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Abstract. Bishop’s notion of function space, here called Bishop space, is
a function-theoretic analogue to the classical set-theoretic notion of topo-
logical space. Bishop introduced this concept in 1967, without exploring
it, and Bridges revived the subject in 2012. The theory of Bishop spaces
can be seen as a constructive version of the theory of the ring of contin-
uous functions. In this paper we define various notions of embeddings of
one Bishop space to another and develop their basic theory in parallel
to the classical theory of embeddings of rings of continuous functions.
Our main result is the translation within the theory of Bishop spaces
of the Urysohn extension theorem, which we show that it is construc-
tively provable. We work within Bishop’s informal system of constructive
mathematics BISH, inductive definitions with countably many premises
included.
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1 Introduction

The theory of Bishop spaces (TBS) is a constructive approach to general topology
based on the notion of function space, here called Bishop space, that it was
introduced by Bishop in [1], p. 71, but it was not really studied until Bridges’s
paper [7], that was followed by Ishihara’a paper [16], and our development of
TBS in [22–24]. The main characteristics of TBS are the following:

1. Points are accepted from the beginning, hence it is not a point-free approach
to topology.

2. Most of its notions are function-theoretic. Set-theoretic notions are avoided
or play a secondary role to its development.

3. It is constructive. We work within Bishop’s informal system of constructive
mathematics BISH (see [4,5]), inductive definitions with rules of countably
many premises included, a system connected to Martin-Löf’s constructivism
[17] and type theory [18]. The underlying logic of BISH is intuitionistic, while
Myhill’s system CST∗ of constructive Set Theory with inductive definitions,
or Martin-Löf’s extensional type theory, can be considered as formalizations
of its underlying set theory.

c© Springer International Publishing Switzerland 2016
S. Artemov and A. Nerode (Eds.): LFCS 2016, LNCS 9537, pp. 299–316, 2016.
DOI: 10.1007/978-3-319-27683-0 21



300 I. Petrakis

4. It has simple foundation and it follows the style of standard mathematics.

In other words, TBS is an approach to constructive point-function topology. The
main motivation behind the introduction of Bishop spaces is that function-based
concepts suit better to constructive study rather than set-based ones. Instead
of having space-structures on a set X and R, that determine a posteriori which
functions of type X → R are continuous with respect to them, we start from a
given class of “continuous” functions of type X → R that determines a posteriori
a topological space-structure on X. “Continuity” in TBS is a primitive notion,
a starting point similar to Spanier’s theory of quasi-topological spaces in [27], or
to the theory of limit spaces of Fréchet in [13].

TBS permits a “communication” with the classical theory of the rings of
continuous functions, since many concepts, questions and results from the clas-
sical theory of C(X), where X is a topological space, can be translated into
TBS. Although this communication does not imply a direct translation from
the theory of C(X) to TBS, since the logic of TBS is intuitionistic, it is one of
the features of TBS which makes it, in our view, so special as an approach to
constructive topology. One could see TBS as an abstract, constructive version
of the classical theory of C(X), which we hope to be of interest to a classical
mathematician too.

In this paper we develop the constructive basic theory of embeddings of
Bishop spaces in parallel to the classical basic theory of embeddings of rings of
continuous functions which is found in the book [11] of Gillman and Jerison. Our
main result is the incorporation of the fundamental Urysohn extension theorem
within the theory of embeddings of Bishop spaces.

2 Basic Definitions and Facts

In order to be self-contained we include in this section some basic definitions
and facts necessary to the rest of the paper, that are partly found in [23]. For
all proofs not included in this paper we refer to [24].

If X,Y are sets and R is the set of the constructive reals, we denote by
F(X,Y ) the functions of type X → Y , by F(X) the functions of type X → R,
by Fb(X) the bounded elements of F(X), and by Const(X) the subset of F(X)
of all constant functions a, where a ∈ R. A function φ : R → R is called Bishop-
continuous, if φ is uniformly continuous on every bounded subset of R, and we
denote their set by Bic(R). If f, g ∈ F(X), ε > 0, and Φ ⊆ F(X), we define
U(g, f, ε) and U(Φ, f) by

U(g, f, ε) := ∀x∈X(|g(x) − f(x)| ≤ ε),

U(Φ, f) := ∀ε>0∃g∈Φ(U(g, f, ε)).

Definition 1. A Bishop space is a pair F = (X,F ), where X is an inhabited
set and F ⊆ F(X), a Bishop topology on X, or simply a topology on X, satisfies
the following conditions:
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(BS1) a ∈ R → a ∈ F .
(BS2) f ∈ F → g ∈ F → f + g ∈ F .
(BS3) f ∈ F → φ ∈ Bic(R) → φ ◦ f ∈ F ,

X R

R.

...................................................................................................... ........... ............
f

..................................................................................................... ..........
..
.........
...

φ ∈ Bic(R)

............................................................................................................................................................................ .........
...

F 	 φ ◦ f

(BS4) f ∈ F(X) → U(F, f) → f ∈ F .

Bishop used the term function space for F and topology for F . Since the
former is used in many different contexts, we prefer the term Bishop space for
F , while we use the latter, as the topology of functions F on X corresponds nicely
to the standard topology of opens T on X. Using BS2 and BS3 we get that if
F is a topology on X, then fg, λf , −f , max{f, g} = f ∨ g, min{f, g} = f ∧ g
and |f | ∈ F , for every f, g ∈ F and λ ∈ R. By BS4 F is closed under uniform
limits, where fn

u→ f denotes that f is the uniform limit of (fn)n∈N. Moreover,
Const(X) ⊆ F ⊆ F(X), where Const(X) is the trivial topology on X and F(X)
is the discrete topology on X. If F is a topology on X, the set Fb of all bounded
elements of F is also a topology on X that corresponds to the ring C∗(X) of
the bounded elements of C(X), for some topological space X. It is easy to see
that Bic(R) is a topology on R, and the structure R = (R,Bic(R)) is the Bishop
space of reals.

The importance of the notion of a Bishop topology lies on Bishop’s inductive
concept of the least topology including a given subbase F0, found in [1], p. 72,
and in [4], p. 78, where the definitional clauses of a Bishop topology are turned
into inductive rules.

Definition 2. The least topology F(F0) generated by a set F0 ⊆ F(X), called a
subbase of F(F0), is defined by the following inductive rules:

f0 ∈ F0

f0 ∈ F(F0)
,

a ∈ R

a ∈ F(F0)
,

f, g ∈ F(F0)
f + g ∈ F(F0)

,

f ∈ F(F0), φ ∈ Bic(R)
φ ◦ f ∈ F(F0)

,
(g ∈ F(F0), U(g, f, ε))ε>0

f ∈ F(F0)
.

