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Abstract. Subsequently, a particular extension of the bi-modal logic
of subset spaces, LSS, to the case of several agents will be provided.
The basic system, which originally was designed for revealing the intrin-
sic relationship between knowledge and topology, has been developed
in several directions in recent years, not least towards a comprehensive
knowledge-theoretic formalism. However, while subset spaces have been
shown to be smoothly combinable with various epistemic concepts in the
single-agent case, adjusting them to general multi-agent scenarios has
brought about rather unsatisfactory results up to now. This is due to
reasons inherent in the system so that one is led to consider more special
cases. In the present paper, such a widening of LSS to the multi-agent
setting is proposed. The peculiarity is here given by the case that the
agents are supplied with certain knowledge-enabling functions allowing,
in particular, for comparing their respective knowledge. It turns out that
such circumstances can be modeled in corresponding logical terms to a
considerable extent.

Keywords: Reasoning about knowledge of agents · Subset space seman-
tics · Knowledge-enabling functions · Completeness · Decidability

1 Introduction

The starting point for this paper is reasoning about knowledge. This important
foundational issue has been given a solid logical basis right from the beginning of
the research into theoretical aspects of artificial intelligence, as can be seen, e.g.,
from the classic textbooks [5,14]. According to this, a binary accessibility relation
RA connecting possible worlds or conceivable states of the world, is associated
with every instance A of a given finite group G of agents. The knowledge of A is
then defined through the set of all valid formulas, where validity is understood
with regard to every state the agent considers possible at the actual one. This
widespread and well-established view of knowledge is complemented by Moss
and Parikh’s bi-modal logic of subset spaces, LSS (see [4,15], or Ch. 6 of [1]), of
which the basic idea is reported in the following.

The epistemic state of an agent in question, i.e., the set of all those states
that cannot be distinguished by what the agent topically knows, can be viewed
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as a neighborhood U of the actual state x of the world. Formulas are now inter-
preted with respect to the resulting pairs x,U called neighborhood situations.
Thus, both the set of all states and the set of all epistemic states constitute the
relevant semantic domains as particular subset structures. The two modalities
involved, K and �, quantify over all elements of U and ‘downward’ over all neigh-
borhoods contained in U , respectively. This means that K captures the notion
of knowledge as usual (see [5] again), and � reflects a kind of effort to acquire
knowledge since gaining knowledge goes hand in hand with a shrinkage of the
epistemic state. In fact, knowledge acquisition is this way reminiscent of a topo-
logical procedure. Thus, it was natural to ask for the appropriate logic of ‘real’
topological spaces, which could be determined by Georgatos shortly afterwards;
see [6]. The subsequent research into subset and topological spaces, respectively,
is quoted in the handbook [1], whereas more recent developments include, among
others, the papers [2,16].

We focus on the knowledge-theoretic aspect of LSS as of now. Despite the fact
that most treatises on this system deal with the single-agent case, a correspond-
ing multi-agent version was proposed in the paper [9]. The key idea behind that
approach is to implement the agents by means of additional modalities. This
clearly leads to an essential modification of the logic, while the original seman-
tics basically remains unchanged. On the contrary, if the agent structure shall be
reflected in the neighborhood situations, then the scope of the modality K has
to be restricted; see [10] for a detailed discussion on this topic. Anyway, it seems
that a trade-off must be made between modifying the semantics and altering the
logic in case of multiple agents.

For the scenarios considered in this paper, the additional semantic features
will likewise appear on top of the subset space semantics. The variations of
the basic logic, however, will be quite moderate. Such scenarios are constituted
by, say, n agents whose knowledge need not be available at the actual situation
instantaneously, but will be effective only after enabling. The process of enabling
is formally described by agent-specific functions operating on neighborhood sit-
uations. When viewed ‘from the outside’, these functions quasi act as sched-
ulers for individual reasoning. In the logic, they will be mirrored by additional
modalities.1

It should be possible to model settings like this with the aid of the com-
mon logic of knowledge with incorporated time (cf. [5], Sect. 4.3.) as well, since
we have just introduced a kind of next step operator (albeit for every agent).
But sometimes it is unnecessary or even undesirable to make time explicit. For
example, a particular ordering of the agents with regard to knowledge, or the
effort spent on closing a knowledge gap between two agents, could be rated as
more important than the factual distance of the agents in that sequence or the
amount of time that trial costs in order to meet with success. We shall, therefore,
define n-agent subset spaces in a way that such kind of qualitative weighting of
1 If those knowledge-enabling functions shall depend on knowledge states alone, which

is clearly worthy of discussion, then topological nexttime logic, see [8], would enter
the field. This would lead to a somewhat more complicated but related system.
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the agents can be reflected. For the sake of concision, however, just one sample
application will actually be handled here, leadership in knowledge. This notion
will be made precise below, with some new technical peculiarities coming along.

