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Abstract. Mining crime reports in real-time is useful in improving the
response time of law enforcement authorities in addressing crime. How-
ever, limitations on computational processing power and in-house mining
expertise make this challenging, particularly so for law enforcement agen-
cies in technology constrained environments. Outsourcing crime data
mining offers a cost-effective alternative strategy. Yet outsourcing crime
data raises the issue of user privacy. Therefore encouraging user par-
ticipation in crime reporting schemes is conditional on providing strong
guarantees of personal data protection. Cryptographic approaches make
for time consuming query result generation, so the preferred approach is
to anonymize the data. Mining real-time crime data as opposed to sta-
tic data facilitates fast intervention. To achieve this goal, Sakpere and
Kayem presented a preliminary solution based on the notion of buffer-
ing. Buffering improves on information loss significantly in comparison
with previous solutions. In this paper, we extend the Sakpere and Kayem
result to support user privacy expressions. We achieve this by integrat-
ing a three-tiered user-defined privacy preference model in data stream
process. The three-tiered model offers a simple and generic approach to
classifying the data without impacting negatively on information loss.
Results from our proof-of-concept implementation indicate that incorpo-
rating user privacy preferences reduces the rate of information loss due
to misclassification.

Keywords: Data anonymity · Streaming data · Crime reporting · Infor-
mation loss

1 Introduction

Law enforcement agencies in resource constrained environments.1 generally lack
the “on-the-ground” expertise and resources required to mine crime big data
streams. A cost-effective solution is to transfer the task of mining the crime data
streams to a third party data miner/analyst. Mining crime reports in real-time
as opposed to in static form can be helpful in providing fast interventions in
addressing crime. A further advantage is predictions of future crime or disaster
occurrences to track the criminals or suspects in a relatively short period.
1 These are environments that are characterized by low computational and processing

resources. Examples emerge in disaster scenarios and remote areas.
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1.1 Motivation and Problem Statement

Applying k-anonymity on data streams faces three drawbacks in relation to mini-
mizing delay and incorporating user’s privacy preferences during anonymization.

Firstly, existing data stream anonymization algorithms do not take user pri-
vacy preferences into consideration. K-anonymity uses the same privacy level
(i.e. k-value) for all individuals in the data set. The use of the same privacy
level for all users is unrealistic in real-life because individuals tend to have vary-
ing privacy protection requirements [12,13]. Furthermore, the use of the same
privacy preference level for all users implies that individual privacy needs are
misrepresented.

Secondly, existing data stream anonymization algorithms apply a delay con-
straint on each tuple in the buffered stream [5,6,14]. Buffering incurs high infor-
mation loss levels in terms of delay in cases of intermittent streaming data flows.
This is because anonymization is typically triggered on the basis of the number
of records (tuples) in the buffer as opposed to the time-sensitivity of the data.

Thirdly, anonymization of intermittent or slow data streams results in high
information loss or suppression as is the case in the crime reporting scenario.
However, the focus of many of the existing data stream anonymization algorithms
is on fast data streams and as a result overlooking the rate at which data arrives
in the stream when determining an optimal buffer size. The buffer size and rate
of arrival of the streaming crime data affects information loss with respect to
delay and the levels of privacy offered by the anonymization scheme.

1.2 Contribution

In this paper, we offer two contributions. Firstly, we propose an approach to min-
imizing delay while a record waits to be anonymize in the buffer. Secondly, we
augment our streaming data anonymization scheme by supporting anonymiza-
tion of data stream with user-defined privacy preferences.

In order to minimize delay, we model our buffer as a time-based tumbling
sliding window that is constrained by delay as opposed to record count as it is
the case in other solutions because of the time-sensitive nature of crime data.
Afterwards, we develop a solution to adaptively re-adjust the size of sliding
window based on an arrival rate of data that follows a Poisson process.

