
Factoring a Multiprime Modulus
N with Random Bits

Routo Terada(B) and Reynaldo Cáceres Villena

Department of Computer Science, University of São Paulo, São Paulo, Brazil
rt@ime.usp.br, reynaldo.cv@gmail.com

Abstract. In 2009, Heninger and Shacham presented an algorithm
using the Hensel’s lemma for reconstructing the prime factors of the
modulus N = r1r2. This algorithm computes the prime factors of N in
polynomial time, with high probability, assuming that a fraction greater
than or equal to 59 % random bits of its primes r1 and r2 is given. In
this paper, we present the analysis of Hensel’s lemma for a multiprime
modulus N =

∏u
i=1 ri (for u ≥ 2) and we generalise the Heninger and

Shacham’s algorithm to determine the minimum fraction of random bits
of its prime factors that is sufficient to factor N in polynomial time with
high probability.

Keywords: Factoring a multiprime modulus N · Random key bits leak-
age attack · Cold boot attack

1 Introduction

According to Skorobogatov [14], we know the recovery of information (bits) of
the RAM can be done with a certain error due to the data remanent property
of RAM and this error can be decreased by cooling techniques studied by Hal-
derman [4]. This attack is known as cold boot attack [2] and it is able to make
a copy of the DRAM used by the decryption process of an RSA cryptosystem
with some private key identification techniques ([4,11,13]). Then, it may identify
the set of correct bits of the secret key sk of the Basic RSA cryptosystem.1

Inspired by this attack the underlying ideas are used to identify and recover the
secret key bits of a multiprime RSA cryptosystems2.

It’s widely known that the main drawback of Basic RSA cryptosystem is the
relatively expensive encryption and decryption operations. It is relevant to men-
tion there is an advantage to use more than two primes in the RSA modulus N .
The decryption process is faster when it is done partially with respect to each
prime modulus and then combine them using the Chinese Remainder Theorem

R.C. Villena—Supported by CAPES, Brazil.
1 Basic RSA is when the modulus N is product of two primes.
2 Multi-prime RSA is a generalization of the Basic RSA where the modulus N is the

product of two or more primes.

c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 185–196, 2015.
DOI: 10.1007/978-3-319-27659-5 13



186 R. Terada and R.C. Villena

(see [8,12]). The more prime factors in the modulus N , the faster is the decryp-
tion process, providing a practical solution to the high cost of decryption. The
advantages for performing these operations in parallel are that the number of
bit operations is at most 3

2u3 n3 and the required space is only lg(ri) = n
u where

n = lg(N) (number of bits of modulus N) and u is the number of prime factors
of N . The time and space used to perform the decryption process is lower for
values u greater than 2 but the risk of the modulus N to be factored without
extra information is increased [7].

As mentioned before, inspired by cold boot attacks, it was shown that if
queries to an oracle for a relatively small number of bits of the secret key is
given, it is possible to factor the Basic RSA modulus N = pq in polynomial time
with:

– 1
4n LSB (Least Significant Bits) or 1

4n MSB (Most Significant Bits) of p [3].
– a maximum of log log(N) unknown blocks and ln(2) ≈ 0.70 fraction of known

bits of p [6].
– a fraction δ of random bits of p and q greater than or equal to 2 − 2

1
2 ≈ 0.59

[5].

In comparison, for a multiprime modulus N = r1r2...ru, i
i+1

n
u LSB or i

i+1
n
u

MSB of ri, for 1 ≤ i ≤ u − 1 is required [7].
An example: to factor a 3-prime modulus N (u = 3) the minimum require-

ment is:

– n
6 LSB or n

6 MSB of r1, and 2n
9 LSB or 2n

9 MSB of r2
– 0.38n fraction of bits of primes r1 and r2.

Hence more and more bits are required to factor a modulus N with u greater
than 2.

The case that we analyzed is to factor a multiprime modulus N with a
fraction δ of random bits of its primes, where δ was computed to factor N
in polynomial time with high probability. Hence we show that a multiprime
modulus N offers more security than a basic modulus N . Our main result is
that:

– To factor the integer N =
∏u

i=1 ri in polynomial time, using Hensel’s lemma,
a fraction δ = 2 − 2

1
u of random bits of its primes is sufficient.

