θ)jΓ appearing in the Stefan law as

l∗[[1/�]]−1[[u · νΣ]] = Gl(ϑ, h)u.

Then near the equilibrium e∗ the state manifold SM4 reads

SM4
∗ =

{
(u, ϑ, h) ∈ X4

γ : div u = M1(h)∇ · u in Ω \ Σ, PΣ[[u]] = Gu(h)u,

PΣ[[μ∗(∇u+ [∇u]T)νΣ]] = Gτ (ϑ, h)∇u,

l∗[[1/�]]−1[[u · νΣ]] + [[d∗∂νϑ]] = Gθ(ϑ, h)∇ϑ+Gl(ϑ, h)u on Σ
}
.

Furthermore, we set

SX 4
∗ = {(u, ϑ, h) ∈ X4

γ : div u = 0 in Ω \ Σ, PΣ[[u]] = 0,

PΣ[[μ∗(∇u+ [∇u]T)νΣ]] = 0, l∗[[1/�]]−1[[u · νΣ]] + [[d∗∂νϑ]] = 0 on Σ},

and

Y 4
γ = W 1−2/p

p (Ω \ Σ)×W 2−3/p
p (Σ;TΣ)×W 1−3/p

p (Σ;TΣ)×W 2−3/p
p (Σ),

and define the linear stationary boundary operator

B4z = (div u,PΣ[[u]],PΣ[[μ∗(∇u+ [∇u]T)νΣ]], l∗[[1/�]]−1[[u · νΣ]] + [[d∗∂νϑ]]),

and the stationary boundary nonlinearity

G4(z) = (M1(h)∇ · u,Gu(h)u,Gτ (ϑ, h)∇u,Gθ(ϑ, h)∇ϑ+Gl(ϑ, h)u).

Problem 5. The relevant trace space X5
γ of E5(a) is given by

X5
γ = {z = (u, ϑ, h) ∈ W 2−2/p

p (Ω \ Σ)n+1 ×W 4−3/p
p (Σ) : [[u]], [[ϑ]] = 0 on Σ,

u, ∂νϑ = 0 on ∂Ω}.

So we have X5
γ = X3

γ . The presence of the Marangoni force on the interface leads
to the additional term

(σ′(θ)/β(h))M0(h)∇Γθ = σ′
∗∇Σϑ−Gσ(ϑ, h)∇Σϑ.

for the tangential component of the stress condition, see (1.61). Then near the
equilibrium e∗ the state manifold SM5 reads

SM5
∗ =

{
(u, ϑ, h) ∈ X5

γ : div u = M1(h)∇ · u in Ω \ Σ,
PΣ[[μ∗(∇u+ [∇u]T)νΣ]] + σ′

∗∇Σϑ = Gτ (ϑ, h)∇u+Gσ(ϑ, h)∇Σϑ on Σ,

(�l∗/θ∗)ϑ− σAΣh = Gγ(ϑ, h) on Σ
}
.
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Furthermore, we set

SX 5
∗ =

{
(u, ϑ, h) ∈ X5

γ : div u = 0 in Ω \ Σ,
PΣ[[μ∗(∇u+ [∇u]TνΣ]] + σ′

∗∇Σϑ = 0 on Σ
}
,

and
Y 5
γ = W

1−2/p
p,0 (Ω \ Σ)×W 1−3/p

p (Σ;TΣ),

and define the linear stationary boundary operator

B5z = (div u,PΣ[[μ∗(∇u+ [∇u]T)νΣ]] + σ′
∗∇Σϑ),

and the stationary boundary nonlinearity

G5(z) = (M1(h)∇ · u,Gτ (ϑ, h)∇u+Gσ(ϑ, h)∇Σϑ).

Problem 6. The trace space X6
γ of E6(a) is given by

X6
γ =

{
z = (u, ϑ, h) ∈ W 2−2/p

p (Ω \ Σ)n+1 ×W 3−2/p
p (Σ) : [[ϑ]] = 0 on Σ,

u, ∂νϑ = 0 on ∂Ω
}
.

So we have X6
γ = X4

γ . Then near the equilibrium e∗ the state manifold SM6 reads

SM6
∗ =

{
(u, ϑ, h) ∈ X6

γ : div u = M1(h)∇ · u in Ω \ Σ, PΣ[[u]] = Gu(h)u,

PΣ[[μ∗(∇u+ [∇u]T)νΣ]] + σ′
∗∇Σϑ = Gτ (ϑ, h)∇u+Gσ(ϑ, h)∇Σϑ on Σ

}
.

Furthermore, we set

SX 6
∗ =

{
(u, ϑ, h) ∈ X1

γ : div u = 0 in Ω \ Σ, PΣ[[u]] = 0,

PΣ[[μ∗(∇u+ [∇u]T)νΣ]] + σ′
∗∇Σϑ = 0 on Σ

}
,

and
Y 6
γ = W 1−2/p

p (Ω \ Σ)×W 1−3/p
p (Σ;TΣ)×W 2−3/p

p (Σ, TΣ),

and define the linear stationary boundary operator

B6z = (div u,PΣ[[μ∗(∇u+ [∇u]T)νΣ]] + σ′
∗∇Σϑ,PΣ[[u]]),

and the stationary boundary nonlinearity

G6(z) = (M1(h)∇ · u,Gτ (ϑ, h)∇u+Gσ(ϑ, h), Gu(h)u).

We emphasize that the particular form of the boundary nonlinearities Gj(z) will
not be important. In the sequel it is only essential that Gj : Xj

γ → Y j
γ are of class

C1 – which is ensured by the results in Section 9.5 – and that Gj(0) and its Fréchet
derivative DGj(0) vanish, by their very definition.
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2.2 Parameterization
As a consequence of the preceeding section we have

SMj
∗ = {z ∈ Xj

γ : Bjz = Gj(z) in Y j
γ },

and
SX j

∗ = {z ∈ Xj
γ : Bjz = 0 in Y j

γ },

for each j = 1, . . . , 6, where, however, the linear operators Bj , the nonlinearities
Gj , and the boundary trace spaces Y j

γ differ from problem to problem. But we do

employ this structure to parameterize SMj
∗ over SX j

∗ near (0, 0, 0) for all j. This
shows, in particular, that SX j

∗ is in fact isomorphic to the tangent space of SMj
∗

at (0, 0, 0), or equivalently, to the tangent space of SMj at e∗. We assume below
that the parameters satisfy

�, κ∗, μ∗, d∗, σ∗, κΓ∗, dΓ∗ > 0, l∗ �= 0, ζ∗, δ∗ �= 1,

to exclude pathological situations.
It will be convenient to enlarge the system variable z by the pressure, i.e.,

we set w = (z, π) in Problems (Pj) for j ≥ 2. Here we take π ∈ Ẇ
1−2/p
p (Ω \Σ) for

Problems (P2), (P3), (P5), and π ∈ W
1−2/p
p (Ω \ Σ) for (P4), (P6). Furthermore,

for Problems (P2), (P3), (P5) we include the normal component of the normal
stress balance, which reads

−[[2μ∗∂νu · ν]] + [[π]] + σ∗AΣh = Gν(ϑ, h)∇u+Gγ(h) + σ′(θ)Gm(h)∇ϑΣ

and accordingly

− [[2μ∗∂νu · ν]] + [[π]] + σ∗AΣh = Gν(ϑ, h)∇u+Gγ(h) + σ′(θ)Gm(h)∇ϑΣ

− [[1/�]]−1[[u · νΓ]]2,

− [[2(μ∗/�)∂νu · ν]] + [[π/�]] + (l∗/θ∗)ϑ = Gπ(ϑ, h)∇u+Gρ(ϑ)

+
ρ1 + ρ2

2(ρ2 − ρ1)
[[u · νΓ]]2

for Problems (P4), (P6). The corresponding linearities are denoted by B̂j and the

nonlinearities by Ĝj . Note that here the pressure appears only linearly, i.e., it does
not appear in Ĝj .

We define the differential operators Aj = Lj by the corresponding differen-
tial expressions Lj from Chapter 10, and we let F j(w) denote the corresponding
nonlinearities, which formally satisfy (F j(0), DF j(0)) = 0.

To parameterize SMj
∗ over SX j

∗ we solve the following problems, where ω > 0
is sufficiently large.

ωz̄ + Ajw̄ = 0 in Ω \ Σ,
B̂jw̄ = Ĝj(z̄ + z̃) on Σ.

(11.1)
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Given z̃ ∈ SX j
∗ small we are looking for a solution w̄ ∈ X̂j

γ . For this we employ
the implicit function theorem. Obviously, for z̃ = 0 we have the trivial solution
w̄ = 0. As Ĝj : Xj

γ → Ŷ j is of class C1 with (Ĝj(0), DĜj(0)) = 0, we have to
show that the linear problem

ωz̄ + Ajw̄ = 0 in Ω \ Σ,
B̂jw̄ = ĝj on Σ,

admits a unique solution, for any given datum ĝj ∈ Ŷ j
γ . In fact, the propositions

in the next section will do this job, up to lower order perturbations. Therefore, we
may apply the implicit function theorem to find balls BSX j

∗
(0, rj) and maps

φ̂j : BSX j
∗
(0, rj) → X̂j

γ

of class C1 with (φ̂j(0), Dφ̂j(0)) = 0 such that w̄ = φ̂j(z̃) is the unique solution

of (11.1) near zero. The map id + φ̂j is surjective onto a neighbourhood of zero
in X̂j

γ . To see this fix any z ∈ SMj
∗, and solve the linear problem (11.1) with

ĝj = Ĝj(z) to obtain a unique w̄ = (z̄, π̄) ∈ X̂j
γ . Then set z̃ = z − z̄; if w is chosen

small enough, z̃ ∈ BSX j
∗
(0, rj), hence we have w̄ = φ̂j(z̃) by uniqueness.

The map Φj : BSX j
∗
(0, rj) → SMj

∗ defined by

Φj(z̃) = z̃ + φj(z̃), (11.2)

where φj means dropping the pressure π in φ̂j , yields the parametrization we have
been looking for. We summarize this result in

Theorem 11.2.1. The state manifolds SMj
∗ are parameterized via the maps Φj

defined above over the spaces SX j
∗ . In particular, the tangent spaces Te∗SMj at the

equilibrium e∗, and equivalently the tangent space T0SMj
∗ at zero, are isomorphic

to the space SX j
∗ .

Note that an equilibrium e∞ ∈ E , close to e∗ ∈ E in SM, respectively z∞
close zero in Xj

γ decomposes as

z∞ = z̃∞ + z̄∞ = z̃∞ + φj(z̃∞),

with z̃∞ ∈ SX j
∗ . This follows as Ajw∞ = F j(w∞) = 0 at an equilibrium.

2.3 Auxiliary Linear Elliptic Problems
For the application of the implicit function theorem in Section 11.2.2 we needed
the following results. The first two concern an elliptic transmission problem for
the heat equation and the linearized steady Stefan problem.

Proposition 11.2.2. Let ω > 0 be large, �, κ∗, d∗ > 0, and p > n + 2. Then the
problem

�κ∗ωϑ− d∗Δϑ = 0 in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0, −[[d∗∂νϑ]] = g on Σ,
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has a unique solution ϑ ∈ W
2−2/p
p (Ω \ Σ) if and only if g ∈ W

1−3/p
p (Σ).

This result is proved by the methods in Section 6.5, and is used for Problems
(P2) and (P4)

Proposition 11.2.3. Let ω > 0 be large, l∗ �= 0, �, κ∗, d∗, σ > 0, and p > n + 2.
Then the problem

�κ∗ωϑ− d∗Δϑ = 0 in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0, (�l∗/θ∗)ϑ− σAΣh = gθ on Σ,

�l∗ωh− [[d∗∂νϑ]] = gh on Σ,

has a unique solution (ϑ, h) ∈ W
2−2/p
p (Ω\Σ)×W

4−3/p
p (Σ) if and only if (gθ, gh) ∈

W
2−3/p
p (Σ)×W

1−3/p
p (Σ).

This result is proved by the methods in Section 6.6; it is used for Problems
(P1) and (P3).

The next two propositions concern the linear steady symmetric and asym-
metric Stokes problems.

Proposition 11.2.4. Let ω > 0 be large, μ∗ > 0, and p > n+ 2. Then the problem

�ωu− μ∗Δu+∇π = 0 in Ω \ Σ,
div u = gd in Ω \ Σ,

u = 0 on ∂Ω,

[[u]] = 0, PΣ[[μ∗(∇u+ [∇u]T)νΣ]] = gτ on Σ,

−[[2μ∗∂νu · νΣ]] + [[π]] = gν on Σ,

has a unique solution

u ∈ W 2−2/p
p (Ω \ Σ), π ∈ Ẇ 1−2/p

p (Ω \ Σ), [[π]] ∈ W 1−3/p
p (Σ)

if and only if

gd ∈ W
1−2/p
p,0 (Ω \ Σ), (gτ , gν) ∈ W 1−3/p

p (Σ;TΣ× R).

This result can be obtained by the methods in Sections 8.1, 8.2, and 8.3, it
is employed for Problems (P2), (P3), (P5).
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Proposition 11.2.5. Let ω > 0 be large, �, μ∗ > 0, and p > n+2. Then the problem

�ωu− μ∗Δu+∇π = 0 in Ω \ Σ,
div u = gd in Ω \ Σ,

u = 0 on ∂Ω,

PΣ[[u]] = gu on Σ,

PΣ[[μ∗(∇u+ [∇u]T)νΣ]] = gτ on Σ,

−[[2μ∗∂νu · νΣ]] + [[π]] = gν on Σ,

−[[2(μ∗/�)∂νu · νΣ]] + [[π/�]] = gπ on Σ,

has a unique solution (u, π) with

u ∈ W 2−2/p
p (Ω \ Σ) π ∈ W 1−2/p

p (Ω \ Σ),

if and only if

gd ∈ W 1−2/p
p (Ω \ Σ), gu ∈ W 2−3/p

p (Σ;TΣ),

and (gτ , gν , gπ) ∈ W
1−3/p
p (Σ;TΣ× R2).

This result can be obtained by the methods in Sections 8.4, 8.5, and 8.6; it
is needed for Problems (P4) and (P6).

2.4 Abstract Reformulation of the Problems
To obtain a framework for a joint analysis of stability near an equilibrium, we
need an appropriate abstract formulation of the problems under consideration.
This will be achieved in the following way. We decompose the time-dependent
variables in the same way as in the previous section into z = z̄+ z̃ and w = w̄+ w̃.
Furthermore, for Problems (P5), (P6) it is again convenient to enlarge z̃, hence
also w̃, by the variable ϑΣ, which is actually dummy, as ϑΣ = ϑ|Σ is the restriction
of ϑ to Σ.

We may then decompose the full problem into two, formally one for w̄ and
one for w̃, according to

(ω + ∂t)z̄ + Ajw̄ = F j(w̄ + w̃) in Ω \ Σ,
B̂jw̄ = Ĝj(z̄ + z̃) on Σ,

z̄(0) = φj(z̃0) in Ω.

(11.3)

The second one reads as

∂tz̃ + Ajw̃ = ωz̄ in Ω \ Σ,
B̂jw̃ = 0 on Σ,

z̃(0) = z̃0 in Ω.

(11.4)
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Adding these equations we obtain the full problem under consideration, namely

∂tz + Ajw = F j(w) in Ω \ Σ,
B̂jw = Ĝj(z) on Σ,

z(0) = z0 in Ω.

(11.5)

One should think of this decomposition in the following way. The first part has
a fast dynamics due to ω > 0 large and takes care of the stationary boundary
conditions, while the second equation lives in the tangent space SX j

∗ and car-
ries the actual dynamics. Furthermore, as (F j(0), Ĝj(0), φj(0)) = 0 as well as
(DF j(0), DĜj(0), Dφj(0)) = 0, we will see that w̄ is small compared to z̃. Our
philosophy is to consider the first equation as an auxiliary one, to solve it in terms
of z̃, thereby reducing the problem to a quasilinear evolution equation in SX j

∗ ,
which is nonlocal in time, but causal. Then we may follow the ideas in Chapter 5
to obtain a generalized principle of linearized stability also in this more general
framework. Actually, we will follow this route for instability, but for stability and
convergence we will solve both problems simultaneously, by the implicit function
theorem, similarly to the construction of the foliations in Section 5.6.

There should be a word of warning. While for the initial value z0 we employ
the decomposition z0 = z̃0 + φ(z̃0), and this is also valid for z∞, it does not hold
in the time-dependent case, in general z̄(t) �= φ(z̃(t))!

It is convenient to remove the pressure π̃ from (11.4) in the usual way (see
Chapters 8 and 10) by solving the appropriate weak transmission problems for π̃
and insert it into (11.3) for w̃. Then we may rewrite the first problem abstractly
as

Lj
ωw̄ = N j(w̄, z̃), t > 0, z̄(0) = φj(z̃0), (11.6)

and with the appropriate two-phase Helmholtz-Weyl projection P, the second one
as the evolution equation

∂tz̃ + Lj z̃ = ωPz̄, t > 0, z̃(0) = z̃0. (11.7)

Here Lj are the operators defined in Chapter 10, j = 1, . . . , 6. For further use, we
introduce the function spaces

Ẽj(a) := H1
p (J ;X

j
0) ∩ Lp(J ;X

j
1), J = (0, a), (11.8)

with Xj
0 and Xj

1 as in Chapter 10.

Recall that (Lj
ω, tr) is an isomorphism from Êj(∞, δ) to Fj(∞, δ) × Xj

γ , by
the results in Chapters 6 and 8. Here we use the notation

z ∈ Ej(∞, δ) ⇔ eδtz ∈ Ej(∞),

and similarly for Fj(∞, δ), Êj(∞, δ) and Ẽj(∞, δ). −Lj is the generator of a com-
pact analytic C0-semigroup with maximal Lp-regularity in Xj

0 , according to Chap-
ter 10, where also the spectral properties of Lj have been derived. In particular,
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there is a spectral gap (0, δj0) such that Reσ(−Lj) ∩ (0, δj0) = ∅, and we choose

0 < δ < δj0. The functions N j will be of class C1 in the spaces used below, and by
their definition satisfy

(N j(0, 0), DN j(0, 0)) = 0.

The decomposition (11.6), (11.7) will be useful for the proof of instability. For
stability and convergence we modify it slightly, as we want to show exponential
convergence. For this reason we now decompose z = z̄ + z̃ + z∞, with the idea
that z∞ will be the limit of z(t) as t goes to infinity and z̄, z̃ are exponentially
decaying. This means that the corresponding equations for z̄ and z̃ are shifted to

(ω + ∂t)z̄ + Ajw̄ = F j(w̄ + w̃ + w∞)− F j(w∞) in Ω \ Σ,
B̂jw̄ = Ĝj(z̄ + z̃ + z∞)− Ĝj(z∞) on Σ,

z̄(0) = φj(z̃0)− φj(z̃∞) in Ω,

(11.9)

and
∂tz̃ + Ajw̃ = ωz̄ in Ω \ Σ,

B̂jw̃ = 0 on Σ,

z̃(0) = z̃0 − z̃∞ in Ω,

(11.10)

where we used z0 = z̃0 + φ(z̃0) and z∞ = z̃∞ + φ(z̃∞). Eliminating as before
the pressure π̃ and inserting it into (11.9) we end up with the following abstract
problems

Lj
ωw̄ = N j(w̄, z̃, z̃∞), t > 0, z̄(0) = φj z̃0)− φj(z̃∞), (11.11)

and with the appropriate two-phase Helmholtz-Weyl projection P,

∂tz̃ + Lj z̃ = ωPz̄, t > 0, z̃(0) = z̃0 − z̃∞. (11.12)

We observe that by Section 9.5, the functions N j are of class C1 in the variables
(w̄, z̃) in the function spaces Ê(∞, δ) × Ẽ(∞, δ) provided hypothesis (Hj) holds,
but merely continuous in z̃∞, unless we require one more degree of regularity for
the coefficients. We want to avoid this below.

11.3 Nonlinear Stability of Equilibria

Concerning the stability of equilibria for the nonlinear problems we can prove a
fairly complete result. To state this result, recall from Chapter 10 that an equilib-
rium e∗ = (0, θ∗,Γ∗) ∈ E is

(i) linearly stable if it is normally stable, which is always the case for (P2), and
for (P4) and (P6) if Γ∗ is connected. For Problems (P1), (P3), (P5) it is normally
stable if and only if either δ∗ > 1, or δ∗ < 1, Γ∗ is connected, and the stability
condition ζ∗ < 1 holds.
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(ii) linearly unstable if it is normally hyperbolic, which is the complementary case
of (i), where we have to exclude the pathological cases l∗ = 0 or δ∗ = 1 or ζ∗ = 1.

For the definition of the numbers l∗, δ∗ and ζ∗ we refer to Chapter 10. Recall
that l∗ = 0 or δ∗ = 1 lead to ill-posed problems, while ζ∗ = 1 is the case of
marginal stability in the linear problem.

Now we can state the main theorem of this chapter.

Theorem 11.3.1. Let p > n + 2, suppose that Conditions (Hj) hold for Problem
(Pj), with j = 1, . . . , 6.

Then in the state manifold SMj, for a fixed equilibrium e∗ = (0, θ∗,Γ∗) ∈ E,
we have

(i) If e∗ ∈ E is linearly stable, then it is nonlinearly stable in SMj, and any
solution with initial value close to e∗ in SMj exists globally and converges in
SMj to a possibly different stable equilibrium e∞ ∈ E at an exponential rate.

(ii) If e∗ ∈ E is linearly unstable, then e∗ is also nonlinearly unstable in the state
manifold SMj. Any solution starting near e∗ and staying in a neighbourhood of
e∗ exists globally and converges in SMj to another unstable equilibrium e∞ ∈ E
at an exponential rate.

Some remarks are in order.

Remark 11.3.2. (i) For Problem (P2), every (non-degenerate) equilibrium is sta-
ble. However, one should observe that the smaller the spheres S(xk, Rk) are, the
larger will the pressure inside these balls be. But if the pressure is high enough,
a phase transition driven by pressure will occur. Therefore, model (P2), although
thermodynamically consistent, is physically not very realistic. Phase transitions
have to be taken into account.

(ii) In all the other problems, with the exception of (P5), we observe that a discon-
nected equilibrium interface is unstable. This is what we call the onset of Ostwald
ripening. If we start with, say, two spheres of equal size and perturb one of them
to become larger, then experiments show that the system evolves to a new steady
state where only the larger sphere will survive. However, we are far away from
being able to prove such a result rigorously, as singularities in the solutions will
necessarily occur due to changes in the topology.

(iii) Recall from Chapter 1 that we have a clear interpretation of the stability
condition ζ∗ < 1. This corresponds to a local maximum of the total entropy. On
the other hand, we have no explanation for the stability result in case δ∗ > 1. In
this case, even a saddle point of the total entropy might be stable! We believe that
there are some other physical restrictions which exclude this case.

Proof. In the proof we will drop the superscript j, as it does not matter here. We
begin with the instability part of (ii)
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(a) The proof follows the lines of that of Theorem 5.4.1, with some modifications
due to the presence of the auxiliary equation (11.11). First we observe that there
is an increasing continuous function η(r) with η(0) = 0 such that the following
estimate holds

|e−κtN(w̄, z̃)|F(a) ≤ η(r)(|e−κtw̄|
Ê(a) + |e−κtz̃|E(a)), (11.13)

for all z ∈ E(a) with |z(t)|Xγ
≤ r. Here κ > 0 is a given number, and these

estimates are independent of the length a of the interval. This follows from the
nonlinear estimates in Section 9.5. Moreover, it is not difficult to see that any
solution z̃ ∈ Ẽ(a) of (11.7) enjoys the additional regularity z̃ ∈ E(a), and that the
a priori estimate

|e−κtz̃|E(a) ≤ C(|e−κtz̃|
Ẽ(a) + |e−κtz̄|E(a)) (11.14)

holds, where the constant C is independent of a.
Next we devise a spectral decomposition as in the proof of Theorem 5.4.1.

As we are in the unstable case, the operator −L has a finite number of positive
eigenvalues. We choose κ > 0 and μ > 0 in such a way that [κ−μ, κ+μ] ⊂ (0,∞),
and such that all positive eigenvalues are contained in (κ+μ,∞), thereby defining a
spectral gap. We denote the spectral projections in X0 associated with the positive
eigenvalues by P+, the corresponding bounded linear operator induced by L by
L+ = P+L and correspondingly P− = I − P+ and L− = P−L. Then we have the
estimates

|P−e−Lt|B(X0) ≤ Me(κ−μ)t, |P+e
L+t|B(Xi) ≤ Me−(κ+μ)t, t > 0, i = 0, 1, γ.

Note that on X+ = P+X0 the norms | · |i are equivalent; in fact we have X+ ⊂ X1.
Assume that z∗ = 0 is stable in Xγ . As in the proof of Theorem 5.4.1 we

will obtain a contradiction, however, the arguments are slightly more involved.
Stability of 0 implies that for every r > 0 there is a number δ > 0 such that
Problem (11.5) admits a global solution z ∈ E(∞) with |z(t)|Xγ

≤ r for all t ≥ 0,
whenever z0 ∈ BXγ

(0, δ).
We first use maximal Lp-regularity of Lω in the auxiliary equation (11.11)

on R+ and (11.13) to obtain for an arbitrary a > 0

|e−κtw̄|
Ê(a) ≤ C(|z̄0|Xγ

+ |e−κtN(w̄, z̃)|F(a))
≤ C1(|z̄0|Xγ

+ η(r)(|e−κtw̄|
Ê(a) + |e−κtz̃|E(a))).

Choosing r small enough we have C1η(r) ≤ 1/2, and hence

|e−κtz̄|E(a) ≤ |e−κtw̄|
Ê(a) ≤ C2(|z̄0|Xγ + η(r)|e−κtz̃|E(a)). (11.15)

Next we use estimate (11.14), maximal Lp-regularity of L− on R+, the embedding
E(a) ↪→ Lp((0, a);X0), and (11.15) to the result

|e−κtz̃|E(a) ≤ C(|e−κtP+z̃|Ẽ(a) + |e−κtP−z̃|Ẽ(a) + |e−κtz̄|E(a))
≤ C3(|e−κtP+z̃|Ẽ(a) + |P−z̃0|Xγ

+ |z̄0|Xγ
+ η(r)|e−κtz̃|E(a)).
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Assuming C3η(r) ≤ 1/2 then yields

|e−κtz̃|E(a) ≤ C4(|e−κtP+z̃|Ẽ(a) + |P−z̃0|Xγ
+ |z̄0|Xγ

). (11.16)

For the part e−κtP+z̃ we use the relation

∂t(e
−κtP+z̃) = −(κ+ L+)e

−κtP+z̃ + ωP+Pz̄,

the fact that A+ is bounded, and the embedding E(a) ↪→ Lp((0, a);X0) to the
result

|e−κtP+z̃|Ẽ(a) ≤ C(|e−κtP+z̃|Lp((0,a);X+) + |e−κtz̄|E(a)). (11.17)

Now we employ the assumption |z(t)|Xγ
≤ r to obtain

|e−κtP+z|Lp((0,a);X+) ≤ Cr, for all a > 0.

This implies with (11.15), (11.16), (11.17), and E(a) ↪→ Lp((0, a);X0)

|e−κtP+z̃|Ẽ(a) ≤ C(|e−κtP+z̃|Lp((0,a);X+) + |e−κtz̄|E(a))
≤ C(|e−κtP+z|Lp((0,a);X+) + |e−κtz̄|E(a))
≤ C5(r + |z̄0|Xγ + η(r)|P−z̃0|Xγ + η(r)|e−κtP+z̃|Ẽ(a))

and hence, assuming C5η(r) ≤ 1/2,

|e−κtP+z̃|Ẽ(a) ≤ C6(r + |z̄0|Xγ
+ η(r)|P−z̃0|Xγ

).

Combining this last estimate with (11.15) and (11.16) results in

|e−κtz̃|E(a) + |e−κtz̄|E(a) ≤ C7(r + |z̄0|Xγ + |P−z̃0|Xγ ), a > 0. (11.18)

In particular, this inequality shows with a → ∞

|e−κtz̃|E(∞) + |e−κtz̄|E(∞) < ∞.