In order to ensure that privacy controls are enforced in a balanced way i.e.
there is no excessive privacy control or insufficient privacy measure, we supported
our adaptive buffer resizing scheme with three-tiered user-defined privacy pref-
erence (low, neutral (medium) and high) model. In order to see how this can be
integrated in real-life, we carried out a survey in a campus setting in a technology
resource constrained environment. We modeled and analyzed the data gathered
from our survey using association rules in order to automatically deduce features
that determine a user’s privacy preference in an automated way. Lastly, we came
up with an appropriate k-value to be used for a user’s anonymization when there
is insufficient or excessive privacy enforcement in comparison to the user’s need.
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Firstly, we carried out a real-life survey in our do main of interest (crime data)
in order to determine if the usage and integration of three-tiered user-privacy
into k-anonymity is practicable in real-life. Secondly, we came up with association
rules in order to determine factors that influence users privacy preference. As a
further step, we integrated the association rules into the k-anonymity technique
in order to further aid determination of an appropriate k-value to be used for
anonymization process.

1.3 Outline

The rest of the paper is structured as follows. In Sect. 2, we present related work
highlighting the weaknesses of existing data stream anonymization and user-
defined privacy preferences. Section 3, presents a review of our previous work that
addressed the buffering problem and we further improve on how to incorporate
user privacy preferences. In Sect. 4, we present results from our proof-of-concept
implementation and conclude in Sect. 5.

2 Related Work

Sakpere and Kayem [8], presented an adaptive buffer resizing scheme to minimize
information loss (delay) during streaming data anonymization was proposed.
The buffer is modeled as a time-based sliding window whose size is dynami-
cally re-adjusted based on an arrival rate of data that follows a Poisson process.
Information loss in terms of numbers of data records is minimized by selectively
suppress data records from a sliding window. Depending on the time sensitivity,
such suppressed records are either included in a subsequent sliding window or
inserted into a reusable anonymity cluster. Results from our prototype implemen-
tation demonstrate that our proposed scheme is privacy preserving and incurs
an information loss in terms of delayed records of 1.95 % in comparison to other
schemes that incur a 12.7 % rate. However, Sakpere and Kayem’s, as well as pre-
vious solutions do not consider user privacy preferences during anonymization
of streaming data which has the drawback of offering insufficient or excessive
protection with respect to user needs.

To address the issue of incorporating user’s personal privacy preferences into
k-anonymity, Aggrawal and Yu [11], Gedik and Liu [13] allow a user to select an
integer, i, (where 1 �i � n) to indicate his/her preferred k-value. A drawback
of this is that it might be difficult for users to set a realistic k-value in real-life
especially in a Crime Reporting System where users might be under shock. Also,
setting a realistic k-value implies that users must understand how k-anonymity
works.

An equally novel approach in achieving personalized anonymization using
the concept of k-anonymity is the work of Xiao and Yufei [12]. In their work, a
user is required to specify the degree of privacy protection for his/her sensitive
values. Their solution assumes that each sensitive attribute has a classification
tree and each record owner specifies a guarding node in the tree. Guarding nodes
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depend on user personal privacy preferences and indicate how users want their
sensitive values to be represented. A major drawback of their approach is that
a guarding node requires that a hierarchy-tree be defined on sensitive attribute.
Another major drawback is that in real-life, it is unclear how individual record
owners would set their guarding node [11].

We therefore note that the issue of incorporating user privacy preferences
to cope with anonymization of streaming data in a manner that is usable in
real-life is yet to be studied. This study is necessary in order to generate reliable
anonymized reported crime data that meets users need.

3 User-Defined Privacy Preference in Adaptive Buffer
Re-sizing Scheme

In this section we present the integration of user-defined privacy preferences into
the adaptive buffer resizing scheme. However, we will like to briefly recap how
we adaptively reduce buffer size in our previous work [8].

3.1 Adaptive Buffer Resizing Scheme

As mentioned in our introduction section, the buffer size and rate of arrival of
the streaming crime data impacts on the accuracy in terms of minimizing infor-
mation loss and reliability in terms of privacy enforcement of the anonymization
scheme. In order to minimize the percentage of information loss (in terms of
delay) during the streaming data anonymization process, we use a time-based
tumbling sliding window to adjust the size of the buffer dynamically with respect
to the arrival rate of the data.

As illustrated in Fig. 1, a “sliding window” or “buffer”, swi, is a subset of
the data stream, DS where DS = {sw1, sw2, sw3,..., swm} implies that the data
stream consists of m sliding windows. The sliding windows obey a total ordering
such that for i < j, swj precedes swi. Each sliding window, swi only exists
for a specific period of time T and consists of a finite and varying number of
records, n.

