
The Online Space Complexity of Probabilistic
Languages

Nathanaël Fijalkow1,2,3(B)

1 LIAFA, Université Paris Diderot - Paris 7, Paris, France
2 University of Warsaw, Warsaw, Poland,

3 University of Oxford, Oxford, UK
nath@liafa.univ-paris-diderot.fr

Abstract. In this paper, we define the online space complexity of lan-
guages, as the size of the smallest abstract machine processing words
sequentially and able to determine at every point whether the word read
so far belongs to the language or not. The first part of this paper moti-
vates this model and provides examples and preliminary results.

One source of inspiration for introducing the online space complexity
of languages comes from a seminal paper of Rabin from 1963, introducing
probabilistic automata, which suggests studying the online space com-
plexity of probabilistic languages. This is the purpose of the second part
of the current paper.

Keywords: Online complexity · Probabilistic languages · Automata ·
Online algorithms · Complexity theory

1 The Online Space Complexity

We introduce and study a new complexity measure, called online space complex-
ity. The purpose of a complexity measure is to quantify the complexity of solving
a given problem, focusing on a particular aspect. For instance, the most classical
complexity measures are the time and space complexity, defined as the amount
of time and space used by a Turing machine, while the circuit complexity counts
the number of gates in a circuit; the communication complexity quantifies the
amount of communication required when the input is spread among different
agents.

The online complexity deals with the difficulty of observing the instance in
an online fashion, i.e. one letter at a time. We consider deterministic abstract
machines, which perform an action each time a letter is read. The task of the
machine is to maintain enough information about the word read so far to answer
boolean queries. The online space complexity focuses exclusively on space, i.e.
the amount of information maintained.

A typical example is a machine presented with a sequence of a’s and b’s,
which should at any point determine whether the sequence read so far contains

Work supported by the ANR STOCH-MC.

c© Springer International Publishing Switzerland 2016
S. Artemov and A. Nerode (Eds.): LFCS 2016, LNCS 9537, pp. 106–116, 2016.
DOI: 10.1007/978-3-319-27683-0 8

The Online Space Complexity of Probabilistic Languages 107

exactly as many a’s as b’s. The canonical machine solving this problem uses as
memory one counter taking integer values, the difference between the number of
a’s and the number of b’s. This machine is of linear size, because after reading
(up to) n letters it can be in at most 2n + 1 different states; as we shall see, it
is optimal, meaning that this problem has linear online space complexity.

Although, to the best of our knowledge, the following definition of the online
space complexity is new, the concept of online computing is old and has been
investigated in various scenarions and under various names. After giving the
formal definitions, we will discuss further the relations between our framework
and the existing ones.

1.1 Definitions

We fix an alphabet A, which is a finite set of letters. An instance of a problem
is given by a word, which is a finite sequence of letters, often denoted w =
a0a1 · · · an−1, where ai’s are letters from the alphabet A, i.e. ai ∈ A. We say
that w has length n. We denote A∗ the set of all words and A≤n the set of words
of length at most n.

A computational problem is given by a set of words L, called a language;
i.e. L ⊆ A∗. The online space complexity of a language measures the size of an
abstract machine able to recognise the language in an online way: the machine
processes words letter by letter, and must at any point be able to determine
whether the word read so far belongs to the language or not.

The first definition that we give, that of a machine, is not new; it matches
the classical definition of deterministic automata, except that the set of states is
not assumed to be finite.

Definition 1 (Machine). A machine is given by a (potentially infinite) set C
of states, an initial state c0 ∈ C, a transition function δ : C × A → C and a set
of accepting states A ⊆ C.

When processing a word w = a0a1 · · · an−1, the machine assumes a sequence
of states c0c1 · · · cn, that we call the run on w, defined inductively by ci+1 =
δ(ci, ai). It is unique, since we assume the machine to be deterministic and the
transition function to be a total function. The last state of the run on w is
denoted c(w); the word w is accepted if c(w) is accepting, i.e. if c(w) ∈ A, and
rejected otherwise. The language recognised by a machine is the set of words
accepted by this machine.