From Hölder’s inequality, the embedding E(∞) ↪→ Lp(R+;X0), and (11.18) follows

e−κt

∫ ∞

t

|e−L+(t−s)P+Pz̄(s)|X+ ds ≤ C(μ)|e−κtz̄|E(∞) < ∞,

showing that the integral
∫∞
t

e−L+(t−s)P+Pz̄ ds exists in X+ for every t ≥ 0.
Moreover, its norm in X+ grows no faster than an exponential function Ceκt.
Therefore, by means of the variation of parameters formula we may write

P+z̃(t) = e−L+tP+z̃0 + ω

∫ t

0

e−L+(t−s)P+Pz̄(s) ds

= e−L+t
(
P+z̃0 + ω

∫ ∞

0

eL+sP+Pz̄(s) ds
)
− ω

∫ ∞

t

e−L+(t−s)P+Pz̄(s) ds.
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The estimate,∣∣∣eL+t
(
P+z̃(t) + ω

∫ ∞

t

e−L+(t−s)P+Pz̄(s) ds
)∣∣∣

X+

≤ Ce−μt(|e−κtz̃|E(∞) + |e−κtz̄|E(∞)),

where we used the embedding P+E(∞) ↪→ Cb(R+, X+) to bound the first term,
then shows that

P+z̃0 + ω

∫ ∞

0

eL+sP+Pz̄(s) ds = 0. (11.19)

Therefore, we obtain

P+z̃(t) = −ω

∫ ∞

t

e−L+(t−s)P+Pz̄(s) ds, (11.20)

which we may use as in the proof of Theorem 5.4.1 to produce a contradiction.
In fact, the representation (11.20) in conjunction with Young’s inequality for

convolution integrals and (11.17) leads to

|e−κtP+z̃|Ẽ(a) ≤ C|e−κtz̄|E(a).

We may now conclude with (11.15) and (11.16) by similar arguments as above
that

|e−κtz̃|E(∞) + |e−κtz̄|E(∞) ≤ C8(|P−z̃0|Xγ + |z̄0|Xγ ).

As

|z̄0|Xγ
= |φ(z̃0)|Xγ

≤ ε|z̃0|Xγ
,

if r > 0 is small enough, we obtain by (11.19) an inequality of the form

|P+z̃0|Xγ ≤ C|P−z̃0|Xγ ,

which, as in the proof of Theorem 5.4.1, yields a contradiction. This completes the
proof of the instability assertion in (ii).

(b) Next we use the spectral decomposition of L according to Chapter 10, where
P s denotes the projection onto the stable subspace Xs

0 = P sX0 = R(L) and P c

the complementary projection onto Xc
0 = P cX0 = N(L). We set y = P sz̃ and

x = P cz̃ and note that we may parameterize the equilibria over P cSX∗ = P cX0

according to

z∞ = x∞ + ψ(x∞) + φ(x∞ + ψ(x∞)), x∞ ∈ Xc
0 ,

solving the nonlinear stationary problem

Lsy = ωP sPφ(x+ y)
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by the implicit function theorem. We set y∞ = ψ(x∞). Also, applying the projec-
tion P s to the equation for z̃ we obtain the problem

∂ty + Lsy = ωP sPz̄, t > 0, y(0) = y0 − y∞,

and for x we have

∂tx = ωP cPz̄, t > 0, x(0) = x0 − x∞.

Then we rewrite problem (11.11)–(11.12) as H(v, (x∞, y0)) = 0, where v =
(w̄, y, x, x0) and

H(v, (x∞, y0)) =

⎡⎢⎢⎢⎢⎣
(
Lωw̄ −N(v, x∞)), z̄(0)− φ(x0 + y0) + φ(x∞ + y∞)

)(
∂ty + Lsy − ωP sPz̄, y(0)− y0 + ψ(x∞

)
x(t) + ω

∫∞
t

P cPz̄ ds

x0 − x∞ + ω
∫∞
0

P cPz̄ ds

⎤⎥⎥⎥⎥⎦ .

It follows from the results in Section 9.5 that the mapping

H : Ê(∞, δ)× P sẼ(∞, δ)× P cẼ(∞, δ)×Xc
0 × (Xc

0 ×Xs
γ)

→ (F(∞, δ)×Xγ)× (Lp(R+; δ,X
s
0)×Xs

γ)× (Lp(R+; δ,X
c
0)×Xc

0)

is of class C1 w.r.t (v, y0), continuous w.r.t. x∞, and differentiable w.r.t. x∞ at
x∞ = 0. The Fréchet derivative DvH(0, 0) w.r.t. the variable v is given by the
operator matrix

DvH(0, 0) =

⎡⎢⎢⎣
(Lω, tr) 0 0 0

∗ (∂t + Ls, tr) 0 0
∗ 0 I 0
∗ 0 0 I

⎤⎥⎥⎦ . (11.21)

Here the stars indicate bounded linear operators which, because of the triangular
structure of the operator matrix, we do not compute explicitly, as the diagonal
terms of this operator matrix are invertible. Therefore, by the implicit function
theorem, we find balls BXc

0
(0, r) and BXs

γ
(0, r), and a continuous map

T : BXc
0
(0, r)×BXs

γ
(0, r) → Ê(∞, δ)× Ẽ(∞, δ)×Xc

0 , T (x∞, y0) = (w̄, z̃, x0),

with T (0, 0) = 0. Here we remind that w̄ = (z̄, π̄). Then (w, π) := (z̄ + z̃ + z∞, π̄)
defines the unique solution of (11.5) such that

z(t) → z∞ := x∞ + ψ(x∞) + φ(x∞ + ψ(x∞)) in Xγ as t → ∞.

This completes the construction of the stable foliation of the problem. Note that
T is C1 also in y0, but only continuous in x∞, unless we require more regularity
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for the parameter functions. Nonetheless, T is differentiable with respect to x∞ at
x∞ = 0.

To complete the proof of (i), the question which remains is whether the
map (x∞, y0) �→ (x0, y0) is surjective near 0. To prove this, we use degree theory.
For this purpose, define a map f : BXc

0
(0, r) × BXs

0
(0, r) → Xc

0 by means of
f(x∞, y0) = x0(x∞, y0). We know that this map is continuous, and it is close to
identity. In fact, differentiating the relation

H1(T (x∞, y0), T (x∞, y0)) = 0

with respect to (x∞, y0) at (0, 0) we obtain (Dx∞T1(0, 0), Dy0T1(0, 0)) = 0. Here
H1 denotes the first line of H and T1 the first component of T , resepectively. This
implies (Dx∞ z̄(0, 0), Dy0 z̄(0, 0)) = 0. From the representation

f(x∞, y0) = x∞ − ω

∫ ∞

0

P cPz̄ ds,

we then infer that for every ε > 0 there is a constant ρ > 0 such that

|f(x∞, y0)− x∞|Xc
0
≤ ω

∫ ∞

0

|P cPz̄|Xc
0
ds ≤ ε(|y0|Xs

γ
+ |x∞|Xc

0
),

whenever |(x∞, y0)| ≤ ρ, with ρ ≤ r. In the following, we fix ε < 1/3. Here y0 only
serves as a parameter, so we are in a finite dimensional setting and may employ
the Brouwer degree, in particular its homotopy invariance. Define the homotopy
h(τ, x, y0) = τf(x, y0) + (1− τ)x, and consider the degree

deg(h(τ, ·, y0), BXc
0
(0, r), ξ).

For τ = 0 it is equal to one, hence it is equal to one for all τ ∈ [0, 1] provided
there are no solutions of h(τ, x, y0) = ξ with |x|Xc

0
= r. To show this, suppose

h(τ, x, y0) = ξ, i.e., ξ − x = τ(f(x, y0) − x), and |x|Xc
0
= r. Then by the above

estimate

r = |x|Xc
0
≤ |ξ|Xc

0
+ |x− ξ|Xc

0
≤ |ξ|Xc

0
+ ε(|y0|Xs

γ
+ |x|Xc

0
) < r,

provided |ξ|Xc
0
≤ r/2 and |y0|Xs

γ
≤ r/2. Therefore, deg(f(·, y0), BXc

0
(0, r/2), ξ)

equals one as well, showing that the equation f(x∞, y0) = ξ has at least one
solution for ξ ∈ BXc

0
(0, r/2), i.e., we have surjectivity near zero. This completes

the proof of part (i) of the theorem.

(c) For the instability part we have a third projection Pu, the unstable projection,
which coincides with the projection P+ from part (a) of this proof. Accordingly
we set Xu

0 = PuX0 and observe that Xu
0 = X+ from (a) above. This gives another

equation, namely

∂ty
u + Luyu = ωPuPz̄, t > 0, yu(0) = yu0 − Puψ(x∞).
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In the sequel, ys denotes the stable part, replacing y from (b). Thus, we now have
y = ys+yu. We first construct the stable foliation in Xγ , by solving for the variable
v = (w̄, ys, yu, x, x0). The problem to be solved reads

H(v, (x∞, ys0)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
Lωw̄ −N(w̄, y, x, x∞), z̄(0)− φ(x0 + y0) + φ(x∞ + y∞)

)(
∂ty

s + Lsys − ωP sPz̄, ys(0)− ys0 + P sψ(x∞)
)

yu(t) + ω
∫∞
t

e−Lu(t−s)PuPz̄ ds,

x(t) + ω
∫∞
t

P cPz̄ ds

x0 − x∞ + ω
∫∞
0

P cPz̄ ds

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This map is shown to be of class C1 in (v, ys0), but only continuous in x∞, employing
once more the results from Section 9.5, in the same way as in the previous step,
and its Fréchet derivative DvH(0, 0) w.r.t. the variable v is given by the triangular
operator matrix

DvH(0, 0) =

⎡⎢⎢⎢⎢⎣
(Lω, tr) 0 0 0 0

∗ (∂t + Ls, tr) 0 0 0
∗ 0 I 0 0
∗ 0 0 I 0
∗ 0 0 0 I

⎤⎥⎥⎥⎥⎦ .

This operator is invertible by its triangular structure, as its diagonal entries are
invertible. Therefore, by the implicit function theorem, we find balls BXc

0
(0, r) and

BXs
γ
(0, r) and a continuous map

T : BXc
0
(0, r)×BXs

γ
(0, r) → Ê(∞, δ)× Ẽ(∞, δ)×Xc

0 , T (x∞, y0) = (w̄, z̃, x0),

with T (0, 0) = 0. Then (w, π) := (z̄ + z̃ + z∞, π̄) yields the unique solution of
(11.5) such that

z(t) → z∞ := x∞ + ψ(x∞) + φ(x∞ + ψ(x∞)) in Xγ as t → ∞.

Note that the initial value of yu is given by yu(0) = −ω
∫∞
0

eL
usPuPz̄ ds. To prove

the second assertion in (ii), suppose that z is a solution of (11.5) which stays in a
small ball BXγ (0, r). Then we proceed as in part (a) of this proof to show that its
initial value satisfies

yu(0) = −ω

∫ ∞

0

eL
usPuPz̄(s) ds.

By uniqueness this shows that the initial value of this solution sits on the stable
manifold, hence the solution converges exponentially fast to some z∞ ∈ E in Xγ .
This completes the proof of the second part of (ii). �
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11.4 Global Existence and Convergence

We have seen in Section 1.2 that the negative total entropy is a strict Lyapunov
functional for all problems. Therefore the limit sets of solutions in the state man-
ifolds SMj are contained in the manifold E ⊂ SMj of equilibria. Recall also that
E does not depend on the problem under consideration, except for (P2) where the
balls making up Ω1 may have arbitrary radii.

There are several obstructions for global existence:

• regularity: the norms of either u(t), θ(t), Γ(t), and in addition of [[d(θ)∂νθ]]
in Problems 1 and 3, may become unbounded;

• well-posedness: the well-posedness conditions 0 < θ < θc (set θc = ∞ in
Problems 1−4), or invertibility of κΓTΓ in Problems 1, 3 and 5 may be vio-
lated;

• geometry: the topology of the interface may change;
or the interface may touch the boundary of Ω;
or a part of the interface may contract to a point.

Note that the relevant compatibility conditions and the regularity of the solutions
are preserved by the semiflow. Recalling the definition of TΓ, observe that in
Problems 1 and 3, κΓTΓ = l(θ)2/θσ, hence in this case κΓTΓ is invertible if and
only if l(θ) �= 0.

Let z be a solution in the state manifold SMj . By the uniform ball condition
we mean the existence of a radius r0 > 0 such that for each t ∈ [0, t+) at each
point x ∈ Γ(t) there exist centers xi ∈ Ωi(t) such that B(xi, r0) ⊂ Ωi and Γ(t) ∩
B̄(xi, r0) = {x}, i = 1, 2. Note that this condition bounds the curvature of Γ(t),
prevents parts of it to shrink to points, to touch the outer boundary ∂Ω, and to
undergo topological changes.

With this property, combining the local semiflow for Problem (Pj) with the
corresponding Lyapunov functional (i.e., the negative total entropy), relative com-
pactness of bounded orbits, and the convergence results from the previous section,
we obtain the following global result.

Theorem 11.4.1. Let p > n + 2 and (Hj) hold, j = 1, . . . , 6, and set s = 4 − 3/p
for j = 1, 3, 5, s = 3− 2/p for j = 2, 4, 6.

Suppose that (u, θ,Γ) is a solution of Problem (Pj) in the state manifold SMj

on its maximal time interval [0, t+). Assume there are constants M,m > 0 such
that the following conditions hold on [0, t+).

(i) |u(t)|
W

2−2/p
p

, |θ(t)|
W

2−2/p
p

, |Γ(t)|W s
p
≤ M < ∞,

and in addition |[[d(θ(t))∂νθ(t)]]|W 2−6/p
p

≤ M for Problems 1 and 3;

(ii) m ≤ θ(t) ≤ θc −m;

(iii) m ≤ |μk(t)| for all eigenvalues μk(t) of κΓ(t)TΓ(t) in L2(Γ(t)) for Problems
1,3,5;
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(iv) Γ(t) satisfies the uniform ball condition.

Then t+ = ∞, i.e., the solution exists globally, and its limit set ω+(u, θ,Γ) ⊂ E
is nonempty. If furthermore (0, θ∞,Γ∞) ∈ ω+(u, θ,Γ) is normally stable, then the
solution converges in SMj to this equilibrium.

On the contrary, if (u(t), θ(t),Γ(t)) is a global solution in SMj which con-
verges to an equilibrium (0, θ∗,Γ∗) in SMj as t → ∞, with l∗ �= 0 and δ∗, ζ∗ �= 1,
then (i)–(iv) hold.

Proof. Assume that (i)–(iv) are valid. Then Γ([0, t∗)) ⊂ W s
p (Ω, r) is bounded,

hence relatively compact in W s−ε
p (Ω, r), for small ε > 0, see Section 2.4.2 for the

definition of W s
p (Ω, r). Thus we may cover this set by finitely many balls with

centers Σk real analytic, k = 1, . . . , N, in such a way that

distW s−ε
p

(Γ(t),Σj) ≤ δ for some j = j(t) ∈ {1, . . . , N}, t ∈ [0, t∗).

Let Jk = {t ∈ [0, t∗) : j(t) = k}. Using for each k a Hanzawa-transformation
Ξk, we see that the pull backs {(u(t, ·), θ(t, ·)) ◦ Ξk : t ∈ Jk} are bounded in

W
2−2/p
p (Ω \ Σk)

n+1, hence relatively compact in W
2−2/p−ε
p (Ω \ Σk)

n+1. Employ-
ing now Theorem 9.2.1 we obtain solutions (u1, θ1,Γ1) with initial configurations
(u(t), θ(t),Γ(t)) in the state manifold on a common time interval, say (0, τ ], and
by uniqueness we have

(u1(τ), θ1(τ),Γ1(τ)) = (u(t+ τ), θ(t+ τ),Γ(t+ τ)).

Continuous dependence implies that the orbit of the solution (u(·), θ(·),Γ(·)) is
relative compact in SMj , in particular t∗ = ∞ and (u, θ,Γ)(R+) ⊂ SMj is
relatively compact. The negative total entropy is a strict Lyapunov functional,
hence the limit set ω+(u, θ,Γ) ⊂ SMj of a solution is contained in the set E of
equilibria. By compactness ω+(u, θ,Γ) ⊂ SMj is nonempty, hence the solution
comes close to E , and stays there. Then we may apply Theorem 11.3.1 to obtain
convergence of such solutions. The converse assertion follows by a compactness
argument. �

Remark 11.4.2. (a) Recall from Chapter 10 that any equilibrium (0, θ∗,Γ∗) ∈ E is
normally stable for Problem 2. It is normally stable for Problems 4 and 6 if and
only if Γ∗ is connected. For Problems 1, 3, 5 it is normally stable if and only if
either δ∗ > 1; or δ∗ < 1, Γ∗ is connected, and the stability condition ζ∗ < 1 holds.

(b) We conjecture that convergence also holds in case (0, θ∗,Γ∗) ∈ E is normally
hyperbolic. Then we would have convergence of all solutions which do not develop
singularities, except in the pathological cases for Problems 1, 3, 5 where l∗ = 0 or
δ∗ = 1 or ζ∗ = 1.

(c) In the proof of Theorem 11.3.1 we have constructed the stable foliations for
the Problems (Pj) near an equilibrium. In a similar way we can also construct the
unstable foliations.



Chapter 12

Further Parabolic Evolution
Problems

In this final chapter, we apply the theory of quasilinear parabolic evolution equa-
tions developed in Chapter 5 to several parabolic evolution problems to show the
strength of the tools and techniques of this book. These problems include gen-
eralized Newtonian flows, nematic liquid crystal flows, Maxwell-Stefan diffusion
problems, Stefan problems with variable surface tension, and, last but not least,
several classes of geometric evolution equations. By means of our methods, many
other parabolic evolution problems can be solved in the same – or at least in a
similar – way.

12.1 Generalized Newtonian Flows

In this section we study boundary value problems for the Navier-Stokes system
of a class of non-Newtonian fluids, the so-called generalized Newtonian fluids. By
this we mean the following problem.

∂t(�u) + div (�u⊗ u) = div T in Ω,

μ[∇u+ (∇u)T]− πI = T in Ω,

div u = 0 in Ω,

u(0) = u0 in Ω.

(12.1)

Here Ω ⊂ Rn, n ≥ 2, denotes the domain occupied by the fluid, and Σ = ∂Ω means
the boundary of Ω. We assume that Σ is compact and of class C3−. Throughout,
u(t, x) means the velocity field of the fluid, π(t, x) the pressure, and T (t, x) the
stress tensor. The numbers � > 0, μ > 0 represent the density and viscosity of the
fluid, respectively. We assume that � > 0 is constant, w.l.o.g. � = 1.
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On the other hand, the (nonconstant) viscosity μ will be taken of generalized
Newtonian type, i.e.,

μ = μ(|D|22), D =
1

2
[∇u+ (∇u)T]. (12.2)

Here D = (εij) denotes the rate of strain tensor and

|D|22 =

n∑
i,j=1

ε2ij

its Hilbert-Schmidt norm. Note that the first invariant of D, namely trD = div u
is zero and, hence, the Hilbert-Schmidt norm of D coincides with the second
invariant of D up to a constant factor. It is believed that many isotropic fluids
which are not subject to viscoelastic memory effects can be described by such a
material law. A standard model in the mathematical literature is

μ(s) = μ0(1 + s)(d−2)/2, s ≥ 0,

where d ≥ 1, and μ0 > 0. The case d = 2 corresponds to the Newtonian case.
For this nonlinear problem, the energy is only kinetic, E =

∫
Ω

1
2 |u|2 dx, and

energy balance reads

∂tE+ 2

∫
Ω

μ(|D|22)|D|22 dx

+

∫
Σ

[−μ(|D|22)(PΣu|PΣDν) + (u|ν)
(1
2
|u|2 + π − (Sν|ν)

)
] dΣ = 0.

(12.3)

Four boundary conditions are of physical interest, namely the no-slip or Dirichlet
condition

u = 0 on Σd,

slip with damping (Navier-condition)

PΣDν = −αPΣu, (u|ν) = 0 on Σs,

damped outflow

PΣu = 0,
(1
2
|u|2 + π

)
− (ν|Sν) = β(u|ν) on Σo,

and the damped Neumann condition

PΣDν = −αPΣu,
(1
2
|u|2 + π

)
− (ν|Sν) = β(u|ν) on Σn.

Here PΣ means the orthogonal projection onto the tangent bundle of Σ, and we
have decomposed Σ = ∂Ω disjointly as Σ = Σd∪Σs∪Σo∪Σn, where each set Σj is
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open and closed in Σ. The outer unit normal of Ω at x ∈ Σ is denoted by ν = ν(x).
We emphasize that some components Σj might be empty. The coefficients α, β are
assumed to be C1 and nonnegative. These boundary conditions lead to the energy
balance

∂tE+ 2

∫
Ω

μ(|D|22)|D|22 dx+

∫
Σ

(
αμ(|D|22)|PΣu|2 + β(u|ν)2

)
dΣ = 0, (12.4)

where we set α = 0 on Σd ∪Σo, and β = 0 on Σd ∪Σs. This shows that the energy
E =

∫
Ω
�|u|2/2 dx is dissipative.

1.1 Main Result
With the definition of T := S − πI we have S = 2μ(|D|22)D, with D = (εij(u)),

[divS]i = μ(|D|22)
n∑

k=1

(∂2
kui + ∂i∂kuk) + 4μ′(|D|22)

n∑
j,k,l=1

εijεkl∂jεkl

= μ(|D|22)
n∑

k=1

(∂2
kui + ∂i∂kuk) + 4μ′(|D|22)

n∑
j,k,l=1

εik(u)εjl(u)∂k∂luj

=

n∑
j,k,l=1

aklij (u)∂k∂luj .

Here we have set

aklij (u) = μ(|D|22)(δklδij + δilδjk) + 4μ′(|D|22)εik(u)εjl(u). (12.5)

Observe that aklij (u) are real and that the symmetries aklij = alkji = aijkl = ailkj = akjil
are valid.

Define the quasilinear differential operator A(u,∇) as

A(u,∇) = −
n∑

k,l=1

aklij (u)∂k∂l.

If the function u ∈ B
2μ−2/p
qp (Ω;Rn) is known and 1 ≥ μ > 1/2 + 1/p+ n/2q then

by the Sobolev embedding B
2μ−2/p
qp (Ω;Rn) ↪→ C1

b (Ω;R
n) the coefficients of the

differential operator A(x,∇) = A(u(x),∇) are uniformly continuous and

[A(∞,∇)v]i = −μ(0)

n∑
k=1

(∂2
kvi + ∂i∂kvk)

in case Ω is unbounded, since |u(x)| + |Du(x)| → 0 as |x| → ∞. Denoting the
boundary operators on Σj by Bj(u,∇), problem (12.1), complemented by the
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boundary conditions discussed above, can be rewritten as

∂tu+A(u,∇)u+∇π = f(u) in Ω,

div u = 0 in Ω,

Bj(u,∇)u = 0 on Σj , j = d, s, o, n,

u(0) = u0 in Ω.

(12.6)

Here the boundary operators Bj will be Bd(u,∇)u = (PΣu, (u|ν)) on Σd. Moreover,
we obtain

Bs(u,∇)u = (PΣDν + αPΣu, (u|ν)) on Σs,

Bo(u,∇)(u, π) = (PΣu, 2μ(|D|22)(ν|∂νu)− π − |u|2/2 + β(u|ν)) on Σo,

Bn(u,∇)(u, π) = (PΣDν + αPΣu, 2μ(|D|22)(ν|∂νu)−π−|u|2/2 + β(u|ν)) on Σn;

recall μ(s) > 0 for s ≥ 0. The nonlinearity f(u) is the convective term given by
f(u) = −u · ∇u.

Our main result is the following.

Theorem 12.1.1. Let Ω ⊂ Rn be a domain with compact boundary Σ := ∂Ω of
class C3−, where Σ = Σd ∪ Σs ∪ Σo ∪ Γn with disjoint, open and closed Σj. Let
1 ≥ μ > 1/2 + 1/p+ n/2q, and assume μ ∈ C2−(R̄+) is such that

μ(s) > 0 and μ(s) + 2sμ′(s) > 0, for all s ≥ 0. (12.7)

Assume α ∈ C1(Σs ∪ Σn), β ∈ C1(Σo ∪ Σn).

Then for each u0 ∈ B
2μ−2/p
qp (Ω;Rn) satisfying the compatibility conditions

div u0 = 0 in Ω,

u0 = 0 on Σd, (u0|ν) = 0 on Σs,

PΣu0 = 0 on Σo, PΣD(u0)ν = −αPΣu0 on Σs ∪ Σn,

(12.8)

there is a unique solution (u, π) of (12.6) on a maximal time interval [0, t+(u0)).
The solution is in the maximal regularity class

u ∈ H1
p,μ(J, Lq(Ω;R

n)) ∩ Lp,μ(J,H
2
q (Ω;R

n)), π ∈ Lp,μ(J ; Ḣ
1
q (Ω)).

Additionally,

π ∈ F 1/2−1/2q
pq,μ (J ;Lq(Σo ∪ Σn)) ∩ Lp,μ(J ;B

1−1/q
qq (Σo ∪ Σn))

for each interval J = [0, a] with a < t+(u0). The maximal time t+(u0) is charac-
terized by the property:

if t+(u0) < ∞ then lim
t→t+(u0)

u(t) does not exist in B2μ−2/p
qp (Ω;Rn).

The solution map u0 �→ u generates a local semiflow on

Xγ := {v ∈ B2−2/p
qp (Ω;Rn) : v satisfies (12.8)},

the natural phase space for the problem in the Lp-Lq-setting.
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1.2 Linearization
Let us check strong ellipticity of A(x,∇) := A(u,∇), where u ∈ B

2μ−2/p
qp (Ω;Rn)

is given. A simple computation shows for ξ ∈ Rn, η ∈ Cn, |ξ| = |η| = 1, by the
definition of aklij in (12.5) and using the summation convention,

aklij ξlηj = μ(ξkηi + ξiηk) + 4μ′εikεjlξlηj .

Using symmetry of D(u) = (εij) this yields

aklij ξlηj = 2μcik + 4μ′εik((D|C)),

where C = (cik) =
1
2 (ξ ⊗ η + η ⊗ ξ) and ((·|·)) means the inner product in Cn×n.

Next observe that this matrix is symmetric, hence we obtain

−(A(x, iξ)η|η) = aklij ξlηjξkηi

= 2μcikξkηi + 4μ′εikξkηi((D|C))
= 2μ|C|22 + 4μ′|((D|C))|2

= μ(|ξ|2|η|2 + |(ξ|η)|2) + 4μ′|(Dξ|η)|2.

Notice that (A(x, iξ)η|η) is real, for each x ∈ Ω, ξ ∈ Rn, η ∈ Cn. To obtain a
necessary condition for strong ellipticity, choose ξ as an eigenvector of D and η
perpendicular to ξ. This shows that the condition μ(s) > 0 for each s ≥ 0 is
necessary for strong ellipticity. Obviously this condition is also sufficient in case
μ′(|D|22) ≥ 0. So suppose that μ′(|D|22) < 0. Then the Cauchy-Schwarz inequality
implies

−(A(x, iξ)η|η) ≥ 2μ|C|22 + 4μ′|D|22|C|22 ≥ c|C|22,
provided we have

μ(s) > 0 and μ(s) + 2sμ′(s) > 0, for all s ≥ 0.

If |C|2 = 0 then (Cξ|ξ) = 0 which means |ξ|2(η|ξ) = 0, hence (η|ξ) = 0 since |ξ| = 1
by assumption. But this in turn yields 2Cξ = η|ξ|2, hence the contradiction η = 0.

Thus strong ellipticity is implied by (12.7), for each u ∈ B
2μ−2/p
qp (Ω;Rn).

We note that the condition μ(s) + 2sμ′(s) > 0 for s > 0 is also necessary, if
one allows for all symmetric D; choose e.g. D = diag(

√
s, 0, . . . , 0) to see this.

Next let us check normal strong ellipticity for the generalized Stokes problem
with aklij from (12.5). With C0 = ξ ⊗ u+ ν ⊗ v, C = 1

2 (C0 + [C0]T) and using sum
convention again, we have

aklij c
0
lj = μ(c0ik + c0ki) + 4μ′εikεjlc0lj = 2μcik + 4μ′εik((D|C)),

by symmetry of D. Note that the resulting matrix is symmetric. This yields

aklij c
0
ljc

0
ki = 2μ|C|22 + 4μ′|((D|C))|2,
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hence this expression is real and

aklij c
0
ljc

0
ki ≥ 2min{μ,μ+ 2μ′|D|22}|C|22.

Condition (12.7) implies aklij c
0
ljc

0
ki ≥ 0. If the left-hand side is zero, then C = 0.

This yields Cξ = 0 as well as Cν = 0, and leads to the relations

u+ (v|ξ)ν + (u|ξ)ξ = v + (v|ν)ν + (u|ν)ξ = 0.

Taking the inner product with ξ resp. ν we obtain (u|ξ) = (v|ν) = 0 and (u|ν) +
(v|ξ) = 0. We may then conclude

u = rν, v = −rξ,

in particular (u|v) = 0. Therefore, A(x,∇) is uniformly normally strongly elliptic,

for each fixed u ∈ B
2μ−2/p
qp (Ω;Rn).

1.3 The Nonlinear Problem
The nonlinear generalized Stokes problem will be solved by means of the abstract
results from Chapter 5. This is possible since the involved boundary conditions
will actually turn out to be linear and homogeneous and therefore the results from
Chapter 5 are available for the proof of Theorem 12.1.1.

