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Abstract. The proof-theoretic method of proving the Craig interpola-
tion property was recently extended from sequents to nested sequents
and hypersequents. There the notations were formalism-specific, obscur-
ing the underlying common idea, which is presented here in a general
form applicable also to other similar formalisms, e.g., prefixed tableaus.
It describes requirements sufficient for using the method on a proof sys-
tem for a logic, as well as additional requirements for certain types of
rules. The applicability of the method, however, does not imply its suc-
cess. We also provide examples from common proof systems to highlight
various types of interpolant manipulations that can be employed by the
method. The new results are the application of the method to a recent
formalism of grafted hypersequents (in their tableau version), the general
treatment of external structural rules, including the analytic cut, and the
method’s extension to the Lyndon interpolation property.

Keywords: Craig interpolation · Lyndon interpolation · Sequent cal-
culi · Hypersequent calculi · Nested sequent calculi

1 Introduction

Along with decidability and compactness, the Craig interpolation property (CIP)
is one of the principal properties desired of any logic. One way of demonstrating it
by constructing the interpolant is the so-called proof-theoretic method, which
relies on an analytic proof system for the logic. Until recently, the scope of the
method has been limited to logics that can be captured by analytic sequent
(equivalently, tableau) proof formalisms, as well as by display and resolution
calculi, the discussion of which is outside the scope of this paper.

In [6], it was shown how to prove the CIP using nested sequents. In [9], writ-
ten and accepted before this paper but likely to be published after it, the same
principles were successfully applied to hypersequents. An anonymous reviewer
of [9] noted that the nested and hypersequent cases are essentially the same.
The purpose of this paper, which is based on a talk given at the Logic Collo-
quium 2015, is to present a general formal method in uniform notation, of which
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both prior applications are instances. Note that the applicability of the method
does not imply that the CIP can be proved using this method or, indeed, at all.
For instance, the method is applicable to the hypersequent calculi for S4.3 from
[7,8,11], but S4.3 does not have the CIP [13].

Let us first outline how general our method is intended to be. We concen-
trate on internal calculi, which excludes display and labelled sequent calculi. We
consider only calculi whose basic unit is what we call a multisequent, i.e., an
object that can be viewed as a hierarchy of components with each component
containing a(n ordinary) sequent, called a sequent component. Since a sequent is
essentially a single-component multisequent, the method for multisequents (par-
tially) subsumes the well-known method for sequents. Following [4], we restrict
the type of sequents used to the so-called symmetric sequents, which are best
suited for interpolation proofs.

Definition 1 (Symmetric Sequents). Rules of a symmetric sequent system
operate on 2-sided sequents with formulas in negation normal form1 in such a
way that formulas never move between the antecedent and the consequent.

The use of symmetric sequent systems is not required by the method (nei-
ther of [6,9] used them). Rather, they are a contrivance used to avoid splitting
sequents, first introduced by Maehara in [12] written in Japanese. Splitting a 2-
sided sequent results in a rather counter-intuitive 4-sided contraption, whereas
splitting a 1-sided sequent is more or less isomorphic to working with a 2-sided
symmetric sequent. However, the restriction to symmetric sequents has an unfor-
tunate side-effect: it rules out the application of our method to subclassical logics,
which lack De Morgan laws. For such logics, so far we have not been able to use
split 2-sided sequents either.

In this paper, by the common language invoked by the more general for-
mulations of the CIP, we understand common propositional variables, with all
examples taken from propositional modal logics.

Thus, the proof-theoretic part of our recipe requires a description of a propo-
sitional modal logic by a symmetric multisequent proof system. There
is one more necessary (for now) ingredient: the modal logic in question needs to
have a Kripke semantics (with the standard local interpretation of ∧ and ∨).
Although the algorithm is designed using semantic reasoning (in cases of a suc-
cessful application of the method), the final algorithm for computing interpolants
makes no mention of semantics, remaining fully internal.

2 Sufficient Criteria of Applicability

As discussed in the previous section, we assume that we are given a propositional
modal logic L described by a symmetric multisequent proof system SL and
complete with respect to a class CL of Kripke models. The logic L is formulated
1 In negation normal form, formulas are built from ∧, ∨, �, ⊥, propositional vari-

ables p, and their negations p; ¬ is defined via De Morgan laws; → is defined via ¬.



204 R. Kuznets

in a language L in negation normal form. Each multisequent is (can be viewed
as) a hierarchy of components, each containing some sequent component Γ ⇒ Δ,
where the antecedent Γ and consequent Δ are multisets (sets, sequences) of L-
formulas that are called antecedent and consequent formulas respectively.

Definition 2 (Craig Interpolation Property). A logic L has the CIP iff
whenever L � A→B, there is an interpolant C ∈ L such that each propositional
variable of C occurs in both A and B and such that L � A→C and L � C →B.2

Our method requires relationships among L, SL, and CL stronger than com-
pleteness. The first requirement is the completeness of SL w.r.t. implications.

Definition 3 (Singleton Multisequent). A singleton multisequent is a mul-
tisequent with exactly one component.

Requirement I. If L � A→B, then SL � G for some singleton multisequent G
with sequent component A ⇒ B.

The second requirement is semantical completeness w.r.t. implications:

Definition 4 (Logical Consequence). For sets (multisets, sequences) Γ and
Δ of L-formulas, Γ �CL

Δ if, for each model M ∈ CL and each world w of M,

M, w � A for each A ∈ Γ =⇒ M, w � B for some B ∈ Δ .

