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Abstract. Object proposal is utilized as a fundamental preprocessing
of various multimedia applications by detecting the candidate regions
of objects in images. In this paper, we propose a novel object pro-
posal method, named elastic edge boxes, integrating window scoring and
grouping strategies and utilizing both color and depth cues in RGB-D
images. We first efficiently generate the initial bounding boxes by edge
boxes, and then adjust them by grouping the super-pixels within elastic
range. In bounding boxes adjustment, the effectiveness of depth cue is
explored as well as color cue to handle complex scenes and provide accu-
rate box boundaries. To validate the performance, we construct a new
RGB-D image dataset for object proposal with the largest size and bal-
anced object number distribution. The experimental results show that
our method can effectively and efficiently generate the bounding boxes
with accurate locations and it outperforms the state-of-the-art methods
considering both accuracy and efficiency.
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1 Introduction

Object proposal aims to detect candidate regions possibly containing class-
independent objects in an image [1], which is widely used as a fundamental
of various multimedia applications, such as scene analysis [2], image annotation
[3] and retrieval [4], object recognition [5] and matching [6], visual tracking [7],
and social media mining [8].

Typically served as a preprocessing procedure, object proposal is usually
needed to satisfy the following requirements: First, object proposal should cover
all or most objects in images with a limited number of candidate regions. In this
way, the candidate regions can provide a majority of image content and reduce
the further processing cost. Second, the candidate regions, usually bounding
boxes, should accurately cover the objects. As shown in [9], improving intersec-
tion over union (IoU) of candidate regions and objects is as important as increas-
ing recall of objects in several applications, such as object detection. Finally, the
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processing of object proposal should be efficient, which will benefit its usage in
realtime or large-scale applications.

The existing methods address object proposal problem with two typical
strategies: window scoring and grouping [9]. The methods using window scor-
ing strategy typically score quantities of candidate bounding boxes according
to some features which measure the likelihood of a box containing an object.
They usually have high efficiency but fail to detect most of objects under high
IoU. And the methods using grouping strategy generally initialize a number of
segments and then merge the similar segments to produce final results. They
can obtain the accurate bounding boxes especially under high IoU, but they are
usually time consuming.

Generally speaking, the current object proposal methods suffer two problems.
In one aspect, both window scoring strategy and grouping strategy have their
drawbacks either in accuracy or efficiency, which limits their usage in many
applications. An interesting idea is to combine these two strategies together
to obtain both high accuracy and efficiency, but the related research is still in
embryonic stage [10]. In the other aspect, depth information has been proved to
be effective in discriminating objects from complex scenes [11], but most current
methods merely focus on color cue and ignore depth in object proposal.

In this paper, we propose a novel object proposal method, named elastic edge
boxes, by integrating window scoring and grouping strategies and exploring both
color and depth cues in RGB-D images. Figure 1 shows an overview of the pro-
posed method. To each RGB-D image (Fig. 1(a)), we first utilize window scoring
strategy to identify the potential object locations with boxes according to edge cue
(Fig. 1(b)). Then, we represent the RGB-D image with super-pixels and select the
undetermined super-pixels for each box (Fig. 1(c)). Finally, we adjust the bound-
ary of each box by applying grouping strategy on the undetermined super-pixels

(a)

(b) (c)

(d)(e)

Fig. 1. An overview of the proposed method. (a) RGB-D image. (b) Initial bounding
boxes (orange boxes) by window scoring strategy and ground truths (red boxes). (c)
Super-pixel representation. (d) Box boundary adjustment by grouping strategy. (e)
Final bounding boxes (green and orange boxes) and ground truths (red boxes) (Color
figure online).
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(Fig. 1(d)) and generate the final object proposal result (Fig. 1(e)). To the best
of our knowledge, it is the first object proposal method integrating window scor-
ing and grouping strategies for RGB-D images. To validate the performance of
the proposed method, we construct an RGB-D image dataset, named NJU1500,
on the base of stereo objectness dataset. The experiments show that our method
can generate the bounding boxes with accurate locations under both low and high
accuracy, and it outperforms the existing methods considering both accuracy and
efficiency.