For this purpose, let PHW denote the Helmholtz-Weyl projection in
Lq(Ω;R

n), and ∇∗ as introduced in Section 7.4, corresponding to the decom-
position of Σ = ∂Ω into its parts Σj , j = d, s, o, n. As in Section 6.3 we set

X0 = {u ∈ Lq(Ω,R
n) : ∇∗u = 0 on Σ},

and

X1 = {u ∈ H2
q (Ω,R

n)∩X0 : PΣu = 0 on Σd ∪Σo, PΣDν = −αPΣu on Σs ∪Σn},

equipped with their natural norms. The trace space turns out to be

Xγ,μ = {u ∈ B2μ−2/p
qp (Ω;Rn) : (12.8) holds},

which embeds into C1
b (Ω;R

n). Apply the Helmholtz-Weyl projection PHW to prob-
lem (12.6) to obtain the abstract quasilinear problem

u̇+ PHWA(u,∇)u = PHW f(u), t > 0, u(0) = u0. (12.9)

The operator family A(u) = PHWA(u,∇) by Theorem 7.3.2 has maximal Lp-
regularity for each u ∈ Xγ,μ. Note that the lower order terms on the boundary
coming from α, β and �|u|2/2 do not change the assertion of Theorem 7.3.2. Finally,
we set F (u) = −PHW (u · ∇u), and one checks easily by Sobolev embedding and
the regularity of μ that (A,F ) satisfies (5.2). So we may apply Theorem 5.1.1 to
prove Theorem 12.1.1.
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1.4 Stability and Long-Time Behaviour
Here we assume that α, β are strictly positive. Then E is even a strict Lyapunov
functional. In fact if ∂tE = 0 at some time instance, then D = 0 in Ω and u = 0
on Σ, hence u = 0 by the inequalities of Korn and Poincaré. This shows that the
only equilibrium is the trivial one, i.e., u∗ = 0, π∗ = const. We next show that
it is exponentially stable. As A0 := A(0) is the negative generator of an analytic
C0-semigroup in X0, by compact embedding the spectrum of A0 consists only of
eigenvalues of finite algebraic multiplicity, and these eigenvalues are independent
of p. So we may once more use an energy argument. Suppose that λ ∈ C is an
eigenvalue with eigenfunction u ∈ X1. Multiply the eigenvalue equation by u to
obtain after an integration by parts

0 = λ|u|2L2
+

∫
Ω

μ0|D|2 dx+

∫
Σ

(
αμ0|PΣu|2 + β(u|ν)2

)
dΣ.

This identity shows that λ must be real, and if λ ≥ 0 then D = 0 in Ω, and
also u = 0 on Σ, provided α, β > 0, hence u = 0. Therefore, all eigenvalues of
A0 = A(u, 0) are positive. Hence by the principle of linearized stability, u = 0 is
exponentially stable for the nonlinear problem. Moreover, Theorem 5.7.2 shows
that a solution which stays bounded in Xγ,μ must converge exponentially fast to
u∗ = 0. We summarize this in

Corollary 12.1.2. In addition to the assumptions of Theorem 12.1.1, let α, β be
strictly positive. Then
(i) u∗ = 0 is the only equilibrium of (12.9), and it is exponentially stable in Xγ .

(ii) If u is a solution of (12.9) which stays bounded in Xγ,μ, then it converges
exponentially fast to u∗ = 0 in Xγ .

We want to observe that except in very special cases, we may also allow for
α = β = 0. In fact, the property D = 0 implies that u must be an Euclidean
motion, i.e., of the form u = Qx+ b, with QT = −Q and b ∈ Rn. So, if the bound-
ary conditions and the geometry of Ω exclude such solutions, then the corollary
remains valid. For example, this is true if the no-slip part Σd of the boundary Σ
is nontrivial.

12.2 Nematic Liquid Crystal Flows

In this section we intend to apply the abstract results proved in Chapter 5 to a
system of equations which models the flow of isothermal incompressible isotropic
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nematic liquid crystals. The model reads as follows.

�(∂tu+ (u · ∇)u)− μΔu+∇π = −λdiv(∇d[∇d]T) in Ω,

∂td+ (u · ∇)d = γ(Δd+ |∇d|22d) in Ω,

div u = 0 in Ω,

(u, ∂νd) = (0, 0) on ∂Ω,

(u(0), d(0)) = (u0, d0) in Ω.

(12.10)

Here Ω denotes a bounded domain with boundary ∂Ω of class C2. The function
u : (0,∞)×Ω → Rn means the velocity field, π : (0,∞)×Ω → R the pressure and
d : (0,∞)×Ω → Rn represents the macroscopic molecular orientation of the liquid
crystal material. It is therefore reasonable to impose |d| = 1 pointwise, which we
will do only in the last section where this condition is important. The constants
�,μ, λ, γ > 0 represent density, viscosity, the competition between kinetic energy
and potential energy, and the microscopic elastic relaxation for the molecular
orientation field, respectively. For simplicity, we set � = μ = λ = γ = 1, as this
will not change the analysis.

The condition |d| ≡ 1 is indeed preserved by this system. This can be seen
as follows. Setting ϕ = |d|2 − 1 the elementary identities

∂t|d|2 = 2d · ∂td, Δ|d|2 = 2Δd · d+ 2|∇d|22, ∇|d|2 = 2d · ∇d,

and multiplication with d of the second line in (12.10) yields the problem

∂tϕ+ u · ∇ϕ = Δϕ+ 2|∇d|22ϕ in Ω

∂νϕ = 0 on ∂Ω,

ϕ(0) = 0 in Ω,

provided |d0| ≡ 1. Uniqueness of this parabolic convection-reaction diffusion equa-
tions yields ϕ ≡ 0, i.e., |d| ≡ 1.

2.1 Well-Posedness and Regularity
We reformulate (12.10) as an abstract quasilinear parabolic evolution equation

ż +A(z)z = F (z), t > 0, z(0) = z0, (12.11)

for the unknown z = (u, d). For this purpose we introduce the base space X0 as

X0 := Lq,σ(Ω)× Lq(Ω)
n,

where the subscript σ means solenoidal. We define the Neumann-Laplacian Dq in
Lq(Ω) by

Dq = −Δ, D(Dq) := {d ∈ H2
q (Ω)

n : ∂νd = 0 on ∂Ω}.

Dq has the property of maximal Lp-regularity, as has been shown in Chapter 6.
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Let P : Lq(Ω)
n → Lq,σ(Ω) denote the Helmholtz projection. As usual, we

define the Stokes operator Aq in Lq,σ(Ω) by

Aq = PΔ, D(Aq) := {u ∈ H2
q (Ω)

n : div u = 0 in Ω, u = 0 on ∂Ω}.

Aq also has the property of maximal Lp-regularity, see Chapter 7.
Next we define the space X1 by

X1 := D(Aq)× D(Dq),

equipped with its canonical norm. Then X1 ↪→ X0 densely.
The quasilinear part A(z) is given by the tri-diagonal matrix

A(z) =

[
Aq PBq(d)
0 Dq

]
,

where the operator Bq is given by

[Bq(d)h] := ∇dΔh+∇2h[∇d]T.

Obviously, B(d) : X1 → X0 is bounded, for each d ∈ C1(Ω)n and the map d �→
PBq(d) is polynomial, hence real analytic.

By the tri-diagonal structure of A(z) it is clear that A(z) also has the property
of maximal Lp-regularity, for each z ∈ C1(Ω)2n.

The semi-linear part F (z) is defined by

F (z) = (−P(u · ∇)u,−(u · ∇)d+ |∇d|22d),

which is also polynomial, hence a real analytic mapping from C1(Ω)2n into X0.
The natural trace space for the maximal regularity class

z ∈ H1
p,μ(J ;X0) ∩ Lp,μ(J ;X1)

is given by

Xγ,μ = (X0, X1)μ−1/p,p = DAq (μ− 1/p, p)×DDq (μ− 1/p, p),

for each μ ∈ (1/p, 1], and we set Xγ = Xγ,1 as before. We have the characteriza-
tions

d ∈ DDq (μ− 1/p, p) ⇔ d ∈ B2μ−2/p
qp (Ω)n, ∂νd = 0 on ∂Ω,

and

u ∈ DAq
(μ− 1/p, p) ⇔ u ∈ B2μ−2/p

qp (Ω)n ∩ Lq,σ(Ω), u = 0 on ∂Ω.

To have the embedding Xγ,μ ↪→ C1(Ω)2n at disposal, we impose the conditions

2

p
+

n

q
< 1,

1

2
+

1

p
+

n

2q
< μ ≤ 1. (12.12)

We are now in position to apply Theorem 5.1.1 to obtain the following result
on local well-posedness of (12.10) in the framework of Lp-theory.
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Theorem 12.2.1. Let p, q, μ be subject to (12.12), and assume z0 ∈ Xγ,μ, which

means that u0, d0 ∈ B
2μ−2/p
qp (Ω)n satisfy the compatibility conditions

div u0 = 0 in Ω, u0, ∂νd0 = 0 on ∂Ω.

Then, for some a = a(z0) > 0, there is a unique solution

z ∈ H1
p,μ(J,X0) ∩ Lp,μ(J ;X1), J = [0, a],

of (12.11). Moreover,

z ∈ C([0, a];Xγ,μ) ∩ C((0, a];Xγ),

i.e., the solution regularizes instantly in time. It depends continuously on z0 and
exists on a maximal time interval (0, t+). Therefore problem (12.11), i.e., (12.10),
generates a local semiflow in its natural state space Xγ .

As the nonlinearities A and F are real analytic, we may employ Theorem
5.2.1 to obtain further regularity of the solutions of (12.10).

Theorem 12.2.2. Suppose z0 ∈ Xγ,μ, and let

z ∈ H1
p,μ(J ;X0) ∩ Lp,μ(J ;X1)

be a solution of (12.10) on the interval J = [0, a]. Then for each k ∈ N,

tk∂k
t z ∈ H1

p,μ(J ;X0) ∩ Lp,μ(J ;X1).

Moreover, z ∈ Cω((0, a);X1).

Theorem 12.2.2 is employed below to justify time derivatives of the energy
functional. Employing scaling techniques jointly in time and space as in Section
9.4, it is possible to show via maximal regularity and the implicit function theorem
that u, π, d are real analytic in (0, a)× Ω.

2.2 Stability and Long Time Behaviour
The set {0} ×Rn consists of equilibria of (12.10) and forms a n-dimensional sub-
space of X1. The linearization of (12.10) at z∗ ∈ {0} × Rn is given by the linear
evolution equation

ż +A∗z = f, z(0) = z0,

in X0, where
A∗ = diag(Aq,Dq), D(A∗) = X1.

As Ω is bounded, the spectrum σ(Aq) consists only of positive eigenvalues and
0 �∈ σ(Aq). On the other hand, Dq has 0 as an eigenvalue, which is semi-simple, and
the remaining part of σ(Dq) consist only of positive eigenvalues. Thus σ(A∗)\{0} ⊂
[δ,∞) for some δ > 0 and the kernel of A∗ is given by

N(A∗) = {0} × Rn,
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hence it has dimension n. As a result we see that each equilibrium z∗ ∈ {0} × Rn

is normally stable. Now we are in position to apply the generalized principle of
linearized stability Theorem 5.3.1 to conclude the following stability result for the
equilibria of (12.10).

Theorem 12.2.3. Each equilibrium z∗ ∈ {0} × Rn is stable in Xγ . There exists a
number η > 0 such that any solution z(t) with initial value z0 ∈ Xγ , |z0− z∗|Xγ

≤
η, exists globally and converges to some z∞ ∈ {0} × Rn in Xγ at an exponential
rate as t → ∞.

The energy of the system is given by

E =
1

2

∫
Ω

[|u|2 + |∇d|22] dx = Ekin + Epot. (12.13)

Using the summation convention we have with an integration by parts

d

dt
Ekin(t) =

∫
Ω

∂tu · u dx

=

∫
Ω

[−(u · ∇)u−∇π +Δu− div(∇d[∇d]T)] · u dx

= −
∫
Ω

|∇u|2 dx+

∫
Ω

∂kdj∂idj∂kui dx,

as div u = 0 in Ω and u = 0 on ∂Ω. On the other hand, we have by another
integration by parts∫

Ω

|Δd+ |∇d|22d|2 dx =

∫
Ω

[Δd+ |∇d|22d] · [∂td+ (u · ∇)d] dx

= −
∫
Ω

[∂t∇d : ∇d− |∇d|22∂t|d|2/2] dx

+

∫
Ω

[(u · ∇)d ·Δd+ |∇d|22(u · ∇)|d|2/2] dx

= − d

dt
Epot(t)−

∫
Ω

∂k(ui∂idj)∂kdj dx

= − d

dt
Epot(t)−

∫
Ω

∂kui∂idj∂kdj dx,

provided |d| ≡ 1, by the Neumann boundary condition for d. Combining these
equations, we obtain the energy identity

d

dt
E(t) = −

∫
Ω

[|∇u|2 + |Δd+ |∇d|22d]2 dx. (12.14)

Therefore E(t) is nonincreasing along solutions. But E is also a strict Lyapunov
functional. In fact, if dE(t)/dt = 0 at some time instant, then by the energy
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equality we have ∇u = 0 and Δd + |∇d|22d = 0 in Ω. Therefore u = 0 by the
no-slip condition on ∂Ω, and d satisfies the nonlinear eigenvalue problem

Δd+ |∇d|22d = 0 in Ω,

|d|2 = 1 in Ω,

∂νd = 0 on ∂Ω.

(12.15)

But, as the lemma below shows, this implies ∇d = 0 in Ω, hence d = d∗ is constant
and z∗ := (0, d∗), |d∗| ≡ 1, is an equilibrium of the problem, z∗ ∈ E .

Lemma 12.2.4. Suppose that d ∈ H2
2 (Ω;R

N ) satisfies (12.15).
Then d is constant in Ω.

Proof. The idea is to reduce inductively the dimension N = n of the vector d.
This can be achieved by introducing polar coordinates according to

d1 = c1 cos θ, d2 = c1 sin θ, dj = cj−1, j ≥ 3.

Simple computations yield

1 = |d|2 = |c|2, |∇d|22 = |∇c|2 + c21|∇θ|2,

and
Δcj + [|∇c|2 + c21|∇θ|2]cj = 0 in Ω,

as well as ∂νcj = 0 on ∂Ω for j = 2, . . . , n − 1. Moreover, by an easy calculation
we further obtain

−Δc1 + c1|∇θ|2 = [|∇c|2 + c21|∇θ|2]c1 in Ω,

and
c1Δθ + 2∇c1 · ∇θ = 0 in Ω,

as well as
∂νc1 = c1∂νθ = 0 on ∂Ω.

Multiplying the former equation by c1θ and integrating over Ω we deduce

0 =

∫
Ω

[c1Δθ + 2∇c1 · ∇θ)]c1θ dx

=

∫
Ω

div[c21∇θ]θ dx = −
∫
Ω

c21|∇θ|2 dx,

hence c1∇θ = 0. This implies that c satisfies Problem (12.15) where the vector
c has dimension N − 1. Inductively, we arrive at dimension N = 1, and if d is a
solution of (12.15) with N = 1, then d ≡ 1 of d ≡ −1, by connectedness of Ω. �

Summarizing we have proved
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Proposition 12.2.5. The energy functional E defined on Xγ is a strict Lyapunov
function for system (12.10). The equilibria of the system are given by the set

E = {z∗ = (u∗, d∗) : u∗ = 0, d∗ ∈ Rn, |d∗| = 1},

which forms a manifold of dimension n − 1. The corresponding pressures π∗ are
constant as well.

Note that the side condition |d| = 1 is important, here.

Having the strict Lyapunov functional E at disposal we now employ Theorem
5.7.2 to obtain the final global result.

Theorem 12.2.6. Let z0 ∈ Xγ,μ with |d0| ≡ 1, and suppose that the solution z(t)
of (12.10) is eventually bounded in Xγ on its maximal interval of existence.

Then z(t) exists globally and limt→∞ z(t) =: z∞ ∈ E in Xγ .

Trivially, the converse of the statement in this result is also true.

12.3 Maxwell-Stefan Diffusion with Reactions

Let Ω ⊂ Rn be an open bounded domain with boundary ∂Ω of class C2+α and
outer unit normal field ν. We consider a mixture of N ≥ 2 species Ak with molar
masses Mk > 0 and individual mass densities �k ≥ 0 filling the container Ω. Mass
balance of the single component Ak reads

∂t�k + divx(�kuk) = Mkrk in Ω, t > 0,

where uk denotes the individual velocity of species Ak, satisfying (uk|ν) = 0 on
∂Ω, and rk is the rate of production of species Ak due to chemical reactions.
Observe that r should be positivity preserving, i.e., subject to the condition

�j ≥ 0, �k = 0 ⇒ rk ≥ 0,

and should satisfy
∑

k Mkrk = 0, which results in conservation of total mass. The
quantities of interest are the mass densities �k, while the individual velocities uk

are in general unknown and have to be modeled, as well as the reaction rates
rk. To reduce the complexity of these balance laws, we introduce the total density
� =

∑
k �k, the barycentric velocity u =

∑
k �kuk/�, the mass fractions yk = �k/�,

and the concentrations ck = �k/Mk = yk�/Mk. With these new variables, we
obtain the overall mass balance

∂t�+ divx(�u) = 0 in Ω, t > 0,

and (u|ν) = 0 on ∂Ω. The individual mass balances now become

�(∂tyk + u · ∇xyk) + divxJk = Mkrk in Ω, t > 0,
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where the diffusive fluxes Jk are given by

Jk = �k(uk − u), k = 1, . . . , N.

Note that, by definition,
∑

k yk = 1 and
∑

k Jk = 0.
So far, everything is physically exact in the framework of continuum me-

chanics. However, to obtain a closed model one has to prescribe laws for u, rk
and, most importantly, for the diffusive fluxes Jk. Here we are interested in the
incompressible, quiescent, isothermal case, which means

� = constant, u = 0, θ = constant.

These assumptions lead to the problem

�∂tyk + divxJk = Mkrk(y) in Ω, (Jk|ν) = 0 on ∂Ω, (12.16)

for k = 1, . . . , N , completed by initial data yk(0) = yk0 ≥ 0. We again emphasize
the constraints

N∑
k=1

Jk = 0,

N∑
k=1

yk = 1. (12.17)

Together with yk ≥ 0 this already implies L∞-bounds for yk, a very important
property. Therefore, when modeling the diffusive fluxes it is essential that positiv-
ity as well as conservation of mass are ensured.

In the Maxwell-Stefan approach to model diffusion, a balance of so-called
driving forces dk and friction forces fk is postulated, i.e., dk = fk. The friction
forces are modelled by

fk = �
∑
j �=k

fkjykyj(uj − uk) =
∑
j �=k

fkj(ykJj − yjJk), (12.18)

with the symmetric friction coefficients fkj = fjk > 0. These coefficients may
depend on the composition y, but in the sequel we assume them to be constant.
Observe that

∑
k fk = 0, so that the friction forces act only on the components

but not on the mixture.
The driving forces dk have to be modeled as well and are typically based on

the chemical potentials μk. In the mass-based approach we are using here and for
general chemical potentials μk = ∂yk

ψ, where ψ is the density of the constitutive
Helmholtz free energy, we assume

dk = yk

(
∇xμk −

N∑
j=1

yj∇xμj

)
. (12.19)

Note that these relations guarantee
∑

k dk = 0 for arbitrary free energies ψ. In the
sequel we assume (12.19), with the free energy

ψ =
∑
k

yk
Mk

[
log

(
yk/y

k
∗
)
− 1

]
, (12.20)
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suggested by chemistry. Here ck∗ = �
Mk

yk
∗ are the components of a constant chem-

ical equilibrium c∗ of the system; see below for more details.

3.1 The Maxwell-Stefan Equations
The assumptions dk = fk lead to the Maxwell-Stefan equations for the columns
Jα ∈ RN of the flux matrix J = (J1, . . . , JN )T ∈ RN×n. Writing

M = diag(Mj), e = [1, . . . , 1]T, P (y) = I − y ⊗ e = I − (·|e)y,

these equations read as follows:

B(y)Jα = P (y)M−1∂xαy, B(y) = [bij(y)], α = 1, . . . , n, (12.21)

bij(y) = fijyi for i �= j, bii(y) = −
∑
l �=i

filyl, i, j = 1, . . . , N.

We now study the Maxwell-Stefan equations (12.21) in more detail. More precisely,
we show that the restriction of the matrix B(y) to E = {e}⊥ is invertible for all
y in an open neighbourhood U ⊂ RN of D := {y ∈ RN : y ≥ 0, (y|e) = 1}, and
investigate the structure of its inverse

A(y) = (B(y)|E)−1.

We further show that the spectrum of

A0(y) = −A(y)P (y)M−1,

considered as an element of B(E), belongs to (0,∞) for all y ∈ U .

Lemma 12.3.1. For any y ∈ RN
+ we have

(i) The matrix B(y) = [bij(y)] is irreducible and quasi-positive;

(ii) the kernel of B(y) is N(B(y)) = span{y};
(iii) the range of B(y) is R(B(y)) = {e}⊥ =: E;

(iv) the spectrum satisfies σ(B(y)) \ {0} ⊂ (−∞, 0);

Proof. (i), (ii) and (iii) are direct consequences of the definition of B(y). Us-
ing the theorem of Perron-Frobenius for quasi-positive matrices we see that
s(B(y)) := max{Re(λ) | λ ∈ σ(B(y))} is a simple eigenvalue of B(y). Its
eigenspace is spanned by a positive vector, and no other eigenvalue has a pos-
itive eigenvector. This implies s(B(y)) = 0, and the remaining eigenvalues of
B(y) have negative real parts. Finally with Y = diag [yk], the similarity trans-
form Bs(y) := Y −1/2B(y)Y 1/2 symmetrizes B(y), hence all eigenvalues of B(y)
are necessarily real. �

This lemma shows in particular that B(y) may be restricted to an element
B(y)|E of B(E) for all y ∈ RN

+ . We show that B(y)|E is invertible for y on a larger
set containing D.



530 Chapter 12. Further Parabolic Evolution Problems

Lemma 12.3.2. There is an open neighbourhood U ⊂ RN of D such that for all
y ∈ U the restriction B(y)|E of B(y) to E is invertible. Denote its inverse by
A(y) = (B(y)|E)−1. Then there are real analytic functions a0i , a

1
ij : U → R such

that for all y ∈ U and h ∈ E the vector x = A(y)h may be represented by

xi = −a0i (y)hi + yi
∑
j �=i

a1ij(y)hj , i = 1, ..., N.

We have a0i (y) > 0 for yi = 0.

Proof. Step 1. We show that B(y)|E is invertible for y ∈ D. For y ∈ D̊ this follows
already from Lemma 12.3.1. So let y ∈ D be such that yk = 0 for some 1 ≤ k ≤ N .
Assume B(y)x = 0 for x ∈ E. We show x = 0. The structure of B(y) from (12.21)
implies that bkj = 0 for j �= k and bkk = −

∑
l �=k fklyl. Thus bkkxk = 0. Because of

fkl > 0 and (e|y) = 1 we have bkk �= 0, and therefore xk = 0. In this way B(y)x = 0
reduces to B̂(ŷ)x̂ = 0, where the (N−1)×(N−1)-matrix B̂(ŷ) results from deleting

the k-th row and the k-th column of B(y), and ξ̂ = (ξ1, . . . , ξk−1, ξk+1, . . . , ξN )T

for ξ ∈ RN . Since (ê|ŷ) = 1, the matrix B̂(ŷ) has the same structure as B(y)
in (12.21). Hence, if other components yk2

, . . . , ykm
of y vanish, we may argue

as before to obtain xk2
= ... = xkm

= 0. In case m = N − 1 we immediately
obtain x = 0 since x ∈ E. If m < N − 1, the remaining components x̃ of x satisfy
B̃(ỹ)x̃ = 0, where B̃(ỹ) is again as in (12.21), (ẽ|ỹ) = 1 and the components of
ỹ do not vanish. Since (ẽ|x̃) = 0, Lemma 12.3.1 applies to B̃(ỹ) and shows that
x̃ = 0. Altogether, it follows that x = 0, hence B(y)|E is injective. As E is finite
dimensional we obtain the invertibility of B(y)|E for all y ∈ D. Since B(y) depends
continuously on y, we obtain an open neighbourhood U of D such that B(y)|E is
invertible for all y ∈ U .

Step 2. To investigate the structure of A(y) = (B(y)|E)−1 for y ∈ U we introduce
the matrix

D(y) =

[
B(y) y
eT 0

]
.

We claim that D(y) is invertible on RN+1. Indeed, for given h ∈ RN and β ∈ R

the solution

[
x
α

]
∈ RN+1 of D(y)

[
x
α

]
=

[
h
β

]
is

x = (B(y)|E)−1(h− (e|h)y) + βy, α = (e|h),

for y ∈ D. Now fix h ∈ E. With β = 0, this yields a representation of x =

A(y)h in terms of D(y)−1, i.e.,

[
x
0

]
= D(y)−1

[
h
0

]
. Let Di(y) be the matrix that

results from replacing the i-th column of D(y) by

[
h
0

]
. Then xi = detDi(y)

detD(y) for

i = 1, . . . , N by Cramer’s rule. Expanding Di(y) with respect to the i-th column,

we obtain detDi(y) =
∑N

j=1(−1)i+jhj det D̂
ji(y), where D̂ji(y) is the matrix that
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results from deleting the j-th row and the i-th column of D(y). Now assume
j �= i. By (12.21), a row of D̂ji(y) is given by yi(fi1, . . . , fi,i−1, fi,i+1, . . . , fi,N−1, 1).

Expanding D̂ji(y) with respect to this row, we obtain that det D̂ji(y) is a multiple
of yi. This yields the representation

xi = −a0i (y)hi + yi
∑
j �=i

a1ij(y)hj ,

with coefficients analytic in y ∈ U . It remains to prove that a0i (y) > 0 for yi = 0.
In this case the structure of B(y) yields biixi = hi, where bii = −

∑
j �=i fijyj < 0

for y sufficiently close to D. Hence a0i (y) = −1/bii > 0. We have thus shown that
x = (B(y)|E)−1h may be represented as asserted. �

We next investigate the spectrum of A0(y) = −A(y)P (y)M−1 in E. To this

end we employ the symmetrization BS(y) := Y −1/2B(y)Y 1/2 for y ∈ D̊; note that
σ(BS(y)) ⊂ (−∞, 0] by Lemma 12.3.1. Kernel and range of BS(y) are given by
N(BS(y)) = span{y1/2} and R(BS(y)) = {y1/2}⊥, hence BS(y) is invertible on
{y1/2}⊥.
Lemma 12.3.3. Consider A0(y) as an element of B(E). Then there is an open
neighbourhood U ⊂ RN of D such that for all y ∈ U the spectrum of A0(y) belongs
to {Re z > 0}.
Proof. As A0(y) depends continuously on y, it suffices to show σE(A0(y)) ⊂ (0,∞)
for y ∈ D, since then we obtain σE(A0(y)) ⊂ {Re z > 0} for all y from a sufficiently
small neighbourhood U of D. Throughout, let λ be an eigenvalue of A0(y) with
eigenvector v ∈ E.

Step 1. Assume y ∈ D̊. Then P (y)M−1v = −λB(y)v. Using that Y −1 =
Y −1P (y) + (·|e)e and (v|e) = 0, we get

0 <
(
v
∣∣Y −1M−1v

)
=
(
v
∣∣Y −1P (y)M−1v

)
=−λ

(
v
∣∣Y −1B(y)v

)
=−λ(w|BS(y)w) ,

where w = Y −1/2v. Since BS(y) is negative semi-definte, we obtain λ > 0.

Step 2. Assume y ∈ D is such that yk = 0 for some 1 ≤ k ≤ N . We write

−λB(y)v = P (y)M−1v = M−1v − (M−1v|e)y. (12.22)

By the structure of B(y) from (12.21), here the k-th equation reads −λbkk(y)vk =
M−1

k vk, where bkk(y) < 0. Hence we either have λ > 0 and are finished, or vk = 0.
In the latter case, the equation (12.22) reduces to

−λB̂(ŷ)v̂ = M̂−1v̂ − (M̂−1v̂|ê)ŷ = P̂ (ŷ)M̂−1v̂,

where the hat means to delete the k-th row and the k-th column for a matrix and to
delete the k-th entry for a vector. If y has no further vanishing components we are
in the situation of Step 1 and conclude λ > 0. Otherwise, if yk2

= . . . = ykm
= 0,
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we obtain inductively that either λ > 0 or vk2 = . . . = vkm = 0, where necessarily
m < N − 1. In the latter case, as above we can reduce to the situation of Step 1,
and λ > 0 follows. �

For later purposes we investigate −A(y)P (y)Y in more detail.

Lemma 12.3.4. For y ∈ D̊ the matrix −A(y)P (y)Y is symmetric and positive
semi-definite. The restriction −A(y)P (y)Y |E is positive definite.