Definition 2 (Size of a Machine). The size of a machine is the function
s : N → N defined by s(n) being the number of different states reached by all
words of length at most n. Formally:

s(n) = Card
{
c(w) | w ∈ A≤n

}
.

Note that in complexity theory, it is usual to count the size of an object by the
size of its description. Here, it would be natural, instead of counting of many

108 N. Fijalkow

different states are reached, how many bits are necessary to describe these states;
this amounts to consider the logarithm of the number of states. We do not use
this definition as it would erase the differences between, for instance, linearly
many and quadratically many states.

For two functions f, g : N → N, we say that f is smaller than g, denoted
f ≤ g, if it is true component wise: for all n, f(n) ≤ g(n).

Definition 3 (Online Space Complexity Class). For a function f : N → N,
the class of languages Online(f) consists of all languages which are recognised
by a machine of size smaller than f .

1.2 Related Works

The definitions of online space complexity that we gave belong to the research
area concerned with online computing. Unlike an offline algorithm, which has
access to the whole input, an online algorithm is presented with its input in a
restricted online way: it has to process it letter by letter. Various frameworks
emerged from this versatile concept: we discuss three of them, dynamic algo-
rithms, streaming algorithms and competitive analysis of online algorithms.

The field of dynamic algorithms, initiated by Patnaik and Immerman [6],
focuses on the complexity of maintaining solutions to problems with online
inputs. In this setting, the input can go through a series of changes, and the
challenge is to store enough information to be able to solve the problem on the
modified input. There are two differences between our approach and dynamic
algorithms. The first is that whereas in our setting, the changes are only inser-
tions, dynamic algorithms also consider deletions, and sometimes more compli-
cated operations. The second is that the focus of dynamic algorithms is on the
time complexity of the machines maintaining the information, whereas we con-
sider instead the state space complexity of these machines, i.e. the number of
different states they use.

The field of streaming algorithms, initiated by a series of papers (Munro
and Paterson [5], then Flajolet and Martin [3], followed by the foundational
paper of Alon, Matias and Szegedy [1]), focuses on algorithms having very lim-
ited available memory, much smaller than the input size. The challenge there is
to use these constrained ressources to compute relevant information about the
processed input, such as for instance statistics on frequency distributions. In this
setting the input is a word, read letter by letter, and the focus is put on mea-
suring the memory consumed by the machines processing the word, exactly is in
our setting. The only difference is that streaming algorithms also have limited
processing time per letter, whereas we abstract away this information, and only
measure the state space complexity.

The field of competitive analysis of online algorithms, initiated by Sleator
and Tarjan [8], and by Karp [4], compares the performances between offline and
online algorithms. In this setting, each solution is assigned a real value, assessing
its quality. An offline algorithm, having access to the whole input, can select the
best solution. An online algorithm, however, has to make choices ignoring part

The Online Space Complexity of Probabilistic Languages 109

of the input that is still to be read. The question is then whether there exists
online algorithms that can perform nearly as good as offline algorithms, up to
a competitive ratio. In this setting, the complexity of the machines is ignored,
and the only question is what is the cost of making online choices rather than
processing the whole input.

2 Preliminary Results

2.1 Remarks and Examples

We begin with a few simple remarks. The first remark is that the size of a
machine satisfies the following inequality, for all n:

s(n) ≤ 1 + Card(A) + Card(A2) + · · · + Card(An) =
Card(A)n+1 − 1

Card(A) − 1
.

It follows that the maximal complexity of a language is exponential, and the online
space complexity classes are relevant for functions smaller than exponential.

Definition 4 (Usual Online Space Complexity Classes).

– Online(Const) is the class of languages of constant online space complexity,
defined as

⋃
K∈N

Online(n �→ K).
– Online(Lin) is the class of languages of linear online space complexity, defined

as
⋃

a∈N
Online(n �→ an).

– Online(Quad) is the class of languages of quadratic online space complexity,
defined as

⋃
a∈N

Online(n �→ an2).
– Online(Poly) is the class of languages of polynomial online space complexity,

defined as
⋃

k∈N
Online(n �→ nk).

