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Abstract. The formal system of intuitionistic epistemic logic IEL was
proposed by S. Artemov and T. Protopopescu. It provides the formal
foundation for the study of knowledge from an intuitionistic point of
view based on Brouwer-Hayting-Kolmogorov semantics of intuitionism.
We construct a cut-free sequent calculus for IEL and establish that poly-
nomial space is sufficient for the proof search in it. We prove that IEL is
PSPACE-complete.
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1 Introduction

Modal logic IEL, the basic Intuitionistic Epistemic Logic, was proposed by
S. Artemov and T. Protopopescu in [1]. It was defined by the following Hilbert
system:
Axioms

1. Axioms of propositional intuitionistic logic,
2. K(F → G) → (KF → KG) (distribution),
3. F → KF (co-reflection),
4. ¬K⊥ (consistency).

Rule F, F → G � G (Modus Ponens). Here knowledge modality K means
verified truth, as suggested by T. Williamson in [2]. According to the Brouwer-
Heyting-Kolmogorov semantics of intuitionistic logic, a proposition is true iff it
is proved. The co-reflection principle states that any such proof can be verified.

The intuitionistic meaning of implication provides an effective proof checking
procedure that produces a proof of KF given a proof of F . But the assumption
that its output always contains a proof of F is too restrictive. The procedure may
involve some trusted sources which do not necessarily produce explicit proofs of
what they verify1. So the backward implication which is the reflection principle
1 For example, it can be some trusted database that stores true facts without proofs

or some zero-knowledge proof.
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KF → F used in the classical epistemic logic (see [3]) is wrong in the intuition-
istic setting. In general, a proof of KF is less informative than a proof of F .

At the same time some instances of the reflection principle are true in IEL.
In particular, it is the consistency principle which is equivalent to K⊥ → ⊥.
The proof of K⊥ contains the same information as the proof of ⊥ because there
is no such proof at all. The more general example is the reflection principle for
negative formulas: K¬F → ¬F . It is provable in IEL (see [1]).

In this paper we develop the proof theory for IEL. Our main contributions
are the cut-free sequent formulation and the complexity bound for this logic. It
is established that polynomial space is sufficient for the proof search, so IEL is
PSPACE-complete.

Some other sequent cut-free formalization of intuitionistic reasoning about
knowledge was proposed in [4].2 It is based on a bimodal logic with reflexive
knowledge modality K that is different from the co-reflexive modality K used in
IEL.

Our cut-elimination technique is syntactic (see [5]). We formulate a special
cut-free sequent calculus IEL−

G without structural rules (see Sect. 3) that is correct
with respect to the natural translation into IEL. It has a specific K-introduction
rule (KI1) that also allows to contract a formula F in the presence of KF in
antecedents. This choice makes it possible to prove the admissibility of the stan-
dard contraction rule as well as the admissibility of all natural IEL-correct modal
rules (Sects. 4, 5). The admissibility of the cut-rule is proved by the usual induc-
tion on the cutrank (Sect. 6). As the result we obtain the equivalence between
IEL−

G and IEL0G. (The latter is the straightforwardly formulated sequent counter-
part for IEL with the cut-rule). Finally we formulate a light cut-free variant of
IEL−

G with the contraction rule and with modal rules

Γ1, Γ2 ⇒ F
(KI)

Γ1,K(Γ2) ⇒ KF
,

Γ ⇒ K⊥
(U)

Γ ⇒ F
.

It is equivalent to IEL−
G .

The proof search for IEL can be reduced to the case of so-called minimal
derivations (Sect. 7). We implement it as a game of polynomial complexity and
use the characterization AP=PSPACE (see [7]) to prove the upper complexity
bound for IEL. The matching lower bound follows from the same bound for
intuitionistic propositional logic [8].

2 Sequent Formulation of IEL

The definition of intuitionistic sequents is standard (see [5]). Formulas are build
from propositional variables and ⊥ using ∧, ∨, → and K; ¬F means F → ⊥.
2 Sequents in [4] are classical (multiconclusion) and contain special labels denoting

worlds of a Kripke structure, so this formalization can be considered as a classical
formulation of the theory of forcing relation in a Kripke structure that corresponds
to the intuitionistic bimodal epistemic logic.
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A sequent has the form Γ ⇒ F where F is a formula and Γ is a multiset of
formulas. K(Γ ) denotes KF1, . . . , KFn when Γ = F1, . . . , Fn.

