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Abstract. Full Intuitionistic Linear Logic (FILL) was first introduced
by Hyland and de Paiva, and went against current beliefs that it was not
possible to incorporate all of the linear connectives, e.g. tensor, par, and
implication, into an intuitionistic linear logic. It was shown that their
formalization of FILL did not enjoy cut-elimination by Bierman, but
Bellin proposed a change to the definition of FILL in the hope to regain
cut-elimination. In this note we adopt Bellin’s proposed change and give a
direct proof of cut-elimination. Then we show that a categorical model of
FILL in the basic dialectica category is also a LNL model of Benton and
a full tensor model of Melliès’ and Tabareau’s tensorial logic. Lastly, we
give a double-negation translation of linear logic into FILL that explicitly
uses par in addition to tensor.
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1 Introduction

A commonly held belief during the early history of linear logic was that the
linear-connective par could not be incorporated into an intuitionistic linear logic.
This belief was challenged when de Paiva gave a categorical understanding of
Gödel’s Dialectica interpretation in terms of dialectica categories [8,9].

Dialectica categories were initially believed to be models of intuitionistic
logic, but they are actually models of intuitionistic linear logic, containing the
linear connectives: tensor, implication, the additives, and the exponentials. Fur-
ther work improved de Paiva’s models to capture both intuitionistic and classical
linear logic. Armed with this semantic insight de Paiva gave the first formaliza-
tion of Full Intuitionistic Linear Logic (FILL) [8]. FILL is a sequent calculus
with multiple conclusions in addition to multiple hypotheses. Logics of this type
go back to Gentzen’s work on the sequent calculus for classical logic LK and for
intuitionistic logic LJ, and Maehara’s work on LJ’ [16,24]. The sequents in these
types of logics usually have the form Γ � Δ where Γ and Δ are multisets of
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formulas. Sequents such as these are read as “the conjunction of the formulas in
Γ imply the disjunction of the formulas in Δ”. For a brief, but more complete
history of logics with multiple conclusions see the introduction to [11].

Gentzen showed that to obtain intuitionistic logic one could start with the
logic LK and then place a cardinality restriction on the right-hand side of
sequents, however, this is not the only means of enforcing intuitionism.
Maehara showed that in the propositional case one could simply place the cardi-
nality restriction on the premise of the implication right rule, and leave all of the
other rules of LK unrestricted. This restriction is sometimes called the Dragalin
restriction, as it appeared in his AMS textbook [12]. The classical implication
right rule has the form:

Γ,A � B ,Δ

Γ � A � B ,Δ
impR

By placing the Dragalin restriction on the previous rule we obtain:

Γ,A � B
Γ � A � B

impR

de Paiva’s first formalization of FILL used the Dragalin restriction, see [8] p.
58, but Schellinx showed that this restriction has the unfortunate consequence
of breaking cut-elimination [22].

Later, Hyland and de Paiva gave an alternative formalization of FILL with
the intention of regaining cut-elimination [13]. This new formalization lifted the
Dragalin restriction by decorating sequents with a term assignment. Hypotheses
were assigned variables, and the conclusions were assigned terms. Then using
these terms one can track the use of hypotheses throughout a derivation. They
proposed a new implication right rule:

Γ, x : A � t : B ,Δ x �∈ FV(Δ)
Γ � λx .t : A � B ,Δ

impR

Intuitionism is enforced in this rule by requiring that the variable being dis-
charged, x, is not free terms annotating other conclusions. Unfortunately, this
formalization did not enjoy cut-elimination either.

Bierman was able to give a counterexample to cut-elimination [4]. As Bierman
explains the problem was with the left rule for the multiplicative disjunction par.
The original rule was as follows:

Γ, x : A � Δ Γ ′, y : B � Δ′

Γ, Γ ′, z : A

&

B � let z be (x

&−) inΔ | let z be (− &

y) inΔ′ parL

In this rule the pattern variables x and y are bound in each term of Δ and Δ′

respectively. Notice that the variable z becomes free in every term in Δ and
Δ′. Bierman showed that this rule mixed with the restriction on implication
right prevents the usual cut-elimination step that commutes cut with the left
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rule for par. The main idea behind the counterexample is that in the derivation
before commuting the cut it is possible to discharge z using implication right,
but after the cut is commuted past the left rule for par, the variable z becomes
free in more than one conclusion, and thus, can no longer be discharged.

