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Abstract. A huge number of outdoor user-generated videos (UGVs) are
recorded daily due to the popularity of mobile intelligent devices. Manag-
ing these videos is a tough challenge in multimedia field. In this paper, we
tackle this problem by performing object-of-interest (OOI) recognition
in UGVs to identify semantically important regions. By leveraging geo-
sensor and social data, we propose a novel framework for OOI recognition
in outdoor UGVs. Firstly, the OOI acquisition is conducted to obtain an
OOI frame set from UGVs. Simultaneously, the classified object set rec-
ommendation is performed to obtain a candidate category name set from
social networks. Afterward, a spatial pyramid representation is deployed
to describe social objects from images and OOIs from UGVs, respec-
tively. Finally, OOIs with their annotated names are labeled in UGVs.
Extensive experiments in outdoor UGVs from both Nanjing and Singa-
pore demonstrated the competitiveness of our approach.

1 Introduction

Location-based services provided by social networks, such as Facebook and
Twitter, remarkably enrich the quantity of multimedia content tagged by geo-
sensor including latitude and longitude. Besides, the popularity of mobile devices
with sensors makes capturing, uploading, and sharing of outdoor user-generated
videos (UGVs) highly convenient. This motivates us to investigate effective tech-
niques to manage these Internet-scale UGVs.

To handle the vast amount of UGVs on social networks, we focus on object-
of-interest (OOI) recognition, i.e., building an OOI recognition system by lever-
aging both visual features and sensor-social data. The major benefit is that
not only it can localize OOIs, but also it is highly efficient and accurate by
adopting sensor-social data. Such a recognition system would be of tremendous
value and significance for a large body of multimedia applications. For example,
Zheng et al. [1] proposed a web-scale landmark recognition engine by leverag-
ing the vast amounts of multimedia data. However, most GPS-tagged recognition
systems depend on a large collection of images to achieve accurate visual clusters.
The existing techniques, however, are unsuitable for OOI recognition in UGVs
because of two reasons: (1) OOI recognition in UGVs should be a lightweight
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Fig. 1. The proposed OOI recognition pipeline using sensor-social data

application since UGVs are usually captured by mobile devices. Therefore, off-
loading many recognition tasks onto cloud servers may increase latency and
response time; (2) typical approaches which acquire a “complete” image dataset
to handle object recognition may consume extra computation practically.

The explosive growth of UGVs leads to a significant challenge on how to
efficiently organize large video repositories and make them searchable. Common
approaches adopt content-based media analysis to extract visual features for
similarity matching. However, due to the overwhelming amount of video mate-
rials, it is inappropriate to perform feature matching on a frame-by-frame level.
In this work, we understand video content at object-level in a lightweight way.
We propose to recognize OOIs in UGVs with user-intentionally captured objects.
Similar to our work, Hao et al. [2] focused on point-of-interest detection in sensor-
rich videos. It was achieved by analyzing a large number of sensor-rich videos
automatically and comprehensively. This implies that the method is unsuitable
for OOI recognition in a single UGV.

An overview of the proposed method is presented in Fig. 1. We focus on
analyzing UGVs uploaded on social networks at object-level, by utilizing sensor-
social data. Given a collection of UGVs, the OOI acquisition and the classified
object set recommendation are conducted simultaneously. The former task can
be formulated as salient objects extraction, where saliency indicates the infor-
mative/interesting regions within a scenery. To obtain the most representative
frames, a saliency-guided selection algorithm is proposed to filter frames with
similar saliency distributions. For the latter task, candidate categories are rec-
ommended by leveraging sensor-social data. Metadata including timestamps,
GPS coordinates, accuracy, and visible distances are employed as sensor data.
Afterward, salient objects are extracted in social images based on category clas-
sification. A spatial-pyramid architecture [3] is adopted to describe social objects
and OOIs in UGVs for its robustness in scene modeling. And the Euclidean dis-
tance is employed to measure the similarity between the classified and labeled
object sets. Finally, OOIs associated with their annotated names are labeled in
UGVs frame-by-frame. Experiments on object-level video summarization and
content-based video retrieval demonstrate the usefulness of our method.
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2 Related Work

