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Abstract. We study the recognition problem in the metaprogramming
of finite normal predicate logic programs. That is, let L be a computable
first order predicate language with infinitely many constant symbols and
infinitely many n-ary predicate symbols and n-ary function symbols for
all n ≥ 1. Then we can effectively list all the finite normal predicate logic
programs Q0, Q1, . . . over L. Given some property P of finite normal
predicate logic programs over L, we define the index set IP to be the
set of indices e such that Qe has property P. Then we shall classify the
complexity of the index set IP within the arithmetic hierarchy for various
natural properties of finite predicate logic programs.
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1 Introduction

Past research has demonstrated that logic programming with the stable model
semantics and, more generally, answer-set semantics, is an expressive knowledge
representation formalism. It can be safely stated that there is a consensus in the
Knowledge Representation community that stable models are the correct gener-
alization of the least model of Horn program for the class of normal programs.
Although stable model semantics is considered the correct one, past research
has shown that the use of arbitrary normal logic programs admitting function
symbols is not a reasonable choice for real-life programming. For example, Apt
and Blair [2] proved that all arithmetic sets can be defined by using stratified
programs. The import is that in general, it is impossible to query the unique
stable model of such programs. Marek, Nerode, and Remmel [16,17] constructed
finite predicate logic programs whose stable models could code up the paths
through any infinitely branching recursive tree so that the problem of deciding
whether a finite predicate logic program has a stable model is Σ1

1 -complete.
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For such reasons, researchers have focused on finite predicate logic programs
without function symbols. There are a number of highly effective implemen-
tations of search engines to find stable models of finite normal predicate logic
programs [11,13,16,18].

Nevertheless, researchers have searched for some natural classes K of finite
normal predicate logic programs with function symbols where programming is
both useful and possible. Actually, it should be clear that finding such a class
K involves two tasks. (1) K needs to be processable. That is, given a program
P ∈ K, we need to have an algorithm that identifies one or more stable models of
P which can be effectively queried. That is, one can effectively answer questions
such as whether a given atom is in a given stable model of P or whether a given
atom is in all stable models of P . (2) K needs to be recognizable. That is, we need
to be able to answer the query whether a given program P belongs to K. For
instance, the class of stratified programs is recognizable (one of the fundamental
results of Apt, Blair and Walker [3]), but not processable. A number of classes K
of such programs which are both processable and recognizable have been found,
see [4–6,14,21]. In particular [5] provides an extensive discussion of the reasons
why researchers try to find classes of normal predicate logic programs admitting
function symbols which are both recognizable and processable.

The goal of this paper is develop a systematic approach the recognition prob-
lem for the class of finite normal predicate logic programs over a computable first
order predicate language L with infinitely many constant symbols and infinitely
many n-ary predicate symbols and n-ary function symbols for all n ≥ 1. Let
Q0, Q1, . . . be an effective list of all the finite normal predicate logic programs
over L. Given some property P of finite normal predicate logic programs over L,
we define the index set IP to be the set of indices e such that Qe has property
P. For example, suppose that P is the property that a finite normal predicate
logic program has a recursive stable model. Then the tools of this paper will
allow one to classify the complexity of IP within the arithmetic hierarchy. We
will show in [8] that IP is Σ0

3 -complete so that one can not effectively recognize
the set of finite predicate logic programs which have recursive stable models.

Our approach is to extend the work of Marek, Nerode, and Remmel in [16,17],
who showed that the problem of finding a stable of model of a recursive normal
propositional logic program is essentially equivalent to finding an infinite path
through an infinite recursive tree. That is, they showed that given any recursive
normal propositional logic program P , one could construct a recursive tree such
TP such that there is an effective one-to-one degree preserving correspondence
between the set of stable models of P and the set of infinite paths through
TP . Vice versa, given any recursive tree T , they constructed a recursive normal
propositional logic program PT such that there is an effective one-to-one degree
preserving correspondence between the set of stable models of PT and the set
of infinite paths through T . Such correspondences also helped to motivate the
definition of various natural properties of normal logic programs such as having
the finite support property or the recursive finite support property (described
below) since these properties correspond to natural properties of recursive trees
such as being finitely branching or being highly recursive. The main goal of
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this paper is to provide similar constructions when we replace recursive normal
propositional logic programs by finite normal predicate logic programs. This
requires us to significantly modify the original constructions in [17].

To define index sets for primitive recursive trees, we need some notation. Let
Σ ⊆ ω where ω = {0, 1, 2, . . . , }. Then Σ<ω denotes the set of finite strings of
letters from Σ and Σω denotes the set of infinite sequences of letters from Σ. If
σ = (σ1, . . . , σn) ∈ Σ<ω and a ∈ Σ, then we let σ�a = (σ1, . . . , σn, a). A tree T
over Σ is a set of finite strings from Σ<ω which contains the empty string ∅ and
is closed under initial segments. We say that τ ∈ T is an immediate successor
of a string σ ∈ T if τ = σ�a for some a ∈ Σ. One can easily assign Gödel
numbers to the elements of ω<ω. That is, we can effectively assign a unique code
c(σ) ∈ ω to each σ ∈ ω<ω such that we can effectively recover σ from c(σ).
We will identify T with the set of codes c(σ) for σ ∈ T . Thus we say that T is
primitive recursive, recursive, r.e., etc. if {c(σ) : σ ∈ T} is primitive recursive,
recursive, r.e., etc. If each node of T has finitely many immediate successors,
then T is said to be finitely branching. We say a tree T is highly recursive if
it is recursive and there is a recursive function f such that for any σ ∈ T ,
there are f(σ) immediate successors of σ. An infinite path through a tree T is a
sequence (x(0), x(1), . . .) such that (x(0), . . . x(n)) ∈ T for all n. Let [T ] be the
set of infinite paths through T and [T ]r denote the set of infinite recursive paths
through T . We let Ext(T ) denote the set of all σ ∈ T such that σ is an initial
segment of x for some x ∈ [T ]. We say that T is decidable if T is recursive and
Ext(T ) is recursive. We let T0, T1, . . . be an effective list of all primitive recursive
trees contained in ω<ω. It follows that [T0], [T1], . . . is an effective list of all Π0

1

classes, see [9]. Then for any property P of trees, we let TP denote the set of all
i such that Ti has property P.