With this result, there is a need of δ ≥ 2 − 2
1
3 ≈ 0.75 fraction of random bits

of prime factors to factor a 3-prime modulus N . Therefore 3-prime is better,
adversarially, than δ ≥ 2 − 2

1
2 ≈ 0.59 for a basic modulus N .

Kogure et al. [9] proved a general theorem to factor a multi-power modulus
N = rm

1 r2 with random bits of its prime factors. The particular cases of Takagi’s
variant of RSA [15] and Paillier Cryptosystem [10] are addressed. The bounds
for expected values in our cryptanalysis are derived directly, without applying
their theorem.



Factoring a Multiprime Modulus N with Random Bits 187

2 Algorithm to Factor a Multiprime Modulus N

We consider an equation of integer N =
∏u

i=1 ri that can be expressed as a
polynomial

f(x1, x2, ..., xu) = N −
∏u

i=1
xi

with solution (roots) r = 〈r1, r2, ...ru〉. We applied the idea in Heninger and
Shacham’s algorithm, to rebuild the primes ri beginning with their LSB and
MSB. In others words, we can lift all roots of the polynomial f(x1, x2, ..., xu)
(mod 2j+1) from a root of the polynomial f(x1, x2, ..., xu) (mod 2j). Applying
this scheme, we can lift from one root of polynomial f(x1, x2, ..., xu) (mod 2)
to obtain all roots of f(x1, x2, ..., xu) (mod 22). Then, from these roots, lift all
roots of f(x1, x2, ..., xu) (mod 23) and so on, up to all roots for f(x1, x2, ..., xu)
(mod 2

n
u ). One of these roots is the solution for 〈r1, r2, .., ru〉, because we assume

N is balanced3 hence the length of its primes is of n
u bits.

〈r1, r2, .., ru〉 ∈ roots of f(x1, x2, .., xu) (mod 2
n
u )

To understand the relation between a root of f(x1, x2, .., xu) (mod 2j) and
the roots of f(x1, x2, .., xu) (mod 2j+1) we introduce below the Hensel’s lemma
for multivariate polynomials.

Lemma 1 (Multivariate Hensel’s Lemma [5]). Let f(x1, x2, ..., xn) ∈
Z[x1, x2, ..., xn] be a multivariate polynomial with integer coefficients. Let
π be a positive integer and r = (r1, r2, ..., rn) ∈ Z

n be a solution for
f(x1, x2, ..., xn) ≡ 0 (mod πj). Then r can be lifted to a root r + b (mod πj+1),
if b = (b1πj , b2π

j , ..., bnπj), 0 ≤ bi ≤ π − 1, satisfies

f(r + b) = f(r) +
n∑

i=1

biπ
jfxi

(r) ≡ 0 (mod πj+1)

where fxi
is the partial derivative of f with respect to xi, or equivalently

f(r)
πj

+
n∑

i=1

bifxi
(r) ≡ 0 (mod π)

Analyzing the polynomial f(x1, x2, ..., xu) = N − ∏u
i=1 xi with the Hensel’s

lemma we obtained the following results. Let r = (r′
1, r

′
2, ..., r

′
u) be a solution for

f(x1, x2, ..., xu) ≡ 0 (mod 2j) where a root for f(x1, x2, ..., xu) ≡ 0 (mod 2j+1)
is defined as r = (r′

1 +2jb1, r
′
2 +2jb2, ..., r

′
u +2jbu) where bi represents a bit ri[j]

such that
(

N −
u∏

i=1

r′
i

)

[j] ≡
u∑

i=1

ri[j] (mod 2). (1)

3 N is the product of u primes with the same bit length, as in the Basic RSA.



188 R. Terada and R.C. Villena

It is an equation modulus 2. If all values ri[j] are considered as unknowns, it is
an equation modulus π = 2 with u variables. An equation with u variables has a
total number of solutions equal to πu−1 = 2u−1. In other words, we get a maxi-
mum of 2u−1 roots for f(x1, x2, .., xu) (mod 2j+1) from a root of f(x1, x2, .., xu)
(mod 2j). Furthermore, if a fraction of random bits are known, this number of
roots decreases, as we show below.

