
Type Theoretical Databases

Henrik Forssell1, H̊akon Robbestad Gylterud2(B), and David I. Spivak3

1 Department of Informatics, University of Oslo, Oslo, Norway
2 Department of Mathematics, Stockholm University, Stockholm, Sweden

gylterud@math.su.se
3 Department of Mathematics, MIT, Cambridge, MA, USA

Abstract. We show how the display-map category of finite simplicial
complexes can be seen as representing the totality of database schemas
and instances in a single mathematical structure. We give a sound inter-
pretation of a certain dependent type theory in this model, and show how
it allows for the syntactic specification of schemas and instances and the
manipulation of the same with the usual type-theoretic operations. We
indicate how it allows for the posing of queries. A novelty of the type
theory is that it has non-trivial context constants.

Keywords: Dependent type theory · Simplicial sets · Relational
databases

1 Introduction

Databases being, essentially, collections of (possibly interrelated) tables of data,
a foundational question is how to best represent such collections of tables mathe-
matically in order to study their properties and ways of manipulating them. The
relational model, essentially treating tables as structures of first-order relational
signatures, is a simple and powerful representation. Nevertheless, areas exist in
which the relational model is less adequate than in others. One familiar example
is the question of how to represent partially filled out rows or missing informa-
tion. Another, more fundamental perhaps, is how to relate instances of different
schemas, as opposed to the relatively well understood relations between instances
of the same schema. Adding to this an increasing need to improve the ability to
relate and map data structured in different ways suggests looking for alternative
and supplemental ways of modelling tables more suitable to “dynamic” settings.
It seems natural, in that case, to try to model tables of different shapes as liv-
ing in a single mathematical structure, facilitating their manipulation across
different schemas.

We investigate, here, a novel way of representing data structured in systems of
tables which is based on simplicial sets and type theory rather than sets of relations
and first-order logic. Formally, we present a soundness theorem (Theorem 1) for a
certain dependent type theory with respect to a rather simple category of (finite,
abstract) simplicial complexes. An interesting type-theoretic feature of this is that

c© Springer International Publishing Switzerland 2016
S. Artemov and A. Nerode (Eds.): LFCS 2016, LNCS 9537, pp. 117–129, 2016.
DOI: 10.1007/978-3-319-27683-0 9



118 H. Forssell et al.

the type theory has context constants, mirroring that our choice of “display maps”
does not include all maps to the terminal object. But from the database perspec-
tive the interesting aspect is that this category can in a natural way be seen as a
category of tables; collecting in a single mathematical structure—an indexed or
fibered category—the totality of schemas and instances.

This representation can be introduced as follows. Let a schema S be pre-
sented as a finite set A of attributes and a set of relation variables over those
attributes. One way of allowing for missing information or partially filled out
rows is to assume that whenever the schema has a relation variable R, say over
attributes A0, . . . , An, it also has relation variables over all non-empty subsets of
{A0, . . . , An}. So a partially filled out row over R is a full row over such a “par-
tial relation” or “part-relation” of R. To this we add the requirement that the
schema does not have two relation variables over exactly the same attributes1.
This requirement means that a relation variable can be identified with the set of
its attributes. Together with the first requirement, this means that the schema
can be seen as a downward closed sub-poset of the positive power set of the set
of attributes A. Thus a schema is an (abstract) simplicial complex—a combina-
torial and geometric object familiar from algebraic topology.

The key observation is now that an instance of the schema S can also be
regarded as a simplicial complex, by regarding the data as attributes and the
tuples as relation variables. Accordingly, an instance over S is a schema of its
own, and the fact that it is an instance of S is “displayed” by a certain projection
to S. Thus the category S of finite simplicial complexes and morphisms between
them form a category of schemas which includes, at the same time, all instances
of those schemas; where the connection between schema and instance is given
by a collection D of maps in S called display maps.