Our major contribution can be summarized as:

– We propose a novel object proposal method for RGB-D images, which can
obviously improve the recall of objects with high IoU boxes.

– We provide a new RGB-D image dataset for object proposal, which can be
used as a benchmark for the future research.

The rest of the paper is organized as follows. Section 2 provides a brief review
of the related work. Section 3 describes the details of the proposed method.
Section 4 shows the performance evaluation of the proposed method. Finally,
the paper is concluded in Sect. 5.

2 Related Work

The strategies of the existing object proposal methods can be roughly classified
into three categories: window scoring, grouping and integration of them.

Window Scoring. Window scoring based methods generate a pool of candi-
date windows and score the windows by their probabilities of containing an
object with objectness measurements. Alexe et al. [1] first propose an objectness
measurement based on a variety of appearance and geometry properties. Cheng
et al. [12] utilize binarized normed gradient by training a linear classifier over
edge features. Zitnick et al. [13] use edge cue to guide window refinement, which
can be specially optimized for different IoU thresholds. Xu et al. [11] explore the
effectiveness of depth cue in handling complex scenes. Overall, window scoring
based methods can efficiently generate the bounding boxes as proposal results,
but their performance under high IoU is usually limited.

Grouping. Grouping based methods over-segment the images into tiny parts,
such as super-pixels, and merge the segments to generate the candidates of
objects. Carreira et al. [14] use constrained parametric mincuts in merging by
several different seeds and multiple features, and Humayun et al. [15] improve
it by applying multiple graph cut segmentations and using edge detectors.
Uijlings et al. [16] propose selective search method to merge super-pixels greedily.
Rantalankila et al. [17] propose a similar merging strategy with different features
in similarity measurement. Xiao et al. [18] extend selective search by specializing
merging in high-complexity scenarios, and Wang et al. [19] improve it with multi-
branch hierarchical segmentation. Manen et al. [20] use randomised super-pixel
connectivity graph during merging. Long et al. [21] utilize bottom-up merging
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to generate initial object candidates, and train a supervised descent model to
greedily adjust the boxes. Arbelaez et al. [22] perform hierarchical segmentation
and multiscale combinatorial grouping. Krähenbühl et al. [23] judiciously place
object-like seeds and identify critical level sets in geodesic distance transforms as
object proposal results. Overall, grouping based methods can generate accurate
bounding boxes as well as object boundaries, especially under high IoU, but they
are usually inefficient due to bottom-up merging.

Integration of Window Scoring and Grouping. It is interesting to inte-
grate window scoring and grouping strategies together, for example, utilizing
the object proposal result by window scoring strategy as the input of further
grouping. Chen et al. [10] first apply this strategy in object proposal to achieve
accurate bounding boxes while retaining high efficiency, but their method only
focuses on RGB images and completely ignores depth cue.

3 Elastic Edge Boxes

3.1 Initial Bounding Boxes Generation

We first generate the initial bounding boxes by window scoring strategy. In
the proposed approach, we utilize edge boxes method [13], which can efficiently
detect the approximate locations of most objects by exploiting edge cue.

Edge boxes first generate candidate objects utilizing sliding window app-
roach, and then scoring the boxes according to the number of contours com-
pletely inside each box which is highly indicative of the possibility of the box
including an object. Score of box bk is defined using:

score(bk) =
∑

i ρk(ei)m̂i

2(wk + hk)η
−

∑
p∈bct mp

2(wct
k + hct

k )η
, (1)

where wk and hk are width and height of the box bk; bct
k is a box centered in

bk with size wct
k × hct

k which equal wk/2 and hk/2 respectively; η = 1.5 is a
parameter to offset the bias of larger windows generally containing more edges;
mp represents the edge magnitude of each pixel and m̂i is obtained by summing
up edge magnitude of each pixel in the ith edge group ei enclosed by box bk; ρk

equals zero if ei overlaps bk’s boundaries. Finally, non-maximal suppression is
performed for the boxes to decrease the candidate number.