Let root[j] be a set of all possible roots of the polynomial f(x1, x2, .., xu)
(mod 2j+1). root[0] is a set of single elements because the ri’s are primes hence
the single root of f(x1, x2, .., xu) (mod 2) is 〈11, 12, .., 1u〉. With the definition of
root[j] we developed the following algorithm to factor a multiprime modulus N .
In Algorithm 1 there are the following inputs: a big integer N , an integer u that
is the number of prime factors of N . A fraction δ of random bits of the primes
is known and given as r̃1, r̃2...r̃n

Algorithm 1. Factoring N
Input: N,u, 〈r̃1, r̃2, ..., r̃u〉
Output: root[n

u ] where 〈r1, r2, ..., ru〉 is in root[n
u ]

1 root[0] = [〈11, 12, ..., 1u〉];
2 j = 1;
3 for each 〈r′

1, r
′
2, ..., r

′
u〉 in root[j − 1] do

4 for all possible (as explained below (*)) 〈r1[j], r2[j], ..., ru[j]〉 do
5 if (N − ∏u

i=1 r′
i)[j] ≡ ∑u

i=1 ri[j] (mod 2) then
6 root[j].add(〈r′

1 + 2jr1[j], r′
2 + 2jr2[j], ..., r′

u + 2jru[j]〉)

7 if j < n
u then

8 j := j + 1;
9 go to step 3;

10 return root[n
u ];

The algorithm begins with a set root[0] of single roots 〈11, 12, ..., 1u〉. (*)
In Line 4 for each root 〈r′

1, r
′
2, ..., r

′
u〉 ∈ root[j − 1] we generate all permuta-

tions for bits 〈r1[j], r2[j], ..., ru[j]〉. The number of values of ri[j] is one only
if this bit is known in r̃i, otherwise there are two values, 0 or 1. Each result
〈r1[j], r2[j], ..., ru[j]〉 of this permutation is analyzed in Line 5 by the Hensel’s
Eq. (1); it is added to the set root[j] if the equivalence is true. This procedure is
done until the set root[n

u ] obtained contains the prime factors of N .

3 Behavior and Complexity of the Algorithm to Factor N

We developed a brute-force search algorithm lifting all possible roots for the
polynomial f(x1, x2, ..., xu) (mod 2j) for 1 ≤ j ≤ n

u . This behavior is shown in
Fig. 1 where we can see the root r = 〈r1, r2, ..., ru〉 as a gray double circle. It was
lifted in each level j ∈ [1, n

u ] from one root in root[0]. These roots are defined
as good roots and are shown as no-color double circle. One good root in each
level j always lifts the good root for the next level j + 1. Each incorrect root is
represented as a single line circle.



Factoring a Multiprime Modulus N with Random Bits 189

Fig. 1. (Factoring N) Behavior of Algorithm 1 to factor N

We know we have a number of n
u + 1 good roots in all executions of

Algorithm 1, but the behavior of the algorithm is determined by the number of
the lifted incorrect roots. Therefore the analysis was done with respect to incor-
rect roots, and to do this analysis, we defined the following random variables:

– Let G be the random variable for the number of incorrect roots lifted from a
good root.

– Let B be the random variable for the number of incorrect roots lifted from an
incorrect root.

– Let Xj be the random variable for the number of incorrect roots lifted at
level j.

3.1 Number of Incorrect Roots Lifted from a Good Root (G)

All cases that may occur are described in the following Table where we have
one good root 〈r′

1, r
′
2, ..., r

′
u〉 of root[j − 1] and let’s define h as the number of

unknown bits in 〈r1[j], r2[j], ..., ru[j]〉.
There are h cases (1 ≤ h ≤ u in Eq. (1)). It is an equation modulus 2 with

h variables where the number of solutions is 2h−1. Hence we get a total of 2h−1

roots for root[j]. In the case h = 0 we obtain a single root and it is the good
root of root[j] because it is built from the good root of root[j −1] and all known
bits are of the correct root. But we do not have the number of incorrect roots
that were lifted. The number of incorrect roots lifted are in the third column



190 R. Terada and R.C. Villena

Table 1. (Factoring N) Number of incorrect roots lifted from a good root.

Cases Number of lifted roots Number of lifted incorrect roots

1 ≤ h ≤ u 2h−1 2h−1 − 1

h = 0 1 0

of Table 1 and are the values of the second column decreased by 1 (because the
good root in root[j] is always lifted by the good root in root[j − 1]). Therefore
we can define the expected value of G as follows:

E[G] =
u∑

h=1

(2h−1 − 1)
(

u

h

)

(1 − δ)hδu−h (2)

where the probability of occuring h unknown bits in a set of u bits is
(
u
h

)
(1 −

δ)hδu−h.