We define completeness with respect to a online space complexity class as
follows.

Definition 5 (Completeness for Complexity Classes).
We say that L has linear online space complexity if:

– (upper bound) L ∈ Online(Lin), i.e. there exists a ∈ N such that L ∈
Online(n �→ an),

– (lower bound) if L ∈ Online(f), then there exists a ∈ N such that for all n,
f(n) ≥ an.

The definitions of L having constant, quadratic, polynomial or exponential com-
plexity are similar.

We denote Reg the class of regular languages, i.e. those recognised by
automata.

110 N. Fijalkow

Theorem 1.

– Online(Const) = Reg, i.e. a language has constant online space complexity if,
and only if, it is regular.

– Online
(
n �→ Card(A)n+1−1

Card(A)−1

)
contains all languages.

The first item follows from the observation that deterministic automata are
exactly machines with finitely many states. For the second item, consider a
language L, we construct a machine recognising L of exponential size. Its set
of states is A∗, the initial state is ε and the transition function is defined by
δ(w, a) = wa. The set of accepting states is simply L itself!

The languages defined in the following example will be studied later on to
illustrate the lower bound techniques we give.

Example 1.

– Define Maj2 =
{
w ∈ {a, b}∗ | |w|a > |w|b

}
, the majority language over two

letters. Here |w|a denotes the number of occurrences of the letter a in w.
We construct a machine of linear size recognising Maj2: its set of states is
Z, the integers, the letter a acts as +1 and the letter b as −1, and the set
of accepting states is N, the positive integers. After reading the word w, the
state is |w|a − |w|b, implying that the machine has linear size. So Maj2 ∈
Online(Lin), and we will show in Subsect. 2.2 that this bound is tight: Maj2
has linear online space complexity.

– Define Eq =
{
w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c

}
. We construct a machine

of quadratic size recognising Eq: its set of states is Z
2, the letter a acts as

(+1,+1), the letter b as (−1, 0), the letter c as (0,−1), and the only accepting
state is 0. After reading the word w, the state is (|w|a − |w|b, |w|a − |w|c),
implying that the machine has quadratic size. So Eq ∈ Online(Quad), and
we will show in Subsect. 2.2 that this bound is tight: L2 has quadratic online
space complexity.

– Define Squares = {ww | w ∈ A∗}. We will show in Subsect. 2.3 that
Squares has exponential online space complexity.

2.2 Lower Bounds Using Formal Language Theory

We present a first technique to give lower bounds on the online space complexity,
relying on the notion of left quotients.

Let w be a finite word, define its left quotient with respect to L by

w−1L = {u | wu ∈ L} .

A well known result from automata theory states that the existence of a
minimal deterministic automaton, called the syntactic automaton, whose states
of the left quotients.

The Online Space Complexity of Probabilistic Languages 111

This construction extends mutatis mutandis when dropping the assump-
tion that the automaton has finitely many states, i.e. going from deterministic
automata to machines as we defined them. The statement, however, is more
involved, and gives precise lower bounds on the online space complexity of the
language.

Formally, consider a language L, we define the syntactic machine of L,
denoted ML, as follows. We define the set of states as the set of all left quotients:{
w−1L | w ∈ A∗}. The initial state is ε−1L, and the transition function is defined

by δ(w−1L, a) = (wa)−1L. Finally, the set of accepting states is
{
w−1L | w ∈ L

}
.

Denote sL the size of the syntactic machine of L.

Theorem 2.

– ML recognises L, so L ∈ Online(sL),
– for all f , if L ∈ Online(f), then f ≥ sL.

Note that the implies the existence of a minimal function f such that L ∈
Online(f); in other words L ∈ Online(f) if, and only if, f ≥ sL. This was not
clear a priori, because the order on functions is partial.