The rest of the paper is organized as follows. In the next section, we reca-
pitulate the language and the logic of subset spaces for single agents. In Sect. 3,
the ideas of both knowledge-enabling functions and leadership in knowledge are
formalized. In Sect. 4, the soundness and completeness of the resulting logic is
proved. In Sect. 5, the corresponding decidability problem is treated. Finally, we
summarize and comment on some naturally arising questions.

All relevant facts from modal logic not explicitly introduced here can be
found in the standard textbook [3].

2 The Language and the Logic of Subset Spaces Revisited

The purpose of this section is twofold: to clarify the starting point of our inves-
tigation on a technical level and to set up some concepts and results to be
introduced and, respectively, proved later on.

First in this section, the language for (single-agent) subset spaces, L, is
defined precisely. Then, the semantics of L is linked with the common rela-
tional semantics of modal logic. Finally, the ensuing relationship is utilized after
the most important facts on the logic of subset spaces have been recalled.

To begin with, we define the syntax of L. Let Prop = {p, q, . . . } be a denumer-
ably infinite set of symbols called proposition variables (which shall represent the
basic facts about the states of the world). Then, the set SF of all subset formulas
over Prop is defined by the rule

α ::= � | p | ¬α | α ∧ α | Kα | �α.

The missing boolean connectives are treated as abbreviations, as needed. The
operators which are dual to K and � are denoted by L and �, respectively. In
view of our remarks in the previous section, K is called the knowledge operator
and � the effort operator.

Second, we fix the semantics of L. For a start, we single out the relevant
domains. We let P(X) designate the powerset of a given set X.

Definition 1 (Semantic Domains).

1. Let X be a non-empty set (of states) and O ⊆ P(X) a set of subsets of X.
Then, the pair S = (X,O) is called a subset frame.

2. Let S = (X,O) be a subset frame. The set

NS := {(x,U) | x ∈ U and U ∈ O}

is then called the set of neighborhood situations of S.
3. Let S = (X,O) be a subset frame. Under an S-valuation we understand a

mapping V : Prop → P(X).
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4. Let S = (X,O) be a subset frame and V an S-valuation. Then, M :=
(X,O, V ) is called a subset space (based on S).

Note that neighborhood situations denominate the semantic atoms of the bi-
modal language L. The first component of such a situation indicates the actual
state of the world, while the second reflects the uncertainty of the agent in
question about it. Furthermore, Definition 1.3 shows that values of proposition
variables depend on states only. This is in accordance with the common practice
in epistemic logic; see [5] once more.

For a given subset space M, we now define the relation of satisfaction, |=M ,
between neighborhood situations of the underlying frame and formulas from SF.
Based on that, we define the notion of validity of formulas in subset spaces. In
the following, neighborhood situations are often written without parentheses.

Definition 2 (Satisfaction and Validity). Let S = (X,O) be a subset frame.

1. Let M = (X,O, V ) be a subset space based on S, and let x,U ∈ NS be a
neighborhood situation of S. Then

x,U |=M � is always true
x,U |=M p : ⇐⇒ x ∈ V (p)
x,U |=M ¬α : ⇐⇒ x,U 	|=M α
x,U |=M α ∧ β : ⇐⇒ x,U |=M α and x,U |=M β
x,U |=M Kα : ⇐⇒ ∀ y ∈ U : y, U |=M α
x,U |=M �α : ⇐⇒ ∀U ′ ∈ O : [x ∈ U ′ ⊆ U ⇒ x,U ′ |=M α] ,

where p ∈ Prop and α, β ∈ SF. In case x,U |=M α is true we say that α holds
in M at the neighborhood situation x,U.

2. Let M = (X,O, V ) be a subset space based on S. A subset formula α is called
valid in M iff it holds in M at every neighborhood situation of S.

Note that the idea of both knowledge and effort, as described in the introduc-
tion, is made precise by the first item of this definition. In particular, knowledge
is here, too, defined as validity at all states that are indistinguishable to the
agent.

Subset frames and subset spaces can be considered from a different perspec-
tive, as is known since [4] and reviewed in the following, for the reader’s conve-
nience. Let a subset frame S = (X,O) and a subset space M = (X,O, V ) based
on it be given. Take XS := NS as a set of worlds, and define two accessibility
relations RK

S and R�
S on XS by

(x,U)RK
S (x′, U ′) : ⇐⇒ U = U ′ and

(x,U)R�
S (x′, U ′) : ⇐⇒ (x = x′ and U ′ ⊆ U),

for all (x,U), (x′, U ′) ∈ XS . Moreover, let a valuation be defined by VM(p) :=
{(x,U) ∈ XS | x ∈ V (p)}, for all p ∈ Prop. Then, bi-modal Kripke structures
SS :=

(
XS , {RK

S , R�
S })

and MM :=
(
XS , {RK

S , R�
S }, VM

)
result in such a way

that MM is equivalent to M in the following sense.
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Proposition 1. For all α ∈ SF and (x,U) ∈ XS , we have that x,U |=M α iff
MM, (x,U) |= α.

