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Abstract. Discriminative mid-level patch based approaches have
become increasingly popular in the past few years. The reason of their pop-
ularity can be attributed to the fact that discriminative patches have the
ability to accumulate low level features to form high level descriptors for
objects and images. Unfortunately, state-of-the-art algorithms to discover
those patches heavily rely on SVM related techniques, which consume a lot
of computation resources in training. To overcome this shortage and apply
discriminative part based techniques to more complicated computer vision
problems with larger datasets, we proposed a fast, simple yet powerful way
to mine part classifiers automatically with only class labels provided. Our
experiments showed that our method, the Fast Exemplar Clustering, is 20
times faster than the commonly used SVM based methods while at the
same time attaining competitive accuracy on scene classification.

Keywords: Discriminative mid-level patches · Fast scene classification ·
Fast exemplar clustering

1 Introduction

Scene classification is not an easy task due to the various visual appearances
of different scenes and the complexity in their compositions. Recently, new
approaches using discriminatively trained part classifiers are applied to this prob-
lem and achieved better performance than conventional methods [1,2]. This is
not surprising since part classifiers have the ability to accumulate low level fea-
tures to generate high level descriptors for each image, which carry information
of the visual elements that appear frequently to better describe our real world.

Scene classification is not the only computer vision topic that benefits from
part based models. As a matter of fact, in the last few years part based mod-
els have been applied to topics like object detection [3,4], motion detection [5]
and video classification [6,7]. The reason why part based methods become so
popular can be attributed to two reasons. Firstly, they focus on a key problem
in computer vision. The relationship between discriminative patches and images
can be described as an analogy to the relationship between words and articles.
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The Bag of Words (BoW) models, including Locality-constrained Linear Coding
(LLC) BoW [8] or Improved Fisher Vectors (IFV) [9] succeeded in answering this
question to some extent, but the idea of training part classifiers that are visually
discriminative may have pushed us one step further. In particular, [10,11] have
shown the benefits of using desired patches as visual words [12]. Secondly, most
techniques in the framework are shared among different computer vision tasks,
which suggests a great potential for this technique.

Given all these advantages, there are still several issues remain unsolved. The
most important one is the computation consumption in the training stage. Most
discriminative mid-level discovery algorithm rely on a max-margin framework
which uses variants of SVMs like exemplar SVM [1] and miSVM [3]. To achieve
broad coverage and better purity, thousands of training rounds are required.
Moreover, in each round the classifiers/detectors are learned in an iterative man-
ner. Thus, the complexity of using a standard procedure that involves hard neg-
ative mining for a huge amount of classifiers would be surprisingly high. It leaves
us a major challenge: a simple, efficient and effective method is yet to be found.

In this paper, we proposed a fast algorithm to discover discriminative mid-
level patches. It is named Fast Exemplar Clustering (FEC), which works
extremely fast while at the same time, attaining competitive accuracy. As a
comparison, the MIT 67 indoor scene classification problem in Sect. 5 spent only
one day in training on an ordinary Core-i5 computer, while the commonly used
methods today would take several days on a cluster [13].

The vastly improved efficiency of FEC method benefits from two factors.
The first one is that FEC only requires spatial information of feature vectors
and classifiers are trained using their distance measure rather than iteratively
solving a time consuming optimization problem. The second one is that FEC uses
only local information instead of global information to train classifiers. When the
number of patches increases, the training time of SVM based methods for each
round may increase sharply while for FEC the time consumption will rise slowly
in an O(logN) manner with the help of data structures like R-tree.

The biggest challenge of FEC is the risk of over-fitting. However, we managed
to solve it by using a properly designed evaluation function described in Sect. 3.3
together with a large validation set. Our experiments showed that the patches
discovered by FEC were both discriminative and representative. In summary,
the contributions of this paper are:

1. A novel algorithm for efficiently and effectively detecting discriminative image
parts is developed, which demonstrated promising performance in the task
of part-based scene classification. Besides, our approach can be seamlessly
integrated into bag of visual words models to improve the results of many
computer vision problems.

2. A rich training dataset for outdoor scene detection and classification (Outdoor
Sight 20) is built. To our best knowledge, this is the first dataset designed
for discovering meaningful mid-level patches of outdoor scenes with good in-
class consistency. Our dataset consists of images covering 20 famous tourist
attractions around the world.
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Fig. 1. Visual elements extracted from classes (a) greenhouse (b) inside subway (c)
church inside (d) video store (e) closet (f) library of MIT Indoor 67 dataset and (g)
(h) Big Ben (i) (j) Mount Rushmore of our Outdoor Sight 20 dataset.
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In the experiments, we evaluated our novel FEC method on the public bench-
mark: MIT Indoor 67 dataset, and the newly created Outdoor Sight 20 dataset,
achieving extremely efficient performance (about 20x faster) while maintaining
close to state-of-the-art accuracy.