If F0 is inhabited, then the rule of the inclusion of the constant functions is
redundant to the rule of closure under composition with Bic(R). The most com-
plex inductive rule above can be replaced by the rule
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g1 ∈ F(F0) ∧ U(g1, f, 1
2 ), g2 ∈ F(F0) ∧ U(g2, f, 1

22 ), . . .
f ∈ F(F0)

,

which has the “structure” of Brouwer’s �-inference with countably many condi-
tions in its premiss (see e.g., [19]). The above rules induce the following induction
principle IndF on F(F0):

∀f0∈F0(P (f0)) →
∀a∈R(P (a)) →
∀f,g∈F(F0)(P (f) → P (g) → P (f + g)) →
∀f∈F(F0)∀φ∈Bic(R)(P (f) → P (φ ◦ f)) →
∀f∈F(F0)(∀ε>0∃g∈F(F0)(P (g) ∧ U(g, f, ε)) → P (f)) →
∀f∈F(F0)(P (f)),

where P is any property on F(X). Hence, starting with a constructively accept-
able subbase F0 the generated least topology F(F0) is a constructively graspable
set of functions exactly because of the corresponding principle IndF . Despite
the seemingly set-theoretic character of the notion of a Bishop space the core of
TBS is the study of the inductively generated Bishop spaces. For example, since
idR ∈ Bic(R), where idR is the identity on R, we get by the closure of F(idR)
under BS3 that Bic(R) = F(idR). Moreover, most of the new Bishop spaces
generated from old ones are defined through the concept of the least topology.
A property P on F(X) is lifted from a subbase F0 to the generated topology
F(F0), if

∀f0∈F0(P (f0)) → ∀f∈F(F0)(P (f)).

It is easy to see inductively that boundedness is a lifted property. If (X, d) is
a metric space and the elements of F0 are bounded and uniformly continuous
functions, then uniform continuity is also a lifted property.

Since Bishop did not pursue a constructive reconstruction of topology in [1],
he didn’t mention IndF , or some related lifted property. Apart from the notion of
a Bishop space, Bishop introduced in [1], p. 68, the inductive notion of the least
algebra B(B0,F ) of Borel sets generated by a given set B0,F of F -complemented
subsets, where F is an arbitrary subset of F(X). Since this notion was central
to the development of constructive measure theory in [1], Bishop explicitly men-
tioned there the corresponding induction principle IndB on B(B0,F ) and studied
specific lifted properties in that setting. Brouwer’s inductive definition of the
countable ordinals in [8] and Bishop’s inductive notion of a Borel set were the
main non-elementary inductively defined classes of mathematical objects used
in constructive mathematics and motivated the formal study of inductive def-
initions in the 60 s and the 70 s (see [9]). Since then the use of inductive def-
initions in constructive mathematics and theoretical computer science became
a common practice. In [3] Bishop and Cheng developed though, a reconstruc-
tion of constructive measure theory independently from the inductive definition
of Borel sets, that replaced the old theory in [4]. In [2] Bishop, influenced by
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Gödel’s Dialectica interpretation, discussed a formal system Σ that would “effi-
ciently express” his informal system of constructive mathematics. Since the new
measure theory was already conceived and the theory of Bishop spaces was not
elaborated at all, Bishop found no reason to extend Σ to subsume inductive
definitions. In [20] Myhill proposed instead the formal theory CST of sets and
functions to codify [1]. He also took Bishop’s inductive definitions at face value
and showed that the existence and disjunction properties of CST persist in the
extended with inductive definitions system CST∗.

Definition 3. If F = (X,F ) and G = (Y,G) are Bishop spaces, a Bishop mor-
phism, or simply a morphism, from F to G is a function h : X → Y such that
∀g∈G(g ◦ h ∈ F )

X Y

R.

...................................................................................................... ........... ............h

..................................................................................................... ..........
..
.........
...

g ∈ G

............................................................................................................................................................................ .........
...

F 	 g ◦ h

We denote by Mor(F ,G) the set of morphisms from F to G, which are the
arrows in the category of Bishop spaces Bis. It is easy to see that if F =
(X,F ) is a Bishop space, then F = Mor(F ,R). If F = (X,F ) and G0 =
(Y,F(G0)) are Bishop spaces, a function h : X → Y ∈ Mor(F ,G0) if and only if
∀g0∈G0(g0 ◦ h ∈ F )

X Y

R,

...................................................................................................... ........... ............h

..................................................................................................... ..........
..
.........
...

g0 ∈ G0

............................................................................................................................................................................ .........
...

F 	 g0 ◦ h

a very useful property that it is proved inductively and we call the lifting of
morphisms. If h ∈ Mor(F ,G) is onto Y , then h is called a set-epimorphism,
and we denote their set by setEpi(F ,G). We call some h ∈ Mor(F ,G) open, if
∀f∈F ∃g∈G(f = g ◦ h). Clearly, if h ∈ Mor(F ,G) such that h is 1-1 and onto Y ,
then h−1 ∈ Mor(G,F) if and only if h is open. In this case h is called an isomor-
phism between F and G. In [23] we showed that in the case of a set-epimorphism
h, openness of h is also a lifted property.

Definition 4. If F = (X,F ) is a Bishop space and A ⊆ X is inhabited, the
relative Bishop space of F on A is the structure F|A = (A,F|A), where F|A :=
F({f|A | f ∈ F}). We also call F|A a subspace of F . If F = (X,F ) and G =
(Y,G) are given Bishop spaces, their product is the structure F × G = (X ×
Y, F × G), where F × G := F({f ◦ π1 | f ∈ F} ∪ {g ◦ π2 | g ∈ G}), and π1, π2

are the projections of X × Y to X and Y , respectively.
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If F0 is a subbase of F , we get inductively that F|A = F({f0|A | f0 ∈ F0}). It is
straightforward to see that F × G satisfies the universal property for products
and that F × G is the least topology which turns the projections π1, π2 into
morphisms. If F0 is a subbase of F and G0 is a subbase of G, then we get
inductively that F(F0) × F(G0) = F({f0 ◦ π1 | f0 ∈ F0} ∪ {g0 ◦ π2 | g0 ∈ G0}).
Consequently, Bic(R) × Bic(R) = F({idR ◦ π1} ∪ {idR ◦ π2}) = F(π1, π2). The
arbitrary product

∏
i∈I Fi of a family (Fi)i∈I of Bishop spaces indexed by some I

is defined similarly. Using the lifting of morphisms it is easy to show the following
proposition.

