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Abstract. We study the extension of Monadic Second Order logic with
the “for almost all” quantifier ∀=1 whose meaning is, informally, that
∀=1X.φ(X) holds if φ(X) holds almost surely for a randomly chosen X.
We prove that the theory of MSO+∀=1 is undecidable both when inter-
preted on (ω, <) and the full binary tree. We then identify a fragment of
MSO+ ∀=1, denoted by MSO+ ∀=1

π , and reduce some interesting prob-
lems in computer science and mathematical logic to the decision problem
of MSO + ∀=1

π . The question of whether MSO + ∀=1
π is decidable is left

open.
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1 Introduction

Monadic Second Order logic (MSO) is the extension of first order logic with
quantification over subsets of the domain. For example, when interpreted over
the relational structure (ω,<) of natural numbers with the standard order, the
formula ∃A.∀n.∃m.(n < m ∧ m ∈ A) expresses the existence of set A of natural
numbers which is infinite (see Sect. 2 for definitions).

One of the first results about MSO was proved by Robinson [14] in 1958.
He showed, answering a question of Tarski, that the theory MSO(ω,+, <) is
undecidable. In 1962 Büchi [5] proved that the weaker theory MSO(ω,<) is
decidable and in 1969 Rabin [13] extended this positive result to the MSO theory
of the full binary tree (see Sect. 3 for definitions). Büchi and Rabin’s theorems are
widely regarded among the deepest decidability results in theoretical computer
science. Their importance stems from the fact that many problems in the field
of formal verification of programs can be reduced to these logics.

A long standing open problem in the field of verification of probabilistic pro-
grams is the decidability of the SAT(isfability) problem of probabilistic temporal
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logics such as pCTL* and its extensions (see, e.g., [2,4]). In the attempt of mak-
ing some progress, it seems worthwhile to formulate some aspects of the SAT
problem as questions expressed in the logical framework of MSO. Given the vast
literature on MSO, this might facilitate the application of known results and
would make the SAT problem of pCTL* simpler to access by a broader group
of logicians.

As a first step in this direction, following the seminal work of Harvey Fried-
man, who introduced and investigated similar concepts in the context of First
Order logic in unpublished manuscripts in 1978–791, we have recently considered
in [12] the extension of MSO on the full binary tree with Friedman’s “for almost
all” quantifier (∀∗) interpreted using the concept of Baire Category as:

∀∗X.φ(X) holds ⇔ the set{A | φ(A) holds} is topologically large

where “topologically large” means comeager in the Cantor space topology of
subsets of the full binary tree. We proved in [12] that the sets definable using
the quantifier ∀∗ can actually be defined without it: MSO = MSO + ∀∗. This
is a result of some independent interest but, most importantly, it fits into the
research program outlined above since we successfully used it to prove [12] the
decidability of the finite-SAT problem (a variant of the SAT problem mentioned
above) for the qualitative fragment of pCTL* and similar logics.

In this paper we consider a natural variant of the above extension. We intro-
duce the logic MSO + ∀=1, interpreted both on (ω,<) and on the binary tree,
obtained by extending MSO with Friedman’s “for almost all” quantifier (∀=1)
interpreted using the concept of Lebesgue measure as:

∀=1X.φ(X) holds ⇔ the set{A | φ(A) holds} is of Lebesgue measure 1.

Thus, informally, ∀=1X.φ(X) holds if φ(A) is true for a random A. We prove,
using results from [1] and [7], that unlike the case of MSO + ∀∗:

Theorem 1. The theory of MSO + ∀=1 on (ω,<) is undecidable.

The proof of this result is presented in Sect. 5. As a consequence also the theory
of MSO + ∀=1 on the full binary tree is undecidable (Corollary 1).

Motivated by this negative result, we investigate the theory of a weaker
fragment of MSO + ∀=1 on trees which we denote by MSO + ∀=1

π . Informally,
∀=1

π X.φ(X) holds if φ(P ) is true for a random path P in the full binary tree. We
observe (Proposition 3) that MSO + ∀=1

π is strictly more expressive than MSO.
However we have not been able to answer the following question2:

Problem 1. Is the theory of MSO + ∀=1
π on the binary tree decidable?

This problem, which we leave open, seems to deserve some attention. Indeed
in Sect. 7 we show that the decidability of MSO + ∀=1

π would have some inter-
esting applications. Most importantly, from the point of view of our research
1 See [15] for an overview of Friedman’s research.
2 Further open problems regarding MSO + ∀=1

π are formulated in Sect. 8.
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program, if the theory of MSO + ∀=1
π is decidable then the SAT problem for

the qualitative fragment of pCTL* is decidable (Theorem 5). Regarding appli-
cations in mathematical logic, we prove (Theorem 8) that the first order theory
of the lattice of Fσ subsets of the Cantor space with the predicates C(X) ⇔
“X is a closed set” and N(X) ⇔ “X is a Lebesgue null set” is interpretable in
MSO+∀=1

π . As another example, we show (Theorem 9) that the first order theory
of the Lebesgue measure algebra with Scott’s closure operator is interpretable
in MSO + ∀=1

π . Hence if MSO + ∀=1
π is decidable, these two theories are also

decidable. Lastly, we also establish (Theorem 6) that the qualitative languages
of trees, recently investigated in [6], are definable by MSO + ∀=1

π formulas.