OOI detection is a widely used technique in a variety of domains, e.g., video
analysis and retrieval. Object/saliency detection and region of interest accu-
mulation are typical approaches to localize OOIs. Most existing work on object
detection depends on the sliding window approaches [4,5]. They might be compu-
tationally intractable since windows detection with various scales are
evaluated at many positions across the image. To accelerate computation,
Harzallah et al. [8] and Vedaldi et al. [9] designed cascade-based methods respec-
tively to discard windows at each stage, where richer features are adopted pro-
gressively. Cinbis et al. [10] developed an object detection system by employing
the Fisher vector representation. State-of-the-art performance was achieved for
image and video categorization. Kim et al. [11] proposed an OOI detection algo-
rithm based on the assumption that OOIs are usually located near the image
centroid. Zhang et al. [12] introduced a novel approach to extract primary object
segments in videos from multiple object proposals. Although the above methods
performs well on object detection, they are not lightweight algorithms. Thus,
they cannot effectively handle OOI recognition toward mobile devices.

Many recent OOI detection algorithms are based on visual saliency predic-
tion [13,14]. It is generally accepted that OOIs are aroused by human percep-
tion and visual saliency can reflect the cognitive mechanism. Therefore, saliency
prediction performance significantly influences these methods in detecting OOIs.
Most of the existing saliency models are completely based on low-level visual fea-
tures [15,16]. However, some high-level semantic cues [17,18] should also be inte-
grated for saliency calculation [19]. Both biological and psychological studies [20]
shown that, optimally fusing low-level and high-level visual features (including
the location cue) can enhance saliency detection greatly. We employ the saliency
detection by deploying the markov chain proposed by Jiang et al. [19]. One
advantage of [19] is that both the appearance divergence and spatial distribu-
tion of foreground/background objects are integrated. It performs better on our
multi-source location-aware dataset as compared with its competitors.

Many approaches have been proposed to predict where human perceives
when viewing a scenery. The majority of the existing methods recognize OOIs
based on the similarity of appearance features. Recently, the cheap availability
of sensor-rich videos allows users to understand video semantics in a straight-
forward way [29]. For these different types of sensory metadata, we focus on the
geo-attributes of sensor data throughout this paper. Associating GPS coordi-
nates with digital photographs has becoming an active research domain over the
last decade [30]. Toyama et al. [31] introduced a metadata-based image search
algorithm and compiled a database which indexes photos using location and
timestamp. Föckler et al. [32] developed a museum guidance system by utilizing
camera-equipped mobile phones. Zheng et al. [1] constructed an efficient and
effective landmark recognition engine, which organizes, models, and recognizes
the landmarks on the world-scale. Gammeter et al. [33] introduced a fully func-
tional and complete augmented reality system which can track both stationary
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and mobile objects. By utilizing geo-sensor data, a number of object recognition
tasks are implemented based on GPS coordinates.

3 Sensor-Social-Based OOI Recognition

Given an outdoor UGV, we detect its OOIs and annotate them by utilizing a
variety of multimedia features. The key to recognize OOIs in outdoor UGVs is
to fuze video content, sensor data, and social factors optimally. Thereafter, video
sequences with annotated OOIs can be generated.