We show, essentially, that S together with this collection D of maps form a so-
called display-map category [7], a notion originally developed in connection with
categorical models of dependent type theory. First, this means that the category
S has a rich variety of ready-made operations that can be applied to schemas
and instances. For example, the so-called dependent product operation can be
used to model the natural join operation. Second, it is a model of dependent
type theory. We specify a dependent type theory with context constants and a
sound interpretation which interprets contexts as schemas and types as instances.
This interpretation is with respect to the display-map category (S,D) in its
equivalent form as an indexed category. The context constants are interpreted
as distinguished single relation variable schemas (or relation schemas in the
terminology of [1]), reflecting the special status of such schemas. The type theory
1 Coming from reasons having to do with simplicity and wanting to stay close to the
view of tables as relations, this requirement, and indeed the structure of the schemas
we are considering, does mean that a certain care has to be taken with attribute
names at the modeling level. For instance whether one should, when faced with two
tables with exactly the same attributes, collect these into one table (possibly with
an extra column), rename some attributes, or introduce new “dummy” or “relation
name” attributes to keep the two tables apart. For reasons of space, we do not discuss
these issues here.



Type Theoretical Databases 119

allows for the syntactic specification of both schemas and instances, and formally
derives the answers to queries; for instance, using the dependent product of the
type theory, the elements of the natural join of two instances can be derived in
the type theory.

We focus, in the space available here, on the basic presentation of the model
and the type theory (Sects. 2 and 3, respectively). In Sect. 4 we then give a few
brief indications of the use and further development of the model and the type
theory: we give a suggestion of how the dependent structure of the model can
be put to use to model e.g. updates; and we sketch the introduction and use of
large types such as, and in particular, a universe. The universe allows reasoning
generically about classes of instances of in the type theory itself, without having
to resort to the metalanguage, and provides the basis for e.g. a precise, formal
definition and analysis of the notion of query in this setting.

2 The Model

2.1 Complexes

We fix the following terminology and notation, adjusting the standard terminol-
ogy somewhat for our purposes. More details can be found in [4]. A background
on simplicial complexes and simplicial sets can be found in e.g. [5,6]. The ques-
tion of whether vertices or attributes should be ordered is not essential for our
presentation here, and is swept under the rug.

A simplicial complex, or just complex, X consists of the union of a finite set
X0 and a collection X≥1 of non-empty, non-singleton subsets of X0, satisfying
the condition that if x is a set in X≥1, then all non-empty, non-singleton subsets
of x are in X≥1. It is convenient to also allow singleton subsets, and identify
them with the elements of X0. The natural order on X is then given by subset
inclusion. The elements of X0 are referred to as vertices. The elements of X≥1

as faces. For n ≥ 0, we write Xn for the set of elements of X with size n+1, and
refer to them as faces of dimension n. Accordingly, vertices are seen as having
dimension 0. We use square rather than curly brackets for faces, e.g. [A,B] rather
than {A,B}.

A morphism f :X −→ Y of complexes is a function f0 :X0 −→ Y0 satisfying
the condition that for all x in X the image f0(x) is in Y (again, with a singleton
identified with its element). Thus a morphism of complexes can be seen as a
morphism of posets by setting f(x) to be the image f0(x).

A morphism f :X −→ Y of complexes is said to be a display map if x ∈ Xn

implies f(x) ∈ Yn for all n. Thus display maps are the maps that “preserve
dimension”. Display maps are also the “local isomorphisms”, in the sense that
for x ∈ X the restriction f �(↓x): (↓ x) → (↓ f(x)) is an isomorphism. Note that
a display map need not be a injection of vertices.

A poset P that is isomorphic to a complex can clearly be uniquely rewrit-
ten to a complex with the same set of vertices as P . For that reason, and as it
is occasionally notationally convenient and can yield more intuitive examples,



120 H. Forssell et al.

we allow ourselves to extend the notion of complex to any poset that is isomor-
phic to a complex. We say that it is a strict complex if we need to emphasize
that it is of the form defined above.

