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Abstract. Spatial pyramid matching (SPM) model is an extension of the bag-
of-visual words (BoW) model for local feature encoding. It firstly partitions the
image into increasingly fine sub-regions, and then concatenates the histograms
within each sub-region. However, the SPM model does not consider the spatial
information differences between sub-regions explicitly. To make use of this
information, we exploit a novel descriptor called spatial difference. In the process
of promoting the performance of image classification, this descriptor is mainly
used to concatenate the histograms of bag-of-visual words model under spatial
pyramid matching framework. Finally, we conduct image classification experi‐
ments on several public datasets to demonstrate the effectiveness of the proposed
scheme.

Keywords: Image classification · Spatial difference descriptor · Spatial pyramid
matching · Bag-of-visual words · Sparse coding

1 Introduction

In recent years, the bag-of-visual words (BoW) model [1] has been very popular in
various image applications, especially for image classification. Codebook generation
and histogram representation are two important components for generating bag-of-
visual words representation. Bag-of-visual words model has been demonstrated that
combining codebook and histogram representation together can achieve good perform‐
ance after being trained to predict the classes of images.

Though bag-of-visual words model has achieved good performance, there exist
obvious drawbacks: both the spatial information and correlations among visual contents
are neglected. Later, a spatial pyramid matching (SPM) model [2] was proposed to deal
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with this problem by dividing the whole image into hierarchical sub-regions and concat‐
enating the appropriately weighted histograms of each region. Extensive experimental
results have shown that spatial pyramid matching model achieved a remarkable success
on a wide range of image classification benchmarks as a fundamental model. However,
spatial pyramid matching model has its own weaknesses: the finer the division, the more
sensitive it is to location and orientation of visual content, as described in [3]. In view
of this, many works focused on improving SPM to overcome these weaknesses, such as
researchers [3–6] tried to improve the coding procedure to minimize the representation
information loss. Teng et al. [3] explored a weakly spatial symmetry descriptor to boost
the performance of bag-of-visual words model by combining weakly spatial symmetry
(WSS) and BoW together. Despite its success in the scene image classification domain,
WSS model has its own limitations. For example, after dividing the image into many
sub-regions and generating histograms of bag-of-visual words model, WSS only
computes spatial symmetry information inside each sub-region, rather than considering
the spatial difference information between sub-regions. While spatial difference infor‐
mation between sub-regions is much more important than inside spatial symmetry
information when dividing images into increasingly fine sub-regions.

Hence we propose a novel approach to relieve the above problems under spatial
pyramid matching framework. Firstly, we compute spatial difference information in four
kinds of orientations. Secondly, we combine the spatial difference descriptors with
histograms of bag-of-visual words model together. Finally, experiments are conducted
on several datasets, which mainly include estimating different distance measurements,
evaluating the performance with different codebook sizes and comparing with other
methods to prove the effectiveness of our approach.

2 Related Work

The bag-of-visual words (BoW) [1] model has been widely used for visual applications.
Traditional BoW model uses the k-means clustering algorithm and considers the cluster
centers as visual words. Local features are then quantized to the nearest visual word.
However, this solution leads to severe information loss, which limits its discriminative
power. In order to reduce the information loss in the local feature encoding process,
many works [6–8] have been proposed. For instance, as a classical and typical one, Yang
et al. in [6] proposed one scheme to sparse coding with spatial pyramid matching for
codebook generation, and trained linear classifier to save computational cost, which was
much more effective than non-linear classifier.

Further more, the traditional BoW model lacks the spatial information. Inspired by the
work done by Grauman and Darre1l [4], Lazebnik et al. [2] proposed the spatial pyramid
matching (SPM) algorithm which was widely used by many researchers. Later, a lot of
works [9–13] have been done to combine the spatial information of local features, which
are motivated by the SPM algorithm. A hierarchical matching method with side informa‐
tion was proposed by Chen et al. [9] and it was used for image classification. A weighting
scheme was used to select discriminative visual words. Randomization and discrimination
was combined into a unified frame work by Yao et al. [10], which was used for fine grained
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image categorization. Zhang et al. [11] proposed a pose pooling kernel to recognize sub-
category birds. Representing images with components and a bilinear model for object
recognition was used in [12] proposed by Zhang et al., Bao and He [13] proposed an
improved sparse coding model based on linear spatial pyramid matching (SPM) and scale
invariant feature transform (SIFT) descriptors. Teng et al. [3] explored a weakly spatial
symmetry descriptor to boost the performance of bag-of-visual words model by combining
WSS and BoW together. Authors in [14, 15] explored methods of combining spectral and
spatial information directly to boost the final performance. Zhu et al. [16] presented a
robust semi-supervised kernel-FCM algorithm incorporating local spatial information to
solve the original problem of image classification. In another way, Zhang et al. [17]
proposed a novel object categorization method by using the sub-semantic space based
image representation. Most of the previous works have their own superiority on some
datasets. However, none of them consider the spatial difference information between sub
regions. To make use of this lost information, we propose a novel descriptor named spatial
difference to improve the performance for image classification.
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Fig. 1. Flow chart of spatial difference descriptor computation
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3 Proposed Framework