Though its performance under high IoU is not satisfactory, edge boxes can
achieve high recall under low IoU. It means that edge boxes can detect the
approximate location of objects but cannot provide bounding boxes with high
accuracy. Hence, we adjust the initial bounding boxes to provide more accurate
object proposal results.

3.2 Elastic Range Determination

Based on the initial object proposal result, we further determine the elastic
range for each bounding box. Obviously, too small elastic range will limit the
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adjustment and prevent from providing accurate bounding boxes, while too large
elastic range may cause high computational cost and reduce the effect of initial
proposal results. We represent images with super-pixels and utilize super-pixel
as the basic operation unit in bounding boxes adjustment because super-pixel
can well describe object boundaries, increase the robustness to depth map inac-
curacy, and reduce the computational cost.

We represent an image as a set of super-pixels S = {s1, . . . , sN} which are
generated by [24]. Given an initial bounding box bk, we define Sbk

in as a set of
super-pixels which are completely inside bk (cyan ones in Fig. 2(c)), Sbk

out as a
set of super-pixels which are completely outside bk, and Sbk

e as a set of the rest
super-pixels which are crossed by bk (yellow ones in Fig. 2(c)). In our method,
Sbk

e is used as elastic range.
For the number of super-pixels in Sbk

in and Sbk
out are usually unbalanced, we

select a subset Ŝbk
out of Sbk

out (blue ones in Fig. 2(c)) to avoid bias in bounding
box adjustment. We sort the super-pixels in Sbk

out in ascending order according
to their weights of minimum center distances to the super-pixels Sbk

in . To each
super-pixel si in Sbk

out, its weight is calculated as:

ω(si) = arg min
sj∈S

bk
in

(
dis(si, sj)

)
, (2)

where dis(, ) denotes the distance between the centers of two super-pixels.
Then we select the super-pixels in Ŝbk

out according to their weights, and the
number of selected super-pixels is required similar to the number of super-pixels
in Sbk

in :
1
λ

| Sbi
in |≤| Ŝbi

out |≤ λ | Sbi
in | (3)

where λ is the parameter which equals to 1.25 in our experiments.

3.3 Bounding Box Adjustment

As shown in Fig. 2(d), to each super-pixel in elastic range Sbk
e , we calculate its

similarities to all the super-pixels in Sbk
in and Ŝbk

out, and determine whether it
should be included in the bounding box. Here, we utilize both color channel and
depth channel of an RGB-D image, and define four decision parameters ϕc

in, ϕd
in,

ϕc
out and ϕd

out as follows:

ϕc
in =

∑

sj∈S
bk
in

simc(si, sj), ϕd
in =

∑

sj∈S
bk
in

simd(si, sj), (4)

ϕc
out =

∑

sl∈Ŝ
bk
out

simc(si, sl), ϕd
out =

∑

sl∈Ŝ
bk
out

simd(si, sl), (5)

where simc(, ) denotes the average color similarity of two super-pixels in HSV
space, and simd(, ) denotes the depth similarity of two super-pixels.
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Fig. 2. Bounding box adjustment. (a) and (b) Color and depth channels of RGB-D
image with ground truth (red box) and initial bounding box (orange box). (c) Elastic
range (yellow super-pixels). (d) Details of decision in bounding box adjustment. (e)
Adjusted bounding box (green box). (f) Final bounding boxes (green and orange boxes)
and ground truth (red box) (Color figure online).

Based on the four parameters, we extend Sbk
in by adding the super-pixels

satisfying the following requirements:

Sbk
in

∗
= Sbk

in ∪ {
si ∈ Sbi

e | ϕc
in > ϕc

out and ϕd
in > ϕd

out

}
.

Based on the extended super-pixel set Sbk
in

∗
, we generate a new bounding box

b̃i (green box in Fig. 2(e)). By adjusting each bounding box, we can obtain the
final object proposal result as follows:

B∗ = B ∪ {
b̃i | ∀bi ∈ B and bi �= b̃i

}
, (6)

where B is the initial object proposal result.

