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Abstract. We study definability in the first order theory of graph order:
that is, the set of all simple finite graphs ordered by either the minor, sub-
graph or induced subgraph relation. We show that natural graph families
like cycles and trees are definable, as also notions like connectivity, max-
imum degree etc. This naturally comes with a price: bi-interpretability
with arithmetic. We discuss implications for formalizing statements of
graph theory in such theories of order.
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1 Introduction

Reasoning about graphs is a central occupation in computing science, since
graphs are used to model many computational problems such as those in social
networks, communication etc. In many cases, a single fixed graph is considered
and some property has to be verified (e.g. bipartiteness) or some numerical para-
meter computed(e.g. independence number). However, as the complexity of the
query increases, it can often be naturally recast as a question of relationships
between graphs. For instance, asking if a graph is Hamiltonian is the same as
looking for a cycle of the same order as the graph which occurs as a subgraph;
asking for a k-colouring is the same as asking for a homomorphism of the graph
to the k-clique. Studying the nature of relations on the set of all graphs has led to
results such as the Graph Minor Theorem [18], whose algorithmic implications
and influence on computer science cannot be overstated [1,2].

Consider the natural relations on graphs given by subgraph, induced sub-
graph and minor: these form partial orders over the set of all (simple, finite)
graphs with interesting properties (see Fig. 1). Logical statements about these
partial orders refer to graph families, and typically those given by some ‘first
order’ closure condition, such as including/avoiding specific characteristics. Such
statements are of immense interest to the theory of algorithms, motivating the
logical study of graph order, and first order theories are the natural candidates
for such a study.

Model theorists have taken up such studies. In a series of papers, Jezek
and McKenzie [8–11] study the first order definability in substructure orderings
on various finite ordered structures such as lattices, semilattices etc. Such a
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study is indeed foundational, and yet, it is of interest to study specific order
structures on graphs to exploit their additional properties (if any). Indeed, the
substructure order over graphs corresponds to the induced subgraph order, and
this was investigated by Wires [19]. However, subgraph and minor orders are less
amenable as substructure and hence deserve a closer look, which is the attempt
initiated here. In the setting of directed graphs, the subdigraph order has been
investigated by Kunos [16] recently. Work on word orders has been carried out
by Kuske [17] as well as Kudinov et al. [14,15]. Other recent work on theories of
classes of structures such as boolean algebras, linear orders and groups by Kach
and Montalban [12] are different in spirit to ours, since they consider additive
operations and the underlying structures may be infinite.

Our attempt here is not to study one graph order but rather to highlight
the subtle differences in definability between different graph orders even while
showing that they are all powerful enough to encode first order arithmetic. In
fact, the subgraph and induced subgraph order are shown to be bi-interpretable
with first order arithmetic. Many predicates which are interesting from a graph
theoretic perspective such as connectivity, regularity, etc. are found to be first
order definable, enabling us to articulate classical theorems of graph theory in
such order theories.

We suggest that this paper as well as the related work mentioned are merely
first steps of a larger programme of research, since we lack the tools as yet to
address many related questions regarding indefinability, succinctness, algorith-
mic solutions, and so on.

The paper is organised as follows. After setting up the preliminaries, we study
the subgraph order and show that certain numerical parameters such as order
of a graph, commonly encountered graph families such as paths, cycles etc. and
interesting graph predicates such as connectivity can be defined. We then show
how such results can be lifted to the minor order. The machinery developed is
used to show the bi-interpretability with arithmetic of the induced subgraph
and subgraph orders and to interpret arithmetic in the minor order. Finally we
display some interesting graph theoretical statements which can be stated using
graph orders and discuss the research programme ahead.

2 Preliminaries

For the standard syntax and semantics of first order logic, we refer the reader
to Enderton [4].

Definition 1 (Definability of Constants). Fix a first order language L. Let a be
an element of the domain of an L structure A. We say that a is definable in A
if there exists an L formula φa(x) in one free variable such that A, a � φa(x)
and for any a′ �= a in the domain of A, A, a′

� φa(x).

We use a as a constant symbol representing the domain element a with the
understanding that an equivalent formula can be written without the use of this
constant symbol.
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Fig. 1. The first few layers of the subgraph order.

Definition 2 (Covering Relation of a Poset). Given an element x of a poset
(E,≤), y is called an upper cover of x iff x < y and there exists no element z
of E such that x < z < y.
Similarly y is called a lower cover of x iff y < x and there exists no element z
of E such that y < z < x.

Definition 3 (Graph Partial Orders). Consider the following operations on
graphs:

– A1. Deletion of a vertex (and all the edges incident on that vertex).
– A2. Deletion of an edge.
– A3. Contraction of an edge (given an edge e = uv, delete both u and v and

introduce a new vertex w not in V (g); connect all vertices which were adjacent
to either u or v to w).

For graphs g and g′, g can be obtained from g′ by any finite sequence of the
operations:

1. A1, A2 and A3 iff g ≤m g′(g is a minor of g′).
2. A1 and A2 iff g ≤s g′(g is a subgraph of g′).
3. A1 iff g ≤i g′(g is an induced subgraph of g′).