Our image classification solution is derived from spatial pyramid matching model [6],
which mainly includes five modules: feature extraction, sparse coding, spatial pooling,
spatial difference descriptor computation, and finally linear classifier. Firstly, feature
extraction accomplishes obtaining the original image representation vectors. Then
sparse coding and spatial pooling are used to learn dictionary and encode the local
features respectively. After this, the spatial difference descriptor is computed to complete
the gist of obtaining discriminative image representation vectors by going one more step,
as shown in Fig. 1. In the last module, we use linear SVM classifier to do image clas‐
sification by training and testing the obtained discriminative feature the same as other
common benchmarks.

3.1 Feature Extraction

Local features play a very important role for effective image representation. Choosing
the proper local features is helpful to improve the final image classification performance
substantially. For better discriminative power, we utilize higher-dimensional “strong
features”, which are SIFT descriptors of 16 × 16 pixel patches computed over a grid
with 8-pixel spacing. Before extracting features, the image should be all processed into
gray scale. At last, These extracted features are then normalized with L2 norm.

3.2 Sparse Coding

Sparse coding has been widely used for codebook generation in the BoW model. Let
X = [x1, x2, …, xN] (xi ∈ RD×1) be a set of N local image descriptors of each D dimension.
Given a codebook with K entries to be learned, V = [v1, v2, …, vK] (vi ∈ RD×1), each
descriptor can be converted into a K-dimensional code to generate the final image repre‐
sentation. Let U = [u1, u2, …, uN] is the set of codes for X. Typically the sparse coding
method solves the following optimization problem as:

where λ is the regularization parameter. Considering the large amount of local features,
we only sample a subset of features to learn the codebook. With the codebook in place,
the local features of each image can be encoded.

Yang et al. [6] developed an extension of the SPM method [2] by generating vector
quantization to sparse coding followed by multi-scale spatial max pooling, and proposed
a linear SPM kernel based on SIFT sparse codes. Their approach, called ScSPM, is
naturally derived by relaxing the restrictive cardinality constraint of VQ.

530 Y. Li et al.



3.3 Spatial Pooling

In the “SPM” layer, we partition an image into 2l × 2l spatial sub-regions, where l = 0,
1, 2 stands for different scales. The codes of the descriptors are pooled together to get
the corresponding pooled features. These pooled features from each sub-region are
concatenated and normalized to form the image feature representation. The pooling
method used in this paper is max pooling:

In our framework, “max pooling” combined with L2 normalization is used. Max
pooling can produce better performance than other pooling methods (i.e. Sqrt and Abs),
as demonstrated by Yang et al. [6], probably due to its robustness to local spatial trans‐
lation and biological plausibility.

3.4 Spatial Difference Descriptor Computation

After image representation being generated by sparse coding and spatial pooling hier‐
archically, spatial difference descriptors are computed according to four kinds of spatial
difference information. For example, the sub-figure (a) in Fig. 2 describes left to right
difference, and the sub-figure (b) describes top to down difference. As for the diagonal
differences, we compare two different schemes, as shown in Fig. 1.

(a) (b)   (c)    (d)

Fig. 2. Four kinds of spatial difference information

In the first scheme, diagonal spatial difference information is extracted by computing
distances between sub-regions which may not be contiguous. In the second scheme,
diagonal spatial difference information is extracted by computing distances between
sub-regions which are all contiguous. Both of the two schemes compute spatial differ‐
ence information between sub-regions rather than in each sub-region.

Because the two sub-regions to be calculated for diagonal spatial difference infor‐
mation may be not contiguous, their correlation is denoted by dotted line, as shown in
sub-figure (c) and sub-figure (d) of Fig. 2. Especially, Fig. 1 describes the flow chart of
the spatial difference descriptor computation process in the whole image level. In order
to differentiate the two computing schemes, we denote the first scheme as spatial differ‐
ence 1 (SD1) and the second one as spatial difference 2 (SD2). It is important to note
that, in Figs. 1 and 2, the blocks in which the head and tail of the arrow line locate are
the sub-regions we choose to compute difference descriptor.

