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Abstract. Common authentication methods based on passwords, or fin-
gerprints in smartphones, depend on user participation. They do not pro-
tect against the threat of an attacker getting hold of the phone after the
user has been authenticated. Using a victim’s smartphone, the attacker
can launch impersonation attacks, which threaten the data that can
be accessed from the smartphone and also the security of other users
in the network. In this paper, we propose an implicit authentication
method using the sensors already built into smartphones. We utilize
machine learning algorithms for smartphones to continuously and implic-
itly authenticate the current user. We compare two typical machine learn-
ing methods, SVM and KRR, for authenticating the user. We show that
our method achieves high performance (more than 90 % authentication
accuracy) and high efficiency. Our method needs less than 10 s to train
the model and 20 s to detect an abnormal user. We also show that the
combination of more sensors provides better accuracy. Furthermore, our
method enables adjusting the security level by changing the sampling
rate.

Keywords: Smartphone · Security · Authentication · Support Vec-
tor Machine (SVM) · Sensors · Accelerometer · Orientation sensor ·
Magnetometer · Android

1 Introduction

In recent years, the use of mobile devices like smartphones and tablets has
increased dramatically. Smartphones are becoming an important means for
accessing various online services, such as online social networks, email and cloud
computing. Many applications and websites allow users to store their informa-
tion, including passwords and other security-critical information. Users also save
various contacts, photos, schedules, email, messages and other personal informa-
tion in their smartphones. They do not want personal and sensitive information
to be leaked to others without their permission. However, the smartphone is eas-
ily stolen, and the attacker can have access to the personal information stored
in the smartphone. Furthermore, the attacker can steal the victim’s identity and
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launch impersonation attacks in networks, which could threaten the victim’s sen-
sitive information like his bank account and confidential data stored in the cloud,
as well as the security of networks, especially online social networks. Therefore,
providing reliable access control of the information stored on smartphones, or
accessible through smartphones, is very important. But, first, it is essential to
be able to authenticate the legitimate user of the smartphone, and distinguish
him or her from other unauthorized users. It is also important to continue to
authenticate a user, since his smartphone may be taken over by an attacker after
the legitimate user has been authenticated.

Passwords are currently the most common form of authentication. However,
they suffer from several weaknesses. Passwords are vulnerable to attacks because
they are easily guessed. They suffer from social engineering attacks, like phishing,
pretexting, etc. The usability issue is also a serious factor, since users do not like
to have to enter, and reenter, passwords or pins. A study [1] shows that 64 %
of users do not use passwords or pins as an authentication mechanism on their
smartphones. Hence, this paper proposes a means of implicit and continuous
authentication, beyond the initial authentication by password, pin or biometric
(e.g., fingerprint).

Implicit authentication does not rely on the direct involvement of the user,
but is closely related to his/her biometric behavior, habits or living environment.
We propose a form of implicit authentication realized by building the user’s pro-
file based on measurements from various sensors already present in a typical
smartphone. Specifically, sensor measurements within the smartphones can reflect
users’ behavior patterns and environment characteristics. The recent development
and integration of sensor technologies in smartphones, and advances in modeling
user behavior create new opportunities for better smartphone security.

In this paper, we propose a multi-sensor-based system to achieve continuous
and implicit authentication for smartphone users. The system leverages data
collected by three sensors: accelerometer, orientation sensor, and magnetometer,
in a smartphone, and then trains a user’s profile using the SVM machine learn-
ing technique. The system continuously authenticates the current user without
interrupting user-smartphone interactions. The smartphone’s security system is
alerted once abnormal usage is detected by our implicit authentication mech-
anism, so that access to sensitive information can be shut down or restricted
appropriately, and further checking and remediation actions can be taken. Our
authentication mechanism can adaptively update a user’s profile every day con-
sidering that the user’s pattern may change slightly with time. Our experimental
results on two different data sets show the effectiveness of our proposed idea. It
only takes less than 10 s to train the model everyday and 20 s to detect abnormal
usage of the smartphone, while achieving high accuracy (90 %, up to 95 %).