Let G denote the set of all simple graphs. We consider the base first order lan-
guage L0 which has only the binary predicate symbol ≤ and an extension L1

that extends L0 with a constant symbol P3 which stands for the path on three
vertices. The latter is used in the case of the induced subgraph order in order to
break the symmetry imposed by the automorphism which takes every graph to
its complement.
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Definition 4 (Graph Structures). We denote the first order theories of the sub-
graph and minor orders by L0 structures (G,≤s) and(G,≤m) respectively; and
the induced subgraph order by the L1 structure (G,≤i, P3).

Notation: We use the letters x, y, z to denote variables representing graphs in
formulas, u, v to represent nodes of a graph, e to represent the edge of a graph,
g, h to represent graphs, F ,G to represent families of graphs. We write uv to
denote the edge joining nodes u and v. We will denote by Ni,Ki, Ci, Si, Pi the
graph consisting of i isolated vertices, the i-clique, the cycle on i vertices, the star
on i vertices and the path on i vertices respectively (Fig. 2); and by N ,K, C,S,P
the corresponding families of isolated vertices, cliques, cycles, stars and paths.
F , T represent forests and trees respectively. We will also on occasion, refer to
certain fixed graphs or graph families by descriptive names (see Fig. 4).

k, l,m, n are used for natural numbers (also on occasion, members of the N
family). All subscript or superscript variants such as x′, xi, etc. will be used to
denote the same kind of object.

Given a graph g, V (g) stands for the vertex set of g, E(g) stands for the edge
set of g, |g| stands for the number of vertices of g (also called the order of g) and
|g|gr stands for the graph consisting of only isolated vertices which has the same
number of vertices as g. ||g|| stands for the number of edges of g, also called the
size of g. Given graphs g and h, g ∪ h stands for the disjoint union of g and h.

N5 P5 C5 K5 S5

Fig. 2. Isolated points, path, cycle, clique and star of order 5 from left to right.

3 Definability in the Subgraph Order

We will take up definability in the subgraph order first. The defining formulae
have been chosen such that most of them carry over in a straightforward way to
the minor order. For a few predicates, significant modifications are required.

Constants, Covers and Cardinality

Lemma 1. The upper and lower covering relations, the order of a graph, the
family N and the graphs N1,K2,K3, S4, P4 are definable in subgraph.

The upper and lower covering relations for subgraph can immediately be
defined:
ucs(x, y) iff x is an upper cover of y: ucs(x, y) := y <s x ∧ ¬∃z y <s z <s x
lcs(x, y) iff x is a lower cover of y: lcs(x, y) := x <s y ∧ ¬∃z x <s z <s y
Next we show that certain graphs in the first few layers of the subgraph order
are definable. Refering to Fig. 1, the following formulae can easily be verified:
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1. ∅(x) := ∀y x ≤s y
2. N1(x) := ucs(x, ∅); N2(x) := ucs(x,N1)
3. K2(x) := ucs(x,N2) ∧ ∃y ucs(y, x) ∧ ∀z ucs(z, x) ⊃ z = y
4. N3(x) := ucs(x,N2) ∧ x �= K2

5. K2N1(x) := ucs(x,K2); K2N2(x) := ucs(x,K2N1) ∧ ucs(x,N3)
6. P3(x) := ∃!y ucs(x, y)∧y = K2N1 (where ∃! is short for there exists unique)
7. P3N1(x) := ucs(x, P3)∧ucs(x,K2N2) ∧∀y ucs(x, y) ⊃ (y = P3 ∨ y = K2N2)
8. S4(x) := ucs(x, P3N1) ∧ ∀y ucs(x, y) ⊃ y = P3N1

9. K3(x) := ∃!y lcs(y, x) ∧ y = P3

10. P4(x) := ucs(x, P3N1) ∧ x �= S4

We note that if a family of totally ordered graphs is definable, then every member
is definable as a constant by repeated use of the covering relation.
The family of isolated points is now easily seen to be definable via: N (x) :=
K2 �s x. In addition, using the family N as a “yardstick”, we can capture the
cardinality (order) of a graph.
order(n, x) iff n ∈ N and |x| = |n|:
order(n, x) := N (n) ∧ ∀m (N (m) ∧ m ≤s x) ⊃ m ≤s n.

For definable numerical predicates such as cardinality, we will simply use
them as functions instead of predicates to simplify notation from here on i.e.
|x|gr will denote the member of N whose order is the same as that of x.

Graph Families

Theorem 1. The families K,P, C,F , T ,S are definable using subgraph.

Cliques: Any graph to which an edge can be added contains at least two upper
covers. The unique upper cover of a clique is formed by adding an isolated point
to it. K(x) := ∃!y ucs(y, x).

Paths
In order to define paths, we need to define a few additional families :

1. Disjoint unions of paths and cycles (denoted pac)
2. Disjoint unions of cycles i.e. sums of cycles (denoted soc)
3. Disjoint unions of paths i.e. forest of paths(denoted fop)

Assuming these, we can define paths :
P(x) := fop(x) ∧ ∀y |x|gr = |y|gr ∧ fop(y) ⊃ y ≤s x.