2 Measure and Probabilistic Automata

The set of natural numbers and their standard total order are denoted by the
symbols ω and <, respectively. Given sets X and Y we denote with XY the
space of functions X → Y . We can view elements of XY as Y -indexed sequences
{xi}i∈Y of elements of X. We refer to Σω as the collection of ω-words over Σ.
The collection of finite sequences of elements in Σ is denoted by Σ∗. As usual we
denote with ε the empty sequence and with ww′ the concatenation of w,w′ ∈ Σ∗.

The set {0, 1}ω of ω-words over {0, 1}, endowed with the product topology
(where {0, 1} is given the discrete topology) is called the Cantor space. Given a
finite set Σ, the spaces Σω and {0, 1}Σ∗

are homeomorphic to the Cantor space.
The Cantor space is zero-dimensional, i.e., it has a basis of clopen (both open
and closed) sets. A subset of {0, 1}ω is a Fσ set if it is expressible as a countable
union of closed sets. For a detailed exposition of these topological notions see
introductory chapters of [9]. We summarize below the basic concepts related
to Borel measures. For more details see, e.g., Chap. 17 of [9]. The smallest σ-
algebra of subsets of {0, 1}ω containing all open sets is denoted by B and its
elements are called Borel sets. Given a A ∈ B we denote its complement by ¬B.
A Borel probability measure on {0, 1}ω is a function μ : B → [0, 1] such that:
μ(∅) = 0, μ({0, 1}ω) = 1 and, if {Bn}n∈ω is a sequence of disjoint Borel sets,
μ(

⋃
n Bn) =

∑
n μ(Bn). Every Borel measure μ on the Cantor space is regular :

for every Borel set B there exists a Fσ set A ⊆ B such that μ(A) = μ(B). We will
be mostly interested in one specific Borel measure on the Cantor space which
we refer to as the Lebesgue measure. This is the unique Borel measure satisfying
the equality μ(Bn=0) = μ(Bn=1) = 1

2 , where Bn=0 = {(bi)i∈ω | bn = 0} and
Bn=1 = {(bi)i∈ω | bn = 1}, respectively. Intuitively, the Lebesgue measure on
{0, 1}ω generates an infinite sequence (b0, b1, . . . ) by deciding to fix bn = 0 or
bn = 1 by tossing a fair coin, for every n ∈ ω.

2.1 Probabilistic Büchi Automata

In this section we define the class of probabilistic Büchi automata introduced in
[1] and state the undecidability of their emptiness problem under the probable
semantics [1, Theorem 7.2]. This is the key technical result used in our proof of
undecidability of MSO +∀=1 in Sect. 5.
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Definition 1 (Probabilistic Büchi Automaton). A probabilistic Büchi
automaton is a tuple A = 〈Σ,Q, qI , F,Δ〉 where: Σ is a finite nonempty input
alphabet, Q is a finite nonempty set of states, qI ∈ Q is the initial state, F ⊆ Q
is the set of accepting states and Δ : Q → (Σ → D(Q)) is the transition
function, where D(Q) denotes the collection of probability distributions on Q.

To illustrate the above definition consider the probabilistic Büchi automaton
(from [1, Lemma 4.3]) A = 〈{a, b}, Q, q1F,Δ〉 where Q = {q1, q2,⊥}, F = {q1}
and Δ is defined as in Fig. 1.

q1 q2

⊥

a : 1
2 a : 1

a : 1, b : 1

a : 1
2

b : 1

b : 1

Δ(⊥) q1 q2 ⊥
a 0 0 1

b 0 0 1

Δ(q1) q1 q2 ⊥
a 1

2
1
2 0

b 0 0 1

Δ(q2) q1 q2 ⊥
a 0 1 0

b 1 0 0

Fig. 1. A probabilistic Büchi automaton with three states. Boxes denote accepting
states and circles denote not accepting states.

We now describe the intended interpretation of probabilistic Büchi automata.
As for ordinary Büchi Automata (see [17] for a detailed introduction to this
classical concept) a probabilistic Büchi automaton “reads” ω-words over the
finite alphabet Σ. However, unlike ordinary Büchi automata, a probabilistic
Büchi automaton “accepts” an input ω-word w with some probability P

A
w . We

now describe this notion.
A probabilistic Büchi automaton starts reading a ω-word w = (a0, a1, . . . ) ∈

Σω from the state q0 = qI . After reading the first letter a0, the automaton
moves to state q ∈ Q with probability Δ(q0, a0, q). If the state q is reached, after
the second letter a1 is read, the automaton reaches the state q′ with probabil-
ity Δ(q, a1, q

′). More generally, if at stage n the automaton is in state q, after
reading the letter an of w, the automaton reaches the state q′ with probability
Δ(q, an, q′). Hence, a ω-word w induces a random walk on the set of states Q
of the automaton A. One can naturally formalize this random walk as a Borel
probability measure μA

w on the space Qω (see [1, §3.1] for detailed definitions).
Considering the example in Fig. 1 and the ω-word aω = (a, a, a . . . ), the

probability measure μA
w assigns probability 1

4 to the set of sequences q1q1q1Q
ω

starting with three consecutive q1’s.
A sequence (q0q1 . . . qn . . . ) ∈ Qω of states of A is accepting if for infinitely

many i ∈ ω, the state qi belongs to the set F of accepting states. We denote with
Acc ⊆ Qω the set of accepting sequences of states. Clearly Acc is a Borel set.
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We say that A accepts the ω-word w ∈ Σω with probability P
A
w = μA

w(Acc). We
are now ready to state a fundamental result about probabilistic Büchi automata.

Theorem 2 (Theorem 7.2 in [1]). It is undecidable if for a given probabilistic
Büchi automaton A there exists w ∈ Σω such that PA

w > 0.