2.2 Schemas and Instances

Schemas. A simplicial schema is a complex with the natural order reversed.
We consider the resulting poset as a category, in the usual way. If x ≤ y in
the natural order, we write δy

x : y −→ x for the corresponding arrow in the
simplicial schema. In the context of simplicial schemas, we use “attribute” and
“relation variable” synonomously with “vertex” and “face”, respectively. Let S

be the category of simplicial schemas and morphisms, and Sd be the category of
simplicial schemas and display maps.

With respect to the traditional notion of schema, a simplicial schema X
can be thought of as given in the usual way by a finite set of attributes X0 =
{A0, . . . , An−1} and a set of relational variables X≥1 = {R0, . . . Rm−1}, each
with a specification of column names in the form of a subset of X0, but with
the restrictions (1) that no two relation variables are over exactly the same
attributes; and (2) for any non-empty subset of the attributes of a relation
variable there exists a relation variable over (exactly) those attributes. As with
“complex”, we henceforth mostly drop the word “simplicial” and simply say
“schema”.

The category Sd contains in particular the n-simplices Δn and the face maps.
Recall that the the n-simplex Δn is the complex given by the set {0, . . . , n} as
vertices and all non-empty, non-singleton subsets as faces. For 0 ≤ i ≤ n + 1,
the face map dn

i : Δn −→ Δn+1 is the morphism of complexes defined by the
vertex function k �→ k, if k < i and k �→ k + 1 else. These satisfy the simplicial
identities dn+1

i ◦dn
j = dn+1

j−1 ◦dn
i if i < j. As a schema, Δn is the schema of a single

relation on n + 1 attributes named by numbers 0, . . . , n (and all its “generated”
part-relations). The face map dn

i : Δn −→ Δn+1 can be seen as the inclusion of
the relation variable [0, . . . , i − 1, i + 1, . . . , n + 1] in Δn+1. These schemas and
morphisms play a special role in Sect. 3 where they are used to specify general
schemas and instances syntactically.

Example 1. Let S be the schema the attributes of which are A,B,C and the
relation variables R : AB and Q : BC, with indicated column names. From a
“simplicial” point of view, S is the category

Replacing R with [A,B] and Q with [B,C] (and inverting the order) yields a
strict complex. For another example, the 2-simplex Δ2 can be seen as a schema
on attributes 0,1, and 2, with relation variables [0, 1, 2], and its part-relations.
The function f0 given by A �→ 0, B �→ 1, and C �→ 2 defines a morphism
f : S −→ Δ2 of schemas/complexes. f is a display map. f−1

0 does not define a
morphism of schemas.



Type Theoretical Databases 121

Instances. Let X be a schema, say with attributes X0 = {A0, . . . , An−1}.
A functor F : X −→ FinSet from X to the category of finite sets and functions
can be regarded as an instance of the schema X. For x = [Ai0 , . . . , Aim−1 ] ∈ X,
the set F (x) can be regarded as a set of “keys” or “row-names”. The “value”
k[Aij

] of such a key k ∈ F (x) at attribute Aij
is then the element k[Aij

] :=
F (dx

Aij
)(k). Accordingly, F (x) maps to the set of tuples F (Ai0)× . . .×F (Aim−1)

by k �→
〈
k[Ai0 ], . . . , k[Aim−1 ]

〉
. For arbitrary F , this function is not 1–1; that is,

there can be distinct keys with the same values at all attributes. We say that F
is a relational instance if this does not happen. That is, a relational instance is a
functor F : X −→ FinSet such that for all x ∈ X the functions {δx

A | A ∈ x}
are jointly injective. Say that a relational instance is strict if the keys are actually
tuples and the δ’s are the expected projections.

