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    Chapter 16   
 The Stress Response after Traumatic Brain 
Injury: Metabolic and Hormonal Aspects                     

       Hervé     Quintard    ,     Carole     Ichai    , and     Jean-Francois     Payen    

    Abstract     The pathophysiology of TBI can be considered as a dual insult composed 
of primary and secondary injuries. Growing experimental and clinical evidence sug-
gests that disturbances of cerebral energy metabolism are a key factor in the patho-
genesis of secondary cerebral damages. In addition, hormonal dysfunction after 
TBI, such as adrenal insuffi ciency, vasopressin, growth hormone, or thyrothropin 
defi ciency, can be associated with poor prognosis. A better understanding of energy 
metabolism and hormonal  disturbances after TBI  is necessary to improve the care 
management at the early phase of TBI.   

  Traumatic brain injury (TBI) is a common cause of death and disability especially 
for young adults with various neurological consequences ranging from simple phys-
ical disabilities to long-term cognitive, behavioural, psychological, and social 
defects [ 1 ]. The pathophysiology of TBI is considered as a dual insult composed of 
primary and secondary processes. Primary injury corresponds to anatomic tissue 
damage at the time of insult. This produces vulnerable cells that are further 
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compromised by secondary brain injury. Secondary brain damage occurs at the cel-
lular level and results from a complex biochemical cascade, including excitotoxic-
ity, oxidative stress, infl ammation, apoptosis, and mitochondrial dysfunction. 
Secondary brain damage is a major factor involved in the patient outcome following 
primary brain insult. Several systemic factors have been found to worsen secondary 
brain damage [ 2 ]. Growing experimental and clinical evidence suggests that distur-
bances of cerebral energy metabolism are a key factor in pathogenesis of this sec-
ondary cerebral damage [ 3 ,  4 ]. In this chapter, we discuss the consequences of TBI 
on metabolic and hormonal homeostasis. 

16.1     Metabolic Disturbances After TBI 

16.1.1     Exploration of Brain Metabolism in the ICU 

 Cerebral microdialysis (CMD) has largely contributed to a better understanding of 
the pathophysiology of acute brain dysfunction at the bedside [ 3 ]. CMD consists in 
the placement of an intra-parenchymal probe with a semipermeable dialysis 
membrane. A cerebrospinal fl uid-like solution, infused through this catheter, allows 
hourly sampling of patients’ brain extracellular fl uid [ 4 ]. CMD provides monitoring 
of dynamic changes of main brain energy substrate (glucose, lactate, and pyruvate). 
High lactate/pyruvate ratio (LPR) values would refl ect either a mitochondrial 
dysfunction or an imbalance between oxygen supply and its tissue utilisation. A 
LPR >40 and an extracellular glucose <0.7–1 mmol/L are usually considered as 
thresholds for abnormality in the clinical setting [ 5 ].  

16.1.2     Metabolism of Normal Brain 

 Although brain represents 2 % of the body weight, the cerebral metabolic rate of 
glucose (CMR  glucose ) accounts for 20 % of the amount of glucose utilised by the 
body. Brain glucose oxidation is about 4–5 μmol/kg/min. The regulation of glucose 
metabolism is essential for brain homeostasis in the absence of glycogen storage in 
the brain. The interaction among neurons, astrocytes, and endothelial cells at the 
interface blood-brain barrier (BBB) is essential for coupling energy supply with 
change in neural activity. Neurons and astrocytes are surrounded by interstitial fl uid, 
which contains glucose and lactate, at a concentration of 1 mM. The glucose pool is 
replenished by blood-derived glucose, whereas lactate is interchanged between 
astrocytes and glial cells, and cleared by the blood at a low rate [ 6 ]. The large blood- 
brain concentration gradient drives the facilitative transport of glucose across the 
endothelial membranes via several glucose transporters, in particular glucose 
transporter 1 (GLUT1). This transporter is localised in astrocyte, while GLUT3 
receptors, which have higher affi nity and transport capacity for glucose, are localised 

H. Quintard et al.



199

in neurons. The expression of GLUT is regulated by circulating glucose concentra-
tion and is upregulated during hypoglycaemia. In resting conditions, blood glucose 
is raised and metabolised by neurons through the classical glycolytic pathway. 
During activation, glucose is metabolised by astrocytes, to produce lactate and glu-
tamine. Lactate enters into neurons through the monocarboxylic acid transporter 
(MCT) to be metabolised by the tricarboxylic acid (TCA) cycle. Glutamine enters 
into neurons to produce glutamate that is released massively in the synaptic neuro-
nal cleft. Astrocytes reuptake glutamate via a mechanism coupled with sodium 
reabsorption. ATP produced by glial glycolysis allows the activation of Na/K/
ATPase pump to extrude the Na infl ux coupled to glutamate uptake. This response 
is illustrative of cell cooperation to metabolic situation. The lactate production is a 
preferential oxidative fuel when neurons are activated. This interaction between the 
two types of cells is called “astrocyte to neuron lactate shuttle (ANLS)” [ 7 ] 
(Fig.  16.1 ). In resting awake brain, brain glucose is mostly oxidised into CO 2  and 
water, leading to an oxygen/glucose ratio around 5.5–5.8.