Some of our results are shown in Fig. 1. (a)–(f) are discriminative visual
elements extracted from MIT Indoor 67, while (g)–(j) come from our Outdoor
Sight 20. As shown in the figure, our method not only captures discriminative and
representative visual elements from training data with only class labels provided,
but also discovers and distinguishes different visual elements of the same concept,
like (g) and (h), which is naturally capable of recognizing different scenes.

2 Related Work

The practice of using parts to represent images has been adopted for quite a long
time [14]. Since parts are considered more semantically meaningful compared to
some low level features, the introduction of image descriptor generated by algo-
rithms like ScSPM [15], LLC [8] and IFV [9] presented the promising future of
parts. The idea of training classifiers discriminatively improved the performance
of object detection [11]. However, the discovery of parts are still heavily relied
on the training data. Some used the bounding box information on which sev-
eral assumptions between the parts and the ground truth were based [16], while
others relied on partial correspondence [17] to generate meaningful patches.

It was not until recent years that the issue of discovering discriminative mid-
level patches automatically with little or no supervision was raised. Patch dis-
covery using geometric information showed that such method has the ability to
learn and extract semantically meaningful visual elements for image classification
[10,18,19]. Unsupervised learning of patches which are frequent and discrimina-
tive in an iterative manner boosted the performance of object detection [13]. [1]
summarized a simple and general framework to mine discriminative patches using
exemplar SVM [20] and showed that this framework was efficient in scene classifi-
cation in combination with the use of bag-of-parts and bag-of-visual-words models.

Recent works on discriminative mid-level patches can be categorized into
two groups. One is to apply this method to other computer vision problems
like video representation [6], 2D-3D alignment [21], movement prediction [22,23]
or learning image attributes [19,24]. The other is to collect Internet images to
enrich the visual database of discriminative mid-level patches [3,25]. In these
works the most widely used types of classifiers are mainly variants of SVM.
They can achieve satisfactory accuracy but the huge time consumption really
becomes a factor that must be considered if we want to apply this technique to
large scale computer vision problems [26,27].

3 Discovering Discriminative Patches: Designed
for Speed

Since our purpose is to speed up the training procedure of the model, we designed it
to run very fast from the very beginning. We followed the idea that discriminative
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patches would be learned and discovered in a framework which had three stages:
seeding, expansion and selection [1]. Generally speaking, to discover discrim-
inative patches and the corresponding classifiers that to be able to recognize
them, we first need to get a bunch of seed patches from the given images. Since
the number of patches is enormous, a selection procedure is carried out. They
will then be used to train classifiers using our FEC method. Subsequently the
classifiers will be ranked using an evaluation function to test whether they are
discriminative and representative enough. Those who have top rankings will be
kept and used to represent images in the way described in Sect. 4.

3.1 Patch Selection and Feature Extraction

Commonly used ways in patch selection can be divided into two categories.
One is to include all possible patches in an image or randomly select some [13],
the other is to use some techniques like saliency detection [3] or superpixels
[1] to reasonably remove the patches that are unlikely to contain meaningful
information to reduce the problem scale and speed up the training procedure.
Patch selection is an essential and indispensable part for a method which aims to
run very fast as the training time can be reduced significantly with little impact
on the results.

In our method, we introduced a very light-weight way by detecting the num-
ber of edges in a patch. The rationale is that we believe the most important
feature that human uses to identify different objects and scenes is shape. Edge
detection is able to discover the shapes of objects in patches while the number of
edges inside a patch somehow suggests the importance of the patch. Intuitively,
a patch containing few edges may be a part of the background which lacks dis-
criminativeness, while a patch containing a lot of edges may involve too much
details which lacks representativeness. As a result, to ensure our patch selection
procedure are able to choose patches that are meaningful, we shall select those
with neither too many edges nor too few edges. Figure 2 shows how this works.
(a) presents the initial training image from MIT Indoor 67 and its edges detected
using Canny method [28]. (b) and (c) are some patches with too few or too many
edges. (d) shows the patches with modest number of edges, which contain only
one or two objects and their spatial relationship. Even though edge detection is
rather simple, it is very efficient and effective to find the patches that we need.