Our main result is to show that we can modify the constructions of Marek,
Nerode, and Remmel [17] to construct recursive functions f and g such that
for all e, (i) there is a one-to-one degree preserving correspondence between the
set of stable models of Qe and the set of infinite paths through Tf(e) and (ii)
there is a one-to-one degree preserving correspondence between the set of infinite
paths through Te and the set of stable models Qg(e). One can often use these
two recursive functions to reduce the complexity of the index set IP for various
properties P of finite normal predicate logic programs to the complexity of the
index set TP′ for an appropriate property of P ′ of primitive recursive trees.
Actually, in practice, we take the reverse point of view. That is, we shall start
with TP′ and try to find an appropriate property P of finite normal predicate
logic programs such that TP′ and IP are one-to-one equivalent.

We shall consider the following natural properties of trees contained in ω<ω.
Suppose that g : ω<ω → ω. Then we say that

(I) T is g-bounded if for all σ and all integers i, σ�i ∈ T implies i < g(σ),
(II) T is almost always g-bounded if there is a finite set F ⊆ T of strings
such that for all strings σ ∈ T \ F and all integers i, σ�i ∈ T implies i < g(σ),
(III) T is nearly g-bounded if there is an n ≥ 0 such that for all strings σ ∈ T
with |σ| ≥ n and all integers i, σ�i ∈ T implies i < g(σ),
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(IV) T is bounded if it is g-bounded for some g : ω<ω → ω,
(V) T is almost always bounded (a.a.b.) if it is almost always g-bounded for
some g : ω<ω → ω,
(VI) T is nearly bounded if it is nearly g-bounded for some g : ω<ω → ω,
(VII) T is recursively bounded (r.b.) if T is g-bounded for some recursive
g : ω<ω → ω,
(VIII) T almost always recursively bounded (a.a.r.b.) if it is almost always
g-bounded for some recursive g : ω<ω → ω, and
(IX) T nearly recursively bounded (nearly r.b.) if it is nearly g-bounded for
some recursive g : ω<ω → ω.

For each of the properties P above, one can classify the index sets of the
set of primitive recursive trees T satisfying property P and one of the following
properties: [T ] ([T ]r) is empty, [T ] ([T ]r) is non-empty, [T ] ([T ]r) has cardinality
c (< c,≥ c) for some natural number c, [T ] ([T ]r) is finite, or [T ] ([T ]r) is infinite.

To be able to precisely state our results, we must briefly review the basic
concepts of recursion theory, normal logic programs and recursive trees.

We shall assume the reader is familiar with the basics of recursive and recur-
sively enumerable sets, Turing degrees, and the arithmetic hierarchy of Σ0

n and
Π0

n subsets of ω as well as Σ1
1 and Π1

1 sets; see Soare’s book [20]. We shall gen-
erally use the terminology recursive rather than the equivalent term computable
and likewise use recursively enumerable rather than computably enumerable. The
former terms are standard in the logic programming community, which is an
important audience for our paper. A subset A of ω is said to be Dm

n if it is the
set-difference of two Σm

n sets. A set A ⊆ ω is said to be an index set if for any a, b,
a ∈ A and φa = φb imply that b ∈ A where φ0, φ1, . . . is an effective list of all par-
tial recursive functions. For example, Fin = {a : Wa is finite} is an index set. We
are particularly interested in the complexity of such index sets. Recall that a sub-
set A of ω is said to be Σm

n -complete (respectively, Πm
n -complete, Dm

n -complete)
if A is Σm

n (respectively, Πm
n , Dm

n ) and any Σm
n (respectively, Πm

n , Dm
n ) set B

is many-one reducible to A. For example, the set Fin = {e : We is finite} is
Σ0

2 -complete.
Then, for example, Cenzer and Remmel [9] proved the following results:

(1) {e : Te is r.b. and[Te]is empty} is Σ0
2 -complete.

(2) {e : Te is r.b. and[Te]is nonempty} is Σ0
3 -complete.

(3) {e : Te is bounded and[Te]is empty} is Σ0
2 -complete.

(4) {e : Te is bounded and[Te]is nonempty} is Π0
3 -complete.

(5) {e : Te is a.a.r.b. and[Te]is nonempty} and
{e : Te is a.a.r.b. and[Te]is empty} are Σ0

3 -complete.
(6) {e : Te is a.a.b. and[Te]is nonempty} and
{e : Te is a.a.b. and[Te]is empty} are Σ0

4 -complete.
(8) {e : [Te] is nonempty} is Σ1

1 -complete and
{e : [Te] is empty} is Π1

1 -complete.