In the conclusion of Bierman’s note he gives an alternate left rule for par
that he attributes to Bellin. This new left-rule is as follows:

Γ, x : A � Δ Γ ′, y : B � Δ′

Γ, Γ ′, z : A

&

B � let-pat z (x

&−)Δ | let-pat z (− &

y)Δ′ Parl

In this rule let-pat z (x

&−) t and let-pat z (− &

y) t ′ only let-bind z in t or t′ if
x ∈ FV (t) or y ∈ FV (t′). Otherwise the terms are left unaltered. Bellin showed
that by adopting this rule cut-elimination can be proven by reduction to the
cut-elimination procedure for proof nets for multiplicative linear logic with the
mix rule [1]. However, this is an indirect proof that requires the adoption of
proof nets.

Contributions. In this paper our main contribution is to give a direct proof of
cut-elimination for FILL with Bellin’s proposed par-left rule (Sect. 3). A direct
proof accomplishes two goals: the first is to complete the picture of FILL Hyland
and de Paiva started, and the second is to view a direct proof of cut-elimination
as a means of checking the correctness of the formulation of FILL given here. The
latter point is important for future work. Following the proof of cut-elimination
we show that the categorical model of FILL called Dial2(Sets), the basic dialec-
tica category, is also a linear/non-linear model of Benton (Sect. 4) and a full
tensor model of Melliès’ and Tabareau’s tensor logic (Sect. 5). Finally, we give a
double-negation translation of multi-conclusion classical linear logic into FILL
(Sect. 5.1). Due to the complexities of working in Dial2(Sets) we have formalized
all of the constructions and proofs used in Sects. 4 and 5 – although our formal
verification does not include the double-negation translation in Sect. 5.1 – in the
Agda proof assistant1.

Related Work. The first formalization of FILL with cut-elimination was due
to Braüner and de Paiva [5]. Their formalization can be seen as a linear version
of LK with a sophisticated meta-level dependency tracking system. A proof of a
FILL sequent in their formalization amounts to a classical derivation, π, invariant
in what they call the FILL property:

– The hypothesis discharged by an application of the implication right rule in
π is a dependency of the conclusion of the implication being introduced.

They were able to show that their formalization is sound, complete, and enjoys
cut-elimination. In favor of the term assignment formalization given here over
Braüner and de Paiva’s formalization we can say that the dependency tracking
system complicates both the definition of the logic and its use. However, one
might conjecture that their system is more fundamental and hence more gener-
alizable. It might be possible to prove cut-elimination of the term assignment
1 The Agda development can be found at https://github.com/heades/cut-fill-agda.

https://github.com/heades/cut-fill-agda
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formalization of FILL relative to Braüner and de Paiva’s dependency tracking
system by erasing the terms on conclusions and then tracking which variable
is free in which conclusion. However, as we stated above a direct proof is more
desirable than a relative one.

de Paiva and Pereira used annotations on the sequents of LK to arrive at full
intuitionistic logic (FIL) with multiple conclusion that enjoys cut-elimination
[11]. They annotate hypothesis with natural number indices, and conclusions
with finite sets of indices. The sets of indices on conclusions correspond to the
collection of the hypotheses that the conclusion depends on. Then they have
a similar property to that of Braüner and de Paiva’s formalization. In fact,
the dependency tracking system is very similar to this formalization, but the
dependency tracking has been collapsed into the object language instead of being
at the meta-level.

