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Preface

The Information Security Conference (ISC), which started as a workshop (ISW) in
1997, is an international conference organized yearly. It has been held in five different
continents.

ISC 2013 was organized in cooperation with the International Association for
Cryptologic Research, and the Department of Computer Science, The University of
Texas at Dallas, USA.

There were 70 submitted papers, which were considered by the Program Committee.
This is roughly the same as for ISC 2012, which took place in Passau, Germany, and
had 72 submissions. Owing to the large number of submissions, some papers that
contained new ideas had to be rejected. Priority was given to novel papers. Of the 70
submissions, 16 were selected, which is a 23 % acceptance rate. We also accepted 14
short papers. Each paper was sent to at least three members of the Program Committee
for comments. Submissions to ISC 2013 were required to be anonymous. EasyChair
was used for submissions, refereeing, etc.

Beside the accepted papers, two invited presentations were given. Michael Reiter
(University of North Carolina at Chapel Hill) spoke about “How to Misuse, Use, and
Mitigate Side Channels in Virtualized Environments.” G.R. Blakley (IACR Fellow)
spoke about his joint work with Bob Blakley and Sean Blakley on “How to Draw
Graphs: Seeing and Redrafting Large Networks in Security and Biology.”

The proceedings contain all the regular papers and short papers accepted, except for
the paper “Formal Analysis of ECC-Based Direct Anonymous Attestation Schemes in
Applied Pi Calculus,” by Li Xi, Yu Qin, and Dengguo Feng. Revisions of papers were
not checked for correctness on their scientific aspects and the authors bear full
responsibility for the content of their papers. Some of the papers may have been edited
taking the comments of the Program Committee or external referees into account.

I am very grateful to the members of the Program Committee for their hard work
and the difficult task of selecting the papers. The Program Committee appreciates the
effort of the external referees who helped the Program Committee reach their decisions.

I thank the general chair, Bhavani Thuraisingham, and the local chair, Kevin
Hamlen, for their help in organizing ISC 2013, and Stacy Morrison for some of the
local organization aspects. Moreover, Julie Weekly helped with secretarial work and
Jeyakesavan Veerasamy with the registration process.

Finally, I would like to thank everyone who submitted their work to ISC 2013.

September 2015 Yvo Desmedt
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Integrity Checking of Function Pointers
in Kernel Pools via Virtual Machine

Introspection

Irfan Ahmed(B), Golden G. Richard III, Aleksandar Zoranic,
and Vassil Roussev

Department of Computer Science, University of New Orleans,
Lakefront Campus, 2000 Lakeshore Dr., New Orleans, LA 70122, USA

{irfan,golden,azoranic,vassil}@cs.uno.edu

Abstract. With the introduction of kernel integrity checking mecha-
nisms in modern operating systems, such as PatchGuard on Windows
OS, malware developers can no longer easily install stealthy hooks in
kernel code and well-known data structures. Instead, they must target
other areas of the kernel, such as the heap, which stores a large number of
function pointers that are potentially prone to malicious exploits. These
areas of kernel memory are currently not monitored by kernel integrity
checkers.

We present a novel approach to monitoring the integrity of Win-
dows kernel pools, based entirely on virtual machine introspection, called
HookLocator. Unlike prior efforts to maintain kernel integrity, our imple-
mentation runs entirely outside the monitored system, which makes it
inherently more difficult to detect and subvert. Our system also scales
easily to protect multiple virtualized targets. Unlike other kernel integrity
checking mechanisms, HookLocator does not require the source code of
the operating system, complex reverse engineering efforts, or the debug-
ging map files. Our empirical analysis of kernel heap behavior shows
that integrity monitoring needs to focus only on a small fraction of it
to be effective; this allows our prototype to provide effective real-time
monitoring of the protected system.

Keywords: Virtual machine introspection · Malware · Operating
systems

1 Introduction

Malware (especially rootkits) often targets the kernel space of an operating sys-
tem (OS) for attacks [1], modifying kernel code and well-known data structures
such as the system service descriptor table (SSDT), interrupt descriptor table
(IDT), and import address table (IAT) to facilitate running malicious code. In
other words, malware of this type installs hooks, which enables it to control

This work was supported by the NSF grant CNS # 1016807.

c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-27659-5 1



4 I. Ahmed et al.

the compromised system. For instance, such malware might hide the traces of
infection, such as a user-level malicious process, or introduce remote surveillance
functionality into the system, such as a keylogger.

Microsoft (MS) has introduced kernel patch protection (a.k.a. PatchGuard)
in 64-bit Windows (such as Windows 7/8) to protect the integrity of kernel code
and the data structures often targeted by traditional malware. It is implemented
in the OS kernel and protected by using anonymization techniques such as mis-
direction, misnamed functions and general code obfuscation. In the presence of
PatchGuard, it is hard for malware to directly install stealthy hooks in kernel
code or modify the data structures monitored by PatchGuard. In order to avoid
detection, modern malware has modified its targets to previously unexplored
data regions. In particular, it targets function pointers in the dynamically allo-
cated region in kernel space (a.k.a. kernel pools) [15–17]. Function pointers refer
to the entry point of a function or routine and by modifying a function pointer,
an attacker can cause malicious code to be executed instead of, or in addition
to, the intended code. A demonstration of this type of attack appears in Yin
et al. [2]. They created a keylogger by simply modifying function pointers corre-
sponding to a keyboard driver in a kernel pool. Moreover, there are thousands
of function pointers in the Windows kernel pools, which provides an attractive
opportunity for an attacker to install stealthy hooks [2].