Proposition 1. Suppose that F = (X,F ), G = (Y,G), H = (Z,H) are Bishop
spaces and A ⊆ X, B ⊆ Y .

(i) j ∈ Mor(H,F ×G) if and only if π1◦j ∈ Mor(H,F) and π2◦j ∈ Mor(H,G).
(ii) If e : X → B, then e ∈ Mor(F ,G) ↔ e ∈ Mor(F ,G|B).
(iii) (F × G)|A×B = F|A × G|B.

Note that Proposition 1(i) and (iii) hold for arbitrary products too. If Fi =
(Xi, Fi) is a family of Bishop spaces indexed by some inhabited set I and x =
(xi)i∈I ∈

∏
i∈I Xi, then the slice S(x; j) through x parallel to xj , where j ∈ I, is

the set S(x; j) := Xj ×
∏

i�=j{xi} ⊆
∏

i∈I Xi of all I-tuples where all components
other the j-component are the ones of x, while the j-component ranges over
Xj . The next fact is used in the proof of the Proposition 11 and it is a direct
consequence of the Proposition 1.

Proposition 2. If Fi = (Xi, Fi) is a family of Bishop spaces indexed by some
inhabited set I and x = (xi)i∈I ∈

∏
i∈I Xi, then the function sj : Xj → S(x; j),

defined by xj �→ xj ×
∏

i�=j{xi}, where S(x; j) is the slice through x parallel
to xj, is an isomorphism between Fj and S(x; j) = (S(x; j), F (x; j)), where
F (x; j) = (

∏
i∈I Fi)|S(x;j).

Definition 5. If G = (Y,G) is a Bishop space, X is an inhabited set and θ :
X → Y , the weak topology F (θ) on X induced by θ is defined as F (θ) := F({g ◦
θ | g ∈ G}). The space F(θ) = (X,F (θ)) is called the weak Bishop space on
X induced by θ. If F = (X,F ) is a Bishop space, Y is an inhabited set and
e : X → Y is onto Y , the set of functions Ge := {g ∈ F(Y ) | g ◦ e ∈ F} is
a topology on Y . We call Ge = (Y,Ge) the quotient Bishop space, and Ge the
quotient topology on Y , with respect to e.

The weak topology F (θ) is the least topology on X which makes θ a morphism.
If θ is onto Y , then θ ∈ setEpi(F(θ),G), and by the lifting of openness we get
that F (θ) = {g ◦ θ | g ∈ G}, a fact that we use in the proof of the Proposition 6.
In analogy to classical topology, the quotient topology Ge is the largest topology
on Y which makes e a morphism.

In [4], pp. 91–92, it is shown1 that if D ⊆ X is a dense subset of the metric
space X, Y is a complete metric space, and f : D → Y is uniformly continuous
1 The uniqueness property is included, for example, in [21], p. 238.
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with modulus of continuity ω, then there exists a unique uniform continuous
extension g : X → Y of f with modulus of continuity 1

2ω. The next lemma is a
useful generalization of it2 that we proved in [24] and we use it here in the proof
of the Proposition 3(vi).

Lemma 1. Suppose that X is an inhabited metric space, D ⊆ X is dense in
X and Y is a complete metric space. If f : D → Y is uniformly continuous on
every bounded subset of D, then there exists a unique extension g : X → Y of
f which is uniformly continuous on every bounded subset of X with modulus of
continuity ωg,B(ε) = 1

2ωf,B∩D(ε), for every inhabited, bounded and metric-open
subset B of X. Moreover, if f is bounded by some M > 0, then g is also bounded
by M .

Within BISH a compact metric space is defined as a complete and totally
bounded space. A locally compact metric space X is a space in which every
bounded subset of X is included in a compact one. If X is locally compact, the
set Bic(X), defined like Bic(R), is a topology on X. Using the definition of a con-
tinuous function on a locally compact metric space, given in [4], p. 110, Bishop’s
formulation of the Tietze theorem for metric spaces becomes as follows.

Theorem 1. Let Y be a locally compact subset of a metric space X and I ⊂ R

an inhabited compact interval. Let f : Y → I be uniformly continuous on the
bounded subsets of Y . Then there exists a function g : X → I which is uniformly
continuous on the bounded subsets of X, and which satisfies g(y) = f(y), for
every y ∈ Y .

Corollary 1. If Y is a locally compact subset of R and g : Y → I ∈ Bic(Y ),
where I ⊂ R is an inhabited compact interval, then there exists a function φ :
R → I ∈ Bic(R) which satisfies φ(y) = g(y), for every y ∈ Y .

We use the Corollary 1 in the proof of the Propositions 3(v) and 8, while in [24]
we used it to show the following fundamental fact, which is used here in the
proof of the Proposition 9.

Theorem 2. Suppose that (X,F ) is a Bishop space and f ∈ F such that f ≥ c,
for some c > 0. Then, 1

f ∈ F .

2 According to Bishop and Bridges [4], p. 85, if B ⊆ X, where (X, d) is an inhabited
metric space, B is a bounded subset of X, if there is some x0 ∈ X such that B∪{x0}
with the induced metric is a bounded metric space. If we suppose that the inclusion
map of a subset is the identity (see [4], p. 68), the induced metric on B ∪ {x0} is
reduced to the relative metric on B∪{x0}. We may also denote a bounded subset B
of an inhabited metric space X by (B, x0,M), where M > 0 is a bound for B∪{x0}.
If (B, x0,M) is a bounded subset of X then B ⊆ B(x0,M), and (B(x0,M), x0, 2M)
is also a bounded subset of X. I.e., a bounded subset of X is included in an inhabited
bounded subset of X which is also metric-open i.e., it includes an open ball of every
element of it.
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Definition 6. If (X,F ) is a Bishop space, the relations defined by

x1 �F x2 :↔ ∃f∈F (f(x1) �R f(x2)),

A �F B :↔ ∃f∈F ∀a∈A∀b∈B(f(a) = 0 ∧ f(b) = 1)

where x1, x2 ∈ X, a �R b :↔ a > b ∨ a < b ↔ |a − b| > 0, for every a, b ∈ R,
and A,B ⊆ X, are the canonical point-point and set-set apartness relations on
X. If � is a point-point apartness relation on X3, F is called �-Hausdorff,
if �⊆�F . The F -zero sets Z(F ) of (X,F ) are the subsets of X of the form
ζ(f) = {x ∈ X | f(x) = 0}, where f ∈ F .