We arrived at our three-sensor solution by first testing the performance on a
single-sensor-based system, considering each of the accelerometer, the orientation
sensor and the magnetometer. We found that the authentication accuracy for mea-
surements from the orientation sensor alone is worse than that of the accelerom-
eter alone or the magnetometer alone. Then, we test a two-sensor-based system,
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using pairwise combinations from these three sensors. This showed that the com-
bination of multiple sensors can improve the accuracy of the resulting authentica-
tion. We then combined the measurements from all three sensors, and showed that
while there was a slight performance improvement, this incremental improvement
is much less than going from one to two sensors, and the authentication accuracy
is already 90 %, reaching 95 %. We also show that our method allows the users to
adjust their security levels by changing the sampling rate of the collected data. Fur-
thermore,we compare ourmethodwith another popularmachine learningmethod,
kernel ridge regression (KRR), and show that our proposed method outperforms
KRR.
The main contributions of our paper are summarized below:

– We propose a multi-sensor-based system to achieve continuous and implicit
authentication, which is accurate, efficient and flexible.

– We compare our three-sensor-based method with single-sensor and twosensor-
based methods on two real data sets. Our three-sensor-based method is shown
to have the best performance.

– We also analyze the balance between the authentication accuracy and the
training time. We give a reasonable trade-off with respect to the sampling
rate and the data size, that is practical and meaningful in the real world
environment of commodity smartphone users.

– We compare our SVM method with a method based on KRR, and show that
our SVM method outperforms the KRR method.

Table 1. Sensors enabled in some popular smartphones.

Sensor Nexus 5 iphone 5s Galaxy S5

accelerometer Yes Yes Yes

gyroscope Yes Yes Yes

magnetic field Yes Yes Yes

light Yes Yes Yes

proximity Yes Yes Yes

pressure Yes No Yes

orientation Yes No No

temperature No No No

GPS Yes Yes Yes

Network Yes Yes Yes

MIC Yes Yes Yes

camera Yes Yes Yes
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Table 2. Sensor measurements, common usage and whether applications need the
user’s permission to access measurements.

Sensor Description Common use Permission

accelerometer Measures the acceleration force on

all three physical axes

Motion detection No

orientation Measures degrees of rotation on all

three physical axes

Rotation detection No

magnetometer Measures the geomagnetic field for

all three physical axes

compass No

gyroscope Measures a device’s rate of rotation

on all three physical axes

Rotation detection No

light Measures the ambient light level Environment detection No

proximity Measures the proximity of an object

relative to the view screen

Phone position during a call No

pressure Measures the ambient air pressure Environment detection No

temperature Measures the ambient temperature Environment detection No

GPS Positioning Positioning Yes

network Provide user connection to internet Connectivity, location,

surfing patterns

Yes

microphone Record voice Speech recognition Yes

camera Record image Face recognition Yes

2 Background

2.1 Smartphone Inputs and Sensors

A unique feature of a smartphone is that it is equipped with a lot of sensors.
Table 1 lists some common sensors in some of the most popular smartphones.
Table 2 lists the sensors’ functionality, description of the measurements made,
what it can be used for in terms of user or smartphone authentication, and
whether Android permissions are required to read the sensor’s measurements.

Smartphone sensor information include measurements from an accelerome-
ter, orientation sensor, magnetometer, gyroscope, ambient light, proximity sen-
sor, barometric pressure and temperature. Other more privacy sensitive inputs
include a user’s location as measured by his GPS location, WLAN, cell tower ID
and Bluetooth connections. Also privacy sensitive are audio and video inputs like
the microphone and camera. These privacy sensitive inputs require Android per-
missions. The contacts, running apps, apps’ network communication patterns,
browsing history, screen on/off state, battery status and so on, can also help to
characterize a user. Since we would like to perform implicit authentication, we
prefer those sensors that do not require explicit Android permissions, and are
commonly available on smartphones.

2.2 Related Work

Table 3 summarizes and compares our work with past work on sensor-based
authentication.