3.1 OOI Acquisition from UGVs

Saliency-Based Frames Selection. Obviously, semantics between sequential
video frames are highly correlated. Existing summarization algorithms typically
detect key frames to alleviate computational burden. These techniques are pop-
ularly used in video editing and compression. Notably, two factors should be
emphasized in our method: the computational efficiency and representative OOI
sequences. This means that the conventional key frames selection algorithms
may not be able to preserve the diverse OOI sequences. In order to select rep-
resentative frames at OOI-level, we propose a novel saliency-based frame selec-
tion. First, saliency map of each UGV frame is calculated based on Jiang et al.’s
algorithm [19]. We employ [19] because it jointly describes the appearance diver-
gence and spatial distribution of foreground/background objects. By adopting
the Markov chain theory [21], the saliency detection is conducted rapidly. Let
Salc,s denote the calculated saliency map based on color and spatial distribu-
tions, e index the transient graph nodes, and yw be the normalized weighted
absorbed time vector, then the saliency map is simply obtained as:

Salc,s(e) = yw(e), i = 1, 2, · · · , t, (1)

Afterward, region of OOI, denoted as Rbw(·), is binarized by an adaptive
threshold τ1. The criterion of saliency-based frames selection is:

decision(i) =
{

1 if ||Th(i) − Th(i + 1)|| > τ2
0 otherwise , (2)

where τ2 denotes the divergence of saliency values between neighboring frames;
Th(i) is the salient area in frame i and R(i) the salient object region; R(i, i + 1)
denotes the salient area intersection between frames i and i + 1.

Salient-Object-Assisted Track Learning Detection. To recognize OOIs,
it is necessary to generate a number of OOI candidates extracted from UGVs.
To balance the efficiency and accuracy, we employ the track learning detection
framework proposed by Kalal et al. [22]. One advantage of [22] is that it can
decompose a long-term tracking task into tracking, learning, and detection effi-
ciently. Due to the complicated spatial context of a scenery, it is difficult to
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Fig. 2. Tracking recognition for OOIs in UGVs. The long box contains frames randomly
selected from UGVs with a tracking box around OOIs. The right column displays the
extracted objects marked by the annotated names.

detect all the objects in UGVs accurately. To solve this problem, we propose a
salient-object-assisted track learning detection. It combines object and saliency
detection when processing each UGV frame. If the object detection fails, saliency
detection will be conducted and assists the similarity measure between patches.
Based on the assisting scheme, OOI acquisition is conducted for each frame.
Thereafter, the new object modeling can be formulated as:

M = {p+1 , p+2 , · · · , p+x , · · · , p+m, p+1 , p−
2 , · · · , p−

x , · · · , p−
m}, (3)

where p+ and p− denote the foreground and background patches respectively; p+x
and p−

x are the saliency patches of object and background respectively. Example
OOIs extracted from the UGVs are presented in Fig. 2. As can be seen, the
proposed method not only detects those OOIs accurately, but also tracks them
within the UGV frames. The tracking is performed by localizing a bounding box
centered around each detected OOI.

3.2 Classified Object Set Recommendation

Assisted by human interactions, social data has become an intellective media
conveying informative cues, e.g., tagged images, video clips, and user comments.
It is worth emphasizing that social data also contains lots of noises. Thus, effec-
tively exploiting social data is a challenging task.

Sensor data is recorded by sensory modules embedded in mobile devices. In
this work, we model sensor data of UGVs as a frame-related feature vector,
which can be specified as:

S = {(ti, lati, longi, accuri, visDi)|ti ∈ T, (lati; longi) ∈ G,

accuri ∈ A, visDi ∈ V }, (4)
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where T contains the capturing time of each frame; G is a set of GPS coordinates
that describe the capturing location changes; A is a set of GPS location errors;
V is a set of visible distances calculated by Arslan Ay et al. [28].

We constructed an image set containing candidate OOIs which are collected
based on the category keywords. In particular, image retrieval is conducted by
using different category names. Then, a collection of images are downloaded and
classified from social networks. In order to compare at object-level, we calculate
the saliency maps from these social images and then extract the salient objects as
the OOIs adaptively. Saliency-based object classification minimizes the influence
of noises resulted from the various backgrounds in social images. The classified
OOIs from social images can be described as:

OL = {R1
bw, R2

bw, · · · , Rn
bw|n ∈ NL}, (5)

where OL is the OOI set labeled by L; and N is the candidate category set.