Out of all the fops of the same order n, the Pn forms the maximum element.
Clearly by adding appropriate edges to a fop of the same order, one can form
Pn. Adding any more edges to Pn gives a non-fop.

A graph is a disjoint union of paths and cycles iff it has maximum degree at
most two: pac(x) := S4 �s x.

Assuming soc, fop can be defined: fop(x) := pac(x) ∧ (∀y soc(y) ⊃ y �s x).
if: x is clearly a pac. Since x does not have any cycles as subgraph, it cannot
have any soc as a subgraph.
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only if: Let x = c1 ∪ c2 ∪ ... ∪ cn where ci is either a path or a cycle for all i.
Suppose there is an i with ci cycle. Then clearly ci ≤s x but ci is also a soc,
which is a contradiction. Hence all components are paths and x is a fop.

It is only left to define disjoint unions (sums) of cycles i.e. soc (Fig. 3):

g1 g2 g3

g4g5g6

Fig. 3. g1, g2, g3, g4, g5, g6 all pac, only g2, g5, g6 soc’, only g5 soc.

soc(x) =soc′(x) ∧ ∀y (ucs(y, x) ∧ pac(y)) ⊃ soc′(y)
where

soc′(x) :=x �= ∅ ∧ pac(x) ∧ ∀y (|y|gr = |x|gr ∧ pac(y)) ⊃ ¬x <s y

Claim 1. soc′(x) iff every component of x is a cycle, N1 or K2 and x contains
at most one copy of N1 or one copy of K2 but not both and x is not the empty
graph.

Proof. if: Clearly x is a pac. Suppose there exists a pac y of the same order as x
and x <s y. We can obtain y from x by addition of edges. But addition of any
edge would introduce a degree three node, thus such a y cannot exist.

only if: Let x = c1 ∪ c2 ∪ ... ∪ cn where ci is either a cycle or a path. Suppose
there is an i such that ci is a path of order at least three. Let c′

i be the cycle
formed by joining the ends of ci. Now x′ = c1 ∪ ...ci−1 ∪ c′

i ∪ ci+1... ∪ cn is also
a pac, |y| = |x| and x can obtained from y by deleting the newly added edge to
get ci from c′

i. Thus no path of length more than one can exist. Similarly, we can
obtain a contradiction in the following cases by appropriately constructing x′:

1. There are two copies of K2 in x. Join the two copies end to end to form a
path of length three, to get x′.
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2. There are two copies of N1 in x. Join the copies by an edge to get x′.
3. There is a K2 and an N1 as components in x. Join N1 by an edge to K2 to

get a path of length two, to get x′. �

Now we show the correctness of soc(x).

if: Clearly x is a soc′. The only upper cover of x which is a pac is x ∪ N1 since
adding any more edges would lead to a degree three node. x ∪ N1 is a soc′.

only if: Let x = c1 ∪ c2 ∪ ... ∪ cn and x is a soc′. Suppose there is i such that
ci is K2. Let x′ = x ∪ N1. x′ is an upper cover of x, is a pac but is not a soc′

because it has an N1 and a K2 as components. Similarly we can rule out N1 as
a component of x.

Cycles, Forests, Trees, Stars

C(x) :=pac(x) ∧ ∃y P(y) ∧ |x|gr = |y|gr ∧ ucs(x, y)
forest(x) :=∀y C(y) ⊃ y �s x

T (x) :=forest(x) ∧ ∀y (forest(y) ∧ |x|gr = |y|gr) ⊃ ¬x <s y

S(x) :=T (x) ∧ P4 �s x

It is clear that by deleting any edge from a cycle, we get a path which is a lower
cover of the same order.

Conversely, consider any upper cover of a path with the same order. Adding
an edge which joins the degree one vertices of the path gives a cycle, but adding
an edge any where else creates a degree three vertex, which violates the condition
that x is a pac. Thus only a cycle fulfills all the conditions.

A forest is a graph which contains no cycles. Of all forests with the same
order, a tree is a maximal element since adding another edge gives a cycle.
A non-tree forest can be made into a tree of same order by adding appropriate
edges. A star is a tree which does not contain a path on four vertices as subgraph.
Conversely, consider any tree with longest path on at most three vertices. Any
other vertex must be connected to the midpoint of this longest path, thus it is
a star.

Graph Predicates

Theorem 2. Connectivity, maximum degree and maximum path length are
definable in subgraph.

Connectivity

conn(x) := ∃y T (y) ∧ y ≤s x ∧ |x|gr = |y|gr
A graph is connected iff it has a spanning tree.

Maximum path
maxPath(n, x) iff n ∈ N and the largest path which is a subgraph of x is Pn.

maxPath(n, x) :=N (n) ∧ ∃y P(y) ∧ y ≤s x ∧ |y|gr = n ∧
∀z (P(z) ∧ z ≤s x) ⊃ z ≤s y
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Maximum degree
maxDeg(n, x) iff n ∈ N and the maximum degree of x is |n|.

maxDeg(n, x) :=N (n) ∧ ∃y S(y) ∧ y ≤s x ∧ ucs(|y|gr, n) ∧
∀z (S(z) ∧ z ≤s x) ⊃ z ≤s y

The maximum degree of x is one less than the order of the largest star which is
a subgraph of x.