With the increasing development of mobile sensing technology, collecting
many measurements through sensors in smartphones is now becoming not only
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Table 3. Comparison of our three-sensor SVM method with state-of-the-art research
in implicit authentication (if the information is given in the paper cited, otherwise it is
shown as n.a. (not available)). FP is false positive rate and FN is false negative rate.
train means the time for training the model and test means the time for detecting the
abnormal usage. The script column shows whether a user has to follow a script. If a
script is required, we can not achieve implicit authentication without user participation.

Devices Sensors Method Accuracy Detecting time Script

Our method Nexus 5

Android

orientation,

magnetometer,

accelerometer

SVM 90.23% train:6.07s

test:20s

No

Kayacik

et al. [2]

Android light, orientation,

magnetometer,

accelerometer

temporal

&spatial

model

n.a. train: n.a.

test:≥122s

No

Zhu

et al. [3]

Nexus S orientation,

magnetometer,

accelerometer

n-gram

language

model

71.3% n.a. Yes

Buthpitiya

et al. [4]

n.a. GPS n-gram

model on

location

86.6% train:n.a.

test:≥30min

No

Trojahn

et al. [5]

HTC Desire screen keystroke

&hand-

writing

FP:11%

FN:16%

n.a. Yes

Li et al. [6] Motorola

Droid

screen sliding

pattern

95.7% train: n.a.

test:0.648s

Yes

Nickel

et al. [7]

Motorola

Milestone

accelerometer K-NN FP:4%

FN:22%

train:1.5min

test:30s

Yes

possible, but quite easy through, for example, Android sensor APIs. Mobile
sensing applications, such as the CMU MobiSens [8], run as a service in the
background and can constantly collect sensors’ information from smartphones.
Sensors can be either hard sensors (e.g., accelerometers) that are physicallysens-
ing devices or soft sensors that record information of a phone’s running status
(e.g., screen on/off).

Continuous authentication on smartphones is likely to become an interesting
new research area, given the easily accessible data today in smartphones.

In [2], a lightweight, and temporally &spatially aware user behavior model is
proposed for authentication based on both hard and soft sensors. They consid-
ered four different attacks (uninformed outsider, uninformed insider, informed
outsider and informed insider) and showed that even the informed insider can
be detected in 717 s. However, they did not quantitatively show the accuracy of
their method. In comparison, our method not only clearly shows high accuracy
performance but also requires much less detection time (e.g., we only need 20 s
to detect an abnormal user while training the profiles for less than 10 s.)

SenSec [3] constantly collects data from the accelerometer, orientation sensor
and magnetometer, to construct the gesture model while the user is using the
device. SenSec is shown to achieve an accuracy of 75 % in identifying users and
71.3 % in detecting the non-owners. However, they ask users to follow a script,
i.e., a specific series of actions, for authentication. In comparison, we do not need
users to follow a specific script while still getting better authentication accuracy,
higher than 90 %.
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Fig. 1. In our method, we first construct a vector at each sample time by using sensors’
data. For example, our three-sensor-based method uses 9 values from the accelerometer,
magnetometer and orientation sensor in a smartphone. After that, we re-sample the
data collected from the sensors. Then, we train the re-sampled data with the SVM
technique to get a user’s profile. Based on the user’s profile, we can do the implicit
authentication.

In [4], an n-gram geo-based model is proposed for modeling a user’s mobility
pattern. They use the GPS sensor to demonstrate that the system can detect
abnormal activities (e.g., a phone being stolen) by analyzing a user’s location his-
tory, and the accuracy they achieve is 86.6 %. However, they just utilize a single
sensor for authentication, which largely limits their performance. By exploiting
multiple sensors, our method achieves better accuracy.