3.3 OOI Description and Recognition

We adopt a spatial-pyramid-based [3] feature to represent an image, since it
combines the advantages of standard feature extraction method. Spatial pyra-
mid is a simple and efficient extension of an orderless bag-of-features image rep-
resentation. It exhibits significantly improved performance on challenging scene
categorization tasks. More specifically, local visual descriptors are quantized into
a D-sized dictionary. Then, the spatial pyramid feature for the c-th class and
n-th object is calculated as:

F c
n = {[f1

1 , f1
2 , · · · , f1

t ][f2
1 , f2

2 , · · · , f2
s ], · · · , [fp

1 , fp
2 , · · · , fp

q ]}, (6)

where p represents the pyramid level; t, s, and q denote the feature dimensional-
ity of each pyramid level. Examples of the above spatial pyramid representation
are presented on the left of Fig. 3. Noticeably, to maximally eliminate the nega-
tive effects caused by the complicated scenic backgrounds, we introduce a salient
object based image filtering scheme, as elaborated in Fig. 4. We perform k-means
clustering of two subsets from each classified object image set to constitute two
class feature samples. Generally, people tend to capture images with similar
salient objects for a category. Thus, we discriminate positive and negative sam-
ples using the intra-class variance. Additionally, we extract features with the
same spatial pyramid architecture for OOI in UGVs, toward a consistent feature
description. A few examples are shown on the right of Fig. 3.

As the last step, we recognize objects in UGVs using a similarity metric
to compare objects extracted from an image set. The similarity is calculated
between the mean features of OOIs extracted from UGVs and those of salient
objects extracted from social images.
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Fig. 3. Left: social objects and their three level spatial-pyramid features; right: OOIs
of UGVs and their three level spatial-pyramid features

Fig. 4. Salient-object-based social images filtering

4 Experimental Results and Analysis

4.1 Dataset and Experimental Setup

The UGVs in our experiments consist of sensor-annotated videos captured from
an Android/iOS device in Nanjing and Singapore. For the Nanjing dataset, five
volunteers captured 676 UGVs using Sumsung Galaxy Note 3 and iPhone 6
respectively. Two resolutions 3840 × 2160 and 1920 × 1080 are employed. The
Singapore dataset has 835 720× 480 UGVs with complicated sceneries, e.g., the
Merlion, the Marina Bay, the Esplanade, and the Singapore Flyer.

Our approach is implemented on a desktop PC with an Intel i7-4770K CPU
and 16 GB main memory. Java is adopted to parse the Json data collected from
social servers. Matlab is used to implement the entire framework for its conve-
nience in image/video processing. The location-based social network is imple-
mented based on the Foursquare1. The threshold τ1 for salient region detection
is adaptively calculated by OTSU. The frame selection threshold τ2 is set to 0.2
and the spatial-pyramid level p is set to 3.

1 https://foursquare.com/.

https://foursquare.com/
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4.2 Experimental Results and Analysis

The experiments are designed to evaluate: (1) whether the proposed frames
selection method is capable to preserve OOIs from UGV in order to accelerate
computation, (2) users’ satisfaction about the proposed tracking detection for
OOIs in UGVs, and (3) the recognition accuracy.

Efficiency of Frame Selection. Figure 5 presents some results of the saliency-
based frames selection. To better elaborate our proposed frames selection, we
design a PSNR-loss histogram to measure the quality of the selected frames.
The PSNR measure is popularly used to evaluate the reconstruction quality of
the loss compression codec between images. In our experiment, we construct
a PSNR-loss histogram H = {P12, · · · , Pij}L to calculate the PSNR difference
between the i-th and j-th frames both in the original and the selected sequences.
L is the frame number of the original UGVs. P denotes PSNR and is defined as:

P = 10 ∗ log10

(
2n − 1
MSE

)
, (7)

where MSE =
∑M

x=1

∑M
y=1(f(x, y) − g(x, y))/M ∗ N ; n represents using n bits

per sample, f(x, y) and g(x, y) are the grayscale of neighboring frames; M × N
is the size of each frame.