16.1.3        Metabolism of Injured Brain 

 Several studies have found an increased aerobic glycolysis in the acute phase of brain 
injury, leading to brain lactate accumulation. This hyperglycolysis is refl ected by an 
elevated tissue lactate to glucose ratio using CMD [ 9 ]. Because there was no evidence 
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  Fig. 16.1    Model for coupling of synaptic activity with glucose utilisation.  A  Glucose uptake by 
astrocytes in case of neuron activation,  B  direct neuron glucose uptake by resting neuron 
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of concomitant reduction in CBF, cerebral hyperglycolysis and concomitant decreased 
extracellular glucose (<0.2 mmol/l) are considered as refl ect of an excessive metabolic 
demand (brain energy crisis). This increase in the utilisation of brain glucose may be 
due to seizures and/or episodes of cortical spreading depression (CSD) and/or to the 
maintenance of ionic pumps and neurochemical cascades in the injured tissue. In 
addition, a linear correlation between peripheral glucose and brain glucose was found 
in TBI patients [ 10 ]. This underlines the importance of an appropriate glucose supply 
from blood to the injured brain. TBI patients usually have hyperglycaemia secondary 
to insulin resistance and to a stress response. This “stress-induced” hyperglycaemia 
can exacerbate ischaemic damages and worsen the neurological outcome. On the 
other hand, severe and repetitive hypoglycaemic episodes were found independent 
risk factors for mortality and morbidity after TBI [ 11 ,  12 ]. Low but also high dialysate 
glucose levels have been associated with poor outcome and high mortality [ 5 ]. A strict 
glucose control was associated with elevated glutamate and lactate/pyruvate ratio and 
reduced extracellular glucose, together with increased oxygen extraction fraction 
[ 13 ]. Taken together, these fi ndings suggest that glucose depletion may occur in the 
injured brain tissue through an excessive metabolic demand, even during non-isch-
aemic conditions. Therefore, a permissive hyperglycaemia between 6 and 9 mM is 
recommended to avoid the aggravation of cerebral damages [ 13 ,  14 ]. 

 The brain can use substrates as supplemental fuel other than glucose, e.g., ketone 
bodies and lactate [ 15 ]. Evidence of lactate as an alternative fuel was fi rstly demon-
strated in vitro by limiting neuronal cell death from glucose deprivation induced by 
ischaemia-reperfusion model [ 16 ,  17 ]. Further studies showed that lactate was pref-
erentially used of lactate by the human brain after TBI [ 18 ]. The contribution of 
lactate to cerebral energy metabolism was increased from 10 to 15 % up to 60 % 
[ 19 ]. Additionally, intracellular lactate inhibits glucose consumption in resting 
astrocytes in order to redistribute glucose to active areas [ 20 ]. Sparing glucose is 
important to maintain neurotransmission and oxidative stress response in the injured 
brain. In this context, exogenous lactate supplementation has been studied after 
trauma. A lactate transfer from blood to brain with a subsequent conversion to pyru-
vate with spared glucose was described in TBI patients [ 21 ]. In a cortical impact 
model, lactate solution was associated with elevated cerebral blood fl ow and reduced 
cortical contusion volume [ 22 ]. Besides these metabolic effects, hypertonic sodium 
lactate administration in severe TBI patients was more effective to lower intracra-
nial hypertension than mannitol [ 23 ]. A preventive treatment with hypertonic 
sodium lactate solution was effective in reducing the number of ICP episodes [ 24 ]. 
Therefore, lactate solution appears as a promising option to treat energetic crisis 
after TBI by sparing glucose and/or by improving cerebral haemodynamics.   