Biometric-based systems have also been used to achieve continuous and unob-
servable authentication for smartphones [5–7]. However, they ask users to follow
a script for authentication. In comparison, we do not need users to follow a
specific script while still getting good authentication accuracy. [5] developed a
mixture of a keystroke-based and a handwriting-based method to realize authen-
tication through the screen sensor. Their approach has 11 % false acceptance
rate and 16 % false rejection rate. [6] proposed another biometric method to do
authentication for smartphones. They exploited five basic movements (sliding up,
down, right, left and tapping) and the related combinations as the user’s features,
to perform authentication. An accelerometer-based biometric gait recognition to
authenticate smartphones using k-NN algorithm was proposed in [7]. Their work
is based on the assumption that different people have different walking patterns.
Their process only takes 30 s. However, their approach asks the users to follow a
script, where they just record the data when the user is walking. In comparison,
we do not need the user to follow any script, which means that we can provide
continuous protection without user interaction, while their approach can only
guarantee security for walking users.

The fact that sensors reflect an individual’s behavior and environment can be
used for authentication as well as for new attacks. [9] proposed an attack to infer a
user’s input on a telephone key pad from measurements of the orientation sensor.
They used the accelerometer to detect when the user is using a smartphone, and
predicted the PIN through the use of orientation sensor measurements.

Sensors also reflect environmental information, which can be used to reveal
some sensitive information. By using measurements from an accelerometer on a
smartphone to record the vibrations from a nearby keyboard [10], the authors
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could decode the context. In [11], the authors show that the gyroscope can record
the vibration of acoustic signals, and such information can be used to derive the
credit card number.

3 Key Ideas

Some past work only consider one sensor for authentication [4–7]. We will show
that the authentication accuracy can be improved by taking other sensors into
consideration. We propose a multi-sensor-based technology with a machine learn-
ing method for implicit authentication, which only takes a short time to detect
the abnormal user, but also needs less than 10 s to retrain the user’s profile. First,
we collect the data from the selected sensors. Then, we use the SVM technique
as the classification algorithm to differentiate the usage patterns of various users
and authenticate the user of the smartphone.

Our methodology can be extended to other sensors in a straight-forward
manner. Figure 1 shows our methodology, and the key ideas are presented below.

3.1 Sensor Selection

There are a lot of sensors built into smartphones nowadays as shown in Tables 1
and 2. With smartphones becoming more connected with our daily lives, a lot
of personal information can be stored in the sensors. The goal is to choose
a small set of sensors that can accurately represent a user’s characteristics.
In this paper, we experiment with three sensors that are commonly found in
smartphones: accelerometers, orientation sensors and magnetometers. They also
represent different information about the user’s behavior and environment: the
accelerometer can detect coarse-grained motion of a user like how he walks [7],
the orientation sensor can detect fine-grained motion of a user like how he holds
a smartphone [9], and the magnetometer measurements can perhaps be useful
in representing his environment. Furthermore, these sensors do not need the
user’s permission to be used in Android applications (Table 2), which is useful
for continuous monitoring for implicit authentication.

Also, our method using these three sensors does not need the user to perform
a sequence of actions dictated by a script hence facilitating implicit authenti-
cation. Note that our method is not limited to these three sensors, but can be
easily generalized to different selections of hard or soft sensors, or to incorporate
more sensors.

3.2 Data Sets and Re-sampling

We use two data sets, a new one which we collected locally by ourselves which we
call the PU data set, and another data set which we obtained from the authors
of a published paper [2], which we call the GCU data set.

The PU data set is collected from 4 graduate students in Princeton University
in 2014 based on the smartphone, Google Nexus 5 with Android 4.4. It contains
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sensor data from the accelerometer, orientation sensor and magnetometer with
a sampling rate of 5 Hz. The duration of the data collected is approximately
5 days for each user.

Our pseudo code for implicit data collection in Android smartphones is given
in Listing 1. Our application contains two parts. The first part is an Activity,
which is a user interface on the screen. The second part is a Service, which is
running in the background to collect data. Each sensor measurement consists of
three values, so we construct a vector from these nine values from three sensors.
We use different sampling rates as a factor in our experiments, to construct data
points.

We use the second data set, called the GCU dataset version 2 [2], for com-
parison. This is collected from 4 users consisting of staff and students of Glasgow
Caledonian University. The data was collected in 2014 from Android devices and
contains sensor data from wifi networks, cell towers, application use, light and
sound levels, acceleration, rotation, magnetic field and device system statistics.
The duration of the data collected is approximately 3 weeks. For better compari-
son with our PU data set, we only use the data collected from the accelerometer,
orientation sensor and magnetometer.