3.2 Streaming Data as a Poisson Process

We model the flow rate of the data stream as a Poisson process because the
arrival rate of data in the stream can be viewed as a series of events occurring
within a fixed time interval and with a known average rate that is independent
of the time of occurrence of the last event [10]. The Poisson distribution is a
discrete probability distribution that measures the probability of having a given
number of records occurring in the stream within a fixed time and/or space
interval provided that these records arrive are each with a known average rate
and are each independent of the last event occurrence. So, this occurrence is a
good distribution for estimating streaming data reporting rates. In the Poisson
distribution, only one parameter needs to be known, namely rate at which the
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Fig. 1. Overview of buffer resizing process.

events occur which in our scenario would be the rate at which crime reporting
occurs.

Considering that the data stream, DS follows a Poisson process with an
arrival rate of events λ > 0, then we can say that for a sliding window swi the
probability mass function is given by:

f (swi, λ) = Pr (DS = swi) =
λswie−λ

swi!
(1)

where e is the base of the natural logarithm (i.e. e = 2.71828) and swi is the size
of the ith sliding window under evaluation for anonymization.

3.3 Buffer Sizing

Our adaptive buffer re-sizing scheme relies on a streaming data flow rate that
obeys the Poisson distribution model described above and works as follows. First
we begin by setting the size of the buffer to an initial preset threshold value.
Given the time-sensitivity of the data, we use a time value, T that is bounded
between tl and tu. When the time threshold, T , is attained, the k-anonymization
algorithm is applied to the data that was collected during this period. All records
that are not anonymizable in the current data set are suppressed and based
on the closeness of the suppressed records to their expiry deadlines, we either
include the records in the next sliding window or incorporate the records into any
of existing reusable clusters that has the smallest distance from the record(s).

In order to decide whether to include a suppressed record in the next sliding
window swi+1, we first compute the average remaining time that the suppressed
records have left before they expire. We denote this time as TE and obtain a
value for TE by subtracting the average time for which the records have been
stored in the buffer from the size of the current sliding window swi. Next, in order
to determine the minimum number of records needed to minimize information
loss from expired records in the data stream that will compose the next sliding
window swi+1, we first compute an estimated time-bound for swi+1! by adding
TE to the time TA that was used to anonymize the data in swi. We then compute
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the minimum number of records required adding TE to TA and incorporating
the value into Eq. 1 to obtain an expected data stream flow rate λi+1 as follows:

f (swi+1, λi+1) = Pr (DS = swi+1) =
λswi+1e−λ

swi+1!
(2)

where swi+1 = TE + TA. From the values of λi+1 and (TE + TA) respectively
we can easily obtain a value for the minimum number of records n needed for
swi+1.

We must now decide what to do with the suppressed records. As mentioned
before, we can either include a suppressed record in the new sliding window
swi+1 or based on its distance include the record in a reusable cluster of existing
anoymized data. In the first case, for each suppressed record, we compare the
remaining time TR that the record has before it expires. We do this as follows,
if TR ≥ TE + TA then the affected suppressed record gets included in swi+1.
Otherwise, if TR < TE + TA then the record concerned gets incorporated into
an appropriate reusable cluster.

Finally, in order to decide which reusable cluster to include a suppressed
record in, we choose the reusable cluster that has the least distance from the
suppressed record. When only one reusable cluster exists, we simply add the
suppressed value to the cluster. If we have several clusters to select from the one
with the lowest distance is chosen. Lastly, when anonymization is not possible
and there is no existing reusable cluster into which the suppressed records can
be included we create a new reusable cluster.

From the discussion in this section, our framework for the Buffer Re-sizing
anonymization of data streams can be summarized as follows [8]:

Algorithm 1. SWET (i,K ).

1: for each sliding window swi, i :1 ...m do
2: if ((swi == 1)||(SuppRec == φ)) then
3: swiExistT ime ← T
4: else
5: swiExistTime ← RSWET (TR, TA, i, SuppRec)

6: end if
7: TA ← Anonymization Processing Time
8: SuppRec ← Suppressed Records
9: TR ← Remaining Time of Suppressed Records

10: Update Reusable Cluster (RC)
11: end for

3.4 Integration of User-Defined Privacy Preference into Adaptive
Buffer-Resizing

As earlier stated in our introduction that the use of k-anonymity for data stream-
ing anonymization uses a generic approach to enforce privacy preservation for all
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Algorithm 2 . RSWET(TR, TA, i, SuppRec).