An inspection of the proof of Theorem 2 from [1] reveals that the problem
remains undecidable if we restrict to the class of probabilistic Büchi automaton
A such that, for some k ∈ ω, all probabilities appearing in (the matrices of) Δ
of A belong3 to the set {0, 1

2k , . . . , i
2k , . . . , 1}. We can further restrict attention

to the class of simple probabilistic Büchi automata defined below.

Definition 2. A probabilistic Büchi automaton A is simple if, for some k ∈ ω
all probabilities appearing in (the matrices of) Δ are either 0 or 1

2k .

Proposition 1. It is undecidable if for a given simple probabilistic Büchi
automaton A there exists w ∈ Σω such that PA

w > 0.

Proof. Wecan transforman automatonAwith probabilities in {0, 1
2k . . . i

2k , . . . , 1}
to an equivalent one having only probabilities in {0, 1

2k }by “splitting probabilities”
introducing new copies of the states. �

3 Syntax and Semantics of Monadic Second Order Logic

In this section we define the syntax and the semantics of the MSO logic inter-
preted over the linear order of natural numbers (“MSO on ω-words”) and over
the full binary tree (“MSO on trees”). This material is standard and a more
detailed exposition can be found in [17].

MSO on ω-words. We first define the syntax and the semantics of MSO on (ω,<).
We follow the standard presentation of MSO on (ω,<) where only second order
variables are considered. We refer to Sect. 2.3 of [17] for more details.

Definition 3 (Syntax). The set of formulas of the logic MSO is generated by
the following grammar: φ ::= Sing(X) | X < Y | X ⊆ Y | ¬φ | φ1 ∨ φ2 | ∀X.φ,
where X,Y range over a countable set of variables. We write φ(X1, . . . , Xn) to
indicate that

−→
X = (X1, . . . , Xn) is the list of free variables in φ.

This presentation is convenient since MSO formulas can be regarded as first-order
formulas over the signature S consisting of the unary symbol Sing and the two
binary symbols < and ⊆. MSO formulas are interpreted over the collection of
subsets of ω (i.e., the collection {0, 1}ω of ω-words over {0, 1}) with the following
interpretations of the symbols in S:
3 As observed in [1, Remark 7.3], a proof of Theorem 2 can be derived from the decid-
ability of a similar problem for finite probabilistic automata obtained by Gimbert
and Oualhadj in [7, Theorem 4]. In [7, Proposition 2] the authors notice that the
problem remains undecidable even if all probabilities appearing in the automaton
belongs to {0, 1

4
, 2
4
, 3
4
, 1}.
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– SingI(X) ⇔ X = {n}, for some n ∈ ω, i.e., X ⊆ ω is a singleton.
– <I (X,Y ) ⇔ X = {n}, Y = {m} and n < m.
– ⊆I (X,Y ) ⇔ X ⊆ Y , i.e., X is a subset of Y .

Definition 4 (Semantics). Let W be the structure for the signature S defined
as W = ({0, 1}ω, SingI , <I ,⊆I). The truth of MSO formulas φ is given by the
relation W |= φ, where |= is the standard first-order satisfaction relation. Given
parameters A1, . . . , An ∈ {0, 1}ω, we write

−→
A ∈ φ(

−→
X ) to indicate that W |=

φ(
−→
A ), i.e., that W satisfies the formula φ with parameters

−→
A .

Thus a formula φ(X1, . . . , Xn) defines a subset of ({0, 1}ω)n or, equivalently, a
subset of ({0, 1}n)ω that is a set of ω-words over Σ = {0, 1}n. The subsets of
Σω definable by a MSO formula φ are called regular.

Remark 1. The presentation of MSO(ω,<) as the first order theory of W is
technically convenient. Yet it is often useful to express concisely formulas such as
∀x.(x ∈ Y → φ(x,Z)) where the lowercase letter x ranges over natural numbers
and the relation symbol ∈ is interpreted as membership, as expected. Formulas of
this kind can always be rephrased in the language of the signature {Sing,<,⊆}.
For example the formula above can be expressed as: ∀X.

(
Sing(X) → (X ⊆ Y →

φ(X,Z)). We refer to [17] for a detailed exposition.

MSO on Trees. We now introduce, following a similar approach, the syntax and
the semantics of MSO on trees.

Definition 5 (Full Binary Tree). The collection {L,R}∗ of finite words over
the alphabet {L,R} can be seen as the set of vertices of the infinite binary tree.
We refer to {L,R}∗ as the full binary tree. We use the letters v and w to range
over elements of the full binary tree.

Definition 6 (Syntax). The set of formulas of the logic MSO on the full binary
tree is generated by the following grammar:

φ ::= Sing (X) | SuccL(X,Y ) | SuccR(X,Y ) | X ⊆ Y | ¬φ | φ1 ∨ φ2 | ∀X.φ

where X,Y range over a countable set of variables.