Listing 1. Pseudo code for PU dataset collection using Android smartphones.

1 In Act iv i ty . java
2 protected onCreate ( Bundle Ins tance ){
3 r e g i s t e r a BroadcastRece iver ;
4 s e t ContentViews and Buttons on the sc r e en ;
5 }
6 private s t a r t bu t t on = new Button . OnCl ickListener ( ) {
7 s t a r t Se rv i c e . java to c o l l e c t and record data ;
8 }
9 private s top button = new Button . OnCl ickListener ( ) {

10 stop Se rv i c e . java ;
11 }
12 In Se rv i c e . java
13 private onStart ( Intent intent , int s t a r t I d ) {
14 get Sensor Se rv i c e s s ;
15 for ( Sensor s : s en so r s ) {
16 s s r e g i s t e r a sensorEventL i s t ene r s ;
17 }
18 private s ensorEventL i s t ene r = new SensorEventLi s tener ( ) {
19 public onSensorChanged ( SensorEvent event ) {
20 case Sensor .TYPEACCELEROMETER:{
21 record data with time stamp in memory .
22 send data to Act iv i ty . java and show on the sc r e en .
23 }
24 case Sensor .TYPE ORIENTATION:{
25 record data with time stamp in memory .
26 send data to Act iv i ty . java and show on the sc r e en .
27 }
28 case Sensor .TYPE MAGNETIC FIELD:{
29 record data with time stamp in memory .
30 send data to Act iv i ty . java and show on the sc r e en .
31 }
32 }
33 }

The sensor measurements originally obtained are too large to process directly.
Hence, we use a re-sampling process to not only reduce the computational com-
plexity but also reduce the effect of noise by averaging the data points. For
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example, if we want to reduce the data set by 5 times, we average 5 contiguous
data points into one data point. In Sect. 4, we will show that the time for training
a user’s profile can be significantly reduced by re-sampling.

3.3 Support Vector Machines

The classification method used by prior work typical did not give very accurate
results. Hence, we propose the use of the SVM technique for better authentica-
tion accuracy.

Fig. 2. Illustrating SVM. The purpose of SVM is to find the largest margin separating
two groups of data. The black dotted lines represent the largest margin, whereas the
green dotted lines do not give the largest margin (Color figure online).

Support Vector Machines (SVMs) are state-of-the-art large margin classi-
fiers, which represent a class of supervised machine learning algorithms first
introduced by [12]. SVMs have recently gained popularity for human activity
recognition on smartphones [13]. In this section, we provide a brief review of the
related theory of SVMs [12,14].

After obtaining the features from sensors, we use SVM as the classification
algorithm in the system. The training data is represented as D = {(xi,yi) ∈
X × Y : i = 1, 2, . . . , n} for n data-label pairs. For binary classification, the data
space is X = R

d and the label set is Y = {−1,+1}. The predictor w is X → Y.
The objective function is J(w,D). The SVM finds a hyperplane in the training
inputs to separate two different data sets such that the margin is maximized.
Figure 2 illustrates the concept of SVM classification. A margin is the distance
from the hyperplane to a boundary data point. The boundary point is called
a support vector and there may exist many support vectors. The most popular
method of training such a linear classifier is by solving a regularized convex
optimization problem:

w∗ = argminw∈Rd

λ

2
‖w‖2 +

1
n

n∑

i=1

l (w,xi, yi) (1)
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where
l (w, x, y) = max

(
1 − ywTx, 0

)
(2)

The margin is 2
||w|| in SVM. So, Eq. 1 minimizes the reciprocal of the margin

(first part) and the misclassification loss (second part). The loss function in SVM
is the Hinge loss (Eq. 2) [15].