In our experiment, we selected patches with sizes of 80 * 80, 120 * 120, 180 *
180, 270 * 270. To avoid duplicates, very similar patches with close feature vectors
(i.e. the city-block distance is smaller than a threshold δ = 0.01) from the same
image were removed. Then the percentage of the area covered by edges in each
patch was calculated and a number of patches with medium number of edges
among all the patches were kept for each image. We used the HOG feature [29]
to represent each patch.
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3.2 Classifier Training

The training procedure of the classifiers is the most time consuming section in
discriminative part based techniques. Traditional approaches use SVM variants
like exemplar SVM [20] and miSVM [30]. For example, Juneja introduced the
exemplar SVM and the outcome was satisfactory in terms of classification results
[1]. In each round, one patch from a certain class is treated as the positive input,
while all patches from other classes [10] are used as negative inputs. After the
SVM is trained, it is used to find the top best patches whose scores are highest
among the current class. These patches are added into the positive input and the
SVM is trained iteratively for several times. It is undeniable that these methods
are able to mine discriminative part classifiers eventually. However, the total
number of trained SVMs during the training procedure can reach millions and
will take lots of time.

We managed to solve this problem by using an efficient type of classifier
instead. We call it fast exemplar clustering (FEC). It follows the idea that each
patch will be given a chance to see whether it is able to become a cluster [1].

(a)

(b)

(c)

(d)

Fig. 2. Images and their ‘canny’ edges, (a) original image (b) patches with few edges
(c) patches with too many edges (d) patches with modest number of edges.
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Each cluster will then be tested to see if it is discriminative and representative
among all the clusters.

The training procedure is shown in Fig. 3(b) and Algorithm1. Each exemplar
cluster will be trained only twice. For a specific patch, it is treated to be a cluster
center at first. Then the 10 closest patches whose class labels are the same as
the initial patch will be added to the cluster. The cluster center is recalculated
using the mean value of these points, followed by adding the next 10 closest and
non-duplicate patches with the same class label into the cluster. Each cluster
Ci is represented by a clustering center Pi and a radius ri which is equal to the
largest distance between the cluster center and the patches inside the cluster.
A classifier can then be built from the resultant cluster. The center and the

(c)

(a)

(d)

(b)

Fig. 3. Illustration of training procedure: (a) initial patch and its HOG representation
(b) illustration of cluster expansion using FEC (c) example of patches added in first
round of training (d) example of patches added in second round of training.
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radius form an Euclidean ball which naturally divide the feature space into two
parts, the inner part of the cluster and the outer part. The purpose of training is
to transform the initial patch which is specific and particular to a visual concept
which is generalized and meaningful.

Since we use the distance measure of feature vectors to form a cluster, the
biggest challenge is the risk of over-fitting. The reason why we train only twice
in clustering is that we want the clusters to be both generalized and diverse
at the same time to help get rid of over-fitting. Generalization means that the
cluster can represent not only the initial patch itself but also the patches that are
visually similar to the initial patch. Generalization ensures that the patch chosen
is representative and common. We want the clusters to be diverse since we still
do not know which cluster can really represent a discriminative visual concept.
If we are able to keep the diversity of the clusters, we will have more chances of
obtaining the best classifier when ranking and filtering them in Sect. 3.3.

We did several experiments to decide the optimal number of training rounds,
in which two results are really revealing. In one experiment we clustered until
the center converges, while in the other we simply did not cluster at all, i.e., we
used the initial patch as the center directly with fixed radius for all clusters. It
turned out both of them worked poorly. We looked into the results and found
that the first way resulted in a lot of identical classifiers which lack diversity,
while the latter way resulted in serious over-fitting since one classifier is built
merely on one data point. Good generalization and broad coverage are the key
to find high quality classifiers.

Algorithm 1. Build exemplar cluster from a patch.

function BuildCluster(patch)
cluster ← [ ]
for i = 1 → 2 do

euclidean(patch, patchesInSameClass)
add 10 closestpatches → cluster
patch ← mean(cluster)

end for
center ← mean(cluster)
radius ← max(euclidean(center, cluster))
return < center, radius >

end function

3.3 Classifier Selection

Though we have obtained a bunch of classifiers C = {Ci} centered at P = {Pi}
with radius of r = {ri} in the training procedure, the number of classifiers is
still enormous and most of them are neither representative nor discriminative.
To test whether a classifier Ci is good enough, we try to find all the patches
inside the Euclidean ball centered at Pi with radius ri, and compare the class
labels of these patches with the class label of the classifier. Denote ni to be the
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number of patches inside the ball and pi to be the number of patches inside
the ball with the same class label as the classifier’s. Then the accuracy of each
classifier is pi/ni.