1: Sort: Sort TR in ascending order and group by unanonymizable cluster
2: for j:1 ...|SuppRec| do
3: if TRj - TA < Tl then
4: Anonymize SuppRecj using RC
5: Delete SuppRecj
6: else
7: Calculate arrival rate, λ, of SuppRecj in the sliding window, swi

8: Find the Probability, P, of successful anonymization in swi

9: end if
10: if P or λ > δ then
11: ExistT imei ← TRj − TA

12: Add SuppRec to swi

13: break
14: else
15: anonymize SuppRecj using RC
16: delete SuppRecj from SuppRec
17: end if
18: end for
19: if P or λ for all suppressed records < δ then
20: ExistT imei ← T
21: end if
22: return ExistTimei

users without catering for their concrete needs. The consequence of this is that
insufficient protection might be provided to a subset of people while excessive
privacy control is provided to another subset. In order to ensure a user’s data
protection meets her need we attempted to support data stream anonymization
with user’s privacy preference.

Existing literature [7] on personalized-privacy shows that in real-life, users
view their privacy preferences as either High, Intermediate and Low. A high
privacy level indicates an extreme privacy consciousness whereas a low privacy
level depicts a lower privacy consciousness. Therefore, neutral privacy level is
intermediate. We also carried out a real-life survey on personalized-privacy and
result shows that in real-life, users find it easy to recognize their privacy set-
ting if given three-preferences. The user study approach was used for the survey
through questionnaire and interview. All the collected survey data comprised
of 26 subjects and eight categorical variables: Sex, Age group, Present educa-
tion level/Occupation, Highest education qualification (HEQ), Victim of crime,
Crime experienced, Preferred privacy level (PPL) and Reason for choice of pri-
vacy (RCP). Figure 2 shows a summary of the data obtained during our analysis.

We integrate our three-tier level privacy preference into k-anonymity in the
adaptive buffer resizing scheme by starting data streaming anonymization with
k-anonymity principle/scheme. K-anonymization schemes classify records into
different buckets such that each record in a bucket is indistinguishable from at
least k-1 records [2].
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Fig. 2. Histogram illustrating the distribution of subjects over the different categories
of variables surveyed in the primary study of privacy level preference.

Our basis for starting anonymization with the principles of k-anonymity
schemes is because according to Sweeney, an optimal privacy is reached if a
subset contains at least k data set [1,2]. However, it is still possible that a sub-
set can contain records greater than or lesser than k. If a subset is lesser than k,
then records in such subsets are not sufficiently protected and if a subset contains
greater than k records then excessive privacy control is enforced. Therefore, the
integration of user-defined privacy preference into adaptive buffer resizing during
k-anonymization is to ensure that no subset contains lesser than or greater than
k-records.

To address the shortcomings of a generic privacy enforcement in k-anonymity,
we define three different levels of protection for users and incorporate them into
adaptive buffer resizing scheme.

We begin by starting anonymization of all tuples using the principles of k-
anonymity. Next, we search for subsets that contain lesser than k-records and
attempt to anonymize records in the subset using user-defined privacy prefer-
ence. For example, if a user’s privacy preference is medium and his/her record
is in a subset that contains lesser than k records, then we attempt to use a
mid k-value to carry out anonymization for such records. Finally, we Search for
subsets that contain greater than k-records and attempt to anonymize records in
the subset using user-defined privacy preference. For example, if a user’s privacy
preference is low and his/her record is in a subset that contains greater than
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k records, then we attempt to use a low k-value (obtained by simply removing
every explicit identifier) to carry out anonymization for such records.

4 Implementation and Results

We divide this section into two. The first section focuses results on minimizing
delay before anonymization while the second section addresses privacy preserva-
tion guided by user requirements. Both experiments were performed on an Intel
Core i5-3210 2.50Ghz computer with 4GB of physical memory. The operating
system used was Ubuntu 12.10.

4.1 Buffering

The proposed adaptive buffering framework was implemented by extending the
existing CSE 4672 k-anonymization implementation. To depict streaming data,
we used the file input stream functions in java, that reads data in real-time from
an external source/excel file into sliding window. MySQL database storage was
used to depict our sliding window. We assume that only a single data is read
from the external file into the buffer at each instant in time.