Sometimes, we need to map the original data points to a higher dimensional
space by using a kernel function so as to make training inputs easier to separate.
In our classification, we label the smartphone owner’s data as positive and all the
other users’ data as negative. Then, we exploit such a model to do authentication.
Ideally, only the user who is the owner of the smartphone is authenticated, and
any other user is not authenticated. In our experiments, we selected LIBSVM [16]
to implement the SVM. The input of our experiment is n positive points from
the legitimate user and n negative data points from randomly selected n other
users. The output is the user’s profile for the legitimate user.

3.4 Kernel Ridge Regression

For comparison, we utilize another popular classification method, kernel ridge
regression (KRR) [17], to train the user’s model. The KRR is a regularized least
square method for classification and regression. It is similar to an SVM, except
that a different objective is being optimized, which does not put emphasis on
points close to the decision boundary. The solution depends on all the training
examples instead of a subset of support vectors. The classifier is obtained by
solving an optimization problem:

w∗ = argminw∈Rdρ‖w‖2 +
1
n

n∑

i=1

(
wTx − y

)2
(3)

An advantage of kernel ridge regression is that the optimization solution has
an analytic solution, which can be solved efficiently. The solution of KRR is as
follows [18]:

w∗ = [S + ρI]−1
Xy (4)

4 Experimental Results

Figure 1 shows the steps in our experiments. The following are some settings in
our experiments:

– We use both the PU data set and the GCU data set.
– We use accelerometer, magnetometer and orientation sensors (can be extended

to other sensors).
– We re-sample the data by averaging the original data, with the sampling rate

changing from 1 s to 20 min.
– Each data is a 9-dimensional vector (three values for each sensor). We use

SVM to train the data to obtain a user’s profile.
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Fig. 3. Authentication accuracy for single sensor system in (a) the PU data set, and
(b) the GCU data set. Higher sampling rates give better accuracy for each sensor. The
accelerometer and magnetometer have better performance than the orientation sensor.
The reason is that both of them record a user’s longer term characteristics, where the
accelerometer somehow represents a user’s walking style and the magnetometer records
a user’s general environment. However, the orientation sensor represents how the user
holds a smartphone, which is more variable.

– We label one user’s data as positive and the other users’ data as negative, and
randomly pick equivalent data from both positive and negative sets.

– We experiment with data from one sensor, a pair of two sensors, and all
three sensors to train the user’s profile. We show that multi-sensor-based
authentication indeed improves the authentication accuracy.

– In our experiments, we use 10-fold cross validation, which means that the size
of training data over the size of training data and testing data is 1/10.

4.1 Single-Sensor Authentication

From Fig. 3, we observe the single-sensor-based system in both the PU data set
and the GCU data set. First, we find that the accuracy increases with faster
sampling rate because we use more detailed information from each sensor. Sec-
ond, an interesting finding is that the accelerometer and the magnetometer have
much better accuracy performance than the orientation sensor, especially for the
GCU data set. We think this is because they both represent a user’s longer-term
patterns of movement (as measured by the accelerometer) and his general envi-
ronment (as measured by the magnetometer). The orientation sensor represents
how the user holds a smartphone [9], which may be more variable. Therefore,
the accelerometer and magnetometer have better authentication accuracy. The
difference is more marked in the GCU data set, but the overall relative accuracy
of the three sensors is the same in both data sets. The accuracy is below 90 %
even for fast sampling rates like 10 s (see also Table 4).

4.2 Two-Sensor Authentication

Figure 4 shows that for all pairwise combinations, accuracy increases with faster
sampling rate. The combination of data from two sensors indeed gives better
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Fig. 4. Authentication accuracy with SVM for a combination of two sensors, for (a)
the PU data set, and (b) the GCU data set. The higher sampling rate gives better
accuracy for each sensor.

authentication accuracy than using a single sensor (see Table 4). The average
improvement from one sensor to two sensors is 7.4 % in PU data set (14.6 % in
GCU data set) when the sampling rate is 20 s. Another interesting finding is
that using a combination of magnetometer and orientation sensors is worse than
the other two pairs which include an accelerometer. In fact, the combination of
magnetometer and orientation sensors is not necessarily better than using just
the accelerometer (see also Table 4). Therefore, choosing good sensors is very
important. Also, using higher sampling rate gives better accuracy.

