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Abstract. In this paper, we propose a symmetry-aware human shape
correspondence extraction method. We address the symmetric flip prob-
lem which exists in establishing correspondences for intrinsically sym-
metric models and improve the accuracy of the final corresponding pairs.
To achieve this goal, we extended the state-of-the-art approach by using
skeleton information to further remove symmetric flipped shape corre-
spondences. Traditional approaches that only rely on surface geometry
information can hardly discriminate surface points which are symmet-
ric. With the appearance of inexpensive RGB-D camera, such as Kinect,
skeleton information can be easily obtained along with mesh. Therefore,
after the initial correspondences are achieved, we extend the candidate
sets for each point on the template, followed by making use of skele-
ton to remove the symmetric flipped false candidates. In the remaining
candidates, final correspondences are achieved by choosing those with
minimum geodesic distortion from base vertex set, which is formed by
sampling on the mesh. Experiments demonstrate that the proposed
method can effectively remove all the symmetric flipped candidates.
Moreover, the final correspondence pair is more accurate than those of
the state of the arts.
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1 Introduction

Shape correspondence is a fundamental problem in many research topics such
as 3D mesh retrieval, shape registration and mesh deformation. 3D shape corre-
spondence is a mapping from one point set on the source mesh to another on the
target mesh. There exist three kinds of mapping: one-to-one, one-to-many and
many-to-one. In this paper, we aim to address the problem of establishing the
accurate one-to-one correspondence between intrinsic-symmetrically isometric
human models.

The target of shape correspondence is to find the point pairs that are similar
or semantically equivalent. Isometric shapes appear in various contexts such as
different poses of an articulated human model or two shapes presenting different
but semantically similar objects [16]. It is highly demanded to find isometric
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shape correspondence since most real world deformations are isometric. More-
over, shape correspondences between isometric shapes have practical values. For
instance, the deformation based on isometric template will be much more effi-
cient benefiting from their similar shapes. If two shapes are totally isometric, the
geodesic distance between two points on one shape is the same as the geodesic
distance between their correspondences on the other shape [16].

Embedding-based methods are popular techniques for 3D shape correspon-
dences problem. In these methods, original mesh is embedded into a new domain
where isometric deviation can be measured and optimized. Euclidean embed-
ding can be achieved by using various techniques such as classic MDS(Multi-
Dimensional Scaling) [14], least-square MDS [6], heat kernel embedding [10] and
spectral embedding [7]. Besides embedding methods, other approaches [15,16]
minimize the isometric distortion directly in the 3D Euclidean space. However,
most existing algorithms tend to be confused by the intrinsically symmetric fea-
tures and suffer from symmetric flip problems. They can hardly discriminate
symmetric points on the surface even if the mesh to be matched is not perfectly
symmetric. Therefore, it is common that the correspondence of the point on the
right hand of the source mesh is established on the left hand of the target mesh,
as shown in Fig. 1.

We proposed a method to find correspondences for human isometric shape
model which is able to solve the symmetric flipping problem. Our idea is to com-
bine skeleton information to distinguish intrinsic symmetry. Given two meshes
with their skeletons, we first utilize local features to find one-to-many correspon-
dences between two meshes. The candidate set for each feature point presents
symmetric property on the mesh. A skeleton segment associated with surface
points is capable of discriminating symmetry. The final correspondence is located
and refined by minimize the isometric distortion with respect to based vertex
set.

In summary, our contributions are: (a) we integrate skeleton information
to robustly address symmetric flip problem which still exist in state-of-the-art
techniques; (b) we take advantage of the base vertex set to refine the final one-
to-one correspondence and achieve better accuracy.

2 Related Work

Shape correspondence is a long- and well-studied problem. In areas such as shape
matching, 3D shape retrieval, and mesh registration, 3D reconstruction, many
recent efforts are made on finding shape corresponding points on two meshes.
SCAPE model [1] use markers to manually locate correspondences between
two meshes. Besides manual assignment, plenty of works develop local surface
descriptors to automatically establish correspondences. Some works extend local
descriptors in 2D images for triangulated meshes, such as MeshHOG [18] or 3D
shape context [9]. The embedding-based method is a more reliable approach
when it comes to isometric deformation. Multidimensional Scaling(MDS) [14]
approximate geodesic distance with Euclidean distance in embedding space.
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Fig. 1. Flipping correspondences. Each correspondence pair is labelled with the same
colour (Color figure online).

Dey et al. [5] uses the Global Point Signature(GPS) [13] for spectral embed-
ding of meshes and thereby find the mesh extremities. Sahillioglu et al. [15] also
transfers vertices into spectral domain and optimize the result using expectation-
maximization algorithm. However, these above methods sometimes provide false
correspondence due to the presence of model symmetries. Ovsjanikov et al. [11]
firstly identify the intrinsic symmetry of object in a quotient space, and then
factor it out. Zhang et al. [19] differentiate the intrinsic symmetric points by
calculating a signed angle field from the gradient fields of the harmonic field
which is derived from four points on the hands and feet. For scan data produced
by RGB-D cameras, e.g. Kinect, many imperfections make it harder to find the
correspondences. Holes and non-smooth mesh result in difficulties for calculating
geodesic distance. Noises and missing data have negative influence on the matrix
structure which is the basis of embedding-based methods. Jiang et al. [8] and
Zheng [20] detect the intrinsic symmetry of point clouds using skeleton but the
skeleton they use is produced according to the surface or point clouds.