Let IEL0G be the following calculus:
Axioms

Γ,A ⇒ A (A is a variable), Γ,⊥ ⇒ F, Γ,K⊥ ⇒ F.

Rules

Γ, F, F ⇒ G
(Contraction)

Γ, F ⇒ G

Γ1 ⇒ F Γ2, F ⇒ G
(Cut)

Γ1, Γ2 ⇒ G

Γ,F,G ⇒ H
(∧ ⇒)

Γ, F ∧ G ⇒ H

Γ ⇒ F Γ ⇒ G
(⇒ ∧)

Γ ⇒ F ∧ G

Γ,F ⇒ H Γ,G ⇒ H
(∨ ⇒)

Γ, F ∨ G ⇒ H

Γ ⇒ Fi
(⇒ ∨)i (i = 1, 2)

Γ ⇒ F1 ∨ F2

Γ ⇒ F Γ,G ⇒ H
(→⇒)

Γ, F → G ⇒ H

Γ,F ⇒ G
(⇒→)

Γ ⇒ F → G

Γ ⇒ F
(KI0)

K(Γ ) ⇒ KF

Γ,F,KF ⇒ G
(KC)

Γ, F ⇒ G

Comment. IEL0G is a straightforwardly formulated sequent counterpart of IEL.
Axioms and rules without the modality correspond to the standard sequent for-
mulation of the intuitionistic propositional logic (cf. system G2i from [5] with
the cut-rule). The modal axiom corresponds to the consistency principle. Modal
rules (KI0) and (KC) reflect the distribution and co-reflection principles respec-
tively. Instead of the K-contraction rule (KC) one can take the equivalent K-
elimination rule:

Γ,KF ⇒ G
(KE)

Γ, F ⇒ G
.

Theorem 1. IEL0G � Γ ⇒ F iff IEL � ∧Γ → F .

Proof. Straightforward induction on the derivations. �	
Our goal is to eliminate the cut-rule. But the cut-elimination result for IEL0G
will not have the desirable consequences, namely, the subformula property and
termination of the proof search procedure. Below we give a different formulation
without these disadvantages.

3 Cut-Free Variant IEL−
G with Rules (KI1) and (U)

Axioms

Γ,A ⇒ A, A is a variable or ⊥.
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Rules

Γ, F,G ⇒ H
(∧ ⇒)

Γ, F ∧ G ⇒ H

Γ ⇒ F Γ ⇒ G
(⇒ ∧)

Γ ⇒ F ∧ G

Γ,F ⇒ H Γ,G ⇒ H
(∨ ⇒)

Γ, F ∨ G ⇒ H

Γ ⇒ Fi
(⇒ ∨)i (i = 1, 2)

Γ ⇒ F1 ∨ F2

Γ, F → G ⇒ F Γ,G ⇒ H
(→⇒)

Γ, F → G ⇒ H

Γ,F ⇒ G
(⇒→)

Γ ⇒ F → G

Γ,K(Δ),Δ ⇒ F
(KI1)

Γ,K(Δ) ⇒ KF

Γ ⇒ K⊥
(U)

Γ ⇒ F

In the rule (KI1) we additionally require that Γ does not contain formulas of
the form KG. (This requirement is unessential, see Corollary 3).

We define the main (occurrences of) formulas for axioms and for all inference
rules except (KI1) as usual — they are the displayed formulas in the conclusions
(not members of Γ,H). For the rule (KI1) all members of K(Δ) and the formula
KF are main.
Comment. The propositional part of IEL−

G is the same as in the system G3m
from [5]. In the modal part we do not add (KE) or (KC), but modify (KI0). In
the presence of weakening (it is admissible, see Lemma 2) (KI0) is derivable:

Γ ⇒ F
(W )

K(Γ ), Γ ⇒ F
(KI1)

K(Γ ) ⇒ KF

.

So one can derive all sequents of the forms F ⇒ F for complex F and F ⇒ KF .
It can be shown by induction on the complexity of the formula F . The latter
also requires weakening in the case of F = KG:

F ⇒ F
(KI1), F 
= KG,

F ⇒ KF

KG ⇒ KG
(W )

KG,G ⇒ KG
(KI1)

KG ⇒ KKG

.