4.3 Three-Sensor Authentication

Now, we compare the three-sensor-based system with one and two sensor-based
authentication experiments. From Fig. 5 and Table 4, we observe that the three-
sensor results give the best authentication accuracy, as represented by the top
line with triangles in both data sets, seen more clearly as the highest value in
each column in Table 4. Again, we find that the accuracy increases with faster
sampling rates because we use more detailed information from each sensor.

4.4 Training Time vs. Sampling Rate

In the rest of the evaluations below, we use the three-sensor-based system, since
it has the best authentication accuracy.

From Fig. 5 and Table 4, when the sampling rate is higher than 4 min (samples
every 240 s or less), the accuracy in the PU data set is better than 80 %, while
that in the GCU data set is better than 90 %. The average improvement from
two sensors to three sensors is 3.3 % in PU data set (4.4 % in GCU data set)
when the sampling rate is 20 s. Furthermore, when the sampling rate is higher
than 20 s, the accuracy in the PU data set is better than 90 %, while that in the
GCU data set is better than 95 %.

Figure 6 and Table 5 shows that a higher sampling rate (smaller sampling
interval) needs more time to train a user’s profile. The time exponentially
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Fig. 5. Authentication accuracy for single sensors, two sensors and three sensors, for
the PU data set and the GCU data set. The higher sampling rate has better accuracy
for each combination of sensors. Two sensors give better accuracy than using a single
sensor, and three sensors further improves the accuracy.

increases with the increase of the sampling rate. It is a trade-off between security
and convenience. However, the good news is that when the sampling interval is
about 20 s, it only needs less than 10 s in the PU data set (and roughly 1 s in the
GCU data set) to train a user’s profile, but the accuracy is higher than 90 % (and
95 % in the GCU data set), as seen from Table 4. It means that a user only needs
to spend less than 10 s to train a new model to do the implicit authentication
for the whole day in the PU data set and only 1 second for the GCU data set.

These findings validate the effectiveness of our method and its feasibility for
real-world applications. Furthermore, our method can be customized for users.
They can change their security level by changing the sampling rate of the sensors
in their smartphones.
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Fig. 6. (a),(b) Represent respectively the time for training a user’s profile by using
the SVM algorithm for three-sensors-based system in the PU data set and the GCU
data set.



Implicit Authentication for Smartphone Security 173

Table 4. The accuracy (%) vs. sampling rate in both PU data set and GCU data set
for all combinations of 1, 2 or 3 sensors.