3.2 Number of Incorrect Roots Lifted from an Incorrect Root (B)

Before computing the number of incorrect roots lifted from an incorrect root
let’s define c1 as the computed value of

c1 =

(

N −
u∏

i=1

r′
i

)

[j]

from the good root in root[j −1]. With this definition, we can observe two kinds
of incorrect roots in root[j − 1]: either the computed value of (N − ∏u

i=1 r′
i) [j]

is equal to c1 or is different from c1 (denoted by c1). Considering all this, we
analyzed all cases for computing the number of incorrect roots lifted from an
incorrect root in the next Table.

The cases where 1 ≤ h ≤ u, the values c1 and c1 are not important because
in Hensel’s Eq. (1) there is a modular equation of h variables, and a total of 2h−1

incorrect roots. For the case of c1, the incorrect root is going to act like a good
root, hence for h = 0 the incorrect root lifts an incorrect root. But in the case
of c1 the incorrect root is dropped because we have a contradiction.

The computed value of (N − ∏u
i=1 r′

i)[j] in an incorrect root can be 0 or
1 with probability 1

2 . The probabilities are P ((N − ∏u
i=1 r′

i)[j] = 1) = 1
2 and

Table 2. (Factoring N) Number of incorrect roots lifted from an incorrect root.

Cases (N −
u∏

i=1

r′
i)[j] = c1 (N −

u∏

i=1

r′
i)[j] = c1

1 ≤ h ≤ u 2h−1 2h−1

h = 0 1 0



Factoring a Multiprime Modulus N with Random Bits 191

P ((N − ∏u
i=1 r′

i)[j] = 0) = 1
2 . In other words, the probabilities are the same

because c1 and c1 represent the value of one bit. Hence we have P ((N −∏u
i=1 r′

i)[j] = c1) = 1
2 and P (N − ∏u

i=1 r′
i)[j] = c1) = 1

2 .
Analyzing Table 2 and with the probabilities defined above, we can determine

the expected value of B.

E[B] =
u∑

h=1

2h−1
(u
h

)
(1− δ)hδu−h 1

2
+

u∑

h=1

2h−1
(u
h

)
(1− δ)hδu−h 1

2
+
(u
0

)
(1− δ)0δu−0 1

2

(3)

=
(2− δ)u

2

3.3 Number of Incorrect Roots Lifted at Level j (Xj)

The expected value of the discrete random variable Xj is defined in the following
recursion:

E[Xj ] = E[Xj−1]E[B] + E[G]

because the number of incorrect roots at level j is equal to the number of incor-
rect roots lifted from the incorrect roots at level j−1 plus the number of incorrect
roots lifted from the only one good root at level j−1. And we have E[X1] = E[G]
because at level 0 there is no incorrect root, hence we can compute the closed
form as follows:

E[Xj ] = E[G]
1 − E[B]j

1 − E[B]
. (4)

3.4 Complexity of the Algorithm to Factor

The algorithm to factor N should run up to level n
u and return the prime factors

of N , thus the expected value of the number of incorrect roots analyzed by
Algorithm 1 is defined as:

E

⎡

⎣

n
u∑

j=1

Xj

⎤

⎦ =

n
u∑

j=1

E[Xj ] Property of expected value

=

n
u∑

j=1

E[G]
1 − E[B]j

1 − E[B]
Definition (4)

=
E[G]

1 − E[B]

n
u∑

j=1

1 +
E[G]

E[B] − 1

n
u∑

j=1

E[B]j

=
E[G]

1 − E[B]
n

u
+

E[G]E[B](E[B]n/u − 1)
(E[B] − 1)2

.

The equation above is exponential on n and on E[B] but it can be bounded
as follows. For values of E[B] > 1 this function is actually exponential



192 R. Terada and R.C. Villena

(limn→∞ E[B]n/u = ∞) but for values E[B] < 1 we get limn→∞ E[B]n/u < 1.
Therefore the expected number of analyzed incorrect roots is bounded by a linear
equation on n for values E[B] < 1.

E

⎡

⎣

n
u∑

j=1

Xj

⎤

⎦ =
E[G]

1 − E[B]
n

u
+

E[B]E[G](E[B]n/u − 1)
(E[B] − 1)2

≤ E[G]
1 − E[B]

n

u
for E[B] < 1

In summary, we can factor the modulus N =
∏u

i=1 ri in polynomial time, given
a δ fraction of random bits of its prime factors greater than 2−2

1
u (by Definition

(3) E[B] = (2−δ)u

2 < 1) because the expected number of analyzed incorrect roots
is O(n).