Comment. (U) is necessary. There is no way to prove the sequent K⊥ ⇒ ⊥ in
IEL−

G without the rule (U).

4 Structural Rules Are Admissible

We prove the depth-preserving admissibility of weakening and contraction. Our
proof follows [5] except the case of the rule (KI1). The corresponding inductive
step in the proof of Lemma 6 does not require the inversion of the rule. Instead
of it, some kind of contraction is build-in in the rule itself.3

We write �n Γ ⇒ F for “Γ ⇒ F has a IEL−
G -proof of depth at most n”.

3 This method was introduced by Kleene in the construction of his G3 systems, see [6].



Sequent Calculus for Intuitionistic Epistemic Logic IEL 191

Lemma 2 (Weakening). If �n Γ ⇒ F then �n Γ,G ⇒ F .

Proof. Induction on n, similar to the proof of Depth-preserving Weakening
lemma from [5]. For example, consider the additional modal rule (KI1). Consider
a derivation

D
Γ,K(Δ),Δ ⇒ F ′

(KI1)
Γ,K(Δ) ⇒ KF ′

with �n Γ,K(Δ),Δ ⇒ F ′. If G = KG′ for some G′ then, by the induction
hypothesis, �n Γ,K(Δ),Δ,KG′, G′ ⇒ F ′ , so the rule (KI1) can be applied to
this premise and we have �n+1 Γ,K(Δ),KG′ ⇒ KF ′ by (KI1). In the remaining
case the rule (KI1) can be applied to �n Γ,K(Δ),Δ,G ⇒ F ′, so we have
�n+1 Γ,K(Δ), G ⇒ KF ′ too. �	
Corollary 3. The extended K-introduction rule

Γ1,K(Δ),Δ, Γ2 ⇒ F
(KIext)

Γ1,K(Δ,Γ2) ⇒ KF

is admissible in IEL−
G and �n Γ1,K(Δ),Δ, Γ2 ⇒ F implies �n+1 Γ1,

K(Δ,Γ2) ⇒ KF .

Proof. Suppose �n Γ1,K(Δ),Δ, Γ2 ⇒ F and Γ1 = Γ ′
1,K(Γ ′′

1 ) where Γ ′
1 does not

contain formulas of the form KG. By Lemma 2,

�n Γ ′
1,K(Γ ′′

1 ),K(Δ),K(Γ2), Γ ′′
1 ,Δ, Γ2 ⇒ F .

So,

�n+1 Γ ′
1,K(Γ ′′

1 ,Δ, Γ2) ⇒ KF

by (KI1). But Γ ′
1,K(Γ ′′

1 ,Δ, Γ2) = Γ1,K(Δ,Γ2), so �n+1 Γ1,K(Δ,Γ2) ⇒ KF . �	
Corollary 4. All axioms of IEL0G are provable in IEL−

G .

Proof. It is sufficient to prove sequents Γ,⊥ ⇒ F and Γ,K⊥ ⇒ F :

Γ,⊥ ⇒ ⊥
(KIext)

Γ,⊥ ⇒ K⊥
(U)

Γ,⊥ ⇒ F

,

Γ,⊥ ⇒ ⊥
(KIext)

Γ,K⊥ ⇒ K⊥
(U)

Γ,K⊥ ⇒ F

.

�	
Lemma 5 (Inversion lemma, cf. [5]). Left rules are invertible in the follow-
ing sense:

If �n Γ,A ∧ B ⇒ C then �n Γ,A,B ⇒ C.
If �n Γ,A1 ∨ A2 ⇒ C then �n Γ,Ai ⇒ C, i = 1, 2.
If �n Γ,A → B ⇒ C then �n Γ,B ⇒ C.
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Proof. The proof is essentially the same as the proof of Inversion lemma from [5].
The additional cases of modal rules are straightforward. �	
Lemma 6 (Contraction). If �n Γ, F, F ⇒ G then �n Γ, F ⇒ G.

Proof. Induction on n. Case n = 1. When the first sequent is an axiom, the
second one is an axiom too.