Example 2. Let S be the schema of Example 1. Let an instance I be given by

R A B
1 a b
2 a’ b

Q B C
1 b c
2 d e

Then I is the functor

with I(δR
A)(1) = a, I(δR

B)(1) = b and so on.
Let J be the strict instance J : Δ2 −→ FinSet given in tabular form by

0 1 2
a b c

0 1
a b
a’ b

0 2
a c
a’ c

1 2
b c
d e

0
a
a’

1
b
d

2
c
e

Explicitly, then, J is the functor which e.g. maps [0, 1] to {〈a, b〉 , 〈a′, b〉} and
such that J(δ[0,1]

1 )(〈a, b〉) = b.

Substition, Strictification, and Induced Schemas. Let f : X −→ Y be a
morphism of schemas, and let I : Y −→ FinSet be a relational instance. Then
it is easily seen that the composite I ◦ f :X −→ FinSet is a relational instance.
We write I[f ] := I ◦ f and say it is the substitution of I along f .

It is clear that a relational instance is naturally isomorphic to exactly one
strict relational instance with the same values. We say that the latter is the
strictification of the former.

Example 3. Consider the morphism f :S −→ Δ2 of Example 1 and the instances
I and J of Example 2. Then J [f ] is the strictification of I.



122 H. Forssell et al.

Let Rel(X) be the category of strict relational instances and natural trans-
formations between them. For convenience and brevity (as with complexes) we
often disregard the requirement that instances need to be strict in the sequel.
However, working with relational instances up to strictification, or restricting to
the strict ones, resolves the coherence issues so typical of categorical models of
type theory. To have the “strict” instances be those “on tuple form” presents
itself as a natural choice, both by the connection to the relational model and by
the following formal connection between such instances and display maps.

Lemma 1. Let f : X −→ Y be a morphism of schemas. Then f is display if
and only if for all strict instances J of Y the instance J [f ] is also strict.

The connection between display maps, relational instances and simplicial schemas
is given by the following. Let X be a schema and F : X −→ FinSet an arbitrary
functor. Recall, e.g. from [8], that the category of elements

∫
X

F has objects 〈x, a〉
with x ∈ X and a ∈ F (x). A morphism δ

〈x,a〉
〈y,b〉 : 〈x, a〉 −→ 〈y, b〉 is a morphism

δx
y : x −→ y with F (δx

y )(a) = b. The projection p :
∫

X
F −→ X is defined by

〈x, a〉 �→ x and δ
〈x,a〉
〈y,b〉 �→ δx

y . We then have

Lemma 2. Let X be a simplicial schema and F : X −→ FinSet be a functor.
Then F is a relational instance if and only if

∫
X

F is a simplicial schema and
p :

∫
X

F → X is a display morphism.

When F is a relational instance we write X.F for
∫

X
F , and refer to it as the

canonical schema corresponding to F . We refer to p as the canonical projection.

Example 4. The canonical schema of instance J of Example 2 has attribute set
{〈0, a〉 , 〈0, a′〉 , 〈1, b〉 , 〈1, d〉 , 〈2, e〉 , 〈2, c〉} and relation variables e.g.
〈[0, 1, 2], 〈a, b, c〉〉 (or, strictly, [〈0, a〉 , 〈1, b〉 , 〈2, c〉]).

Full Tuples. A schema X induces a canonical instance of itself by filling out
the relations by a single row each, consisting of the attributes of the relation.
This instance is terminal in the category of instances of X; that is, every other
instance of X has a unique morphism to it. Accordingly, we define the terminal
instance 1X : X −→ FinSet to be the functor defined by x �→ {x}.2

A full or matching tuple t of an instance I over schema X is a natural
transformation t : 1X ⇒ I. We write TrmX(I) for the set of full tuples (indicating
that we see them as terms type-theoretically).

Given a full tuple t : 1X ⇒ I, the induced section is the morphism t̂ : X −→
X.I defined by x �→ 〈x, tx(x)〉. Notice that the induced section is always a display
morphism.