Proof. To show the symmetry we let Py1/2 = I − (·|y1/2)y1/2 be the orthogonal

projection onto {y1/2}⊥. Observing that A(y) = Y 1/2(BS(y)|E)−1Y −1/2, P (y)Y =
Y P (y)T and Py1/2 = Y −1/2P (y)Y 1/2, and recalling that the range of (BS(y)|E)−1

equals {y1/2}⊥, for v, w ∈ RN we calculate

(A(y)P (y)Y v|w) =
(
Y 1/2(BS(y)|E)−1Y 1/2P (y)Tv

∣∣w)
=
(
Py1/2(BS(y)|E)−1Y 1/2P (y)Tv

∣∣Y 1/2w
)

=
(
v
∣∣P (y)Y 1/2(BS(y)|E)−1Py1/2Y 1/2w

)
=
(
v
∣∣A(y)P (y)Y w

)
.

The inclusion σ(−A(y)P (y)Y |E) ⊆ (0,∞) follows as in Step 1 of the proof of
Lemma 12.3.3, replacing M−1 by Y . Hence −A(y)P (y)Y |E is positive definite.
Since RN = span{e} ⊕ E and e ∈ N(−A(y)P (y)Y ), we see that −A(y)P (y)Y is
positive semi-definite. �
3.2 Well-Posedness
The aim of this subsection is to show that there exists a unique solution of (12.16).
For this purpose, let us first reformulate (12.16) in the abstract form

�u̇+A(u)u = F (u), t > 0, u(0) = u0. (12.23)

For this purpose, define

X0 = Lp(Ω;E), X1 = {u ∈ W 2
p (Ω;E) | ∂νu = 0}.

In the sequel we will assume that p > n + 2, wherefore the embedding

W
2−2/p
p (Ω;E) ↪→ C1(Ω;E) is at our disposal. In this case one also has

W 2μ−2/p
p (Ω;E) ↪→ C1(Ω;E),

provided that μ > μ0 := (n + 2)/2p + 1/2. Note that for u ∈ W
2μ−2/p
p (Ω;E)

with μ ∈ (μ0, 1], the Neumann trace ∂νu on ∂Ω exists. Therefore the trace space
Xγ,μ = (X0, X1)μ−1/p,p is given by

Xγ,μ = {u ∈ W 2μ−2/p
p (Ω;E) : ∂νu = 0}.
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Let U ⊂ RN be the open neighbourhood of D from Lemma 12.3.2, V = U ∩(e/N+
E) a relative open set in e/N + E containing D, and define

Vμ = {u ∈ Xγ,μ : u(Ω) + e/N ∈ V}.

Then Vμ is an open subset of Xγ,μ, since Xγ,μ ↪→ C(Ω;E). For all u ∈ Vμ and all
v ∈ X1 we define the substitution operators A : Vμ → B(X1, X0) and F : Vμ → X0

by

A(u)v(x) = −div(A0(u(x) + e/N)[∇v(x)]T) (12.24)

= −A0(u(x) + e/N)Δv(x)−
n∑

j=1

[
N∑
l=1

∂lA0(u(x) + e/N)∂jul(x)

]
∂jv(x),

for x ∈ Ω, and
F (u)(x) = Mr(u(x) + e/N), x ∈ Ω.

It is easy to show (A,F ) ∈ C1(Vμ;B(X1, X0)×X0), provided r ∈ C1. The deriva-
tive of A is given by

[A′(u)h]v =− [A′
0(u+ e/N)]hΔv

−
n∑

j=1

[
N∑
l=1

∂jhl∂lA0(u+ e/N) + ∂jul[∂lA
′
0(u+ e/N)]h

]
∂jv,

where u ∈ Vμ, v ∈ X1 and h ∈ Xγ,μ.
To show that for each u ∈ Vμ the operator A(u) has maximal regularity of

type Lp, note that the principal part A#(u(x)) = −A0(u(x) +
1
N e)Δ is normally

elliptic for each u ∈ Vμ and x ∈ Ω, i.e., σ(A0(u(x) +
1
N e)) ⊂ {Re z > 0}. Further-

more, for each u ∈ Vμ, the boundary operator ∂ν satisfies the Lopatinskii-Shapiro
condition. Therefore, Theorem 6.3.2 shows that for each u ∈ Vμ, the operator A(u)
has maximal regularity of type Lp. We are now in a position to apply Theorem
5.1.1 which yields the following well-posedness result for (12.16).

Theorem 12.3.5. Let n ∈ N, p > n + 2, μ ∈ (μ0, 1] and let Ω ⊂ Rn be a bounded
domain with boundary ∂Ω ∈ C2. Suppose that r ∈ C1(U ;RN ) and (Mr(y)|e) = 0
for all y ∈ V. Then the following assertions are valid.

(a) For each y0 ∈ W
2μ−2/p
p (Ω,RN ) with y0(Ω) ⊂ V and ∂νy0 = 0 at ∂Ω, there

exists a > 0 and a unique solution

y ∈ H1
p,μ(J ;Lp(Ω,R

N )) ∩ Lp,μ(J ;H
2
p (Ω,R

N )) ∩ Cb(J ;W
2μ−2/p
p (Ω,RN ))

(12.25)
of (12.16) with y(t, x) ∈ V for all (t, x) ∈ J × Ω, J = [0, a].

(b) Each local solution can be extended to a maximal solution defined on a maxi-
mal interval of existence [0, t+(y0)) and (12.25) holds for each a ∈ (0, t+(y0)).
The mapping y0 �→ t+(y0) is lower semi-continuous and the mapping y0 �→
y(·, y0) is continuously Fréchet differentiable.
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(c) With J0 = (0, t+(y0), we have

y ∈ C1(J0;W
2−2/p
p (Ω,RN ))∩C2−1/p(J0;Lp(Ω,R

N ))∩C1−1/p(J0;W
2
p (Ω,R

N )).

3.3 Classical Solutions
In the situation of the above theorem, let us show that the solution y of (12.16)
is in fact classical, i.e.,

y ∈ C1((0, a];C(Ω,RN )) ∩ C((0, a];C2(Ω,RN ))

for each a ∈ (0, t+(y0)) if ∂Ω ∈ C2+α for some α > 0. Theorem 12.3.5 already

yields y ∈ C1((0, a];C(Ω,RN )), since W
2μ−2/p
p (Ω) is embedded into C(Ω) when-

ever p > n+ 2 and μ ∈ (μ0, 1].
Therefore it remains to show that y ∈ C((0, a];C2(Ω,RN )). To this end, we

write the equation for y in terms of u = y − e/N as −A(t, x)Δu(t, x) = g(t, x),
where A(t, x) = A0(u(t, x) + e/N) = A0(y(t, x)) and

g(t, x) =

N∑
j=1

[
n∑

l=1

∂lA0(y(t, x))∂jul(t, x)

]
∂ju(t, x)− �∂tu(t, x) + f(y(t, x)).

Clearly, by Theorem 12.3.5 and Sobolev’s embedding, there exists α ∈ (0, 1) such
that A ∈ Cα((0, a) × Ω;B(E)) and g ∈ Cα((0, a) × Ω;E). Note that for fixed
t∗ ∈ (0, a) the matrix A(t∗, x) is invertible for each x ∈ Ω. This yields the
equation −Δu(t∗, x) = A(t∗, x)−1g(t∗, x) complemented by the boundary con-
dition ∂νu(t∗, x) = 0 for x ∈ ∂Ω. From now on we assume ∂Ω ∈ C2+α. Then
u(t∗, ·) ∈ C2+α(Ω;E) and there exists a constant C > 0, which does not depend
on t∗ ∈ (0, T ), such that the estimate

|u(t∗, ·)|C2+α(Ω;E) ≤ C
(
|A(t∗, ·)−1g(t∗, ·)|Cα(Ω;E) + |u(t∗, ·)|Cα(Ω;E)

)
is valid. Hence u ∈ C((0, a);C2+α(Ω)) and we have proven the following result.

Theorem 12.3.6. Let the conditions of Theorem 12.3.5 be satisfied and assume that
∂Ω ∈ C2+α for some α > 0. Then the unique solution of (12.16) is a classical
solution.

3.4 Positivity
We show the nonnegativity of solutions of (12.16), and the instantaneous strict
positivity of components corresponding to nontrivial initial data. The argument
heavily relies on the structure of the diffusion term divx(A0(y)[∇xy]

T).
We consider this structure in more detail. Since A0(y) = −A(y)P (y)M−1

with A(y) = (B(y)|E)−1 from Lemma 12.3.2 and P (y) = I − (·|e)y, the i-th
component of −divx(A0(y)[∇xy]

T) is given by

n∑
α=1

N∑
j=1

aij(y)(M
−1
j ∂2

xα
yj − ∂xα

[(M−1∂xα
y|e)yj ])

+∂xα
(aij(y))[M

−1
j ∂xα

yj − (M−1∂xα
y|e)yj ],
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where aii(y) = −a0i (y) and aij(y) = yia
1
ij(y) for j �= i. We collect the summands

with j = i from the first term, which results in −M−1
i a0i (y)Δyi. All the other

summands contain either ∂xαyi or yi as a factor. Together with (12.27) we obtain
that away from the initial time, a component yi of a solution of (12.16) satisfies
an equation of the form

�∂tyi −M−1
i a0i (y)Δxyi +

n∑
α=1

b0iα(t, x)∂xα
yi + c0i (t, x)yi = Miri(y), (12.26)

with coefficients b0iα, c
0
i depending on the partial derivatives up to second order of

y. We further write the i-th reaction term Miri as

Miri(y) = −yiLi + hi(y), (12.27)

where Li > 0 is the Lipschitz constant of Miri on D and, with

ŷ = (y1, ..., yi−1, 0, yi+1, ...yN ),

we have the decomposition

hi(y) = Miri(ŷ) + Liyi +Mi(ri(y)− ri(ŷ)) ≥ 0, y ∈ D.

Here ri(ŷ) ≥ 0 follows from the assumption that r is positivity preserving.
Combining (12.26) and (12.27), we arrive at

�∂tyi −M−1
i a0i (y)Δxyi +

n∑
α=1

b0iα(t, x)∂xα
yi + (c0i (t, x) + Li)yi ≥ 0, (12.28)

Since a0i (y) > 0 for yi = 0, the left-hand side of (12.28) is parabolic for yi close
to zero, and the lower order coefficients b0iα, c

0
i are continuous if y is a classical

solution. This puts us into a position to apply the maximum principle and Hopf’s
lemma, which is the key to the following result on nonnegativity and strict posi-
tivity.

Theorem 12.3.7. Assume r ∈ C1(U,RN ) is mass and positivity preserving on D.

Let p > n + 2, 1 ≥ μ > (n + 2)/p, and y0 ∈ W
2μ−2/p
p (Ω;RN ) with y0(Ω) ⊂ V

be given. Denote by y the corresponding unique solution of (12.16). Then the
following holds true.

(a) If y0 ≥ 0, then y(t, x) ≥ 0 for all t ∈ (0, t+(y0)) and x ∈ Ω

(b) If y0 ≥ 0 and yi0 �= 0, then yi(t, x) > 0 for all t ∈ (0, t+(y0)) and x ∈ Ω.

Proof. Step 1. Let y0 ≥ 0. For ε > 0 we consider the modified system

�∂ty
ε + divx(A0(y

ε)[∇xy
ε]T) = Mrε, ∂νy

ε = 0, yε(0) = yε0, (12.29)
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with reaction terms Mrε = Mr+ε(e−Nyε) and initial data yε0 = y0+ε(e−Ny0).
Observe that (e|Mrε) = 0 for (e|yε) = 1, that (e|yε0) = 1 and that yε0 has strictly
positive components for all sufficiently small ε. Thus (12.29) has a unique maximal
classical solution yε by Theorem 12.3.5.

Fixing ε > 0, we claim that yε(t, x) > 0 for all t ∈ [0, t+(y
ε
0)) and x ∈

Ω. Assume the contrary, i.e., there are t0 ∈ (0, t+(y
ε
0)) and x0 ∈ Ω such that

yεi (t0, x0) = 0 for a component yi and yεj (t, ·) > 0 on Ω for all j = 1, ..., N
and t ∈ [0, t0). Note that necessarily t0 > 0 since yε0 > 0. First suppose that
x0 ∈ Ω. Then ∂ty

ε
i (t0, x0) ≤ 0, ∇xy

ε
i (t0, x0) = 0 and Δxy

ε
i (t0, x0) ≥ 0. Further,

(Mrε)i = Miri + ε(1 − Nyεi ) ≥ ε at (t0, x0) since ri ≥ 0 for yi = 0. Therefore,
(12.26) yields

�∂ty
ε
i (t0, x0)−M−1

i a0i (y
ε(t0, x0))Δxy

ε
i (t0, x0) ≥ ε,

a contradiction. Suppose next that x0 ∈ ∂Ω. Then ∂νyi(t0, x0) ≤ 0. On the other
hand, (12.28) implies that there is η > 0 such that yεi is a supersolution of a linear
parabolic equation in (t0−η, t0]×V , where V ⊂ Ω is a sufficiently small open ball
with x0 ∈ ∂V . The previous considerations show that yεi > 0 in (t0 − η, t0] × V .
Hence ∂νyi(t0, x0) > 0 by Hopf’s lemma leads to a contradiction. We conclude
that yε > 0 on (0, t+(y

ε
0))× Ω.

Given T ∈ (0, t+(y0)), we obtain yε → y as ε → 0 in the topology of

C([0, T ];W
2μ−2/p
p (Ω,RN )) from Theorem 12.3.5, and thus uniformly on [0, T ]×Ω.

Hence y ≥ 0 on [0, t+(y0))× Ω.

Step 2. We prove Part b) and assume additionally that yi �= 0. From Step 1 we
know yi ≥ 0. For t ∈ (0, t+(y0)) we consider

Ω+
t = {x ∈ Ω : yi(t, x) > 0}.

We are going to show that Ω+
t is nonempty, open and closed in Ω. Clearly, Ω+

t

is open in Ω. To obtain Ω+
t �= ∅, let t0 be the smallest time such that Ω+

t0 = ∅,
i.e., yi(t0, ·) = 0 on Ω. Note that t0 > 0 by the assumption yi0 �= 0. Then the
left-hand side of (12.28) is parabolic in (t0− η, t0]×Ω for small η. Since yi attains
its minimum zero everywhere on {t0} × Ω, the strong maximum principle yields
yi(t0 − η, ·) = 0. But this is a contradiction to the definition of t0, and therefore
Ω+

t �= ∅ for all t.

We finally show that Ω+
t is closed in Ω. Let xk ∈ Ω+

t be a sequence such
that xk → x0 ∈ Ω as k → ∞. Assume x0 /∈ Ω+

t , i.e., yi(t, x0) = 0. Then there are
η > 0 and a convex open set V ⊂ Ω containing x0 such that (12.26) is parabolic
on (t − η, t] × V . As above, by the strong maximum priniciple, yi(t, ·) = 0 on V.
Hence yi(t, xk) = 0 for all sufficiently large k, which contradicts the assumption
xk ∈ Ω+

t .

We conclude that yi > 0 on (0, t+(y0))× Ω. Arguing as in the previous step
by contradiction and Hopf’s lemma, we get that yi > 0 on (0, t+(y0))× Ω. �
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3.5 Reversible Mass-Action Kinetics
For reversible mass-action kinetics the reaction rate r is given by

r(y) = νr(�M−1y) =

m∑
l=1

νlrl(�M
−1y), (12.30)

where ν = [ν+
jl−ν−

jl] ∈ ZN×m is for ν+
jl,ν

−
jl ∈ N0 the stoechiometric matrix of the

reactions, and νl ∈ ZN denotes the l-th column of ν. The vector r = (r1, . . . , rm)
of single reactions is in terms of the concentrations c given by

rl(c) = −k+l c
ν+

l + kl−c
ν−

l , l = 1, ...,m,

where ν+
l = [ν+

jl] and ν−
l = [ν−

jl], such that νl = ν+
l −ν−

l for a column of ν. Here

we use multi-index notation, i.e., cν
+
l = c

ν+
1l

1 · . . . · cν
+
Nl

N , and analogous for cν
−
l . The

stoechiometric subspace S of RN is defined by

S = R(ν), s = dim S.

We assume that the columns νl of ν are ordered such that ν1, . . . ,νs are linearly
independent, i.e.,

S = span{ν1, . . . ,νs}.

Throughout we make the following assumptions:

r(�M−1y∗) = 0 for some y∗ ∈ D̊, Me ∈ S⊥, k+l , k
−
l > 0. (R)

Observe that the second condition implies (e|Mr(y)) = 0 for each y, i.e., conser-
vation of mass. It also implies that s < N . The strict positivity of k+l , k

−
l means

that each elementary reaction rl is reversible. It is straightforward to check that
mass-action kinetics r as above are positivity preserving. The first assumption in
(R) states that the set

E = {y∗ ∈ D̊ : r(�M−1y∗) = 0}

of chemical equilibria, i.e., where all single reactions rl vanish, is nonemtpy. This
can be characterized as follows. Obeserve that y∗ ∈ E if and only if for c∗ =
�M−1y∗ we have

cνl∗ =
c
ν+

l∗

c
ν−

l∗
=

k−l
k+l

=: Kl, l = 1, . . . ,m. (12.31)

Since k+l , k
−
l > 0, (12.31) is equivalent to

(νl| log c∗) = logKl, l = 1, ...,m, (12.32)
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where we write log ξ = (log ξ1, . . . , log ξN )T for a vector ξ ∈ RN . By the above
assumption, for l = 1, ..., s the equations in (12.32) can always be satisfied. For
the remaining equations we note that there are αlk ∈ R such that νl =

∑s
k=1 αlkνk

for l = s+ 1, . . . ,m. Thus E �= ∅ if and only if

s∏
k=1

Kαlk

k = Kl, l = s+ 1, ...,m.

In particular we have E �= ∅ if s = m < N .
In the sequel we fix an arbitrary chemical equilibrium

y∗ ∈ E ,

and consider the chemical potentials

μk(y) =
1

Mk
log(yk/y

k
∗), y ∈ D̊, k = 1, . . . , N.

We will also write

μ = (μ1, . . . , μN )T = M−1 log(y/y∗).

Lemma 12.3.8. Assume (R). Then the following holds true.

(a) We have (μ(y)|Mr(y)) ≤ 0 for all y ∈ D̊, with equality iff y ∈ E.
(b) The set E forms an (N − s− 1)-dimensional smooth submanifold of RN . At

y∗ ∈ E, the tangent space is given by Ty∗E = N(νTY −1
∗ ) ∩ E.

Proof. (a) Writing c = �M−1y for y ∈ D̊, and c∗ = �M−1y∗, we have μ(y) =
M−1 log(c/c∗). Using (12.31), we calculate

N∑
k=1

(μk(y)|Mkrk(y)) =

m∑
l=1

(log(c/c∗)|νl)
(
−k+l c

ν+
l + k−l c

ν−
l

)
= −

m∑
l=1

log[(c/c∗)νl ]k+l c
ν−

l cνl∗

(
cνl

cνl∗
− 1

)
. (12.33)

Since k+l c
ν−

l cν∗ > 0 and (log ξ)(ξ−1) ≤ 0 for all ξ > 0, we obtain (μ(y)|Mr(y)) ≤ 0.
Since each summand in (12.33) is nonpositive, we have (μ(y)|Mr(y)) = 0 if and
only cνl = cνl∗ = Kl for each l, also using (12.31). This implies y ∈ E .
(b) Above we have seen that the assumption E �= ∅ implies that y∗ ∈ E if and only
if (νl| log c∗) = logKl for l = 1, . . . s, i.e., the other m− s− 1 conditions in (12.32)
are redundant. As a consequence, r(y∗) = 0 is equivalent to r1(y∗), . . . , rs(y∗) = 0.

Define the map

F (y) = [r1(�M
−1y), . . . , rs(�M

−1y), (y|e)− 1]T, y ∈ D̊.
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Note that F (y∗) = 0 if and only if y∗ ∈ E . We show that F ′(y∗) has full rank s+1
at each y∗ ∈ E . To this end we calculate, writing c∗ = �M−1y∗ and using (12.31),

∂yjrl(�M
−1y∗) = �M−1

j (−k+l ν
+
jlc

ν+
l∗ + k−l ν

−
jlc

ν−
l∗ )/cj∗ = −k−l νjl/y

j
∗.

Therefore, writing ν̂ = (ν1, . . . ,νs) ∈ ZN×s,

F ′(y∗) =
[
−diag(k−l )ν̂

TY −1
∗

eT

]
.

Since k−l > 0 and ν̂T is surjective, the matrix −diag(k−l )ν̂
TY −1

∗ has full rank s.

We further claim that e is linearly independent of the rows of −diag(k−l )ν̂
TY −1

∗ .
If this were not the case, we find numbers λl such that e =

∑s
l=1 λlY

−1
∗ νl. Taking

the scalar product with MY∗e, we obtain from Me ∈ S⊥ that

0 �= (MY∗e|e) =
s∑

l=1

λl(νl|Me) = 0,

a contradiction. Hence F ′(y∗) has full rank s+1, which implies that E is a smooth
manifold of dimension N − s− 1. The tangent space is given by

N(F ′(y∗)) = N(ν̂TY −1
∗ ) ∩ E = N(νTY −1

∗ ) ∩ E,

which completes the proof. �

3.6 Total Free Energy
For reversible mass-action kinetics as in (12.30), in this subsection we show that all
equilibria of (12.16) are stable spatially homogeneous kinetic equilibria. Through-
out we fix p > n+ 2 and set

X = {y0 ∈ W 2−2/p
p (Ω,RN ) : y0(Ω) ⊂ D̊, ∂νy0 = 0}.

Then Theorem 12.3.5 yields that (12.16) is well-posed on X . The key quantity to
the stability results is the total free energy Ψ, which is given by

Ψ(y) =

∫
Ω

ψ(y) dx, ψ(y) =

N∑
k=1

yk
Mk

(log(yk/y
k
∗)− 1).

Observe that μk = ∂yk
ψ for the chemical potentials. The free energy serves as

a strict Lyapunov function for (12.16), and further allows us to show that all
equilibria of (12.16) are spatially homogeneous.

Lemma 12.3.9. Assume (R). Then the following holds true.

(a) The total free energy Ψ is a strict Lyapunov function for (12.16) on X .
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(b) Each equilibrium of (12.16) is spatially homogeneous, such that the set of
equilibria of (12.16) in X is given by (the constant functions in) E.

Proof. Step 1. Since X ↪→ C(Ω;E), it is clear that Ψ is continuous on X . For
initial data y0 ∈ X , the corresponding maximal solution y of (12.16) is classical
and has strictly positive components. We may thus differentiate ψ(y) with respect
to t ∈ (0, t+(y0)) and use (12.16) to the result

�∂tψ(y) =

N∑
k=1

μk�∂ty = −
N∑

k=1

divx(μkJk) +

N∑
k=1

(∇xμk|Jk) + (μ|Mr(y)).

Here the first summand vanishes after integration over Ω due to the boundary
conditions (ν|Jk) = 0. Therefore

�∂tΨ(y) =

∫
Ω

N∑
k=1

(∇xμk(y)|Jk) dx+

∫
Ω

(μ(y)|Mr(y)) dx. (12.34)

We prove that the integrands on the right-hand side in (12.34) are negative. For the
second integrand, this is a consequence of Lemma 12.3.8. For the first integrand
in (12.34) we write

N∑
k=1

(∇xμk(y)|Jk) =
n∑

α=1

(∂xα
μ(y)|Jα) .

For fixed α we calculate, using P (y)Jα = Jα, Y P (y)T = P (y)Y and P (y)Y ∂xαμ =
B(y)Jα by (12.21),

(∂xα
μ(y)|Jα) = (P (y)Y ∂xα

μ(y)|Y −1Jα) = (BS(y)Y
−1/2Jα|Y −1/2Jα).

Since BS(y) is negative definite on Y −1/2E, it follows that (∂xα
μ(y)|Jα) ≤ 0, and

that this term vanishes if and only if Jα = 0. Hence Ψ decreases along solutions
of (12.16).

Step 2. Assume Ψ is not strictly decreasing along a solution y. Then there
is t∗ ∈ (0, t+(y0)) such that ∂tΨ(y(t∗)) = 0. Since both integrands in (12.34) are
nonpositive, we obtain that

N∑
k=1

(∇xμk(y(t∗))|Jk) = 0, (μ(y(t∗))|Mr(y(t∗))) = 0. (12.35)

The first identity and the considerations in Step 1 show that (∂xα
μ(y(t∗))|Jα) = 0,

and therefore Jα = 0 for each α = 1, . . . , n. Hence ∇xy(t∗) = 0 by (12.21) and
y(t∗) is spatially homogeneous. The second identity in (12.35) and Lemma 12.3.8
imply y(t∗) ∈ E . Thus y is a kinetic equilibrium. This proves that Ψ is a strict
Lyapunov function for (12.16).

Step 3. To show b), we note that for any equilibrium y∗ of (12.16) we have
∂tΨ(y∗) = 0. Thus (12.34) and the same arguments as in the previous step show
that y∗ is homogeneous and y∗ ∈ E . �
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3.7 Stability and Long-Time Behaviour
We prove stability for the equilibria of (12.16).

Theorem 12.3.10. Assume (R), p > n+2. Then any equilibrium y∗ ∈ E of (12.16)

is stable in the W
2−2/p
p -norm. Moreover, for each y∗ ∈ E there is ε > 0 such that

if
|y0 − y∗|W 2−2/p

p (Ω;RN )
≤ ε

for some y0 ∈ X , then the solution of (12.16) corresponding to y0 exists globally
in time and converges at an exponential rate to some y∞ ∈ E, with respect to the

W
2−2/p
p (Ω;RN )-norm.

Proof. Fix y∗ ∈ E . To prove the assertions for y∗ we apply Theorem 5.3.1.
To this end we verify the conditions (i)-(iv) from Theorem 5.3.1 concerning
the linearized operator A∗u = A(u∗)u + [A′(u∗)u]u∗ − F ′(u∗)u with domain
X1 = {u ∈ W 2

p (Ω;E) : ∂νu = 0}. Since ∇u∗ = 0, from (12.24) we see that
A(u∗) = −A0(y∗)Δ, and [A′(u∗)h]u∗ = 0. Therefore

A∗ = −A0(y∗)Δ +Mr′(y∗).

In Step 2 of the proof of Lemma 12.3.8 it was shown that

r′(y∗) = ν∇yr(�M
−1y∗) = −νKνTY −1

∗ ,

where K = diag(k−l ). The key observation is the following identity. For an eigen-
value λ of A0 with eigenfunction u ∈ X1 we have

λ(u|Y −1
∗ M−1u)Ω = (A∗u|Y −1

∗ M−1u)Ω (12.36)

=
n∑

α=1

(A(y∗)P (y∗)M−1∂2
xα

u|Y −1
∗ M−1u)Ω − (MνKνTY −1

∗ u|Y −1
∗ M−1u)Ω

= −
n∑

α=1

(A(y∗)P (y∗)Y∗Y −1
∗ M−1∂xαu|Y −1

∗ M−1∂xαu)Ω− (KνTY −1
∗ u|νTY −1

∗ u)Ω.

We now verify the conditions (i)-(iv) from Theorem 5.3.1.
(i)+(ii) By the Lemmas 12.3.8 and 12.3.9, the set of equilibria of (12.23) in

Xp is given by E − 1
N e and forms a smooth manifold. The tangent space at u∗

is given by N(νTY −1
∗ ). We show that N(A∗) = N(νTY −1

∗ ). Let u ∈ N(A∗). Since
A(y∗)P (y∗)Y∗ is positive semi-definite by Lemma 12.3.4 and K is diagonal with
positive entries, (12.36) with λ = 0 yields

n∑
α=1

(A(y∗)P (y∗)Y∗Y −1
∗ M−1∂xα

u|Y −1
∗ M−1∂xα

u)Ω = (KνTY −1
∗ u|νTY −1

∗ u)Ω = 0.

Observe that Y −1
∗ M−1∂xα

u(x) /∈ N(−A(y∗)P (y∗)Y∗) = span{e} because of
∂xα

u(x) ∈ E for all x ∈ Ω. Thus the positive definiteness of −A(y∗)P (y∗)Y∗|E
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yields Y −1
∗ M−1∂xαu = 0 for all α, hence u is constant. Moreover, the second

identity implies that νTY −1
∗ u = 0. This shows N(A∗) = N(νTY −1

∗ ) ∩ E.
(iii) We show that zero is a semi-simple eigenvalue of A∗. For u ∈ N(A2

∗) the
identity N(A∗) = N(νTY −1

∗ ) ∩ E implies that v = A∗u is constant and satisfies
νTY −1

∗ v = 0. We therefore have

(v|M−1Y −1
∗ v) = −(MνKνTY −1

∗ u|M−1Y −1
∗ v) = −(KνTY −1

∗ u|νTY −1
∗ v) = 0,

which implies v = 0 and thus u ∈ N(A∗).
(iv) We finally show that σ(A∗) \ {0} is strictly contained in {Re z > 0}, i.e.,

each eigenvalue λ �= 0 is positive. But this is a consequence of (12.36) and the
positive (semi-) definiteness of −A(y∗)P (y∗)Y∗ and K. �

We end this section with a result on the convergence of solutions to equilibria.