Here (and later on as well), the non-indexed symbol ‘|=’ denotes the usual sat-
isfaction relation of modal logic.

The proposition can easily be proved by structural induction on α. We call
SS and MM the Kripke structures induced by the subset structures S and M,
respectively.

We now turn to the logic of subset spaces, LSS. The subsequent axiomatiza-
tion from [4] was proved to be sound and complete in Sect. 1.2 and, respectively,
Sect. 2.2 there.

1. All instances of propositional tautologies
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. (p → �p) ∧ (�p → p)
6. � (α → β) → (�α → �β)
7. �α → (α ∧ ��α)
8. K�α → �Kα,

where p ∈ Prop and α, β ∈ SF. Note that LSS comprises the standard modal
proof rules (only), i.e., modus ponens and necessitation with respect to each
modality.

The last schema is by far the most interesting one, as it displays the interre-
lation between knowledge and effort. The members of this schema are called the
Cross Axioms since [15]. Note that the schema involving only proposition vari-
ables is in accordance with the remark on Definition 1.3 above. (In other words,
it is expressed by the latter schema that the language L essentially speaks about
the development of knowledge.)

As the next step, let us take a brief look at the effect of the axioms from
the above list within the framework of common modal logic. To this end, we
consider bi-modal Kripke models M = (W,R,R′, V ) satisfying the following
four properties:

– the accessibility relation R of M belonging to the knowledge operator K is an
equivalence,

– the accessibility relation R′ of M belonging to the effort operator � is reflexive
and transitive,

– the composite relation R′ ◦ R is contained in R ◦ R′ (this is usually called the
cross property), and

– the valuation V of M is constant along every R′-path, for all proposition
variables.

Such a model M is called a cross axiom model (and the frame underlying M a
cross axiom frame). Now, it can be verified without difficulty that LSS is sound
with respect to the class of all cross axiom models. And it is also easy to see
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that every induced Kripke model is a cross axiom model (and every induced
Kripke frame a cross axiom frame). Thus, the completeness of LSS for cross
axiom models follows from that of LSS for subset spaces (which is Theorem 2.4
in [4]) by means of Proposition 1. This inferred completeness result can be used
for proving the decidability of LSS; see [4], Sect. 2.3. We shall proceed in a similar
way below, in Sect. 5.

3 Subset Spaces with Knowledge-Enabling Functions

The formalisms from the previous section will now be extended to the case of
n agents, where n ≥ 2 is a natural number. We again start with the logical
language, which comprises n new operators C1, . . . ,Cn as of now. Thus, the set
nSF of all n-subset formulas over Prop is defined by the rule

α :: = � | p | ¬α | α ∧ α | Kα | �α | C1α | · · · | Cnα.

Note that SF ⊆ nSF. For i = 1, . . . , n, the modality Ci is called the knowledge-
enabling operator associated with agent i. The syntactic conventions from Sect. 2
apply correspondingly here. Note that there is no need to consider the dual to
Ci separately since Ci will turn out to be self-dual.

Concerning semantics, the crucial modifications follow right now. We directly
turn to the case that there is a leader in knowledge.

Definition 3 (Augmented n-Agent Subset Structures).

1. Let n ∈ N be as above, and let j ∈ {1, . . . , n}. Furthermore, let S = (X,O)
be a subset frame. For all agents i ∈ {1, . . . , n} and states x ∈ X, let fi,x :
O → O be a partial function satisfying the following two conditions for every
U ∈ O.
(a) The value fi,x(U) exists iff x ∈ U , and
(b) if fi,x(U) exists, then x ∈ fi,x(U) ⊆ U . (In this case, we also say that fi,x

is contracting.)
Moreover, assume that, for all i ∈ {1, . . . , n}, the set fj,x(U) is contained in
fi,x(U) whenever x ∈ U . Then, the quadruple

S = (X,O, {fi,x}1≤i≤n,x∈X , j)

is called an augmented n-agent subset frame (or an aa-subset frame for
short), the mappings fi,x, where x ∈ X, are called the knowledge-enabling
functions for agent i, and j is called a leader in knowledge.

2. The notions of neighborhood situation, S-valuation and augmented-n-agent
subset space ( aa-subset space) are completely analogous to those introduced
in Definition 1.