Clouston et al. give both a deep inference calculus and a display calculus for
FILL that admits cut-elimination [6]. Both of these systems are refinements of
a larger one called bi-intuitionistic linear logic (BiLL). This logic contains every
logical connective of FILL with the addition of the exclusion (or subtraction)
connective. This connective can be defined categorically as the left-adjoint to
par. Thus, exclusion is the dual to implication. A positive aspect to this work is
that the resulting systems are annotation free, but at a price of complexity. Deep
inference and display calculi are harder to understand, and their system requires
FILL to be defined as a refinement of a system with additional connectives.
We show in this paper that such a refinement is unnecessary. In addition, a
term assignment system is closer to traditional logic than deep inference and
display calculi, and it is closer, through the lens of the Curry-Howard-Lambek
correspondence, to a type theoretic understanding of FILL.

2 Full Intuitionistic Linear Logic (FILL)

In this section we give a brief description of FILL. We first give the syntax of
formulas, patterns, terms, and contexts. Following the syntax we define several
meta-functions that will be used when defining the inference rules of the logic.

Definition 1. The syntax for FILL is as follows:

(Formulas) A,B ,C ,D ,E :: = � |⊥| A � B | A ⊗ B | A &

B
(Patterns) p:: = ∗ | − | x | p1 ⊗ p2 | p1 &

p2
(Terms) t , e:: = x | ∗ | ◦ | t1 ⊗ t2 | t1 &

t2 | λx .t | let t be p in e | t1 t2
(Left Contexts) Γ :: = · | x : A | Γ1, Γ2

(Right Contexts) Δ:: = · | t : A | Δ1,Δ2

The formulas of FILL are standard, but we denote the unit of tensor as �
and the unit of par as ⊥. Patterns are used to distinguish between the various
let-expressions for tensor, par, and their units. There are three different let-
expressions:
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Tensor:
let t be p1 ⊗ p2 in e

Par:
let t be p1

&

p2 in e
Tensor Unit:
let t be ∗ in e

In addition, each of these will have their own equational rules, see Fig. 2. The
role each term plays in the overall logic will become clear after we introduce the
inference rules.

At this point we introduce some syntax and meta-level functions that will be
used in the definition of the inference rules for FILL. Left contexts are multisets
of formulas each labeled with a variable, and right contexts are multisets of
formulas each labeled with a term. We will often write Δ1 | Δ2 as syntactic
sugar for Δ1,Δ2. The former should be read as “Δ1 or Δ2.” We denote the
usual capture-avoiding substitution by [t/x ]t ′, and its straightforward extension
to right contexts as [t/x ]Δ. Similarly, we find it convenient to be able to do this
style of extension for the let-binding as well.

Definition 2. We extend let-binding terms to right contexts as follows:

let t be p in · = ·
let t be p in (t ′ : A) = (let t be p in t ′) : A
let t be p in (Δ1 | Δ2) = (let t be p inΔ1) | (let t be p inΔ2)

Lastly, we denote the usual function that computes the set of free variables in a
term by FV(t), and its straightforward extension to right contexts as FV(Δ).

Fig. 1. Inference rules for FILL

The inference rules for FILL are defined in Fig. 1. The Parl rule depends on
the function let-pat z p Δ which we define next.
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Definition 3. The function let-pat z p t is defined as follows:

let-pat z (x

&−) t = t
where x �∈ FV(t)

let-pat z (− &

y) t = t
where y �∈ FV(t)

let-pat z p t = let z be p in t

It is straightforward to extend the previous definition to right-contexts, and we
denote this extension by let-pat z p Δ.

The motivation behind this function is that it only binds the pattern variables
in x

&− and − &

y if and only if those pattern variables are free in the body of
the let. This overcomes the counterexample given by Bierman in [4].

The terms of FILL are equipped with an equivalence relation defined in
Fig. 2. There are a number of α, β, and η like rules as well as several rules we
call naturality rules. These rules are similar to the rules presented in [13].

Fig. 2. Equivalence on terms
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3 Cut-Elimination

FILL can be viewed from two different angles: i. as an intuitionistic linear logic
with par, or ii. as a restricted form of classical linear logic. Thus, to prove cut-
elimination of FILL one only needs to start with the cut-elimination procedure
for intuitionistic linear logic, and then dualize all of the steps in the procedure
for tensor and its unit to obtain the steps for par and its unit. Similarly, one
could just as easily start with the cut-elimination procedure for classical linear
logic, and then apply the restriction on the implication right rule producing a
cut-elimination procedure for FILL.