Case n+1. When the displayed two occurrences of F in Γ, F, F ⇒ G are not
main for the last rule of the derivation, apply the induction hypothesis to the
premises of the rule and contract F there.

Suppose one of the occurrences is main. Only axioms may have atomic main
formulas, so we treat atomic F as in case n = 1.

When F has one of the forms A∧B, A∨B or A → B, we use the same proof
as in [5]. It is based on the items of Inversion lemma formulated in Lemma 5.

Case F = KA is new. The derivation of Γ, F, F ⇒ G of depth n + 1 has the
form

D
Γ ′,K(Δ),Δ ⇒ B

(KI1)
Γ ′,K(Δ) ⇒ KB

where Γ, F, F = Γ ′,K(Δ) and G = KB; the multiset Δ contains two copies of
A. We have

�n Γ ′,K(Δ),Δ ⇒ B. (1)

Let ( )− means to remove one copy of A from a multiset. We apply the
induction hypothesis to (1) and obtain �n Γ,K(Δ−),Δ− ⇒ B. Then, by (KI1),

�n+1 Γ,K(Δ−) ⇒ KB .

But Γ, F = Γ ′,K(Δ−), so �n+1 Γ, F ⇒ G. �	

5 Admissible Modal Rules

We have already seen that (KI0) is admissible in IEL−
G .

Lemma 7 (Depth-preserving K-elimination). If �n Γ,KF ⇒ G then �n

Γ, F ⇒ G.

Proof. Induction on n. Case n = 1. When the first sequent is an axiom, the
second one is an axiom too.

Case n + 1. Consider a proof of depth n + 1 of a sequent Γ,KF ⇒ G. Let
(R) be its last rule. When the displayed occurrence of KF is not main for (R),
apply the induction hypothesis to its premises and then apply (R) to reduced
premises. It will give �n Γ, F ⇒ G.
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Suppose the occurrence of KF is main. The derivation has the form

�n Γ ′,K(Δ),KF,Δ, F ⇒ G′
(KI1)�n+1 Γ ′,K(Δ,F ) ⇒ KG′ .

Apply the induction hypothesis to the premise and remove one copy of F . By
Lemma 6 , �n Γ ′,K(Δ),Δ, F ⇒ G′. Then apply an instance of (KIext) with
Γ1 = Γ ′, F and empty Γ2. By Corollary 3 , �n+1 Γ ′,K(Δ), F ⇒ KG′. �	
Corollary 8 (Depth-preserving K-contraction). If �n Γ,KF, F ⇒ G then
�n Γ, F ⇒ G.

Proof. Apply (KE) and contraction. Both rules are admissible and preserve the
depth (Lemmas 7, 6). �	

6 Cut Is Admissible

Consider an IEL−
G -derivation with additional cut-rule

Γ1 ⇒ F Γ2, F ⇒ G
(Cut)

Γ1, Γ2 ⇒ G
. (2)

and some instance of (Cut) in it. The level of the cut is the sum of the depths
of its premises. The rank of the cut is the length of F .

Lemma 9. Suppose the premises of (Cut) are provable in IEL−
G without (Cut).

Then the conclusion is also provable in IEL−
G without (Cut).

Proof. We define the following well-ordering on pairs of natural numbers:
(k1, l1) > (k2, l2) iff k1 > k2 or k1 = k2 and l1 > l2 simultaneously. By induction
on this order we prove that a single cut of rank k and level l can be eliminated.

As in [5], we consider three possibilities:
I. One of the premises is an axiom. In this case the cut-rule can be eliminated.

If the left premise of (2) is an axiom,

Γ ′
1, A ⇒ A Γ2, A ⇒ G

(Cut)
Γ ′
1, A, Γ2 ⇒ G

,

then (Cut) is unnecessary. The conclusion can be derived from the right premise
by weakening (Lemma 2).

Now suppose that the right premise is an axiom. If the cutformula F is not
main for the axiom Γ2, F ⇒ G then the conclusion Γ1, Γ2 ⇒ G is also an axiom,
so (Cut) can be eliminated. If F is main for the right premise then F = G = A
where A is atomic, so (2) has the form

Γ1 ⇒ A Γ2, A ⇒ A
(Cut)

Γ1, Γ2 ⇒ A
.
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The conclusion can be derived without (Cut) from the left premise by weakening
(Lemma 2).