Requirement II. If A �CL
B, then L � A → B.

Formulating the next requirement requires preparation. The idea of our method
is to consider maps f from the components of a given multisequent G to the
worlds of a given model M ∈ CL and to evaluate formulas from a component α
of G (i.e., formulas from the sequent component Γ ⇒ Δ contained at α) at
the world f(α) ∈ M. To faithfully represent the component hierarchy peculiar
to the multisequent system SL, however, we need to restrict these maps. For
each multisequent type and each class of models considered, we require that the
notion of good map be defined for each pair of a multisequent and a model. After
we formulate what is needed from such maps, we give examples of good maps
for nested sequents and hypersequents.

Remark 5. By a slight abuse of notation, we write f : G → M for a mapping
from the components of G to the worlds of M. In the same vein, we write α ∈ G
to state that α is a component of G and w ∈ M to state that w is a world in M.

Requirement III. If SL � G, then for each model M ∈ CL and for each good
map f : G → M, there exists a component α ∈ G containing Γ ⇒ Δ such that

M, f(α) � A for some A ∈ Γ or M, f(α) � B for some B ∈ Δ .

2 Here D → E means D ∨ E, where D is the defined negation of D.
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In other words, we understand a multisequent as a multiworld disjunction of its
sequent components and require this disjunction to be valid with respect to all
good maps, which direct where each sequent component is to be evaluated.

Example 6 (Nested sequents). Nested sequents are often described as trees of
sequents (and are sometimes called tree hypersequents). To transfer this tree
hierarchy of components into models, we define good maps from a given nested
sequent G to a given model M = (W,R, V ) to be those that satisfy the following
condition: if β is a child of α in G, then f(α)Rf(β). It has been shown in [6]
that Req. III is satisfied for all such maps.

Example 7 (Hypersequents). The standard formula interpretation of a hyperse-

quent Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn as
n∨

i=1

� (
∧

Γi → ∨
Δi) suggests that good maps

send all components to worlds accessible from a single root: good maps from a
given hypersequent G to a given model M = (W,R, V ) are all maps satisfying
the following condition: there exists w ∈ W such that wRf(α) for all α ∈ G.
For some classes of models, this formulation can be simplified, e.g., if R is an
equivalence relation for all models from CL (as in the case of S5), it is sufficient3

to require that f(α)Rf(β) for all α, β ∈ G.

Remark 8. Note that good maps are defined on components rather than on
sequent components. This means that we must notationally distinguish occur-
rences of the same sequent component. The linear notation for hypersequents
masks the problems when hypersequents are sets or multisets of sequents. We
assume that in any multisequent system there is a way of distinguishing sequent
components and rely on this, but we do not specify the details, which could
involve converting sets/multisets to sequences as the underlying data structure
for multisequent components and adding appropriate exchange rules or using
explicit labels for sequent components.

Requirement IV. For each singleton multisequent with component α, each mo-
del M ∈ CL, and each world w ∈ M, the map {(α,w)} must be a good map.

3 Reducing the CIP to the Componentwise Interpolation

Our aim is to generalize the CIP to multiple components. In particular, inter-
polants are to be evaluated via good maps and, hence, cannot be mere formulas.

Definition 9 (Uniformula). A uniformula is obtained from a multisequent G
by replacing all sequent components in G with such multisets of formulas that
the union of these multisets contains exactly one formula.
3 Despite the homogeneity of the components of hypersequents, maps can only be used

unrestrictedly if the worlds of the model are completely homogeneous too, as in the
case of the class of all models with R = W ×W , another class of models used for S5.
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In other words, a uniformula is a single formula C placed at a particular com-
ponent α of a given multisequent G. We call C the formula contained in the
uniformula and the component α the active component of the uniformula. Let
G(Γ1 ⇒ Δ1︸ ︷︷ ︸

α1

; . . . ;Γn ⇒ Δn︸ ︷︷ ︸
αn

) for n ≥ 0 denote a multisequent with displayed com-

ponents αi containing sequents Γi ⇒ Δi. By G◦(α1; . . . ;αn) we denote the result
of removing all sequent components from G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn) but keep-
ing its components with the hierarchy intact. Further, we allow to insert new
objects, such as formulas, into a displayed component αi. Thus, each uniformula
has the form G◦(C) for some multisequent G(Γ ⇒ Δ) and some formula C.

Definition 10 (Multiformula). A multiformula � with structure �
◦ is defined

as follows. Each uniformula G◦(A) is a multiformula with structure G◦(α). If
�1 and �2 are multiformulas with �

◦
1 = �

◦
2, then �1 ��2 and �1 ��2 are also

multiformulas with the same structure.

To be able to formulate a generalized interpolation statement, we need to define
a satisfaction relation between good maps and multiformulas, which are used as
interpolants. For any two multisequents/multiformulas with the same structure,
there is a unique way of transferring a good map from one onto the other.

Definition 11 (� on Multiformulas). Let f : G◦(α) → M. For a unifor-
mula G◦(C), we say that f � G◦(C) iff M, f(α) � C.

If �1 � �2 (�1 � �2) is defined, then �
◦
1 = �

◦
2. Let f be a map from this

structure to a model M. f � �1 � �2 (f � �1 � �2) iff f � �i for some (each)
i = 1, 2.