The first item is routinely proved, as in the case of automata. For the second
item, assume towards contradiction that there exists f such that L ∈ Online(f)
and f �≥ sL, i.e. there exists n such that f(n) < sL(n). Consider a machine M
recognising L of size f . Since f(n) < sL(n), there exists two words u and v of
length n such that u−1L �= v−1L but c(u) = c(v), i.e. in M the words u and v
lead to the same state. The left quotients u−1L �= v−1L being different, there
exists a word w such that uw ∈ L and vw /∈ L, or the other way around. But
c(uw) = c(vw) since M is deterministic, so this state must be both accepting
and rejecting, contradiction.

The view using left quotients is very powerful, as it gives the exact online
space complexity of a language. However, it is sometimes hard to deal with, as
it may involve complicated word combinatorics. We illustrate it on some of the
examples introduced in Subsect. 2.1.

To prove for instance that L has an online space complexity at least linear
using this technique, one has to exhibit, for infinitely many n, a family of linearly
many words (i.e., at least an words, for some constant a) of length at most n
that induce pairwise distinct left quotients.

Example 2.

– Fix n. The words an+kbn−k, for 0 ≤ k ≤ n, have length 2n and all induce
pairwise distinct left quotients, since an+kbn−k · bp ∈ Maj2 if, and only if, p <
2k. It follows from Theorem 2 that Maj2 has linear online space complexity.

– Fix n. The words a2n−p−qbpcq, for 0 ≤ p, q ≤ n, have length 2n and all induce
pairwise distinct left quotients, since a2n−p−qbpcq · ak+�b2n−kc2n−� ∈ Eq if,
and only if, k = p and � = q. It follows from Theorem 2 that Eq has quadratic
online space complexity.

112 N. Fijalkow

2.3 Lower Bounds Using Communication Complexity

We present a second technique to give lower bounds on the online space com-
plexity. This is inspired by the field of streaming algorithms, which made several
use of this idea.

Rather than giving a generic lower bound technique, we illustrate the ideas
by giving an exponential lower bound for Squares, the language of squares, i.e.
words of the form ww for some word w. Note that we are here using a very big
hammer for a very simple result; the first technique using left quotients would
very easily give an exponential lower bound.

We consider the following communication problem: Alice receives a word u of
length n, and Bob another word v of length n. The goal for Bob is to determine
whether u = v, with the least amount of communication between them. It is
well known that no protocol can solve this problem using less than n bits of
communication; the optimal protocol is simply for Alice to send her whole input
u to Bob.

The idea now is to use a machine recognising Squares to construct a problem
solving the above communication problem, thereby obtaining lower bounds on
the size of such a machine. Denote s the size of the machine, and fix n. Consideer
an input of length 2n, which we denote w = uv where u and v have length n.
We construct the following protocol: Alice runs the machine on her input u,
and communicates to Bob the state reached. Bob takes over from there, running
the machine on his input, starting from the state sent by Alice. The last state
he obtains determines whether the whole input, i.e. w, belongs to Squares, or
equivalently whether u = v.

Now, to communicate the state reached after reading u, Alice only needs
log(s(n)) (indeed, if there are s(n) different states, then they can be all described
using log(s(n)) bits). The lower bound on the communication problem implies
than log(s(n)) ≥ n, i.e. s(n) ≥ 2n. It follows that Squares has exponential
online space complexity.

2.4 Comparison to Circuit Complexity

We conclude this section by observing that the examples studied above show
that online space complexity and circuit complexity are orthogonal. Indeed:

– The language Maj has linear online space complexity (small), but does not
belong to AC0, i.e. it has a rather big circuit complexity. Another example of a
language having a small online space complexity and a big circuit complexity
is Parity: it is regular, and recognised by a machine of size 2, but does not
belong to AC0.

– The language Squares has exponential online space complexity (large), but
it has a very small circuit complexity: it is recognised by a family of circuits
of linear size of constant depth.

The Online Space Complexity of Probabilistic Languages 113

3 The Online Space Complexity of Probabilistic
Automata

In his seminal paper introducing probabilistic automata [7], Rabin devotes a
section to “approximate calculation of matrix products”, which is related to,
and inspired, online space complexity. In the end of this section, Rabin states a
result, without proof; the aim of this section is to substantiate this claim, i.e.
formalising and proving the result.

