XTemplate 4.0: Providing Adaptive Layouts and
Nested Templates for Hypermedia Documents

Glauco F. Amorim®®, Joel A.F. dos Santos, and Débora C. Muchaluat-Saade

MidiaCom Lab, Computer Science Department,
Fluminense Federal University - UFF, Niterdi, Brazil
{gamorim, joel,debora}@midiacom.uff.br,
http://wuw.midiacom.uff.br

Abstract. A hypermedia composite template defines generic structures
of nodes and links that can be reused in different hypermedia composi-
tions. XTemplate is an XML-based language for the definition of hyperme-
dia composite templates. X Template can currently be used to create tem-
plates for NCL documents, but other hosting languages can also be used.

In current versions of hypermedia document template languages,
including XTemplate, there is no facility for defining template layouts.
This work extends XTemplate, incorporating the concept of adaptive lay-
outs. Adaptive layouts enable the definition of generic presentation char-
acteristics for multimedia documents that are instantiated at processing
time and adapted to the number of media objects declared in a given
document that uses a template.

Another important facility that this work incorporates in XTemplate
is hypermedia composite template nesting. Template nesting enables the
inclusion of template components inside other hypermedia composite
templates, thus making the use of multiple nested templates transparent
to the document author that uses templates.

1 Introduction

Currently, XTemplate 3.0 [1] and TAL [2] are the main languages used to build
hypermedia composite templates (or just template for simplicity) for multimedia
documents specified with Nested Context Language (NCL) [3]. Both X Template
and TAL are used to reduce the complexity of creating multimedia applications,
mainly when the document contains a large number of media objects and syn-
chronization relationships between these objects.

Although the use of templates reduce the authoring effort in defining the
structure and synchronization of NCL documents, there are some points that
need to be improved.

Hypermedia composite templates are used to define the generic structure of
nodes and links for one single hypermedia composition. Therefore, whenever one
wants to use multiple composite templates inside a document, it has to be done
explicitly by both importing all desired templates and associating each (desired)
composition to one imported template. The drawback of such a scenario is that
© Springer International Publishing Switzerland 2016

Q. Tian et al. (Eds.): MMM 2016, Part I, LNCS 9516, pp. 642-653, 2016.
DOI: 10.1007/978-3-319-27671-7_54

XTemplate 4.0: Providing Adaptive Layouts and Nested Templates 643

the author using a group of templates must have the knowledge about each
template and how they can be put together. TAL allows a main template to
declare inner templates, but the communication interface between them is not
well-defined. XTemplate 3.0 allows template extension, but does not provide
template nesting in the main template definition. Then, the first contribution of
this work is to enable templates to be nested in another template, maintaining
compositionality. Thus, for the scenario previously described, an author would
just need to use one template that nests all other templates.

The second contribution of this work is related to multimedia documents
layout. Typically, NCL applications involve the presentation of various types
of media objects in devices ranging from smartphones to digital TVs. For each
media object to be presented at a given device screen, its presentation charac-
teristics include its spatial coordinates (x, y) on the player device screen, along
with its size. One may notice that, as well as for relationships, the amount of
presentation characteristics to be declared tends to grow when the number of
media objects in a given application grows. The process of defining presenta-
tion characteristics in NCL in such a scenario is both cumbersome and prone to
errors. Template authoring languages for NCL, such as XTemplate 3.0 and TAL,
do not provide a generic way to define visual presentation characteristics. So, the
second contribution of this work is to provide an approach for the generic def-
inition of document presentation characteristics through the so-called adaptive
layouts.

This work presents an extension to the XTemplate 3.0 language, called X Tem-
plate 4.0. In this new version of XTemplate, we provide both facilities for defining
adaptive layouts and nested templates. Through testing it was observed that this
version reduces the authoring effort in creating and using templates created with
the XTemplate language. This paper extends the work presented in [4], where
an XML language for defining adaptive layouts was proposed.