Hence MSO formulas are conventional first-order formulas over the signature S
consisting of one unary symbol Sing and three binary symbols SuccL, SuccR,⊆.
We interpret MSO formulas over the collection {0, 1}∗ → {0, 1} of subsets of the
full binary. To improve the notation, given a set Σ we write TΣ to denote the set
{0, 1}∗ → Σ. Thus MSO formulas are interpreted over the universe T{0,1} with
the following interpretations of the symbols in S:

– SingI(X) ⇔ X = {v}, for some v ∈ {L,R}∗, i.e., if X ∈ T{0,1} is a singleton.
– SuccI

L(X,Y ) ⇔ “X = {v}, Y = {w} and w = vL.
– SuccI

R(X,Y ) ⇔ “X = {v}, Y = {w} and w = vR.
– ⊆I (X,Y ) ⇔ X ⊆ Y , i.e., if X is a subset of Y .
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Definition 7 (Semantics). Let T be the structure for the signature S defined
as 〈T{0,1}, SingI , SuccI

L, SuccI
R,⊆I〉. The truth of a MSO formula φ is given by

the relation T |= φ. Given parameters
−→
A ∈ T{0,1}, we write

−→
A ∈ φ(

−→
X ) to indicate

that T |= φ(A1, . . . , An), i.e., that T satisfies the formula φ with parameters
−→
A .

Thus a formula φ(X1, . . . , Xn) defines a subset of (T{0,1})n or, equivalently,
a subset of TΣ with Σ = {0, 1}n.

4 MSO with Measure Quantifier: MSO +∀=1

In this section we introduce the logic MSO + ∀=1, interpreted both on ω-words
and on trees, obtained by extending ordinary MSO with Friedman’s “for almost
all” quantifier interpreted using the concept of Lebesgue measure.

4.1 MSO +∀=1 on ω-words

Definition 8. The syntax of MSO + ∀=1 on ω-words is obtained by extending
that of MSO (Definition 3) with the quantifier ∀=1X.φ as follows:

φ ::= Sing(X) | X < Y | X ⊆ Y | ¬φ | φ1 ∨ φ2 | ∀X.φ | ∀=1X.φ

The following definition specifies the semantics MSO + ∀=1 on ω-words.

Definition 9. Each formula φ(X1, . . . , Xn) of MSO + ∀=1 is interpreted as a
subset of ({0, 1}ω)n by extending Definition 4 with the following clause:

(A1, . . . , An) ∈ ∀=1X.φ(X,Y1, . . . , Yn)
⇔

μ{0,1}ω

(
{B | (B,A1, . . . , An) ∈ φ(X,Y1, . . . , Yn)}

)
= 1

where Ai, B range over {0, 1}ω and μ{0,1}ω is the Lebesgue measure on {0, 1}ω.
For a given formula φ we define ∃>0X.φ as a shorthand for ¬∀=1X.¬φ.

Fig. 2. The large sections
selected by the quantifier ∀=1

are marked in grey.

The set denoted by ∀=1X.φ(X,
−→
Y ) can

be illustrated as in Fig. 2, as the collection
of tuples

−→
A having a large section φ(X,

−→
A ),

that is a section having Lebesgue measure 1.
Informally, (A1, . . . , An) satisfies ∀=1X.φ(X,

−→
Y )

if “for almost all” B ∈ {0, 1}ω, the tuple
(B,A1, . . . , An) satisfies φ. Similarly,

−→
A ∈

∃>0X.φ(X,
−→
Y ) iff the section φ(X,

−→
A ) has posi-

tive measure.
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Remark 2. Every relation on {0, 1}ω definable by a MSO + ∀=1 formula clearly
belongs to a finite level of the projective hierarchy. However, since the fam-
ily of MSO + ∀=1 definable relations is closed under Boolean operations and
projections, it is not clear if every MSO + ∀=1 definable relation is Lebesgue
measurable. We formulate this as Problem 2 is Sect. 8. In the rest of the paper
we assume sufficiently strong set-theoretical assumptions (e.g., Projective Deter-
minacy, see [9, Sect. 38.C]) to guarantee that Definition 9 is well specified, i.e.,
that all considered sets are measurable.

On Fubini’s Theorem. The Fubini theorem is a classical result in analysis which
states that the measure of a set A ⊆ X × Y can be expressed by iterated
integration over the X and Y axis. In terms of MSO + ∀=1, the Fubini theorem
corresponds (see [9, Sect. 17.A]) to the fact that

∀=1X.∀=1Y.φ(X,Y,
−→
Z ) = ∀=1X.∀=1Y.φ(X,Y,

−→
Z )

and, importantly for the proof of Theorem 3, that:

(A1, . . . , An) ∈ ∀=1X.∀=1Y.φ(X,Y,
−→
Z )

⇔
μ({0,1}2)ω

(
{(B,C) | (B,C,A1, . . . , An) ∈ φ(X,Y,Z1 . . . , Zn)}

)
= 1

where μ({0,1}2)ω is the Lebesgue measure on the product space ({0, 1}2)ω =
{0, 1}ω × {0, 1}ω defined as the product measure μ{0,1}ω ⊗ μ{0,1}ω .

4.2 MSO + ∀=1 on Trees

The definition of MSO + ∀=1 on trees is similar to that of MSO + ∀=1 on words
and extends the syntax of MSO on trees (Definition 6) with the new quanti-
fier ∀=1X.φ. The semantics of MSO + ∀=1 on trees is obtained by extending
Definition 7 by the following interpretation of ∀=1:

(A1, . . . , An) ∈ (T{0,1})n ∈ ∀=1X.φ(X,Y1, . . . , Yn)
⇔

μT{0,1}

(
{B | (B,A1, . . . , An) ∈ φ(X,Y1, . . . , Yn)}

)
= 1

where μT{0,1} is the Lebesgue measure on μT{0,1} .
The Lebesgue measure μT{0,1} can be seen as the random process of gen-

eration of a tree A ∈ T{0,1} by fixing the label (either 0 or 1) of each vertex
v ∈ {L,R}∗ of the binary tree by tossing a fair coin. Hence, intuitively, the
formula ∀=1X.φ(X) holds true if φ(A) holds for a random tree A ∈ T{0,1}.