II. Both premises are not axioms and the cutformula is not main for the last
rule in the derivation of at least one of the premises. In this case one can permute
the cut upward and reduce the level of the cut. For example,

Γ1 ⇒ F

Φ,F,K(Ψ), Ψ ⇒ B

Φ,F,K(Ψ) ⇒ KB
(Cut)

Γ1, Φ,K(Ψ) ⇒ KB

�
Γ1 ⇒ F Φ,F,K(Ψ), Ψ ⇒ B

(Cut)
Γ1, Φ,K(Ψ), Ψ ⇒ B

(KIext)
Γ1, Φ,K(Ψ) ⇒ KB

.

The cutformula remains the same, so the cut rule can be eliminated by induction
hypothesis (see [5]).

III. The cutformula F is main for the last rules in the derivations of both
premises. In this case we reduce the rank of cut and apply the induction
hypothesis.

Note that F is not atomic. (The atomic case is considered in I.) If the last
rule in the derivation of the left premise is (U) then (Cut) can be eliminated:

Γ1 ⇒ K⊥
(U)

Γ1 ⇒ F Γ2, F ⇒ G
(Cut)

Γ1, Γ2 ⇒ G

�
Γ1 ⇒ K⊥

Γ1, Γ2 ⇒ K⊥
(U)

Γ1, Γ2 ⇒ G

.

Case F = KA, the last rule in the derivation of the left premise is (KI1).
Then the right premise is also derived by (KI1):

D
Γ,K(Δ),Δ ⇒ A

(KI1)
Γ,K(Δ) ⇒ KA

D′

Γ ′,K(Δ′, A),Δ′, A ⇒ B
(KI1)

Γ ′,K(Δ′),KA ⇒ KB
(Cut)

Γ,K(Δ), Γ ′,K(Δ′) ⇒ KB

�

From Γ ′,K(Δ′, A),Δ′, A ⇒ B by K-contraction (Corollary 8) we obtain
Γ ′,K(Δ′),Δ′, A ⇒ B and then reduce the rank:

�

D
Γ,K(Δ),Δ ⇒ A

D′′

Γ ′,K(Δ′),Δ′, A ⇒ B
(Cut)

Γ,K(Δ),Δ, Γ ′,K(Δ′),Δ′ ⇒ B
(KI1)

Γ,K(Δ), Γ ′,K(Δ′) ⇒ KB

.

In remaining cases (when F has one of the forms A ∧ B, A ∨ B or A → B)
we follow [5]. �	
Comment. Our formulation of the rule (KI1) combines K-introduction with
contraction. It is done in order to eliminate the contraction rule and to avoid
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the case of contraction in the proof of Lemma9. But the contraction rule remains
admissible and can be added as a ground rule too, so we can simplify the formu-
lation of the K-introduction rule. It results in a “light” cut-free version IELG:

Axioms

Γ,A ⇒ A, A is a variable or ⊥.

Rules
Γ,Δ,Δ ⇒ G

(C)
Γ,Δ ⇒ G

Γ,F,G ⇒ H
(∧ ⇒)

Γ, F ∧ G ⇒ H

Γ ⇒ F Γ ⇒ G
(⇒ ∧)

Γ ⇒ F ∧ G

Γ,F ⇒ H Γ,G ⇒ H
(∨ ⇒)

Γ, F ∨ G ⇒ H

Γ ⇒ Fi
(⇒ ∨)i (i = 1, 2)

Γ ⇒ F1 ∨ F2

Γ ⇒ F Γ,G ⇒ H
(→⇒)

Γ, F → G ⇒ H

Γ,F ⇒ G
(⇒→)

Γ ⇒ F → G

Γ1, Γ2 ⇒ F
(KI)

Γ1,K(Γ2) ⇒ KF

Γ ⇒ K⊥
(U)

Γ ⇒ F

Lemma 10. IELG � Γ ⇒ F iff IEL−
G � Γ ⇒ F .