However, if we use accuracy as the only evaluation criteria, it is very likely
that the classifiers will only recognize features from very few images. It may lead
to the absence of representativeness. To overcome this, we count the number of
true positive patches that each image contributed and calculate the variance σ2

i

of these numbers. A smaller σ2
i indicates that the true positive patches come

from more training images, which suggests that the classifier is more represen-
tative than other classifiers with higher σ2

i values. The scoring function is then
formulated as

F (Ci) =
pi

ni
log(

M

σ2
i + N

+ 1). (1)

M,N are scaling constants tonormalize the contributionof the twoparts.Theargu-
ment M,N are calculated by arg minM,N

∑
∀j,Cj∈C ( (pi)j

(ni)j
−log( M

(σ2
i )j+N

+ 1))2.
Actually according to our experiment results, the actual value ofM,N doesn’t have
much impact on the results as long as it roughly balances the two parts.

Figure 4 shows the best classifier selected using different evaluation criteria.
(a) shows the result of evaluating with accuracy only. The five nearest patches
come from 3 different images. Even though they are visually consistent, they did
not reveal the nature that really makes ‘computer room’ different from other
classes. (b) shows the top classifier evaluated using our evaluation function. The
five nearest patches come from 5 different images. The resultant classifier is more
representative.

In addition to evaluating the classifiers on the training set, we introduced a
large validation set to be used in the same fashion described above. A number of
classifiers with top rankings will be chosen as discriminative classifiers. Figure 1
shows the results.

(b)

(a)

Fig. 4. Evaluation comparison of classifier trained on class ‘computer room’: (a) eval-
uate using only accuracy (b) evaluate using function (1) in Sect. 3.3.
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4 Image Representation and Scene Classification

Since it is very hard to judge whether a patch classifier is good or not, we need to
test our classifiers using a traditional computer vision task. In our experiment
we introduced scene classification to compare our results with others to show
that patch classifiers discovered in our method are both meaningful and useful.

For the task of scene classification, we need to first represent each image as
a vector. We followed the idea of ‘bag-of-parts’ (BoP) [1] and used the discrimi-
native classifiers learned in Sect. 3 to generate the mid-level descriptor for each
image in a spatial pyramid manner [31] using 1× 1 and 2× 2 grids. In practice,
patches are extracted using a sliding window and each patch together with its
flipped mirror is evaluated using the part classifiers. As a result, each image is
represented by a 5mn dimensional vector, in which m represents the number of
classifiers kept for each class in Sect. 3.3 and n is the total number of classes.

Scene classification accuracy can be further improved if BoP representation is
used in combinition with Bag of Words (BoW) models like Locality-constrained
Linear Coding (LLC) BoW [8] or Improved Fisher Vectors (IFV) [9]. However, to
make sure our comparison is on an even base, we presented our results using only
the BoP representation. We tested the union representations though in Sect. 5
as a reference.

One-vs-rest classifiers are trained to classify the scenes. Linear SVM is used
for BoP representation and linear encoding. For the IFV encoding, Hellinger
kernel is used.

5 Experiments and Results

The framework of FEC is simple and runs extremely fast. It is not surprising
that people will question the effectiveness and correctness of these classifiers
and the corresponding image descriptor generated in Sect. 4. In order to test the
classifiers we obtained, we focused on the task of scene classification using two
datasets. One is the MIT Indoor 67 dataset [32], the other is the Outdoor Sight
20 that we created.

MIT Indoor 67 consists of 5 main scene categories, including store, home,
public places, leisure and working place. Each category contains several specific
classes, making a total of 67 classes. This dataset is quite challenging thus widely
used in scene classification problems.

Outdoor Sight 20 is a dataset we created which consists of outdoor views
of 20 famous tourist attractions around the world such as Big Ben, The Eiffel
Tower and The Great Wall of China. To test the ability of distinguishing dif-
ferent scenes, a 21st class which contains images of non-tourist attractions is
introduced. Part of the sample images are shown in Fig. 5. We built this dataset
since we wanted to test our models on both indoor and outdoor scenes. As a com-
plementary of the MIT Indoor 67 dataset, it is specifically designed to include
only outdoor images, most of which are photos taken from different angles with
various lighting conditions while some are sketches or drawings. Among all the
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(a)                 (b)

                                             (c)            (d)

                                          (e)    

(f)       (g) 

              (h)                                                     (i) 

                                         (j)  