The major difference between proving cut-elimination of FILL from classical
or intuitionistic linear logic is that we must prove an invariant across each step
in the procedure. The invariant is that if a derivation π is transformed into a
derivation π′, then the terms in the conclusion of the final rule applied in π
must be transformable, when the equivalences defined in Fig. 2 are taken as left-
to-right rewrite rules, into the terms in the conclusion of the final rule applied
in π′.

We finally arrive at cut-elimination.

Theorem 1. If Γ � t1 : A1, ... , ti : Ai steps to Γ � t ′
1 : A1, ... , t ′

i : Ai using the
cut-elimination procedure, then tj = t ′

j for 1 ≤ j ≤ i.

Proof. The cut-elimination procedure given here is the standard cut-elimination
procedure for classical linear logic except the cases involving the implication
right rule have the FILL restriction. The structure of our procedure follows the
structure of the procedure found in [17]. Throughout this proof we treat the
equivalences defined in Fig. 2 as left-to-right rewrite rules. For the entire proof
see the companion report [14].

Corollary 1 (Cut-Elimination). Cut-elimination holds for FILL.

4 Full LNL Models

One of the difficult questions considering the categorical models of linear logic
was how to model Girard’s exponential, !, which is read “of course”. The ! modal-
ity can be used to translate intuitionistic logic into intuitionistic linear logic, and
so the correct categorical interpretation of ! should involve a relationship between
a cartesian closed category, and the model of intuitionistic linear logic.

de Paiva gave some of the first categorical models of both classical and intu-
itionistic linear logic in her thesis [8]. She showed that a particular dialectica cat-
egory called Dial2(Sets) is a model of FILL where ! is interpreted as a comonad
which produces natural comonoids, see page 76 of [8].

Definition 4. The category Dial2(Sets) consists of

– objects that are triples, A = (U,X,α), where U and X are sets, and α ⊆ U×X
is a relation, and
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– maps that are pairs (f, F ) : (U,X,α) → (V, Y, β) where f : U → V and
F : Y → X such that

• For any u ∈ U and y ∈ Y , α(u, F (y)) implies β(f(u), y).

Suppose A = (U,X,α), B = (V, Y, β), and C = (W,Z, γ). Then identities are
given by (idU , idX) : A → A. The composition of the maps (f, F ) : A → B and
(g,G) : B → C is defined as (f ; g,G;F ) : A → C.

In her thesis de Paiva defines a particular class of dialectica categories called
GC over a base category C, see page 41 of [8]. The category Dial2(Sets) defined
above can be seen as an instantiation of GC by setting C to be the category
Sets of sets and functions between them. This model is a non-trivial model (all
four units of the multiplicative and additive disjunction are different objects in
the category), and does not model classical logic; see [8] page 58.

Seely gave a different, syntactic categorical model that confirmed that the
of-course exponential should be modeled by a comonad [23]. However, Seely’s
model turned out to be unsound, as pointed out by Bierman [3]. This then
prompted Bierman, Hyland, de Paiva, and Benton to define another categorical
model called linear categories (Definition 5) that are sound, and also model !
using a monoidal comonad [3].

Definition 5. A linear category, L, consists of:

– A symmetric monoidal closed category L,
– A symmetric monoidal comonad (!, ε, δ,mA,B ,mI) such that

• For every free !-coalgebra (!A, δA) there are two distinguished monoidal
natural transformations eA :!A → I and dA :!A →!A⊗!A which form a
commutative comonoid and are coalgebra morphisms.

• If f : (!A, δA) → (!B, δB) is a coalgebra morphism between free coalgebras,
then it is also a comonoid morphism.

This definition is the one given by Bierman in his thesis, see [3] for full defini-
tions.

Intuitionistic logic can be interpreted in a linear category as a full subcategory
of the category of !-coalgebras for the comonad, see proposition 17 of [3].

Benton gave a more balanced view of linear categories called LNL models.