In other words, a uniformula is forced by a map if the formula contained in it
is forced at the world to which the active component is mapped. The external
conjunction � and disjunction � on multiformulas behave classically.

To define the Componentwise Interpolation Property, we use abbreviations:

Definition 12. For a good map f from a multisequent G to a model M, we
write f � Ant(G) if M, f(α) � A for each component α ∈ G and each antecedent
formula A contained in α. We write f � Cons(G) if M, f(β) � B for some
component β ∈ G and some consequent formula B contained in β.

Definition 13 (Componentwise Interpolation Property, or CWIP).
A multiformula � is a (componentwise) interpolant of a multisequent G, written
G ←− �, if �

◦ = G◦ and the following two conditions hold:

1. if a propositional variable occurs in �, it must occur both in some antecedent
formula of G and in some consequent formula of G ;

2. for each model M ∈ CL and each good map f : G → M,

f � Ant(G) =⇒ f � � and f � � =⇒ f � Cons(G) . (1)

A multisequent proof system SL has the CWIP iff every derivable multisequent
has an interpolant.
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The CIP can be reduced to the CWIP if Reqs. I–IV are satisfied. The proof of
the reduction requires another small piece of notation.

Definition 14 (Componentwise Equivalence). Multiformulas �1 and �2

are called componentwise equivalent, written �1 ≡ �2, provided �
◦
1 = �

◦
2 and

f � �1 ⇐⇒ f � �2 for any good map f on the common structure of �1 and �2.

Remark 15. The classical reading of � and � implies that each multiformula can
be transformed to a componentwise equivalent multiformula both in the DNF
and in the CNF. This will be used for some of the rules in the following section.

Lemma 16. For singleton sequents, multiformulas and uniformulas are equi-
expressive, i.e., for each multiformula � with a structure G◦(α) where α is the
only component, there exists a uniformula G◦(C) such that G◦(C) ≡ � and it
has the same propositional variables as �.

Proof. By induction on the construction of �. The case when � is a uniformula
is trivial. Let �1 ≡ G◦(C1) and �2 ≡ G◦(C2) for some structure G◦(α). Then it
is easy to see that �1 � �2 ≡ G◦(C1 ∨ C2) and �1 � �2 ≡ G◦(C1 ∧ C2) and that
the condition on propositional variables is also satisfied. �
Theorem 17 (Reduction of CIP to CWIP). Let a logic L, a multisequent
proof system SL, and a class of Kripke models CL satisfy all Reqs. I–IV. If
SL enjoys the CWIP, then L enjoys the CIP.

Proof. Assume that SL satisfies the CWIP and that L � A → B. Then, by
Req. I, SL � G(A ⇒ B) for some singleton multisequent G(A ⇒ B), which has a
componentwise interpolant � by the CWIP. By Lemma 16, G(A ⇒ B) ←− G◦(C)
for some uniformula G◦(C). Since A is the only antecedent and B is the only
consequent formula of G(A ⇒ B), each propositional variable of C must occur
in both A and B. For any model M ∈ CL and any world w ∈ M, by Req. IV,
f := {(α,w)} is a good map on G(A ⇒ B). In particular, f � Ant(G(A ⇒ B))
implies f � G◦(C), i.e., M, w � A implies M, w � C. Given the arbitrariness
of M and w, we conclude that A �CL

C. It now follows from Req. II that L �
A → C. The proof of L � C → B is analogous. �
Remark 18. An attentive reader would notice the absence of Req. III, the most
complex one, from the proof of Theorem 17. While the reduction does not rely
on Req. III, its violation renders the reduction vacuous by denying the possibility
of the CWIP for SL. Indeed, if Req. III is violated, i.e., SL � G and f � Ant(G)
but f � Cons(G) for some M ∈ CL and some good map f : G → M, then no
multiformula � could satisfy (1) for this f .

4 Demonstrating the CWIP

In this section, strategies for proving the CWIP for various types of multise-
quent rules are described. For many common types of rules, a general (but not
universal) recipe for handling them is presented. Thus, every statement in this
section is implicitly prefaced by the qualifier “normally”.
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Initial Sequents are interpolated by uniformulas. It is easy to see that the
following are interpolants for the most popular initial sequents:

G(Γ,A ⇒ A,Δ) ←− G◦(A) G(Γ ⇒ A,A,Δ) ←− G◦(�)

G(Γ,A ⇒ A,Δ) ←− G◦(A) G(Γ,⊥ ⇒ Δ) ←− G◦(⊥)

G(Γ,A,A ⇒ Δ) ←− G◦(⊥) G(Γ ⇒ �,Δ) ←− G◦(�)

Single-Premise Local Rules. By a local rule we mean a rule that does not
affect the components and affects the sequent components mildly enough to
use the same map for the conclusion and the premise(s) (cf. component-shifting
rules on p. 13). (Normally,) single-premise local rules require no change to the
interpolant. We formulate sufficient criteria for reusing the interpolant and then
list common rules satisfying them.

Lemma 19. Consider a single-premise rule
G
H such that G◦ = H◦ and such

that no antecedent and no consequent propositional variable from G disappears
in H. If for any good map f on the common structure of G and H,

f � Ant(H) =⇒ f � Ant(G) and f � Cons(G) =⇒ f � Cons(H) ,

then H ←− � whenever G ←− � .

