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    Chapter 11   
 Thyroidal Changes During Critical Illness                     

       Lies     Langouche      and     Greet     Van den Berghe     

    Abstract     Patients suffering from a variety of critical illnesses present with uniform 
alterations within the thyroid axis with low plasma triiodothyronine (T3), but 
increased plasma reverse T3 (rT3). As these changes occur in the presence of low-
normal thyroid stimulating hormone (TSH), this constellation is also referred to as 
Nonthyroidal Illness Syndrome (NTI). Both central and peripheral components of 
the thyroidal axis play a role in the development of NTI. Furthermore, nutritional 
intake can affect the extent and composition of NTI. The severity of NTI is associ-
ated with a poor prognosis, but it is still unclear whether this indicates a causal 
relationship, or in contrast, an adaptation to more severe illness.   

11.1      The Thyroid Axis During Health 

 Thyroid hormones (TH) are essential for differentiation and growth, from fetal 
development throughout adult live [ 1 ]. They are important regulators of 
thermoregulation and energy metabolism and are involved in lipid and glucose 
metabolism [ 2 ]. The circulating concentrations of TH are tightly regulated by a 
classical hypothalamic-pituitary-thyroid feedback system. The hypothalamus 
releases thyrotropin-releasing hormone (TRH), which stimulates the anterior 
pituitary to synthesize and release thyroid-stimulating hormone (TSH). TSH 
sequentially stimulates the thyroid gland to produce and release thyroxine (T4) [ 3 ]. 
The thyroid gland mainly generates T4, but the biological activity of TH is 
predominantly regulated by triiodothyronine (T3) [ 1 ]. Both T4 and T3 have inhibi-
tory feedback control on both TRH and TSH secretion [ 4 ,  5 ]. 
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 TH are transported in the blood by thyroxine-binding globulin (TBG), trans-
thyretin, and albumin [ 6 ]. TBG is the dominant binding protein with the highest 
binding affi nity for T4, around 50-fold higher than that of transthyretin and 7000- 
fold higher than that of albumin. Several transporters mediate the uptake of TH 
across the plasma membrane. The organic anion-transporting polypeptide-1C1, the 
monocarboxylate transporter (MCT) 8 and MCT10, and the L-type amino acid 
transporter (LAT) 1 and LAT2, and more recently LAT3 and LAT4 have been 
identifi ed as relatively specifi c TH transporters [ 7 ,  8 ] (Fig.  11.1 ). The intracellular 
action of TH is further regulated by several subtypes of iodothyronine deiodinases. 
These enzymes are responsible for the deiodination of T4 to the active T3 or to the 
biologically inactive reverse T3 (rT3) [ 9 ,  10 ]. T3 mainly exerts its actions through 
interaction with its specifi c nuclear receptors TRα and TRβ to regulate gene tran-
scription but can also induce nongenomic effects [ 11 ].

11.2        Alterations in the Thyroid Axis in Acute and Prolonged 
Critical Illness 

 Patients suffering from a variety of critical illnesses present with uniform alterations 
within the thyroid axis (Fig.  11.2 ). During acute and severe physical stress, caused by 
illness, surgery, or trauma, T3 plasma concentrations decline rapidly, whereas circu-
lating rT3 concentrations increase. The concentration of T4 is only shortly elevated 
and subsequently returns to the normal physiological range, although in more severely 
ill patients, T4 concentration can also decrease [ 12 ]. In contrast with primary hypo-
thyroidism, low plasma T3 concentration perseveres in the presence of normal 
TSH. This constellation, with low plasma T3 but normal TSH in the context of illness, 
has been described as “euthyroid sick syndrome,” “low T3 syndrome,” or “nonthyroi-
dal illness (NTI).” The reduction in circulating T3 during the fi rst hours after ICU 
admission refl ects the severity of illness and correlates with outcome [ 13 ,  14 ].
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  Fig. 11.1    Schematic outline of cellular uptake and metabolism of thyroid hormones       
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   The TSH profi le is already affected in this acute phase of critical illness; while 
single-sample TSH levels are normal, the typical nocturnal TSH surge is no longer 
present [ 15 ]. When patients do not immediately recover and require prolonged 
intensive care, the pulsatile TSH release becomes substantially suppressed in 
addition to the absent nocturnal TSH surge [ 16 ]. Circulating T4 declines, with as a 
result much less elevated rT3, and circulating T3 can decrease even further. In this 
later phase of illness, reduced TSH, lowered T4 and T3, and elevated rT3 levels are 
associated with worse outcome [ 17 ].  