Definition 6. A linear/non-linear model (LNL model) consists of

– a cartesian closed category (C, 1,×,⇒),
– a SMCC (L, I,⊗,�), and
– a pair of symmetric monoidal functors (G,n) : L → C and (F,m) : C → L

between them that form a symmetric monoidal adjunction with F � G.

See Benton, [2], for the definitions of symmetric monoidal functors and adjunc-
tions.
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A non-trivial consequence of the definition of a LNL model is that the ! modality
can indeed be interpreted as a monoidal comonad. Suppose (L, C, F,G) is a LNL
model. Then the comonad is given by (!, ε : ! → Id, δ : ! → !!) where ! = FG, ε is
the counit of the adjunction and δ is the natural transformation δA = F (ηG(A)),
see page 15 of [2]. We recall the following result from Benton [2]:

Theorem 2 (LNL Models and Linear Categories)

i. (Sect. 2.2.1 of [2]) Every LNL model is a linear category.
ii. (Sect. 2.2.2 of [2]) Every linear category is a LNL model.

Proof. The proof of part i. is a matter of checking that each part of the definition
of a linear category can be constructed using the definition of a LNL model. See
lemmata 3–7 of [2].

As for the proof of part ii. Given a linear category we have a SMCC and
so the difficulty of proving this result is constructing the CCC and the adjunc-
tion between both parts of the model. Suppose L is a linear category. Benton
constructs the CCC out of the full subcategory of Eilenberg-Moore category
L! whose objects are exponentiable coalgebras denoted Exp(L!). He shows that
this subcategory is cartesian closed, and contains the (co)Kleisli category, L!,
Lemma 11 on page 23 of [2]. The required adjunction F : Exp(L!) → L : G can
be defined using the adjunct functors F (A, hA) = A and G(A) = (!A, δA), see
lemmata 13–16 of [2].

Next we show that the category Dial2(Sets) is a full version of a linear cate-
gory. First, we extend the definitions of linear categories and LNL models to be
equipped with the necessary categorical structure to model par and its unit.

Definition 7. A full linear category, L, consists of a linear category
(L,�,⊗,�, !A, eA, dA), a symmetric monoidal structure on L, (⊥,

&

), and
distribution natural transformations dist1:A ⊗ (B

&

C) → (A ⊗ B)

&

C and
dist2:(A

&

B) ⊗ C → A

&

(B ⊗ C). The distributors must satisfy several coher-
ence conditions which can all be found in [7].

Definition 8. A full linear/non-linear model (full LNL model) consists
of a LNL model (L, C, F,G), and a symmetric monoidal structure on L, (⊥,

&

),
as above.

First we show that Dial2(Sets) is a full linear category, and then using the proof
by Benton that linear categories are LNL models we obtain that Dial2(Sets) is
a full LNL model. In order for this to work we need to know that Dial2(Sets)
has a symmetric monoidal comonad (!, ε, δ,mA,B ,mI). At the time of de Paiva’s
thesis it was not known that the comonad modeling the of-course exponential
needed to be monoidal. We were able to show that the maps mA,B and mI exist
in the more general setting of dialectica categories, and thus, these maps exist
in Dial2(Sets). Intuitively, given two objects A = (X,U, α) and B = (V, Y, β) of
Dial2(Sets) the map mA,B is defined as the pair (idU×V , F ), where F = (F1, F2),
F1 : (U ×V ) ⇒ (V ⇒ X)∗ → V ⇒ (U ⇒ X∗) and F2 : (U ×V ) ⇒ (U ⇒ Y )∗ →
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U ⇒ (V ⇒ Y ∗). The maps F1 and F2 build the sequence of all the results of
applying each function in the input sequence to the input coordinate.

We can now show that the following holds.

Lemma 1. The category Dial2(Sets) is a full linear category.

Proof. We only give a sketch of the proof here, but for the full details see that
companion report [14]2. First, we must show that Dial2(Sets) is a linear category.
The majority of the linear structure of Dial2(Sets) is in de Paiva’s thesis [8]. We
had to extend her definitions to show that the comonad (!A, δ, ε) is monoidal,
however, this is straightforward.