Theorem 12.3.11. Assume (R), p > n+2, 1 ≥ μ > (n+2)/p, and let y0 ∈ X . Let
y be the solution of (12.16) corresponding to y0. Then the following holds true.

(a) If supt∈(0,t+(u0)) |y(t, ·)|W 2μ−2/p
p (Ω;RN )

< ∞, then y is a global solution.

(b) Suppose additionally that, for some t0 > 0,

inf
t>t0, x∈Ω

y(t, x) > 0.

Then, as t → ∞, y converges exponentially fast in the W
2−2/p
p (Ω;RN )-norm to a

constant chemical equilibrium y∗ ∈ E of (12.16). If r ≡ 0, then y∗ = 1
|Ω|

∫
Ω
y0 dx.

Proof. Lemma 12.3.9 shows that Ψ is a strict Lyapunov function on X . Now the
assertions are a consequence of the Theorem 5.7.2. In case r ≡ 0, conservation of
mass for each component yields immediately y∗ = 1

|Ω|
∫
Ω
y0 dx. �

12.4 Stefan Problems with Surface Heat Capacity

(i) Consider once more Problem (P5). Set u ≡ 0, � = 1, and ignore balance of
momentum, i.e., the equations for u. This results in a Stefan problem with variable
surface tension which reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ(θ)∂tθ − div(d(θ)∇θ) = 0 in Ω \ Γ(t)
∂νθ = 0 on ∂Ω

[[θ]] = 0, θΓ = θ on Γ(t)

κΓ(θΓ)∂t,nθΓ − divΓ(dΓ(θΓ)∇ΓθΓ) =

= [[d(θ)∂νθ]]− (l(θΓ) + lΓ(θΓ)HΓ − γ(θΓ)VΓ)VΓ on Γ(t)

ϕ(θΓ) + σ(θΓ)HΓ = γ(θΓ)VΓ on Γ(t)

θ(0) = θ0 in Ω,

Γ(0) = Γ0,

(12.37)



12.4. Stefan Problems with Surface Heat Capacity 543

where kinetic undercooling has been included, with γ(θΓ) the coefficient of kinetic
undercooling. Here ϕ(θ) = [[ψ(θ)]] and Dn

Dt θΓ denotes the time derivative of θΓ in
normal direction, defined by

Dn

Dt
θΓ(t, p) :=

d

dτ
θΓ(t+ τ, x(t+ τ, p))

∣∣
τ=0

, t > 0, p ∈ Γ(t), (12.38)

with {x(t + τ, p) ∈ Rn : (τ, p) ∈ (−ε, ε) × Γ(t)} the flow induced by the normal
vector field (VΓνΓ), i.e., for each p ∈ Γ(t), x(t+ τ, p) is a flow line through p with

d

dτ
x(t+ τ, p) = (VΓνΓ)(t+ τ, x(t+ τ, p)), x(t+ τ, p) ∈ Γ(t+ τ), τ ∈ (−ε, ε),

and x(t, p) = p; recall Section 2.5 for more details.
The system (12.37) is also thermodynamically consistent, as the total energy

E given by

E(θ, θΓ,Γ) =

∫
Ω\Γ

ε(θ) dx+

∫
Γ

εΓ(θΓ) dΓ, (12.39)

is preserved along smooth solutions, and the total entropy N,

N(θ, θΓ,Γ) =

∫
Ω\Γ

η(θ) dx+

∫
Γ

ηΓ(θΓ) dΓ, (12.40)

satisfies

d

dt
N(θ, θΓ,Γ) =

∫
Ω

η′(θ)∂tθ dx+

∫
Γ

{∂t,nηΓ(θΓ)− ([[η(θ)]] + ηΓ(θΓ)HΓ)VΓ} dΓ

=

∫
Ω

1

θ2
d(θ)|∇θ|2 dx+

∫
Γ

1

θ2Γ
{dΓ(θΓ)|∇ΓθΓ|2 + θΓγ(θΓ)V

2
Γ } dΓ ≥ 0,

hence is strictly increasing along non-constant solutions. This can be seen as in
Section 1.2. Thus, −N is a strict Lyapunov functional.

If σ is linear in θ we have κΓ = 0 and then it makes sense to also set dΓ ≡ 0,
to obtain the modified Stefan law

[[d(θ)∂νθ]] =
(
l(θ)− γ(θ)VΓ + lΓ(θ)HΓ

)
VΓ,

which differs from the Stefan law in (P1) only by replacing l(u) by l(u)+ lΓ(u)HΓ

(and including kinetic undercooling). This is just a minor modification of (P1),
its analysis remains essentially the same as for (P1), the only difference is that
the stability condition for the equilibria and in case γ ≡ 0 also the well-posedness
condition changes. More precisely, the well-posedness condition changes from ϕ′ �=
0 to λ′ �= 0 where λ(s) := ϕ(s)/σ(s), and the stability condition is modified by
replacing ϕ′/σ by λ′.

Therefore, here we concentrate on the case where κΓ(θ), dΓ(θ) > 0, which
means that σ is strictly concave. In the sequel we always assume that

di, ψi, dΓ, σ, γ ∈ C3(0, θc), di, κi, dΓ, κΓ, σ > 0 on (0, θc), i = 1, 2, (12.41)
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if not stated otherwise. Furthermore, we let γ ≡ 0 if there is no undercooling,
or γ > 0 on (0, θc) if undercooling is present, and we restrict attention to the
temperature range θ ∈ (0, θc).

Note that the (non-degenerate) equilibria for this problem are the same as
those for the Stefan problem (P1): the temperature is constant and the disperse
phase Ω1 consists of finitely many nonintersecting balls of the same radius. We
shall prove below that such an equilibrium is stable in the state manifold SM
defined below if Ω1 is connected and the stability condition introduced in the next
section holds. Such an equilibrium will be a local maximum of the total entropy,
as for Problems (P1)∼(P6).

(ii) The case where undercooling is present is the simpler one, as both equations
on the interface are dynamic equations. In particular, the Gibbs-Thomson identity

γ(θΓ)VΓ − σ(θΓ)HΓ = ϕ(θΓ)

can be understood as a mean curvature flow for the evolution of the surface,
modified by physics.

If there is no undercooling, it is convenient to eliminate the time derivative of
θΓ from the energy balance on the interface. This can achieved as shown in Section
9.1.6, differentiating the Gibbs-Thomson law w.r.t. time t. With λ(s) = ϕ(s)/σ(s)
and

TΓ(θΓ) := ωΓ(θΓ)−H ′
Γ, ωΓ(θΓ) := λ′(θΓ)(l(θΓ)− lΓ(θΓ)λ(θΓ))/κΓ(θΓ), (12.42)

this yields the relation

κΓ(θΓ)VΓ − dΓ(θΓ)HΓ = κΓ(θΓ){fΓ(θΓ) + FΓ(θ, θΓ)}, (12.43)

as has been shown in Section 9.1.6. Here the function fΓ is the antiderivative of
λ(dΓ/κΓ)

′ vanishing at s = θm, and FΓ is nonlocal in space and of lower order. So
also in the case where undercooling is absent we obtain a mean curvature flow,
modified by physics. We note that

ωΓ(θΓ) =
θΓσ(θΓ)

κΓ(θΓ)
[λ′(θΓ)]2 =

1

θΓσ(θΓ)κΓ(θΓ)
[l(θΓ) + lΓ(θΓ)HΓ]

2

so that ωΓ(θΓ) ≥ 0.
We would like to point out a phenomenon, already found for Problem (P5)

in absence of kinetic undercooling, which is due to positive surface heat capacity
κΓ. If κΓ at an equilibrium is large enough, then such a steady state is stable,
even if the interface is disconnected! However, as for (P5) such equilibria cannot
be maxima of the total entropy.

4.1 Linearization at Equilibria
The full linearization at an equilibrium (θ∗, θΓ∗,Σ) with θΓ∗ = θ∗, Σ = ∪kΣ

k a
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finite union of disjoint spheres contained in Ω and with common radius R∗ > 0
given by R∗ = (n− 1)σ(u∗)/[[ψ(θ∗)]], reads

κ∗∂tϑ− d∗Δϑ = κ∗fθ in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0, ϑΣ = ϑ on Σ,

κΓ∗∂tϑΣ − dΓ∗ΔΣϑΣ − [[d∗∂νϑ]] + l0∂th = κΓ∗fΣ on Σ,

(l0/θ∗)ϑΣ − σ∗AΣh− γ∗∂th = fh on Σ,

ϑ(0) = ϑ0, h(0) = h0.

(12.44)

Here κ∗ = κ(θ∗) > 0, κΓ∗ = κΓ(θ∗) > 0, d∗ = d(θ∗) > 0, dΓ∗ = dΓ(θ∗) > 0,
σ∗ = σ(θ∗) > 0, γ∗ = γ(θ∗) ≥ 0,

l0 = l∗ + θ∗σ′(θ∗)HΣ = θ∗σ(θ∗)λ′(θ∗), l∗ = θ∗ϕ′(θ∗),

and again AΣ = −(n−1
R2∗

+ΔΣ), where ΔΣ denotes the Laplace-Beltrami operator

on Σ.

4.2 Maximal Regularity
We begin with the case γ∗ > 0, which is the simpler one. Define the operator Lγ

in
X0 := Lp(Ω)×W r

p (Σ)×W s
p (Σ)

with
X1 := W 2

p (Ω \ Σ)×W 2+r
p (Σ)×W 2+s

p (Σ)

by means of

D(Lγ) =
{
(ϑ, ϑΣ, h) ∈ X1 : [[ϑ]] = 0, ϑΣ = ϑ on Σ, ∂νϑ = 0 on ∂Ω

}
,

Lγ =

⎡⎣ (−d∗/κ∗)Δ 0 0
−[[(d∗/κΓ∗)∂ν ]] ((l20/θ∗γ∗)− dΓ∗ΔΣ)/κΓ∗ −(l0σ∗/γ∗κΓ∗)AΣ

0 −(l0/θ∗γ∗) (σ∗/γ∗)AΣ

⎤⎦ .

In case γ∗ > 0, Problem (12.44) is equivalent to the Cauchy problem

ż + Lγz = (fθ, fΣ + (l0/γ∗κΓ∗)fh,−(1/γ∗)fh), z(0) = z0,

where z = (ϑ, ϑΣ, h) and z0 = (ϑ0, ϑ0|Σ, h0). The main result on problem (12.44)
for γ∗ > 0 is the following.

Theorem 12.4.1. Let 1 < p < ∞, γ∗ > 0, and

−1/p ≤ r ≤ 1− 1/p, r ≤ s ≤ r + 2.

Then for each finite interval J = [0, a], there is a unique solution

(ϑ, ϑΣ, h) ∈ E(J) := H1
p (J ;X0) ∩ Lp(J ;X1)
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of (12.44) if and only if the data (fθ, fΣ, fh) and (ϑ0, ϑΣ0, h0) satisfy

(fθ, fΣ, fh) ∈ F(J) = Lp(J ;X0),

(ϑ0, ϑΣ0, h0) ∈ W 2−2/p
p (Ω \ Σ)×W 2+r−2/p

p (Σ)×W 2+s−2/p
p (Σ)

and the compatibility conditions

[[ϑ0]] = 0, ϑΣ0 = ϑ0 on Σ, ∂νϑ = 0 on ∂Ω.

The operator −Lγ defined above generates an analytic C0-semigroup in X0 with
maximal regularity of type Lp.

Proof. Looking at the entries of Lγ we see that Lγ : X1 → X0 is bounded provided
r ≤ 1 − 1/p, r ≤ s, and s ≤ r + 2. The compatibility condition ϑΣ = ϑ|Σ implies
r+2 ≥ 2−1/p. This explains the constraints on the parameters r and s. To obtain
maximal Lp-regularity, we first consider the case s > r. Then Lγ is lower triangular
up to perturbation. So according to Section 6.6, we may solve the problem for
(ϑ, ϑΣ) with maximal Lp-regularity first and then that for h. In the other case
we have r = s. Then the second term in the third line in the definition of Lγ is
of lower order, hence h decouples from (ϑ, ϑΣ). This way we also obtain maximal
Lp-regularity. Since the Cauchy problem for Lγ has maximal Lp-regularity, we
can now infer from Section 3.5 that −Lγ generates an analytic C0-semigroup in
X0. �
We note that if l0 = 0 and γ∗ = 0 then the linear problem (12.44) is not well-posed.
In fact, in this case the linear Gibbs-Thomson relation reads

−σ∗AΣh = fh,

which is not well-posed as the kernel of AΣ is non-trivial and AΣ is not surjective.
Now we consider the case l0 �= 0 and γ∗ = 0. For the solution space we fix

again r, s ∈ R with r ≤ s ≤ r + 2, −1/p ≤ r ≤ 1− 1/p, and consider

(ϑ, ϑΣ, h) ∈ E(J) = H1
p (J,X0) ∩ Lp(J ;X1).

Then by trace theory the space of data becomes

(fθ, fΣ, fh) ∈ F0(J) := Lp(J ;Lp(Ω))× Lp(J ;W
r
p (Σ))

× [H1
p (J ;W

s−2
p (Σ) ∩ Lp(J ;W

s
p (Σ))],

and the space of initial values will be

(ϑ0, ϑΣ0, h0) ∈ W 2−2/p
p (Ω \ Σ)×W r+2−2/p

p (Σ)×W s+2−2/p
p (Σ)

with compatibilities

[[ϑ0]] = 0, ϑΣ0 = ϑ0, (l0/θ∗)ϑΣ0 − σ∗AΣh0 = fh(0) on Σ, ∂νϑ = 0 on ∂Ω.
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To obtain maximal Lp-regularity, we replace ϑΣ by the Gibbs-Thomson relation,
which for γ∗ = 0 is an elliptic equation. We obtain ϑΣ = (θ∗σ∗/l0)AΣh+(θ∗/l0)fh.
Inserting this expression into the energy balance on the surface Σ yields(
l0+(κΓ∗θ∗σ∗/l0)AΣ

)
∂th−dΓ∗ΔΣϑΣ− [[d∗∂νϑ]] = κΓ∗(fΣ−(θ∗/l0)∂tfh). (12.45)

Moreover, we obtain

dΓ∗ΔΣϑΣ = (l0 + (κΓ∗θ∗σ∗/l0)AΣ))(dΓ∗/κΓ∗)ΔΣh

− (l0dΓ∗/κΓ∗)ΔΣh+ (dΓ∗θ∗/l0)ΔΣfh.

Now we assume that
l20R

2
∗ �= θ∗σ∗(n− 1)κΓ∗, (12.46)

which is equivalent to invertibility of the operator A0 := l0 + (κΓ∗θ∗σ∗/l0)AΣ.
Applying its inverse to (12.45) we arrive at the following equation for h

∂th− (dΓ∗/κΓ∗)ΔΣh+A−1
0 {(l0dΓ∗/κΓ∗)ΔΣh− [[d∗∂νϑ]]} = f̃h, (12.47)

with
f̃h = A−1

0

{
κΓ∗fΣ − ((κΓ∗θ∗/l0)∂tfh − (dΓ∗θ∗/l0)ΔΣfh)

}
.

Solving equation (12.45) for ∂th we obtain for ϑΣ the relation

κΓ∗∂tϑΣ − dΓ∗ΔΣϑΣ − [[d∗∂νϑ]] + l0A
−1
0 {dΓ∗ΔΣϑΣ + [[d∗∂νϑ]]} = f̃Σ, (12.48)

where
f̃Σ = κΓ∗{fΣ − l0A

−1
0 (fΣ − (θ∗/l0)∂tfh)}.

Then by the regularity of fΣ and fh and with r ≤ s ≤ r + 2 we see that

f̃h ∈ Lp(J ;W
s
p (Σ)), f̃Σ ∈ Lp(J ;W

r
p (Σ)).

So the linear problem (12.44) can be recast as an evolution equation in X0 as

ż + L0z = (fθ, f̃Σ, f̃h), z(0) = z0,

with L0 = L00 + L01 defined by

D(L0j) =
{
(v, ϑΣ, h) ∈ X1 : [[ϑ]] = 0, ϑΣ = ϑ on Σ, ∂νϑ = 0 on ∂Ω

}
,

and

L00 =

⎡⎣ (−d∗/κ∗)Δ 0 0
−[[(d∗/κΓ∗)∂ν ]] −(dΓ∗/κΓ∗)ΔΣ 0
−A−1

0 [[d∗∂ν ]] 0 −(dΓ∗/κΓ∗)ΔΣ

⎤⎦ ,

and

L01 =

⎡⎣ 0 0 0
(l0/κΓ∗)A−1

0 [[d∗∂ν ]] (l0dΓ∗/κΓ∗)A−1
0 ΔΣ 0

0 0 (l0 dΓ∗/κΓ∗)A−1
0 ΔΣ

⎤⎦.
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Looking at L0 we first note that L01 is a lower order perturbation of L00. The latter
is lower triangular, and the problem for (ϑ, ϑΣ) as above has maximal Lp-regularity
in X0. As the diagonal entry in the equation for h has maximal Lp-regularity as
well, we may conclude that −L0 generates an analytic C0-semigroup with maximal
regularity in X0 More precisely, we have the following result.

Theorem 12.4.2. Let 1 < p < ∞, γ∗ = 0, −1/p ≤ r ≤ 1 − 1/p, r ≤ s ≤ r + 2,
l0 �= 0, and assume condition (12.48).

Then for each interval J = [0, a], there is a unique solution (ϑ, ϑΣ, h) ∈ E(J)
of (12.44) if and only if the data (fθ, fΣ, fh) and (ϑ0, ϑΣ0, h0) satisfy

(fθ, fΣ, fh) ∈ Lp(J ;X0),

(ϑ0, ϑΣ0, h0) ∈ W 2−2/p
p (Ω \ Σ),×W r+2−2/p

p (Σ)×W s+2−2/p
p (Σ)

and the compatibility conditions

[[ϑ0]] = 0, ϑΣ0 = ϑ0, (l0/θ∗)ϑ0 − σ∗AΣh0 = fh(0) on Σ, ∂νϑ = 0 on ∂Ω.

The operator −L0 defined above generates an analytic C0-semigroup in X0 with
maximal regularity of type Lp.

Note that the compatibility condition (l0/θ∗)ϑ0 − σ∗AΣh0 = fh(0) allows us
to recover the Gibbs-Thomson relation from the dynamic equations, as fh can be
recovered by solving a parabolic initial value problem on Σ. Indeed, it follows from
(12.47)-(12.48) that the function w := ϑΣ − ((θ∗σ∗/l0)AΣh + (θ∗/l0)fh) satisfies
the parabolic equation

κΓ∗∂tw − dΓ∗ΔΣw = 0, w(0) = 0 on Σ. (12.49)

As w ≡ 0 is the unique solution of (12.49) we conclude that the Gibbs-Thomson
relation is satisfied.

4.3 The Eigenvalue Problem
By compact embedding, the spectrum of Lγ consists only of countably many
discrete eigenvalues of finite multiplicity and is independent of p. Therefore it
suffices to consider the case p = 2. The eigenvalue problem reads as follows

κ∗λϑ− d∗Δϑ = 0 in Ω \ Σ,
∂νϑ = 0 on ∂Ω,

[[ϑ]] = 0 on Σ,

κΓ∗λϑ− dΓ∗ΔΣϑ− [[d∗∂νϑ]] + l0λh = 0 on Σ,

l∗ϑ− σ∗AΣh− γ∗λh = 0 on Σ.

(12.50)

We now argue as in Chapter 10. Let λ �= 0 be an eigenvalue with eigenfunction
(ϑ, h) �= 0. Then (12.50) yields

0 = λ|√κ∗ϑ|2Ω − (d∗Δϑ|ϑ)Ω = λ|√κ∗ϑ|2Ω + |
√

d∗∇ϑ|2Ω + ([[d∗∂νϑ]]|ϑ)Σ.
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On the other hand, we have on the interface

0 = λκΓ∗|ϑ|2Σ + dΓ∗|∇Σϑ|2Σ − ([[d∗∂νϑ]]|ϑ)Σ + λl0(h|ϑ)Σ.

Adding these identities we obtain

0 = λ|√κ∗ϑ|2Ω + |
√
d∗∇ϑ|2Ω + λκΓ∗|ϑ|2Σ + dΓ∗|∇Σϑ|2Σ + λθ∗θ∗(h|ϑ)Σ,

hence employing the Gibbs-Thomson law this results in the relation

λ|√κ∗ϑ|2Ω + |
√

d∗∇ϑ|2Ω + λκΓ∗|ϑ|2Σ + dΓ∗|∇Σϑ|2Σ
+ λθ∗σ∗(AΣh|h)Σ + γ∗θ∗|λ|2|h|2Σ = 0.

Since AΣ is selfadjoint in L2(Σ), this identity shows that all eigenvalues of Lγ are
real. Decomposing ϑ = ϑ0+ϑ̄, ϑΣ = (ϑΣ)0+ϑ̄Σ, h = h0+h̄, with the normalizations
(κ∗|ϑ0)Ω = ((ϑΣ)0|1)Σ = (h0|1)Σ = 0, this identity can be rewritten as

λ
{
|√κ∗ϑ0|2Ω + κΓ∗|(ϑΣ)0|2Σ + σ∗θ∗(AΣh0|h0)Σ + λθ∗γ∗|h0|2Σ

}
+ |

√
d∗∇ϑ0|2Ω + dΓ∗|∇Σ(ϑΣ)0|2Σ

+ λ
[
(κ∗|1)ϑ̄2 + κΓ∗|Σ|ϑ̄2

Σ − σ∗θ∗
n− 1

R2∗
|Σ|h̄2 + λθ∗γ∗|Σ|h̄2

]
= 0.

In case Σ is connected, AΣ is positive semi-definite on functions with mean zero,
and hence the bracket determines whether there are positive eigenvalues. Taking
the mean in (12.50) we obtain

(κ∗|1)Ωϑ̄+ κΓ∗|Σ|ϑ̄Σ + l0|Σ|h̄ = 0,

hence minimizing the function

φ(ϑ̄, ϑ̄Σ, h̄) := (κ∗|1)ϑ̄2 + κΓ∗|Σ|ϑ̄2
Σ − θ∗σ∗

n− 1

R2∗
|Σ|h̄2

with respect to the constraint we see that there are no positive eigenvalues provided
the stability condition ζ∗ ≤ 1 is satisfied.

If Σ =
⋃

1≤l≤m Σl consists of m ≥ 1 spheres Σl of equal radius, then

N(Lγ) = span

{
(
θ∗σ∗(n− 1)

l0R2∗
,−1), (0, Y l

1 ), . . . , (0, Y
l
n) : 1 ≤ l ≤ m

}
, (12.51)

where the functions Y l
j denote the spherical harmonics of degree one on Σl (and

Y l
j ≡ 0 on

⋃
i �=l Σ

i), normalized by (Y l
j |Y l

k)Σl = δjk. N(Lγ) is isomorphic to the
tangent space of E at (u∗,Γ∗) ∈ E , as was shown in Chapter 10.

We can now state the main result on linear stability.
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Theorem 12.4.3. Let σ∗ > 0, γ∗ ≥ 0, l0 �= 0,

δ∗ :=
θ∗σ∗(n− 1)

l20R
2∗

κΓ∗ �= 1 in case γ∗ = 0,

and assume that the interface Σ consists of m ≥ 1 components. Let

ζ∗ =
θ∗σ∗(n− 1)

l20R
2∗|Σ|

[(κ∗|1)Ω + κΓ∗|Σ|],

and let the equilibrium energy Ee be defined as in (1.27). Then

(i) E′
e(θ∗) = (ζ∗ − 1)l20R

2
∗|Σ|/(θ∗σ∗(n− 1)).

(ii) 0 is a an eigenvalue of Lγ with geometric multiplicity (mn + 1). It is semi-
simple if ζ∗ �= 1.

(iii) If Σ is connected and ζ∗ ≤ 1, or if δ∗ > 1 and γ∗ = 0, then all eigenvalues of
−Lγ are negative, except for the eigenvalue 0.

(iv) If ζ∗ > 1, and δ∗ < 1 in case γ∗ = 0, then there are precisely m positive
eigenvalues of −Lγ , where m denotes the number of equilibrium spheres.

(v) If ζ∗ ≤ 1, and δ∗ < 1 in case γ∗ = 0 then −Lγ has precisely m − 1 positive
eigenvalues.

(vi) N(Lγ) is isomorphic to the tangent space T(θ∗,Σ)E of E at (θ∗,Σ) ∈ E.
Remarks 12.4.4. (a) Formally, the result is also true if l0 = 0 and γ∗ > 0. In
this case E′

e(u∗) = (κ∗|1)Ω + κΓ∗|Γ∗| > 0 and ζ∗ = ∞, hence the equilibrium is
unstable. If in addition γ∗ = 0, then the problem is not well-posed.

(b) Note that ζ∗ does neither depend on the diffusivities d∗, dΓ∗, nor on the coef-
ficient of undercooling γ∗.
(c) One can show that in case ζ∗ = 1 and Γ∗ connected, the eigenvalue 0 is no
longer semi-simple: its algebraic multiplicity rises by 1 to (n+ 2).

(d) It is remarkable that in case kinetic undercooling is absent, large surface heat
capacity, i.e., δ∗ > 1, stabilizes the system, even in such a way that multiple
spheres are stable, in contrast to the case δ∗ < 1.

(e) We can show that, in case γ∗ = 0, if δ∗ increases to 1 then all positive eigen-
values go to ∞.

The proof of Theorem 12.4.3 follows the lines of the proof for Problem (P5)
in Chapter 10 and is therefore omitted.

4.4 The Semiflow in Presence of Kinetic Undercooling
In this section we assume throughout γ(s) > 0 for all 0 < s < uc, i.e., kinetic
undercooling is present at the relevant temperature range. In this case we may
apply the results in Chapter 5, resulting in a rather complete analysis of the
problem.
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(a) Local Well-Posedness To prove local well-posedness we employ the direct map-
ping method as introduced in Chapter 1. As base space we use

X0 = Lp(Ω)×W−1/p
p (Σ)×W 1−1/p

p (Σ),

and we set

X1 =
{
(θ, θΣ, h) ∈ H2

p (Ω \ Σ)×W 2−1/p
p (Σ)×W 3−1/p

p (Σ) :

[[θ]] = 0, θΣ = θ|Σ , ∂νθ|∂Ω
= 0

}
.

The trace space Xγ then becomes for p > n+ 2

Xγ =
{
(θ, θΣ, h) ∈ W 2−2/p

p (Ω \ Σ)×W 2−3/p
p (Σ)×W 3−3/p

p (Σ) :

[[θ]] = 0, θΣ = θ|Σ , ∂νθ|∂Ω
= 0

}
,

and that with the time weight t1−μ, 1 ≥ μ > 1/p,

Xγ,μ =
{
(θ, θΣ, h) ∈ W 2μ−2/p

p (Ω \ Σ)×W 2μ−3/p
p (Σ)×W 2μ+1−3/p

p (Σ) :

[[θ]] = 0, θΣ = θ|Σ , ∂νθ|∂Ω
= 0

}
.

Note that

Xγ,μ ↪→ C1
ub(Ω \ Σ)× C1(Σ)× C2(Σ), (12.52)

provided 2μ > 1+ (n+2)/p, which is feasible as p > n+2. In the sequel, we only
consider this range of μ. We want to rewrite the transformed system abstractly as
the quasilinear problem in X0

ż +A(z)z = F (z), t > 0, z(0) = z0, (12.53)

where z = (θ, θΣ, h) and z0 = (θ0, θΣ0, h0). Here the quasilinear part A(z) is the
diagonal matrix operator defined by

−A(z) = diag

⎡⎢⎣ (d(θ)/κ(θ))(Δ−M2(h) : ∇2)

(dΓ(θΣ)/κΓ(θΣ))(PΓ(h)M0(h))
2 : ∇2

Σ

(σ(θΣ)/β(h)γ(θΣ))C0(h) : ∇2
Σ

⎤⎥⎦ ,

with M2(h) = M1(h) +MT
1 (h)−M1(h)M

T
1 (h). The semilinear part F (z) is given

by⎡⎢⎢⎢⎢⎢⎣
R(h)θ +

1

κ(θ)

{
d′(θ)|(I −M1(h))∇θ

∣∣2 − d(θ)((I −M1(h)) : ∇M1(h)|∇θ)
}

1

κΓ(θΣ)

{
− B(θΣ, h)θ − [(l(θΣ) + lΓ(θΣ)HΓ(h)− γ(θΣ)β(h)∂th]β(h)∂th+m3

}
ϕ(θΣ)/β(h)γ(θΣ) + (σ(θΣ)/β(h)γ(θΣ)) C1(h)

⎤⎥⎥⎥⎥⎥⎦
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and
m3 = −dΓ(θΣ)(PΓ(h)M0(h))

2 : ∇2
ΣθΣ − C(θΣ, h)θΣ.