Proof. Part “only if”. The rule (KI) is a particular case of (KIext), so all rules
of IELG are admissible in IEL−

G (Lemmas 6, 2 and Corollary 3).
Part “if”. All missing rules are derivable in IELG:

Γ, F → G ⇒ F Γ,G ⇒ H
(→⇒)

Γ, F → G,F → G ⇒ H
(C)

Γ, F → G ⇒ H

,

Γ,K(Δ),Δ ⇒ F
(KI)

Γ,K(Δ),K(Δ) ⇒ KF
(C)

Γ,K(Δ) ⇒ KF

.

�	
Theorem 11. (Cut) is admissible in IELG.

Proof. Lemma 9 implies the similar statement for the calculus IELG. Indeed,
one can convert IELG-derivations into IEL−

G -derivations, eliminate a single cut in
IEL−

G , and then convert the cut-free IEL−
G -derivation backward (Lemma 10). The

statement implies the theorem. �	
Theorem 12. The following are equivalent:
1. IEL0G � Γ ⇒ F.
2. IEL−

G � Γ ⇒ F.
3. IELG � Γ ⇒ F.
4. IEL � ∧Γ → F.
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Proof. 1. ⇔ 2. All rules of IEL0G are admissible in IEL−
G (Lemmas 2, 6, 7, 9) and

vice versa.
The equivalence of 2. and 3. is proved in Lemma10, the equivalence of 1. and

4. – see Theorem 1. �	

7 Complexity of IEL

We prove that IEL is PSPACE-complete. The lower bound follows from the
same lower bound for the intuitionistic propositional logic. To prove the upper
bound we show that polynomial space is sufficient for the proof search. Our proof
search technique is based on monotone derivations and is similar to one used by
S.C. Kleene in his G3 systems (see [6]).

Definition 13. For a multiset Γ let set(Γ ) be the set of all its members. An
instance of a rule

Γ1 ⇒ F1 . . . Γn ⇒ Fn

Γ ⇒ F

is monotone if set(Γ ) ⊆
⋂

i

set(Γi). A derivation is called monotone if it uses

monotone instances of inference rules only.

Consider the extension IEL′
G of the calculus IEL−

G by the following rules: the
contraction rule (C) and

Γ, F ∧ G,F,G ⇒ H
(∧C

1 ⇒)
Γ, F ∧ G,F ⇒ H

,
Γ, F ∧ G,F,G ⇒ H

(∧C
2 ⇒)

Γ, F ∧ G,G ⇒ H
,

Γ, F ∧ G,F,G ⇒ H
(∧C ⇒)

Γ, F ∧ G ⇒ H
,

Γ, F ∨ G,F ⇒ H Γ,F ∨ G,G ⇒ H
(∨C ⇒)

Γ, F ∨ G ⇒ H
,

Γ, F ⇒ G
(⇒→W )

Γ, F ⇒ F → G
,

Γ, F → G ⇒ F Γ, F → G,G ⇒ H
(→C⇒)

Γ, F → G ⇒ H
,

Γ,K(Δ1,Δ2),Δ1,Δ2 ⇒ F
(KIW1 )

Γ,Δ1,K(Δ1,Δ2) ⇒ KF
.

In (KIW1 ) we require that the multiset Γ,Δ1 does not contain formulas of the
form KG.

Lemma 14. IEL′
G � Γ ⇒ F iff IEL−

G � Γ ⇒ F .

Proof. All new rules are some combinations of corresponding ground rules with
structural rules. The latter are admissible in IEL−

G (Lemmas 6, 2). �	
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Lemma 15. Any derivation in IEL′
G can be converted into a monotone deriva-

tion of the same sequent.

Proof. Consider a derivation which is not monotone. Choose the first (top-down)
non-monotone instance (R) of a rule in it. (R) introduces a new formula A in the
antecedent of its conclusion which is not present in antecedents of some of its
premises. Add a copy of A to the antecedent of the conclusion and to antecedents
of all sequents above it. When A has the form KB and is added to the antecedent
of the conclusion of some instance of rules (KI1) or (KIW1 ) above (R), add a
copy of B to the antecedent of the premise of this rule and to antecedents of
all sequents above it. When B has the form KC, do the same further up the
derivation with C, etc. Finally, insert the contraction rule after (R):

D
(R)

A, Γ ⇒ F
�

D′
(R)

A, A, Γ ⇒ F
(C)

A, Γ ⇒ F

.