Proof. Follows directly from the definition of componentwise interpolation. �
This almost trivial observation captures most of the common single-premise
propositional rules, both logical and internal structural. We only provide a non-
exhaustive list, leaving the proof to the reader: internal weakening IW, internal
contraction IC, internal exchange IEx, and both internal-context sharing and
splitting versions of the left conjunction and right disjunction rules; some modal
rules can also be treated this way: e.g., the multisequent T rules for reflexive
models or the multisequent (local) D rules for serial models; an example of such
a rule with multiple active components is the hypersequent rule �Ls from [14]
and its symmetric version ♦Ls for equivalence models with good maps from
Example 7 (see Fig. 1). The variants of these logical rules with embedded internal
contraction are also local.

Multi-premise Local Rules are those for which any good map on the conclu-
sion can be applied to any of the premises. It follows directly from the definition
of CWIP:

Lemma 20 (Conjunctive Rules). Consider a rule
G1 . . . Gn

H such that

G◦
1 = · · · = G◦

n = H◦ and such that no antecedent and no consequent propositional
variable from any Gi disappears in H. If for any good map f on the common
structure of Gi’s and H,

f � Ant(H) =⇒ (∀i)
(
f � Ant(Gi)

)
and (∀i)

(
f � Cons(Gi)

)
=⇒ f � Cons(H),

then H ←− �1 � . . . � �n whenever Gi ←− �i for each i = 1, . . . , n .
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G(Γ ⇒ Δ)
IWG(Γ, Π ⇒ Σ, Δ)

G(Γ, Π, Π ⇒ Σ, Σ, Δ)
ICG(Γ, Π ⇒ Σ, Δ)

G(Γ, Ai ⇒ Δ) ∧ ⇒G(Γ, A1 ∧ A2 ⇒ Δ)

G(Γ, A1, A2 ⇒ Δ) ∧ ⇒G(Γ, A1 ∧ A2 ⇒ Δ)

G(Γ ⇒ Ai, Δ) ⇒ ∨G(Γ ⇒ A1 ∨ A2, Δ)

G(Γ ⇒ A1, A2, Δ) ⇒ ∨G(Γ ⇒ A1 ∨ A2, Δ)

G(Γ, A ⇒ Δ)
T ⇒G(Γ, �A ⇒ Δ)

G(Γ ⇒ A, Δ) ⇒ TG(Γ ⇒ ♦A, Δ)

G(

α
︷ ︸︸ ︷

Γ, �A ⇒ Δ;

β
︷ ︸︸ ︷

Π, A ⇒ Σ)
�Ls

G(Γ, �A ⇒ Δ
︸ ︷︷ ︸

α

; Π ⇒ Σ
︸ ︷︷ ︸

β

)

G(Γ, ♦A ⇒ Δ)
D ⇒ locG(Γ, �A ⇒ Δ)

G(Γ ⇒ �A, Δ) ⇒ D locG(Γ ⇒ ♦A, Δ)

G(

α
︷ ︸︸ ︷

Γ ⇒ ♦A, Δ;

β
︷ ︸︸ ︷

Π ⇒ A, Σ)
♦Ls

G(Γ ⇒ ♦A, Δ

α

; Π ⇒ Σ

β

)

Fig. 1. Rules not requiring changes to the interpolant by Lemma 19

Lemma 21 (Disjunctive Rules). Consider a rule
G1 . . . Gn

H such that

H◦ = G◦
1 = · · · = G◦

n and such that no antecedent and no consequent propo-
sitional variable from any Gi disappears in H. If for any good map f on the
common structure of Gi’s and H,

f � Ant(H) =⇒ (∃i)
(
f � Ant(Gi)

)
and (∃i)

(
f � Cons(Gi)

)
=⇒ f � Cons(H) ,

then H ←− �1 � . . . � �n whenever Gi ←− �i for each i = 1, . . . , n .

The remaining propositional rules fall under the scope of these two lemmas: it is
easy to see that both the internal-context splitting and sharing versions of the
right conjunction rule ⇒ ∧ (see Fig. 2) are conjunctive and both versions of the
left disjunction rule ∨ ⇒ (see Fig. 3) are disjunctive rules in this sense.

G(Γ ⇒ A, Δ) G(Γ ⇒ B, Δ) ⇒ ∧
(Γ A B, Δ)

G(Γ1 ⇒ A, Δ1) G(Γ2 ⇒ B, Δ2) ⇒ ∧
(Γ1, Γ2 A B, Δ1, Δ2)

Fig. 2. Propositional conjunctive rules in the sense of Lemma 20

Analytic Cut. Another common local rule is cut. While the general cut rule
is problematic even in the sequent case, it is well known that analytic cuts can
be handled (see [4]). To extend this handling to the external-context sharing
and internal-context splitting cuts on multisequents (see Fig. 4), we impose a
condition that is both stronger and weaker than analyticity. While A need not
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G(Γ, A ⇒ Δ) G(Γ, B ⇒ Δ) ∨ ⇒
(Γ, A B Δ)

G(Γ1, A ⇒ Δ1) G(Γ2, B ⇒ Δ2) ∨ ⇒
(Γ1, Γ2, A B Δ1, Δ2)

Fig. 3. Propositional disjunctive rules in the sense of Lemma 21

appear as a subformula in the conclusion as long as all its propositional variables
occur there, these propositional variables must be on the same side of ⇒ as
in A or A displayed in the premises. This condition is necessary to use the
interpolants of both premises and the formula A in constructing the interpolant
for the conclusion.