4 Experiments

4.1 Dataset Construction

To validate the performance of our method, we construct a new RGB-D image
dataset, named NJU1500, by extending the stereo objectness dataset [11].
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Stereo objectness dataset provided in [11] is an RGB-D image dataset includ-
ing 1,032 stereo images. As far as we know, it is the only RGB-D image dataset
for object proposal. However, with the analysis of stereo objectness dataset, we
find that it has some obvious drawbacks. We divide the images in stereo object-
ness dataset into six groups according to their object numbers, including 1, 2, 3,
4, 5, and 5+ (more than five), and the image numbers of the groups are 90, 417,
251, 133, 66, 75, respectively. It is easy to find that the distribution of object
number among images is not balanced, which may lead to the bias in evaluation.
Moreover, the numbers of objects contained in nearly half of the images are no
more than 2, and the average number of objects per image is only 2.98, which
makes object proposal task on it less challenging.

To overcome the drawbacks of stereo objectness dataset, we construct a new
RGB-D image dataset named NJU1500 based on it. To keep the balance of
object number distribution among images and increase the average number of
objects per image, we remove all the images with one object and a part of images
with two objects, and supplement the images containing more than two objects.
The selection of images with two objects only depends on their identifier in
stereo objectness dataset, and the images of large identifiers are removed. 825
images are retained from the 1,032 images of stereo objectness dataset, and 675
images are supplemented. The supplemented images are collected from several
3D movies and videos, and the depth maps are calculated with Sun’s optical flow
method [25]. Similar to stereo objectness dataset construction, we annotate the
ground truths of object locations according to PASCAL VOC2007 annotation
guidelines. Five participants, including three males and two females, are invited
to annotate the object bounding boxes for each supplementary image. The final
constructed dataset includes five groups with 300 images per group, and the
average number of objects per image increases from 2.98 to 4.22.

4.2 Performance Evaluation

We validate the performance of our method on NJU1500 dataset. All the exper-
iments are carried out on a computer with Intel i5 2.8 GHz CPU and 8 GB
memory.

Figure 3 shows some examples of object proposal results generated by our
method. The best bounding boxes to each ground truth within top 1,500 of
each image are marked with green bounding boxes, and the IoU values of the
bounding boxes to their corresponding ground truths are indicated with yellow
numbers. We can find that almost all the objects are detected by our method
with high IoU values, including obscure objects (such as the sword in the fourth
image of the first row), small objects (such as the blue and red dustbins in the
fifth image of the second row) and occluded objects (such as Papa Smurf in the
third image of the third row).

We compare our method with the state-of-the-art methods, including bina-
rized normed gradients (BING) [12], edge boxes (EB) [13], objectness (OBJ) [1],
geodesic object proposal (GOP) [23], multiscale combinatorial grouping (MCG)
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Fig. 3. Examples of object proposal results generated by our method (Color figure
online).

[22], and selective search (SS) [25]. These methods of window scoring strat-
egy or grouping strategy have excellent performance in object proposal [9]. In
addition, we compare our method with two latest and somewhat similar meth-
ods, adaptive integration of depth and color (AIDC) [11] and multi-thresholding
straddling expansion of edge boxes (M-EB) [10]. The former is also proposed
for object proposal on RGB-D images, and the latter also utilizes integration
proposal strategy for RGB images.

Accuracy. We validate the proposal accuracy with three criteria. Figure 4(a)
and (b) show the recall vs. proposal number curves of all the methods when
IoU equals 0.5 and 0.8, respectively. We can find that our method has similar
proposal accuracy to the existing best methods when IoU equals 0.5, and it
outperforms all the methods when IoU equals 0.8. It means that our method can
handle object proposal requirements under both low and high IoU. Figure 4(c)
shows the average recall (AR) vs. proposal number curve [9]. It is found that our
method outperforms all the other methods except MCG, which is more than 10
times slower than our method as shown in Table 2. Figure 4(d) shows the recall
vs. IoU curve. We can find that our method outperform the other methods when
IoU is in range of [0.5, 0.8] and it is only worse than GOP, MCG and SS when
IoU is larger than 0.8. However, all these three methods use grouping strategy
and have low efficiency.