In [24] we showed within BISH that Z(F ) is closed under countably infinite
intersections, and the sets [f ≤ a] = {x ∈ X | f(x) ≤ a}, [f ≥ a] = {x ∈ X |
f(x) ≥ a}, where a ∈ R, are in Z(F ). We also used the Theorem 2 to show the
Urysohn lemma for the zero sets of a Bishop space. According to the classical
Urysohn lemma for C(X)-zero sets, the disjoint zero sets of any topological space
X are separated by some f ∈ C(X) (see [11], p. 17). Constructively, we need to
replace the negative notion of disjointness of two zero sets by a positive notion.

Theorem 3 (Urysohn Lemma for F -Zero Sets). If (X,F ) is a Bishop space
and A,B ⊆ X, then A �F B ↔ ∃f,g∈F ∃c>0(A ⊆ ζ(f) ∧ B ⊆ ζ(g) ∧ |f | +
|g| ≥ c).

3 Embeddings of Bishop Spaces

If G,F are Bishop spaces, the notions “G is embedded in F” and “G is bounded-
embedded in F” translate into TBS the notions “Y is C-embedded in X” and
“Y is C∗-embedded in X”, for some Y ⊆ X and a given topology of opens T on
X (see [11], p. 17). If F is a topology on X, f ∈ F and a, b ∈ R such that a ≤ b,
we say that a, b bound f , if ∀x∈X(a ≺ f(x) ≺ b), where ≺∈ {<,≤}.

Definition 7. If F = (X,F ), G = (Y,G) are Bishop spaces and Y ⊆ X, then

(i) G is embedded in F , if ∀g∈G∃f∈F (f|Y = g).
(ii) G is bounded-embedded in F , if Gb is embedded in Fb.
(iii) G is full bounded-embedded in F , if G is bounded-embedded in F , and for

every g ∈ Gb, if a, b bound g, then a, b bound some extension f of g in Fb.
(iv) G is dense-embedded in F , if ∀g∈G∃!f∈F (f|Y = g).
(v) G is dense-bounded-embedded in F and G is dense-full bounded-embedded in

F are defined similarly to (iv).
(vi) F extends G, if ∀f∈F (f|Y ∈ G).

3 See definition 2.1 in [4], p. 72. It is also easy to see that a �R b ↔ a �Bic(R) b, for
every a, b ∈ R.
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Clearly, (X,G) is embedded in (X,F ) if and only if G ⊆ F . The Definition 7(vi)
is necessary, since a topology F on some X does not necessarily behave like
C(X), where every f ∈ C(X) restricted to Y belongs to C(Y ). By the definition
of the relative Bishop space we get immediately that F extends F|Y . If G is
embedded in F , then G′ is embedded in F , where G′ = (Y,G′) and G′ ⊆ G. If
(X,F ) is a Bishop space and Y ⊆ X, a retraction of X onto Y is a function
r : X → Y such that r(y) = y, for every y ∈ Y , and r ∈ Mor(F ,F|Y ). In this
case Y is called a retract of X. For example, the Cantor space with the product
topology on (2, F(2)) is a retract of the Baire space with the product topology
on (N, F(N)).

Proposition 3. Suppose that Y ⊆ X and � is a point-point apartness relation
on X.

(i) (Y,Const(Y )) is embedded in every Bishop space (X,F ).
(ii) If ∀x∈X(x ∈ Y ∨ x /∈ Y ), then (Y, F(Y )) is embedded in (X, F(X)).
(iii) If Y = {x1, . . . , xn}, where xi � xj, for every i �= j ∈ {1, . . . , n}, and F

is a topology on X which is �-Hausdorff, then (Y, F(Y )) is full bounded-
embedded in (X,F ).

(iv) (N, F(N)) is full bounded-embedded in (Q,Bic(Q)).
(v) If X = R and Y is locally compact, then (Y,Bic(Y )) is bounded-embedded

in R.
(vi) If X is a locally compact metric space and Y is dense in X, then (Y,Bic(Y ))

is dense-embedded and dense-bounded-embedded in (X,Bic(X)).
(vii) If F is a topology on X and Y is a retract of X, then F|Y is embedded in F .

Proof. (i) and (ii) are trivial. To show (iii) we fix some g ∈ F(Y ) and let g(xi) =
ai, for every i. If we consider the (n − 1) + (n − 2) + . . . + 1 functions fij ∈ F
such that fij(xi) �R fij(xj), for every i < j, then the function f on X, defined
by f(x) :=

∑n
i=1 aiAi(x), where

Ai(x) :=
n∏

k=i+1

fik(x) − fik(xk)
fik(xi) − fik(xk)

i−1∏

k=1

fki(xk) − fki(x)
fki(xk) − fki(xi)

,

is in F and Ai(xj) = 1, if j = i, Ai(xj) = 0, if j �= i. Hence, f extends g, and
clearly (Y, F(Y )) is full-bounded embedded in (X,F ). We need the �-Hausdorff
condition on F so that (fij(xi) − fij(xj)) �R 0 and then (fij(xi) − fij(xj)−1 is
well-defined, for every i < j.

(iv) If q is a rational such that q ≥ 0, there is a unique n ∈ N such that q ∈
[n, n+1). If g : N → R, we define φ∗(q) = γn(q), where γn : Q∩ [n, n+1) → R is
defined by γn(q) = (g(n+1)−g(n))q+(n+1)g(n)−g(n+1)n i.e., γn(Q∩[n, n+1))
is the set of the rational values in the linear segment between g(n) and g(n+1).
Of course, φ∗(n) = g(n). Next we define φ∗(q) = g(0), for every q < 0. To
show that φ∗ ∈ Bic(Q), and since φ∗ is constant on Q−, it suffices to show that
φ∗ ∈ Bic(Q+). For that we fix a bounded subset (B, q0,M) of Q+, where without
loss of generality M ∈ N. Since B ⊆ B(q0,M), we have that B ⊆ [n,N ], where
n,N ∈ N, n < N , q0−M ∈ [n, n+1) and q0+M ∈ [N,N+1). Each γi is uniformly
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continuous on [i, i+1)∩Q with modulus of continuity ωi(ε) = ε
|g(i+1)−g(i)|+1 , for

every ε > 0. Hence, φ∗ is uniformly continuous on B with modulus of continuity
ωφ∗,B(ε) = min{ωi(ε) | n ≤ i ≤ N}, for every ε > 0. If g is bounded, then by its
definition φ∗ is also bounded and if a, b bound g, then a, b bound φ∗.