For any positive integer c,

(9) {e : Te is r.b. and Card([Te]) > c}, {e : Te is r.b. and Card([Te]) ≤ c}, and
{e : Te is r.b. and Card([Te]) = c} are all Σ0

3 -complete.
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(10) {e : Te is a.a.r.b. and Card([Te]) > c},
{e : Te is a.a.r.b. and Card([Te]) ≤ c}, and
{e : Te is a.a.r.b. and Card([Te]) = c} are all Σ0

3 -complete.
(11) {e : Te is bounded and Card([Te]) ≤ c} and
{e : Te is bounded and Card([Te]) = 1} are both Π0

3 -complete.
(12) {e : Te is bounded and Card([Te]) > c} and
{e : Te is bounded and Card([Te]) = c + 1} are both D0

3-complete.
(13) {e : Te is a.a.b. and Card([Te]) > c},
{e : Te is a.a. bounded and Card([Te]) ≤ c}, and
{e : Te is a.a. bounded and Card([Te]) = c} are all Σ0

4 -complete.
(14) {e : Te is r.b, decidable, and Card([Te]) > c},
{e : Te is r.b., dec. and Card([Te]) ≤ c}, and
{e : Te is r.b., dec. and Card([Te]) = c} are all Σ0

3 -complete.
(15) ({e : Card([Te]) > c}) is Σ1

1 -complete, {e : Card([Te]) ≤ c} is Π1
1 -complete

and {e : Card([Te]) = c} is Π1
1 -complete.

This is only a sample of the index set results that have been established
for primitive recursive trees. For example, there are similar results when one
replaces [Te] by [Te]r in each of these statements. For each of the properties Pr
in (I)-(IX) of trees, our goal is to find a corresponding property Pr′ of finite
normal predicate logic programs such that the complexity of the set of finite
normal predicate logic programs P satisfying property Pr′ refined by the cardi-
nality of the stable models (recursive stable models) of P has the corresponding
complexity of as the set of primitive recursive trees T satisfying property Pr
refined by the cardinality of the set of infinite paths (recursive infinite paths)
through T .

The outline of this paper is as follows. In Sect. 2, we shall define various
properties on finite normal predicate logic programs which correspond to the
properties (I)-(IX) described above. Many of the properties such as the finite
support property and the recursive finite support property which correspond to
bounded trees and recursively bounded trees have appeared in the literature.
However, other properties such as a program being decidable, which correspond
to decidable trees, are new. In Sect. 3, we shall state our main results. In Sect. 4,
we state a number of results which classify the complexity of IP for various
properties P of finite normal predicate logic programs.

2 Properties of Finite Normal Logic Programs

In this section, we give the necessary background on normal logic programs.
We shall fix a recursive language L which has infinitely many constant sym-

bols, infinitely many propositional letters, and infinitely many n-ary relation
symbols and n-ary function symbols for each n ≥ 1. A literal is an atomic for-
mula or its negation. A ground literal is a literal which has no free variables.
The Herbrand base of L is the set HL of all ground atoms (atomic statements)
of the language.
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A (normal) logic programming clause C is of the form

c ← a1, . . . , an,¬b1, . . . ,¬bm (1)

where c, a1, . . . , an, b1, . . . , bm are atoms of L. Here we allow either n or m to be
zero. In such a situation, we call c the conclusion of C, a1, . . . , an the premises
of C, b1, . . . , bn the constraints of C and a1, . . . , an,¬b1, . . . ,¬bm the body of C
and write concl(C) = c, prem(C) = {a1, . . . , an}, constr(C) = {b1, . . . , bm}.
A ground clause is a clause with no free variables. C is called a Horn clause if
constr(C) = ∅, i.e., if C has no negated atoms in its body.

A finite normal predicate logic program P is a finite set of clauses of the
form (1). P is said to be a Horn program if all its clauses are Horn clauses.
A ground instance of a clause C is a clause obtained by substituting ground
terms (terms without free variables) for all the free variables in C. The set of all
ground instances of the program P is called ground(P ). The Herbrand base of
P , H(P ), is the set of all ground atoms that are instances of atoms that appear
in P . For any set S, we let 2S denote the set of all subsets of S.

Given a Horn program P , we let TP : 2H(P ) → 2H(P ) be the one-step prov-
ability operator [15] associated with ground(P ). That is, for S ⊆ H(P ),

TP (S) = {c : ∃C∈ground(P )((C = c ← a1, . . . , an) ∧ (a1, . . . , an ∈ S))}.
Then P has a least model M = TP ↑ω (∅) =

⋃
n≥0 Tn

P (∅) where for any S ⊆
H(P ), T 0

P (S) = S and Tn+1
P (S) = TP (Tn

P (S)). We denote the least model of a
Horn program P by lm(P ).

Given a normal predicate logic program P and M ⊆ H(P ), we define the
Gelfond-Lifschitz reduct [12] of P , PM , via the following two step process. In
Step 1, we eliminate all clauses C = p ← q1, . . . , qn,¬r1, . . . ,¬rm of ground(P )
such that there exists an atom ri ∈ M . In Step 2, for each remaining clause
C = p ← q1, . . . , qn,¬r1, . . . ,¬rm of ground(P ), we replace C by the Horn
clause C = p ← q1, . . . , qn. The resulting program PM is a Horn propositional
program and, hence, has a least model. If that least model of PM coincides with
M , then M is called a stable model for P .

Next, we define the notion of P -proof scheme of a normal propositional logic
program P . Given a normal propositional logic program P , a P -proof scheme is
defined by induction on its length n. Specifically, the set of P -proof schemes is
defined inductively by declaring that

(I) 〈〈C1, p1〉, U〉 is a P -proof scheme of length 1 if C1 ∈ P , p1 = concl(C1),
prem(C1) = ∅, and U = constr(C1) and

(II) for n > 1, 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme of length n if
〈〈C1, p1〉, . . . , 〈Cn−1, pn−1〉, Ū〉 is a P -proof scheme of length n − 1 and Cn

is a clause in P such that concl(Cn) = pn, prem(Cn) ⊆ {p1, . . . , pn−1} and
U = Ū ∪ constr(Cn)

If S = 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme of length n, then we let
supp(S) = U and concl(S) = pn.
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Example 1. Let P be the normal propositional logic program consisting of the
following four clauses:
C1 = p ←, C2 = q ← p,¬r, C3 = r ← ¬q, and C4 = s ← ¬t.
Then we have the following useful examples of P -proof schemes:

(a) 〈〈C1, p〉, ∅〉 is a P -proof scheme of length 1 with conclusion p and empty
support.