5 Undecidability of MSO + ∀=1

In this section we prove that the theory of MSO+∀=1 on ω-words is undecidable.
This is done by reducing the (undecidable by Proposition 1) emptiness problem
of simple probabilistic Büchi automaton A to the decision problem of MSO+∀=1.
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The reduction closely resembles the standard translation between ordinary Büchi
automata and MSO on ω-words (see, e.g., [17, Sect. 3.1]).

In what follows, let us fix an arbitrary k-simple probabilistic Büchi automaton
A = 〈{a, b}, qI , Q, F,Δ〉 with Q = {q1, q2, . . . , qn}. We write qi < qj if i < j.
Without loss of generality, let us assume that |Σ| = 2m, for some number m ∈ ω,
so that we can identify Σ with {0, 1}m. Hence a ω-word w ∈ Σω can be uniquely
identified with a tuple

−→
X = (X1, . . . , Xm) with Xi ∈ {0, 1}ω.

Since A is k-simple (see Definition 2), for each state q ∈ Q and letter a ∈ Σ,
there are exactly 2k possible transitions in Δ, each one having probability 1

2k .
Therefore, for each state q and letter a, we can identify the available transitions
by numbers in {0, . . . , 2k − 1} = {0, 1}k as follows: the number i denotes the
transition to the i-th (with respect to the total order < on Q) reachable (with
probability 1

2k ) state. We can identify an infinite sequence of transitions with an
infinite sequence

−→
Y = ({0, 1}k)ω, i.e., by a tuple (Y1, . . . , Yk) with Yj ∈ {0, 1}ω.

The existence of a ω-word w ∈ Σω such that PA
w > 0 is expressed in MSO+∀=1 by

φA = ∃−→
X.∃>0−→Y .ψA(

−→
X,

−→
Y )

where ∃−→
X and ∃>0−→Y stand for ∃X1.∃X2. . . . ∃Xm and ∃>0Y1.∃>0Y2. . . . ∃>0Yk,

respectively. The formula ψA, which we define below, expresses that when inter-
preting

−→
X as a ω-word w ∈ Σω and

−→
Y as an infinite sequence of transitions, the

infinite sequence (qn) of states visited in A, which is uniquely determined by
−→
X

and
−→
Y , contains infinitely many accepting states, that is, (qn) ∈ Acc.

Due to the Fubini Theorem (see Sect. 4) and the fact that an ω-word A ∈
({0, 1}k)ω randomly generated with the Lebesgue measure on {0, 1}k assumes
at a given position n ∈ ω a value in {0, 1}k with uniform probability 1

2k , the
formula φA indeed expresses that there exists w ∈ Σω such that P

A
w > 0. The

formula ψA(
−→
X,

−→
Y ) is defined using standard ideas (see, e.g., [17, Sect. 3.1]):

∃Q1, . . . , Qn.
(
(a) for all i ∈ ω there is a unique j ∈ {1, . . . , n} such that i ∈ Qj

and (b) ∀i ∈ ω, if
−→
X (i) = a and

−→
Y (i) = t then i + 1 ∈ Q(q,a,t)

and (c) ∃j∈F for infinitely many i ∈ ω, i ∈ Qj

)

The formula expresses that: (a) there exists an assignment of states to positions
i ∈ ω such that each position is assigned a unique state; that (b) if position i is
labeled by state q, (Xi

1, . . . , X
i
m) represents the letter a ∈ Σ and (Xi

1, . . . , X
i
k)

represent the transition 0 ≤ t < 2k, then i + 1 belongs to the state (denoted
in the formula by (q, a, t)) which is the t-th reachable state from q on letter a;
(c) the sequence contains infinitely many accepting states. Hence we get a more
detailed version of Theorem 1 stated in the Introduction:

Theorem 3. For each simple probabilistic Büchi automaton A, the MSO+∀=1

sentence φA is true if and only there exists w ∈ Σω such that PA
w > 0. Hence

the theory of MSO + ∀=1 is undecidable.
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Undecidability of MSO + ∀=1 on Trees. The theory of MSO+∀=1 on (ω,<) can
be interpreted within the theory of MSO + ∀=1 on the full binary tree by the
standard interpretation of (ω,<) as the set of vertices of the leftmost branch in
the full binary tree and it is not difficult to see that this interpretation preserves
the meaning of the ∀=1 measure quantifier. We only state the following result.
A detailed proof will be published elsewhere.

Corollary 1. The theory of MSO + ∀=1 on the full binary tree is undecidable.

6 The Logic MSO+∀=1
π on Trees

In this section we identify a variant of MSO + ∀=1 on trees which we denote
by MSO + ∀=1

π . This logic is obtained by extending ordinary MSO with the
quantifier ∀=1

π . Intuitively, the quantifier ∀=1
π is defined by restricting the range

of the measure quantifier ∀=1 to the collection of paths in the full binary tree
(see definition 10 below) so that the formula ∀=1

π X.φ(X) holds if a randomly
chosen path X satisfies the property φ with probability 1. More precisely,

Definition 10. A subset X ⊆ {L,R}∗ (equivalently, X ∈ T{0,1}) is called a
path if it satisfies the following conditions: (1) X is closed downward: for all
x, y ∈ {L,R}∗, if x ∈ X and y is a prefix of x then y ∈ X; (2) X is not empty:
ε ∈ X; and (3) X branches uniquely: for every x ∈ {L,R}∗, if x ∈ X then either
xR ∈ X or xL ∈ X but not both. Let P ⊆ T{0,1} be the collection of all paths.