The remaining of the paper is structured as follows. Section 2 describes both
adaptive layout and template nesting features. Section 3 discusses related work
together with comparison with XTemplate previous version. Section4 presents
XTemplate 4.0, and the features it adds to the language. Sectionb describes
evaluation tests done with XTemplate 4.0 and discusses its results. Section 6
finishes the paper with conclusions and future work.

2 Adaptive Layouts and Nested Templates

2.1 Adaptive Layouts

NCL documents are (typically) composed by several media objects, where a (great)
part of those objects are presented on a device screen. How media objects are pre-
sented in the screen is specified in an NCL document by region-descriptor pairs
in the following way, a media object in NCL is represented by a media element.
A media element refers to a descriptor element for defining how it will be presented
on a device screen, such as its transparency, sound level (if applicable), navigation
specification, and the screen area it will occupy. The latter is defined by referring to

644 G.F. Amorim et al.

a region element. Although such separation is intended to improve definition reuse
- several media nodes may refer to the same descriptor and several descriptors may
refer to the same region - when specifications are different and no reuse is possible,
the number of region and descriptor elements is the same as the number of media
elements.

What we call adaptive layout is an approach that enables document authors
to create generic presentation characteristics that adapt itself to the number of
media objects in a given document, thus diminishing authoring effort regarding
how media objects will be displayed.

An adaptive layout relies on (possibly several) layout models, where a lay-
out model specifies general directives for media object presentation. For example,
a layout model may specify to place objects inside a grid.

Layout model instances are declared by layout components. A layout com-
ponent specifies the device screen area where media objects referring to it should
be placed, besides specific information about its layout model. For example, a
layout component using a grid layout model specifies its number of lines and
columns. A layout component can also have as children one or more layout
items. A layout item declares a subset of presentation characteristics to be
associated to media objects, for example a specific size. Media objects, there-
fore, may refer to specific layout items inside a layout component or to the layout
component as a whole.

A layout template defines one or more layout components. Hypermedia
composite templates define components that represent groups of media objects.
While using a composite template, an author associates specific media objects to
generic template components by labeling media objects (zlabel attribute) with
a given template component identification. Likewise, specific media objects can
be associated to layout components by labeling them (layout attribute) with a
given layout component identification. Alternatively, a specific media object can
be associated to a template component that, by its turn, is associated to a layout
component.

2.2 Template Nesting

Composite templates define generic structures to be inherited by a composition
that uses it. It means that synchronization specification provided by a composite
template will take into account the child nodes of a given composition. Suppose
that a composition ¢; declares three elements e;, es and e3 inside it. Composition
c1 uses composite template 77, which defines components G; and G2 along with
a synchronization specification relating both components.

Suppose, for example, element ez is another composition nested in ¢;. If a
document author also wants to embed semantics into eg, this has to be done by
making ez use another composite template (T3). This approach is depicted in
Fig. 1a.

An NCL author creating a document with multiple compositions, therefore,
is supposed to associate all compositions that are intended to use templates to
their corresponding templates. The drawback of such a scenario is that an author

XTemplate 4.0: Providing Adaptive Layouts and Nested Templates 645

document composition
osite templates

composite templates

document composition

comp

a) Nested composition using composite templates b) Template component using nested template

Fig. 1. Composite templates without and with nesting template

using a group of templates must have knowledge about each template separately
and how they can be put together. Once the user of composite templates is not
supposed to have previous knowledge about the template authoring language (in
our case XTemplate), using more than one template in the same document can
be difficult for him.

What we call template nesting is an approach where template components
can be associated to other templates. Therefore when a document composition is
associated to a given template component, it will have the embedded semantics
specified in the composite template that component uses. This idea is depicted
in Fig. 1b. Notice that a hypermedia composite template cannot nest itself.

In order to ensure communication between two templates (let’s call them the
external and the internal templates), it is necessary to establish a communication
interface. This interface is defined by port elements. The internal template must
declare in its vocabulary one or more port elements to work as its communication
interface. In the external template, the same port elements are declared inside
the component using the internal template.

3 Related Work

Some works that address the creation of documents based on templates are
discussed in LimSee3 [5] and Stamp [6].