(v) If M > 0 such that f(Y ) ⊆ [−M,M ], then we use the Corollary 1.
(vi) Since R is a complete metric space, we use the Lemma 1.
(vii) We show first that r is a quotient map i.e., F|Y = Gr = {g : Y → R |

g ◦ r ∈ F}. By the definition of r ∈ Mor(F ,F|Y ), we have that ∀g∈F|Y (g ◦ r ∈ F )
i.e., F|Y ⊆ Gr. For that we can also use our remark in Sect. 2 that the quotient
topology Gr is the largest topology such that r is a morphism. If g ∈ Gr, then
(g ◦r)|Y = g ∈ F|Y i.e., F|Y ⊇ Gr. Hence, if g ∈ F|Y = Gr, the function g ◦r ∈ F
extends g.

Proposition 4. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces and
Y ⊆ X. If G is embedded in F , then G is bounded-embedded in F .

Proof. We show that if g ∈ Gb and ∃f∈F (f|Y = g), then ∃f∈Fb
(f|Y = g); if

f extends g and |g| ≤ M , then h = (−M ∨ f) ∧ M ∈ Fb and h|Y = g. I.e.,
G is bounded-embedded in F , if ∀g∈Gb

∃f∈F (f|Y = g). Since Gb ⊆ G and G is
embedded in F , G is bounded-embedded in F .

There are trivial counterexamples to the converse of the previous proposition; if
Y is an unbounded locally compact subset of R, then by the Proposition 3(v)
(Y,Bic(Y )) is full bounded-embedded in Rb, while (Y,Bic(Y )) is not embedded
in Rb, since idY ∈ Bic(Y ) and any extension of idY is an unbounded function.

Proposition 5. If Z ⊆ Y ⊆ X, H = (Z,H), G = (Y,G), F = (X,F ) are
Bishop spaces, F extends G and G is embedded in F , then H is embedded in F
if and only if H is embedded in G.

Proof. If ∀h∈H∃f∈F (f|Z = h), we show that ∀h∈H∃g∈G(g|Z = h). If h ∈ H and
we restrict some f ∈ F which extends h to Y , we get an extension of h in G. For
the converse if h ∈ H, we extend it to some g ∈ G, and g is extended to some
f ∈ F , since G is embedded in F .

The next three propositions show how the embedding of G in F generates new
embeddings under the presence of certain morphisms.

Proposition 6. Suppose that F = (X,F ),G = (Y,G) and H = (B,H) are
Bishop spaces, where B ⊆ Y . If H is embedded in G and e ∈ setEpi(F ,G), then
the weak Bishop space F(e|A) on A = e−1(B) induced by e|A is embedded in F .

Proof. Since e : X → Y is onto Y , we have that e|A : A → B is onto B and
e|A ∈ setEpi(F(e|A),H), where by a remark following the definition of weak
topology in Sect. 2 we have that F (e|A) = {h ◦ e|A | h ∈ H}. If we fix some
h ◦ e|A ∈ F (e|A), where h ∈ H, then, since H is embedded in G, there is some
g ∈ G such that g|B = h. Since e ∈ setEpi(F ,G) ⊆ Mor(F ,G), we get that
g ◦ e ∈ F . If a ∈ A, then (g ◦ e)(a) = g(b) = h(b), where b = e(a). Since
(h ◦ e|A)(a) = h(e(a)) = h(b), we get that (g ◦ e)|A = h ◦ e|A i.e., F(e|A) is
embedded in F .
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Proposition 7. If F = (X,F ),G = (Y,G) H = (Z,H) are Bishop spaces,
Y ⊆ X, G is embedded in F and e ∈ Mor(F ,H) is open, then the quotient
Bishop space Ge|Y = (e(Y ), Ge|Y ) is embedded in H.

Proof. Let g′ : e(Y ) → R ∈ Ge|Y i.e., g′ ◦ e|Y ∈ G. Since G is embedded in F ,
there exists some f ∈ F such that f|Y = g′ ◦ e|Y . Since e is open, there exists
some h ∈ H such that f = h ◦ e. We show that h|e(Y ) = g′; if b = e(y) ∈ e(Y ),
for some y ∈ Y , then h(b) = h(e(y)) = f(y) = (g′ ◦ e|Y )(y) = g′(e(y)) = g′(b).

Next we translate to TBS the classical fact that if an element of C(X) carries a
subset of X homeomorphically onto a closed set S in R, then S is C-embedded
in X (see [11], p. 20).

Proposition 8. Suppose that A is a locally compact subset of R, F = (X,F ) is
a Bishop space, Y ⊆ X and f ∈ F such that f|Y : Y → A is an isomorphism
between F|Y and (A,Bic(A)b). Then F|Y is embedded in F .

Proof. Since f|Y is an isomorphism between F|Y and (A,Bic(A)b), its inverse θ
is an isomorphism between (A,Bic(A)b) and F|Y . We fix some g ∈ F|Y . Since
θ ∈ Mor((A,Bic(A)b),F|Y ), we have that g ◦ θ ∈ Bic(A)b. By the Corollary 1
there exists some φ ∈ Bic(R) which extends g ◦θ. By BS3 we have that φ◦f ∈ F
and for every y ∈ Y we have that (φ ◦ f)(y) = ((g ◦ θ) ◦ f)(y) = (g ◦ (θ ◦ f))(y) =
(g ◦ (θ ◦ f|Y ))(y) = (g ◦ id|Y )(y) = g(y).

If (X, T ) is a topological space and Y ⊆ X is C∗-embedded in X, then if Y is
also C-embedded in X, it is (completely) separated in C(X) from every C(X)-
zero set disjoint from it (see [11], pp. 19–20). If we add within TBS a positive
notion of disjointness between Y and ζ(f) though, we avoid the corresponding
hypothesis of G being embedded in F .

Definition 8. If F is a topology on X, f ∈ F and Y ⊆ X, we say that Y and ζ(f)
are separated, Sep(Y, ζ(f)), if ∀y∈Y (|f(y)| > 0), and Y and ζ(f) are uniformly
separated, Usep(Y, ζ(f)), if there is some c > 0 such that ∀y∈Y (|f(y)| ≥ c).

Of course, Usep(Y, ζ(f)) → Sep(Y, ζ(f)). If f, g ∈ F such that |f | + |g| ≥
c (see the formulation of the Theorem 3), then we get Usep(ζ(g), ζ(f)) and
Usep(ζ(f), ζ(g)). Since the sets U(f) = {x ∈ X | f(x) > 0}, where f ∈ F , are
basic open sets in the induced neighborhood structure on X by F (see [4], p.
77), we call Y a uniform Gδ-set, if there exists a sequence (fn)n in F such that
Y =

⋂
n∈N

U(f(n)) and Usep(Y, ζ(fn)), for every n ∈ N.