We note that m3 depends on (θΣ,∇ΣθΣ), and on (h,∇Σh,∇2
Σh), but not on ∇2

ΣθΣ,
hence is of lower order. Apparently, the first two components of F (z) contain the
time derivative ∂th; we may replace it by

∂th = {ϕ(θΣ) + σ(θΣ)HΓ(h)}/β(h)γ(θΣ),

to see that it is of lower order as well.
Now fix a ball B := BXγ,μ(z0, R) ⊂ Xγ,μ, where |h0|C1(Σ) ≤ η for some

sufficiently small η > 0. Then it is not difficult to verify that

(A,F ) ∈ C1(B,B(X1, X0)×X0)

provided di, ψi, dΓ, σ, γ ∈ C3(0,∞) and dj , κj , σ, γ > 0 on (0, uc), j ∈ {1, 2,Γ},
and provided 2 ≥ 2μ > 1 + (n + 2)/p as before. Moreover, as A(z) is diagonal,
the results on elliptic differential operators in Chapter 6 show that A(z) has the
property of maximal regularity for each z ∈ B. In fact, for small η > 0, A(z) is
small perturbation of

A#(z) = diag
[
− (d(θ)/κ(θ))Δ,−(dΓ(θΣ)/κΓ(θΣ))ΔΣ,−(σ(θΣ)/γ(θΣ))ΔΣ

]
.

Therefore we may apply the perturbation results from Section 4.4 to obtain local
well-posedness of (12.53), i.e., a unique local solution

z ∈ H1
p,μ((0, a);X0) ∩ Lp,μ((0, a);X1) ↪→ C([0, a];Xγ,μ) ∩ C((0, a];Xγ)

which depends continuously on the initial value z0 ∈ B. The resulting solution
map z0 �→ z(t) defines a local semiflow in Xγ .

(b) Nonlinear Stability of Equilibria
Let e∗ = (θ∗, θΓ∗,Γ∗) denote an equilibrium. We choose Σ = Γ∗ as a reference man-
ifold, and as shown in the preceding subsection we obtain the abstract quasilinear
parabolic problem

ż +A(z)z = F (z), t > 0, z(0) = z0, (12.54)

with X0, X1, Xγ as above. We set z∗ = (θ∗, θΓ∗, 0). Assuming that ζ∗ �= 1 in the
stability condition, we have shown in the previous section that the equilibrium z∗
is normally hyperbolic. Therefore, we may apply the results from Chapter 5 to
obtain the following result.

Theorem 12.4.5. Let p > n+ 2. Suppose γ > 0 on (0, θc) and the assumptions of
(12.41) hold true. As above E denotes the set of equilibria of (12.54), and we fix
some z∗ ∈ E. Then we have

(a) If Γ∗ is connected and ζ∗ < 1 then z∗ is stable in Xγ , and there exists δ > 0
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such that the unique solution z(t) of (12.54) with initial value z0 ∈ Xγ satisfying
|z0 − z∗|γ < δ exists on R+ and converges at an exponential rate in Xγ to some
z∞ ∈ E as t → ∞.

(b) If Γ∗ is disconnected or if ζ∗ > 1 then z∗ is unstable in Xγ . For each sufficiently
small ρ > 0 there is δ ∈ (0, ρ] such that the solution z(t) of (12.54) with initial
value z0 ∈ Xγ subject to |z0 − z∗|γ < δ either satisfies

(i) distXγ
(z(t0); E) > ρ for some finite time t0 > 0; or

(ii) z(t) exists on R+ and converges at exponential rate in Xγ to some z∞ ∈ E.

Remark 12.4.6. The only equilibria which are excluded from our analysis are those
with ζ∗ = 1, which means E′

e(θ∗) = 0. These are critical points of the function
Ee(θ) at which a bifurcation may occur. In fact, if such θ∗ is a maximum or a
minimum of Ee then two branches of E meet at θ∗, a stable and and an unstable
one, which means that (θ∗,Γ∗) is a turning point in E .

(c) The Local Semiflow on the State Manifold
We define the state manifold SM for (12.37) as follows.

SM :=
{
(θ,Γ) ∈ C(Ω̄)×MH2 : θ ∈ W 2−2/p

p (Ω \ Γ), Γ ∈ W 3−3/p
p ,

0 < θ < θc in Ω̄, ∂νθ = 0 on ∂Ω
}
.

(12.55)

We note that there is no need to incorporate the variable θΓ into the definition of
the state manifold as θΓ = θ|Γ.

Applying the result in the preceding subsection and re-parameterizing the
interface repeatedly, we see that (12.37) yields a local semiflow on SM.

Theorem 12.4.7. Let p > n+ 2. Suppose γ > 0 on (0, θc) and the assumptions of
(12.41) hold true.
Then problem (12.37) generates a local semiflow on the state manifold SM. Each
solution (θ,Γ) exists on a maximal time interval [0, t+), with t+ = t+(θ0,Γ0).

(d) Global Existence and Convergence
There are several obstructions to global existence for the Stefan problem with
variable surface tension (12.37):

• regularity: the norms of θ(t) or Γ(t) may become unbounded;

• well-posedness: the temperature θ may reach 0 or θc;

• geometry: the topology of the interface may change;
or the interface may touch the boundary of Ω;
or part of the interface may contract to a point.

Let (θ,Γ) be a solution in the state manifold SM. Combining the semiflow for
(12.37) with the Lyapunov functional, i.e., the negative total entropy, and com-
pactness we obtain the following result.
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Theorem 12.4.8. Let p > n+ 2. Suppose γ > 0 on (0, θc) and the assumptions of
(12.41) hold true. Suppose that (θ,Γ) is a solution of (12.37) in the state manifold
SM on its maximal time interval [0, t+). Assume the following on [0, t+): there
are constants M,m > 0 such that

(i) |θ(t)|
W

2−2/p
p

+ |Γ(t)|
W

3−3/p
p

≤ M < ∞;

(ii) 0 < m ≤ θ(t) ≤ θc −m;

(iii) Γ(t) satisfies the uniform ball condition.

Then t+ = ∞, i.e., the solution exists globally, and it converges in SM to some
equilibrium (θ∞,Γ∞) ∈ E. On the contrary, if (θ(t),Γ(t)) is a global solution in
SM which converges to an equilibrium (θ∗,Γ∗) in SM as t → ∞, then properties
(i)–(iii) are valid.

The proof follows the lines of arguments in the proof of Theorem 11.4.1.

4.5 The Semiflow without Kinetic Undercooling
In this section we assume throughout γ(s) = 0 for all s > 0, i.e kinetic undercooling
is absent. In this case we may apply the results of Chapter 5 too, but we have
to work harder to apply them. For this purpose we replace the Gibbs-Thomson
law by the dynamic equation (12.43) and we assume the compatibility condition
ϕ(θΓ0) + σ(θΓ0)HΓ0 = 0.

(a) Local Well-Posedness
To prove local well-posedness we employ again the direct mapping method. As
base space we use

X0 = Lp(Ω)×W−1/p
p (Σ)×W 1−1/p

p (Σ),

and we let X1, Xγ and Xγ,μ as defined there.
We rewrite the transformed system as a quasilinear problem in X0

ż +A0(z)z = F0(z), t > 0, z(0) = z0, (12.56)

where z = (θ, θΣ, h) and z0 = (θ0, θΣ0, h0). Here the quasilinear part A0(z) is the
diagonal matrix operator defined by

−A0(z) = diag

⎡⎢⎣ (d(θ)/κ(θ))(Δ−M2(h) : ∇2)

(dΓ(θΣ)/κΓ(θΣ))(PΓ(h)M0(h))
2 : ∇2

Σ

(dΓ(θΣ)/β(h)κΓ(θΣ))C0(h) : ∇2
Σ

⎤⎥⎦ ,

with M2(h) as before. The semi-linear part F0(z) is given by⎡⎢⎢⎢⎢⎢⎣
R(h)θ +

1

κ(θ)

{
d′(θ)|(I −M1(h))∇θ

∣∣2 − d(θ)((I −M1(h)) : ∇M1(h)|∇θ)
}

− 1

κΓ(θΣ)

{
B(θΣ, h)θ − [(l(θΣ) + lΓ(θΣ)HΓ(h)− γ(θΣ)β(h)∂th]β(h)∂th+m3

}
(dΓ(θΣ)/β(h)κΓ(θΣ)) C1(h) +

{
fΓ(θΣ) + FΓ(θ, θΣ, h)

}
/β(h)

⎤⎥⎥⎥⎥⎥⎦ ,
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where by abuse of notation FΓ here means the transformed FΓ introduced previ-
ously, and with m3 as above.

Again, the first two components of F0(z) contain the time derivative ∂th. We
replace it by the transformed version of (12.43)

∂th =
{
fΓ(θΣ) + FΓ(θ, θΣ, h) + dΓ(θΣ)/κΓ(θΣ)H(h)

}
/β(h),

to see that it leads to a lower order term.
Provided that TΓ0

(θΣ0) is invertible we may proceed as in the previous sub-
section to obtain local well-posedness, i.e., a unique local solution

z ∈ H1
p,μ((0, a);X0) ∩ Lp,μ((0, a);X1) ↪→ C([0, a];Xγ,μ) ∩ C((0, a];Xγ)

which depends continuously on the initial value z0 ∈ B. The resulting solution
map z0 �→ z(t) defines a local semiflow in Xγ .

(b) Nonlinear Stability of Equilibria
Let e∗ = (θ∗, θΓ∗,Γ∗) denote an equilibrium. In this case we again choose Σ = Γ∗
as a reference frame, and as shown in the subsection before we obtain the abstract
quasilinear parabolic problem

ż +A0(z)z = F0(z), t > 0, z(0) = z0, (12.57)

with X0, X1, Xγ as above. We set z∗ = (θ∗, θΓ∗, 0). Assuming well-posedness and
ζ∗ �= 1 in the stability condition, we have shown above that the equilibrium z∗ is
normally hyperbolic. Therefore, we may apply once more the results from Chapter
5 to obtain the following result.

Theorem 12.4.9. Let p > n+2. Suppose γ ≡ 0, σ ∈ C4(0, uc), and the assumptions
of (12.41) hold true. As above E denotes the set of equilibria of (12.57), and we
fix some z∗ ∈ E. Assume that the well-posedness condition

l0 �= 0 and δ∗ :=
θ∗σ∗(n− 1)

l20R
2∗

κΓ∗ �= 1 (12.58)

is satisfied. Then we have

(a) If Γ∗ is connected and ζ∗ < 1, or if δ∗ > 1 then z∗ is stable in Xγ , and there
exists r > 0 such that the unique solution z(t) of (12.57) with initial value z0 ∈ Xγ

satisfying |z0 − z∗|γ < r exists on R+ and converges at an exponential rate in Xγ

to some z∞ ∈ E as t → ∞.

(b) If δ∗ < 1, and if Γ∗ is disconnected or if ζ∗ > 1, then z∗ is unstable in Xγ .
For each sufficiently small r0 > 0 there is r ∈ (0, r0] such that the solution z(t) of
(12.54) with initial value z0 ∈ Xγ subject to |z0 − z∗|γ < r either satisfies

(i) distXγ (z(t0); E) > r0 for some finite time t0 > 0; or

(ii) z(t) exists on R+ and converges at exponential rate in Xγ to some z∞ ∈ E.
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Thus the only cases excluded are ζ∗ = 1, and the two values where the
well-posedness condition (12.58) is violated.

(c) The Local Semiflow on the State Manifold
We define the state manifolds SM0 for (12.37) in case γ ≡ 0 as follows.

SM0 :=
{
(θ,Γ) ∈ C(Ω̄)×MH2 : θ ∈ W 2−2/p

p (Ω \ Γ), Γ ∈ W 3−3/p
p ,

0 < θ < θc in Ω̄, ∂νθ = 0 on ∂Ω,

λ(θΓ) +HΓ = 0 on Γ, TΓ(θΓ) is invertible in L2(Γ)
}
.

(12.59)

Applying the well-posedness result and re-parameterizing the interface re-
peatedly, we see that (12.37) with γ ≡ 0 yields a local semiflow on SM0.

Theorem 12.4.10. Let p > n + 2. Suppose γ ≡ 0, σ ∈ C4(0, uc), and the assump-
tions of (12.41) hold true.

Then problem (12.37) generates a local semiflow on the state manifold
SM0. Each solution (θ,Γ) exists on a maximal time interval [0, t+), where
t+ = t+(θ0,Γ0).

(d) Global Existence and Convergence
In addition to the obstructions to global existence for the Stefan problem with
variable surface tension in the presence of kinetic undercooling there is another
reason for loss of well-posedeness.

• regularity: the norms of θ(t) or Γ(t) may become unbounded;

• well-posedness: the temperature may reach 0 or θc;
or TΓ(θΓ) may become non-invertible;

• geometry: the topology of the interface may change;
or the interface may touch the boundary of Ω;
or part of the interface may contract to a point.

We set E0 = SM0 ∩ E . As in Section 5, combining the semiflow for (12.37) with
the Lyapunov functional and compactness we obtain the following result.

Theorem 12.4.11. Let p > n + 2. Suppose γ ≡ 0, σ ∈ C4(0, θc), and the as-
sumptions of (12.41) hold true. Suppose that (θ,Γ) is a solution of (12.37) in the
state manifold SM0 on its maximal time interval [0, t+). Assume the following on
[0, t+): there are constants m,M > 0 such that

(i) |θ(t)|
W

2−2/p
p

+ |Γ(t)|
W

3−3/p
p

≤ M < ∞;

(ii) 0 < m ≤ θ(t)) ≤ θc −m;

(iii) |μj(t)| ≥ m holds for the eigenvalues of TΓ(t)(θΓ);

(iv) Γ(t) satisfies the uniform ball condition.
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Then t+ = ∞, i.e., the solution exists globally, and it converges in SM0 to an
equilibrium (θ∞,Γ∞) ∈ E0 . Conversely, if (θ(t),Γ(t)) is a global solution in SM0

which converges to an equilibrium (θ∞,Γ∞) ∈ E0 in SM0 as t → ∞, then the
properties (i)–(iv) are valid.

Proof. The proof follows the same lines as that of Theorem 11.4.1. �

12.5 Geometric Evolution Equations

Here we introduce and study some geometric evolution equations. The first three
are motivated by problems in differential geometry, while the ones following involve
physics and have been introduced in Chapter 1. These equations are simpler to be
analyzed than the general problems introduced in Chapter 1, due to their quasi-
stationary structure. We first introduce the problems under consideration.

1. The Averaged Mean Curvature Flow
This flow is determined by the equation

VΓ = σ(HΓ − H̄Γ), t > 0, Γ(0) = Γ0, (12.60)

where σ > 0. Here we are looking for a family {Γ(t) : t > 0} of compact oriented
hypersurfaces with curvature HΓ(t) and normal velocity VΓ(t) given by (12.60).
H̄Γ means the mean value of HΓ over Γ, i.e.,

H̄Γ = −
∫
Γ

HΓ dΓ =
1

|Γ|

∫
Γ

HΓ dΓ.

This problem is of spatial order m = 2.

2. The Surface Diffusion Flow
This flow is determined by the equation

VΓ = −σΔΓHΓ, t > 0, Γ(0) = Γ0, (12.61)

with σ > 0. Here we are looking for a family {Γ(t) : t > 0} of compact oriented
hypersurfaces with curvature HΓ(t) and velocity VΓ(t) given by (12.61). This is a
problem of order m = 4.

2a. The Willmore Flow
The Willmore functional for compact surfaces is defined by

W (Γ) =
1

2

∫
Γ

H2
Γ dΓ.

Critical points of this functional are called Willmore surfaces. We compute

d

dt
W (Γ) =

∫
Γ

HΓH
′
Γ(Γ)VΓ − 1

2
H3

ΓVΓdΓ =

∫
Γ

VΓ{ΔΓHΓ +HΓ(trL
2 − 1

2
H2

Γ)}dΓ.
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Letting FΓ :=
∑

1≤i<j≤n−1 κiκj denote the second invariant of the Weingarten
tensor LΓ, this yields for the variational derivative of W the relation

W ′(Γ) = ΔΓHΓ +HΓ(
1

2
H2

Γ − 2FΓ).

The Willmore flow is defined as the L2-gradient flow of the Willmore functional,
which means

VΓ = −ΔΓHΓ −HΓ(
1

2
H2

Γ − 2FΓ). (12.62)

Mathematically, this problem can be considered as a lower order perturbation of
the surface diffusion flow.

The Willmore functional is a strict Lyapunov functional for the Willmore
flow, by its definition as gradient flow. However, this flow is in general not volume
preserving. Note that in dimension n = 3 we have FΓ = K = κ1κ2, the Gaussian
curvature, hence

1

2
H2

Γ − 2FΓ =
1

2
(κ1 − κ2)

2.

In particular, for n = 3 spheres are equilibria of the Willmore flow. In general,
the manifold of equilibria of the Willmore flow is quite complicated, and subject
to current research. Well-posedness of the Willmore flow is a consequence of the
result for the surface diffusion flow, but we will not discuss stability of its equilibria
here.

3. The Mullins-Sekerka Flow
We consider the two-phase quasi-stationary Stefan problem with surface tension,
which has also been termed Mullins-Sekerka problem; recall the framework intro-
duced in Chapter 1.

The two-phase Mullins-Sekerka flow consists in finding a family {Γ(t) : t > 0}
of hypersurfaces satisfying

VΓ = −[[d∂νθ]], t > 0, Γ(0) = Γ0, (12.63)

where θ = θ(t, ·) is, for each t > 0, the solution of the elliptic boundary value
problem

Δθ = 0 in Ω \ Γ(t),
∂νθ = 0 on ∂Ω,

θ = σHΓ on Γ(t).

(12.64)

The coefficient d > 0 is constant in the phases, but may jump across the interface,
and σ > 0. The problem can be transformed to an evolution equation on the
boundary. To see this, recall the Dirichlet-to-Neumann operator Sd defined in
Section 6.5.4. Then the problem can be written as

VΓ = σSdHΓ, t > 0, Γ(0) = Γ0.

Note that this is a problem of order m = 3.
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4. The Stokes Flow
We consider the two-phase quasi-stationary Stokes problem with surface tension.

−μΔu+∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

[[u]] = 0 on Γ(t),

[[−TνΓ]] = σHΓνΓ on Γ(t),

VΓ = u · νΓ on Γ(t).

(12.65)

Here μ > 0 is constant in each phase but may jump at the interface, σ > 0 is also
constant, and as before the stress tensor T is defined according to

T = μ(∇u+∇uT)− πI = 2μD − πI.

Let NS
0 denote the Neumann-to-Dirichlet operator for the Stokes problem as in-

troduced in Section 10.5. Then (12.65) reduces to the problem

VΓ = σNS
0 HΓ, t > 0.

Note that this is a problem of order m = 1.

5. The Muskat Flow
This is a simplification of the Stokes flow, employing Darcy’s law for the velocity,
as explained in Chapter 1. It reads

div u = 0 in Ω \ Γ(t),
u · νΓ = 0 on ∂Ω,

[[u · νΓ]] = 0 on Γ(t),

u = −k∇π in Ω \ Γ(t),
[[π]] = σHΓ on Γ(t),

VΓ = u · νΓ on Γ(t).

Here, as before, u denotes velocity, π pressure, HΓ curvature, σ > 0 surface tension
and the constants kj > 0 mean the porosities of the phases. Eliminating u, this
yields an elliptic problem for π, namely

Δπ = 0 in Ω \ Γ(t),
∂νπ = 0 on ∂Ω,

[[k∂νπ]] = 0 on Γ(t),

[[π]] = σHΓ on Γ(t),

VΓ = −k∂νπ on Γ(t).

(12.66)
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Solving this problem for π we obtain

−k∂νπ = σSnHΓ,

where Sn denotes the second two-phase Dirichlet-to-Neumann operator introduced
in Section 6.5.4. Therefore, the problem reduces to the geometric evolution equa-
tion

VΓ = σSnHΓ, t > 0, Γ(0) = Γ0,

for the free interface. As the Mullins-Sekerka flow this problem is of order m = 3.

6. The Stokes Flow with Phase Transitions
We consider the two-phase quasi-stationary Stokes problem with phase transitions.

−μΔu+∇π = 0 in Ω \ Γ(t),
div u = 0 in Ω \ Γ(t),

u = 0 on ∂Ω,

PΓ[[u]] = 0 on Γ(t),

−[[TνΓ]] = σHΓνΓ on Γ(t),

−[[TνΓ · νΓ/�]] = 0 on Γ(t),

[[�]]VΓ = [[�u · νΓ]] on Γ(t).

(12.67)

Here μ > 0 is constant in each phase but may jump at the interface, σ > 0 is also
constant, and the stress tensor T is defined according to

T = μ(∇u+∇uT)− πI = 2μD − πI.

Solving the problem in the bulk for u, by means of the Neumann-to-Dirichlet
operator S0 introduced in Section 10.7, this problem can be reduced to the form

VΓ = σS11
0 HΓ, t > 0, Γ(0) = Γ0,

for the free interface Γ(t), leading to a geometric evolution equation. It is of order
m = 1, as the Stokes flow.

7. The Muskat Flow with Phase Transitions
This is a simplification of the Stokes flow with phase transition, employing Darcy’s
law for the velocity, as explained in Chapter 1. It reads

Δπ = 0 in Ω \ Γ(t),
∂νπ = 0 on ∂Ω,

[[π]] = σHΓ on Γ(t),

[[π/�]] = 0 on Γ(t),

[[�]]VΓ = [[�k∂νπ]] on Γ(t).

(12.68)
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This problem is only meaningful for different constant densities �i. Solving the
transmission problem in the bulk domain as for the Muskat flow, we obtain the
following geometric evolution equation

VΓ = σSmptHΓ, t > 0, Γ(0) = Γ0,

for the free interface, where Smpt can easily be computed, using the one-phase
Dirichlet-to-Neumann operators Sj from Section 6.5.4, to the result

Smpt = (�21S1 + �22S2)/[[�]]
2.

On should compare this operator with Sd arising in the Mullins-Sekerka flow. The
spatial order is again m = 3.

Below we want to analyze these geometric evolution equations which can be
written in the general form

VΓ = σGΓHΓ, t > 0, Γ(0) = Γ0. (12.69)

As explained before, the aim is to find a family {Γ(t) : t > 0} of sufficiently smooth
compact hypersurfaces Γ(t) ⊂ Ω bounding a domain Ω1(t) such that (12.69) holds.
Here GΓ denotes a linear operator, selfadjoint and positive semi-definite in L2(Γ),
which is given by either of the following operators.

(G1) GΓh = h− h̄ the averaged mean curvature flow;

(G2) GΓh = −ΔΓh the surface diffusion flow;

(G3) GΓh = Sdh the Mullins-Sekerka; flow

(G4) GΓh = NS
0 h the Stokes flow;

(G5) GΓh = Snh the Muskat flow;

(G6) GΓh = S11
0 h the Stokes flow with phase transition;

(G7) GΓh = Smpth the Muskat flow phase transition.

5.1 Volume, Area and Equilibria
Problem (12.69) has very important properties, namely conservation of volume
and decreasing area. To be more precise, by the change of volume formula (2.97)
we have

∂t|Ω1(t)| =
∫
Γ

VΓ dΓ = σ

∫
Γ

GΓHΓ dΓ = σ(HΓ|GΓe)Γ = 0,

where as before e denotes the function identically one on Γ. In fact, in all 7 cases
we have GΓe = 0.
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In cases (G2), (G4) and (G5) there are further conservation laws if Ω1 is not
connected. Let Ωk

1 , k = 1, . . . ,m, denote the components of Ω1 and Γk = ∂Ωk
1

their boundaries, and let ek denote the characteristic function of Γk. Then

∂t|Ωk
1(t)| =

∫
Γk

VΓ dΓ = σ

∫
Γk

GΓHΓ dΓ = σ(HΓ|GΓek)Γ = 0, k = 1, . . . ,m.

Further, for the area functional we have by the change of area formula (2.92)

∂t|Γ(t)| = −
∫
Γ

VΓHΓ dΓ = −σ

∫
Γ

(GΓHΓ)HΓ dΓ = −σ(GΓHΓ|HΓ)Γ ≤ 0,

as GΓ is selfadjoint and positive semi-definite in all 7 cases. Therefore, Φ(Γ) := |Γ|
is a Lyapunov functional for (12.69).

But even more, it is a strict Lyapunov functional. In fact, suppose ∂tΦ(Γ) = 0
at some time t. Then (GΓHΓ|HΓ) = 0. With h = HΓ we have for (G1)

(GΓh|h)Γ = |h− h̄|2Γ = 0,

hence h = h̄ is constant on Γ, i.e., h = ae for some number a ∈ R. This implies
that the curvature HΓ is constant all over Γ and so Γ must be a finite disjoint
union of spheres of the same radius, as Ω is bounded.

For (G2) we obtain by the surface divergence theorem (2.24)

(GΓh|h)Γ = −(ΔΓh|h)Γ = |∇Γh|2Γ = 0,

hence h is constant on each component of Γ, i.e., h =
∑m

k=1 akek with some real
numbers ak. This implies that HΓ is constant on each component Γk of Γ, and so
Γ is a finite union of disjoint spheres with arbitrary radii.

To consider (G3), let v denote the solution of the elliptic problem

Δv =0 in Ω \ Γ,
∂νv =0 on ∂Ω,

[[v]] = 0, v =h on Γ.

Then by definition, Sdh = −[[d∂νv]], hence by Proposition 10.5.1

(GΓh|h)Γ = (Sdh|h)Γ =

∫
Ω

d|∇v|2 dx = 0

implies that v is constant in the components of Ω\Γ. As v is continuous on Ω this
shows that h = v is constant all over Γ, which in turn yields, as for (G1), that Γ
is a finite union of disjoint spheres with the same radius.

Next we consider the Stokes flow (G4). Let (u, π) denote the solution of the
Stokes problem

−μΔu+∇π = 0 in Ω \ Γ,
div u = 0 in Ω \ Γ,

u = 0 on ∂Ω,

[[u]] = 0 on Γ,

−2[[μD(u)νΓ]] + [[π]]νΓ = hνΓ on Γ.
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Then by definition NS
0 h = u · νΓ, hence by Proposition 10.5.2

(GΓh|h)Γ = (NS
0 h|h)Γ = 2

∫
Ω

μ|D(u)|2 dx = 0

implies D(u) = 0 in Ω \ Γ. Korn’s inequality shows ∇u = 0 in Ω, hence u is
constant in the components of Ω \ Γ. Therefore, π is constant in the components
of Ω \ Γ as well, and so h = [[π]] has this property too. As for (G2) we see that Γ
is a finite union of disjoint spheres of arbitrary radii.

Consider the Muskat flow (G5). Let p be the solution of the problem

Δp = 0 in Ω \ Γ,
∂νp = 0 on ∂Ω,

[[k∂νp]] = 0 on Γ,

[[p]] = h on Γ.

Then GΓ = Sn implies

(GΓh|h)Γ = (Snh|h) =
∫
Ω

|∇p|2 dx ≥ 0.

Therefore, GΓ is positive semi-definite, and if GΓh = 0 then h is constant in the
components of Ω \Γ, and so we see that, as for (G4), Γ is a union of finitely many
disjoint spheres of arbitrary radii.

Next to last, we take a look at the Stokes flow with phase transition. In this
case we have

(GΓh|h)Γ = (S11
0 h|h)Γ = 2

∫
Ω

μ|D(u)|2 dx = 0.

So also in this case GΓ is positive semi-definite, and if GΓh = 0 then by Lemma
1.2.1 we obtain u = 0 in Ω, hence the pressure π is constant in each phase Ωj ,
which implies that h is constant all over Γ.

In a similar way we proceed for the Muskat flow with phase transition. In
this case we obtain

(GΓh|h)Γ = (Smpth|h) =
∫
Ω

k|∇π|2 ≥ 0.

Therefore, π is constant in the components of the phases, and even in the phases
as [[π/�]] = 0, which yields h constant on Γ.

Let us summarize these results in

Proposition 12.5.1. The geometric evolution equation (12.69) has the following
properties.

(i) The volume |Ω1| is conserved along smooth solutions.

(ii) For (G2), (G4) and (G5) the volumes |Ωk
1 | of the components of Ω1 are pre-

served.
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(iii) The area functional φ(Γ) = |Γ| is a strict Lyapunov functional for (12.69).

(iv) The (non-degenerate) equilibria for (12.69) in case (G1), (G3) and (G6),
(G7) consist of finitely many disjoint spheres of the same radius.

(v) The (non-degenerate) equilibria for (12.69) in case (G2), (G4), and (G5)
consist of finitely many disjoint spheres of arbitrary radii.

In the sequel, we denote the set of non-degenerate equilibria of (12.69) by E .

5.2 Local Well-posedness
For local well-posedness of this problem we parameterize Γ(t) over an analytic
reference hypersurface Σ which is C2-close to Γ0, as explained in Chapter 2. The
transformed problem then reads

β(h)∂th− σGΓ(h)HΓ(h) = 0, t > 0, h(0) = h0, (12.70)

where h means the height function which parameterizes Γ(t) over Σ. Recalling the
quasilinear structure of HΓ(h) we may apply Theorem 5.1.1 to the transformed
problem. As state space we want to employ Xγ = W s

q (Σ) with s > 2 + (n− 1)/p,
where p is typically large. Then we have the embedding Xγ ↪→ C2(Σ), which
means that the curvatures are well-defined, pointwise.