Lemma 22 (Analytic Cut). For the cut rules from Fig. 4, if no antecedent
and no consequent propositional variable from any premise disappears in the
conclusion, then (Cut ⇒) and (⇒ Cut) are a disjunctive and conjunctive rule
respectively and can be treated according to Lemmas 21 or 20 respectively. For
the (C u⇒ t) rule, we have G(Γ1, Γ2 ⇒ Δ1,Δ2) ←− �1 �

(
G◦(A)��2

)
whenever

G(Γ1 ⇒ A,Δ1) ←− �1 and G(Γ2, A ⇒ Δ2) ←− �2.

Proof. The common language requirement is clearly satisfied. Consider an arbi-
trary good map f from the common structure of the premises and the conclusion
of (C u⇒ t) to some M ∈ CL. Assume first that f � Ant

(G(Γ1, Γ2 ⇒ Δ1,Δ2)
)
. It

is immediate that f � Ant
(G(Γ1 ⇒ A,Δ1)

)
and, hence, f � �1. Further, either

M, f(α) � A or M, f(α) � A for the active component α. In the latter case,
f � G◦(A).4 In the former case, f � Ant

(G(Γ2, A ⇒ Δ2)
)

implying f � �2. In
either case, f � G◦(A)��2 for the second conjunct of the proposed interpolant.

Assume now that f � �1 �

(
G◦(A) � �2

)
. It follows from f � �1 that

f � Cons
(G(Γ1 ⇒ A,Δ1)

)
. If one of the forced formulas is not the displayed A,

then f � Cons
(G(Γ1, Γ2 ⇒ Δ1,Δ2)

)
, which is the desired result. Otherwise, we

have M, f(α) � A. In this case, f � G◦(A) implying f � �2. This, in turn,
implies f � Cons

(G(Γ2, A ⇒ Δ2)
)

and f � Cons
(G(Γ1, Γ2 ⇒ Δ1,Δ2)

)
again. �

Remark 23. Lemma 22 also applies to one-to-one multicut rules allowing multi-
ple copies of the cut formula in both premises in Fig. 4.

External Structural Rules. From now on, interpolants for most rules rely on
the specifics of goodness conditions. The guiding principle is that any good map
on the conclusion of the rule needs to be transformed in some natural
and general way into a good map on the premise(s). We start with rule
types that are reasonably common across various sequent types: external weak-
ening EW, external contraction EC, external mix, and external exchange EEx.
4 We assume the standard semantics, i.e., that exactly one of A or A holds at a world.
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G(Γ1, A ⇒ Δ1) G(Γ2, A ⇒ Δ2)
Cut ⇒G(Γ1, Γ2 ⇒ Δ1, Δ2)

G(Γ1 ⇒ A, Δ1) G(Γ2 ⇒ A, Δ2) ⇒ CutG(Γ1, Γ2 ⇒ Δ1, Δ2)

G(Γ1 ⇒ A, Δ1) G(Γ2, A ⇒ Δ2)
C

u⇒ t
(Γ1, Γ2 Δ1, Δ2)

Fig. 4. Cut rules

G()
EWG(Γ1 ⇒ Δ1

α1

; . . . ; Γn ⇒ Δn

αn

)
G(

α1
︷ ︸︸ ︷

Γ1 ⇒ Δ1;

β1
︷ ︸︸ ︷

Π1 ⇒ Σ1; . . . ;

αn
︷ ︸︸ ︷

Γn ⇒ Δn;

βn
︷ ︸︸ ︷

Πn ⇒ Σn)
mixG(Γ1, Π1 ⇒ Δ1, Σ1

α1

; . . . ; Γn, Πn ⇒ Δn, Σn

αn

)

Fig. 5. External structural rules EW and mix

External weakening. By external weakening rules we understand rules EW from
Fig. 5 where the conclusion is obtained by adding new components in such a way
that all the sequent components already present in the premise, along with the
hierarchical relationships among their components, remain intact.

Requirement V (For EW). For each instance of EW from Fig. 5 and each
good map f on its conclusion, the restriction f � G() of f onto the components
of G() must be a good map on the premise.

Lemma 24 (External Weakening). Let G() ←− � for an instance of EW
from Fig. 5 and �

′ be the result of adding empty components α1, . . . , αn to each
uniformula in � in the same way they are added in the rule. Then Req.V implies
G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn) ←− �

′.

Proof. For a good map f : G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn) → M, the map f �G() is
good by Req.V. If f � Ant

(G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn)
)
, then f �G() � Ant

(G()
)
.

Thus, f �G() � �. It is easy to show by induction on the construction of � that
f � �

′ iff f �G() � �. Thus, f � �
′. The argument for the consequents is similar.

The common language condition is also clearly fulfilled. �
The external weakening rules of both hypersequents and nested sequents are
covered by this lemma w.r.t. good maps from Examples 7 and 6 respectively.

Example 25. Consider symmetric nested sequents written in a hybrid Brünnler–
Poggiolesi notation (a similar notation has been used in [5]). By Lemma 24,

B ⇒ B,
[
A ⇒ A

] ←− [
A

]
�

(
B,

[ ])

EW
B ⇒ B,

[
A ⇒ A, [C ⇒ D]

]
, [E ⇒ F ] ←− ([

A, [ ]
]
, [ ]

)
�

(
B,

[
[ ]

]
, [ ]

) .