Proposition 9. If F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X, F
extends G, G is bounded-embedded in F , and f ∈ F , then Usep(Y, ζ(f)) → Y �F

ζ(f).

Proof. Since |f | ∈ F and F extends G, we have that |f ||Y ∈ G, and |f ||Y ≥ c.
By Theorem 2 we get that 1

|f ||Y ∈ G. Since 0 < 1
|f ||Y ≤ 1

c , we actually have that
1

|f ||Y ∈ Gb. Since G is bounded-embedded in F , there exists h ∈ F such that
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h|Y = 1
|f ||Y . Since |h| ∈ F satisfies |h||Y = 1

|f ||Y too, we suppose without loss of

generality that h ≥ 0. If we define g := h|f |, then g ∈ F , g(y) = h(y)|f(y)| =
1

|f(y)| |f(y)| = 1, for every y ∈ Y , and g(x) = h(x)|f(x)| = h(x)0 = 0, for every
x ∈ ζ(f).

Corollary 2. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X,
and G is full bounded-embedded in F . If Y is a uniform Gδ-set, then Y is an
F -zero set.

Proof. Suppose that Y =
⋂

n∈N
U(fn) and ∀y∈Y (|fn(y)| ≥ cn), where cn > 0,

for every n ∈ N. Since U(f) = U(f ∨ 0) and Usep(Y, ζ(f)) → Usep(Y, ζ(f ∨ 0)),
we assume without loss of generality that fn ≥ 0, for every n ∈ N. By the proof
the Proposition 9 we have that there is a function hn ∈ F such that hn ≥ 0,
(hnfn)(Y ) = 1 and (hnfn)(ζ(fn)) = 0, for every n ∈ N. Therefore, Y ⊆ ζ(gn),
where gn = (hnfn − 2

3 ) ∧ 0, for every n ∈ N. Next we show that ζ(gn) ⊆ U(fn),
for every n ∈ N. Since G is full bounded-embedded in F and according to the
proof the Proposition 9, 0 < 1

fn|Y
≤ 1

cn
, we get that 0 < hn ≤ 1

cn
. If z ∈ X

such that gn(z) = 0, then hn(z)fn(z) ≥ 2
3 , and since hn(z) > 0, we conclude

that fn(z) ≥ 2
3hn(z)

> 0. Thus, Y ⊆
⋂

n∈N
ζ(gn) ⊆

⋂
n∈N

U(fn) = Y , which
implies that Y =

⋂
n∈N

ζ(gn) = ζ(g), for some g ∈ F , since Z(F ) is closed under
countably infinite intersections.

Without the condition of G being full bounded-embedded in F in the previous
proposition we can show only that ¬(fn(z) = 0). Although fn(z) ≥ 0, we cannot
infer within BISH that fn(z) > 0; the property of the reals ∀x,y∈R(¬(x ≥ y) →
x < y) is equivalent to Markov’s principle (MP) (see [5], p. 14), and it is easy to
see that this property is equivalent to ∀x∈R(x ≥ 0 → ¬(x = 0) → x > 0). Next
we translate to TBS the classical result that if Y is C∗-embedded in X such that
Y is (completely) separated from every C(X)-zero set disjoint from it, then Y
is C-embedded in X. Constructively it is not clear, as it is in the classical case,
how to show that the expected positive formulation of the previous condition
provides an inverse to Proposition 4. The reason is that if (X,F ) is an arbitrary
Bishop space, it is not certain that tan ◦f ∈ F , for some f : X → (−π

2 , π
2 ) ∈ F

(note that tan−1 = arctan ∈ Bic(R)). If Φ1, Φ2 ⊆ F(X), we denote by Φ1 ∨ Φ2

the least topology including them. The proof of the interesting case of the next
theorem is in BISH + MP.

Theorem 4. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X,
a > 0, e : (−a, a) → R such that e−1 : R → (−a, a) ∈ Bic(R), and F(a) =
(X,F (a)), where

F (a) = F ∨ {e ◦ f | f ∈ F and f(X) ⊆ (−a, a)}.

(i) If G is full bounded-embedded in F , then G is embedded in F(a).
(ii) (MP) If ∀f∈F (Sep(Y, ζ(f)) → Y �F ζ(f)) and G is bounded-embedded in F ,

then G is embedded in F(a).
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Proof. We fix some g ∈ G. Since e−1 ∈ Bic(R), by the condition BS3 we have
that e−1 ◦ g : Y → (−a, a) ∈ Gb. Since G is bounded-embedded in F , there is
some f ∈ Fb such that f|Y = e−1 ◦ g.

(i) If G is full bounded-embedded in F , then we have that f : X → (−a, a).
Hence, e ◦ f ∈ F (a), and (e ◦ f)|Y = e ◦ f|Y = e ◦ (e−1 ◦ g) = g.

(ii) In [24] we showed within BISH that [|f | ≥ a] = {x ∈ X | |f |(x) ≥ a} =
ζ(f∗), where f∗ = (|f |−a)∧0 ∈ F . If y ∈ Y , then |f∗(y)| = |(|f(y)|−a)∧0| =
|(|(e−1 ◦ g)(y)| − a) ∧ 0| = ||(e−1 ◦ g)(y)| − a| = a − |(e−1 ◦ g)(y)| > 0, since
|(e−1 ◦ g)(y)| ∈ [0, a) (if −a < x < a, then |x| < a). Since Sep(Y, ζ(f∗)), by
our hypothesis there exists some h ∈ F such that 0 ≤ h ≤ 1, h(Y ) = 1 and
h(ζ(f∗)) = 0. There is no loss of generality if we assume that 0 ≤ h ≤ 1,
since if h ∈ F separates Y and ζ(f∗), then |h| ∧ 1 ∈ F separates them too.
We define J := f · h ∈ F . If y ∈ Y , we have that J(y) = f(y)h(y) = f(y).
Next we show that ∀x∈X(¬(|J(x)| ≥ a)). If x ∈ X such that |J(x)| ≥ a,
then |f(x)| ≥ |f(x)||h(x)| = |j(x)| ≥ a, therefore x ∈ ζ(f∗). Consequently,
h(x) = 0, and 0 = |J(x)| ≥ a > 0, which leads to a contradiction. Because of
MP we get that ∀x∈X(|J(x)| < a)), in other words, J : X → (−a, a). Hence
e ◦ J ∈ F (a), and (e ◦ J)|Y = e ◦ JY = e ◦ f = e ◦ (e−1 ◦ g) = g.