After showing that Dial2(Sets) is a linear category one must show that
Dial2(Sets) is a model of par and its unit. This easily follows from de Paiva’s
thesis. The bifunctor which models par is given by de Paiva in Definition 10 on
page 47 of [8].

Finally, Dial2(Sets) must be distributive. The natural transformations dist1
and dist2 can be defined in terms of the maps k : (A ⊗ A′) ⊗ (B

&

C) → (A ⊗
B)

&

(A′ ⊗ C) and k′:(A

&

B) ⊗ (C ⊗ C ′) → (A ⊗ C)

&

(B ⊗ C ′) given on page 52
of [8]. Set A′ = � in k and C = � in k′ to obtain dist1 and dist2 respectively.
They can also be shown to satisfy the coherence conditions given in [7].

Corollary 2. The category Dial2(Sets) is a full LNL model.

Proof. This follows directly from the previous lemma and Theorem 2 which
shows that linear categories are LNL models.

The point of these calculations is to show that the several different axiomatiza-
tions available for models for linear logic are consistent and that a model proved
sound and complete according to Seely’s definition (using the Seely isomorphisms
!(A × B) ∼=!A⊗!B and !1 ∼= � but adding to it monoidicicty of the comonad) is
indeed sound and complete as a LNL model too.

5 Tensorial Logic

Melliès and Tabareau introduced tensorial logic as a means of generalizing lin-
ear logic to a theory of tensor and a non-involutive negation called tensorial
negation. That is, instead of an isomorphism A = ¬¬A we have only a natural
transformation A → ¬¬A [18]. Tensorial logic makes the claim that tensor and
tensorial negation are more fundamental than tensor and negation defined via
implication. This is at odds with FILL where implication is considered to be
fundamental. In this section we show that multiplicative tensorial logic can be
modeled by Dial2(Sets) (Lemma 3) by showing that tensorial negation arises as
a simple property of the implication in any SMCC (Lemma 2). While this is
expected (after all negation being defined in terms of implication into absurdity

2 This proof was formalized in the Agda proof assistant see the file https://github.
com/heades/cut-fill-agda/blob/master/FullLinCat.agda.

https://github.com/heades/cut-fill-agda/blob/master/FullLinCat.agda
https://github.com/heades/cut-fill-agda/blob/master/FullLinCat.agda
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is one of the staples of intuitionism) we think it bolsters our claim that linear
implication is a fundamental connective that should not be redefined in terms of
the multiplicative disjunction par. In any case, any model of FILL can be seen
as a model of multiplicative tensorial logic.

A categorical model of tensorial logic is a symmetric monoidal category with
a tensorial negation.

Definition 9. A tensorial negation on a symmetric monoidal category (C,⊗, I)
is defined as a functor ¬ : C → Cop together with a family of bijections φA,B,C :
HomC(A ⊗ B,¬C) ∼= HomC(A,¬(B ⊗ C)) natural in A, B, and C. Furthermore,
the following diagram must commute:

The most basic form of tensorial logic is called multiplicative tensorial logic and
only consists of tensor and a tensorial negation. The model of multiplicative
tensorial logic is called a dialogue category.

Definition 10. A dialogue category is a symmetric monoidal category
equipped with a tensorial negation.

At this point we show that tensorial negation arises as a simple property of
implication, as is traditional.

Lemma 2. In any monoidal closed category, C, there is a natural bijection
φA,B,C,D : HomC(A ⊗ B,C � D) ∼= HomC(A, (B ⊗ C) � D). Furthermore,
the following diagram commutes:

Proof. Suppose C is a monoidal closed category. Then we can define φ(f : A ⊗
B → C � D) = cur(α−1; cur−1(f)) and φ−1(g : A → (B ⊗ C) � D) =
cur(α; cur−1(g)). Clearly, these are mutual inverses, and hence, φ is a bijection.
Naturality of φ easily follows. Lastly, the diagram given above also commutes.
For the complete proof see the companion report [14].
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Any model of FILL contains the unit of par, ⊥, and thus, can be used to define
the negation function ¬A := A �⊥. Now replacing D and E in the previous
result with ⊥ yields the definition of tensorial negation.