A detailed comment on this definition seems to be appropriate. For a start,
note that the just introduced structures obviously do not correspond to the most
general n-agent scenarios, but have already been adjusted to those indicated in
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the introduction. In fact, not only is an arbitrary agent capable of enabling its
knowledge at any situation (according to (a) of the first item of the previous
definition), but a particular one (namely j) is also doing better than all the
others in this respect (because of the final assumption there). Note that an
agent’s enabling is always a kind of improvement since it is given as a shrinkage
of a knowledge state (due to (b) above). The enabling functions obviously depend
on agents and states of the world.2 Furthermore, the ‘distance’ to the leader can
be measured by the set inclusion relation as well. This will make it possible for
us to express that distance with the aid of the ‘global’ effort operator �, quasi as
a missing effort, later on. (Thus, � may be called the operator closing knowledge
gaps.)

With regard to satisfaction and validity, we need not completely present the
analogue of Definition 2 at this place, but may confine ourselves to the clause for
the new operators.

Definition 4 (Satisfaction). Let S = (X,O, {fi,x}1≤i≤n,x∈X , j) be an aa-
subset frame, M an aa-agent subset space based on S, and x,U ∈ NS a neigh-
borhood situation of S. Then, for every i ∈ {1, . . . , n} and α ∈ nSF,

x,U |=M Ciα : ⇐⇒ x, fi,x(U) |=M α.

Since the operator K can no longer be assigned to a particular agent unam-
biguously, the knowledge of the agents involved in an aa-scenario must still be
defined. We now are in a position to do this, viz through the validity of the
K-prefixed formulas at the respective neighborhood situations. The latter are
understood as those arising from the associated enabling functions as images.
Thus we let, for i ∈ {1, . . . , n}, agent i know α at x,U by definition, iff x,U |=M
Kα and U ∈ Im(fi,x); in other words, K represents factual knowledge after
enabling. (This also concerns the knowledge about another agent’s knowledge.)

This fixing clearly requires a justification. To this end, note that the link
between the relevant knowledge formulas and the semantic structures is accom-
plished ‘externally’ here, i.e., by means of an additional condition having no
direct counterpart in the object language, namely the requirement that the sub-
set component U of the actual neighborhood situation be contained in the image
set of the enabling function for the agent in question. Relating to this, it should
be mentioned that all the knowledge of agents we talk about in this paper is
an ‘ascribed’ one (cf. [5], p. 8), in fact, by the system designer utilizing epis-
temic logic as a formal tool for specifying certain multi-agent scenarios. This
gives us a kind of freedom regarding the choice of the system properties, which
is only limited by the suitability of the approach for the intended applications.
These are clearly limited to some extent by the lesser expressiveness of formulas
here, but the knowledge development of the involved agents can just as well be
described as the leadership in knowledge of a particular agent; see below for
some examples.
2 See footnote 1 above for an alternative way of modeling.
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The final semantic issue to be mentioned is that of induced Kripke structures.
Letting S = (X,O, {fi,x}1≤i≤n,x∈X , j) be any aa-subset frame, the following
definition suggests itself.

(x,U)RCi

S (x′, U ′) : ⇐⇒ (x = x′ and U ′ = fi,x(U)) ,

where i ∈ {1, . . . , n}, x, x′ ∈ X, and U,U ′ ∈ O. With that, the corresponding
analogue of Proposition 1 is obviously valid.

The augmented logic of subset spaces, ALSS, is given by the following list of
axioms and the standard proof rules.3

1. All instances of propositional tautologies
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. (p → �p) ∧ (�p → p)
6. � (α → β) → (�α → �β)
7. �α → (α ∧ ��α)
8. K�α → �Kα
9. Ci(α → β) → (Ciα → Ciβ)

10. Ci¬α ↔ ¬Ciα
11. KCiα → CiKα
12. �α → Ciα
13. Ci�α → Cjα,

where j is the preassigned leader, i ∈ {1, . . . , n}, p ∈ Prop, and α, β ∈ nSF.
Obviously, the first eight schemata of this list coincide with the LSS-axioms

presented in Sect. 2. Thus we only comment on the others here, which are exactly
those involving Ci for i ∈ {1, . . . , n}. Axiom 9 is the usual distribution schema
of modal logic, this time formulated for Ci. The next axiom captures the func-
tionality of the accessibility relation associated with Ci; see, e.g., [7], Sect. 9 (for
the operator next). In the present context, it comes along with the fact that
we have assigned knowledge-enabling functions to the agents. The schema 11 is
formally similar to the eighth one, thus comprising the Cross Axioms for K and
Ci. The last but one schema mirrors the fact that the enabling functions, when
defined, are contracting. With regard to the relational semantics, it says that
the accessibility relation for Ci is contained in that for �. This schema, together
with Axiom 10, is as well responsible for the fact that the counterpart of Axiom
5 is not needed for Ci. The most interesting new schema is the last one. In case
all the involved modalities were equal, we would have the axioms capturing the
weak density of the corresponding accessibility relation; see [7], Sect. 1. However,
regarding augmented n-agent scenarios, the leadership of agent j in knowledge
is thereby expressed.