The result is also a correct derivation with one non-monotone instance elim-
inated. Repeat the transformation until the derivation becomes monotone. �	
Lemma 16. A monotone derivation of a sequent Γ ⇒ F in IEL′

G can be con-
verted into a monotone derivation of the sequent set(Γ ) ⇒ F that contains only
sequents of the form set(Γ ′) ⇒ F ′. The transformation does not increase the
depth of the proof.

Proof. Given a monotone derivation replace all sequents Γ ′ ⇒ F ′ in it with
set(Γ ′) ⇒ F ′. This transformation converts axioms into axioms. We claim that
an instance of an inference rule will be converted either into some other instance
of a rule of IEL′

G or some premise of the converted instance will coincide with its
conclusion, so the rule can be removed from the resulting proof. The depth of
the proof does not increase.

Indeed, instances of (⇒ ∧), (⇒ ∨) and (U) will be converted into some other
instances of the same rule. An instance of (C) will be converted into the trivial
rule that can be removed:

Γ,Δ,Δ ⇒ G
(C)

Γ,Δ ⇒ G
�

set(Γ,Δ) ⇒ G

set(Γ,Δ) ⇒ G
� remove.

The remaining cases. Let k, l,m, n, k′, l′,m′, n′ ≥ 0 and F k = F, . . . , F︸ ︷︷ ︸
k

.

All monotone instances of (∧ ⇒), (∧C
1 ⇒), (∧C

2 ⇒), (∧C ⇒) have the form

Γ, (F ∧ G)k+1, F l+1, Gm+1 ⇒ H

Γ, (F ∧ G)k
′+1, F l′ , Gm′ ⇒ H

.
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Contractions in antecedents will give

Γ ′, F ∧ G,F,G ⇒ H
(∧C ⇒)

Γ ′, F ∧ G ⇒ H
, l′ = m′ = 0,

Γ ′, F ∧ G,F,G ⇒ H
(∧C

1 ⇒)
Γ ′, F ∧ G,F ⇒ H

, l′ > 0,m′ = 0,

Γ ′, F ∧ G,F,G ⇒ H
(∧C

2 ⇒)
Γ ′, F ∧ G,G ⇒ H

, l′ = 0,m′ > 0,

trivial rule (removed), l′,m′ > 0.

All monotone instances of (∨ ⇒), (∨C ⇒) have the form

Γ, (F ∨ G)k+1, F l+1, Gm ⇒ H Γ, (F ∨ G)k+1, F l, Gm+1 ⇒ H

Γ, (F ∨ G)k
′+1, F l, Gm ⇒ H

.

Contractions in antecedents will give

Γ ′, F ∨ G,F ⇒ H Γ,F ∨ G,G ⇒ H
(∨C ⇒)

Γ ′, F ∨ G ⇒ H
, l = m = 0,

trivial rule (removed), l > 0 or m > 0.

All monotone instances of (⇒→), (⇒→W ) have the form

Γ, F k+1 ⇒ G

Γ,F k′ ⇒ F → G
.

Contractions in antecedents will give

Γ ′, F ⇒ G
(⇒→W )

Γ ′, F ⇒ F → G
, k′ > 0,

Γ ′, F ⇒ G
(⇒→)

Γ ′ ⇒ F → G
, k′ = 0.

All monotone instances of (→⇒), (→C⇒) have the form

Γ, (F → G)k+1, Gl ⇒ F Γ, (F → G)k
′+1, Gl+1 ⇒ H

Γ, (F → G)k+1, Gl ⇒ H
.

Contractions in antecedents will give

Γ ′, (F → G) ⇒ F Γ ′, (F → G), G ⇒ H
(→C⇒)

Γ ′, (F → G) ⇒ H
, l = 0,

trivial rule (removed), l > 0.



Sequent Calculus for Intuitionistic Epistemic Logic IEL 199

All monotone instances of (KI1), (KIW1 ) have the form

Γ,Gk1+1
1 , (KG1)l1+1, . . . , Gkn+1

n , (KGn)ln+1 ⇒ F

Γ,G
k′
1

1 , (KG1)l
′
1+1, . . . , G

k′
n

n , (KGn)l
′
n+1 ⇒ KF

Contractions in antecedents will give

Γ ′, G1,KG1, . . . , Gn,KGn ⇒ F
(KI1)

Γ ′,KG1, . . . , KGn ⇒ KF
, when k′

1 = . . . = k′
n = 0,

an instance of (KIW1 ), when k′
i = 0, k′

j > 0 for some i, j ,

trivial rule (removed), when k′
1, . . . , k

′
n > 0.