Sampling rate (s) 5 10 20 40 60 120 240 360 480 600 900 1200

acc(PU) 90.1 88.3 85.4 85.3 84.5 84.0 80.2 79.2 76.4 69.2 68.8 58.6

mag(PU) 91.0 88.9 86.2 84.6 83.4 74.7 73.3 73.7 68.0 66.4 62.2 60.2

ori(PU) 76.5 74.2 72.2 71.3 69.8 67.1 65.8 64.7 63.9 62.1 60.4 59.0

acc+mag(PU) 92.0 90.0 86.4 86.6 85.9 85.3 81.5 80.3 77.9 70.6 70.5 60.4

acc+ori(PU) 91.8 90.3 87.7 86.2 86.1 83.3 82.0 80.6 77.3 72.2 69.1 67.1

mag+ori(PU) 92.8 91.1 87.7 86.7 84.7 86.5 81.3 74.0 69.1 65.9 63.2 58.3

all(PU) 93.9 92.8 90.1 89.1 87.2 85.2 84.3 82.7 78.7 72.4 70.8 67.2

acc(GCU) 91.0 88.4 87.8 87.9 87.5 82.4 83.1 77.8 78.3 80.2 75.3 73.0

mag(GCU) 92.3 91.2 91.0 85.7 85.2 83.4 79.5 76.7 75.3 72.2 69.8 69.5

ori(GCU) 64.2 63.9 63.8 60.8 60.7 60.6 60.0 60.0 59.1 58.0 57.5 57.3

acc+mag(GCU) 95.5 95.8 94.7 93.7 92.7 91.8 89.2 86.7 84.0 83.1 81.4 79.6

acc+ori(GCU) 96.4 96.6 95.5 94.3 93.1 92.0 90.0 87.1 84.7 83.5 82.7 79.4

mag+ori(GCU) 91.8 90.3 87.7 86.2 84.3 82.2 80.8 79.1 76.2 73.2 71.1 70.1

all(GCU) 97.4 97.1 96.7 95.7 95.3 93.1 90.0 89.1 87.5 85.9 83.1 80.2

Table 5. Time for training a user’s profile by using the SVM algorithm for three
sensors, for (a) the PU data set and (b) the GCU data set, respectively. We can see
that the smaller sample interval (higher sampling rate) needs more time to train a user’s
profile. Therefore, we need to find a trade-off sampling rate to balance performance
and complexity.

Sampling interval 1 2 5 10 20 40 60

training time (PU data set) 33502s 1855s 170.72s 39.85s 6.07s 1.19s 0.51s

training time (GCU Data Set) 23101s 485s 62.41s 9.43s 1.02s 0.21s 0.17s

4.5 Accuracy and Time vs. Data size

Figure 8 shows another trade-off between security and convenience. We choose
a sampling interval of 10 min and a training data size ranging from 1 day to
5 days in the PU data set (and 1 day to 15 days in the GCU data set). The blue
dashed line with triangles shows that the accuracy increases with the increase of
training data size. The black solid line with circles shows that the training time
increases with the increase of training data size.

4.6 Comparison with KRR

In order to compare our SVM performance with other machine learning meth-
ods, we apply another popular machine learning method, kernel ridge regression
(KRR) to train the user’s model. Figure 8 compares the performance of SVM
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Fig. 7. Comparison of authentication accuracy between SVM and KRR for a combi-
nation of three sensors, for (a) the PU data set, and (b) the GCU data set. Using SVM
has much better performance than KRR.
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Fig. 8. (a),(b) represent the authentication accuracy and the training time with differ-
ent training data size for three sensors in the PU data set and the GCU data set. Blue
dashed lines show that the larger data size has better accuracy because we use more
information about the user. Black solid lines show that larger data size usually needs
longer training time (Color figure online).

and KRR by using all three sensors. Figure 8 shows that using SVM gives much
better authentication performance than using KRR.

5 Conclusions

In this paper, we utilize three sensors: the accelerometer, the orientation sensor
and the magnetometer, which are all commonly built into smartphones today.
We apply the SVM technique as the classification algorithm in the system, to
distinguish the smartphone’s owner versus other users, who may potentially be
attackers or thieves. In our experiments, we compare the authentication results
for different sampling rates and different data sizes, which shows a trade-off
between accuracy performance and the computational complexity. Furthermore,
we experiment with data from a single sensor and from a combination of two
sensors, to compare their results with data from all three sensors. We find that
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the authentication accuracy for the orientation sensor degrades more than that of
the other two sensors. Therefore, the data collected from the orientation sensor is
not as important as that from the accelerometer and magnetometer, which tend
to measure more stable, longer-term characteristics of the user’s coarse-grained
movements and his general physical location, respectively (Fig. 7).

We also compared using KRR versus using our SVM method, and found that
SVM gave much better authentication accuracy.

Utilizing sensors to do implicit user authentication is very interesting and
promising. Our work also suggests some other interesting research directions.
First, we can use more detailed sensors’ information to further improve the
authentication accuracy. Second, we can try to combine the time information
with frequency information to potentially achieve a better user profile. Many
other issues relating to the user’s privacy remain. It is also interesting to launch
an attack through the sensors’ information. Since our research shows that indeed,
sensors can represent a user’s characteristic behavior and physical environment,
sensors can be used for both new security defenses, e.g., implicit authentication,
and for new attacks. By understanding these potential attacks, we may be able
to design more secure sensor systems to further improve smartphone security.
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