The LimSee3 [5] model uses templates for multimedia document authoring.
It defines an authoring language, independent of the existing languages, focusing
on the logical structure of a document and not in the target language element
semantics. With this approach, LimSee 3 provides great flexibility and reuse.
The template created with that language describes a generic hierarchy among
its components. A template has to be edited in order to become a complete
document or another template.

The STAMP model [6] proposes a solution for the adaptation of multime-
dia presentations. That model is applied when the presentation content comes
from a database, focusing on web systems. STAMP uses templates for the auto-
matic generation of presentations. The presentation model and structure can
be adapted according to the number of elements retrieved from the database.

646 G.F. Amorim et al.

However, STAMP does not work with template extension and cannot embed
spatio-temporal semantics into a composition.

XTemplate 3.0 [1] is the current version of XTemplate. It is an expressive
template authoring language, and it also allows for the definition of presentation
(layout) characteristics for template components. However, XTemplate 3.0 does
not have features such as nesting templates and generic specifications of media
object presentation characteristics, as the concept of adaptive layouts. This work
extends XTemplate 3.0 including both new facilities.

TAL [2] is described by its authors as a modular declarative language that
supports the specification of templates: incomplete hypermedia compositions.
As XTemplate, TAL can define a set of documents that share the same spec-
ification for their compositional structure. However, TAL does not allow the
specification of layout information for its components, nor provides any facility
to create generic definition of document presentation characteristics. TAL has
nesting templates as one of its features, but it does not define template interfaces
for nesting templates, so template compositionality is not satisfied.

In [7], the authors propose a system for creating and presenting grid-based
documents to suit various viewing conditions and content selection. The system
can display static content or dynamic content from several different sources.
A set of templates is proposed for layouts that were inspired by models of tradi-
tional newspapers. Each template organizes a collection of content in the region
determined by the model. In another work [8], the authors present a solution for
publishing interactive digital documents, which is based on document authoring
instead of programming. The solution is generic and describes how the definitions
of templates and variable content elements can be used to decrease redundancy
and increase the flexibility for those applications. Some ideas proposed in that
related work to define adaptive layouts were used in the model proposed in our
work.

There are tools that facilitate the definition of layout features in web doc-
uments, such as the CSS Regions Module [9]. The CSS Regions module allows
content from one or more elements to flow through one or more boxes called
CSS Regions. Besides, it allows dynamic magazine layouts that are flexible in
placement of boxes for content flows.

Although those layout managers are proposed for different types of applica-
tions, the idea of organizing the layout suggested by them matches the dynamic
management of layouts and, thus, were used as a basis for the adaptive layout
modeling proposed in this paper.

4 XTemplate 4.0

XTemplate 4.0 keeps the facilities added to the template authoring language by
XTemplate 3.0 and incorporates two new facilities for defining adaptive layouts
for a given template and also nesting templates, so that multiple templates can
be used together (in a main template).

XTemplate 4.0: Providing Adaptive Layouts and Nested Templates 647

Different interactive multimedia applications created by the NCL commu-
nity, available at the NCL Club!, were analyzed in order to determine differ-
ent useful layout models to be provided. After analyzing them, we identified
presentations that resembled the characteristics described by FlowLayout and
GridLayout managers in Java language. Other layouts found did not have a well-
defined structure or could be represented by compositions of FlowLayout and
GridLayout. XTemplate 4.0 currently provides two layout models, which are:

— FlowLayout: layout items are placed from left to right, row by row. When
there is no more space in a row considering the size of a given layout item,
another row is created below it and the same principle is used again.

— GridLayout: layout items are placed from left to right, row by row, in a grid
format. The grid is always built considering the whole area specified by the
layout component.

XTemplate 4.0 adds a new element called layoutBase where the layout com-
ponents for a given template are declared. A layout component declaration is
done through element layout. The layout element has a child element called for-
mat that defines the area the layout component covers by its attributes width,
height, top and bottom. Layout item arrangement is specified with attribute
align, while items spacing is specified by attributes hspace and vspace of element
format.