�	
Lemma 17. (Subformula Property). Consider a derivation of a sequent
Γ ⇒ F in IEL−

G , IELG or IEL′
G. Any sequent in it is composed of subformulas

of some formulas from the multiset Γ, F,K⊥.

Proof. For any rule of these calculi, its premises are composed of subformulas of
formulas occurring in its conclusion and, possibly, of K⊥. �	
Definition 18. A monotone IEL′

G-derivation of a sequent set(Γ ) ⇒ F is called
minimal if it contains only sequents of the form set(Γ ′) ⇒ F ′ and has the
minimal depth.

The size of a sequent F1, . . . , Fk ⇒ F is the sum of the lengths of all formulas
Fi and F .

Lemma 19. Let Mn be the set of all minimal IEL′
G-derivations of sequents of

size n. There exist polynomials p and q such that for any derivation D ∈ Mn,
its depth is bounded by p(n) and the sizes of all sequents in D do not exceed q(n).

Proof. Consider a derivation D ∈ Mn and a path from the root to some leaf in
it:

Γ0 ⇒ F0, . . . , ΓN ⇒ FN .

All sequents in it are distinct from each other, all of them composed of sub-
formulas of the first sequent, ⊥ and K⊥ (Lemma 17), and Γi ⊆ Γi+1 holds for
i < N .

Divide the path into maximal intervals with the same Γi inside. The length
of such interval is bounded by the number of possible formulas Fi, which is O(n).
The number of intervals is O(n) too, because it does not exceed the maximal
length of a strictly monotone sequence Δ0 ⊂ Δ1 ⊂ . . . ⊂ Δk of subsets of S
where S is the set of all subformulas of the first sequent extended by ⊥ and K⊥.
So, |S| = O(n) and N = O(n2).

Any sequent Γi ⇒ Fi consists of at most |S| + 1 formulas of length O(n), so
its size is O(n2). �	
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Corollary 20. The set of all IEL′
G-derivable sequents belongs to PSPACE.

Proof. The result follows from the known game characterization AP = PSPACE
([7], see also [9] or [10]). We reproduce here the argument from [11] where
Kleene’s technique is used in a similar way.

Let p, q be the polynomials from Lemma 19. Consider the following two-
person game with players (P ) and (V ). The initial configuration b0 is a sequent
of the form set(Γ ) ⇒ F of size n. Player (P ) moves the first. He writes down
one or two sequents of sizes less than q(n) and his opponent (V ) chooses one of
them, and so on. The game is over after p(n) moves of (V ) or when (V ) chooses
a sequent that is an axiom of IEL′

G.
Let wi and bi for i > 0 denote the moves of players (P ) and (V ) respectively,

so b0, w1, b1, w2, b2, ... is a run of the game. The winning conditions for (P ) are:

1. For every move of (P ) the figure
wi

bi−1
is a monotone instance of some

inference rule of IEL′
G.

2. All sequents written by (P ) have the form set(Δ) ⇒ G.
3. At his last move (V ) is forced to choose an axiom of IEL′

G.

The number and the sizes of moves are bounded by polynomials and the
winning conditions are polynomial-time decidable, so the set M of initial con-
figurations that admit a winning strategy for (P ) belongs to PSPACE (see [7]).

By Lemma 19, a sequent belongs to M iff it has a minimal derivation. But
it follows from Lemmas 15, 16, 2, that a sequent Γ ⇒ F is IEL′

G-derivable iff
set(Γ ) ⇒ F has a minimal derivation. Thus, the general derivability problem
for IEL′

G belongs to PSPACE too. �	
Theorem 21. The derivability problems for IEL0G, IEL−

G , IELG, IEL′
G and IEL are

PSPACE-complete.

Proof. The lower bound PSPACE follows from the same lower bound for intu-
itionistic propositional logic [8]. The upper bound PSPACE for IEL′

G is estab-
lished in Corollary 20. It can be extended to other calculi by Theorem 12 and
Lemma 14. �	
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