4 Definability in the Minor Order

Note that the minor order is identical to subgraph in an initial segment; the
first additional relation which occurs in cycles and forests is shown in Fig. 4.
This observation helps us reuse some of the machinery already developed for
subgraph.

Observation 1. The downclosure of S5 and downclosure of K3 are identical
under subgraph and minor.

Observation 2. If |x| = |y| then x ≤s y iff x ≤m y and ucs(x, y) iff ucm(x, y).
Since the contraction operation reduces the number of vertices, restricting the
orders to tuples of the same cardinality makes minor and subgraph equivalent.

double3starS5 K3 C4

Fig. 4. First difference between subgraph and minor.

We also have the following lemma on when the two orders can be taken to
be equivalent.

Lemma 2. Let xn be an tree with at most one degree 3 node and no node of
degree 4 or more. Then for any other graph x0, xn ≤m x0 iff xn ≤s x0.

Proof. It suffices to prove the only if direction since any subgraph is also a minor.
We observe that there is a normal form for any sequence of minor operations.

Let xn ≤m x0 via a sequence of minor operations o1, o2, ..., on, then there exists
a series of minor operations o′

1, ..., o
′
m on x0 resulting in xn such that no deletion

operation occurs after a contraction operation and the number of contraction
operations in the sequence o′

1, ..., o
′
m is at most the number of contractions in

the original sequence o1, ..., on.
The result is proved by induction on the number of contraction operations

in transforming x0 to xn. The details are given in the appendix. �
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The lemma and observations above help us transfer some results on defin-
ability from subgraph and minor order, simply by replacing the subgraph order
by the minor order in the defining formulae.

Lemma 3. The upper and lower covering relations, the order of a graph, the
family N and the graphs N1,K2,K3, S4 are definable in minor order.

Theorem 3. The families K,P, C,F , T ,S are definable using minor.

Firstly note that a graph contains a cycle as subgraph iff it contains K3 as a minor
(by contraction along the cycle). Hence forests are defined by: F(x) := K3 �m x.

Observe that disjoint unions of paths and cycles (pac) can be defined by:
pac(x) := S4 �m x. (By Lemma 2, we replace subgraph by minor in the defining
formula). For forest of paths (fop), note that we can restrict a pac to be a forest,
giving a fop: fop(x) := F(x) ∧ pac(x). Now, using Observation 2, we can
immediately get paths, cliques, cycles and trees; and stars by Lemma 2:

P(x) :=fop(x) ∧ ∀y |x|gr = |y|gr ∧ fop(y) ⊃ y ≤m x

K(x) :=∀y |y|gr = |x|gr ⊃ y ≤m x

C(x) :=pac(x) ∧ ∃y P(y) ∧ |x|gr = |y|gr ∧ ucm(x, y)
T (x) :=forest(x) ∧ ∀y (forest(y) ∧ |x|gr = |y|gr) ⊃ ¬x <m y

S(x) :=T (x) ∧ P4 �m x

Theorem 4. Connectivity, maximum degree and maximum path length are
definable in minor.

conn(x) :=∃y T (y) ∧ y ≤m x ∧ |x|gr = |y|gr
maxPath(n, x) :=N (n) ∧ ∃y P(y) ∧ y ≤m x ∧ |y|gr = n ∧

∀z (P(z) ∧ z ≤m x) ⊃ z ≤m y

maxDeg(n, x) iff the maximum degree of x is |n|.

Here we need to do some more work since the largest star which is a minor
of x may be much larger than the maximum degree of the graph. The slightly
involved construction is given in the appendix.

5 Arithmetic in Graph Orders

We define the ternary predicate version of arithmetic (N, plus, times) in the
subgraph and minor orders. In order to do so, we need the following formulae:
N(g) iff g is a graph representing a number in our chosen representation. Let us
denote by ng the number denoted by g.
plus(x, y, z) iff N(x), N(y), N(z) hold and nx + ny = nz is true.
times(x, y, z) iff N(x), N(y), N(z) hold and nx × ny = nz is true.

As can be gathered from the notation, our choice of (the unique) represen-
tation for natural number i is Ni, and from Lemmas 1 and 3, this family is
definable in subgraph and minor.
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Fig. 5. Gadget graphs for addition and squaring.

To show the definability of the plus and times predicates, we will write out
formulae using subgraph, but by Lemma 2 they can be transferred to minor.