To be more precise, for the M -Problems (G3), (G5), (G7) we want to employ

Corollaries 6.6.5 and 6.7.4, so we choose as a base space X0 = W
1−1/p
p (Σ) and

as regularity space the domain of the corresponding semigroups which is X1 =

W
4−1/p
p (Σ), as these operators are of order 3. This yields Xγ = W

4−4/p
p (Σ) and

Xγ,μ = W
1+3μ−4/p
p (Σ). Thus in this case we have s = sM := 4− 4/p, and for the

embedding Xγ,μ ↪→ C2(Σ) we choose 1 ≥ μ > μM := 1/3 + (n+ 3)/3p.

For the S-Problems (G4), (G6) we want to employ Sections 8.1.3 and 8.4.3
for the corresponding semigroups. Therefore, we choose as a base space X0 =

W
2−1/p
p (Σ) and for the regularity space X1 = W

3−1/p
p (Σ) as the order is m = 1.

This yields Xγ = W
3−2/p
p (Σ) and Xγ,μ = W 2+μ−2/p(Σ). Hence we have s = sS :=

3−2/p and for the embedding Xγ,μ ↪→ C2(Σ) we require 1 ≥ μ > μS := (n+1)/p.

For the remaining problems (G1), (G2) we employ of course the results in
Section 6.4. Here we have more freedom for the choice of s. For (G1) it is conve-

nient to choose X0 = H1
p (Σ) and X1 = H3

p (Σ) which leads to Xγ = W
3−2/p
p (Σ)

and Xγ,μ = W
1+2(μ−1/p)
p (Σ). Therefore, in this case s = sMC = sS and μ should

satisfy 1 ≥ μ > μMC := 1/2 + (n+ 1)/2p, which is smaller than μS .

Finally, for (G2) we set X0 = Lp(Σ) and X1 = H4
p (Σ) which implies Xγ =

W
4−4/p
p (Σ) and Xγ,μ = W

4μ−4/p
p (Σ). Thus s = sSD := sM and 1 ≥ μ > μSD :=

1/4 + (n+ 3)/4p, which is smaller than μM .

Then we can verify the assumptions of Theorem 5.1.1, the most important
one being maximal Lp-regularity. The main result is the following.
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Theorem 12.5.2. Let p ∈ (1,∞), and let the spaces X0, X1, Xγ and Xγ,μ be defined
as above.

Then in each of the cases (G1)∼(G7), (12.69) is locally well-posed in the
sense that the transformed problem (12.70) is locally well-posed for initial values
h0 ∈ Xγ,μ which are small in C1(Σ). Furthermore, the map t �→ Γ(t) is real
analytic.

Proof. We want to rewrite (12.70) as quasilinear evolution equation

∂th+A(h)h = F (h), t > 0, h(0) = h0,

where h0 is small even in C2(Σ), and to apply the theory from Section 5.
For this purpose, we recall that the transformed Laplace-Beltrami operator

from Section 2.2.3 is given by

ΔΓ = a0(h,∇Σh) : ∇2
Σ + a1(h,∇Σh,∇2

Σh) · ∇Σ,

where a0 and a1 are real analytic functions of their arguments, a0(0) = I, a1(0) =
0, and −ΔΓ is strongly elliptic provided h is small in C1(Σ). We observe that a1
is linear w.r.t. ∇2

Σh.
Also recall the representation of the curvature HΓ from Section 2.2.5 which

reads

HΓ(h) = β(h)(c0(h,∇Σh) : ∇2
Σh+ c1(h,∇Σh)),

where c0 and c1 are real analytic functions, c0(0) = I, c1(0) = 0, and −HΓ is
strongly elliptic if h is small in C1(Σ). Actually, we have c0 = a0.

As all parameters are constant and the transformed gradient G(h) is real
analytic in h, we see that the maps h �→ GΓ(h) are real analytic, provided h is
small in C1(Σ).

Furthermore, we may write β(h)−1GΓ = GΣ(h), resulting in the problem

∂th− σGΣ(h)HΓ(h) = 0, t > 0, h(0) = h0. (12.71)

Note that GΣ are linear pseudo-differential operators on Σ. We decompose

−σGΣ(h)HΓ(h) = −σGΣ(h)c0(h,∇Σh) : ∇2
Σh− σGΣ(h)c1(h,∇Σh)

=: A(h)h− F (h).

For (G1), we decompose further

A(h)v = −σ
(
c0 : ∇2

Σv − c0 : ∇2
Σv

)
= A0(h)v +A1(h)v,

where the bar means the mean value on Γ. By (2.42) we have

A1(h)v = −
(∫

Σ

α(h)μ(h) dΣ
)−1

∫
Σ

α(h)μ(h)A0(h)v dΣ.
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As A0(h) : H
2
p (Σ) → Lp(Σ) is bounded, we see that A1(h) ∈ B(H2

p (Σ),C), hence
A1(h) is lower order.

For (G2), we proceed slightly differently. We have

σβ−1ΔΓHΓh = σβ−1(a0 : ∇2
Σ + a1 · ∇Σ)β(c0 : ∇2

Σh+ c1)

= b0(h,∇Σh) :: ∇4
Σh+ b1(h,∇Σh,∇2

Σh) : ·∇3
Σh+ b2(h,∇Σh,∇2

Σh)

= A0(h)h+A1(h)h− F (h),

and in addition, b1 depends only linearly on ∇2
Σh. Observe that A1(h) is also lower

order, as it maps H3
p (Σ) into the base space X0 = Lp(Σ).

So, by the techniques developed in Section 9.5, it is not difficult to show that
(A,F ) : BXγ,μ

(0, r) → B(X1, X0) × X0 is real analytic, provided r > 0 is small
enough. The key for this is the embedding Xγ,μ ↪→ C2(Σ) which is ensured by the
choices of μ for the different problems. Moreover, as mentioned before, from the
results in Sections 6.4, 6.6, 6.7, and Sections 8.1, 8.4, and perturbation, we have
maximal Lp-regularity for all problems in question, again provided h0 is small in
C1(Σ). Therefore, Theorems 5.1.1 and 5.2.1 apply to prove local well-posedness as
well as analyticity in time. For analyticity in space we may follow the arguments
presented in Section 9.4. �
5.3 Stability of Equilibria
To study stability of the equilibria, we first consider an equilibrium Γ∗ ∈ E bound-
ing the domain Ω1 ⊂ Ω. Recall that the equilibria consist of finitely many spheres
and form a real analytic sub-manifold of MH2(Ω). If Γ∗ has m components then
the manifold E has dimension mn+1 for (G1), (G3) and (G6), (G7) and m(n+1)
for (G2), (G4) and (G5). Given such an equilibrium Γ∗ we choose as the reference
hypersurface Σ = Γ∗. The linearization of the transformed problem then reads

∂th+ σGΣAΣh = 0, h(0) = 0. (12.72)

This follows from the fact that the Fréchet derivative of GΣ(h)HΓ(h) at h = 0 (in
the direction of g) can be evaluated by

d

dε

∣∣∣
ε=0

GΣ(εg)HΓ(εg) =
d

dε

∣∣∣
ε=0

GΣ(εg)HΓ(0) +GΣ(0)
d

dε

∣∣∣
ε=0

HΓ(εg) = −GΣAΣg,

as HΣ = HΓ(0) is constant on equilibria, and GΣ(εg)e = 0. As the operator GΣAΣ

has maximal regularity, we may apply the stability results from Chapter 5, once we
have shown that 0 is normally stable or normally hyperbolic for (12.72). Note that
GΣAΣ has compact resolvent by boundedness of Ω, so we only need to consider
its eigenvalues.

(a) We begin with eigenvalue 0. So let GΣAΣh = 0. Then AΣh belongs to the
kernel of GΣ, which means AΣh = ae for (G1), (G3), and (G6), (G7), and AΣh =∑m

k=1 akek for cases (G2), (G4) and (G5). This implies h = h0 − (R2/(n − 1))ae
for (G1), (G3), and (G6), (G7), and h = h0 −

∑m
k=1(R

2
k/(n − 1))akek in case of
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(G2), (G4) and (G5), where h0 ∈ N(AΣ). Therefore, the dimension of the kernel
N(GΣAΣ) equals the dimension of the manifold E , more precisely, it equals the
dimension of the tangent space TΓ∗E .
(b) To see that the eigenvalue 0 is semi-simple for GΣAΣ, suppose (GΣAΣ)

2h = 0.
Then for (G2), (G4) and (G5)

GΣAΣh = h0 +

m∑
k=1

akek, for some h0 ∈ N(AΣ), ak ∈ C.

Multiplying this relation with ej in L2(Σ) we obtain ak = 0 for all k, as GΣ is
selfadjoint and GΣek = 0. As AΣ is also selfadjoint, multiplying with AΣh, we
obtain (GΣAΣh|AΣh)Σ = 0, hence GΣAΣh = 0. The argument for (G1), (G3),
and (G6), (G7) is similar. Consequently 0 is semi-simple for GΣAΣ.

(c) Now suppose that λ ∈ C, λ �= 0, is an eigenvalue for −GΣAΣ, i.e.,

λh+GΣAΣh = 0,

for some nontrivial h. Taking the inner product with AΣh in L2(Σ) we obtain

λ(h|AΣh)Σ + (GΣAΣh|AΣh)Σ = 0.

As GΣ and AΣ are selfadjoint, this identity implies that λ must be real, hence the
spectrum of GΣAΣ is real.

We consider now the cases (G2), (G4) and (G5); then (h|ek)Σ = 0 for all
k = 1, . . . ,m. Suppose λ > 0. As GΣ is positive semi-definite and AΣ is so on
the orthogonal complement of span{ek}mk=1 we see that (h|AΣh) = 0. This implies
AΣh = 0 and then h = 0 as λ > 0. Therefore, for (G2), (G4) and (G5) there are
no nonzero eigenvalues with nonnegative real part, hence in this case (12.72) is
normally stable.

In cases (G1), (G3), and (G6), (G7), we only obtain (h|e)Σ = 0. As AΣ is
positive semi-definite on functions with mean zero if and only if Σ is connected,
we may conclude normal stability for (G1), (G3) and (G6), (G7), provided Σ is
connected.

(d) Next we show that GΣAΣ has exactly m−1 positive eigenvalues in cases (G1),
(G3), and (G6), (G7), when Σ has m components Σk. Therefore in this case we
see that (12.72) is normally hyperbolic.

For (G1) set h =
∑m

k=1 akek with numbers ak such that
∑m

k=1 ak = 0. These
functions form a subspace of L2(Σ) of dimension m− 1. We have

AΣh = −n− 1

R2

m∑
k=1

akek, AΣh = (AΣh|e)Σ/|Σ| = 0,

hence

GΣAΣh = AΣh = −n− 1

R2
h,
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and so λ = (n−1)/R2 is a positive eigenvalue for −GΣAΣ with multiplicity m−1.
This proves the assertion for (G1).

(e) The proof in case of (G3) is more involved. We may consider the eigenvalue
problem for λ > 0 in the space L2,0(Σ) of L2-functions with zero mean. On
this space GΣ is invertible and its inverse is NH

0 in the terminology of Propo-
sition 10.5.1; NH

0 is compact. Define Bλ := λNH
0 + AΣ. This operator with

domain D(Bλ) = D(AΣ) = H2
2 (Σ) is selfadjoint and depends continuously on

λ ≥ 0. Now B0 has the negative eigenvalue λ = −(n− 1)/R2, with eigenfunctions
h =

∑m
k=1 akek with numbers ak such that

∑m
k=1 ak = 0, hence it is (m − 1)-

dimensional. We want to show that Bλ is positive definite for large λ, and so as λ
increases from 0 to ∞, m−1 eigenvalues of Bλ will be crossing the imaginary axis
along the real line, thereby generating m− 1 unstable eigenvalues of −GΣAΣ.

To show that Bλ is positive definite for large λ, we proceed as follows. The
operator −GΣAΣ generates an analytic C0-semigroup in L2(Σ), hence λ+GΣAΣ

is invertible for large λ. By the perturbation theorem for analytic semigroups,
−GΣAΣ − μGΣ = −GΣ(AΣ + μ) generate analytic semigroups as well and with
μ0 = (n−1)/R2 we obtain a number λ1 > 0 such that λ+GΣ(AΣ+μ) is invertible
for all λ ≥ λ1 and μ ∈ [0, μ0]. This implies that Bλ+μ = λNH

0 +AΣ+μ invertible
for all λ ≥ λ1 and for all μ ∈ [0, μ0], as AΣ + μ0 ≥ 0, we see that Bλ has no
non-positive eigenvalues for λ ≥ λ1, hence its is positive definite for large λ.

(f ) Finally, we consider (G6), (G7). In this case we know that GΣ is positive semi-
definite and invertible on L2,0(Σ), hence G−1

Σ is positive definite on this space.
Therefore, the operator Bλ = λG−1

Σ +σAΣ has an (m−1)-fold negative eigenvalue
for λ = 0 and is positive definite for large λ. This shows that m − 1 eigenvalues
must cross the imaginary axis through zero, as λ varies from 0 to ∞.

In summary, we have proved

Proposition 12.5.3. For the linearized problem (12.72) at an equilibrium Γ∗ ∈ E
the following assertions are valid.

(i) For (G2), (G4) and (G5), and for (G1), (G3) and (G6), (G7) if additionally
Γ∗ is connected, (12.72) is normally stable.

(ii) For (G1), (G3), and (G6), (G7) in case Γ∗ is not connected, (12.72) is nor-
mally hyperbolic.

Now we may apply the nonlinear stability results of Chapter 5 to obtain the main
result of this section.
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Theorem 12.5.4. Let Γ∗ be a (non-degenerate) equilibrium of (12.69).
Then the following assertions hold.

(i) For (G2), (G4) and (G5), and for (G1), (G3) and (G6), (G7) if additionally
Γ∗ is connected:
h∗ = 0 is stable for (12.70) in W s

p (Γ∗). Any solution h starting close to
h∗ = 0 in W s

p (Γ∗) exists globally and converges to an equilibrium h∞ of
(12.70) in W s

p (Γ∗) at an exponential rate.

(ii) For (G1), (G3), and (G6), (G7) in case Γ∗ is disconnected:
h∗ = 0 is unstable in W s

p (Γ∗). A solution h starting close to h∗ = 0 and
staying close to the set of equilibria in the topology of W s

p (Γ∗) exists globally
and converges to some equilibrium h∞ of (12.70) in W s

p (Γ∗) at an exponential
rate.

In both cases, h∞ corresponds to some Γ∞ ∈ E.
So in conclusion, the averaged mean curvature flow, the Mullins-Sekerka flow,
and the Stokes and Muskat flows with phase transition see the phenomenon of
Ostwald-ripening, while the surface diffusion flow, the Stokes flow, and the Muskat
flow do not share this property. Physically speaking, (G1), (G3) and (G6), (G7)
are spatially non-local so that different parts of the surface see each other. As
(G2) is purely local in space, different parts of the surface move independently
of each other. On the other hand, (G4) and (G5) are also non-local in space, but
the coupling between different parts of the surface is not strong enough to enable
Ostwald-ripening.

5.4 The Semiflow and Long-Time Behaviour
We define the state manifold of (12.69) by means of

SM(Ω) := {Γ ∈ MH2(Ω) : Γ ∈ W s
p }. (12.73)

The charts for this manifold have been introduced in Chapter 2. The topology of
SM(Ω) is that induced by the canonical level functions ϕΓ in W s

p (Ω), see Section
2.4.2. By Theorem 12.5.2 we see that given an initial surface Γ0 ∈ SM(Ω) we
find a > 0 and Γ : [0, a] → SM(Ω) continuous such that Γ(0) = Γ0 and Γ(·) is
an Lp-solution in the sense that Γ is obtained as the push forward of the solution
of the transformed problem (12.70). We may extend such an orbit in SM(Ω) to
a maximal time interval J(Γ0) := [0, t+(Γ0)). Basically there are two facts which
prevent the solution from being global, namely

• Regularity: the norm of Γ(t) in W s
p may become unbounded as t → t+(Γ0);

• Geometry: the topology of the interface Γ(t) may change, or the interface
may touch the boundary of Ω, or part of it may shrink to a point.

As before, we say that the solution Γ(t) satisfies a uniform ball condition, if there
is a radius r > 0 such that Γ(J(Γ0)) ⊂ MH2(Ω, r). The main result of this section
reads as follows.
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Theorem 12.5.5. Let Γ(t) be a solution of the geometric evolution equation (12.69)
on its maximal time interval J(Γ0). Assume furthermore that

(i) |Γ(t)|W s
p
≤ M < ∞ for all t ∈ J(Γ0), and

(ii) Γ(t) satisfies a uniform ball condition for all t ∈ J(Γ0).

Then J(Γ0) = R+, i.e., the solution exists globally, and Γ(t) converges in SM
to an equilibrium Γ∞ ∈ E at an exponential rate. The converse is also true: if a
global solution converges in SM to an equilibrium, then (i) and (ii) are valid.

The proof relies on Theorem 5.7.2 and follows the same lines as that of
Theorem 11.4.1.
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The Stefan Problem: Historical Remarks
The Stefan problem is arguably the most studied free boundary problem, with
over 1,200 mathematical publications devoted to the topic. It was first introduced
in 1889 by Josef Stefan [269, 270] to describe the freezing of water in a lake or a
bay. We refer to the books by Rubenstein [238] and Meirmanov [192] for further
information.

In the classical Stefan problem one assumes that the (relative) temperature
ϑ coincides with the melting temperature at the interface Γ(t), and the following
system is considered

∂tϑ−Δϑ = 0 in Ω \ Γ(t),
ϑ = 0 on Γ(t),

V − [[∂νθ]] = 0 on Γ(t),

where 0 is the (scaled) melting temperature. The classical Stefan problem ad-
mits unique long-time weak solutions, provided the given data (that is, the ini-
tial temperature and the source terms) have appropriate signs; see for instance
Friedman [112, 113], Kamenomostskaja [156], and Ladyženskaja, Solonnikov and
Ural′ceva [167, pp. 496–503]. If the sign conditions are obstructed, then the prob-
lem becomes ill-posed, as was shown by DiBenedetto and Friedman [87]. Exis-
tence of weak solutions is closely tied to the maximum principle. Results con-
cerning the regularity of weak solutions for the multidimensional classical one-
phase Stefan problem were established by Caffarelli [54, 55], Caffarelli and Fried-
man [57], Friedman and Kinderlehrer [114], Kinderlehrer and Nirenberg [159, 160],
Matano [185], while regularity results for the two-phase Stefan problem were ob-
tained by Athanasopoulos, Caffarelli and Salsa [31, 32], Caffarelli and Evans [56],
DiBenedetto [86], Sacks [241], and Ziemer [306], to list only a few references.
Classical solutions for the classical Stefan problem were first established by Han-
zawa [138] and Mĕırmanov [191]. We refer to the survey-research articles by Ro-
drigues [233, 234, 235], and also to Prüss, Saal and Simonett [212] for a more
extensive account of the literature concerning the classical Stefan problem.

If the condition ϑ = 0 is replaced by

ϑ = −σHΓ on Γ(t),
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with HΓ the mean curvature of Γ(t) and σ a positive constant, the resulting prob-
lem is usually referred to as the Stefan problem with surface tension, or the Ste-
fan problem with Gibbs-Thomson correction. Here we mention the monographs by
Chalmers [62, Chapter 1], Hartman [139], Visintin [288], and the research papers by
Caginalp [58], Gurtin [132, 133, 134], Langer [169], Mullins and Sekerka [200, 201],
Visintin [287], where this law has been motivated and derived based on various
mathematical and physical principles. As explained in Chapter 1, the condition
ϑ = −σHΓ can be understood as a first order approximation of the relation

[[ψ(θ)]] + σHΓ = 0 on Γ(t)

around the melting temperature θm, where θ is the absolute temperature and ψ
the free energy of the system.

The Stefan problem with the law ϑ = −σHΓ or [[ψ(θ)]] = −σHΓ, respectively,
differs from the classical Stefan problem in a much more fundamental way than just
in the modification of an interface condition. This becomes evident by the fact that
the classical Stefan problem allows for a comparison principle, a property that is
no longer shared by the Stefan problem with surface tension. A striking difference
is also provided by the fact that in the classical Stefan problem, the temperature
completely determines the phases, that is, the liquid region can be characterized
by the condition ϑ > 0, whereas ϑ < 0 characterizes the solid region.

Although the Stefan problem with Gibbs-Thomson correction has been
around for many decades, only few analytical results concerning existence of so-
lutions can be found in the literature. Friedman and Reitich [115] considered the
case with small surface tension 0 < σ " 1 and linearized the problem about
σ = 0. Assuming existence of a smooth solution for σ = 0, that is, for the classical
Stefan problem, the authors proved existence and uniqueness of a weak solution
for the linearized problem and then investigated the effect of small surface tension
on the shape of Γ(t). Existence of long-time weak solutions was first established
by Luckhaus [181], using a discretized problem and a capacity-type estimate for
approximating solutions. The weak solutions obtained have a sharp interface, but
are highly non-unique. See also Röger [236], and Almgren and Wang [9]. A proof
of existence – but without uniqueness – of local in time classical solutions was ob-
tained in Radkevich [231, 232]. In Meirmanov [193], the way in which a spherical
ball of ice in a supercooled fluid melts down was investigated.

The case of a strip-like geometry, where the free surface Γ(t) is given as the
graph of a function, was considered in Escher, Prüss and Simonett in [103], and
existence as well as uniqueness of local in time classical solutions was established.
Moreover, it was shown that solutions instantaneously regularize to become an-
alytic in space and time. In Prüss and Simonett [219], linearized stability and
instability of equilibria was investigated. Some nonlinear stability results were ob-
tained by Guo, Hadžić [135, 136]. The stability and convergence results for the
thermodynamically consistent Stefan problem in Chapters 11 and 12 of this mono-
graph are taken from Prüss, Simonett and Zacher [228].
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Free Boundary Problems for the Navier-Stokes Equations: Historical Remarks
The two-phase Navier-Stokes equations with a free boundary (1.34) describe the
motion of two incompressible, viscous, inmiscible fluids that are separated by Γ(t).
In case Ω2(t) = ∅ one obtains the one-phase Navier-Stokes equations, which de-
scribe the motion of an isolated liquid that moves due to capillary forces acting
on the free boundary.

The one-phase problem has received wide attention in the last three decades or
so. Existence and uniqueness of solutions for σ = 0, as well as σ > 0, in case that
Ω0 is bounded has been extensively studied in a long series of papers by Solon-
nikov, see for instance [258, 259, 260, 261, 262, 263, 267, 268], and Mogilevskĭı and
Solonnikov [198]. Results were established in anisotropic Sobolev-Slobodetskii as
well as in Hölder spaces. Moreover, it was shown in [259] that if Ω0 is sufficiently
close to a ball and the initial velocity u0 is sufficiently small, then the solution
exists globally, and converges to a uniform rigid rotation of the liquid about a
certain axis which is moving uniformly with a constant speed, see also Padula and
Solonnikov [205].

More recently, local and global existence and uniqueness results (in case that
Ω0 is a bounded domain, a perturbed infinite layer, or a perturbed half-space)
in anisotropic Sobolev spaces W 2,1

q,p with 2 < p < ∞ and n < q < ∞ have been
established by Shibata and Shimizu [247, 245, 246] for σ = 0 as well as σ > 0.
We also refer to Mucha and Zajaczkowski [199] and Abels [1] for other existence
results.

The motion of a layer of viscous, incompressible fluid in an ocean of infinite
extent, bounded below by a solid surface and above by a free surface which includes
the effects of surface tension and gravity was considered by Allain [8], Beale [36],
Beale and Nishida [37], Tani [277], and by Tani and Tanaka [278]. If the initial
state and the initial velocity are close to equilibrium, global existence of solutions
was proved in [36] for σ > 0, and in [278] for σ ≥ 0, and the asymptotic decay
rate for t → ∞ was studied in [37].

Results concerning the two-phase problem are more recent. Existence and
uniqueness of local strong solutions was first studied by Denisova [77, 78], Denisova
and Solonnikov [79, 80]. Tanaka [276] considered the two-phase Navier-Stokes
equations with thermo-capillary convection in bounded domains, and obtained
existence and uniqueness of strong local solutions. Shimizu [248] established ex-
istence and uniqueness results in anisotropic W 2,1

q,p -spaces for 2 < p < ∞ and
n < q < ∞.

Prüss and Simonett [220, 221, 222] considered the two-phase Navier-Stokes
equations with σ > 0 in the situation where the free boundary Γ(t) is given as
the graph of a function over a hyperplane, and gravity is acting on the fluids
[220, 222]. It was shown in [220, 222] that solutions regularize and immediately
become real analytic in space and time. Finally, Köhne, Prüss and Wilke [163]
obtained existence and uniqueness of strong solutions with maximal regularity
for the two-phase Navier-Stokes equations with surface tension. They also proved
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asymptotic nonlinear stability results for equilibria, without gravity.
The approach used by Solonnikov, and also in [77, 78, 80, 245, 246, 247,

276, 277, 278], relies on the use of Lagrangian coordinates. In this formulation
one obtains a transformed problem for the velocity and the pressure on a fixed
domain, where the free boundary does not occur explicitly. The free boundary is
then given by Γ(t) =

{
ξ +

∫ t

0
v(τ, ξ) dτ : ξ ∈ Γ0

}
, where v is the velocity field in

Lagrangian coordinates. With this approach it seems difficult to prove additional
regularity properties of solutions, for instance smoothness of the free boundary.
In addition, Lagrangian coordinates do not seem well-adapted in the presence of
phase transitions.

Below, we comment on the literature relevant for the specific chapters in this
book. Of course, our bibliography will necessarily be incomplete. Even worse, our
selection of citations is biased by our background and preferences, and we apologize
to all authors who did not receive credit for their works.

Chapter 1. The presented modeling follows first principles in physics and em-
ploys accepted constitutive laws. So for further reading any established book on
Mechanics and Rational Thermodynamics is recommended, for example the clas-
sical monograph of Truesdell [285], or the more recent one of Drew and Passman
[90]. But we emphasize that the first place (maybe because of our ignorance con-
cerning physical literature) where we recognized the meta-principle of no entropy
production on the interface has been the book of Ishii [152] which has been repub-
lished recently as [153]. We also benefited from the paper by Anderson, Cermelli,
Fried, Gurtin, and McFadden [25]. For more up-to-date developments on modeling
of even multi-component flows we refer to Bothe and Dreyer [42]. The Hanzawa
transform explained in Section 1.3.2 has been first introduced by Hanzawa [138] in
connection with the classical Stefan problem. It is nowadays one of the main tools
to implement the so-called direct mapping method for reducing a free boundary
problem to a problem on a fixed domain.

Chapter 2. For further background material in differential geometry we refer to
the standard text books in this area, e.g. to do Carmo [88] and Kühnel [165]. Our
approach follows to a large extent our recent paper [223]. We also mention Kimura
[158] for other aspects on the geometry of moving hypersurfaces. For a different
derivation of the local representation of the curvature operator in Section 2.2.5, see
Escher and Simonett [107, 109]. The construction of the tubular neighbourhood
in Section 2.3.1 via the uniform ball condition has been borrowed from Gilbarg
and Trudinger [127, Section 14.6].

Chapter 3. The notion of (pseudo)-sectorial operator is very classical. This class
of operators has already been used in the books of Hille and Phillips [147] and
Dunford and Schwartz [91]. The ergodic theorem, Theorem 3.1.2, is probably even
older. Many other mathematicians, for instance Triebel [282], Kato [157], Tan-
abe [274], considered this class of operators in case φA < π/2. Common names
have been positive operators (which is misleading!) or operators of type (M,ω).
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Nowadays, the class of (pseudo)-sectorial operators can be considered as fairly
well understood, and the results of Section 3.1 are now standard.

The same can be said about Section 3.2 on the simplest nontrivial operator,
the time derivative, except for Section 3.2.4 on time-weighted spaces; the approach
in this subsection follows the presentation in Prüss and Simonett [218].

Analytic semigroups are also well-known dating back to the work of Hille,
Philips, and Yosida. They are an important corner-stone in modern analysis. The
idea for the construction of the extended functional calculus used here is due to
McIntosh [189]. The theory of complex powers of operators was developed inde-
pendently by Balakrishnan, Kato, Krasnoselskii, and Sobolevskii. For alternative
derivations of this theory we refer to the monographs of Krĕın [164], Tanabe [274],
Yosida [300], or to the more recents ones by Amann [15] and Lunardi [183], and
also Denk, Hieber, and Prüss [81], Kunstmann and Weis [166].