The layout model a given layout component instantiates is declared through
attribute type. The layout element has specific attributes for each kind of layout
model it instantiates. A layout element with type flowLayout does not need to
define a number of rows and columns, on the other hand, it has to define the
alignment for layout items. A layout element with type gridLayout defines a
number of rows and columns, but does not define layout item alignment or size.
Layout items are declared by the item element. Whenever a layout component
instantiates a flowLayout model, it is possible to include different sized items in
the same layout component. So each item element can define its own width and
height.

Besides size and positioning, a layout component is capable of describing
the navigation behavior among its items and between components. Each layout
element may define a focus child element with a focusIndex attribute that deter-
mines a unique navigation index for that element. Whenever the focus element
is defined for a given layout element, it establishes the possibility of navigation
among its items. Therefore, media objects referring to a given layout element
will be associated to navigational definition, depending on their relative position
to each other.

Navigation among layout components is declared through attributes mowveUp,
moveDown, moveLeft and moveRight of element focus. It is not mandatory to
have all those attributes, but at least one is necessary for establishing navi-
gation among layout components. Each attribute indicates the focusIndexr of
the layout component to receive focus when the corresponding remote control

! http://clube.ncl.org.br.

http://clube.ncl.org.br

648 G.F. Amorim et al.

(or keyboard) key is pressed while that layout component is in focus. Whenever
navigation among layout components is established, layout items in the border of
a given layout component will inherit a given navigation attribute from the lay-
out component, thus allowing navigation to items in other layout components.
For example, items in the bottom border of a layout component will inherit
the moveDown attribute. The ones in the left border will inherit the moveLeft
attribute and so on. It is important to notice, however, that when navigation
among layout components is not established, the default behavior takes place,
i.e. navigation from one border moves to the opposite border of the same layout
component (cyclic navigation).

In addition, it is possible define media exhibition parameters in the layout
component. Suppose, for example, that a media object should be reproduced
with 90 % transparency. Then, it is necessary to include a child element, called
layoutParam, in the related layout item. This parameter is represented by a
tuple < name,value,item >.

While creating a layout template, the author associates layout components
to template components through its new layout attribute, whose value is the
layout component d.

Template nesting is achieved by extending the component element with a
new atemplate type. Thus, a component element with xtemplate type contains
the same structure of the internal template it references. The internal template a
component element references is indicated along with its type as atemplate/alias,
where alias is the unique identification of a given template in the template
base. To enable using components of a nested template, the component element
declares port child elements with the same zlabels as ports defined in the vocabu-
lary of the internal nested template. An example of template nesting is presented
in Sect. 4.2.

It is possible to define more than one level of nesting among templates. The
template processor will process nesting in a recursive way, from the most inner
to the root template element.

4.1 Template Processing

Template processing is done in two main steps. At the first processing step,
elements referencing a given template component will be associated to synchro-
nization relationships related to that component and declared in the template
body. If a given template component represents a nested template, composite
elements referring to that component are associated to the given template and
processed before continuing the main template processing. At the end of the
step, media objects inherit from template components their reference to layout
components. At the second processing step, each layout component is translated
to an NCL region representing the whole area declared by it. Each layout item
is translated into a region with the same size and positioning attributes and an
NCL descriptor with the same navigational attributes. Media objects are asso-
ciated to region-descriptor pairs representing layout items in the order they are
declared in the NCL document, i.e. the first media object declared in the NCL

XTemplate 4.0: Providing Adaptive Layouts and Nested Templates 649

document will be associated to the first region-descriptor pair and so on. When
no more region can be created inside the region representing the whole lay-
out component, media objects are associated to existing region-descriptor pairs
starting from the beginning. If a specific item element of the layout component
is indicated, media objects are associated to a specific region-descriptor pair.