16.2     Hormonal Disturbances After TBI 

 The hypothalamic-pituitary-adrenal axis (HPA) is altered by numerous causes, 
particularly after TBI. The primary lesion as well as secondary systemic insults 
such as arterial hypotension, severe hypoxia, and high intracranial pressure can 
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induce pituitary dysfunction. The pituitary gland is particularly vulnerable to the 
blood fl ow conditions because the anterior lobe is tightly dependent on small ves-
sels from the Willis circle. Somatotropic and gonadotropic cells that are located in 
the lateral part of the anterior pituitary gland are even more exposed to reduce 
cerebral blood fl ow. Other mechanisms involved in hypopituitarism include side 
effects of sedative drugs used in brain-injured patients and autoimmune mecha-
nisms triggered by TBI [ 25 ]. The fi rst report of hypopituitarism post trauma was 
published in 1918. The prevalence of hypopituitarism in the chronic phase after 
TBI is 30 % of patients [ 26 ]. While the literature about chronic posttraumatic 
hypopituitarism is abundant, there is still limited data regarding the severity, inci-
dence, and risk factors associated with hypopituitarism in the acute phase after 
TBI. In those studies, the prevalence of posttraumatic hypopituitarism ranged from 
9 to 53 % of patients, including secondary adrenal insuffi ciency (AI), hypothyroid-
ism, and/or hypogonadism [ 27 ,  28 ]. In many cases, hormonal disturbances have a 
spontaneous resolution within 6 months after TBI. Indeed, hypopituitarism during 
a long-term follow-up after TBI was diagnosed in 5.4 % of patients [ 29 ]. However, 
acute AI, central hypothyroidism, SIADH, and diabetes insipidus may cause poor 
neurological outcomes including death, hypo-/hypernatraemia, hypotension, and 
increased vasoactive drug requirements [ 30 ]. 

16.2.1     Adrenal Insuffi ciency 

 Among clinical conditions of AI, brain trauma is responsible for secondary (central) 
AI, i.e., suppression of the synthesis of corticotrophin-releasing hormone (CRH) or 
adrenocorticotrophic hormone (ACTH) [ 31 ]. According to the defi nition used, the 
prevalence of AI has a broad range from 10 % to more than 75 % of severe TBI 
patients [ 32 ,  33 ]. There is thus a need to defi ne appropriately AI after TBI. 

 Absolute AI is considered where serum cortisol is less than 15 μg/dL, and 
relative AI is defi ned where serum cortisol cannot exceed 9 μg/dL from baseline 
using the ACTH test [ 34 ] In one study exploring AI in the initial phase of TBI, 
authors considered AI where baseline serum cortisol was less than 15 μg/dL 
from 2 blood samples or less than 5 μg/dL from 1 blood sample [ 28 ]. Because a 
normal value of serum cortisol cannot rule out AI for all critically ill patients 
[ 35 ], it was proposed to perform a dynamic test, i.e., the ACTH test (250 μg), to 
explore the capacity of adrenal glands to produce cortisol. However, due to the 
nature of AI after TBI, and the absence of confounding factors, a random serum 
cortisol is usually enough to detect AI. Random serum cortisol less than 10 μg/
dL is currently recommended to diagnose AI in critically ill patients [ 36 ]. Of 
note was the delayed diagnosis of AI often mistaken for symptoms of head injury. 
In the presence of unexplained hyponatraemia and /or large requirements for 
vasopressors after severe TBI, a dosage of serum cortisol should be considered. 
It has been suggested that severity of TBI, young age, arterial hypotension, bar-
biturates, and/or the use of vasopressors could predispose to AI post trauma [ 28 , 
 37 ,  38 ]. Another factor of AI could be the use of etomidate to facilitate tracheal 
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intubation in these patients [ 28 ]. However, this drug-induced disturbance lasts no 
more than 48 h after the drug administration [ 39 ]. 

 The normalisation of serum cortisol level might be a marker of good outcome 
[ 40 ]. In that context, a replacement therapy with low-dose hydrocortisone (200 mg/
day) should be initiated in the presence of acute AI. However this proposal has not 
to be confounded with the abandon of large doses of corticosteroids at the early 
phase of TBI [ 41 ]. In the large Corticosteroid Randomisation after Signifi cant Head 
Injury (CRASH) trial, a 48-h infusion of methylprednisolone within 8 h of TBI 
resulted in higher mortality rate compared with placebo group [ 42 ].  

16.2.2     Vasopressin Dysfunction 

 The antidiuretic hormone (ADH, or arginine vasopressin) is secreted by the posterior 
pituitary gland to promote free water reabsorption in the kidney to concentrate 
urine. ADH acts on vasopressin receptors with three subtypes V1a, V1b, and V2. 
The water reabsorption depends on the stimulation of V2 receptors that enhances 
the expression of specifi c water channel proteins (aquaporins) on the luminal surface 
of the collecting duct [ 43 ]. The secretion of ADH is triggered by the increase in 
extracellular fl uid tonicity that activates osmoreceptors in the hypothalamus. ADH 
can be secreted, to a lesser extent, during hypovolaemia via the activation of 
baroreceptors located in the right atrium and carotid sinus. 