We start by defining probabilistic automata, state Rabin’s claim, and prove
that it holds true.

3.1 Probabilistic Automata

Let Q be a finite set of states. A distribution over Q is a function δ : Q → [0, 1]
such that

∑
q∈Q δ(q) = 1. We denote D(Q) the set of distributions over Q.

Definition 6 (Probabilistic Automaton). A probabilistic automaton A is
given by a finite set of states Q, a transition function φ : A → (Q → D(Q)), an
initial state q0 ∈ Q, and a set of final states F ⊆ Q.

In a transition function φ, the quantity φ(a)(s, t) is the probability to go from
the state s ∈ Q to the state t ∈ Q reading the letter a. A transition function
naturally induces a morphism φ : A∗ → (Q → D(Q)). We denote PA(s w−→ t)
the probability to go from a state s to a state t reading w on the automaton A,
i.e. φ(w)(s, t).

The acceptance probability of a word w ∈ A∗ by A is
∑

t∈F φ(w)(q0, t), which
we denote PA(w).

The following threshold semantics was introduced by Rabin [7].

Definition 7 (Probabilistic Language). Let A be a probabilistic automaton,
it induces the probabilistic language

L> 1
2 (A) =

{
w ∈ A∗ | PA(w) >

1
2

}
.

3.2 Substantiating the Claim

In a section called “approximate calculation of matrix products” in the paper
introducing probabilistic automata [7], Rabin asks the following question: is
it possible, given a probabilistic automaton, to construct an algorithm which
reads words and compute the acceptance probability in an online fashion? He
then shows that this is possible under some restrictions on the probabilistic
automaton, and concludes the section by stating that “an example due to R.
E. Stearns shows that without assumptions, a computational procedure need not
exist”. The example is not given, and to the best of the author’s knowledge, has
never been published anywhere.

114 N. Fijalkow

In this section, we substantiate this claim, in the framework of online space
complexity as we defined it. Note that the formalisation of Rabin’s claim is
subject to discussions, as for instance Rabin asks whether the acceptance prob-
ability can be computed up to a given precision; in our setting, the acceptance
probability is not actually computed, but only compared to a fixed threshold,
following Rabin’s definition of probabilistic languages.

The following result shows that there exists a probabilistic automaton defin-
ing a language of maximal (exponential) online space complexity.

Theorem 3. There exists a probabilistic automaton A such that L> 1
2 (A) has

exponential online space complexity.

q0 q1

1, 1
2

0, 1
2

�

1, 1
2 1

0 0, 1
2

Fig. 1. The initial state is marked by an ingoing arrow and the accepting state by an
outgoing arrow. The first symbol over a transition is a letter (either 0, 1, or �). The
second symbol (if given) is the probability of this transition. If there is only one symbol,
then the probability of the transition is 1.

In the original paper introducing probabilistic automata, Rabin [7] gave an
example of a probabilistic automaton A computing the binary decomposition
function (over the alphabet {0, 1}), denoted bin, i.e. PA(u) = bin(u), defined by

bin(a1 . . . an) =
a1

2n
+ · · · +

an

21

(i.e. 0.an . . . a1 in binary). We show that adding one letter and one transition to
this probabilistic automaton gives an automaton with exponential online space
complexity. This example appeared in [2].

The automaton A is represented in Fig. 1. The alphabet is A = {0, 1, �}. The
only difference between the automaton proposed by Rabin [7] and this one is the
transition over � from q1 to q0. As observed by Rabin, a simple induction shows
that for u in {0, 1}∗, we have PA(u) = bin(u).

Let w ∈ A∗, it decomposes uniquely into w = u1�u2� · · · �uk, where ui ∈
{0, 1}∗. Observe that PA(w) = bin(u1) · bin(u2) · · · bin(uk).

Consider a machine recognising L> 1
2 (A) and fix n. The binary decomposition

function maps words of length n to rationals of the form a
2n , for 0 ≤ a < 2n.