4.2 Template Example

To illustrate the new facilities provided by XTemplate 4.0, we modified the
template “quiz.xml” presented in [1]. The “quiz.xml” template helps creat-
ing an interactive quiz that will be presented during a video presentation.
“quiz.xml” uses the “screen.xml” template for presenting a question and its
possible answers on the screen. Between a screen component and its successor,
there are “change_screen” links. Those links are responsible for checking if one
of the color keys of the remote control is pressed (red, green, yellow and blue).
Once one of those keys is pressed, the link stops the presentation of the current
screen and starts its successor. That link also passes a value representing the
key pressed to a program (Lua counter node), which is a script written in the
Lua language. That node will be responsible for testing if the answer is correct
or not. If so, it updates one of its variable values, counting the correct answers.

Using XTemplate 3.0, where no layout components are available,
“screen.xml” had to declare four answer types, because each answer will be pre-
sented in a different screen region (one below the other). Using XTemplate 4.0,
just one answer component has to be defined in “screen.xml” using the flowLay-
out model, regardless of the number of answers for a question. This template
was modified in the following way: (i) each screen component now represents the
nested template “screen.xml”; (ii) “change_screen” links where modified to check
if a given answer was selected and pass its position to the Lua counter node; and
(iii) template “screen.xml” declares a layout element with type flowLayout for
presenting possible answers one bellow the other together with their navigation
attributes, regardless of the number of answers provided.

File “layout.xml” defines two layout components to be used for a question and
its related answers. The question is presented on top of the screen (centralized)
and answers are presented one bellow the other (centralized). Listing 1.1 presents
a fragment of the definition of answer layout components.

2 <layout id=”ansFl” type="flowlayout”>

3 <format align="center” height="640” hspace="10" left="10" top=»300” vspace="0"
width=" 200" zInde D@7 [

1 <item id="cl1” height="150" width="200" />

5 <focus focuslndex="1"/>

6 </layout>
7T ...

Listing 1.1. “layout.xml” layout components

File “screen.xml” defines how the question and answers for each question are
presented. This template is nested inside the quiz template, thus it defines port
portAnswer to work as its communication interface. A fragment of this template
vocabulary is presented in Listing 1.2. As aforementioned, the template will be

650 G.F. Amorim et al.

processed in a recursive way, from the most inner to the root element. Then,
when the “screen.xml” is processed, each media element with answer label will
receive a port element. This element will be related to a portAnswer label to
identify the communication interface.

I <vocabulary>
2 <port xlabel="portAnswer”/>

3 <component xlabel=7"question” layout="lay#qstF1”/>

1 <component xlabel=7"answer” layout="lay#ansF1”/>

5 </vocabulary>

6 <body >

8 <variable name="i” select="1"/>

9 <for—each elect 7 child :: media [@xlabel=""answer ’] ">

0 <port id=”port” select="current ()” xlabel="portMenu”/>
<variable name=”1i” elect="8i + 17/>

1
2 < /for—each>

3 oo
1 </body>

Listing 1.2. “screen.xml” vocabulary fragment

File “quiz.xml” represents the main template. It nests template screen (alias
“scn”) for its screen component. To enable referencing nested template compo-
nents, the screen component declares a port child element also named portAn-
swer. A Fragment of “quiz.xml” is presented in Listing 1.3.

1 <component xlabel=7”screen” xtype="xtemplate/scn”>
2 <port xlabel=”portAnswer”/>
3 < /component>

Listing 1.3. “quiz.xml” fragments

An example of NCL document using the quiz template is presented in
Listing 1.4. Notice that, different from the example in [1], the NCL author only
has to use the quiz template. The context element refers the nested template
declaring a screen label.

1 <body xtemplate="quiz”>

2 <context id=”screen-01” xlabel="screen”>

3 <media id=" question-01~ wbel=" question”/>
4 <media id="answer-01_-A"” abel="answer” />
5 <media id="answer-01_B” abel="answer”/>
6

7 < /context>

8 </body>

Listing 1.4. NCL document (fragment) using quiz template

5 XTemplate 4.0 Evaluation

We performed tests to evaluate the adaptive layout feature. The test involved five
activities, where in each activity authors should write code for one or more layout
components and NCL code using layout components to define the application’s
presentation characteristics. The authors had to specify the layout template
document in each activity and use this template within the NCL document.
Activity 1: authors should place media objects in a grid with three columns
and two rows in the center of the screen; Activity 2: authors should place media
objects in a flow with one item in the bottom of the screen; Activity 3: authors
should place media objects in a flow with two different item sizes at the top of

XTemplate 4.0: Providing Adaptive Layouts and Nested Templates 651

the screen and a grid with four columns and one row in the bottom; Activity 4:
authors should place media objects along two grids, one in the left and one in
the right side of the screen, both with one column and four rows, and one flow
in the bottom; Activity 5: authors should create any placement they wanted.