Example 5. The instance I of Example 2 has precisely two full tuples. A full
tuple can be seen as a tuple over the full attribute set of the schema with the
2 Strictly speaking, we choose an isomorphic representation which is strict and stable
under substitution. For current purposes, however, the current definition is nota-
tionally convenient.



Type Theoretical Databases 123

property that for all relation variables the projection of the tuple is a row of that
relation. The two full tuples of I are, then, 〈a, b, c〉 and 〈a′, b, c〉. The instance J
of Example 2 has precisely one full tuple 〈a, b, c〉.

2.3 Simplicial Databases

We have a functor Rel(−) : Sd
op −→ Cat which maps X to Rel(X) and f :

X −→ Y to Rel(f) = (−)[f ] : Rel(Y ) −→ Rel(X). We denote this indexed
category by R, and think of it as a “category of databases” in which the totality
of databases and schemas are collected. It is a model of a certain dependent type
theory with context constants which we give in Sect. 3. We briefly outline some
of the relevant structure available in R.

Definition 1. For f : X −→ Y in Sd and J ∈ Rel(Y ) and t : 1Y ⇒ J in
TrmY (J):

1. Define t[f ] ∈ TrmX(J [f ]) by x �→ t(f(x)) ∈ J [f ](x). Note that for g :
Z −→ X we have t[f ][g] = t[f ◦ g].

2. With pJ : Y.J −→ Y the canonical projection, let vJ : 1Y.J ⇒ J [pJ ] be the
full tuple defined by 〈y, a〉 �→ a. (This term is needed for the type theory. We
elsewhere leave subscripts on v and p determined by context.)

3. Denote by f̃ : X.J [f ] −→ Y.J the schema morphism defined by 〈x, a〉 �→
〈f(x), a〉. Notice that since f is display, so is f̃ .

Lemma 3. The following equations hold:

1. For X in Sd and I ∈ Rel(X) and t ∈ TrmX(I) we have p ◦ t̂ = idX and
t = v[t̂].

2. For f : X −→ Y in Sd and J ∈ Rel(Y ) and t ∈ TrmY (J) we have
(a) p ◦ f̃ = f ◦ p :X.J [f ] −→ Y ;
(b) f̃ ◦ t̂[f ] = t̂ ◦ f :X −→ Y.J ; and
(c) vJ [f̃ ] = vJ[f ] :1X.J[f ] ⇒ J [f ][p].

3. For f : X −→ Y and g : Y −→ Z in Sd and J ∈ Rel(Z) we have g̃ ◦ f = g̃◦ f̃ .
4. For X ∈ Sd and I ∈ Rel(X) we have p̃ ◦ v̂ = IdX.I .

The following instance-forming operations exist and commute with substi-
tution.

0 and 1 instances: Given X ∈ Sd the terminal instance 1X has already been
defined. The initial instance 0X is the constant empty functor, x �→ ∅.

Dependent Sum: Let X ∈ Sd, J ∈ Rel(X), and G ∈ Rel(X.J). We define the
instance ΣJG :X −→ FinSet up to strictification by

x �→ {〈a, b〉 | a ∈ J(x), b ∈ G(x, a)}. For δx
y in X, let ΣJG(δx

y )(a, b) =〈
δx
y (a), δx,a

y,δx
y (a)

(b)
〉
.

Identity: Given X ∈ Sd and J ∈ Rel(X) the Identity instance IdJ ∈ Rel(X.J.J [p])
is defined, up to strictification, by 〈〈x, a〉 , b〉 �→ � if a = b and 〈〈x, a〉 , b〉 �→ ∅ else.



124 H. Forssell et al.

� being e.g. the empty tuple. The full tuple refl ∈ Trm(X.J)(IdJ [v̂]) is defined by
〈x, a〉 �→ �.