We synthetically generated a realistic crime data set that follows the structure
of the Cry-Help App using a random generator software3. The CryHelp App is
a simple crime reporting application developed for mobile phones running the
Android Operating System. Figure 3 shows some screenshots from the CryHelp
App. The app was developed in conjunction with the University of Cape Town
Campus Protection Service (CPS). The app enables users to send crime reports4.

As a baseline case, for evaluating our proposed adaptive buffering scheme we
implemented the proactive-FAANST and passive-FAANST. These algorithms
are a good comparison benchmark because they are the current state-of-the-
art streaming data anonymization that reduce information loss with minimum
delay [14]. The proactive-FAANST decides if an unanonymizable record will
expire if included in the next sliding window while passive-FAANST searches for
unanonymizable records that have expired. A major drawback of these two vari-
ants is that there is no way of deciding whether or not unanonymizable records
would be anonymizable during the next sliding window. In our experiment, the
proactive-FAANST and passive-FAANST solutions also use the reusable cluster
concept as well but do not allow for overlapping of sliding windows, which our
implementation does, nor do they model the flow rate of reported crime data as
a Poisson process.

Our experiments were conducted to measure the following:

1. Information loss in terms of delay
2 http://code.google.com/p/cse467phase3/source%20/browse/trunk/src/Samarati.

java?r=64.
3 http://www.mockaroo.com.
4 Further details about the app can be found in http://cryhelp.cs.uct.ac.za/download.

http://code.google.com/p/cse467phase3/source%20/browse/trunk/src/Samarati.java?r=64
http://code.google.com/p/cse467phase3/source%20/browse/trunk/src/Samarati.java?r=64
http://www.mockaroo.com
http://cryhelp.cs.uct.ac.za/download
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Fig. 3. Screenshots from CryHelp app.

2. Information gain obtained from modelling the flow rate of the data as a
Poisson process

Effect of Privacy Levels (k-anonymity value) on Information Loss
(delay).

As a heuristic, the choice of k >= 2 and tl = 2000 ms and tu = 5000 ms, is
guided by values that are used in published experimentation results [14]. Figure 4
shows the effect of k-anonymity level on information loss with respect to delay
(the number of expired records).

The main goal of our adaptive buffering solution is to reduce information
loss (delay) (i.e. to lower the number of expired tuples). Figure 4 depicts that

Fig. 4. Performance comparison: information loss with respect to privacy levels
(expressed by the K-value).
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our solution is successful in achieving its main goal and the information loss
(delay) in our solution is lower than passive and proactive solutions. In order to
determine the total number of records that expired, a simple query was executed
to retrieve all records that have stayed in the buffer longer than the upper limit
threshold, tu. To get the average expired records, we sum up the expired records
in all the experiments and divide by the total number of experiments.

Figure 4 shows the effect of the sliding window and k-anonymity level on
information loss with respect to delay. In general, our approach shows that there
are fewer expired tuples when compared to passive and proactive solutions. This
is because before the Poisson probability prediction model transfers suppressed
records to another sliding window, it checks for possibility of anonymization of
the records. For other solutions, there is no mechanism in place to check the
likelihood of the anonymizability of a suppressed record before allowing it to go
to the next sliding window/round. As a result, such tuples may be sent to other
rounds/sliding windows and eventually expire.

The main goal of our solution is to reduce information loss (delay)(i.e. to
lower the number of expired tuples). Figure 4 depicts that our solution is suc-
cessful in achieving its main goal and the information loss (delay) in our solu-
tion is lower than passive and proactive solutions. In general, our approach
shows that there are fewer expired tuples when compared to passive-FAANST
and proactive-FAANST solutions. This is because before our Poisson prediction
transfers suppressed records to another sliding window, it checks for possibility
of its anonymization. In other solutions, there is no mechanism in place to check
the likelihood of the anonymizability of a suppressed record before allowing it to
go to the next sliding window/round. As a result, such tuples get sent to other
rounds/sliding windows and has high tendency to eventually expire.

Effect of Poisson Probability Value δ on Information Loss (Record).
To calculate information loss with respect to records i.e. deviation of anonymized

data from its initial form, we used the formula in Eq. 3 as it is in [3]. We
adopted this metric because it is a benchmark in many data stream anonymiza-
tion schemes [5,6,14].