In other words, X ∈ P if the set of vertices in X describe an infinite branch in
the full binary tree. Clearly P is homeomorphic as a subspace of T{0,1} to the
set {L,R}ω of ω-words over the alphabet {L,R} and it is simple to verify that:

Proposition 2. The equality μT{0,1}(P) = 0 holds.

However the space P carries the natural Lebesgue measure μ{L,R}ω which we
use below to define the semantics of MSO + ∀=1

π .

Definition 11 (Syntax of MSO + ∀=1
π ). The syntax of MSO + ∀=1

π formulas
φ is generated by the following grammar:

φ ::= Sing(X) | SuccL(X,Y) | SuccR(X,Y) | X ⊆ Y | ¬φ | φ1∨φ2 | ∀X.φ | ∀=1
π X.φ

Definition 12 (Semantics of MSO + ∀=1
π ). The semantics of MSO + ∀=1

π is
defined by extending the semantics of MSO on trees (Definition 7) as follows:

(A1, . . . , An) ∈ ∀=1
π X.φ(X,Y1, . . . , Yn)
⇔

μ{L,R}ω

(
{B ∈ P | (B,A1, . . . , An) ∈ φ(X,Y1, . . . , Yn)}

)
= 1
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Hence, informally, (A1, . . . , An) ∈ ∀=1
π X.φ(X,Y1, . . . , Yn) if, for a randomly cho-

sen B ∈ P, the formula φ(B,A1, . . . , An) holds almost surely.
It is not immediately clear from the previous definition if the quantifier ∀=1

π

can be expressed in MSO+∀=1 on trees. Indeed note that, since μT{0,1}(P) = 0,
the naive definition ∀=1

π X.φ(X) = ∀=1X.
(

“X is a path” ∧φ(X)
)
, where the

predicate “X is a path” is easily expressible in MSO, but does not work. Indeed
the MSO+∀=1 expression on the right always defines the empty set because the
collection of X ∈ T{0,1} satisfying the conjunction is a subset of P and therefore
has μT{0,1} measure 0.

Nevertheless the quantifier ∀=1
π can be expressed in MSO+∀=1 on trees with

a more elaborate encoding presented below. The main ingredient of the encoding
is a MSO definable continuous function f which maps a tree X ∈ T{0,1} to a
path f(X) ∈ P preserving measure in the sense stated in Lemma 1.2 below.

Definition 13. Define the binary relation f(X,Y ) on T{0,1} by the followingMSO
formula: “Y is a path” and ∀y ∈ Y.∃z.(SuccL(y, z) and (z ∈ Y ⇔ y ∈ X)).

Lemma 1. For every X ∈ T{0,1} there exists exactly one Y ∈ P ⊆ T{0,1} such
that f(X,Y ). Hence the relation f is a function f : T{0,1} → P. Furthermore f
satisfies the following properties:

1. f is a continuous, open and surjective function,
2. Assume B ⊆ P is μ{L,R}ω measurable. Then μ{L,R}ω (B) = μT{0,1}(f−1(B)).

A proof of Lemma 1 will be published elsewhere.
We can now present the correct MSO + ∀=1 encoding of the quantifier ∀=1

π .

Theorem 4. For every MSO + ∀=1
π formula ψ(

−→
Z ) there exists a MSO + ∀=1

formula ψ′(
−→
Z ) such that ψ and ψ′ denote the same set.

Proof. The proof goes by induction on the complexity of ψ with the interesting
case being φ(

−→
Z ) = ∀=1

π Y.ψ(Y,
−→
Z ). By induction hypothesis, there exists a MSO+

∀=1 formula ψ′ defining the same set as ψ. Then the MSO + ∀=1 formula φ′

corresponding to φ is: φ′(
−→
Z ) = ∀=1X.

(
∃Y.

(
f(X,Y ) ∧ ψ′(Y,

−→
Z )

))
. We now show

that φ and φ′ indeed define the same set. The following are equivalent:

1.
−→
C ∈ ∀=1

π Y.ψ(Y,
−→
Z ),

2. (by Definition of ∀=1
π X) The set A =

{
Y ∈ P | ψ(Y,

−→
C )

}
is such that

μ{L,R}ω (A) = 1,
3. (by Lemma 1.(2)) The set B ⊆ T{0,1}, defined as B = f−1(A), i.e., as

B =
{
X ∈ T{0,1} | ∃Y.

(
f(X,Y ) ∧ ψ(Y,

−→
C )

)}
. is such that μT{0,1}(B) = 1.

4. (by definition of ∀=1 and using ψ = ψ′)
−→
C ∈ ∀=1X.

(
∃Y.

(
f(X,Y ) ∧ φ′

(Y,
−→
Z )

))
.

�
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7 On the Expressive Power of MSO+∀=1
π

In Sect. 5 we proved that the theory of MSO + ∀=1 on ω-words and trees is
undecidable. Motivated by this negative result, in Sect. 6 we introduced the logic
MSO + ∀=1

π on trees and in Theorem 4 we proved that it can be regarded as a
syntactical fragment of MSO + ∀=1 on trees.

We have not been able to establish if the logic MSO+∀=1
π on trees is decidable

or not (Problem 1 in the Introduction). On the one hand we observe (Proposition 3
below), by applying a result of [6], that MSO + ∀=1

π can define non-regular sets.
On the other hand, it does not seem possible to apply the methods utilized in this
paper to prove its undecidability.