Operators with bounded imaginary powers have been considered by Stein
[271], and Seeley [243] in connection with complex interpolation, and by Dore
and Venni [89] in connection with maximal Lp-regularity. The class BIP(X) has
been introduced in the paper by Prüss and Sohr [229], and it is justified by its
connection to the class HT of Banach spaces. The paper [229] also contains the
basic permanence properties as well as the functional calculus based on the inverse
Mellin transform. No nontrivial characterization of the class BIP(X) seems to be
known, so far. However, in the Hilbert space case, Le Merdy [172] proved that a
sectorial operator A with angle φA < π/2 belongs to BIP(X) if and only if −A
is unitary equivalent to the generator of a contraction semigroup.

The H∞-calculus of a sectorial operator has been introduced by McIntosh
[189], where also the basic convergence lemma is proved. For further results on this
class of operators we recommend the original literature by Yagi [297], Cowling,
Doust, McIntosh and Yagi [73], and the more recent contributions by Arendt [28],
Denk, Hieber and Prüss [81], and Kunstmann and Weis [166]. For examples of
sectorial operators which do not have an H∞-calculus, or do not admit bounded
imaginary powers, we refer to the papers of McIntosh and Yagi [190], Baillon and
Clément [33], Venni [286], and Hieber [142].

The connection between real interpolation and semigroup theory is well es-
tablished; see e.g. Butzer and Berens [53] and Triebel [282]. Theorem 3.4.7 is a
special case of a result due to Grisvard [130]. For a considerable extension of
Theorem 3.4.8 we refer to the paper by Meyries and Veraar [196]. They prove

tr : F s+α
pq,μ (R+;Y ) ∩ F s

pq,μ(R+;DA(α, r)) → DA(β, p),

and
tr : Bs+α

pq,μ(R+;Y ) ∩Bs
pq,μ(R+;DA(α, r)) → DA(β, q),

are bounded and surjective, for any Banach space Y , 1 < p < ∞, α > 0, q, r ∈
[1,∞], 1/p < μ < 1 + 1/p, where β = s+ α− (1− μ)− 1/p ∈ (0, α). Note that in
the first case the trace space does not depend on q, r, and in the second one it is
still independent of r! This is a truly remarkable result.
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The definition of maximal Lp-regularity in an abstract setting has been intro-
duced by Da Prato and Grisvard [74], who also proved Theorem 3.5.8. The earlier
result in Hilbert spaces, Theorem 3.5.7, is due to de Simon [75]. The necessary
conditions in Proposition 3.5.2 seem to be folklore, the proof given here is partly
taken from the paper of Prüss [211], and the maximal regularity result in weighted
Lp-spaces, Theorem 3.5.4, is due to Prüss and Simonett [218]. Maximal regularity
results in the Triebel-Lizorkin scale can be found in the paper of Bu [51].

Chapter 4. The central definition of this chapter, that of R-boundedness, was
implicitly introduced and used by Bourgain [47] and later on also by Zimmer-
mann [307]. Explicitly it is due to Berkson and Gillespie [39] and Clément, de
Pagter, Sukochev and Witvliet [65]. We adopted most of the results in Sections
4.1 and 4.2 from the last paper. Property (α) has been introduced earlier by Pisier
in [206]. These papers gave rise to the breakthrough in vector-valued harmonic
analysis around the turn of the millennium, which solved the problem of bound-
edness of operator-valued Fourier multipliers in Lp-spaces, and at the same time
lead to a characterization of maximal Lp-regularity.

It follows from the paper of Bourgain [48] that the derivation operator d/dt
belongs to BIP(Lp(R;X)), 1 < p < ∞, provided X is of class HT . The converse
of this statement was first proved in Prüss [209, Section 8], which established the
fundamental relation between the classes BIP and HT . It was known before that
there are two other characterizations of the class HT . These are
(i) X is ζ-convex. This means that there is a function ζ : X ×X → R such that ζ
is convex in both variables and satisfies

0 ≤ ζ(x, y) ≤ |x+ y|, x, y ∈ X.

(ii) X enjoys the unconditional martingale difference property, for short X is a
UMD-space. This means that for every p ∈ (1,∞) there is a constant Cp > 0 such
that for any X-valued martingale (fk)k≥0 on a probability space (Ω,A, μ), N ∈ N,
and any choice of signs (εn)n∈N ⊂ {−1, 1} the following estimate holds.

∣∣∣f0 + N∑
k=1

εk(fk − fk−1)
∣∣∣
Lp(Ω,A,μ;X)

≤ Cp|fN |Lp(Ω,A,μ;X).

For these equivalences as well as for the notion of a vector-valued martingale we
refer to the survey article by Burkholder [52].

It is known that a Banach space of class HT is super-reflexive, and therefore
admits an equivalent uniformly convex, uniformly smooth norm. On the other
hand, Bourgain [47] gave an example of a super-reflexive Banach lattice which
does not belong to the class HT . Every Hilbert space belongs to HT , and if
(Ω,A, μ) is a σ-finite measure space, p ∈ (1,∞), then Lp(Ω,A, μ;X) is in HT if
X has this property. Closed subspaces, quotients, duals and finite products are
preserved, and complex interpolation spaces (X,Y )θ as well as real interpolation
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spaces (X,X)θ,p belong to the class HT , provided X,Y ∈ HT , θ ∈ (0, 1) and
1 < p < ∞. These facts are proved in Burkholder [52], see also Amann [15].

The necessary condition for operator-valued Fourier multipliers, Proposi-
tion 4.3.2, in the one-dimensional case is due to Clément and Prüss [67], while
the one-dimensional operator-valued Fourier multiplier theorem, Theorem 4.3.3,
is due to Weis [291]. The proof given here follows that given in Clément and
Prüss [67]. The extension to n dimensions, Theorem 4.3.11, is independently due
to Štrkalj and Weis [272], and to Haller, Heck, and Noll [137]. For a proof of
Theorem 4.3.11 we refer to Denk, Hieber and Prüss [81]. The very simple proof
of Theorem 4.3.9 based on Theorem 4.3.3, induction, and property (α) seems to
be new. The proof of Theorem 4.3.14, i.e. the fact that the derivation operator
belongs to H∞ in weighted vector-valued Lp-spaces, is due to Prüss and Simonett
[218].

There is an analogue of the operator-valued Fourier multiplier theorems in
Lp(S

1;X), where S1 means the one-dimensional torus and X ∈ HT , the vector-
valued Marcinkiewicz multiplier theorem. This concerns Fourier series for periodic
problems, and is due to Arendt and Bu [30]. More precisely, its statement is as
follows. Suppose X,Y are Banach spaces of class HT , and {Mk}k∈Z ⊂ B(X,Y ) as
well as {k(Mk+1−Mk)}k∈Z are R-bounded. Then {Mk}k∈Z is a Fourier multiplier
from Lp(S

1;X) to Lp(S
1;Y ). This result is very useful for obtaining maximal

Lp-regularity of evolution equations which are periodic in time.
For operator-valued Fourier multipliers in Bs

pq(R
n;X) we refer to the papers

by Amann [16] and Girardi and Weis [129], and for analogous results in Triebel-
Lizorkin spaces F s

pq(R
n;X) we refer to Bu and Kim [51].

The notion of R-sectoriality is due to Clément and Prüss [67]. The first main
result of this section, Theorem 4.4.4, is due to Weis [291, 292], while the second
one, Theorem 4.4.5, is due to Clément and Prüss [67].

The definition of an R-bounded H∞-calculus, i.e. Definition 4.5.1, is a natural
extension of the concept of H∞-calculus. It appeared first in the paper of Desch,
Hieber and Prüss [85], where it was proved for the first time that the negative
Laplacian on Rn admits an R-bounded H∞-calculus. Theorem 4.5.3 is new, it
follows from the paper of Prüss and Simonett [218], and Theorem 4.5.4 has been
proved in [67].

In the paper of Kalton and Weis [155] a very powerful tool has been devel-
oped, namely an operator-valued functional calculus. The main result in that paper
is Theorem 4.5.6, and its corollaries in somewhat weaker form are also in there.
However, we want to mention two results which had been known before.

(i) The first one is due to Sobolevskii [254]. He calls two sectorial operators A
and B a coercive pair, if they are commuting in the resolvent sense, and there is
a constant C > 0 such that

|Ax|+ t|Bx| ≤ C|Ax+ tBx|, x ∈ D(A) ∩ D(B), t > 0.

He then proved the Mixed derivative theorem for coercive pairs, which states that
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there is another constant C > 0 such that

|AβB1−βx| ≤ C|Ax+Bx|, x ∈ D(A) ∩ D(B), β ∈ [0, 1].

This result is more general than Corollary 4.5.10, as Corollary 4.5.9 implies that A
and B form a coercive pair provided A ∈ H∞(X) and B ∈ RS(X) are commuting
in the resolvent sense, and φ∞

A + φR
B < π.

(ii) The second one is due to Dore and Venni [89]. They proved the following
result. Suppose X ∈ HT , A,B ∈ BIP(X) are invertible and commuting in the
resolvent sense, and assume the parabolicity condition θA + θB < π. Then the
operator A + B with natural domain D(A + B) = D(A) ∩ D(B) is closed, invert-
ible and sectorial, with angle φA+B ≤ max{θA, θB}. This result was improved
in Prüss and Sohr [229], where invertibility of the operators was dropped, and
A+ B ∈ BIP(X) was proved, with θA+B ≤ max{θA, θB}. As a consequence, the
Dore-Venni theorem can be iterated. These results correspond to Corollary 4.5.9,
although the assumptions are different. Nevertheless, we call this corollary also
Dore-Venni theorem. In addition, we refer to Prüss [209, Section 8].

Fractional Evolution Equations are currently in the focus of interest for many
researchers. These problems form a subclass of the class of Evolutionary Integral
Equations. For the theory of such equations we refer to the monograph of Prüss
[210] and its reprinted version. As this subject is not central in this book, we do not
include further references, but recommend the papers by Zacher [301, 302, 303, 304]
which contain important advances in the theory of fractional evolution equations.

For time-space embeddings like those in Section 4.5.5 in the vector-valued
Besov- and Triebel-Lizorkin scales we refer to Meyries and Veraar [196].

Chapter 5. The theory of abstract parabolic evolution equations was initiated by
the pioneering work of Tosio Kato, Hiroki Tanabe, and independently by Pavel
E. Sobolevskii in the early sixties of the last century. For the quasilinear case, their
work has been continued by Herbert Amann, Wolf von Wahl, the Italian school
around Guiseppe Da Prato and Alessandra Lunardi, and by many other authors.
For an account of these early developments we refer e.g. to the monographs of
Amann [15], Lunardi [183], and Tanabe [275]. We also refer to the publications by
Amann [10, 11, 12, 13, 14] for important advances.

Our simple and direct approach employing maximal Lp-regularity goes back
to the paper by Clément and Li [66]. In the paper by Prüss [211] this approach
has been worked out in more detail, in particular concerning regularity and the
principle of linearized stability. We also refer to Amann [18] for extensions and
additional results. The idea of using time-weights in the Lp-setting stems from
Prüss and Simonett [218], and it has been employed in Köhne, Prüss and Wilke
[162] and in LeCrone, Prüss and Wilke [173] to reduce initial regularity, and to
gain regularity as well as compactness of the semiflow.

For a treatment of quasilinear parabolic equations in the framework of contin-
uous maximal regularity, taking into account time-weights, we refer to Angenent
[27], Clément and Simonett [68], and also to Simonett [252, 253].
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The idea of extracting regularity via the implicit function theorem, known as
the parameter trick, goes back to Angenent [27, 26]. This idea has been extended
and employed in a series of papers by Escher, Prüss, Simonett, and Shao [111,
105, 104, 103, 222, 244, 213].

Sections 5.3 and 5.5 on the analysis of normally stable and normally hyper-
bolic equilibria are taken from [224], while Section 5.6 is originally in [226]. The
proof of the instability result, Theorem 5.4.1, appears here for the first time.

The methods developed in Chapter 5 are very flexible and well-suited for
quasilinear parabolic partial differential equations with linear autonomous bound-
ary conditions, or for problems without boundaries, but are not directly applicable
in the case of nonlinear boundary conditions. Nevertheless, the methods developed
here can be employed in the presence of nonlinear boundary conditions, due to
the maximal regularity results in Part 3 of this book, in particular those con-
cerning inhomogeneous boundary data. These sharp results allow to extend the
theory from Chapter 5 almost completely to quasilinear parabolic partial differ-
ential equations with fully nonlinear boundary conditions. For this we refer to
the papers by Latushkin, Prüss and Schnaubelt [170, 171] and to Prüss, Simonett
and Zacher [226]. Even more, in the same way extensions to the case of dynamic
boundary conditions have been studied. Based on the paper by Denk, Prüss and
Zacher [84] which covers the linear theory of such problems, this is done in the
papers by Meyries and Schnaubelt [195] and Gal and Meyries [119].

Chapter 6. Elliptic and parabolic systems are of course very old topics, and we
find it impossible to account for the complete history here. For this we refer to the
Monographs of Gilbarg and Trudinger [127] for the elliptic case and to Lieberman
[176] for parabolic systems. We also refer to the fundamental contributions of the
Russian school, which are Ladyženskaja and Ural′ceva [168] for elliptic systems,
and Ladyženskaja, Solonnikov and Ural′ceva [167] for parabolic problems. In fact,
in these books the first results on maximal Lp-regularity have been obtained.

Here we concentrate on more recent developments, including infinite dimen-
sional state spaces. To our knowledge, the first thorough study of differential oper-
ators with operator-valued coefficients is the paper by Amann [17]. His approach is
based on Fourier-multiplier results in vector-valued Besov-spaces [16] and interpo-
lation theory. In particular, this paper contains the definition of normal ellipticity.
Our definition of parameter ellipticity in Section 6.1 was used by Agranovič and
Vǐsik [3]. It parallels the notion of (κ, θ)-ellipticity in Amann [17], see also Amann,
Hieber and Simonett [23] for the finite-dimensional case.

Based on the operator-valued Fourier-multiplier results from Chapter 4, the
paper by Denk, Hieber and Prüss [81] contains a general Lp-theory for elliptic and
parabolic problems in infinite-dimensional state spaces. Here we borrowed from
that paper, in particular for Section 6.1 and partly for 6.2 and 6.3. In contrast to
the presentation in [81], where a large emphasis was placed on kernel estimates,
our present approach is more based on Fourier-multipliers, thereby extending and
simplifying proofs of known results. We also implemented the techniques from
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Denk, Hieber and Prüss [82] to include inhomogeneous boundary conditions and
to cover the case p �= q.

We want to point out that the two basic conditions on a boundary value prob-
lem (A(x,D),B1(x,D), . . . ,Bm(x,D)) of order 2m, namely normal ellipticity and
the Lopatinskii-Shapiro condition, are also necessary for maximal Lp-regularity of
the Lp-realization AB of this boundary value problem. This has also been proved
in the paper by Denk, Hieber, and Prüss [82]. Therefore, besides regularity as-
sumptions, the results in Sections 6.1-6.3 are optimal. It seems that the notion of
normal strong ellipticity which emerged from the paper of Bothe and Prüss [44]
has not yet been considered in the case of an infinite dimensional state space.

There are surprisingly few results on transmission problems in the mathemat-
ical literature, although such problems are omnipresent in Mathematical Physics.
Therefore, and as we have been in need for results on transmission problems, we
devoted Section 6.5 to this topic. We have also included a systematic treatment
of Dirichlet-to-Neumann operators for elliptic as well as for parabolic problems.
These results are somewhat folklore, but hard to find in the literature.

The remaining subsections, dealing with the linearized Stefan and Verigin
problem as well as their nephews, the linearized Mullins-Sekerka and Muskat prob-
lem, in the form presented here, seem to be new. For more general parabolic
systems with dynamic boundary conditions or boundary conditions of relaxation
type, we refer to the paper by Denk, Prüss, and Zacher [84], and to the recent
book by Denk and Kaip [83].

Finally, we also refer to the more recent contributions by Amann concerning
parabolic equations on uniformly regular and singular manifolds [19, 20, 21, 22].

Chapter 7. There is a huge body of mathematical literature on the Stokes problem
and the Stokes operator. It is impossible to give credit to all mathematicians who
contributed; instead we refer to the monographs of Galdi [120], Sohr [255], and
Temam [280]. We mention here only the pioneering works of Solonnikov [257],
Borchers and Sohr [41], Giga [122], Giga and Sohr [125, 126], Miyakawa and Sohr
[197], and Sohr and von Wahl [256].

Surprisingly, references concerning maximal Lp-regularity for the generalized
linear Stokes equation are rare. We only know of the papers of Solonnikov [266]
and Bothe and Prüss [44]. The exposition in this chapter extends and improves
the approach presented in [44].

Also surprising is the fact that mathematical papers on the classical Stokes
or Navier-Stokes problem almost exclusively employ the no-slip condition at the
boundary. In Engineering, other boundary conditions are of equal importance,
such as the pure slip, the Navier condition, or outflow and free (or Neumann)
conditions. To the best of our knowledge, the first paper considering Navier con-
ditions in the framework of maximal regularity has been by Saal [240]. An up to
date mathematical study of such boundary conditions, and even others which are
energy preserving, is contained in the paper by Bothe, Köhne, and Prüss [43]. For
further references concerning such “non-standard” boundary conditions we refer
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to the discussion given in [43].
Our proofs in Section 7.4 are inspired by, and follow to a large extent, the

seminal paper by Simader and Sohr [250], and the monograph [251] by the same
authors.

Chapters 8–11. The results in these chapters form the core of the book. They are
due to the authors and their co-authors, combining, improving and extending the
results from [163, 214, 215, 216, 217, 221, 222, 225, 227, 228].

In these chapters, we did not take into account external forces like gravity.
Actually, as it is a lower order pertubation, it is not difficult to include gravity
in the maximal regularity results in Section 8 and also in those results on local
well-posedness and regularity in Section 9. However, in the presence of gravity the
only equilibrium without boundary contact will be a flat interface Γ∗ = Rn−1,
with Ω2 = Rn

+, and Ω1 = Rn
−. For this configuration, in [220] we have developed

a spectral theory similar to that for Problem (P2), showing that the case ρ1 > ρ2
is linearly stable, and ρ2 > ρ1 is unstable. Note that the spectrum of L2 is non-
discrete in this case. Our paper [220] contains the first mathematically rigorous
proof for this famous Rayleigh-Taylor instability in viscous two-phase flows in the
nonlinear case. We also refer to Wang and Tice [290] for similar results in a periodic
setting.

The Rayleigh-Taylor instability has recently been investigated for the case of
a capillary by Wilke [296]. To avoid the difficulty with contact angles, he assumes
slip conditions on the boundary of the capillary and a 90 degree contact angle.
The trivial equilibrium is then a flat interface, vanishing velocity, and constant
pressures. Wilke establishes global well-posedness of the problem for small initial
data, and he proves nonlinear stability for this equilibrium, provided the radius a
of the capillary is smaller than a critical number ac > 0, which depends on the
densities, the surface tension, and acceleration of earth. He further finds that at ac
a subcritical bifurcation occurs, and the trivial as well as the bifurcating solutions
are unstable for a > ac.

Chapter 12. Section 12.1 extends the main theorem in Bothe and Prüss [44] to
the case p �= q and also to outflow boundary conditions, which were left out in
that paper. The stability result for the trivial solution is new. There is a large
mathematical literature on generalized Newtonian fluids, in particular on power
law fluids. We refer to the references given in [44].

The theory of nematic liquid crystal flows was initiated in the fundamental
papers by Ericksen [95] and Leslie [174]. There has been much work on these
equations, in particular in recent years; see Lin [178], Lin and Liu [179, 180], Hu
and Wang [149], Lin, Liu and Wang [177], Wang [289], Hu, Wang and Wen [150],
and Li and Wang [175]. The results in Section 12.2 improve those of the paper
by Hieber, Nesensohn, Prüss and Schade [143], which so far contains the best
results on local strong well-posedness and stability of equilibria for the so-called
isothermal simplified Ericksen-Leslie model. Concerning extensions of this theory
to the non-isothermal case, compressible or incompressible, and with or without
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stretching, we refer to Hieber and Prüss [145, 146, 144].

The analysis in Section 12.3 extends that given in the paper of Herberg,
Meyries, Prüss, Wilke [141]. As a standard reference for Maxwell-Stefan diffusion
we recommend the monograph of Giovangigli [128], and the recent paper by Bothe
and Dreyer [42].

In Section 12.4 the main results of the paper Prüss, Simonett, Wilke [225]
are reproduced. In that paper the Stefan problem with variable surface tension has
been studied mathematically for the first time.

The geometric evolution equations considered in Section 12.5 have been stud-
ied by many researchers and there is a huge body of literature. The following selec-
tion is necessarily incomplete, and many interesting and important contributions
go unmentioned.

The Averaged Mean Curvature Flow
Huisken [151] (and Gage [118] in the case of curves) proved the fundamental
result that solutions exist globally and converge exponentially fast to a sphere,
provided the initial surface is uniformly convex and smooth. Moreover, it is shown
in [118, 151] that the surfaces remain uniformly convex for all t > 0. Escher and
Simonett [110] established that solutions for small C1,α-perturbations of a sphere
exist globally and converge exponentially fast to some sphere. It was shown in
Mayer and Simonett [187] that the volume-preserving mean curvature flow can
drive embedded hypersurfaces to self-intersections in finite time.

The Surface Diffusion Flow
The surface diffusion flow was first derived by Mullins [202] and has subsequently
been rederived and studied by several groups of authors, for instance by Taylor
and Cahn [279], Cahn, Elliott and Novick-Cohen [59]. In two dimensions, the sur-
face diffusion flow for closed embedded curves was first investigated by Elliott and
Garcke [93], who proved both global existence and stabilty results when the initial
curve is close to a circle. These results were extended by Escher, Mayer and Simon-
ett [100] to the multi-dimensional case. In more detail, existence and uniqueness of
classical solutions was obtained for immersed C2,α-initial hypersurfaces, and it was
shown that solutions exist globally and converge exponentially fast to a sphere,
provided Γ0 is close to a sphere in the C2,α-norm initially. Wheeler [294] showed
that global existence and convergence still holds if the L2-integral of the trace-free
part of the second fundamental form is sufficiently small, see also [188, 293, 295].
We refer to Giga and Ito [123], Mayer and Simonett [187], and Blatt [40] for results
concerning loss of embeddedness; to Escher, Giga, Ito [96, 124, 154], and Blatt [40]
for results concerning loss of convexity and formation of singularities; to Escher,
Mayer, Simonett [99, 100, 186] for numerical results showing the formation of sin-
gularities; and to Escher and Mucha [101], Koch and Lamm [161], and Shao [244]
for results concerning the regularity of solutions.
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The Mullins-Sekerka Flow
The Mullins-Sekerka flow was first considered in [200]. It has also been termed the
quasi-stationary Stefan problem with surface tension, or the Hele-Shaw problem
with surface tension. Existence of solutions has been investigated by Bazaliy [34],
Chen [63], Chen, Hong and Yi [64], Escher and Simonett [106, 107, 108], and Pro-
kert [208]. It was first proved by Escher and Simonett [109] that classical solutions
for the two-phase problem exist globally and tend to spheres exponentially fast,
provided Γ0 is close to a sphere in the C2,α-norm initially, generalizing a result
by Chen [63] for weak solutions of the one-phase problem in R2. Global existence
and convergence for the one-phase problem was proved independently by Pro-
kert [208]. Long-time existence of weak solutions was established by Röger [237],
see also Luckhaus and Sturzenhecker [182], and Garcke and Sturzenhecker [121]
for related results. Additional interesting results can be found in Alikakos, Bates,
Chen, Fusco [4, 5], and Alikakos, Fusco, Korali [6, 7], for instance.

The Stokes Flow
Existence and uniqueness of solutions for the one-phase (multi-dimensional) Stokes
flow was first obtained by Günther, Prokert [131, 207], see also Solonnikov [265].
Regularity results are contained in Escher, Günther, Prokert [102, 131, 207]. It
was shown in [131] that in case the initial domain of a fluid drop is close to a ball,
then the solution exits globally and converges to a ball at an exponential rate.
This result was rederived by Friedman and Reitich [116] by a different method.
The results for the two-phase problem in Section 12 are new.

The Muskat Flow
This system was first introduced by Muskat [203] in 1934 in order to model the
interface between two fluids in a porous media, see also [204]. The Mullins-Sekerka
and the Muskat problem are both closely related to fingering, a phenomenon which
has received, and still continues to receive, considerable attention by many re-
searchers. In the case of positive surface tension, the first result on the existence
of classical solutions in two dimensions was obtained by Hong, Tao and Yi [148].
Regarding the stability of equilibria, Friedmann and Tao [117] proved stability of
a circular steady-state in case that Ω2 is unbounded. The authors of [13] state
that the equilibrium is in general not asymptotically stable.

Escher and Matioc [98] considered the Muskat problem in a periodic geometry
with surface tension and gravity included. Existence and uniqueness of classical
solutions is obtained and the authors establish exponential stability of certain
flat equilibria. Using bifurcation theory they also identify finger shaped steady-
states which are all unstable. These results were later refined and extended in
Ehrnström, Escher, Matioc [92, 97]. Bazaliy and Vasylyeva [35] first observed
a waiting time behaviour for the two-dimensional Muskat problem with a non-
regular initial surface in the presence of surface tension.

There is an extensive literature in the case of zero surface tension. Most
of the investigations consider the Muskat problem in two dimensions. Without
commenting in detail, we would like to mention the work of Ambrose [24], Castro,
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Constantin, Còrdoba, Fefferman, Gancedo [60, 61, 70, 71, 72], Siegel, Caflisch and
Howison [249], and Yi [298, 299], where various aspects concerning existence of
solutions and loss of smoothness are analyzed.

The Stokes Flow and the Muskat Flow with Phase Transitions
These flows are considered and studied for the first time in this book.



Outlook and Future Challenges

In this book we have developed quite a few methods and techniques, and we have
examined their potential to solve parabolic one- and two-phase problems. The
following remarks might be useful to young mathematicians who intend to work
on these topics.

Due to space limitations we did not treat all of the sub-problems introduced
in Chapter 1 and we leave the opportunity to interested researchers to study these
problems.

There are interesting related issues, extending far beyond this monograph,
which are important from the physical point of view and challenging from the
mathematical side. Below we mention some of them.

(i) The Compressible Case
If one wants to model evaporation in a physically reasonable way, one has to take
into account that at least one phase (the vapour phase) ought to be considered
compressible. This means that Problems (P4) and (P6) should be analyzed in the
compressible case.

(ii) Surface Viscosity
Already in 1915, Boussinesq [49] proposed that interfaces should carry a kind of
surface viscosity. A first model taking this into account was proposed by Scriven
[242] in 1962. So far there are only few mathematical investigations concerning
this model, and we are only aware of the contribution by Bothe and Prüss [45]
and the recent PhD-thesis of Meyer [194]. To the best of our knowledge, so far
there are no papers on this model where phase transitions are taken into account.

(iii) Multi-Component Flows and Mass Transfer
Most chemical processes involve two-phase flows, as at least one of the major
reactants has to change phase before reactions can occur. For this reason, both
the modeling and the analysis of reactive multi-component flows is one of the
major challenges from the physical and the mathematical point of view. Besides
the Navier-Stokes equations describing the flows in the phases, one also has to
take into account mass transfer, reactions and resulting changes in temperature
and pressure, as well as phase transitions driven by chemical potentials, pressure,
and temperature. The mathematical understanding of such processes will be of
great importance in the future.

© Springer International Publishing Switzerland 2016
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(iv) Contact Angles
An important issue which we avoided in this book is the situation where the
interface Γ touches the outer boundary ∂Ω. This is known as the contact angle
problem in the literature. It has led to many controversial discussions concerning
physically correct modeling, in particular the issue whether at the contact line
one needs to impose additional conditions. This seems to be settled by now. For a
physically sound model we refer to Bothe and Prüss [46]. Mathematically, only few
results are known so far, which all deal with the quasi-steady case, where one can
propose a stationary contact angle. As shown by Pukhnachev and Solonnikov [230,
264], the concept of a stationary contact angle is not feasible for the two phase
Navier-Stokes flow if one insists on Dirichlet conditions on the outer boundary, as
the total energy will become infinite.

(v) Singularities
In this book we obtained local well-posedness in suitable function spaces for arbi-
trarily large data, global existence as well as stability for small data, i.e. data which
are close to an equilibrium, and convergence of solutions as time goes to infinity,
at least in the stable case. We also presented criteria for global existence: we have
global existence if the solutions under consideration do not develop singularities.

In general, one cannot expect global existence for all solutions, due to pos-
sible blow up of the relevant norms or geometrical degenerations. Therefore, it is
very important to study the development of singularities, to understand mathe-
matically and physically which properties enforce singularities, either in norm or
geometrically, and on the contrary which ensure global existence. In our opinion,
this is the most challenging question which we presently cannot answer.
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[236] M. Röger. Solutions for the Stefan problem with Gibbs-Thomson law by a local minimi-
sation. Interfaces Free Bound., 6(1):105–133, 2004.
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[281] H. Triebel. Höhere Analysis. VEB Deutscher Verlag der Wissenschaften, Berlin, 1972.
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