Consider two words u and v in {0, 1}∗ of length n, we show that (u1)−1L> 1
2 (A) �=

(v1)−1L> 1
2 (A).

The Online Space Complexity of Probabilistic Languages 115

Without loss of generality assume bin(u1) < bin(v1); observe that 1
2 ≤

bin(u1) < bin(v1). There exists w in {0, 1}∗ such that bin(u1) · bin(w) <
1
2 and bin(v1) · bin(w) > 1

2 : it suffices to choose w such that bin(w) is in(
1

2bin(v1) ,
1

2bin(u1)

)
, which exists by density of the dyadic numbers in (0, 1). Thus,

(u1)−1L> 1
2 (A) �= (v1)−1L> 1

2 (A), and we exhibited exponential many words hav-
ing pairwise distinct left quotients. It follows from Theorem 2 that L> 1

2 (A) has
exponential online space complexity.

4 Conclusion

We introduced a new complexity measure called the online space complexity,
quantifying how hard it is to solve a problem when the input is given in an
online fashion, focusing on the space consumption.

We considered the online space complexity of probabilistic automata, as
hinted by Rabin in [7], and showed that probabilistic automata give rise to
languages of high (maximal) online space complexity.

We mention some directions for future research about online space
complexity.

The first is to give characterisations of the natural online space complexity
classes (linear, quadratic, polynomial). Such characterisations could be in terms
of logics, as it is done in descriptive complexity, or algebraic, as it is done in the
automata theory. The canonical example is languages of constant online space
complexity, which are exactly regular languages, defined by monadic second-
order logic.

A second direction would be to extend the framework of online space com-
plexity to quantitative queries. Indeed, we defined here the online space com-
plexity of a language, i.e. of qualitative queries: a word is either inside, or outside
the language.

A third intriguing question is the existence of a dichotomy for the online
space complexity of probabilistic automata. Is the following conjecture true: for
every probabilistic language, its online space complexity is either polynomial or
exponential?

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: STOC 1996, pp. 20–29 (1996). http://doi.acm.org/10.1145/
237814.237823

2. Fijalkow, N., Skrzypczak, M.: Irregular behaviours for probabilistic automata. In:
RP 2015, pp. 33–36 (2015)

3. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci. 31(2), 182–209 (1985). http://dx.doi.org/
10.1016/0022-0000(85)90041-8

4. Karp, R.M.: On-line algorithms versus off-line algorithms: how much is it worth to
know the future? In: IFIP 1992, pp. 416–429 (1992)

http://doi.acm.org/10.1145/237814.237823
http://doi.acm.org/10.1145/237814.237823
http://dx.doi.org/10.1016/0022-0000(85)90041-8
http://dx.doi.org/10.1016/0022-0000(85)90041-8

116 N. Fijalkow

5. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Com-
put. Sci. 12, 315–323 (1980). http://dx.doi.org/10.1016/0304-3975(80)90061-4

6. Patnaik, S., Immerman, N.: Dyn-FO: A parallel, dynamic complexity class. In:
PODS 1994, pp. 210–221 (1994). http://doi.acm.org/10.1145/182591.182614

7. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963).
http://dx.doi.org/10.1016/S0019-9958(63)90290-0

8. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985). http://doi.acm.org/10.1145/2786.2793

http://dx.doi.org/10.1016/0304-3975(80)90061-4
http://doi.acm.org/10.1145/182591.182614
http://dx.doi.org/10.1016/S0019-9958(63)90290-0
http://doi.acm.org/10.1145/2786.2793

	The Online Space Complexity of Probabilistic Languages
	1 The Online Space Complexity
	1.1 Definitions
	1.2 Related Works

	2 Preliminary Results
	2.1 Remarks and Examples
	2.2 Lower Bounds Using Formal Language Theory
	2.3 Lower Bounds Using Communication Complexity
	2.4 Comparison to Circuit Complexity

	3 The Online Space Complexity of Probabilistic Automata
	3.1 Probabilistic Automata
	3.2 Substantiating the Claim

	4 Conclusion
	References