Sahillioglu et al. [16] propose a coarse-to-fine scheme to track symmetric flips.
Although this method is more accurate than the previous ones based on embed-
ding approach, it still has the symmetric flipping false pairs even in the final
level. We will compare our method with them in both accuracy and addressing
problem of symmetric flips. The strength of our approach is that it takes into
account the skeleton information.

3 Skeleton-Based Symmetry-Aware Approach

The intrinsic symmetry leads to the symmetric flipped correspondence between
two meshes. Neither embedding-based methods like MDS, GMDS nor local descrip-
tors can differentiate them effectively. Previous works which are solely replying on
surface-related information, i.e. geodesic distance, face normal, are unable to solve
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symmetric problems completely. However, with the help of a set of skeleton infor-
mation where different skeleton segments have different labels and surface point
and skeleton segment are associated, it is possible to address the symmetric flipping
problem with skeleton. Moreover, along with the appearance of Kinect camera,
we are able to obtain skeleton of mesh with ease. To perform the skeleton attach-
ment process, we use the algorithm based on the work by [2], in which the input is
the joints positions tracked from Kinect. The output is the skeleton attached the
human model. In the following, we firstly discuss how to obtain candidate set for
source point, followed by our method to address symmetric flip problem as well as
to refine the final correspondence which is more accurate in terms of both visual
effect and semantics.

3.1 Correspondence Candidate Set

As mentioned before, in order to make sure that the candidate set includes the
correct correspondence as much as possible, we first compute the one-to-many
correspondences using Heat Kernel Signature(HKS) [17], we select the top N
similar points to construct the candidate set which is shown in Fig.2(a). To
compute the heat of point ¢ at time t;, we firstly perform the Laplace-Beltrami
operator L on the mesh. Let A be the diagonal matrix of the eigenvalues of L,
and @ be the matrix with the corresponding eigenvectors, the heat kernel of the
mesh is computed as Eq. 1:

K; = Gexp(—tA)dT (1)

Each entry in k;(¢,j) represents the heat diffusion between point ¢ and j. The
diagonal elements of this matrix is composed of HKS. Thus, HKS feature is a
vector whose entry k; (pi, pi) is the heat at point ¢ at time of ¢;:

{ker (i, i), ke2(Pis 0i)s - - - Ken(Dis i) } (2)

When the dissimilarity of HKS between the template point and target point in
Eq. 3 is less than a threshold ¢, the target point is selected as candidate for the
template point.

As = [|[HKS(p:) — HKS(ps)ll, 3)

where HK S(p) is the heat kernel signature at point p, p; and ps are the points
on the template and target respectively. Here, we apply the scale-invariant
HKS(si-HKS) [3] to get feature for meshes.

After the initial correspondence is achieved by si-HKS, an expanded set of
candidate points are obtained as shown in Fig.2(a). As it can be observed, the
expanded candidates for the point on the right foot of the source model distribute
on both feet of the target model, presenting symmetric property.

3.2 Skeleton-Based Symmetry-Aware Shape Correspondence

To locate the single correspondence for template point, the next step is to remove
those symmetric flipping points. Skeleton is an important clue for filtering flipped
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(a) Expanded candidates (b) Skeleton-filtered candidates (c) final correspondence pair

Fig. 2. Overflow of proposed method: (a) the expanded candidate set for one point on
the template; (b) the after-filtered candidate set using skeleton filtering; (c) the final
one candidate point on the source based on base vertex set

correspondences. As shown in Fig 3, skeleton divides mesh into 17 parts and each
mesh part attached a segment has a unique label and the right extremity and its
left counterpart have different labels. Therefore, our method is able to discrim-
inate the right points and their counterparts on the left, addressing symmetric
flip problems. When the template point and candidate points are on the same
skeleton segment, they are kept; otherwise, the candidates are removed. The
filtered candidate set for template point is shown in Fig. 2(b).

3.3 One-to-One Correspondence

After the symmetric flip problem is solved, the remaining candidates need to be
further filtered to find the one-to-one correspondence pair. Therefore, the next
step in our method uses the sum of relative distances from candidates to the
base vertex set to filter invalid candidates.