11.3     Underlying Pathology of the Low T3 Syndrome 

11.3.1     Binding Proteins and Peripheral Metabolism of Thyroid 
Hormones 

 In normal conditions, total plasma TH concentration is kept proportional to the con-
centration of TH-binding proteins, in order to maintain free hormone levels in 

Acute
critical illness

H
yp

ot
ha

la
m

ic
T

R
H

 e
xp

re
ss

io
n

C
irc

ul
at

in
g

T
S

H
 a

nd
 T

H

TSH

T4

D1

D2

D3

D1

D2

D3

=

=

=

T3

rT3

TSH

T4

T3

rT3

P
er

ip
he

ra
l T

H
m

et
ab

ol
is

m

Prolonged
critical illness

  Fig. 11.2    Changes in the thyroid axis during acute and chronic critical illness. The upper panel 
displays reduced TRH gene expression in the hypothalamus of prolonged critically ill rabbits 
(Adapted from [ 28 ]). The middle panel illustrates schematically the observed adaptations in circu-
lating TSH and TH of acute and prolonged critically ill patients. The bottom panel summarizes the 
fi ndings in deiodinase tissue activity of acute and prolonged critically ill patients       
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equilibrium [ 18 ]. In part, this is also observed during acute critical illnesses with 
reduced levels and reduced binding capacity of the TH-binding proteins TBG and 
albumin, whereby free TH levels are often increased [ 19 ]. However, TBG returns to 
normal reference values in prolonged critically ill patients [ 20 ]. 

 The acute lowering of (total) T3 with the parallel increase in rT3 is predominantly 
due to an altered peripheral conversion of T4. Acute critical illness or infl ammation 
reduces the activity of hepatic D1, the enzyme that converts T4 to T3 [ 21 ,  22 ]. At 
the same time, D3 activity is increased, the enzyme mediating the conversion of T4 
to inactive rT3, as observed in muscle and liver tissue biopsies of critically ill 
patients [ 21 ,  23 ,  24 ]. 

 In the prolonged phase of critical illness, peripheral tissues try to adapt to the sus-
tained low availability of TH in the circulation. In both liver and muscle biopsies of 
prolonged critically ill patients, the TH transporter MCT8 expression was increased 
[ 25 ]. Also in a rabbit model of prolonged critical illness, MCT8 and MCT10 were 
upregulated in liver and kidney [ 25 ]. Also activity of type 2 deiodinase (D2), the 
second activating deiodinase, was increased in muscle tissue biopsies of prolonged 
ICU patients [ 26 ]. In animal studies, an increase in alveolar and in hypothalamic D2 
expression was observed [ 22 ,  27 – 29 ]. Also at the level of the TH receptor, an upregu-
lated TRα1/TRα2 appeared to be present in liver tissue biopsies of prolonged criti-
cally ill patients [ 30 ]. Although these changes could theoretically increase local tissue 
availability of TH, tissue or circulating T3 levels remained low [ 25 ,  26 ,  28 ].  