Addition

plus(k, l,m) :=N (k) ∧ N (l) ∧ N (m) ∧
(initial(k, l,m) ∨ (N3 ≤s k ∧ N3 ≤s l ∧

∃x starTail(k, l, x) ∧ plus2(m,x))); where
starTail(k, l, x) :=starTail′(k, l, x) ∧ ∀x′ starTail′(k, l, x′) ⊃ |x|gr ≤s |x′|gr
starTail′(k, l, x) :=T (x) ∧ maxDeg(x) = k ∧ maxPath(x) = l

plus2(m,x) :=∃m′ ucs(|m′|gr, x) ∧ ucs(m, |m′|gr)
initial(k, l,m) :=(k = ∅ ∧ m = l) ∨ (l = ∅ ∧ m = k)∨

(k = N1 ∧ ucs(m, l)) ∨ (l = N1 ∧ ucs(m, k))∨
(k = N2 ∧ ∃m′ ucs(|m′|gr, l) ∧ ucs(m, |m′|gr))∨
(l = N2 ∧ ∃m′ ucs(|m′|gr, k) ∧ ucs(m, |m′|gr))

When either k or l are strictly less than two, we hardcode the function value
using initial.

When both are at least three, consider a tree with maximum degree k and
maximum path l. A tree of least order with these properties is formed from a
path by choosing some degree two vertex of the path vi, adding k−2 new vertices
u1, u2, ..., uk−2 and adding the edges u1vi, u2vi, ..., uk−2vi (see Fig. 5). The order
of this tree is k + l − 2. This is captured in the formula starTail and in plus2
we add two to its cardinality to get k + l.

Multiplication
We will show instead that squaring is definable, multiplication is easily obtained
via the formula

(n1 + n2)2 = n2
1 + n2

2 + 2 × n1 × n2

square(n,m) iff n,m ∈ N and |m| = |n|2

square(n,m) :=N (n) ∧ N (m) ∧ ∃z ntree(n, z) ∧ ucs(|z|gr,m) ∧
∀y ntree(n, y) ⊃ |y|gr ≤s |z|gr; where

ntree(n, z) :=tree(z) ∧ maxDeg(z) = n ∧ P6 �s z
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There exists a tree t of maximum order whose maximum degree is n and maxi-
mum path is P5. To see that t has order n2 + 1, observe that the tree has depth
three (Fig. 5) and the total number of vertices is 1 + n + n × (n − 1) = 1 + n2.

Thus by Lemmas 1, 3 and the definability of addition and multiplication
shown above we have :

Theorem 5. First order arithmetic is definable in the subgraph and minor
orders.

6 Encoding Graph Orders in Arithmetic

We will show that the structures (G,≤s) and (G,≤i, P3) can be interpreted in
first order arithmetic. In order to do this, we define the following formulae:

1. isGraph(x) iff x is a number which represents a graph.
2. sameGraph(x, y) iff x and y are numbers which represent the same graph.
3. subGraph(x, y) iff the graph represented by x is a subgraph of the graph

represented by y.
4. inSubGraph(x, y) iff the graph represented by x is an induced subgraph of

the graph represented by y.
5. P3(x) iff x represents the graph P3.

Lemma 4 (Definable Arithmetical Predicates). The following predicates
are definable in first order arithmetic (defining formulae in appendix):

1. bit(i, x) iff the ith bit of the binary representation of x is a 1.
2. length(n, x) iff the length of the binary representation of x is n. We will

denote this unique n by |x|.
3. pow2(i, x) iff x = 2i.
4. rem(n, x, y) iff n is the remainder when x is divided by y; denoted n =

rem(x, y).
5. div(n, x, y) iff n is the quotient when x is divided by y; denoted n = x/y.
6. nchoose2(n, x) iff x =

(
n
2

)
where

(
n
2

)
= n × (n − 1)/2.

6.1 Encoding Graphs

Any graph on n vertices has
(
n
2

)
possible pairs of vertices. By fixing an appro-

priate order on these pairs, we may interpret any number whose binary repre-
sentation has

(
n
2

)
+1 bits as a graph on n vertices (we ignore the leading 1 since

every binary representation has to start with a 1 except for the number 0). Let
g be a graph on vertices {v1, v2, ..., vn}. We define the ordering ≤e on tuples of
vertices:
For i < j, i′ < j′, vivj ≤e vi′vj′ iff i < i′, or i = i′ and j ≤ j′.
Writing down the tuples in descending order, we get
vnvn−1, vnvn−2, vn−1vn−2, vnvn−3, ..., v3v1, v2v1. If we now replace the tuples by
0’s for non-edges of g and 1’s for edges and prefix a 1 to this string, we get a
number m with bit length

(
n
2

)
+ 1 which we say represents the (isomorphism
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class of) graph g. Note that as presented, there are multiple numbers which
represent the same graph (upto isomorphism). We could choose the smallest of
these to make the representation unique, instead we will stop at showing that
there is a formula which identifies isomorphic graphs. We choose for the sake of
completeness 0 as the unique number representing the empty graph. We denote
the graph represented by x by gx.

isGraph(x) := x = 0 ∨ ∃n x = (1 +
(

n

2

)
)

Since we have arithmetical predicates available, we can define a formula for
the order of a graph. Then to assert that there is an edge from vi to vj in x (where
i < j), note that the tuple {vi, vj} occurs at bit position (2ni−2n−i2−i+2j)/2 =
n(n−1)/2−(n−i)(n−i+1)/2+j−i. We can further use arithmetical predicates
to define formulas such as:
perm(x, n) iff x represents a permutation on [n].
applyperm(x, i, j, n) iff x is a permutation on [n] and sends i to j for i, j ∈ [n].