As to an example of a schema of derived ALSS-sentences, let us recall the
reliably known formulas α ∈ SF from [4], which satisfy Kα → �Kα ∈ LSS

3 That is to say, the necessitation rule for each of the Ci’s is added to the proof rules
for LSS.
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by definition. We now define accessibly known formulas α ∈ nSF by analogy
with that through the condition that Kα → CiKα be in ALSS. Then, for every
α ∈ nSF, the formula �α is of this type, as expected. In fact, K��α can be
deduced from K�α because of Axiom 7, from which we obtain �K�α with the
aid of Axiom 8. Now, Axiom 12 implies CiK�α.

Finally in this section, it is proved that the logic ALSS is sound with respect
to the class of all aa-subset spaces.

Proposition 2. Let M = (X,O, {fi,x}1≤i≤n,x∈X , j, V ) be an aa-subset space.
Then, every axiom from the above list is valid in M and every rule preserves
validity.

Proof. We confine ourselves to the last schema of the axioms. Let Ci�α → Cjα
be an instance of this, and let x,U |=M Ci�α be satisfied for any neighbourhood
situation of the frame underlying M. According to Definition 4, this means that
x, fi,x(U) |=M �α. Thus, x, fi,x(U) |=M α for all U ′ ∈ O such that x ∈ U ′ ⊆
fi,x(U). It follows that x, fj,x(U) |=M α holds in particular, because of the
leader-in-knowledge condition from Definition 3.1. Consequently, x,U |=M Cjα.
This proves (the particular case of) the proposition.

Regarding the relational semantics, it will be seen that a certain property of
lying in between corresponds to the schema treated in the preceding proof, as
it is the case with the related axioms for weak density. We, therefore, call that
schema ad hoc the lying-in-between axioms. These will crucially be utilized in
the next section.

4 Completeness

In this section, we present the peculiarities required for proving the semantic
completeness of ALSS on the class of all aa-subset spaces. As it is mostly the
case with subset space logics, the overall structure of such a proof consists of an
infinite step-by-step model construction.4 Using such a procedure seems to be
necessary, since subset spaces in a sense do not harmonize with the main modal
means supporting completeness, viz canonical models.

The canonical model of ALSS will come into play nevertheless. So let us fix
some notations concerning that model first. Let C be the set of all maximal
ALSS-consistent sets of formulas. Furthermore, let K−→ , �−→ , and Ci−→ be the
accessibility relations induced on C by the modalities K, �, and Ci, respectively,
where i ∈ {1, . . . , n}. And finally, let α ∈ nSF be a formula which is not contained
in ALSS. Then, we have to find a model for ¬α.

This model is constructed stepwise and incrementally in such a way that bet-
ter and better intermediary structures are obtained (which means that more and
4 One or another proof of that kind can be found in the literature; see, e.g., [4] for a

fully completed proof regarding LSS and [9] for a particular multi-agent variation.
Thus, it is really sufficient to confine ourselves to the case-specific issues here (which
are quite difficult enough in themselves).
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more existential formulas are realized). In order to ensure that the finally result-
ing limit structure behaves as desired, several requirements on those approxi-
mations have to be met at every stage. This makes up the technical core of the
proof, of which the specific features are described reasonably accurately in a
minute.

First, however, we need a lemma.

Lemma 1. Let n, j ∈ N be fixed as in the previous section. Suppose that s, t ∈ C
are maximal ALSS-consistent sets of formulas satisfying s

Cj−→ t. Then, for all

i ∈ {1, . . . , n}, there is some u ∈ C such that s
Ci−→u

�−→ t.

Proof. One has to apply the lying-in-between axioms and can argue in a similar
way as in the case of weak density in doing so; cf. [7], p. 26.5

We now describe the main ingredients of the above mentioned approximation
structures. Their possible worlds are successively taken from a denumerably
infinite set of points, Y , chosen in advance. Also, another denumerably infinite
set, Q, is chosen such that Y ∩ Q = ∅. The latter set shall gradually contribute
to a partially ordered set representing the subset space structure of the desired
limit model. Finally, we fix particular ‘starting elements’ x0 ∈ Y , ⊥ ∈ Q, and
Γ ∈ C containing the formula ¬α from above. Then, a sequence of quintuples
(Xm, Pm, jm, {gmi }1≤i≤n, tm) has to be defined inductively such that, for all m ∈
N and i ∈ {1, . . . , n},