11.3.2     The Impact of the Nutritional Status of the Patient 

 Loss of appetite and poor oral/enteral nutritional intake are very common in critical 
illness [ 31 ]. Of interest, the thyroidal alterations during the fi rst days of critical 
illness are comparable to those observed for otherwise healthy subjects in the fasting 
state [ 32 – 34 ]. The contribution of restricted nutrition during human critical illnesses 
to the NTI has been documented in a few small clinical studies that indeed indicated 
that decreased caloric intake during critical illness is associated with more 
pronounced NTI changes [ 35 – 37 ]. More recently, the large randomized controlled 
EPaNIC trial compared two nutritional regimens in adult ICU patients [ 38 ]. This 
study demonstrated that tolerating a nutritional defi cit during the fi rst week of 
critical illness as compared with the early administration of supplemental parenteral 
nutrition resulted in fewer complications and accelerated recovery [ 38 ]. Furthermore, 
a subanalysis of this EPaNIC trial demonstrated that while not feeding early reduced 
complications and accelerated recovery of patients with NTI, it aggravated the 
decrease in circulating levels of TSH, total T4 and T3, and the T3 to rT3 ratio. The 
opposite was observed with early feeding that appeared to “improve” the NTI [ 39 ]. 
Similar fi ndings were reported from an animal study which compared the effect of 
fasting versus feeding over 7 days of critical illness [ 40 ]. This study furthermore 
demonstrated that while early feeding diminished the lowering of T3, it also 
normalized peripheral D1 and D3 activity [ 40 ]. 
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 The instant drop in circulating T3 during nutrient restriction in otherwise healthy 
subjects has been explained as an attempt of the human body to avert protein 
breakdown by reducing energy expenditure [ 34 ]. Also in critically ill patients, 
tolerating a fasting response induced a more signifi cant inactivation of T4 with 
lower T3 and higher rT3, which explained part of the outcome benefi t of not feeding 
early [ 39 ]. Also targeting fasting blood glucose levels with insulin therapy in 
critically ill children, which mimics the blood glucose levels of a fasting response, 
resulted in improved outcome while further accentuating the NTI [ 41 ]. Together 
these fi ndings indicate that at least a part of the immediate decrease in circulating 
T3 is induced by the reduced nutritional intake in critically ill patients rather than by 
the underlying illness and that this might be an adaptive response.  

11.3.3     Central Regulation 

 The observation that despite the low circulating T3 and low-normal T4 single- sample 
TSH levels are low normal in the prolonged phase of critical illness, suggests a cen-
trally suppressed thyroid axis [ 16 ]. This is further corroborated by the observed 
reduced hypothalamic TRH gene expression in brain sections of patients dying after 
chronic critical illness and in prolonged critically ill rabbits [ 28 ,  42 ]. In contrast, in the 
pituitaries of these prolonged critically ill rabbits, TSH gene and protein expression 
remained normal [ 43 ]. The substantial increase in TSH secretion and in peripheral TH 
concentrations, which is observed after TRH administration in prolonged critically ill 
patients and animals, supports this interpretation [ 44 ,  45 ]. Also the observation that the 
onset of recovery is preceded by a rise in TSH suggests that a suppressed hypothalamic 
stimulation of the pituitary plays a role in the prolonged phase of critical illness [ 46 ]. 

 This central suppression of TRH could be the consequence of a changed set point 
for TH-induced feedback inhibition, due to a local upregulation of TH concentration. 
As stated above, in animal studies, an increase in hypothalamic D2 expression was 
observed after LPS injection [ 22 ,  29 ]. Also a rabbit study of prolonged critical 
illness demonstrated increased D2 levels as well as TH transporters in the 
hypothalamus [ 28 ]. However, as local hypothalamic T4 and T3 content were low 
normal in these rabbits, these fi ndings could also suggest a compensatory response 
to a relative hypothyroid hypothalamic state rather than an altered set point. This 
attempt to compensate for sustained low thyroid levels also suggests that the 
hypothalamic suppression of the thyroid axis could be a deleterious consequence of 
prolonged or more severe critical illness. This was also suggested by the EPaNIC 
subanalysis, where the further lowering of T4 in nutrient-restricted patients was 
associated with worse outcome [ 39 ]. Also consistent with this interpretation is the 
observation that especially the more severely ill patients present a decline in 
circulating T4 levels, whereas all other critically ill patients reveal low T3 and high 
rT3 levels already from admission to the ICU [ 17 ]. Furthermore, ICU patients who 
received an infusion of TRH combined with a GH secretagogue displayed 
normalized TH levels coinciding with lowered markers of hypercatabolism [ 44 ].  
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11.3.4     Contributing Factors 

 Cytokines can mimic the acute changes of the thyroid axis and are assumed be 
involved in the pathogenesis of NTI [ 47 ,  48 ]. Especially TNF was clearly associated 
with the alterations in TH metabolism in human clinical samples [ 49 ,  50 ]. However, 
administration of cytokine antagonists did not restore normal thyroid function after 
endotoxemic challenge [ 51 ,  52 ]. 