Mix and external contraction rules. By mix rules we understand rules mix from
Fig. 5 where the conclusion is obtained by transferring all antecedent and con-
sequent formulas contained in each βi, i = 1, . . . , n, to the antecedent and con-
sequent respectively of αi and removing the emptied components βi.
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Requirement VI (For mix and EC). For each instance of mix from Fig. 5 and
each good map f on its conclusion, f [α � β] :=f∪{(β1, f(α1)), . . . , (βn, f(αn))}
must be a good map on the premise.

Lemma 26 (Mix). Let G(Γ1 ⇒ Δ1;Π1 ⇒ Σ1; . . . ;Γn ⇒ Δn;Πn ⇒ Σn) ←− �

for an instance of mix from Fig. 5. Let �
′ be the result of moving each for-

mula within each βi to αi, leaving formulas contained in components other
than βi intact, and removing the emptied βi’s from each uniformula in �. Then
G(Γ1,Π1 ⇒ Δ1, Σ1; . . . ;Γn,Πn ⇒ Δn, Σn) ←− �

′ whenever Req. VI is fulfilled.

Proof. If f : G(Γ1,Π1 ⇒ Δ1, Σ1; . . . ;Γn,Πn ⇒ Δn, Σn) → M is good, so is
f [α � β] by Req.VI. f � Ant

(G(Γ1,Π1 ⇒ Δ1, Σ1; . . . ;Γn,Πn ⇒ Δn, Σn)
)

implies f [α � β] � Ant
(G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn; Π1 ⇒ Σ1; . . . ;Πn ⇒ Σn)

)

because formulas from each Πi are evaluated at f [α � β](βi) = f(αi), same as
in f . Thus, f [α � β] � �. It is easy to show by induction on the construction
of � that f � �

′ iff f [α � β] � �. Thus, f � �
′. The argument for the

consequents is similar. The common language condition is also fulfilled. �
For set-based sequent components, the external contraction EC is simply an
instance of mix with Γi = Πi and Δi = Σi for each i = 1, . . . , n. For multiset- and
sequence-based ones, EC can be obtained from mix by internal contraction IC and
internal exchange IEx. Since the definition of CWIP is not sensitive to multiplici-
ties of formulas or their positions within the antecedent (consequent), Lemma 26
is equally applicable to EC (cf. also the application of Lemma 19 to IC and IEx).

Remark 27. Requirement VI does not yet guarantee that mix from Fig. 5 is a
proper mix rule or that its variant with Γi = Πi and Δi = Σi is a proper
contraction rule: that requires the α-components to have the same hierarchical
relations as the β-components, both among themselves and as related to the rest
of the multisequent. But this is not a problem of interpolation.

The external contraction rules of both hypersequents and nested sequents are
covered by Lemma 26 w.r.t. good maps from Examples 7 and 6 respectively.

Example 28. An example of a nontrivial mix rule is medial from [2], represented

here in the original nested-sequent notation:
Γ{[Δ1], [Δ2]}

med
Γ{[Δ1,Δ2]}

, with brackets

used to represent the tree structure on the components. Thus, the root compo-
nent of Δ1 is mixed with that of Δ2 and each child component of either root
becomes a child of the mixed component. Below we present an example of the
use of Lemma 26, where C ⇒ D is mixed with A ⇒ A :



Interpolation Method for Multicomponent Sequent Calculi 213

⇒ ,
[
C ⇒ D, [B ⇒ B]

]
,
[
A ⇒ A, [ ⇒ F ]

] ←− ([
[ ]

]
,
[
A, [ ]

])
�

([
[B]

]
,
[
[ ]

])

med⇒ ,
[
C,A ⇒ D,A, [B ⇒ B], [ ⇒ F ]

] ←− ([
A, [ ], [ ]

])
�

([
[B], [ ]

]) .

Clearly, Req. VI is satisfied for med w.r.t. the good maps from Example 6.

G(

α
︷ ︸︸ ︷

Γ ⇒ Δ;

β
︷ ︸︸ ︷

A ⇒ )
K ⇒G(Γ, ♦A ⇒ Δ

α

)

G(

α
︷ ︸︸ ︷

Γ ⇒ Δ;

β
︷ ︸︸ ︷

⇒ A) ⇒ KG(Γ ⇒ �A, Δ

α

)

Fig. 6. Modal K rules

External Exchange. These are the rules that change the structure of the multise-
quent without changing a single sequent component. For them, it is sufficient to
change the structures of each uniformula in the interpolant in the same way. It is
required that good maps on the conclusion could be transferred to the premise
without changing where each formula is evaluated.

Component-Removing Rules are modal rules that remove a component from
the premise multisequent. Such rules can be highly logic-specific. We consider
two most common ones that rely on the connection between the modality and
the Kripke semantics and are likely to be present in one form or another in
virtually every multisequent system. For these rules, the argument is almost the
same as the one given in [6] for nested sequents. Hence, we only provide the proof
for one. It should be noted that, to the best of our knowledge, these rules require
the interpolant of the premise to be in the DNF or CNF, depending on the rule.
We have not been able to extend the construction to arbitrary interpolants. For
both rules in Fig. 6, the conclusion is obtained by removing the component β
with a single formula and transferring this formula, prefaced with an appropriate
modality, to the component α (as usual, copying the modalized formula to the
premise makes no difference).