Table 1 provides more details of comparison results, in which “prop” denotes
the proposal number, “0.5-DR” and “0.8-DR” denote the recall when IoU equals
0.5 and 0.8, and “AR” denotes average recall. It shows that our method is only
slightly worse than EB in average recall when proposal number equals 500 but
it has the best recall and average recall with different proposal numbers under
all the other conditions.
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Fig. 4. Comparison of our method with the state-of-the-art methods. (a) and (b) Recall
vs. proposal number curves when IoU equals 0.5 and 0.8. (c) Average recall vs. proposal
number curve. (d) Recall vs. IoU curve with 1,500 bounding boxes.

Table 1. Comparison of our method and the state-of-the-art methods with different
proposal numbers.

Method Type #prop=500 #prop=1000 #prop=1500

0.5-DR 0.8-DR AR 0.5-DR 0.8-DR AR 0.5-DR 0.8-DR AR

AIDC scoring 0.82 0.05 0.24 0.89 0.05 0.26 0.91 0.06 0.27

BING scoring 0.85 0.05 0.24 0.90 0.05 0.26 0.92 0.05 0.27

EB scoring 0.92 0.51 0.55 0.96 0.55 0.59 0.98 0.57 0.60

OBJ scoring 0.90 0.08 0.32 0.92 0.08 0.34 0.93 0.08 0.34

GOP grouping 0.83 0.30 0.43 0.91 0.41 0.51 0.93 0.46 0.54

MCG grouping 0.92 0.50 0.54 0.95 0.57 0.59 0.97 0.60 0.61

SS grouping 0.90 0.41 0.49 0.95 0.50 0.56 0.96 0.54 0.59

M-EB integration 0.91 0.43 0.50 0.96 0.53 0.57 0.97 0.57 0.60

Ours integration 0.92 0.53 0.54 0.96 0.60 0.59 0.98 0.62 0.61
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Fig. 5. Examples of object proposal results with different methods. (a) Original image
with ground truth. (b)-(j) Object proposal results of AIDC [11], BING [12], EB [13],
OBJ [1], GOP [23], MCG [22], SS, M-EB [10] and our method (Color figure online).

Figure 5 shows some examples of object proposal results generated by differ-
ent methods. In the examples, red boxes indicate the ground truths, green boxes
indicate the bounding boxes generated by different methods, and blue boxes
indicate the missed ground truths when IoU equals 0.8. Though the structure
of some images is complex and some objects are inconspicuous, our method can
detect almost all the objects with high IoU.

Speed. We also compare the efficiency of all the methods. Table 2 presents the
running time of all methods. Though some methods require much less time than
other methods processing an image, such as BING and AIDC, they are obviously
worse than our method in proposal accuracy (Fig. 4). The three methods, which
have better proposal accuracy than our method when IoU is larger than 0.8, are
obviously worse than our method in efficiency. The most efficient method among
them, that is SS, is about 10 % slower than our method, and MCG is even 10
times slower than our method.
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Table 2. Comparison of our method and the state-of-the-art methods in running time.

Method Type Language Time (s)

AIDC window C++ 0.07

BING window C++ 0.06

EB window C++ & Matlab 0.69

OBJ window C++ & Matlab 4.13

GOP grouping C++ & Matlab 7.25

MCG grouping C++ & Matlab 60.12

SS grouping C++ & Matlab 6.39

M-EB integration C++ & Matlab 0.99

Ours integration C++ & Matlab 5.78

5 Conclusions

In this paper, we propose an object proposal method for RGB-D images by
integrating window scoring and grouping strategies. The method generates the
initial bounding boxes by an efficient edge-based window scoring method, and
adjusts the bounding boxes by grouping the super-pixels in elastic range, which
improves proposal accuracy while retaining high efficiency. Moreover, the effec-
tiveness of depth cue is explored as well as color cue, which benefits to handle
the images with complex scenes. The experiments show that our method can
effectively and efficiently generate the bounding boxes with high IoU, and it
outperforms state-of-the-art object proposal methods considering both accuracy
and efficiency.
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