 Administered as well as endogenous dopamine or corticosteroids could also play 
a role as these can trigger or aggravate hypothyroidism in critical illness [ 53 ,  54 ]. 
The low selenium concentrations observed already from admission to the ICU is 
another potential interfering factor [ 55 ]. Indeed, deiodinases require selenium for 
their catalytic activity and defects in the synthesis of selenoproteins or nutritional 
selenium defi ciency can lead to reduced deiodinase activity [ 2 ]. Furthermore, sele-
nium supplementation in trauma patients was associated with modest changes in 
thyroid hormones, with an earlier normalization of T4, T3, and reverse T3 [ 56 ]. In 
patients with acute myocardial infarction, the administration of N-acetyl-cysteine, 
an antioxidant that can stimulate activity of the deiodinases by restoring intracellu-
lar cysteine and/or glutathione levels, prevented the T3 increase and lowered rT3 
compared to placebo-treated patients [ 57 ].   

11.4     TH Actions During Critical Illness 

 During the acute phase of critical illness, the peripheral alteration in deiodinase 
activity causes a reduction in circulating levels of the biologically active T3. As 
explained above, this acute part of the thyroidal response appears to be, at least 
in part, adaptive. Besides the overall downregulation of metabolism in the organ-
ism in order to save energy, also a direct effect of increased D3 could be benefi -
cial, such as in granulocytes, where it could optimize bacterial killing capacity 
[ 58 ,  59 ]. 

 In patients who require prolonged intensive care, the origin and impact of the 
thyroidal changes appear to differ. Several clinical symptoms observed during pro-
longed critical illness, such as muscle and skin atrophy and hair loss and also hypo-
thermia, impaired consciousness, and hampered myocardial function, resemble 
those observed in hypothyroidism. Furthermore, during the prolonged phase of 
critical illness, peripheral tissues seem to adapt to the sustained low circulating TH 
levels with tissue-specifi c changes in TH transporters, deiodinases, and receptors. 
For example, endotoxin increased D2 expression in macrophages, which was shown 
to be essential for cytokine production and phagocytosis [ 60 ]. Also alveolar D2 
upregulation during sepsis appeared to be adaptive during acute lung injury and 
sepsis [ 27 ].  

L. Langouche and G. Van den Berghe



131

11.5     Substitution Treatment? 

 Whether or not critically ill patients would benefi t from TH treatment is yet unclear. 
The biphasic nature of the origin and consequences of low T3 during critical illness 
indicates that certainly in the early phase of critical illness, such benefi t can be 
questioned. As the reduced nutritional intake that goes along with the acute response 
to illness is to a large extent responsible for the observed thyroidal alterations, these 
responses are likely selected by evolution and do not warrant interference. On the 
other hand, prolonged critically ill patients, who are fully fed, still suffer from 
sustained low T3 and T4 and display signs or symptoms of hypothyroidism and 
might benefi t from a treatment that aims at normalizing thyroid hormones. 

 Unfortunately, only very limited clinical studies testing this hypothesis are 
available, often underpowered, with a high variability in patient selection (age, 
disease type, and timing) or treatment choice. Administration of T4 failed to 
demonstrate a clinical benefi t, although this could be partly because of a compromised 
conversion of T4 to T3 [ 61 ]. Treatment with T3 substitution doses to children after 
cardiopulmonary bypass surgery was associated with improved postoperative 
cardiac function; however, the children received dopamine which induces iatrogenic 
hypothyroidism [ 62 ]. One also has to bear in mind that circulating TH levels do not 
necessarily refl ect normalized tissue levels [ 24 ]. A continuous infusion of TRH 
combined with a growth hormone secretagogue not only normalized TH to 
physiological levels, but markers of hypercatabolism were also lowered [ 44 ]. 
Suffi ciently powered randomized controlled trials in a well-selected patient 
population are required to test a potential benefi cial effect on outcome.  

11.6     Primary Thyroid Disorders in ICU Patients 

 Patients, who suffer from long-term primary hypothyroidism, depend physiologically 
on exogenous thyroid replacement, usually administered as oral levothyroxine. 
However, at admission to the ICU, the primary focus of care is the acute medical 
problem of the patient and not the prescription and continuation of chronic therapy. 
A retrospective chart review study in a tertiary referral university hospital 
demonstrated that thyroid replacement therapy was discontinued in up to 40 % of 
the patients for at least 7 days during their ICU stay. This was either due to lack of 
prescription or because the patient was intolerant to oral feeding and no parenteral 
preparation was prescribed [ 63 ]. Inadequate replacement or omission of therapy 
will lead to hypothyroidism in these patients, which can lead to adverse outcome 
including loss of consciousness and bradycardia [ 63 ]. 