E[B] =
(2 − δ)u

2
< 1

(2 − δ)u < 2

2 − δ < 2
1
u

δ > 2 − 2
1
u

Some results from this analysis are, to factor in polynomial time an integer:

– N =
∏2

i=1 ri, δ ≥ 0.59(2−2
1
2 ≈ 0.5858) fraction of the bits of its prime factors

is needed.
– N =

∏3
i=1 ri, δ ≥ 0.75(2−2

1
3 ≈ 0.7401) fraction of the bits of its prime factors

is needed.
– N =

∏4
i=1 ri, δ ≥ 0.82(2−2

1
4 ≈ 0.8108) fraction of the bits of its prime factors

is needed.

4 Implementation and Performance

The algorithm to factor N was implemented in 300 lines of code using the
program language C with the library Relic-toolkit [1] that is focused for the
implementation of cryptosystems, and was executed on a processor Intel Core
I3 2.4 Ghz with 3 Mb of cache and 4 Gb of DDR3 Memory.

The experiments were executed for integers N (n = 2048 bits) and they were
the product of u primes, 2 ≤ u ≤ 4. For each value δ a total of 100 integers N
were generated, and for each integer N 100 inputs with a fraction δ of bits of its
primes were generated. The results of the total of 550000 experimental runs are
shown in Tables 3, 4, 5 and Fig. 2.

With the results obtained by Heninger and Shacham in [5] we can say that
the number of analyzed incorrect roots in an experiment has a low probability to
surpass 1 million. In our experiments we did the same to avoid trashing, hence
we canceled all experiments that surpassed one million analyzed incorrect roots.

In Tables 3, 4 and 5 we have in the second and third column the minimum and
maximum analyzed incorrect roots, respectively. The fourth and sixth column



Factoring a Multiprime Modulus N with Random Bits 193

Table 3. Results of total examined roots by the algorithm to factor N =
∏2

i=1 ri,
2048 bits.

δ Number of analyzed roots # Exp (> 1M) Average time (s)

Minimum Maximum Average

0.61 1983 945728 4949 0 0.115277

0.60 2233 789608 6344 0 0.119484

0.59 2411 928829 8953 2 0.187600

0.58 2631 987577 14736 7 0.250224

0.57 3436 994640 24281 29 0.531079

0.56 4012 998414 42231 134 0.722388

Table 4. Results of total examined roots by the algorithm to factor N =
∏3

i=1 ri,
2048 bits.

δ Number of analyzed roots # Exp (> 1M) Average time (s)

Minimum Maximum Average

0.77 1128 171142 2022 0 0.033884

0.76 1205 323228 2777 0 0.049238

0.75 1380 177293 3723 1 0.099373

0.74 1607 571189 5941 1 0.197553

0.73 1681 999766 11470 11 0.281414

0.72 2087 983404 23826 50 0.995017

Table 5. Results of total examined roots by the algorithm to factor N =
∏4

i=1 ri,
2048 bits.

δ Number of analyzed roots # Exp (> 1M) Average time (s)

Minimum Maximum Average

0.84 716 31447 1245 0 0.024748

0.83 823 67456 1649 0 0.040714

0.82 931 217391 2424 0 0.063754

0.81 1044 558521 4408 1 0.111688

0.80 1249 994386 9571 14 0.236320

0.79 1632 972196 24085 58 0.609435

contain the average number and the average time of analyzed incorrect roots in
all experiments that did not surpassed one million of incorrect roots. The fifth
column contains the number in all experiments that were canceled because it
surpassed one million incorrect roots.



194 R. Terada and R.C. Villena

Fig. 2. (Factoring N) Average number of analyzed roots by the algorithm to factor
N =

∏u
i=1 ri where 2 ≤ u ≤ 4

Table 6. Comparison of basic, 2-power and 3-primes modulus N .

Cases

Basic Modulus N 2-power Modulus N 3-primes Modulus N

N = r1r2 N = r21r2 N =
3∏

i=1

ri

Random bits δ ≥ 0.59 δ ≥ 0.59 δ ≥ 0.75

For all experiments, we obtained an average time less than 1 second to factor
N . And only 305 experiments were canceled because they had over one million
of analyzed incorrect roots. For the rest of experiments, the algorithm always
returned the prime factors of N .