Lemma 3. Dial2(Sets) is a model of multiplicative tensorial logic.

Proof. We have already shown Dial2(Sets) to be a model of FILL, and thus, has
a SMCC structure as well as the negation functor, and thus, by Lemma 2 has a
tensorial negation3.

Extending a model of multiplicative tensorial logic with an exponential
resource modality yields a model of full tensorial logic.

Definition 11. A resource modality on a symmetric monoidal category
(C,⊗, I) is an adjunction with a symmetric monoidal category (M,⊗′, I ′):

A resource modality is called an exponential resource modality if M is carte-
sian where ⊗′ is the product and I ′ is the terminal object.

A model of full tensorial logic is defined to be a model of multiplicative tensorial
logic with an exponential resource modality. We now know that Dial2(Sets) is a
model of multiplicative tensorial logic. By constructing the co-Kleisli category
which consists of the !-coalgebras as objects, and happens to be cartesian, we
can show that Dial2(Sets) is a model of full tensorial logic. The adjunction with
the co-Kleisli category naturally arises from the proof that Dial2(Sets) is a full
LNL model (Corollary 2).

Lemma 4. The category Dial2(Sets) is a model of full tensorial logic.

Proof. It suffices to show that there is an adjunction between Dial2(Sets) and a
cartesian category. Define the category Dial2(Sets)! as follows:

– Take as objects (U, (U ⇒ X∗), α!) where U and X are sets, and α ⊆ U ×(U ⇒
X∗).

– Take as morphisms (f, F ) : (U, (U ⇒ X∗), α!) → (V, (V ⇒ Y ∗), β!) where
f : U → V and F : (V ⇒ Y ∗) → (U ⇒ X∗) subject to the same condition on
morphisms as Dial2(Sets). Composition and identities are defined similarly to
Dial2(Sets).

Next we must show that Dial2(Sets)! is cartesian. Notice that Dial2(Sets)! is
a subcategory of Dial2(Sets), and there is a functor J : Dial2(Sets) → Dial2(Sets)!
which is defined equivalently to the endofunctor ! from the proof of Lemma 1.
3 We give a full proof in the formalization see the file https://github.com/heades/

cut-fill-agda/blob/master/Tensorial.agda.

https://github.com/heades/cut-fill-agda/blob/master/Tensorial.agda
https://github.com/heades/cut-fill-agda/blob/master/Tensorial.agda
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In fact, Dial2(Sets)! is the co-Kleisli category with objects free !-coalgebras and
is cartesian closed [9]. However, we only need the fact that it is cartesian.

To show that Dial2(Sets)! is cartesian it suffices to show that J preserves the
cartesian structure of Dial2(Sets) – the proof that Dial2(Sets) is cartesian can
be found on page 48 of [8]. This follows by straightforward reasoning. For the
complete proof see the companion report [14].

5.1 Double Negation Translation

In this section we show that we can use intuitionistic negation – which we showed
was tensorial in the previous section – to define a negative translation of multi-
conclusion linear logic (Fig. 3) into FILL where implication plays a central role.
Melliès and Tabareau give a negative translation of the multiplicative fragment
of linear logic into tensorial logic [19] using tensor as the main connective. For
example, they define (A ⊗ B)N = ¬(¬(A)N ⊗ ¬(B)N ), and thus, they simulate
par using tensor and negation. This definition would cause some syntactic issues
with FILL, because the left-rule to par requires the let-pattern term defined in
Definition 3, thus, encoding par in terms of tensor would require the let-pattern
term to be used in the left-rule for tensor. While simulating par, using tensor and
negation, can be seen as useful, in applications where only the tensor product can
be actually calculated, in other applications we do have an extra bifunctor like
par. This is true in the case of FILL, so we can modify Melliès and Tabareau’s
translation into one that better fits the source logical system.