A total of 20 students participated in the current study: seven students of
a high-school technical course in Telecommunications (Group 1) and thirteen
students of a computer science graduation course in (Group 2). All students in
Group 1 were enrolled in a digital TV applications course, therefore, authors had
a good knowledge about NCL. No student in Group 2 had any knowledge about
NCL, but had good knowledge about HTML language, which is also XML-based.

After completing all five activities, authors filled out a questionnaire with ten
questions, nine related to the following cognitive dimensions [10]: visibility, role-
expressiveness, closeness of mapping, verbosity, premature commitment, hidden
dependencies, error-proneness, consistency and viscosity, and one to define a final
score. Each question should be answered with a score of one to ten, which was used
to evaluate the facility. The overall result of the tests can be seen in Fig. 2a.

The first interesting conclusion about test results is that, although the two
groups had different knowledge about NCL, results are quite similar in both
groups. This result shows that the author experience with the adaptive layout
authoring language is not influenced by the author expertise about the hosting
multimedia authoring language.

One main concern was not to increase verbosity when using adaptive layouts.
As it can be seen by test results, this goal was achieved. Another important result
is in role-expressiveness and wvisibility dimensions. Average results indicate that
the adaptive layout feature is self-explaining and therefore easy to use. Combined
with the results for error-proneness and wviscosity dimensions, we can conclude
that the new feature does not insert any difficulty for those who want to use it,
leading to new authoring mistakes, even with non-expert authors.

Although the evaluation results for both hidden dependencies and premature
commitment dimensions were not very high, it was better than expected. Hidden
dependencies is explained because of the navigation feature provided by layout
components. Both the id and focus attributes of a layout component are used
to define NCL descriptor focus index. This information needs to be provided to
authors using that feature. Premature commitment is explained because authors
did not know that the relative position among layout components in the layout
template does not interfere in the final positioning of media objects in the device
screen.

In general, the adaptive layout feature has been well evaluated. However,
some adjustments can be made to improve its use. Suggestions given by test
subjects include providing a graphical tool to create layout components and to
provide other more sophisticated layout models. Both suggestions are work in
progress.

A graphical editor that supports templates is very useful for helping document
authors using templates [11]. When template nesting is available, a graphical edi-
tor can make the use of several nested templates transparent to document authors.

652 G.F. Amorim et al.

Average mGroup2 mGroup 1

“®Number of Elements without Layout Template
Fina! - |
Viscosity
3

Consistency

“®Number of Elements with Layout Template

Error-proneness
Hidden dependencies
Premature commitment

e
e
S :
Verbosity —
Closeness of mapring E— -
Role-expressiveness | —
Vil —

0,00 2,00 4,00 6,00 8,00 10,00 EXAMPLE1 EXAMPLE2 EXAMPLE3 EXAMPLE4 EXAMPLE S

a) Usability test results b) Number of elements test results

Fig. 2. Test results

Using only textual edition, the document author will not be able to understand
clearly the difference between using separate templates and using one main tem-
plate with nested templates. Because of this, we did not apply usability tests to
evaluate the nested template facility with subject groups 1 and 2. However, we
intend to run those tests when a graphical editor that supports nested template is
available.

In addition, another evaluation about the number of language elements used
for creating templates with and without adaptive layouts was made. The five
scenarios used in the previous tests were considered and the results can be seen
in Fig. 2b.

The number of template language elements increases considerably when the
complexity of the example document increases. This result is expected because
they involve the creation of more region-descriptor pairs. With the use of layout
models, this effort is mitigated because the author only needs to set the proper
model and, for each model, define a few required elements.