The base vertex set [15] is selected based on Gaussian curvatures. This process
is illustrated in Fig. 4. Initially, at each vertex of the original mesh, we compute
the Gaussian curvatures using a simple way proposed in [12] with Eq. 4.

gelp) = 3(2m — Y )/ ST A(S), (4)

where A(f;) is the area of the face f; that adjacent to the vertex and the angle «;
is the angle of f; at the vertex. Then we sort the vertices into a list in descending
order with respect to their curvature values like in Fig.4(a) and choose the top
vertex as the first base vertex, e.g. marked point (x1,¥1, 21) in Fig.4(b). Then,
as shown in Fig.4(c), we compute the geodesic distance from this vertex and
mark all its neighboring points lying within a radius . In our experiment, we
adopt the Dijkstra’s shortest path algorithm to compute the geodesic distance
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Fig. 3. Mesh division by skeleton; each colour represents a skeleton segment (Color
figure online)

between two vertices as Eq. 5. The weight of each edge of Dijkstra’s path is the
Euclidean distance between neighboring vertices by Eq. 6.

g(i,4) =Y wi (5)
ieP

C— mi o 6

Wi vfleljr\lfi [[vi — vill, (6)

where N; is the neighbors of point ¢. The next base vertex is the first unmarked

vertex in the list like (z3,ys, 23) in Fig.4(d). This process is repeated until all

points are marked and based vertex set is built. The final base vertex set is

illustrated in Fig. 4(f). Given base vertex set ¢, we compute the relative surface

distance from each candidate to ¢ with Eq. 7. The candidate C' with the mini-

mum relative distance to ¢ is regarded as the final correspondence as shown in
Fig.2(c).

Diso(ciy0) = > glesvy) (7)

(v;E€,c:€0)

C= arg glelg (Diso (Ci» ¢) — Diso (pv (b)) (8)

Here, g(.,.) is the geodesic distance between two vertices. p is the point on the
template. After the distances from the candidates to base vertex set are acquired,
we select the candidate with minimum distance to base vertex set as the final
correspondence as illustrated in Eq. 8.
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Fig. 4. The process of base vertex set

4 Experiments

4.1 Dataset

SCAPE human dataset [1] is built by Dragomir et al. in 2005. It is composed of
pose dataset and shape dataset. In pose dataset, it contains scans of 70 different
poses of a particular person. The shape model consists of 45 different people in
a similar but un-identical pose. In the pose dataset, one mesh is chosen as the
template mesh and others are denoted as instance meshes. Each mesh has 25000
triangle faces and 12500 vertices. Although the original work made use of both
shape and pose data, only the pose data is distributed together with its skele-
ton information. Meshes in SCAPE model are hole-filled using the algorithm
by Davis et al. [4]. SCAPE model also constructs a skeleton for the template
mesh based on the fact that vertices on the same skeleton joint are spatially
contiguous and exhibit similar motion across different scans. Thus, after scan-
ning the pose instance for a particular person, authors decompose the mesh into
several approximately rigid parts and get the location of the parts in differ-
ent pose instances as well as the articulated object skeleton linking the parts.
Based on the pose dataset, a tree-structured articulated skeleton is automati-
cally constructed with 16 parts. Since SCAPE model contain both symmetric and
various deformed shapes, we evaluate the performance of our proposed method
with respect to symmetric flipped correspondence as well as the accuracy of final
correspondences with SCAPE dataset.

4.2 Performance Evaluation

We compare our method with latest shape correspondence algorithm [16]. Firstly,
we intuitively compare our result with those in coarse-to-fine combinatorial match-
ing (C2FCM) algorithm [16] in Fig. 5. Our method outperforms C2FCM [16] with
respect to semantical equivalence. For the same point on the third toe of template,
C2FCM method finds its correspondence on the foot bottom. However, our method
locates its correspondence almost on the third toe of foot. Secondly, the average



Symmetry-Aware Human Shape Correspondence Using Skeleton 639

Fig. 6. Comparison between two methods: Top: results obtained using method in [16];
Bottom: our results. Matched point pairs are connected by lines. Symmetry flips are
connected by black dash lines.

geodesic error is compared with C2FCM algorithm in Table 1. We can see that for
different proportions of correspondences, the geodesic errors of our method are
less than those of C2FCM. The average of geodesic error of all correspondences,
shown in the column of 100 % correspondences, our method outperforms C2FCM,
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Table 1. Comparison of our method with C2FCM method

GeoErr \_%Corr
10 20 30 40 50 60 70 80 90 100

Method
C2FCM 0.122 0.103 0.093 0.093 0.092 0.097 0.098 0.097 0.097 0.098
Ours 0.097 0.074 0.070 0.074 0.081 0.084 0.082 0.081 0.080 0.083

which means our method is able to find the correspondences more accurately. More
results are shown in Fig. 6, we can see that in coarse-to-fine algorithm correspon-
dences which are shown in the top line present symmetry (both on the left and right
foot) for template point. Our method is able to find the unique correspondences
which is more accurate than [16] in terms of semantics. Moreover, it successfully
removes that symmetric flipped invalid correspondences and achieved accurate one
to one mapping from template to target meshes.

5 Conclusion

In summary, we present a robust method to address the symmetric flip problem
in shape correspondence research area. This approach can effectively remove the
flipped correspondences by introducing skeleton information and through minimis-
ing distortion error. It can locate the one-to-one semantically similar correspon-
dence more accurately. Experimental results indicate that the proposed approach
outperformed traditional approaches that rely only on surface information.

In the future, we hope to investigate other mesh data which is obtained from
cheap scanners such as Kinect to find correspondence between template mesh
and scanned mesh. The focus will be on tracking the intrinsic challenges posed
by the incomplete and noisy data that is used to build such scanned mesh.
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