In the rest of this section we investigate the expressive power of MSO+∀=1
π . We

show that the the decidability of MSO + ∀=1
π implies the decidability of the SAT

problem for the qualitative fragment of the probabilistic logic pCTL*. We establish
a connection between MSO + ∀=1

π and automata theory by showing that the class
of qualitative languages of trees of [6] can be expressed by MSO + ∀=1

π formulas
(Theorem 6). We prove that the first order theory of the lattice of Fσ subsets of
the Cantor space with the predicates C(X) ⇔ “X is a closed set” and N(X) ⇔
“X is a Lebesgue null set” is interpretable in MSO + ∀=1

π (Theorem 9). Lastly, we
show that the first order theory of the Lebesgue measure algebra equipped with
Scott’s closure operator is interpretable in MSO + ∀=1

π .

7.1 SAT Problem of Probabilistic Temporal Logics

In this subsection we sketch the essential arguments that allow to reduce the
SAT problem of the qualitative fragment of pCTL* and similar logics to the
decision problem of MSO+∀=1

π . We assume the reader is familiar with the logic
pCTL*. We refer to the textbook [2] for a detailed introduction.

The logic pCTL* and its variants are designed to express properties of
Markov chains. The following is a long standing open problem (see, e.g., [4]).

SAT Problem. Given a pCTL* state-formula φ, is there a Markov chain M
and a vertex v ∈ M such that v satisfies φ?

Without loss of generality (see, e.g., Sect. 5 of [12] for details), we can restrict
the statement of the SAT problem to range over Markov chains M whose under-
lying directed graph has the structure of the full binary tree, where each edge
(connecting a vertex to one of its two children) has probability 1

2 . This is a con-
venient restriction that allows to interpret pCTL* formulas φ(P1, . . . , Pn) with
n propositional variables as denoting sets �φ� ⊆ TΣ for Σ = {0, 1}n.

It is well known that there exists pCTL* formulas such that �φ� �= ∅ but �φ�
does not contain any regular tree. This means the logic pCTL* can define non-
regular sets of trees. We show now that every pCTL* definable set �φ� is MSO+
∀=1

π definable. The argument is similar4 to the one used in [16] to prove that sets
4 In fact, following the work of [16], the logic pCTL* is also definable in a weaker logic
such as Thomas’ chain logic extended with the quantifier ∀=1

π .
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of trees defined in the logic CTL* can be defined in MSO. Each pCTL* state
formula φ(P1, . . . , Pn) is translated to a MSO + ∀=1

π formula Fφ(X1, . . . , Xn, y)
and each pCTL* path formula ψ(P1, . . . , Pn) is translated to a MSO + ∀=1

π

formula Fψ(X1, . . . , Xn, Y ) such that:

– a vertex v of the full binary tree satisfies the pCTL* state-formula φ(P1, . . . , Pn)
if and only if Fφ(P1, . . . , Pn, v) is a valid MSO + ∀=1

π formula with parameters,
– a path A ∈ P in the the full binary tree satisfies the pCTL* path-formula

ψ(P1, . . . , Pn) if and only if Fψ(P1, . . . , Pn, A) is a valid MSO + ∀=1
π formula

with parameters.

The only case different from [16] is for a pCTL state-formula of the form φ =
P>0ψ(P1, . . . , Pn) which holds at a vertex v if the collection of paths starting
from v and satisfying ψ has positive measure; φ is is translated to MSO + ∀=1

π

as follows:

Fφ(X1, . . . ,Xn, y) = ∃>0
π Y.

(
Y is a path containing x, and

Fψ(X1 . . . , Xn, Z) holds where Z is the set of descendants of x in Y
)

We state the correctness of this translation as the following
Theorem 5. The decidability of the SAT problem for the qualitative fragment
of pCTL* is reducible to the decidability of MSO + ∀=1

π .

7.2 On the Qualitative Languages of Carayol, Haddad and Serre

In a recent paper [6] Carayol, Haddad and Serre have considered a probablis-
tic interpretation of standard nondeterministic tree automata. Below we briefly
discuss this interpretation referring to [6] for more details. The standard inter-
pretation of a nondeterministic tree automaton A over the alphabet Σ is the set
L(A) ⊆ TΣ of trees X ∈ TΣ such that there exists a run ρ of X on A such that
for all paths π in ρ, the path π is accepting. The probabilistic interpretation in [6]
associates to each nondeterministic tree automaton the language L=1(A) ⊆ TΣ

of trees X ∈ TΣ such that there exists a run ρ of X on A such that for almost
all paths π in ρ, the path π is accepting, where “almost all” means having
Lebesgue measure 1. Using the language of MSO +∀=1

π the language L=1(A)
can be naturally expressed by the following formula ψA(

−→
X ):

ψA(
−→
X ) = ∃−→

Y .
(
“
−→
Y is a run of

−→
XonA” ∧ ∀=1

π Z.(“Z is an accepting path of
−→
Y ”)

)

Theorem 6. Let L ⊆ TΣ be a set of trees definable by a nondeterministic tree
automaton with probabilistic interpretation. Then L is definable in MSO + ∀=1

π .

Let L ⊆ T{0,1} consists of A ∈ T{0,1} such that the set of branches having
infinitely many vertices labeled by 1 has measure 1. In [6, Example 7] it is
proved that L is not regular and definable by a nondeterministic tree automata
with probabilistic interpretation. Therefore:
Proposition 3. MSO + ∀=1

π is a proper extensions of MSO on trees.
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7.3 An Extension of Rabin’s Theory of the Lattice of Fσ Sets

Rabin in [13] proved the decidability of MSO on the full binary tree and as
corollaries obtained several decidability results. One of them ([13, Theorem 2.8])
states that the first order theory of the lattice of Fσ subsets of the Cantor space
{0, 1}ω, with the predicate C(X) ⇔ “X is a closed set”, is decidable. Formally
this result can be stated as follows.