We can then define the isomorphism of graphs:

sameGraph(x, y) := ∃n |x| = |y| = 1 +
(

n

2

)
∧ ∃z perm(z, n) ∧

∀i ∀j 1 ≤ i < j ≤ n ⊃ (edgeExists(x, i, j) ⇐⇒ (∃i′∃j′ applyPerm(z, i, i′, n)
∧ applyPerm(z, j, j′, n) ∧ edgeExists(y, i′, j′) ))

The formula states that for x and y to represent the same graph, there must exist
a permutation z such that for any tuple {vi, vj} of vertices of x, vivj ∈ E(gx) iff
vz(i)vz(j) ∈ E(gy). Details are given in the appendix.

6.2 Subgraph and Induced Subgraph

subGraph(x, y) iff x, y represent graphs and gx is a subgraph of gy.

subGraph(x, y) := isGraph(x) ∧ isGraph(y) ∧ |gx| ≤ |gy| ∧
∃z sameGraph(y, z) ∧ ∀k 1 ≤ k ≤ |x| ⊃ (bit(k, x) ⊃ bit(k + |y| − |z|, z))

If x on vertices u1, u2, ..., un is a subgraph of y on vertices v1, v2, ..., vm without
regard for vertices, then there is a map f : V (x) → V (y) which witnesses it.
Rename the vertices of y to get z by the map which sends f(ui) for any u ∈ V (x)
to vm−n+i and fixes the other vertices. Then x is a subgraph of the graph on
vm, vm−1..., vm−n+1 when considered with the labels.

Conversely, if the formula is true, the sameGraph predicate gives us a wit-
nessing permutation using which we can define the map witnessing that x is a
subgraph of y.
We can define induced subgraph by a small modification in the subgraph formula
as follows:

inSubGraph(x, y) := isGraph(x) ∧ isGraph(y) ∧ |gx| ≤ |gy| ∧
∃z sameGraph(y, z) ∧ ∀k 1 ≤ k ≤ |x| ⊃ (bit(k, x) ⇐⇒ bit(k, z))
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Defining the constant P3

The formula P3(x) can be easily defined as the disjunction over the formulae
x = c where c is a number representing P3 since there are only finitely many of
them. Thus we have:

Theorem 6. The structures (G,≤s) and (G,≤i, P3) are definable in (N,+,×).

Theorem 7 (Wires [19]). Arithmetic is definable in (G,≤i, P3).

Combining the above result with Theorems 5 and 6 we have:

Theorem 8. The structures (G,≤s) and (G,≤i, P3) are bi-interpretable with
first order arithmetic. The structure (G,≤m) can encode (N, plus, times).

7 Discussion and Future Work

7.1 Decidability and Descriptive Complexity

An obvious corollary of our results is that the theories of the orders consid-
ered are undecidable, but it is natural to ask what the decidable fragments are.
One may consider various restrictions: syntactic ones such as the ∀∗∃∗ fragment,
subclasses of graphs such as trees (T ,≤s) or restrict the order e.g. theory of
the covering relation Th(G, ucs). There is much work on general frameworks
for graph theory, especially extremal graph theory, whose focus is on homomor-
phisms. In particular Hatami’s paper [6] on the undecidability of inequalities over
homomorphism densities underlines the difficulty of answering general questions
about graphs. If our interest is in only obtaining undecidability results, ideas of
recursive inseparability and other techniques (see [5]) may be more apt.

We also note that there is a large body of work on descriptive complexity [7],
which takes the graph-as-a-model point of view. How definable families in our
approach compare with the above is a matter of interest. In particular, every
constant can be defined in the subgraph order using the methods of Wires [19],
just as they can in descriptive complexity.

7.2 Extensions, Interdefinability and Graph Theory

We do not know if subgraph is definable using minor or vice versa. However, if
we add the predicate sameSize(x, y) which stands for x and y have the same
number of edges, we can define subgraph using minor as shown below:

Suppose that x is a subgraph of y. Then we can think of y as being built
from x in two steps. In the first step, we add to x a number of isolated points
to give x′ such that |x′|gr = |y|gr. In the second step, we only add extra edges
to x′ to get y.
We can formalize the two step construction as follows:

x ≤s y :=∃x′ vertdesc(x′, x) ∧ edgedesc(y, x′); where
edgedesc(x, y) :=y ≤m x ∧ |x|gr = |y|gr
vertdesc(x, y) :=y ≤m x ∧ samesize(x, y)
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Such extensions also have serious implications for the kind of graph theoretic
statements that can be made. This is because, though the structure of graph
orders is rich, they have limited access to the “inner structure” of a graph. For
instance, it is not clear how minimum degree of a graph can be defined using
graph orders. We already know that we can do arithmetic over the order of a
graph. By adding the predicate sameSize(x, y), we can do arithmetic over the
size. Consequently, concepts of minimum and average degree can be expressed
and theorems about them written in the extended language. We can capture the
size of a graph using sameSize:

||x||gr = n := N (n) ∧ ∃y C(y) |y|gr = n ∧ sameSize(x, y)