Disjoint Union: Given X ∈ Sd and I, J ∈ Rel(X), the instance I + J ∈ Rel(X)
is defined up to strictification by
x �→ {〈n, a〉 | (n = 0 ∧ a ∈ I(x)) ∨ (n = 1 ∧ a ∈ J(x))}. We have full tuples left
∈ TrmX.I((I + J)[p]) defined by 〈x, a〉 �→ 〈0, a〉 and right ∈ TrmX.J((I + J)[p])
defined by 〈x, a〉 �→ 〈1, a〉.
Dependent Product: Let X ∈ Sd, J ∈ Rel(X), and G ∈ Rel(X.J). We define
the instance ΠJG : X −→ FinSet as strictification of the right Kan-extension
(in the sense of e.g. [8]) of G along p. See [4] for an explicit construction. There
are operations Ap and λ which for any full tuple t ∈ TrmX.J(G) yields a full
tuple λt ∈ TrmX(ΠJG), and for any full tuple s ∈ TrmX(ΠJG) yields a full
tuple Aps ∈ TrmX.J(G). Moreover, Apλt = t. We further indicate the rela-
tionship between the dependent product and full tuples, and the way in which
the dependent product models the natural join operation, with the following
example.

Example 6. Consider the schema S and instance I of Examples 1 and 2. Corre-
sponding to the display map f :S −→ Δ2, we can present S an instance of Δ2

as (ignoring strictification for readability) S : Δ2 −→ FinSet by S(0) = {A},
S(1) = {B}, S(2) = {C}, S(01) = {R}, S(12) = {Q}, and S(02) = S(012) = ∅.
Notice that, modulo the isomorphism between S as presented in Example 1 and
Δ2.S, the morphism f : S −→ Δ2 is the canonical projection p : Δ2.S −→ Δ2.
Similarly we have I ∈ Δ2.S as (in tabular form, using subscript instead of pairing
for elements in Δ2.S, and omitting the three single-column tables)

R01 A0 B1

a b
a’ b

Q12 B1 C2

b c
d e

Then ΠSI is, in tabular form (again omitting single column tables),

0 1 2
a b c
a’ b c

0 1
a b
a’ b

0 2
a c
a’ c
a e
a’ e

1 2
b c
d e

Notice that the three-column “top” table of ΠSI is the natural join R01 �	 Q12.
The type theory of the next section will syntactically derive the rows of this
table from the syntactic specification of S and I and the rules for the dependent
product (see [4]).

3 The Type Theory

We introduce a Martin-Löf style type theory [9], with explicit substitutions (in
the style of [3]), extended with context and substitution constants representing



Type Theoretical Databases 125

simplices and face maps. The type theory contains familiar constructs such as
Σ- and Π-types. For this type theory we give an interpretation in the indexed
category R of the previous section. The goal is to use the type theory as a formal
language for databases. We give examples how to specify instances and schemas
formally in the theory. Further details can be found in [4].

3.1 The Type Theory T

The type systemhas the following eight judgements,with intended interpretations.

Judgement Interpretation
? : Context �?� is a schema
? : Type(Γ ) �?� is an instance of the schema Γ
? : Elem(A) �?� is an full tuple in the instance A
? : Γ −→ Λ �?� is a (display) schema morphism
Γ ≡ Λ �Γ � and �Λ� are equal schemas
A ≡ B : Type(Γ ) �A� and �B� are equal instances of �Γ �
t ≡ u : Elem(A) �t� and �u� are equal full tuples in �A�
σ ≡ τ : Γ −→ Λ the morphisms �σ� and �τ� are equal

The type theory T has the rules listed in Figs. 1 and 2. The interpretation of
these are given by the constructions in the previous section, and summarised in
Fig. 3.

Fig. 1. Rules of the type theory: contexts and substitution

Each rule introduces a context, substitution, type or element. We will apply
usual abbreviations such as A −→ B for ΠAB[↓A] and A × B for ΣAB[↓A]. In
addition to these term introducing rules there are a number of equalities which



126 H. Forssell et al.

Fig. 2. Rules of the type theory: Types

Fig. 3. Interpretation of the type theory

should hold; such as the simplicial identities dn+1
i ◦dn

j ≡ dn+1
j−1 ◦dn

i : Δn −→ Δn+2.
We list the definitional equalities in Fig. 4.