For two computing sub-regions of the segmented image, two vectors h1 and h2 are
built based on the size of codebook:
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where K is the size of codebook.
If these two sub-regions are strictly the same, the distance between them would be

near 0. Obviously, different distance measurements may lead to different results, and
then we can use different methods to compute the distance. Finally, we will adopt
euclidean distance measurement as the most proper one to calculate the spatial difference
information between two vectors. Now we can obtain a feature vector to describe the
spatial difference descriptor for the whole image:

where P is the number of sub-region pairs to compute according to Figs. 1 and 2.
To combine histograms of bag-of-visual words model and spatial difference infor‐

mation, we utilize the method as described in [3] by Teng et al. and obtain the final
discriminative feature representation:

where H is the histograms of bag-of-visual words, and m is the size of H.

4 Experiments and Results

To evaluate the effectiveness of the proposed method in this paper, we choose to conduct
image classification experiments on several public datasets. The datasets are Scene 15
dataset, Caltech 101 dataset and Caltech 256 dataset.

Our approach uses the popular SIFT descriptors. The same as other common bench‐
marks, we randomly select the training images and use the rest images for testing. This
process is repeated for ten times to get reliable results. Mean of per-class classification
rates for performance measurement is used and we report the final results by mean and
standard deviation of the classification rates. SPM with three pyramid and SD1 (or SD2)
in which spatial difference information is extracted are used to combine the hierarchical
histograms and correlations between sub-regions together. Hence, each image is repre‐
sented by a vector of 21 × K (size of codebook) + 40 (or 48) for all datasets.

Our experiments mainly include three parts: firstly, fixing the codebook size with
1024, and for Scene 15 dataset and Caltech 101 dataset, we evaluate the performance
of different distance measurements. Measuring distance includes six methods, which
are chebychev, jaccard, hamming, cosine, cityblcok and euclidean. Secondly, fixing the
distance measurement, we evaluate the performance by changing the codebook size.
Finally, we choose to compare with other methods which are closely related with the
proposed method by their reported results instead of re-implementing them and test on
every datasets for fair comparison mostly.
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4.1 Scene 15 Dataset

We firstly try our method on the Scene 15 dataset. There are 4485 images of 15 classes
(bedroom, coast, forest, highway, industrial, insidecity, kitchen, living room, mountain,
office, opencountry, store, suburb and tallbuiding) in this dataset. Each class has 200 to
400 images. We follow the same experiment setup as Yang et al. [6] did and randomly
select 100 images per class for classifier training.

Then we evaluate the performance by using different distance measurements. For
fair comparison, we extract WSS descriptor proposed by Teng et al. [3] and use them
under the same framework with us. When, taking WSS, SD2 and SD1 into consideration,
as shown in Fig. 3, we can see that SD1 can achieve better performance than the other
two methods, and the distance measurement of euclidean is the best selection to get
amazing performance.

We also conduct experiments on different size of codebook to observe the effect for
classification on the Scene 15 dataset. As shown in Fig. 4, when the codebook size is
2048, we can achieve the best performance on Scene 15 dataset.
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Fig. 3. Performance under different distance measurements on Scene 15
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Fig. 4. Performance of codebook size on Scene 15
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Table 1. Image classification results on Scene 15

Methods Performance

KSPM [2] 81.40 ± 0.50

WSS + SPM [3] 81.51 ± 0.00

KCSPM [5] 76.70 ± 0.40

LSPM [6] 65.32 ± 1.02

ScSPM [6] 80.28 ± 0.93

LScSPM [7] 89.75 ± 0.50

NNScSPM [13] 81.92 ± 0.42

S3R [17] 83.72 ± 0.78

WSS + ScSPM 81.46 ± 0.00

SD2 + ScSPM 82.80 ± 0.00

SD1 + ScSPM 84.52 ± 0.01

Fig. 5. Example images from classes with classification accuracy comparison on Scene 15
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Finally, we give the performance of the proposed method and compare with methods
proposed by [2, 3, 5–7, 13, 17] in Table 1. As shown in Table 1, LScSPM can achieve
high performance on scene classification. The problem reason is that scene images
contain plentiful textures in each patch, which results in the unstableness for sparse
coding process. By adding Laplacian term, similar patches will be encoded into similar
codes, thus the image can be accurately represented [7]. Except LScSPM, we can see
that our method SD1 descriptor under SPM framework achieves comparable results.
Figure 5 shows some example images from Scene 15 dataset classes with classification
accuracy in brackets. The first number in the bracket is the accuracy obtained by using
SD1 descriptor under spatial pyramid matching framework, and the second number in
the bracket is the accuracy obtained by using the classic method proposed by Yang
et al. in [6].