(b) 〈〈C1, p〉, 〈C2, q〉, {r}〉 is a P -proof scheme of length 2 with conclusion q and
support {r}.

(c) 〈〈C1, p〉, 〈C3, r〉, {q}〉 is a P -proof scheme of length 2 with conclusion r and
support {q}.

(d) 〈〈C1, p〉, 〈C2, q〉, 〈C3, r〉, {q, r}〉 is a P -proof scheme of length 3 with conclu-
sion r and support {q, r}.

In this example we see that the proof scheme in (c) had an unnecessary item,
the first term, while in (d) the proof scheme was supported by a set containing
q, one of atoms that were proved on the way to r. �

A P -proof scheme differs from the usual Hilbert-style proofs in that it carries
within itself its own applicability condition. In effect, a P -proof scheme is a
conditional proof of its conclusion. It becomes applicable when all the constraints
collected in the support are satisfied. Formally, for a set M of atoms, we say that
a P -proof scheme S is M -applicable or that M admits S if M ∩ supp(S) = ∅. The
fundamental connection between proof schemes and stable models is given by
the following proposition which is proved in [17].

Proposition 1. For every normal propositional logic program P and every set
M of atoms, M is a stable model of P if and only if

(i) for every p ∈ M , there is a P -proof scheme S with conclusion p such that
M admits S and

(ii) for every p /∈ M , there is no P -proof scheme S with conclusion p such that
M admits S.

A P -proof scheme may not need all its clauses to prove its conclusion. It may
be possible to omit some clauses and still have a proof scheme with the same
conclusion. Thus we define a pre-order on P -proof schemes S, T by declaring
that S ≺ T if (1) S,T have the same conclusion and (2) Every clause in S is also
a clause of T. The relation ≺ is reflexive, transitive, and well-founded. Minimal
elements of ≺ are minimal proof schemes. A given atom may be the conclusion
of no, one, finitely many, or infinitely many different minimal P -proof schemes.
These differences are clearly computationally significant if one is searching for a
justification of a conclusion.

If P is a finite normal predicate logic program, then we define a P -proof
scheme to be a ground(P )-proof scheme. Since we are considering finite nor-
mal programs over our fixed recursive language L, we can use standard Gödel
numbering techniques to assign code numbers to atomic formulas, clauses, proof
schemes, and programs. It is then not difficult to verify that for any given finite
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normal predicate logic program P , the questions of whether a given n is the
code of a ground atom, a ground instance of a clause in P , or a P -proof-scheme
are primitive recursive predicates. The key observation to make is that since P
is finite and the usual unification algorithm is effective, we can explicitly test
whether a given number m is the code of a ground atom or a ground instance
of a clause in P without doing any unbounded searches.

The set of Gödel numbers of well-formed programs is well-known to be prim-
itive recursive (see Lloyd [15]). We let Qe be the program with Gödel number e
when this exists and let Qe be the empty program otherwise. For any property
P of finite normal predicate logic programs, let I(P) be the set of indices e such
that Qe has property P.

We say that a finite normal predicate logic program P over L has the finite
support (FS) property if for every atom a ∈ H(P ), there are only finitely many
inclusion-minimal supports of minimal ground(P )-proof schemes for a. We say
that P has the almost always finite support (a.a.FSP) property if for all but
finitely many atoms a ∈ H(P ), there are only finitely many inclusion-minimal
supports of minimal ground(P )-proof schemes for a. We say that P has the
recursive finite support (rec.FSP) property if it has the finite support property
and there is an effective procedure which, given any atom a ∈ H(P ), produces
the code of the set of the inclusion-minimal supports of ground(P )-proof schemes
for a. We say that P has the almost always recursive finite support (a.a.rec.FSP)
property if it has the a.a.FSP property and there is an effective procedure which,
for all but a finite set of atoms a ∈ H(P ), produces the code of the set of the
inclusion-minimal supports of ground(P )-proof schemes for a.

Next, we define two additional properties of recursive normal propositional
logic programs that have not been previously defined in the literature. Suppose
that P is a recursive normal propositional logic program consisting of ground
clauses in L and M is a stable model of P . Then for any atom p ∈ M , we say
that a minimal P -proof scheme S is the smallest minimal P -proof for p relative
to M if concl(S) = p and supp(S) ∩ M = ∅ and there is no minimal P -proof
scheme S

′ such that concl(S′) = p and supp(S′) ∩ M = ∅ and the Gödel number
of S′ is less than the Gödel number of S.

We say that P is decidable if for all N > 0 and any finite (possibly empty) set
of ground atoms {a1, . . . , an} ⊆ H(P ) such that the code of each ai is less than
or equal to N , and any finite set of minimal P -proof schemes {S1, . . . ,Sn} such
that concl(Si) = ai, we can effectively decide whether there is a stable model of
M of P such that

(a) ai ∈ M and Si is the smallest minimal P -proof scheme for ai such that
supp(Si) ∩ M = ∅ and
(b) for any ground atom b �∈ {a1, . . . , an} such that the code of b is less than or
equal to N , b �∈ M .

We say that a finite normal predicate logic program is decidable if ground(P )
is decidable.