Type Theoretical Databases 127

Fig. 4. Definitional equalities in the type theory

These all hold in our model. (The equalities for substitution are verified in
Lemma 3. The remaining equations are mostly routine verifications.) We display
this for reference.

Theorem 1. The intended interpretation �−� yields a sound interpretation of
the type theory T in R.

3.2 Instance Specification as Type Introduction

The intended interpretation of A : type(Γ ) is that A is an instance of the schema
Γ . However, context extension allows us to view every instance as a schema in
its own right; for every instance A : type(Γ ), we get a schema Γ.A. It turns
out that the most convenient way to specify a schema is by introducing a new
type/instance over one of the simplex schemas Δn. To specify a schema, with a
maximum of n attributes, may be seen as introducing a type in the context Δn.
A relation variable with k attributes in the schema is introduced as an element
of the schema substituted into Δk. Names of attributes are given as elements of
the schema substituted down to Δ0.

Example 7. We construct the rules of the schema S presented as an instance
of Δ2 as in Example 6. The introduction rules tells us the names of tables and
attributes in S.

S : Type(Δ2) A ≡ R[d1] : Elem(S[d2 ◦ d1])
A : Elem(S[d2 ◦ d1]) B ≡ R[d0] : Elem(S[d2 ◦ d0])
B : Elem(S[d2 ◦ d0]) B ≡ Q[d1] : Elem(S[d0 ◦ d1])
C : Elem(S[d0 ◦ d0]) C ≡ Q[d0] : Elem(S[d2 ◦ d0])
R : Elem(S[d2])
Q : Elem(S[d0])

From these introduction rules, we can generate an elimination rule. The elim-
ination rule tells us how to construct full tuples in an instance over the schema
S. Another interpretation of the elimination rule is that it formulates that the
schema S contains only what is specified by the above introduction rules; it
specifies the schema up to isomorphism.



128 H. Forssell et al.

An instance of a schema is a type depending in the context of the schema.
Therefore instance specification is completely analoguous to schema specifica-
tion. See [4] for an example. In [4] one can also find a derivation of the terms in
T corresponding to the full tuples of the natural join in Example 6.

4 Dependent Structure, Large Types, and Queries

Most of this paper has been devoted to explaining the basic structure of the
display map category of finite simplicial complexes seen as encoding systems
of tables, and to stating the type theory which it models. In the space that
remains, we briefly indicate some approaches of ongoing and future work, in
particular emphasizing the definitions and roles of large types and universes.
Before introducing additional types, however, we point to the use that can be
made of the dependent structure itself. It is a cornerstone of the model that an
instance over a schema can itself, by context extension, be seen as a schema over
which new instances can be constructed. Thus context extension provides, for a
given instance, the built in possibility to enter data related to the instance into
tables formed by its rows. One immediate suggestion for the potential use of this
feature is for updates; an update I ′ of an instance I over Γ is the instance over
Γ.I obtained by writing the new (or old or empty) row in the table formed by
the row to be replaced (or kept or deleted). Adding new rows can be done by
writing I ′ over Γ.I +1 instead, as I +1 has a copy of Γ over which new additions
can be entered. (Multiple copies of Γ , and indeed of I, can be added if need
be; notice that polynomial expressions over I such as 2I + 3 yield meaningful
instances over Γ ). In this way a current update occurs in a context formed by a
string of previous updates. Applying the dependent product operation gives an
instance over the original schema Γ , if desired.