Fig. 5. Sample images of Outdoor Sight 20 dataset of classes (a) Big Ben
(b) Buckingham Palace (c) Mount Rushmore (d) Notre Dame (e) Parthenon (f) St.
Paul’s Cathedral (g) St. Peter’s Basilica (h) Sydney Opera House (i) The Eiffel Tower
(j) The Great Wall of China. The rest are: The Brandenburg Gate, The Colosseum,
The Golden Gate Bridge, The Kremlin, The Leaning Tower of Pisa, The Pyramids of
Giza, The Statue of Liberty, The Taj Mahal, The White House, Tower Bridge with an
additional class of none attraction images.

images, the majority have a good within-class consistency since they are por-
trayals of the same object while some are even difficult for human to classify due
to a lot of shared characteristics, like (g) and (f) of Fig. 5.

In our experiment on MIT Indoor 67 dataset, we draw 100 random images
from each class. They are partitioned into training set containing 80 images
and test set from the remaining 20 images. The training set is further split
equally into two parts to be used as training part and validation part, each with
40 images. 50 classifiers for each class are kept to recognize the visual words
(Fig. 6).
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

(i)

(j)

Fig. 6. Classifiers trained on classes: (a) airport inside (b) auditorium (c) bakery (d)
bar (e) bowling (f) church inside (g) classroom (h) computer room (i) hair salon (j)
staircase of MIT Indoor 67 dataset. The left four patches of each part show how this
classifier is trained and the three images on the right show their detections on the
testing image.
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To test the discriminatively trained mid-level patches, we compared our
results (FEC + BoP) with ROI [32], MM-scene [33], DPM [34], CENTRIST [35],
Object Bank [36], RBoW [37], Patches [13], Hybrid-Parts [38], LPR [39], exem-
plar SVM + BoP [1] and IVC [3]. The results are shown in Table 1. Even though
our method did not achieve the highest accuracy, it should be clarified that we
did not mean to produce best scene classification result. We presented these
numbers to show that the patches we obtained in the way described in Sect. 3
are indeed meaningful and could be used as discriminative classifiers in various
computer vision problems.

Table 1. Test results on MIT Indoor 67 dataset.

Method Accuracy (%)

ROI 26.05

MM-scene 28.00

DPM 30.04

CENTRIST 36.90

Object Bank 37.60

RBoW 37.93

Patches 38.10

Hybrid-Parts 39.80

LPR 44.84

IVC (miSVM) 47.60

Exemplar SVM + BoP 46.10

FEC + BoP (Ours) 40.30

We compared the training time required to obtain discriminative mid-level
patches with exemplar SVM [20] and ours. On an ordinary Quad-core i5-3570
computer with 16 GB RAM installed using Matlab 2013b, the exemplar SVM
took around 3 weeks to train while ours took only 1 day (20x faster). This is an
impressive result as the accuracy did not show an enormous drop compared to
the exemplar SVM + BoP method.

As is mentioned in Sect. 4, the accuracy can be further improved if BoP
representation is used in combination with BoW features. In our experiment,

Table 2. Test results on Outdoor Sight 20 dataset. Comparison between accuracy and
training time for part classifier is presented.

Method Acc. (%) Time (≈)

Exemplar SVM + BoP 85.75 5 days

FEC + BoP (Ours) 79.25 7 h
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the FEC+ BoP + LLC and FEC + BoP + IFV achieved the accuracy of 49.55 %
and 53.81 % respectively using parameters suggested in [40].

For the Outdoor Sight 20 dataset, we followed the exact same procedure as
MIT Indoor 67 dataset on the same computers with the same number of images
used in training, testing and validation for each class. We compared our results
with exemplar SVM + BoP [1] in Table 2 to show that our FEC could train dis-
criminative mid-level patches as well as the exemplar SVM with much less time.

6 Conclusion

In this paper a novel approach to learn discriminative mid-level patches from
training data with only class labels provided is presented. The motivation is that
current discriminative patch learning methods are too time-consuming and can
hardly be applied to complicated computer vision problems with large dataset.
To begin with, we trained part classifiers using the FEC algorithm. Under proper
validation settings and appropriately designed evaluation function, we obtained
classifiers whose accuracy could compete with state-of-the-art SVM based clas-
sifiers. We tested our classifiers on scene classification using MIT Indoor 67 and
our Outdoor Sight 20. Both results revealed they were as good as classifiers gen-
erated by the contemporary methods. Our classifiers could be further applied
to other computer vision problems like scene classification, video classification,
object detection, 2D-3D matching.
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