Requirement VII (For K Rules). For each instance of each rule from Fig. 6
and each good map f from its conclusion to a model M = (W,R, V ), it is required
that f ∪ {(β,w)} be a good map on the premise of the rule whenever f(α)Rw.

Lemma 29 (K Rules). Consider an instance of (K ⇒) from Fig. 6 and let

G(Γ ⇒ Δ;A ⇒ ) ←−
n

�
i=1

⎛

⎝
mi

�
j=1

�ij(Xij ; ∅) �

li

�
k=1

G◦(∅;Cik)

⎞

⎠ (2)

where β is not the active component of any uniformula �ij(Xij ; ∅). Then

G(Γ,♦A ⇒ Δ) ←−
n

�
i=1

( mi

�
j=1

�ij(Xij) � G◦
(

♦
li∧

k=1

Cik

))

(3)
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wherever Req. VII is fulfilled. Similarly, for the (⇒ K) rule, if

G(Γ ⇒ Δ; ⇒ A) ←−
n

�
i=1

⎛

⎝
mi

�
j=1

�ij(Xij ; ∅) �

li

�
k=1

G◦(∅;Cik)

⎞

⎠,

then, in the presence of Req. VII,

G(Γ ⇒ �A,Δ) ←−
n

�
i=1

( mi

�
j=1

�ij(Xij) � G◦
(

�
li∨

k=1

Cik

))

.

Proof. We prove the statement for the (K ⇒) rule. Let f � Ant
(G(Γ,♦A ⇒ Δ)

)

for some good map f : G(Γ,♦A ⇒ Δ) → M, where M = (W,R, V ). Then
M, f(α) � ♦A, so that there exists a world w ∈ W such that f(α)Rw and
M, w � A. By Req. VII, the good map f ∪ {(β,w)} � Ant

(G(Γ ⇒ Δ;A ⇒ )
)
.

Assuming (2), the interpolant given there in the DNF is forced by f ∪ {(β,w)},
i.e., for some i, the map f ∪ {(β,w)} forces one of the disjuncts of the DNF:
in particular, M, w � Cik for all k = 1, . . . , li for this i. Given that f(α)Rw,
we see that M, f(α) � ♦

∧li
k=1 Cik.5 The removal of the empty β component

from the remaining �ij(Xij ; ∅) works the same way as for mix in Lemma 26.
Thus, after the removal, all these uniformulas remain forced by f for this i. It
follows that f forces the interpolant from (3). The argument for the consequents
is analogous.

It is crucial that only one diamond formula has to be satisfied. This is used
to find one world to extend the good map with. To single out such diamond
formulas, the interpolant of the premise needs to be in the DNF. �
Composite Rules can be viewed as combinations of other rule types.

Component-shifting rules. Some rules seem local because the structure of the
multisequent is unchanged, whereas in reality a new component is added to
replace an old one. An example is the hypersequent �R rule from [14], which can
be obtained from EW and (⇒ K) (see Fig. 7), necessitating both Reqs. V and VII.

Seriality rules. It was shown in [6] that of the modal nested rules from [2], only
the basic K rules (Fig. 6) and the seriality D rules require changing interpolants,
with changes for the D rules obtained from those for the K rules by swapping
the antecedent and consequent versions. An explanation is depicted in Fig. 8.
The ¬ rules do not fit into our paradigm: they are from split sequents. But in
this example the second ¬ cancels the problem created by the first one. Thus, a
transformation can be guessed and then proved to be correct independently.
5 This is true also for li = 0: the empty conjunction is � and M, f(α) � ♦�. However,

G◦
(
♦
∧li

k=1 Cik

)
cannot be dropped: the diamond formula in the disjunct that is

forced ensures the existence of an accessible world and the possibility to use (2).
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G( ⇒ A)
�RG( ⇒ �A)

�
G( ⇒ A)

EWG( ⇒ ; ⇒ A) ⇒ K
( �A )

Fig. 7. A rule that looks local but should be treated as composite

G(Γ ⇒ Δ; ⇒ A) ⇒ DG(Γ ⇒ ♦A, Δ)
�

G(Γ ⇒ Δ; ⇒ A) ¬G(Γ ⇒ Δ; A ⇒ )
K ⇒G(Γ, ♦A ⇒ Δ)
D ⇒ locG(Γ, �A ⇒ Δ) ¬

(Γ A, Δ)

Fig. 8. A composite component-removing rule with illegal transitions.

Multicut rule. Unlike in Rem. 23, the multi-to-one multicut rule is external-
context splitting and, hence, not local. In addition, one component is juxtaposed
against many in the other premise. Fortunately, it can always be represented as
a combination of local one-to-one multicuts and rules EW, making our method
directly applicable. For the lack of space, we leave the details to the reader.