Theorem 7 (Rabin). The FO theory of the structure 〈Fσ,∪,∩, C〉 is decidable.
Rabin proved this theorem by means of a reduction to the MSO theory of the
full binary tree. He observed that the Cantor space {0, 1}ω is a homeomorphic
copy of the set of paths P in the full binary tree (see Definition 10). He then
noted that an arbitrary set of vertices X ∈ T{0,1} can be viewed as a set 〈X〉 ⊆ P
of paths by the MSO expressible definition 〈X〉 = {Y ∈ P | Y ∩ X isfinite}. He
showed that a set of paths A ⊆ P is Fσ if and only if there exists some X ∈ T{0,1}
such that A = 〈X〉 and that it is possible to express in MSO that 〈X〉 is closed.
For details we refer to [13, §2].

We now consider an extension of the structure 〈Fσ,∪,∩, C〉 by a new predi-
cate N(X) ⇔ “X is a Lebesgue null set”.

Theorem 8. The first order theory of the structure 〈Fσ,∪,∩, C,N〉 is inter-
pretable in MSO + ∀π.

Proof. It is straightforward to extend Rabin’s interpretation by an appropriate
MSO + ∀π interpretation of the predicate N . Let φ(X) be the formula with
one free-variable defined as: ∀=1

π Y.(Y ∈ 〈X〉) where, in accordance with Rabin’s
interpretation, the predicate Y ∈ 〈X〉 is defined as “Y ∩X is a finite set”, which
is easily expressible in MSO. Then one has 〈X〉 ∈ N if and only if φ(X) holds,
and this completes the proof. �
Hence if the theory of MSO + ∀=1

π is decidable then the first order theory of
〈Fσ,∪,∩, C,N〉 is also decidable.

7.4 On the Measurable Algebra with Scott’s Closure Operation

In the classic paper “The algebra of Topology” [11] McKinsey and Tarski defined
closure algebras as pairs 〈B,♦〉 where B is a Boolean algebra and ♦ : B → B is
unary operation satisfying the axioms: ♦♦x = ♦x, x ≤ ♦x, ♦(x ∨ y) = ♦x ∨ ♦y
and ♦� = �.

Let B denote the collection of Borel subsets of the Cantor space {0, 1}ω.
Define the equivalence relation ∼ on B as X ∼ Y if μ{0,1}ω (X�Y ) = 0, where
X�Y = (X \Y )∪(Y \X). The quotient B/∼ is a complete Boolean algebra with
operations defined as [X]∼ ∨ [Y ]∼ = [X ∪ Y ]∼ and ¬[X]∼ = [{0, 1}ω \ X]∼. It is
called the (Lebesgue) measure algebra (see, e.g., [9, 17.A]) and denoted by M.

Recently Dana Scott has observed5 that the (Lebesgue) measure algebra M
naturally carries the structure of a closure algebra.
5 Result announced by Scott during a seminar entitled “Mixing Modality and Proba-
bility” given in Edinburgh, June 2010.
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Definition 14. An element [X]∼ ∈ M is called closed if it contains a closed
set, i.e., if there exists a closed set Y such that Y ∈ [X]∼. Let ♦M : M → M
be defined as follows: ♦([X]∼) =

∧
{[Y ]∼ | [X]∼ ≤ [Y ]∼ and [Y ]∼ is closed}.

Note that the infimum exists because M is complete.

Proposition 4 (Scott). The pair S = 〈M,♦M〉 is a closure algebra.

Interestingly, it was proved in [10, Theorem 6.3] that S is universal among the
class of all closure algebras: an equation holds in S if and only if it holds in all
closure algebras. We make the following observation.

Theorem 9. The first order theory of S is interpretable in MSO + ∀π.

Proof. By Theorem 8 it is sufficient to observe that the theory of S can be
interpreted within the theory of 〈Fσ,∪,∩, C,N〉. This is possible as, by regularity
of Borel measures, any element [X]∼ contains an Fσ sets. A detailed proof will
be published elsewhere. �

Hence if MSO+∀=1
π is decidable then the first order theory of S is also decidable.

8 Open Problems

In the Introduction we formulated Problem 1 regarding the decidability of the
theory of MSO+∀=1

π . In light of Theorems 8 and 9, the decidability of the theories
of 〈Fσ,∪,∩, C,N〉 and 〈M,♦M〉 is a closely related problem. In particular, if
one of these two theories is undecidable, then also MSO + ∀=1

π is undecidable.
In Sect. 4 in Remark 2 we noticed that the definition of the semantics of

MSO + ∀=1 involves potentially non-measurable sets. One encounters the same
problem in the definition of MSO + ∀=1

π . Hence:

Problem 2. Are relations defined by MSO+∀=1
π formulas Lebesgue measurable?

In previous work [8] we proved that the all regular sets of trees are R-sets and,
as a consequence, Lebesgue measurable. Therefore a variant of Problem 2 above
asks whether all MSO + ∀=1

π definable sets are R-sets. In the other direction,
R-sets belong to the Δ1

2 class of the projective hierarchy. So we can ask:

Problem 3. Is the class of sets definable by MSO + ∀=1
π formulas contained in

a certain fixed level of the projective hierarchy?

A negative answer would likely lead to undecidability of MSO + ∀=1
π (see [3]).
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