4 The Urysohn Extension Theorem

In this section we show the Urysohn extension theorem within TBS, an adap-
tation of Urysohn’s theorem that any closed set in a normal topological space
is C∗-embedded (see [11], p. 266). As Gillman and Jerison note in [11], p. 18,
it is “the basic result about C∗-embedding”. According to it, a subspace Y of a
topological space X is C∗-embedded in X if and only if any two (completely) sep-
arated sets in Y are (completely) separated in X. Here we call Urysohn extension
theorem the appropriate translation to TBS of the non-trivial sufficient condi-
tion. Next follows the translation to TBS of the trivial necessity condition. The
hypothesis “F extends G” of the Theorem 5 is not necessary to its proof.

Proposition 10. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces and
Y ⊆ X. If G is bounded-embedded in F , then ∀A,B⊆Y (A �Gb

B → A �Fb
B).

Proof. If A,B ⊆ Y such that A,B are separated by some g ∈ Gb, then, since
G is bounded-embedded in F , there is some f ∈ Fb which extends g, hence f
separates A and B.

Next we show that the proof of the classical Urysohn extension theorem can
be carried out within BISH. Recall that if x ∈ R, then x = (xn)n∈N, where
xn ∈ Q, for every n ∈ N, such that ∀n,m∈N+(|xm −xn| ≤ m−1 +n−1). Moreover,
x > 0 :↔ ∃n∈N(xn > 1

n ), and x ≥ 0 :↔ ∀n∈N(xn ≥ − 1
n ) (see [4], pp. 18–22).

If q ∈ Q, then q = (qn)n∈N ∈ R, where qn = q, for every n ∈ N. Using MP
one shows immediately that ¬(x ≤ −q) → ¬(x ≥ q) → |x| < q, where x ∈ R

and q ∈ Q. Without MP and completely within BISH, we show that under the
same hypotheses one gets that |x| ≤ q, which is what we need in order to get a
constructive proof of the Urysohn extension theorem.
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Lemma 2. ∀q∈Q∀x∈R(¬(x ≤ −q) → ¬(x ≥ q) → |x| ≤ q).

Proof. We fix some q ∈ Q, x = (xn)n ∈ R and we suppose that ¬(x ≤ −q) and
¬(x ≥ q). Since |x| = (max{xn,−xn})n∈N, we show that q ≥ |x| ↔ q − |x| ≥
0 ↔ ∀n(q − max{xn,−xn} ≥ − 1

n ). If we fix some n ∈ N, and since xn ∈ Q, we
consider the following case distinction.

(i) xn ≥ 0: Then q − max{xn,−xn} = q − xn and we get that q − xn < − 1
n →

xn − q > 1
n → x > q → x ≥ q → ⊥, by our second hypothesis. Hence,

q − xn ≥ − 1
n .

(ii) xn ≤ 0: Then q − max{xn,−xn} = q + xn and we get that q + xn < − 1
n →

−q − xn > 1
n → −q > x → −q ≥ x → ⊥, by our first hypothesis. Hence,

q + xn ≥ − 1
n .

Theorem 5 (Urysohn Extension Theorem for Bishop Spaces). Suppose
that F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X and F extends G. If
∀A,B⊆Y (A �Gb

B → A �Fb
B), then G is bounded-embedded in F .

Proof. We fix some g ∈ Gb, and let |g| ≤ M , for some natural M > 0. In order
to find an extension of g in Fb we define a sequence (gn)n∈N+ , such that gn ∈ Gb

and
|gn| ≤ 3rn, rn :=

M

2
(
2
3
)n,

for every n ∈ N
+. For n = 1 we define g1 = g, and we have that |g1| ≤ M = 3r1.

Suppose next that we have defined some gn ∈ Gb such that |gn| ≤ 3rn. We
consider the sets

An = [gn ≤ −rn] = {y ∈ Y | gn(y) ≤ −rn},

Bn = [gn ≥ rn] = {y ∈ Y | gn(y) ≥ rn}.

Clearly, g∗
n(An) = −rn and g∗

n(Bn) = rn, where g∗
n = (−rn ∨gn)∧rn ∈ Gb. Since

g∗
n(An) �R g∗

n(Bn), we get that An �Gb
Bn, therefore there exists some f ∈ Fb

such that An �f Bn. Without loss of generality we assume that fn(An) = −rn,
fn(Bn) = rn and |fn| ≤ rn. Next we define

gn+1 := gn − fn|Y ∈ Gb,

since F extends G. If y ∈ An we have that

|gn+1(y)| = |(gn − fn|Y )(y)| = |gn(y) − (−rn)| = |gn(y) + rn| ≤ 2rn,

since −3rn ≤ gn(y) ≤ −rn → −2rn ≤ gn(y) + rn ≤ 0. If y ∈ Bn we have that

|gn+1(y)| = |(gn − fn|Y )(y)| = |gn(y) − rn| = gn(y) − rn ≤ 2rn,

since rn ≤ gn(y) ≤ 3rn → 0 ≤ gn(y) − rn ≤ 2rn. Next we show that

∀y∈Y (|gn+1(y)| ≤ 2rn).
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We fix some y ∈ Y and we suppose that |gn+1(y)| > 2rn. This implies that
y /∈ An ∪ Bn, since if y ∈ An ∪ Bn, then by the previous calculations we get
that |gn+1(y)| ≤ 2rn, which contradicts our hypothesis. Hence we have that
¬(gn(y) ≤ −rn) and ¬(gn(y) ≥ rn). By the Lemma 2 we get that |gn(y)| ≤ rn,
therefore |gn+1(y)| ≤ |gn(y)| + |fn(y)| ≤ rn + rn = 2rn, which contradicts our
assumption |gn+1(y)| > 2rn. Thus we get that |gn+1(y)| ≤ 2rn, and since y is
arbitrary we get

|gn+1| ≤ 2rn = 3rn+1.

By the condition BS4 the function f :=
∑∞

n=1 fn belongs to F , since the partial
sums converge uniformly to f . Note that the infinite sum is well-defined by the
Weierstrass comparison test (see [4], p. 32). Note also that

(f1 + . . . + fn)|Y = (g1 − g2) + (g2 − g3) + . . . + (gn − gn+1) = g1 − gn+1.

Since rn
n→ 0, we get gn+1

n→ 0, hence f|Y = g1 = g. Note that f is also bounded
by M :

|f | = |
∞∑

n=1

fn| ≤
∞∑

n=1

|fn| ≤
∞∑

n=1

M

2
(
2
3
)n =

M

2

∞∑

n=1

(
2
3
)n =

M

2
2 = M.