InfoLoss =
MP − 1
M - 1

(3)

Mp is number of leaf nodes in the subtree at node P and M is the total
number of leaf nodes in the generalization tree. We calculate the information
loss of a Sliding Window, SWi = {R1, R2, R3,..., Rn} as follows:

1
n

n∑

i=1

InfoLoss(Ri) (4)

The total information loss of a data stream is simply calculated by averaging
the information loss of all sliding windows in it.

Figure 5 shows the effect of Poisson probability value, δ, on information loss
(record). The figure shows that a higher value of δ results in higher informa-
tion loss. This is because if the probability that a suppressed record will be
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Fig. 5. Effect of poisson probability on information loss (record).

unanonymizable falls below δ such a record will be suppressed if there is no
suitable reusable cluster. Suppressed records incur the highest rate of informa-
tion loss. As a result, the higher the value of δ, the higher the chance of sup-
pressed records and subsequently higher information loss. The result is based on
the k-anonymity value of 2 and maximum suppression of 5 per sliding window.
Time-based sliding window varies from 2000 ms to 5000 ms.

4.2 User-Defined Privacy Preference

We integrated our three-tier user-defined privacy preference into k-anonymity
in data streaming anonymization by starting with a general k-value into a more
specific or personalized k-value. As a heuristic, the choice of a general k value is
guided by values used in published experimentation results [14].

As earlier stated, k-anonymity uses a generic approach to enforce privacy
preservation for all users without catering for their concrete needs. The outcome
of this is that insufficient protection might be provided to a subset of people,
while excessive privacy control is provided to another subset. Therefore, our
experiment is geared towards ensuring that there is a balanced protection by
taking user’s privacy preference into consideration.

Reduction of Excessive Privacy Control. Results from experiment as shown
in Fig. 6, shows that integration of our approach to k-anonymity in comparison
to other approaches ensure that excessive privacy control is reduced while at
the same time guiding against insufficient protection. Our three-personalised
approach has 16.15 % rate of excessive privacy control while Gedik- Personalised
model and non-personalised has 63.08 % and 23.08 % rate of excessive privacy
control respectively.

The reason our approach performed better than Gedik and non-personalized
privacy is because we first used a general k-value and then attempt to personalize
when there is excessive privacy control in comparison to user’s preference. The
result of our three-tier personalized result also shows that the higher the k-
value, the higher the rate of excessive privacy control. This is because as k-value
increases anonymization and privacy quality increases too. Hence more records
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Fig. 6. Effect of personalised and non-personalised privacy on excessive privacy control.

Fig. 7. Impact of the personalized and non-personalized privacy scheme on minimizing
number of suppressed records.

have the chance of been suppressed which in-turn leads to excessive privacy
control.

Record Suppression. One of the goals of a good anonymization scheme is to
ensure that information loss is minimal. Records suppression usually leads to a
high information loss. The use of personalized privacy scheme minimizes total
number of suppressed records and as a result reduces information loss while
the use of non-personalized privacy scheme leads to high number of suppressed
records.

Figure 7 shows the effect of personalized and non-personalized privacy on
suppressed records. Our result shows that our three-tier personalized privacy
has lower rate of suppressed records which is 26 % when compared to Gedik-
personalized privacy that has 77.7 % and non-personalized Privacy that has 51 %.
This is because our three-tiered personalized privacy model considers suppressed
records and attempts to reduce information loss by using user privacy prefer-
ences. In order to also measure the effect of k-values on suppressed records, we
set k-value to values between 2 and 7. The result also shows that the higher the
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k-value, the higher the number of suppressed records which is to be expected
since high k-values imply a high anonymization degree.

5 Conclusions

We began this paper with an overview of the problem scenario which emerges
in developing nations where the lack of data analytics expertise within a law
enforcement agency makes the need to have a third party data analytics provider
intervene to aid in fast crime report analysis. In addition, we highlighted the
fact that the growing need to make the processed information available to field
officers requires a mechanism for capturing crime reports in real-time and trans-
ferring these reports to the third-party service provider. While solutions in the
literature that are hinged on cryptography have been shown to be successful
in protecting data in outsourced scenarios from unauthorized access including
that of “honest-but-curious” service providers, we noted that querying encrypted
streaming data is a time consuming process and that k-anonymization technique
is a more practical approach to data privacy preservation in this case.