4.2 Caltech 101 Dataset

The Caltech 101 dataset contains 8144 images falling in 101 classes including animals,
vehicles, flowers, etc., with significant variance in shape. The number of images per
class varies from 31 to 800. Most images are medium resolution, i.e. about 300 × 300
pixel. We follow the common experiment setup as Yang et al. [6] did and randomly
select 15 and 30 images per class for classifier training and use the rest images for testing.

On one hand, for fair comparison, as did on Scene 15 dataset, we conduct experi‐
ments to evaluate the performance of different distance measurements by taking WSS,
SD2 and SD1 into consideration under spatial pyramid matching framework. On the other
hand, we test the performance with different codebook sizes. We can see from Fig. 6,
the method of euclidean outperforms the others. When the codebook size is 2048, we
can achieve the best performance, as shown in Fig. 7.
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At last we give the performance of the proposed method and compare with other
methods described [2, 3, 5, 6] in Table 2. Figure 8 shows some typical images owning
the top 18th classification accuracy in brackets. The first number in the bracket is the
accuracy obtained by using SD1 descriptors under spatial pyramid matching framework,
the second one is the accuracy by using the method proposed by Yang et al. in [6]. From
Table 2 and Fig. 8, we can see our method outperforms the other related methods, mainly
due to the contribution of spatial difference descriptors.

Table 2. Image classification results on Caltech 101

Methods 15 training 30 training

KSPM [2] 56.40 ± 0.00 64.60 ± 0.80

WSS + SPM [3] - 67.57 ± 0.00

KCSPM [5] - 64.14 ± 0.18

LSPM [6] 67.00 ± 0.45 58.81 ± 1.51

ScSPM [6] 67.00 ± 0.45 73.20 ± 0.54

WSS + ScSPM 66.94 ± 0.01 73.39 ± 0.14

SD2 + ScSPM 67.60 ± 0.00 73.15 ± 0.01

SD1 + ScSPM 70.01 ± 0.00 74.26 ± 0.01
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Fig. 8. Example images from classes with the top 18th classification accuracy on the Caltech 101
when using SD1 descriptor under spatial pyramid matching framework

Table 3. Image classification results on Caltech 256

Methods 15 training 30 training 45 training 60 training

KCSPM [5] - 27.17 ± 0.46 - -

LSPM [6] 13.20 ± 0.62 15.45 ± 0.37 16.37 ± 0.47 16.57 ± 1.01

ScSPM [6] 27.73 ± 0.51 34.02 ± 0.35 37.46 ± 0.55 40.14 ± 0.91

LScSPM [7] 30.00 ± 0.14 35.74 ± 0.10 38.54 ± 0.36 40.43 ± 0.38

S3R [17] 37.85 ± 0.48 43.52 ± 0.44 46.86 ± 0.63 -

KSPM [18] - 34.10 ± 0.00 - -

WSS + ScSPM 30.98 ± 0.00 36.90 ± 0.00 39.79 ± 0.00 41.63 ± 0.00

SD2 + ScSPM 31.25 ± 0.00 36.84 ± 0.00 39.67 ± 0.00 41.63 ± 0.00

SD1 + ScSPM 31.60 ± 0.00 37.04 ± 0.00 40.25 ± 0.00 42.66 ± 0.00

4.3 Caltech 256 Dataset

The Caltech 256 dataset has 256 classes of 29,780 images. Each class contains at least
80 images. Compared with the Caltech 101 dataset, images within the Caltech 256
dataset are more larger intra-class variant. We test our method on 15, 30, 45 and 60
training images randomly chosen in per class respectively. As shown in Table 3, S3R
performs better than our method. This is because it combines the visual similarity and
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weak semantic similarity of the training images. Furthermore it is time-costing because
of learning extra classifier and space-consuming because of requiring more space for
extra sub-semantic feature. Except S3R, we can see that our approach outperforms all
the other related methods, mainly due to the addition of spatial descriptors under spatial
pyramid framework. Figure 9 shows some typical images owning the top 18th classifi‐
cation accuracy in brackets. The first number in the bracket is the accuracy obtained by
using SD1 descriptors under spatial pyramid matching framework, the second one is the
accuracy by using the method proposed by Yang et al. in [6].

Fig. 9. Example images from classes with the top 18th classification accuracy on the Caltech 256
dataset when using SD1 descriptors under spatial pyramid matching framework

5 Conclusion

This article focuses on boosting the performance of image classification with spatial
difference information. A novel descriptor named spatial difference is proposed to
describe the spatial information of differences. And this descriptor is mainly used in the
combination with histograms of bag-of-visual words model under spatial pyramid
matching framework, which can boost the final performance of image classification. The
experimental results on the three public image datasets of the Scene 15 dataset, the
Caltech 101 dataset and the Caltech 256 set demonstrate the effectiveness of the
proposed method.
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