– Xm is a finite subset of Y containing x0,
– Pm is a finite subset of Q containing ⊥ and carrying a partial order ≤m with

least element ⊥,
– jm : Pm → P (Xm) is a function satisfying (π ≤m ρ ⇐⇒ jm(π) ⊇ jm(ρ)), for

all π, ρ ∈ Pm,
– gmi : Xm × Pm → Pm is a partial function such that, for all x ∈ Xm and

π ∈ Pm,
• if gmi (x, π) exists, then (x ∈ jm (gmi (x, π)) and π ≤m gmi (x, π))
• if gmi (x, π) and gmj (x, π) exist, then gmi (x, π) ≤m gmj (x, π),

– tm : Xm × Pm → C is a partial function such that, for all x, y ∈ Xm and
π, ρ ∈ Pm,

• tm(x, π) is defined iff x ∈ jm(π); in this case it holds that
∗ if y ∈ jm(π), then tm(x, π) K−→ tm(y, π)

∗ if π ≤m ρ, then tm(x, π) �−→ tm(x, ρ)

∗ if gmi (x, π) = ρ, then tm(x, π) Ci−→ tm(x, ρ)
• tm(x0,⊥) = Γ .

It is now clear how to define the approximating partial functions fm
i,x : Im(jm) →

Im(jm). For all x ∈ Xm and π, ρ ∈ Pm, we let fm
i,x (jm(π)) := jm(ρ) iff gmi (x, π) =

ρ. Then, fm
i,x is contracting and satisfies, for every π ∈ Pm,

5 Note that such a proof is necessary here, since a Sahlqvist argument is insufficient
because ALSS is a non-normal logic.
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– fm
i,x (jm(π)) exists iff gmi (x, π) exists,

– fm
j,x (jm(π)) is contained in fm

i,x (jm(π)) in case both sets exist.

The next five conditions reveal to what extent the final model is approximated
by the structures (Xm, Pm, jm, {gmi }1≤i≤n, tm). Actually, it will be ensured that,
for all m ∈ N and i ∈ {1, . . . , n},

– Xm ⊆ Xm+1,
– Pm+1 is an almost end extension of Pm, i.e., a superstructure of Pm such

that, if an element π ∈ Pm+1 \ Pm is strictly smaller than some element of
Pm, then there are uniquely determined ρ, σ ∈ Pm, x ∈ Xm, and i ∈ {1, . . . , n}
satisfying ρ ≤m σ, σ = gmj (x, ρ), π ≤m+1 σ, and π = gm+1

i (x, ρ) (this means,
in particular, that gmj (x, ρ) and gm+1

i (x, ρ) are defined),
– jm+1(π) ∩ Xm = jm(π) for all π ∈ Pm,
– gm+1

i |Xm×Pm
= gmi ,

– tm+1 |Xm×Pm
= tm.

Note that end extensions are usually dealt with at this point. In the present case,
however, the new elements must suitably be edged in. This requires a different
approach.

Finally, the construction complies with the following requirements on exis-
tential formulas: for all m ∈ N, x ∈ Xm, π ∈ Pm, ∇ ∈ {�,C1, . . . ,Cn}, and
β ∈ nSF,

– if Lβ ∈ tm(x, π), then there are m < k ∈ N and y ∈ jk(π) such that β ∈
tk(y, π),

– if ∇β ∈ tm(x, π), then there are m < k ∈ N and π ≤k ρ ∈ Pk such that
β ∈ tk(x, ρ).

With that, the final model refuting α can be defined easily. Furthermore, a
relevant Truth Lemma (cf. [3], 4.21) can be proved for it, from which the com-
pleteness of ALSS with respect to the augmented n-agent semantics follows imme-
diately. Thus, it remains to specify, for all m ∈ N, the approximating structures
(Xm, Pm, jm, {gmi }1≤i≤n, tm) in a way that all the above requirements are met.