Minimum degree of a graph

minDeg(x, y) :=N (x) ∧ ∃z deleteNeighbours(y, z)
∧ ∀z′ deleteNeighbours(y, z′) ⊃ ||z′||gr ≤s ||z||gr
∧ x = ||z||gr; where

deleteNeighbours(y, z) :=z ≤s y ∧ hasIso(z) ∧ |z|gr = |y|gr
hasIso(x) :=∃y ucs(x, y) ∧ |y|gr <s |x|gr

Average degree of a graph (integer ceiling)

�AvgDeg(x, y)� :=N (x) ∧ (||y||gr ≤s x × |y|gr)
∧ ∀z (N (z) ∧ z <s x) ⊃ (z × |y|gr <s ||y||gr)

We can also define �AvgDeg(x, y)� i.e. the floor instead of the ceiling defined
above. Modifying the definition above by dividing by two gives us floor and ceil-
ing versions of number of edges per vertex i.e. �ε(x, y)� and �ε(x, y)� respectively.

Theorem 9 (Diestel, Proposition 1.2.2 [3]). Every graph g with at least one
edge has a subgraph g′ with δ(g′) > �ε(g′)� ≥ �ε(g)� (where δ denotes minimum
degree):

∀x ¬N (x) ⊃ ∃y y ≤s x ∧ �ε(y)� <s minDeg(y) ∧ �ε(x)� ≤s �ε(y)�

7.3 Differences in Definability

From the work of Wires [19] it is known that all the graph families we defined
in Lemmas 1 and 3 and many more are definable in (G,≤i, P3). Thus they are
definable in all three orders. But as we saw, while maximum degree was definable
easily in subgraph, it takes more work in minor. Similarly, though cardinality
is trivial in minor and subgraph, it seems to take much more work to define
in induced subgraph. On the other hand, here is a predicate definable easily in
induced minor which we do not know how to define in the other two :
α(n, x) iff n ∈ N and |n| is the independence number of x.

α(n, x) := N (n) ∧ n ≤i x ∧ ∀y (N (y) ∧ y ≤i x) ⊃ y ≤i n
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Perhaps the most interesting direction of work lies in pinning down these dif-
ferences, especially as pertains to the definability of predicates which are impor-
tant from the point of view of graph theory and to determine what part of
the“inner structure” of graphs can be determined by their relationships with
other graphs. For this, we need to develop tools to prove indefinability, which is
a challenging task.

Appendix

Proof of Lemma 2

Lemma 2: Let xn be an tree with at most one degree 3 node and no node of
degree 4 or more. Then for any other graph x0, xn ≤m x0 iff xn ≤s x0.

We prove the result by induction on the number of contraction operations in
transforming x0 to xn.
Base Case: There are no contraction operations, there is nothing to be done.

For the induction step there are two cases we consider:

Case 1 : xn has no degree 3 node. Let xn be a path u0, u1, ..., um. Let o1, .., on
be the sequence of minor operations in normal form with xi being obtained
from xi−1 via operation oi. on must be a contraction operation (else all opera-
tions are deletions and we are done). Therefore xn−1 is either a path of length
m + 1 or a graph such that V (xn−1) = V (xn) ∪ {u′} and there exists an i with
E(xn−1) = E(xn)∪{u′ui} or E(xn−1) = E(xn)∪{u′ui, u

′ui+1}. In all cases, we
can delete an endpoint of xn−1 or u′ respectively in order to obtain xn. Thus
there is a sequence o1, .., on−1, o

′
n of operations (o′

n is a deletion) to obtain xn

from x0. Since this sequence has a smaller number of contractions, by induction
hypothesis, xn is a subgraph of x0.

Case 2 : xn has exactly one degree three node. Let xn consist of a degree 3 node
u with paths p1, p2, p3. As before, consider the sequence of minor operations. In
one case xn−1 is a graph with a degree 3 node attached to three paths exactly
one of which has length one more than previously. We can delete the end point
of the appropriate path to get xn from xn−1. Another possibility is that xn−1 is
a graph with a vertex u′ /∈ V (xn) such that u′ is attached to either one or two
adjacent points of one of the paths p1, p2, p3. As before, we can delete u′ to get
xn from xn−1. Then by induction hypothesis xn is a subgraph of xn−1.

Proof of Maximum Degree Definability in Theorem 4

Theorem 4: Connectivity, maximum degree and maximum path length are de-
finable in minor.

In order to apply observation 2, we construct the following family:
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S∪N (x) iff x is formed by addition of some arbitrary number of isolated vertices
to a star.