It will turn out that under our coding of trees into finite predicate logic
programs, decidable trees induce decidable programs and under our coding of
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finite predicate logic programs into trees, decidable programs induce decidable
trees. Moreover, decidability combined with the property of having the recursive
finite support property ensures that there exists processable stable models when
there are stable models. That is, we have the following theorem.

Theorem 1. Suppose that P is a recursive normal logic program which has the
recursive finite support property and is decidable. Then if P has a stable model,
we can effectively find a recursive stable model of P .

Proof. Let a0, a1, . . . be a list of all elements of H(P ) by increasing code num-
bers. That is, if ci is the code of ai, then c0 < c1 < . . .. We will effectively
construct a list of pairs of sets (Ai, Ri) for i ≥ 0 such that for all i, Ai ∩ Ri = ∅,
{a0, . . . , ai} ⊆ Ai ∪ Ri, Ai ⊆ {a0, . . . , aI}, Ai ⊆ Ai+1, and Ri ⊆ Ri+1. Then
A =

⋃
i≥0 Ai will be our desired recursive stable model. Thus we shall think of

Ai as being the set of atoms that we have accepted to be in the stable model at
stage i and Ri as being the set of atoms that have been rejected from being in
A at stage i. Our construction will proceed in stages.

Stage 0. Consider ao. Since P has the recursive finite support property, we
can effectively find the supports of all the minimal P -proof schemes with con-
clusion a0. If U is the support of a minimal proof scheme with conclusion a0,
then the fact that the set of minimal proofs schemes of P is r.e. means that
we can search through the list of minimal proof schemes of P until we find the
minimal proof scheme SU with the smallest possible code such the conclusion of
SU is a0 and the support of SU is U . Thus if U1, . . . , Uk is the set of all supports
of minimal proof schemes with conclusion a0, then we can effectively find proof
schemes S1, . . . ,Sk such that for each i, Si is the smallest minimal proof scheme
such that the conclusion of Si is a0 and the support of Si is Ui. Then, since P
is decidable, we use our effective procedure with N = c0 to determine whether
there is a stable model M for which Si is the smallest minimal proof scheme
such that supp(Si) ∩ M = ∅. If there is no such i, then a0 is not in any stable
model so we set A0 = ∅ and R0 = {a0}. If there is such an i, then we let t0 be
the least such i and we set A0 = {a0} and R0 = supp(St0).

Stage s + 1. Assume that at stage s, we have constructed As and Rs such
that As ∩ Rs = ∅, {a0, . . . , as} ⊆ As ∪ Rs, As ⊆ {a0, . . . , as}, and for each
a ∈ As, we have constructed a proof scheme Sa such that if As = {d1, . . . , dk}
and Ns = cs+1. Then our decision procedure associated with the decidability of
P will answer yes when we give it NS , the set {d1, . . . , dk} and the corresponding
proof schemes Sd1 , . . . ,Sdk

. Moreover, we assume that

Rs = {ai : i ≤ s & ai �∈ As} ∪
k⋃

i=1

supp(Sdi
).

This means that there is at least one stable model M such that for each i, Sdi
is

the least proof scheme that witnesses that di is in M and ({a0, . . . , as} − As) ∩
M = ∅.
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Now consider as+1. By the fact that P has the recursive support property, we
can effectively find the finite set of supports V1, . . . , Vr of the minimal P -proof
schemes of as+1 and we can find P -proof schemes T1, . . . ,Tr such that for each
1 ≤ i ≤ r, Ti is the smallest possible proof scheme with conclusion as+1 and
support Vi. Then for each i < r, we can query the decision procedure associated
with the decidability of P on the set {d1, . . . , dk, as+1} and the corresponding
proof schemes Sd1 , . . . ,Sdk

,Ti. If we get an answer yes for any i, then we let
ts+1 be the least such i and we set As+1 = As ∪ {as+1} and Rs+1 = Rs ∪
supp(Tts+1). Note that since Sd1 , . . . ,Sdk

,Ti are the smallest minimal P proof
schemes that witness that d1, . . . , dk, as+1 are in some fixed stable model M such
that ({a0, . . . , as+1} − As+1) ∩ M = ∅, we must have that As+1 ∩ Rs+1 = ∅. If
there is no such i, then there is no stable model M which contains as+1 and
is such that for each i, Sdi

is the least proof scheme that witnesses that di is
in M and ({a0, . . . , as} − As) ∩ M = ∅. In that case, we let As+1 = As and
Rs+1 = Rs ∪{as+1}. It easily follows that our inductive assumption will hold at
stage s + 1.

This completes the construction. It is easy to see that if A =
⋃

s≥0 As and
R =

⋃
s≥0 Rs, then A∩R = ∅ and {a0, a1, . . .} ⊆ A∪R. Thus A and R partition

H(P ). It is also easy to see that A is recursive since our construction is effective
and at stage s, we have determined whether as ∈ A. We claim that A is stable
model. That is, if A is not a stable model, then either there exists an as such
that as ∈ A and as has no P -proof scheme admitted by A or there is an at �∈ A
such that at has an P -proof scheme which is admitted by A. Our construction
ensures that if as is in A, then as has an P -proof scheme admitted by A. Thus
suppose that at �∈ A. Then let W1, . . . , Wk be the supports of the minimal proof
schemes of at. Let ar be the largest element in W1 ∪ . . . ∪ Wk. Then consider
what happens at stage r. Suppose Ar = {e1, . . . , ek}. Then our construction also
specifies minimal P -proof schemes S1, . . . ,Sk such that there is a stable model
M such that for 1 ≤ i ≤ k, Si is the smallest proof scheme which witnesses that
ei is in M , supp(S1) ∪ . . . ∪ supp(Sk) ⊆ Rr, and {a0, . . . , ar} − Ar ∩ M = ∅.
Thus at is not in M . Let V1, . . . , Vb be the supports of the minimal P -proof
schemes of at+1. This means that M ∩ supp(Vi) �= ∅ for each i. But for each i,
supp(Vi) ⊆ {a0, . . . , ar} and M ∩ {a0, . . . , ar} = Ar. Thus it must be that case
that supp(Vi) ∩ Ar �= ∅ for all i and hence at does not have a P -proof scheme
admitted by A. Thus A is a stable model of P .