Since the case m = 0 is quite obvious, we only focus on the induction step.
Here, some existential formula γ contained in some maximal ALSS-consistent set
tm(x, π), where x ∈ Xm and π ∈ Pm, must be made true according to the last
group of the above requirements. We confine ourselves to the case of the enabling
operator associated with agent i, where i ∈ {1, . . . , n}. So let γ = Ciβ ∈ tm(x, π)
be satisfied. Then, we distinguish two cases, each one of which having two sub-
cases. First, let i = j. If gmj (x, π) is undefined, then this case is less interesting
because the same proceeding as in the �-case leads to success; cf. [4]. Note how-
ever that here is the place where the status of definiteness of the function gj
is changed, namely for the argument (x, π). On the other hand, if gmj (x, π) is
defined, then nothing has to be changed and everything goes well because of
the functionality of Cj . Now, let i 	= j. Then, we may assume that ρ = gmj (x, π)
has already been defined; see the remark right before Theorem 1 below. The case
that gmi (x, π) as well has been defined in advance is easy, too. Thus suppose that
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gmi (x, π) is undefined. In this case, we choose both a new point y ∈ Y and a fresh
σ ∈ Q, and we let Xm+1 := Xm ∪ {y} and Pm+1 := Pm ∪ {σ}. The partial order
is extended to Pm+1 by letting π ≤m+1 σ ≤m+1 ρ and σ be not comparable with
any other element not less than π. The function jm+1 is defined as follows. We let
jm+1(τ) := jm(τ) ∪ {y} for all τ ≤m π and jm+1(σ) := jm(ρ) ∪ {y}; for all other
arguments, jm remains unchanged. Furthermore, the extension of the function
gmi is defined by gm+1

i (x, π) := σ. Finally, the mapping tm has to be adjusted.
From the Existence Lemma of modal logic (see [3], 4.20) we know that there is
some point Γi of C such that tm(x, π) Ci−→ Γi and β ∈ Γi. Thus, we define the
new part of tm+1 by tm+1(x, σ) = tm+1(y, σ) := Γi, and tm+1(y, τ) := tm(x, τ)
for all τ ≤m π; moreover, the maximal consistent set which is to be assigned to
a pair (z, σ) where x 	= z ∈ jm(ρ), is obtained in the following way. We know

from the induction hypothesis that tm(z, π)
Cj−→ tm(z, ρ) is valid. From Lemma1

we therefore obtain the existence of a maximal ALSS-consistent set Δ satisfying
tm(z, π) Ci−→ Δ

�−→ tm(z, ρ). Now we let tm+1(z, σ) := Δ. This completes the
definition of tm+1 and thus that of

(
Xm+1, Pm+1, jm+1, {gm+1

i }1≤i≤n, tm+1

)
in

the case under consideration.
We must now check that the properties stated in the second group of require-

ments are satisfied and that the validity of those stated in the first group is
transferred from m to m + 1. Doing so, several items prove to be evident from
the construction. In some cases, however, the particularities of the accessibility
relations on C like the two cross properties have to be applied. Further details
regarding this must be omitted here.

As to the realization of existential formulas, it has to be ensured that all
possible cases are eventually exhausted. To this end, processing must suitably
be scheduled with regard to each of the involved modalities. This can be done
with the aid of appropriate enumerations. Concerning details relating to this, the
reader is referred to [4] again, but not before we have mentioned that one should
keep in mind to rearrange, if need be, those enumerations in such a way that
some Cj-formula is treated before any Ci-formula at all times, i.e., for any pair
(x, π) (which is clearly possible). All this finally yields the subsequent theorem.

Theorem 1 (Completeness). Let α ∈ nSF be a formula which is valid in all
aa-subset spaces. Then α belongs to the logic ALSS.

Concluding this section, we would like to stress that the functionality of the
knowledge-enabling operators is a decisive prerequisite for the success of the
above model construction.

5 Decidability

The standard method for proving the decidability of a given modal logic is
filtration. By that method, inspection of the relevant models is restricted to those
not exceeding a specified size, in this way making a decision procedure possible.
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However, just as subset spaces do not harmonize with canonical models, they
are incompatible with filtration. A detour is therefore required, which takes us
back into the relational semantics. In the following, we shall single out a class
of multi-modal Kripke structures for which ALSS is as well sound and complete,
and which is closed under filtration in a suitable manner. This will give us the
desired decidability result. Subsequently, K is supposed to correspond to R, �
to R′, and Ci to Si for i = 1, . . . , n. Furthermore, let j ∈ {1, . . . , n} be given in
advance.

Definition 5 (AA-Model). Let M := (W,R,R′, S1, . . . , Sn, V ) be a multi-
modal Kripke model, where R,R′, S1, . . . , Sn ⊆ W × W are binary relations and
V is a valuation. Then M is called an aa-model (with j the leader in knowledge),
iff the following conditions are satisfied.

1. R is an equivalence relation,
2. R′ is reflexive and transitive,
3. Si is a functional relation contained in R′, for every i ∈ {1, . . . , n},
4. each of the pairs (R,R′), (R,S1), . . . , (R,Sn) satisfies the cross property,
5. Sj ⊆ Si ◦ R′ for every i ∈ {1, . . . , n}, and
6. for all proposition variables, the valuation V of M is constant along every

R′-path.

Note that the fifth item of the previous definition represents the relational version
of the lying-in-between property.