Anonymizing streaming data in a crime reporting context however, can have
strong real-time requirements and therefore information loss can lead to faulty or
misguided conclusions on the part of the data analytics service provider. There-
fore, streaming data anonymization algorithms (schemes) need to be supported
by good buffering mechanisms. Our proposed approach uses the concept of mod-
elling the flow rate of reported crime streaming data as a Poisson process that
guides the sizing of a time-based sliding window buffer. The data collected in
the buffer is subjected to k-anonymization to ensure privacy of the data. Results
from our prototype implementation demonstrate that in addition to ensuring
privacy of the data our proposed scheme outperforms other with an informa-
tion loss rate of 1.95 % in comparison to 12.7 % on varying the privacy level of
crime report data records. However, the generic paradigm approach to privacy
enforcement in the k-anonymity model needs to be refined in order to cater for
individual’s need. Therefore, we refined our model to integrate users privacy pref-
erence into the k-anonymity model while attempting to reduce delays incurred
as a result of buffering. The results show that the use of personalized privacy
preferences ensure that protection is enforced in a balanced way by a 23.08 %
information loss rate in comparison to non-personalized techniques that have an
average balanced protection and incur loss rates of 63.08 %.

References

1. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(05), 557–570 (2002)

2. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and
suppression. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(05), 571–588
(2002)



136 A.B. Sakpere and A.V.D.M. Kayem

3. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 279–288. ACM (2002)

4. Kabir, M.E., Wang, H., Bertino, E.: Efficient systematic clustering method for
k-anonymization. Acta Informatica 48(1), 51–66 (2011)

5. Cao, J., Carminati, B., Ferrari, E., Tan, K.L.: Castle: continuously anonymizing
data streams. IEEE Trans. Dependable Secure Comput. 8(3), 337–352 (2011)

6. Guo, K., Zhang, Q.: Fast clustering-based anonymization approaches with time
constraints for data streams. Knowledge-Based Systems, Elsevier (2013, in press)

7. Sakpere, A.B.: User-defined privacy preferences for k-anonymization in electronic
crime reporting systems for developing nations. In: Doctoral Consortium, pp. 13–18
(2015). doi:10.5220/0005364700130018

8. Sakpere, A.B., Anne, V.D.M.K., Marchetti-Mercer, M.C.: Adaptive buffer resizing
for efficient anonymization of streaming data with minimal information loss. In:
Proceedings of the 1st International Conference on Information Systems Security
and Privacy, pp. 191–201 (2015). doi:10.5220/0005288901910201

9. Stone, C.: Crime, justice, and growth in South Africa: toward a plausible con-
tribution from criminal justice to economic growth. John F. Kennedy School of
Government Working Paper No. RWP06-038(2006)

10. Li, S.: Fuzzy optimization and decision making. Poisson Process with Fuzzy Rates,
pp. 289–305. Kluwer Academic Publishers, Hingham (2010)

11. Aggarwal, C.C., Yu, P.S. (eds.): TA General Survey of Privacy-preserving Data
Mining Models and Algorithms. Springer, Heidelberg (2008)

12. Xiao, X., Tao, Y.: Personalized privacy preservation. In: Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data. ACM (2006)

13. Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity:
architecture and algorithms. IEEE Trans. Mob. Comput. 7(1), 1–18 (2008)

14. Zakerzadeh, H., Osborn, S.L.: FAANST: Fast Anonymizing Algorithm for Numer-
ical Streaming DaTa. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cavalli, A.,
Leneutre, J. (eds.) DPM 2010 and SETOP 2010. LNCS, vol. 6514, pp. 36–50.
Springer, Heidelberg (2011)

http://dx.doi.org/10.5220/0005364700130018
http://dx.doi.org/10.5220/0005288901910201

	Supporting Streaming Data Anonymization with Expressions of User Privacy Preferences
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Contribution
	1.3 Outline

	2 Related Work
	3 User-Defined Privacy Preference in Adaptive Buffer Re-sizing Scheme
	3.1 Adaptive Buffer Resizing Scheme
	3.2 Streaming Data as a Poisson Process
	3.3 Buffer Sizing
	3.4 Integration of User-Defined Privacy Preference into Adaptive Buffer-Resizing

	4 Implementation and Results
	4.1 Buffering
	4.2 User-Defined Privacy Preference

	5 Conclusions
	References