S ∪ N (x) :=F(x) ∧ ∃y hasStarComp(y, x) ∧ onlystar(x, y)
where

hasStarComp(y, x) :=S(y) ∧ y ≤m x ∧ ∀z conn(z) ∧ z ≤m x ⊃ z ≤m y

onlyStar(x, y) :=∀x′ F(x′) ∧ |x′|gr = |x|gr ∧ ucm(x′, x) ⊃
∀y′ (conn(y′) ∧ y′ ≤m x′) ⊃ ucm(|y′|gr, |y|gr)

onlyStarComp asserts that y is a star minor of x and in addition, every con-
nected minor of x is also a minor of y. To fulfill this condition, x has to contain
y as a connected component.

onlyStar asserts that any forest x′ which is formed by adding an edge to x
(by observation 2) has the property that all its connected minors have order one
more than the order of y.

Clearly, any graph formed by adding isolated vertices to a star has these
properties.

S ∪ N subGraph states that there is a subgraph y of x which is a S ∪ N of
same order as x. Note that for Sn ∪ Nm and Sn′ ∪ Nm′ with n + m = n′ + m′,
Sn ∪ Nm ≤m Sn′ ∪ Nm′ iff n ≤ n′. Thus maximal y satisfying the formula
S∪N subGraph contains the largest star occuring as a subgraph of x. We extract
the star from this object to obtain the maximum degree of x.

Proof of Lemma 4

Lemma 4: The following predicates are definable in first order arithmetic:

1. nchoose2(n, x) iff x =
(
n
2

)
where

(
n
2

)
= n × (n − 1)/2.

nchoose2(n, x) := 2 × x + n = n2.

2. div(n, x, y) iff n is the quotient when x is divided by y; denoted n = x/y.
div(n, x, y) := ∃z x = y × n + z ∧ z < y

3. rem(n, x, y) iff n is the remainder when x is divided by y; denoted n =
rem(x, y). rem(n, x, y) := ∃z x = y × z + n ∧ n < y
We note that the exponentiation relation xy = z is known to be definable in
arithmetic (see [13]).

4. pow2(i, x) iff x = 2i.
pow2(i, x) := ∃y y = 2 ∧ yi = x

5. bit(i, x) iff the ith bit of the binary representation of x is a 1.
bit(i, x) := rem(x, 2i) = rem(x, 2i−1)

6. length(n, x) iff the length of the binary representation of x is n. We will
denote this unique n by |x|.
length(n, x) := bit(n, x) ∧ ∀n′ n < n′ ⊃ ¬bit(n′, x)
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Details of Subsection 6.1

graphOrder(x, n) iff n ∈ N and the order of x is |n|.

graphOrder(x, n) := isGraph(x) ∧ 2 × |x| = 2 + n × (n − 1)

We will denote by |gx| the order of the graph represented by x.
edgeExists(x, i, j) iff x denotes a graph and vivj ∈ E(gx).

edgeExists(x, i, j) :=∃n graphOrder(x, n) ∧
((1 ≤ i < j ≤ n ∧ bit((2ni − 2n − i2 − i + 2j)/2, x))

∨ (1 ≤ j < i ≤ n ∧ bit((2nj − 2n − j2 − j + 2i)/2, x))

By doing some counting, we can see that the tuple {vi, vj}, i < j occurs at bit
position (2ni − 2n − i2 − i + 2j)/2 = n(n − 1)/2 − (n − i)(n − i + 1)/2 + j − i.

Defining Permutations and Isomorphism. Any permutation of vertices of a ver-
tex labelled graph induces a permutation on the edges of a graph. To identify
all numbers which represent the same graph under our encoding, we will need
to represent permutations on [n] and their actions.

perm(x, n) iff x represents a permutation on [n].

perm(x, n) :=|x| = 1 + n × �log(n)� ∧ ∀i 1 ≤ i ≤ n ∃!j 1 ≤ j ≤ n

i = (rem(x, 2j |n|) − rem(x, 2(j−1) |n|))/2(j−1)|n|

We represent a permutation by a bit string which is of length n × �log(n)� + 1,
note that �log(n)� is the same as |n| i.e. the length of the string n. The most
significant digit is to be ignored, after which every block of �log(n)� bits repre-
sents a number from 1 to n. In addition, every such block must be unique (in
order to guarantee that it is a permutation). The permutation sends i ∈ [n] to
the number represented by the ith block from the left. The formula checks that
every i ∈ [n] is obtained from a unique block j ∈ [n].

applyperm(x, i, j, n) iff x is a permutation on [n] and sends i to j for i, j ∈ [n].

applyperm(x, i, j, n) :=perm(x, n) ∧
(rem(x, 2(n−i+1)|n|) − rem(x, 2(n−i)|n|))/2(n−i)|n| = j

We can now define the isomorphism of graphs:

sameGraph(x, y) := ∃n |x| = |y| = 1 +
(

n

2

)
∧ ∃z perm(z, n) ∧

∀i ∀j 1 ≤ i < j ≤ n ⊃ (edgeExists(x, i, j) ⇐⇒ (∃i′∃j′ applyPerm(z, i, i′, n)
∧ applyPerm(z, j, j′, n) ∧ edgeExists(y, i′, j′) ))
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The formula states that for x and y to represent the same graph, there must exist
a permutation z such that for any tuple {vi, vj} of vertices of x, vivj ∈ E(gx) iff
vz(i)vz(j) ∈ E(gy).
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