Returning to large types, Example 6 gives a glimpse of a “type-theoretic”
operation and its relation to one of the standard queries of relational databases.
A formal investigation of queries (and dependencies and views) in the setting
of the type theory and model of the previous sections requires a formal under-
standing of what constitutes a query in this setting. For (partly) this purpose, we
introduce a universe. This is a large type, corresponding to an infinite instance
which encodes all finite instances over a fixed domain. Thus, given a schema X,
the universe UX of finite instances of X is an infinite instance of X where the
full tuples encode the finite instances of X (over the fixed domain). The universe
comes equipped with a decoding instance TX over X.UX such that given a full
tuple t ∈ TrmX(UX), the instance it encodes is decoded by TX [t̂],

The universe and decoding instance are stable under substitution, and are closed
under the other type constructions, such as Π- and Σ-types. We omit the details
of the constructions.



Type Theoretical Databases 129

The universe, UΓ along with TΓ : Type(Γ.UΓ ), allows reasoning generically
about classes of instances of Γ in the type theory itself, without having to resort
to the metalanguage. Since schemas can be though of as instances, they too can
be constructed using the universe. In particular, given a schema Γ , the type
ΩΓ := ΣUΓ

ΠTΓ
ΠTΓ [↓TΓ

]IdTΓ
is the large type of subschemas of Γ . Its elements

are decoded to instances by the family OΓ := T [↓Ω .U ][π0↑]. Given t : Elem(ΩΓ ),
the subschema it encodes is Γ.O[t↑].

A query can then be seen as an operation which takes an instance of a schema
to another instance of a related schema. Given codes for a source subschema t :
Elem(Ω) and a target subschema u : Elem(Ω), the type of queries from t to u
is thus (O[t↑] → U) → (O[u↑] → U). Having given a concrete type of queries
leads the way to investigations as to exactly which queries can be expressed in the
language. For illustration, we present an example query formulated in this way.

Example 8. In the spririt of Example 6, let a : Elem(Ω) be the code for a sub-
schema covering the schema Γ , in the sense that the set of attributes are the
same. The query taking the dependent product, or natural join, of an instance
of this subschema is expressed by the term

q := λλ(π[(↓Ω .U) ◦ (π0↑)][a↑.(T → U)][↓1]) : Elem((O[a↑] → U) → (1Γ → U)).

Further new types of interest and use are the type ΛΓ of “tables”, or faces, of
a schema and the (large) type NΓ of “finite” instances, or instances of the form
1 + 1 + . . . + 1. The former can be constructed so as to be both small and stable
(whereas ΩΓ seems to have to be large in order to be stable), and is sufficient for
schema and instance specification (cf. Example 7). The latter is of relevance e.g.
with respect to instances determined by their full tuples (or “with no nulls”).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Read-
ing (1995)

2. Cartmell, J.: Formalising the network and hierarchical data models — an appli-
cation of categorical logic. In: Pitt, D., Abramsky, S., Poigné, A., Rydeheard, D.
(eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 466–492.
Springer, Heidelberg (1986)

3. Dybjer, P.: Internal type theory. In: Berardi, S., Coppo, M. (eds.) TYPES 1995.
LNCS, vol. 1158. Springer, Heidelberg (1996)

4. Forssell, H., Gylterud, H.R., Spivak, D.I.: Type theoretical databases (2014).
http://arxiv.org/abs/1406.6268

5. Friedman, G.: Survey article: an elementary illustrated introduction to simplicial
sets. Rocky Mt. J. Math. 42(2), 353–423 (2012)

6. Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory. Springer,
Heidelberg (1967)

7. Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)
8. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg

(1998)
9. Martin-Löf, P.: Intuitionistic Type Theory. Studies in Proof Theory, vol. 1. Bib-

liopolis, Naples (1984)

http://arxiv.org/abs/http://arxiv.org/abs/1406.6268

	Type Theoretical Databases
	1 Introduction
	2 The Model
	2.1 Complexes
	2.2 Schemas and Instances
	2.3 Simplicial Databases

	3 The Type Theory
	3.1 The Type Theory T 
	3.2 Instance Specification as Type Introduction

	4 Dependent Structure, Large Types, and Queries
	References