The class of all Kripke models induced by an aa-subset space (see Sect. 2 and,
respectively, Sect. 3 for this notion) is contained in the class of all aa-models, as
can be seen easily. It follows that ALSS is (sound and) complete with respect
to the latter class; see the remark at the end of Sect. 2. It suffices therefore, in
order to prove the decidability of ALSS, to show that the class of all aa-models
is closed under filtration.

To this end, let an ALSS-consistent formula α ∈ nSF be given. Then, a filter
set of formulas, involving the set sf(α) of all subformulas of α, is defined as
follows. We start off with Σ0 := sf(α) ∪ {¬β | β ∈ sf(α)}. In the next step,
we take the closure of Σ0 under finite conjunctions of pairwise distinct elements
of Σ0. After that, we close under single applications of the operator L. And
finally, we join the sets of subformulas of all the elements of the set obtained
last. (This final step is necessary because L was introduced as an abbreviation.)
The resulting set of formulas, denoted by Σ, is quite similar to the one used for
LSS in [4] and will meet the case-specific requirements here. Note that Σ is a
finite set.

Now, the canonical model of ALSS is filtered through Σ. As a filtration of
the corresponding accessibility relations, we take the smallest one in each of the
n + 2 cases. Let M = (W,R,R′, S1, . . . , Sn, V ) be the resulting model, where
the valuation V shall be in accordance with Definition 5.6 for the proposition
variables outside of Σ. Then, the following lemma is crucial.

Lemma 2. The structure M is a finite aa-model. Furthermore, the size of M
can be computed from the length of α.
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Proof. The finiteness of W follows from that of Σ, and we must now show that
the six conditions from Definition 5 are satisfied. Due to space limitations, we
must be rather brief in doing so. Taking into account the way the filter set Σ
was formed, the verification of 1 and 4 is lengthy, but not very difficult. The
reflexivity of R′ can easily be concluded from the mere fact that M is the result
of a filtration. Moreover, establishing the transitivity of R′ is covered by the
proof of Lemma 2.10 from [4]. Both the inclusions Si ⊆ R′, where i ∈ {1, . . . , n},
and the validity of 6 for the proposition variables occurring in Σ arise from the
circumstance that we have chosen the smallest filtration in each case. The same
is true of the functionality of the relations Si, but this is not completely obvious.
In fact, the (suitably adapted) Fun-Lemma 9.9 from [7] must be applied for it,
ensuring that every Si-successor of an arbitrary point of W is of equal value
in regard to the validity of the formulas from Σ so that any of them can be
selected. (It will become clear in a minute which one will actually be the right
one.) Thus the verification of the fifth condition only still requires an argument.
Fortunately, the characteristic features of a smallest filtration again help so that
we are done after mentioning the following. For any starting point w ∈ W , the
relational lying-in-between property can be realized with the aid of an arbitrarily
chosen Sj-successor of w, with thereby determining the appropriate Si-successor
of that point through the correspondingly utilized lying-in-between relation on
the canonical model; as to the validity of the latter, see Lemma 1. In this manner,
the lemma is proved.

The desired decidability result is now an immediate consequence of Lemma 2
and the facts stated at the beginning of this section.

Theorem 2 (Decidability). The logic ALSS is a decidable set of formulas.

This is what we can say about the effectiveness properties of the logic ALSS for
the moment.

6 Conclusion

First in this section, the results obtained in this paper are summarized. Then, we
comment on some further points, including possible extensions of our approach.

A special subset space logic of n agents, denoted by ALSS, has been intro-
duced above. This system has been designed to cover leadership in knowledge,
in particular. We proposed a corresponding axiomatization, which turned out
to be sound and complete with respect to the intended class of models. This
constitutes the first of our main results. The second assures the decidability of
the new logic.

It is to be expected that the complexity of ALSS can be determined not until
solving this problem for the usual logic of subset spaces. As to that, only partial
results are known; see [2,12].

The main reason for the (relative) progress in multi-agent subset spaces
achieved in this paper is the relaxation of the underlying idea of knowledge.



144 B. Heinemann

Accordingly, the agents come in rather indirectly, viz in terms of their enabling
functions. To say it somewhat exaggeratedly, the absence of agent-specific knowl-
edge operators even makes a multi-agent usage of subset spaces possible, at least
for particular epistemic scenarios. Following that idea, a promising new field of
research opens up, in which the issue of other interesting agent interrelation-
ships and their effects on knowledge (not to forget the correspondingly adapted
idea of common knowledge) could be tackled. Relating to this, both [13] (on the
knowledge-theoretic side) and [9] (on multi-subset spaces) may serve as a start-
ing point. (Contrasting the present approach which is new, the recent paper [11]
is based on the latter article to some extent.)
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referees very much for their detailed reviews which, among other things, contain valu-
able comments on the system presented here as well as suggestions for alternative
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