In order to evaluate nested template authoring, several XTemplate examples
using more than one template were redesigned to use the template-nesting fea-
ture. Given the small changes necessary to use that feature for those examples
and our experience about authoring templates, we state that nesting templates
do not increase the complexity when authoring templates.

6 Conclusions

This paper presented a new version of the XTemplate language, called XTem-
plate 4.0. In this new version, two new features are provided, adaptive layouts and
template nesting. Both features represent the main contribution of this paper.
Adaptive layouts enable the definition of generic presentation characteristics
for multimedia documents that are instantiated at processing time and adapted
to the number of media objects declared in a given document. As a test case, we
provided two layout models, GridLyout and FlowLayout, that are implemented
for the NCL language. It is important to notice that this feature is not provided

XTemplate 4.0: Providing Adaptive Layouts and Nested Templates 653

by any other NCL template language. XTemplate 4.0 usability test results indi-
cate that the adaptive layout feature is intuitive and does not increase verbosity.

Template nesting enables the association of template components to other
templates. Our solution for template nesting specifies interface points (ports) for
nesting templates, which does satisfy composionality for authoring hypermedia
composite templates.

A future work is to develop a graphical editor that supports nested templates
to help the NCL document author when using templates. With textual edition,
the difference between using several different templates and one main template
with nested templates is subtle and might not be clearly understood by template
users. That explains why we have not run usability tests about using nested
templates yet.

Another future work is to include new layout models and perform evaluations
for each new model provided and develop a graphical editor to help specifying
adaptive layouts for multimedia documents.

References

1. dos Santos, J.A.F., Muchaluat-Saade, D.C.: XTemplate 3.0: spatio-temporal
semantics and structure reuse for hypermedia compositions. MTAP 61(3), 645—
673 (2012)

2. Neto, C.S., Pinto, H.F., Soares, L.F.G.: TAL processor of hypermedia applications.
In: DocEng, pp. 69-78. ACM (2012)

3. Recommendation ITU-T H.761, Nested Context Language (NCL) and Ginga-NCL
for IPTV Services (2011)

4. Amorim, G.F., dos Santos, J.A.F., Muchaluat-Saade, D.C.: Adaptive layouts for
authoring ncl programs. In: 19th WebMedia. ACM (2013) (in Portuguese)

5. Deltour, R., Roisin, C.: The limsee3 multimedia authoring model. In: DocEng, pp.
173-175. ACM (2006)

6. Bilasco, I.M., Gensel, J., Villanova-Oliver, M.: STAMP: a model for generating
adaptable multimedia presentations. MTAP 25(3), 361-375 (2005)

7. Schrier, E., Dontcheva, M., Jacobs, C., Wade, G., Salesin, D.: Adaptive layout for
dynamically aggregated documents. In: 13th TUI, pp. 99-108. ACM (2008)

8. Signer, B., Norrie, M.C., Weibel, N., Ispas, A.: Advanced authoring of paper-digital
systems. MTAP 70(2), 1309-1332 (2014)

9. W3C, CSS Regions Module Level 1. http://www.w3.org/ TR /css-regions-1/

10. Blackwell, A., Green, T.: HCI Models, Theories, and Frameworks: Toward an Inter-
disciplinary Science. Morgan Kaufmann, San Francisco (2003)

11. Mattos, D., Silva, J., Muchaluat-Saade, D.: Next: graphical editor for authoring
NCL documents supporting composite templates. In: EuroITV (2013)

http://www.w3.org/TR/css-regions-1/

	XTemplate 4.0: Providing Adaptive Layouts and Nested Templates for Hypermedia Documents
	1 Introduction
	2 Adaptive Layouts and Nested Templates
	2.1 Adaptive Layouts
	2.2 Template Nesting

	3 Related Work
	4 XTemplate 4.0
	4.1 Template Processing
	4.2 Template Example

	5 XTemplate 4.0 Evaluation
	6 Conclusions
	References