Fig. 3. Multi-Conclusion Linear Logic

The following definition defines a translation of linear logic formulas into
FILL formulas.
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Definition 12. The following is the double-negation translation of linear logic
into FILL:

(�)N = �
(⊥)N = ⊥
(A⊥)N = ¬((A)N )
(A

&

B)N = ¬¬((A)N )

&¬¬((B)N )
(A ⊗ B)N = ¬¬((A)N ) ⊗ ¬¬((B)N )

The main point of the previous definition is that because FILL has intuition-
istic versions of all of the operators of linear logic we can give a very natural
translation that preserves these operators by double negating their arguments.

At this point we need to extend the translation of linear logic formulas to
sequents. However, we must be careful, because in FILL implication has the
FILL restriction, and thus, if we choose the wrong translation then we will run
into problems trying to satisfy the FILL condition. The method we employ here
is to first translate a linear logic sequent into a single-sided sequent, and then
translate that to FILL using the well-known translation. That is, it is easy to
see that any linear logic sequent A1, ... ,Ai � B1, ... ,Bj is logically equivalent
to the sequent · � A1

⊥, ... ,Ai
⊥,B1, ... ,Bj . Then we translate the latter into

FILL as x1 : ¬((A1
⊥)N ), ... , xi : ¬((Ai

⊥)N ), y1 : ¬((B1)N ), ... , yj : ¬((Bj )N ) � ·
for any free variables x1, . . . , xi and y1, . . . , yj , but this is equivalent to x1 :
¬¬((A1)N ), ... , xi : ¬¬((Ai)N ), y1 : ¬((B1)N ), ... , yj : ¬((Bj )N ) � ·. The reader
may realize that this is indeed the translation of single-sided classical linear logic
into single-conclusion intuitionistic linear logic. This translation also has the
benefit that we do not have to worry about mentioning terms in the statement
of the result.

Lemma 5 (Negative Translation). If A1, ... ,Ai � B1, ... ,Bj is derivable,
then for any unique fresh variables x1, . . . , xi , and y1, . . . , yj , the sequent x1 :
¬¬((A1)N ), ... , xi : ¬¬((Ai)N ), y1 : ¬((B1)N ), ... , yj : ¬((Bj )N ) � · is derivable.

Proof. This can be shown by induction on the assumed sequent. For the complete
proof see the companion report [14].

6 Conclusion and Future Work

We first recalled the definition of full intuitionistic linear logic using the left rule
for par proposed by Bellin in Sect. 2, but using only proof-theoretic methods,
no proof nets. We then directly proved cut-elimination for FILL in Sect. 3 by
adapting the well-known cut-elimination procedure for classical linear logic to
FILL.

In Sect. 4 we showed that the category Dial2(Sets), a model of FILL, is a
full LNL model by showing that it is a full linear category, and then replaying
the proof that linear categories are LNL models by Benton. Then in Sect. 5 we
showed that Dial2(Sets) is a model of full tensorial logic. The point of this exercise
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in categorical logic is to show that, despite linear logicians infatuation with linear
negation, there is value in keeping all your connectives independent of each other.
Only making them definable in terms of others, for specific applications.

Games, especially programming language games are the main motivation for
Tensorial Logic and have been one of the sources of intuitions in linear logic all
along. Since we are interested in the applications of tensorial logic to concurrency,
we would like to see if our slightly more general framework can be applied to
this task, just as well as tensorial logic.

Independently of the envisaged applications to programming, we are also
interested in developing a “man in the street” game-like explanation for the finer-
grained connectives of FILL, especially for par, the multiplicative disjunction.
The second author has talked about games for FILL in the style of Lorenzen
[10], building up on the work of Rahman [15,21]. Rahman showed that Lorenzen
games could be defined for classical linear logic [20] and was able to define
a sound and complete semantics in Lorenzen games for classical linear logic.
While Rahman does mention that one could adopt a particular structural rule
that enforces intuitionism, we have not seen a complete proof of soundness and
completeness for this semantics. We plan to show that by adopting this rule we
actually obtain a sound and complete semantics in Lorenzen games for FILL.
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