5 Grafted Hypersequents

To show the versatility of our general method, we apply it to the prefixed-tableau
version of a new type of multisequents called grafted hypersequents, introduced
in [10]. A grafted hypersequent itself is a (possibly empty) hypersequent with
an additional trunk component, separated from the others by ‖. The formula
interpretation for a hypersequent Γ ⇒ Δ ‖ Π1 ⇒ Σ1 | · · · | Πn ⇒ Σn is∧

Γ → ∨
Δ ∨ ∨n

i=1 �(
∧

Πi → ∨
Σi). In [10], a prefixed tableau version equiva-

lent to grafted hypersequents is developed for K5 and KD5. This system oper-
ates with signed prefixed formulas � : SA, where the sign S ∈ {T,F} and the
prefixes can be of three types: the trunk prefix •, countably many limb pre-
fixes 1,2, . . . and countably many twig prefixes 1, 2, . . . . Twig prefixes do not
appear in initial tableaus: they can only be introduced by tableau rules. Each
branch of a tableau is considered to be a multisequent with each prefix � on
the branch determining the component � that contains Γ� ⇒ Δ� where Γ� :=
{A | � : TA occurs on the branch} and Δ� := {A | � : FA occurs on the branch}.
Since the prefix • is always present, the singleton multisequents contain no limb
or twig prefixes. The interpolant is constructed beginning from a closed tableau
and working backwards through the stages of the tableau derivation until the
starting tableau whose only branch contains • : TA and • : FB is reached.

Example 30 (Grafted tableaus). A map from the prefixes occurring on a branch
to worlds in a model M = (W,R, V ) is called good if f(•)Rf(n) for any limb
prefix n and f(•)Rkf(m) for some k > 0 for any twig prefix m.
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Requirements I and II easily follow from the results of [10].6 Given the formula
interpretation of grafted hypersequents, Req. III follows from the equivalence of
grafted tableaus and grafted hypersequents ([10]), from Def. 30, and from the
fact that twig components do not occur in initial tableaus. Req. IV is also trivial.

Fig. 9. Grafted tableau rules for K5, where c and c′ are either limb or twig prefixes

The propositional logical and all structural rules fall into the categories dis-
cussed above. The cut rule is eliminable. Thus, to demonstrate the CIP for K5, it
is sufficient to consider the modal rules from [10] and their symmetric variants, as
presented in Fig. 9. Written in our general notation, R2 and R6 coincide with �Ls

while R4 and R8 coincide with ♦Ls from Fig. 1. The locality of the rules R2 and R4
directly follows from Def. 30 as f(•)Rf(n) for any good map. The locality of the
rules R6 and R8 relies on the fact that f(•)Rkf(c) and f(•)Rlf(c′) for k, l > 0
implies f(c)Rf(c′) in Euclidean models. The rules R1 and R5 are variants of the
(⇒ K) rule with the principal modal formula preserved in the premise, whereas
R3 and R7 are such variants of the (K ⇒) rule. Req.VII directly follows from
Def. 30 for all four rules.

For the logic KT� of shift reflexivity, the grafted hypersequents from [10]
can be translated into grafted tableaus by replacing the modal rules R5–R8
from Fig. 9 with the modal rules S5–S8 from Fig. 10. Instead of Euclideanity,
the semantic condition of shift reflexivity is imposed: wRw whenever vRw for
some v. To prove the CIP for KT�, it is sufficient to note that S7 and S8 are local
rules because f(•)Rkf(c) for some k > 0. Further, S5 and S6 can be represented
as (⇒ K) and (K ⇒) respectively, followed by a series of �Ls and ♦Ls rules.
Req. VII is clearly fulfilled by Def. 30. Moreover, since the �Ls and ♦Ls rules are
performed in one block with a K rule, we can assume f(c)Rf(m) ensuring their
locality. Note that Euclideanity was not used for the rules R1–R4 in K5.

Since the additional tableau rule for KD5 from [10] can be extended to SDL+

and since both the rule and its symmetric version are variants of (D ⇒) and (⇒
D) with embedded contraction, they can be dealt with in the manner described
in Sect. 7.

Theorem 31. The Craig interpolation property for K5, KD5, the logic of shift
reflexivity KT�, and the extended standard deontic logic SDL+ can be proved
constructively using grafted tableau systems, based on [10].

6 While the tableaus presented in [10] are not symmetric, the necessary modifications
are standard, and thus the completeness results from [10] can be applied here.
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Fig. 10. Grafted tableau rules for KT� , where c is either a limb or twig prefix

6 Lyndon Interpolation

The CIP is often strengthened to the Lyndon interpolation property (LIP). Up
to now, p and p have represented the same propositional variable. By contrast,
for the LIP they are distinct: p (p) can occur in the interpolant iff p (p) occurs in
both antecedent and consequent formulas. Thanks to the use of symmetric-type
sequents, the interpolants constructed for the CIP can also be used to demon-
strate the LIP for all the rules considered, with the exception of the analytic cut,
which requires a strengthening of the condition on preservation of p and p. The
main condition for using our method to prove the LIP for custom-made rules
is that no propositional letter, positive or negative, antecedent or consequent,
disappears on the way from initial sequents to the endsequent.

Corollary 32. The LIP for all 15 logics of the modal cube can be proved con-
structively using nested sequents from [2]. The LIP for S5 can be proved con-
structively using the hypersequent system from [1]. The LIP for K5, KD5, KT�,
and SDL+ can be proved constructively using grafted tableaus based on [10].

7 Conclusion and Future Work

We have presented a general description of the constructive proof of Craig and
Lyndon interpolation for hypersequents, nested sequents, and other multicom-
ponent sequent formalisms such as grafted tableaus. This general description
explains already existing results and facilitates the extension of the method to
new rules, e.g., the analytic cut rule and the generalizations of the mix rule. We
also provide a general formalism-independent treatment of external weakening
and contraction rules. The natural next step is to apply this framework to new
multisequent formalisms and to semantics other than Kripke models.
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