We now introduce and illustrate a technical concept that will be useful for our
later considerations. At first glance, there are some obvious differences between
stable models of normal propositional logic programs and models of sets of sen-
tences in a propositional logic. For example, if T is a set of sentences in a propo-
sitional logic and S ⊆ T , then it is certainly the case that every model of T is a
model of S. Thus a set of propositional sentences T has the property that if T has
a model, then every subset of T has a model. This is not true for normal propo-
sitional logic programs. That is, suppose that P0 is a normal propositional logic
program which has a stable model and a is atom which is not in the Herbrand
base of P0, H(P0). Let P be the normal propositional logic program consisting
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of P0 plus the clause C = a ← ¬a. Then P automatically does not have a stable
model. That is, consider a potential stable model M of P . If a ∈ M , then C
does not contribute to PM so that there will be no clause of PM with a in the
head. Hence, a is not in the least model of PM so that M is not a stable model
of P . On the other hand, if a �∈ M , then C will contribute the clause a ← to PM

so that a must be in the least model of PM . It follows that P0 ∪ {a ← ¬a, a ←}
has a stable model but P0 ∪ {a ← ¬a} does not.

One can see from the example above that there may be a finite set of clauses
in a normal propositional or predicate logic program P which prevent P from
having a stable model. Our next definition captures the key property which
ensures that the TP which corresponds to a given finite normal predicate logic
program is forced to be finite. We say that a finite normal predicate logic program
Qe over L has an explicit initial blocking set if there is an m such that

1. for every i ≤ m, either i is not the code of an atom of ground(P ) or the atom
a coded by i has the finite support property relative to P and there is at least
one atom a in H(P ) whose code is less than or equal to m and

2. for all S ⊆ {0, . . . , m}, either
(a) there exists an i ∈ S such that i is not the code of an atom in H(P ), or
(b) there is an i �∈ S such that there exists a minimal P -proof scheme p

such that concl(p) = a where a is the atom of H(P ) with code i and
supp(p) ⊆ {0, . . . , m} − S, or

(c) there is an i ∈ S such that every minimal P -proof scheme S of the atom
a of H(P ) with code i has supp(S) ∩ S �= ∅.

The definition of a finite normal predicate logic program Qe over L having an
initial blocking set is the same as Qe having an explicit initial blocking set, except
that we drop the condition that for every i ≤ m which is the code of an atom
a ∈ H(P ), a must have the finite support property relative to P .

3 Main Results

Next we state the main results, some of which were first discussed in [7], which
reduce the problem of computing index sets for finite normal predicate logic
programs to the problem of computing index sets for primitive recursive trees.
We shall only give a sketch of the proofs of our main results. The full proofs are
long and technical and can be found in [8].

Theorem 2. There is a uniform effective procedure which given any recursive
tree T ⊆ ω<ω produces a finite normal predicate logic program PT such that the
following hold.

1. There is an effective one-to-one degree preserving correspondence between the
set of stable models of PT and the set of infinite paths through T .

2. T is bounded if and only if PT has the FS property.
3. T is recursively bounded if and only if PT has the rec.FS property.
4. T is decidable and recursively bounded if and only if PT is decidable and has

the rec.FS property.
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Proof Sketch. Let T be a recursive tree contained in ω<ω. Note that the empty
sequence, whose code is 0, is in T . Below we shall only describe the program PT .
The details that PT has the desired properties can be found in [8].

A classical result, first explicit in [1,23], but known earlier in equational form,
is that every r.e. relation can be computed by a suitably chosen predicate over
the least model of a finite predicate logic Horn program. An elegant method
of proof due to Shepherdson [22] uses the representation of recursive functions
by means of finite register machines. When such machines are represented by
Horn programs in the natural way, we get programs in which every atom can be
proved in only finitely many ways; see also [19]. Thus we have the following.

Proposition 2. Let r(·, ·) be a recursive relation. Then there is a finite predicate
logic program Pr computing r(·, ·) such that every atom in the least model Mr

of Pr has only finitely many minimal proof schemes and there is a recursive
procedure such that given an atom a in Herbrand base of Pr produces the code of
the set of Pr-proof schemes for a. Moreover, the least model of Pr is recursive.

It follows that there exists the following three normal finite predicate logic
programs such that the set of ground terms in their underlying language are all
of the form 0 or sn(0) for n ≥ 1 where 0 is a constant symbol and s is a unary
function symbol. We shall use n as an abbreviation for the term sn(0) for n ≥ 1.

(I) There is a finite predicate logic Horn program P0 such that for a predicate
tree(·) of the language of P0, the atom tree(n) belongs to the least Herbrand
model of P0 if and only if n is a code for a finite sequence σ and σ ∈ T .

(II) There is a finite predicate logic Horn program P1 such that for a predicate
seq(·) of the language of P1, the atom seq(n) belongs to the least Herbrand
model of P1 if and only if n is the code of a finite sequence α ∈ ω<ω.