 The high prevalence of NTI and the extent of the thyroid axis changes in ICU 
patients can make it diffi cult to distinguish NTI from untreated primary 
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hypothyroidism. For the diagnosis of untreated primary hypothyroidism in ICU 
patients, the most useful parameter is elevated plasma TSH in the presence of low 
TH. In patients clinically suspected to have severe hypothyroidism and with 
demonstrated low plasma TH, a normal plasma TSH virtually excludes primary 
hypothyroidism. However, one should bear in mind that in hypothyroid patients, 
high serum TSH concentration may decrease during critical illness especially if the 
patient receives dopamine or high doses of glucocorticoids [ 53 ,  54 ]. On the other 
hand, although high plasma TSH in combination with low plasma T4 is indicative 
of hypothyroidism, this constellation can also be found in patients recovering from 
NTI [ 46 ]. A more clear distinction between primary hypothyroidism and NTI would 
be presence of a high plasma T3/T4 ratio in combination with low plasma rT3, as 
these changes are opposite to those of NTI, but these measurements only have 
limited diagnostic accuracy. 

 A very dangerous complication of untreated hypothyroidism is the development 
of myxedema coma. A secondary insult such as hypothermia, vascular accidents, or 
infection may trigger this life-threatening condition [ 64 ]. Diagnosis is based on 
elevated plasma TSH with low or undetectable T4 and T3 and the presence of 
clinical features such as changes in mental status (lethargy, stupor, delirium, or 
coma) and hypothermia. Again, the presence of NTI may reduce the degree of TSH 
elevation. Myxedema coma is potentially fatal (mortality up to 50 %), thus 
immediate treatment is required and depends on the recognition of the clinical 
features. Treatment should aim at TH replacement therapy, combined with 
ventilatory and hemodynamic support. In addition, stress dose glucocorticoids are 
advised as concomitant autoimmune primary adrenal insuffi ciency may be present, 
especially in patients with hypoglycemia [ 65 ]. 

 Patients suffering from thyrotoxicosis, or hyperthyroidism, may present with 
high free T4 in combination with low serum TSH. The combination of suppressed 
TSH, high FT4, and normal T3 may point to the combination of thyrotoxicosis and 
NTI. Clinical features (thyroid enlargement, proptosis) and the presence of thyroid 
antibodies (anti-TPO, TBII) can give further confi rmation. 

 Decompensated hyperthyroidism (or thyroid storm) is characterized by the 
acute onset of enhanced symptoms of hyperthyroidism. It is important to recognize 
that this condition is a clinical diagnosis; laboratory measurements cannot distin-
guish severe thyrotoxicosis from thyroid storm. The classic clinical features 
include fever, supraventricular tachycardia, gastrointestinal symptoms, and confu-
sion, delirium, or sometimes coma [ 64 ]. Of note, altered mentation was the only 
clinical feature which was signifi cantly different between patients with thyroid 
storm and patients with compensated thyrotoxicosis [ 66 ]. Precipitating factors 
include surgery, parturition, infection, iodinated contrast materials, stroke, diabetic 
ketoacidosis, and withdrawal or discontinuation of antithyroid medications. 
Treatment includes ICU monitoring and aims at restoring thyroid gland function 
while diminishing TH effects on peripheral tissues using a combination of beta-
blockers, glucocorticoids, antithyroid drugs, and eventually high dose of iodide 
compounds [ 67 ].  
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11.7     Conclusion 

 Critically ill patients display low plasma T3 with increased plasma rT3, in the 
presence of low or normal TSH and low or normal T4. This constellation is referred 
to as nonthyroidal illness or NTI. Although the severity of illness strongly correlates 
with the severity of the changes in thyroidal hormone concentrations, the causality 
of this association is not fully elucidated. In the acute phase of illness, NTI is 
predominantly induced by the reduced nutritional intake and seems to be a benefi cial 
adaptation in times of high metabolic demand. On the other hand, in prolonged 
critically ill patients also a central hypothalamic suppression seems to occur which 
appears to be related to worse outcome. 

 Suffi ciently powered randomized controlled trials in a well-selected patient 
population, targeting especially prolonged critically ill patients, are required to test 
a potential benefi cial effect on outcome. Treatment with hypothalamic-releasing 
factors might be the optimal choice to normalize circulating T4 and T3 levels in 
these patients.     
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