The PSNR value of the selected sequences falls into the bin based on its frame
number in the original videos. Therefore, the information loss can be compared
at frame-to-frame level. Figure 6 presents the PSNR-loss histograms of one UGV,
reflecting the information loss of the input UGV, and the selected sequences with
τ1 = 0.1 and τ2 = 0 : 2. The red rectangle indicates that our method excludes the
frames with very low information loss. It guarantees that the diversity changes
of OOIs can be well preserved in the selected UGV frames.

Fig. 5. Example frames of the saliency-based selection
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Fig. 6. Left: PSNR-loss histogram of the original UGV and the saliency-guided selected
UGV frames; Right: user satisfaction with respect to the tracking detection

User Satisfaction. To evaluate the effectiveness of the proposed system, we
invite five volunteers (two females and three males) whom are the photographers
of the GeoVid2 to participate our user study. As to the multi-source location-
aware dataset in Singapore, we also invite them to rate the OOI tracking results
generated by our system. Each volunteer rates the UGVs captured by him-
self/herself, and then randomly assigns one fifth part of the Singapore dataset.
The participants are asked to choose from three feelings about the generated
UGVs: “Interesting”, “Borderline”, and “Boring”, which reflect their opinions
after viewing the UGVs with the OOI tracking box. Noticeably, the five volun-
teers label each video to determine whether the OOIs are recognized success-
fully or not. Afterward, we accumulate the feedbacks from the five volunteers,
as shown on the right of Fig. 6. We also explore the reasons why they feel bor-
ing about some UGVs. We observe that the reason is that the wrong trackings
occurred on several frames. The borderline opinion primarily due to the size of
bounding boxes. Some of them cannot fully contain the OOIs.

Recognition Accuracy. Our multi-source location-aware dataset contains two
cities: Nanjing and Singapore. We first calculate the recognition accuracies sepa-
rately on the two cities. Afterward, we average them to obtain a final recognition
accuracy of our designed system. All the experimental UGVs are captured by vol-
unteers spanning a long time, and there is no ground truth presented. Therefore,
all the UGVs are labeled by whether they can be correctly recognized during the
user study. We employ the traditional method to label the dataset, “1” for the cor-
rect recognition while “0” for the mistaken one. In order to validate which distance
measurement can achieve the best performance, we calculate 6 recognition accura-
cies. They are based on the Euclidean distance, the Seuclidean distance, the Cosine
distance, Histogram intersection, the Chebychev distance and the Hausdorff dis-
tance, respectively. The final recognition is calculated using the distance measure
between feature vectors. All the accuracies on the two cities are presented in Fig. 7.
Obviously, calculating the similarity by histogram intersection achieves the best

2 www.geovid.org.

https://www.geovid.org


Utilizing Sensor-Social Cues to Localize OOI in Outdoor UGVs 97

Fig. 7. OOI Recognition accuracies of UGVs extracted from Nanjing and Singapore

accuracy of 92.86 % on the Nanjing dataset, and 91.02 % on the Singapore dataset.
Therefore, the average recognition accuracy of our system on the multi-sources
dataset is 91.94 %.

5 Conclusions

OI recognition on UGVs is an important application in multimedia [24–27] and
artificial intelligence [6,7,23,34]. This paper proposes an automatic system to
achieve OOI recognition on UGVs by leveraging sensor-social data. The key
contributions of this paper can summarized as follows. First, we propose a light-
weight framework for recognizing OOIs in outdoor UGVs by leveraging geo-
sensor data with the location-aware social networks. Second, we introduce a novel
saliency-guided frame selection algorithm, which performs OOI recognition effec-
tively and reduces the computational burden. Third, we compile a multi-source
location-aware dataset containing two cities, Nanjing and Singapore, with three
kinds of resolutions and two types of frame rates. Third, our system achieves
an OOI recognition accuracy of 91.94 %, which demonstrated that it is useful in
both mobile and desktop applications.
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