(III) There is a finite predicate logic Horn program P2 which correctly computes
the following recursive predicates on codes of sequences.
(a) samelength(·, ·). This succeeds if and only if both arguments are the

codes of sequences of the same length.
(b) diff (·, ·). This succeeds if and only if the arguments are codes of

sequences which are different.
(c) shorter(·, ·). This succeeds if and only both arguments are codes of

sequences and the first sequence is shorter than the second sequence.
(d) length(·, ·). This succeeds when the first argument is a code of a

sequence and the second argument is the length of that sequence.
(e) notincluded(·, ·). This succeeds if and only if both arguments are codes

of sequences and the first sequence is not an initial segment of the
second.

(f) num(·). This succeeds if and only if the argument is either 0 or sn(0)
for some n ≥ 1.

Now let P− be the finite predicate logic program P0 ∪ P1 ∪ P2. We denote its
language by L− and we let M− be the least model of P−. By Proposition 2, P−

is a Horn program, M− is recursive, and for each ground atom a in the Herbrand
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base of P−, we can explicitly construct the set of all P−-proof schemes of a. In
particular, tree(n) ∈ M− if and only if n is the code of node in T .

Our final program PT will consist of P− plus clauses (1)-(7) given below.
We assume no predicate that appears in the head of any of these clauses is in
the language L−. However, we do allow predicates from P− to appear in the
body of clauses (1) to (7). It follows that for any stable model of the extended
program, its intersection with the set of ground atoms of L− will be M−. In
particular, the meaning of the predicates listed above will always be the same.
We can now write the additional clauses which, together with P−, will form the
desired program PT . First of all, we select three new unary predicates:

(i) path(·), whose intended interpretation in any given stable model M of PT

is that it holds only on the set of codes of sequences that lie on infinite path
through T . This path will correspond to the path encoded by the stable
model of M ,

(ii) notpath(·), whose intended interpretation in any stable model M of PT is
the set of all codes of sequences which are in T but do not satisfy path(·),
and

(iii) control(·), which will be used to ensure that path(·) always encodes an
infinite path through T .

This given, the final 7 clauses of our program are the following.
(1) path(X) ←− tree(X), ¬notpath(X)
(2) notpath(X) ←− tree(X), ¬path(X)
(3) path(0) ←−
(4) notpath(X) ←− tree(X), path(Y ), tree(Y ), samelength(X,Y ), diff (X,Y )
(5) notpath(X) ←− tree(X), tree(Y ), path(Y ), shorter(Y,X),notincluded
(Y,X)
(6) control(X) ←− path(Y ), length(Y,X)
(7) control(X) ←− ¬control(X),num(X)

Clearly, PT = P− ∪ {(1), . . . , (7)} is a finite program.

Theorem 3. There is a uniform recursive procedure which given any finite nor-
mal predicate logic program P produces a primitive recursive tree TP such that
the following hold.

1. There is an effective one-to-one degree-preserving correspondence between
the set of stable models of P and the set of infinite paths through TP .

2. P has the FS property or P has an explicit initial blocking set if and only if
TP is bounded.

3. If P has a stable model, then P has the FS property if and only if TP is
bounded.

4. P has the rec.FS property or an explicit initial blocking set if and only if TP

is recursively bounded.
5. If P has a stable model, then P has the rec.FS property if and only if TP is

recursively bounded.
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6. P has the a.a.FS property or P has an explicit initial blocking set if and
only if TP is nearly bounded.

7. If P has a stable model, then P has the a.a.FS property if and only if TP is
nearly bounded.

8. P has the a.a.rec.FS property or an explicit initial blocking set if and only
if TP is nearly recursively bounded.

9. If P has a stable model, then P has the a.a.rec.FS property if and only if
TP is nearly recursively bounded.

10. If P has a stable model, then P is decidable if and only if TP is decidable.

Proof Sketch.
Our basic strategy is to encode a stable model M of ground(P ) by a path

fM = (f0, f1, . . .) through the complete ω-branching tree ω<ω as follows.

1. First, for all i ≥ 0, f2i = χM (i). That is, at the stage 2i, we encode the
information about whether or not the atom encoded by i belongs to M .
Thus, in particular, if i is not the code of ground atom in H(P ), then f2i = 0.

2. If f2i = 0, then we set f2i+1 = 0. But if f2i = 1 so that i ∈ M and i is the
code of a ground atom in H(P ), then we let f2i+1 equal qM (i) where qM (i) is
the least code for a minimal P -proof scheme S for i such that the support of
S is disjoint from M . That is, we select a minimal P -proof scheme S for i, or
to be precise for the atom encoded by i, such that S has the smallest possible
code of any P -proof scheme T such that supp(T) ∩ M = ∅. If M is a stable
model, then, by Proposition 1, at least one such P -proof scheme exists for i.

Clearly, M ≤T fM since it is enough to look at the values of fM at even places
to read off M . Now given an M -oracle, it should be clear that for each i ∈ M , we
can use an M -oracle to find qM (i) effectively. This means that fM ≤T M . Thus
the correspondence M �→ fM is an effective degree-preserving correspondence.

Then, given a program P , we construct a primitive recursive tree TP ⊆ ωω

such that [TP ] = {fM : M ∈ stab(P )}. The details of this construction and the
verification that it has the desired properties can be found in [8].

4 Corollaries, Conclusions and Further Work

Theorems 2 and 3 allow us to transfer many results about paths through recursive
trees to stable models of finite normal predicate logic programs. We give a brief
sample of some the results that we have proved in this manner.

(1) {e : Qe has the rec.FSP} is Σ0
3 -complete.