Figure 2 shows the average number of analyzed roots of our experiments to
factor N with n = 2048 bits. We observe the exponential growth of E

[∑n
u
j=1 Xj

]

for values of δ lower than 2 − 2
1
u (E[B] > 1) for u in [2, 4].

5 Concluding Remarks

We designed an algorithm to factor a multiprime integer N based on Hensel’s
lemma.

The statistical analysis shows that factoring a multiprime modulus N for
u greater than 2 offers more security (adversarially thinking) than for u = 2,
assuming a fraction of random bits of its primes is given. Table 6 shows a com-
parison done for Basic, 2-power and 3 multiprime modulus N .

Using a multi-power N = rm
1 r2 allows a faster decryption process than using

a basic N = r11r2. There is no advantage to factor a multi-power modulus N
with random bits because for any value of m ≥ 1 we always need a fraction
δ ≥ 0.59 of random bits. Due to page number restrictions, our analysis and



Factoring a Multiprime Modulus N with Random Bits 195

implementation results to factor a general multipower modulus N = rm
1 r2 (for

the cases even and odd m) with random bits of its prime factors are given in the
extended version of this paper to be published elsewhere.

The advantages of using a multiprime modulus N are: the decryption is faster,
and with respect to cold boot attacks, the attacker needs more than 2

1
u − 2

1
2

fraction of random bits if a basic modulus N is used. Therefore if u > 2, to factor
N is harder but there is a limit for the value u. When u is large the modulus N
can be factored without extra information using the algorithm called Number
Field Sieve (NFS)4 or by an elliptic curve method (ECM)5.

Acknowledgment. We thank anonymous referees who pointed out the work by
Kogure et al. [9].

References

1. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient Library for Cryptography.
http://code.google.com/p/relic-toolkit/

2. Bar-El, H.: Introduction to side channel attacks. White Paper, Discretix Technolo-
gies Ltd. (2003)

3. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Not. AMS 46(2),
203–213 (1999)

4. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

5. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

6. Herrmann, M., May, A.: Solving linear equations modulo divisors: on factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

7. Hinek, M.J.: On the security of multi-prime RSA. J. Math. Cryptol. 2(2), 117–147
(2008)

8. Jonsson, J., Kaliski, B.: Public-key cryptography standards (PKCS)# 1: Rsa cryp-
tography specifications version 2.1. Technical report, RFC 3447, February 2003

9. Kogure, J., Kunihiro, N., Yamamoto, H.: Generalized security analysis of the ran-
dom key bits leakage attack. In: Yung, M., Jung, S. (eds.) WISA 2011. LNCS, vol.
7115, pp. 13–27. Springer, Heidelberg (2012)

10. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

11. Ptacek, T. : Recover a private key from process memory (2006). http://chargen.
matasano.com/chargen/2006/1/25/recover-a-private-key-from-process-memory.
html

12. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key
cryptosystem. Electron. Lett. 18(21), 905–907 (1982)

4 It is an algorithm to factor an integer N with a very good performance.
5 It is an algorithm to compute a non-trivial factor of N .

http://code.google.com/p/relic-toolkit/
http://chargen.matasano.com/chargen/2006/1/25/recover-a-private-key-from-process-memory.html
http://chargen.matasano.com/chargen/2006/1/25/recover-a-private-key-from-process-memory.html
http://chargen.matasano.com/chargen/2006/1/25/recover-a-private-key-from-process-memory.html


196 R. Terada and R.C. Villena

13. Shamir, A., van Someren, N.: Playing ‘Hide and Seek’ with stored keys. In:
Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 118–124. Springer, Heidel-
berg (1999)

14. Skorobogatov, S.: Low temperature data remanence in static ram. University of
Cambridge Computer Laborary Technical Report 536 (2002)

15. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)


	Factoring a Multiprime Modulus N with Random Bits
	1 Introduction
	2 Algorithm to Factor a Multiprime Modulus N
	3 Behavior and Complexity of the Algorithm to Factor N
	3.1 Number of Incorrect Roots Lifted from a Good Root (G)
	3.2 Number of Incorrect Roots Lifted from an Incorrect Root (B)
	3.3 Number of Incorrect Roots Lifted at Level j (Xj)
	3.4 Complexity of the Algorithm to Factor

	4 Implementation and Performance
	5 Concluding Remarks
	References