The main hypothesis of the Urysohn extension theorem

∀A,B⊆Y (A �Gb
B → A �Fb

B)

requires quantification over the power set of Y , therefore it is against the practice
of predicative constructive mathematics. It is clear though by the above proof
that we do not need to quantify over all the subsets of Y , but only over the ones
which have the form of An and Bn. If we replace the initial main hypothesis by
the following

∀g,g′∈Gb
∀a,b∈R([g ≤ a] �Gb

[g′ ≥ b] → [g ≤ a] �Fb
[g′ ≥ b]),

we get a stronger form of the Urysohn extension theorem, since this is the least
condition in order the above proof to work. Actually, this stronger formulation
of the Urysohn extension theorem applies to the classical setting too. A slight
variation of the previous new main hypothesis, which is probably better to use, is

∀g,g′∈Gb
(ζ(g) �Gb

ζ(g′) → ζ(g) �Fb
ζ(g′)),

since the sets of the form An and Bn are Gb-zero sets.

Definition 9. If (X,F ) is a Bishop space and Y ⊆ X is inhabited, we say that
Y is a Urysohn subset of X, if ∀g,g′∈(F|Y )b(ζ(g) �(F|Y )b ζ(g′) → ζ(g) �Fb

ζ(g′)).

Next follows a direct corollary of the Theorem 5 and the previous remark.
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Corollary 3. Suppose that F = (X,F ) is a Bishop space, Y ⊆ X is a Urysohn
subset of X and g : Y → R is in (F|Y )b. Then there exists f : X → R in Fb

which extends g.

An absolute retract for normal topological spaces is a space that can be sub-
stituted for R in the formulation of the Tietze theorem, according to which a
continuous real-valued function on a closed subset of a normal topological space
has a continuous extension (see [10], p. 151).

Definition 10. If Q is a property on sets, a Bishop space H = (Z,H) is called
an absolute retract with respect to Q, or H is AR(Q), if for every Bishop space
F = (X,F ) and Y ⊆ X we have that

Q(Y ) → ∀e∈Mor(F|Y ,H)∃e∗∈Mor(F,H)(e∗
|Y = e).

Clearly, the Corollary 3 says that R is AR(Urysohn). The next proposition shows
that there exist many absolute retracts. In particular, the products Rn,R∞ are
AR(Urysohn).

Proposition 11. Suppose that Hi = (Zi,Hi) is a Bishop space, for every i ∈ I.
Then

∏
i∈I Hi is AR(Q) if and only if Hi is AR(Q), for every i ∈ I.

Proof. (←) If Y ⊆ X such that Q(Y ) and if Hi is AR(Q), for every i ∈ I, then
by the Proposition 1(i) we have that

e : Y →
∏

i∈I

Zi ∈ Mor(F|Y ,
∏

i∈I

Hi∈I) ↔ ∀i∈I(πi ◦ e ∈ Mor(F|Y ,Hi))

→ ∀i∈I(∃e∗
i ∈Mor(F,Hi)(e

∗
i |Y = πi ◦ e)).

We define e∗ : X →
∏

i∈I Zi by x �→ (e∗
i (x))i∈I . Clearly, e∗(y) = e∗

i (y))i∈I =
((πi ◦ e)(y))i∈I = e(y) and e∗ ∈ Mor(F ,

∏
i∈I Hi∈I), by the Proposition 1(i) and

the fact that e∗
i = πi ◦ e∗ ∈ Mor(F ,Hi), for every i ∈ I.

(→) Suppose that
∏

i∈I Hi is AR(Q) and ei : Y → Zi ∈ Mor(F|Y ,Hi). If we
fix z = (zi)i∈I ∈

∏
i∈I Zi, then by the Proposition 2 the function

si : Zi → S(z; i) = Zi ×
∏

j �=i

{zj} ⊆
∏

i∈I

Zi

zi �→ zi ×
∏

j �=i

{zj}

is an isomorphism between Hi and the slice space S(z; i) = (S(z; i),H(z; i)),
where H(z; i) = (

∏
i∈I Hi)|S(z;i). Hence, the mapping si ◦ ei : Y →

∏
i∈I Zi ∈

Mor(F|Y ,
∏

i∈I Hi∈I). By our hypothesis there exists some e∗ : X →
∏

i∈I Zi ∈
Mor(F|Y ,

∏
i∈I Hi∈I) which extends si◦ei. Thus, πi◦e∗ : X → Zi ∈ Mor(F ,Hi),

for every i ∈ I. But πi ◦e∗ = ei, since for every y ∈ Y we have that (πi ◦e∗)(y) =
π(e∗(y)) = πi((si ◦ ei)(y)) = πi(ei(y) ×

∏
j �=i{zj}) = ei(y).
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5 Concluding Comments

In this paper we presented the basic theory of embeddings of Bishop spaces and
we showed that the classical proof of the Urysohn extension theorem for topolog-
ical spaces generates a constructive proof of the Urysohn extension theorem for
Bishop spaces. Our results form only the very beginning of a theory of embed-
dings of Bishop spaces. If we look at the classical theory of embeddings of rings
of continuous functions, we will see too many topics that at first sight it seems
difficult, to say the least, to develop constructively. The Stone-Čech compactifi-
cation and Hewitt’s realcompactification depend on the existence of non-trivial
ultrafilters, while many facts in the characterizations of the maximal ideals of
C(X) or C∗(X) depend on non-constructive formulations of compactness.

Nevertheless, we find encouraging that quite “soon” one can start develop-
ing a theory of embeddings within TBS, and also rewarding that non-trivial
theorems, like the Urysohn extension theorem, belong to it. Behind these par-
tial “successes” lies, in our view, the function-theoretic character of TBS which
offers the direct “communication” between TBS and the theory of C(X) that
we mentioned in the Introduction. Maybe, this is the main advantage of TBS
with respect to other approaches to constructive topology.

The apartness relations mentioned already here show the connection of TBS
with the theory of apartness spaces of Bridges and Vı̂ţă in [6]. Both these the-
ories start from a notion of space that differs from a topological space treated
intuitionistically, as in [28] or [12], or from a constructive variation of the notion
of a base of a topological space, the starting point of the point-free formal topol-
ogy of Martin-Löf and Sambin (see [25,26]) and Bishop’s theory of neighborhood
spaces, as it is developed mainly by Ishihara in [14,15]. In our opinion, if the
notion of space in constructive topology “mimics” that of topological space,
then it is more difficult to constructivise topology than starting from a notion of
space which by its definition is more suitable to constructive study. The function-
theoretic character of the notion of Bishop space and of Bishop morphism, in
contrast to the set-theoretic character of an apartness space and of a strongly
continuous function, seems to facilitate a constructive reconstruction of topology
and a possible future translation of TBS to type theory.
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