This can be proved as follows. First it is a straightforward exercise to show
that the property that Qe has the rec.FSP is a Σ0

3 predicate. Then Cenzer and
Remmel proved that {e : Te is rec. bounded} is Σ0

3 -complete. Next, it follows
from Theorem 3.1 that {e : Te is rec. bounded} is one-to-one reducible to the
set {e : Qe is rec.FSP}. Hence the set of {e : Qe is rec.FSP} is Σ0

3 -complete.
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The following results can be proved by similar type reasoning.

(2) {e : Qe has the FSP} is Π0
3 -complete.

(3) {e : Qe has the rec.FSP and is dec.} is Σ0
3 -complete.

(4) {e : Qe has the rec.FSP and Stab(Qe) �= ∅} is Σ0
3 -complete.

(5) {e : Qe has the FSP and Stab(Qe) �= ∅} is Π0
3 -complete.

(6) {e : Stab(Qe) �= ∅} is Σ1
1 -complete.

For any positive integer c,

(7) {e : Qe has the rec.FSP and Card(Stab(Qe)) > c},
{e : Qe has the rec.FSP and Card(Stab(Qe)) ≤ c},
and {e : Qe has the rec.FSP and Card(Stab(Qe)) = c} are all Σ0

3 -complete.
(8) {e : Qe has the FSP and Card(Stab(Qe)) ≤ c} and

{e : Qe has the FSP and Card(Stab(Qe)) = 1} are both Π0
3 -complete.

(9) {e : Qe has the FSP and Card(Stab(Qe)) > c} and
{e : Qe is has the FSP and Card(Stab(Qe)) = c+1} are both D0

3-complete.
(10) {e : Qe has the rec.FSP and is dec. and Card(Stab(Qe)) > c},

{e : Qe has the rec.FSP and is dec. and Card(Stab(Qe)) ≤ c},
and {e : Qe has the rec.FSP and is dec. and Card(Stab(Qe)) = c} are all
Σ0

3 -complete.
(11) {e : Card(Stab(Qe)) > c} is Σ1

1 -complete and
{e : Card(Stab(Qe)) ≤ c} and {e : Card(Stab(Qe)) = c} are Π1

1 -complete.

In [8], we proved many more results of this type. The properties that we
considered involve both whether a finite normal predicate logic program pos-
sesses a blocking set or has various properties related to finite support property
as well has properties about the types and complexity of its stable models such
the cardinality of its set of stable models or the cardinality of its set of recursive
stable models. This required that we prove some new index type results for trees
and to modify the constructions of Theorems 2 and 3.

We believe that the types of relationship established in this paper between
the sets of stable models of a finite normal predicate logic programs and the sets
of infinite paths through recursive trees is a technology which can be applied to
study the complexity of other notions that have appeared in the Answer Set Pro-
gramming literature. For example, Cenzer and Remmel [10] showed that there is
an intimate connection between the well-founded semantics of logic programs and
Cantor-Bendixson derivatives. One could also ask whether our correspondences
can be extended to handle cases where one adds additional constructs to logic
programs such as aggregates, and more generally non-monotone set-constraints.

References

1. Andreka, H., Nemeti, I.: The generalized completeness of horn predicate logic as a
programming language. Acta Cybernetica 4, 3–10 (1978)

2. Apt, K.R., Blair, H.A.: Arithmetic classification of perfect models of stratified
programs. Fund. Inf. 14, 339–343 (1991)



Index Sets for Finite Normal Predicate Logic Programs 75

3. Apt, K.R., Blair, H.A., Walker, A.:Towards a theory of declarative knowledge. In:
Foundations of Deductive Databases and Logic Programming, pp. 89–148 (1988)

4. Bonatti, P.: Reasoning with infinite stable models. Art. Int. J. 156, 75–111 (2004)
5. Calautti, M., Greco, S., Spezzano, F., Trubitsyna, I.: Checking termination of

bottom-up evaluation of logic programs with function symbols. Theor. Pract. Log.
Program. 15, 854–859 (2015)

6. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: theory
and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

7. Cenzer, D., Marek, V.W., Remmel, J.B.: Index sets for finite predicate logic pro-
grams. In: Eiter, T., Gottlob, G. (eds.) FLOC 1999 Workshop on Complexity-
theoretic and Recursion-theoretic Methods in Databases, Artificial Intelligence and
Finite Model Theory, pp. 72–80 (1999)

8. Cenzer, D., Marek, V.W., Remmel, J.B.: Index sets for finite predicate logic pro-
grams (in preparation 2016)

9. Cenzer, D., Remmel, J.B.: Index Sets for Π0
1 classes. Ann. Pure Appl. Logic 93,

3–61 (1998)
10. Cenzer, D., Remmel, J.B.: A connection between Cantor-Bendixson derivatives

and the well-founded semantics of finite logic programs. Ann. Math. Art. Int. 65,
1–24 (2012)

11. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T. : Conflict-driven answer
set solving. In: Veloso, M. (ed.) Proceedings of Joint International Conference on
Artificial Intelligence, p. 386 (2007)

12. Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. In: Proceedings
of the 5th International Symposium on Logic Programming, pp. 1070–1080. MIT
Press (1998)

13. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7, 499–562 (2006)

14. Lierler, Y., Lifschitz, V.: One more decidable class of finitely ground programs. In:
Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 489–493. Springer,
Heidelberg (2009)

15. Lloyd, J.: Foundations of Logic Programming. Springer, New York (1989)
16. Marek, V.W., Nerode, A., Remmel, J.B.: How complicated is the set of stable

models of a recursive logic program. Ann. Pure App. Logic 56, 119–136 (1992)
17. Marek, V.W., Nerode, A., Remmel, J.B.: The stable models of predicate logic

programs. J. Log. Program 21, 129–153 (1994)
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