 A failure of homeostatic release of ADH leads to the development of central 
diabetes insipidus (DI). DI manifests with loss of large volumes of dilute urine in 
the presence of normal or high plasma osmolality. The criteria to defi ne DI combine 
urine volume >300 mL/h, urine osmolality <300 mosm/kg, and hypernatraemia 
>145 mmol/L. The urine specifi c gravity is less than 1005 (or 1008 if associated 
glycosuria). DI is usually transient, secondary to hypoperfusion of the posterior 
pituitary and/or infl ammatory oedema. However DI can persist 1 year after TBI in 
12 % of patients [ 35 ]. The prevalence of DI after severe TBI is around 3 % and is 
strongly associated with basal skull fracture. Risk factors for DI include low 
Glasgow coma scale, brain oedema, and severe injury [ 35 ]. The development of DI 
after TBI is associated with higher mortality [ 44 ]. The treatment of DI is based on 
fl uid replacement guided by a constant clinical monitoring and a correction rate of 
hypernatraemia of less than 10 mmol/day. In the case of high ICP, the correction 
rate should be lowered to exceed no more than 5 mmol/day in order to prevent 
secondary brain oedema. In conscious patients with DI, intravenous (0.4 μg) or 
intranasal (100 μg) desmopressin (DDAVP) can be administered and repeated every 
12 h. Unconscious patients are treated with fl uid replacement with 2.5 % dextrose 
or water and concomitant DDAVP administration. 

 Another disturbance in the ADH secretion corresponds to the inappropriate secre-
tion of ADH (SIADH). The diagnosis criteria of SIADH combine plasma osmolality 
<275 mOsm/kg, hyponatraemia <135 mmol/L and urinary osmolality >100 mOsm/
kg, urine sodium >40 mmol/l, euvolemia, and absence of glucocorticoid or thyroid 
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hormone defi ciency. In the presence of hyponatraemia, the differential diagnosis 
with other conditions may be diffi cult: secondary AI is classically associated with 
glucose control disturbances, while the “cerebral salt wasting syndrome” (CSWS) is 
associated with hypovolaemia and increased serum urea. The presence of SIADH is 
associated with an increase in length of stay in the ICU. The natural history of 
SIADH spontaneously resolves after the initial insult. The key issue to manage hypo-
natraemia in this setting is an accurate diagnosis of the underlying cause. If SIADH 
is diagnosed, treatment is essentially based in a fl uid restriction strategy. Although 
the use of selective of vasopressin-2 receptor antagonist (vaptan) could be attractive 
[ 45 ], this treatment has not been recommended in recent guidelines [ 46 ].  

16.2.3     Growth Hormone Defi ciency 

 Growth hormone (GH) defi ciency is frequently observed after TBI with an incidence 
of 2–66 % [ 47 ]. Basal serum GH concentrations were increased in TBI patients. 
Excessive GH response to a stimulation test with GH-releasing hormone (GHRH) 
was found in patients with poor outcome. Patients with severe and permanent GH 
defi ciency should be treated with hormonal substitution because GH acts on limbic 
structures with consequences on memory and behaviour. Some studies found 
benefi ts of supplementation by GH on motor or cognitive functions at the post-acute 
phase of trauma [ 48 ].  

16.2.4     Thyrotropin Defi ciency 

 The incidence of hypothyroidism after TBI varies between 0 and 19 %. A low 
serum-free T4 concentration (<8 pmol/L) associated with normal or low serum 
TSH level (<0.1 μUI/mL) is a criterion to diagnose thyrotropin defi ciency. No 
dynamic test is required. Replacement therapy with thyroxine is mandatory, but 
this treatment requires to rule out CRH defi ciency because cortisol clearance is 
increased by thyroxine. However, there is no evidence that replacement therapy at 
the acute phase of TBI may improve the outcome. The decrease of thyroid hor-
monal values was less pronounced during early enteral nutrition compared to 
delayed enteral nutrition [ 49 ].  

16.2.5     Gonadotrophin Defi ciency 

 The incidence of gonadal defi ciency ranges from 0 to 29 % of TBI patients. A 
hypothalamic origin has been proposed. The defi cit is associated with menstrual 
irregularities and/or reduced libido. Results between serum testosterone level and 
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prognosis are confl icting. The level of prolactin is also associated with prognosis 
with a positive correlation [ 35 ]. A complete restoration of hormone levels was 
observed in 85 % of patients at 1-year post-TBI, but persistent defi ciency should 
benefi t for replacement therapy for prevention of osteoporosis and cardiovascular 
disease. 

 Traumatic brain injury induces various metabolic and hormonal stress responses 
that could be associated with poor outcome. A better understanding of these 
dysfunctions could help us in the management of brain-injured patients during the 
early phase of trauma.      
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