Current solutions such as SBCFI [3], Gibraltar [4], SFPD [5], and HookSafe
[6] check the integrity of function pointers by generating hook detection policy
and extracting information about function pointers by performing static analysis
of the kernel source code. For example, they obtain the definitions of the kernel
data structures that contain the pointers, and subsequently generate the tra-
versal graph used to reach the data structures containing the function pointers.
Unfortunately, these solutions are dependent on the availability of kernel source
code and thus not appropriate for closed source OSs such as MS Windows.

More recently, Yin et al. presented HookScout [2] for checking the integrity of
function pointers in MS Windows. It uses taint analysis [7] to trace the function
pointers in kernel memory, and generates a hook detection policy from the mem-
ory objects that hold the pointers. The tool learns about the function pointers
from a clean installation of the OS with typical user applications installed on
it. The effectiveness of HookScout depends on how much contextual information
is obtained about the function pointers during the learning phase. During the
detection phase, if a target machine is attacked via modification of a function
pointer not evaluated by HookScout during its learning phase, it will be unable
to check the function pointer integrity.

Importantly, HookScout was developed on a 32-bit Windows XP OS and its
current approach cannot be readily extended to 64-bit Windows 7:

– For detecting hooks, HookScout adds a jmp instruction at the entry point of
each function whose function pointer is being monitored. The jmp redirects
the execution to its own detection code. In 64-bit Windows 7, such patching
of functions is not possible due to PatchGuard.
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– HookScout obtains a list of function pointers for analysis by disassembling the
MS Windows kernel in IDA Pro and traversing through the relocation table
to identify the absolute addresses of function pointers. This works on 32-bit
Windows XP since Windows uses absolute addresses in the kernel to refer to
functions and thus an entry for such addresses exists in the relocation table.
However, 64-bit Windows 7 uses offsets from the current instruction to refer
to functions, because the code in 64-bit Windows is guaranteed to be aligned
on a 16-byte boundary [8]. Thus, the relocation table does not contain entries
for all the function pointers in kernel code.

– Finally, HookScout is implemented as a kernel module, which runs in the
kernel space being monitored in the target machine. Thus, it is prone to sub-
version like any other security solution running inside a compromised machine,
a limitation acknowledged by the authors of HookScout.

In this paper, we present HookLocator for MS Windows, which checks the
integrity of function pointers in a virtualized environment and identifies func-
tion pointers that are maliciously modified in a kernel pool. HookLocator runs
in a privileged virtual machine and uses virtual machine introspection (VMI)
to access the physical memory of a target virtual machine (VM) running MS
Windows. Since HookLocator runs outside the target VM, it is less prone to
subversion and can obtain the list of function pointers directly from reliable
sources in the physical memory of the target machine (such as kernel code and
data structures monitored by PatchGuard), without disassembling kernel code
or traversing the relocation table. The list is then used to find the instances of
function pointers in kernel pool data. HookLocator does not require hooking to
obtain the kernel pool data; instead, it uses kernel data structures maintained by
Windows to track memory allocations to locate appropriate dynamic allocations
in kernel pools. Our tool does not require access to source code to learn contex-
tual information about function pointers; instead, it obtains all the information
directly from the physical memory of the target machine. Thus, it continues
learning from the target machine even during the monitoring phase, in order to
obtain new information about the pointers under scrutiny.

The main contributions of this work are as follows:

– We propose a new approach to obtain the list of function pointers to be
monitored directly from physical memory. The approach takes two memory
snapshots of kernel code that are loaded into two different locations in memory
and uses the differences to locate candidate function pointers. The locations
are marked and then used to obtain the function pointers from the in-memory
kernel code of the target machine.

– We propose a VMI-based hook detection approach to check the integrity of
function pointers in kernel pools. The approach obtains the list of function
pointers and their context information directly from the physical memory of
the target system.

– We present a proof-of-concept prototype, HookLocator, for 64-bit Windows 7
to evaluate the effectiveness and efficiency of the approach.
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– We thoroughly evaluate HookLocator on Windows 7 and identify a region in
kernel pool, which provides a non-pageable target-rich attack surface. Hook-
Locator is able to perform real-time monitoring on the region with a negligible
amount of memory overhead.

2 Related Work

In addition to HookScout, which represents the current state of the art, a number
of other techniques have been developed to combat kernel hijacking techniques.
Since the inclusion of PatchGuard within Microsoft Windows, rootkits are no
longer able to hook to kernel objects by modifying kernel code. This, in turn, has
changed malware hooking techniques by redirecting their subversion efforts to
the previously unexploited kernel heap. Therefore, much prior work has become
obsolete, and not up to the task of reliably detecting rootkits. Many of the
techniques, which we outline below, have substantial practical limitations as
they rely on source code availability and/or incur unacceptable performance
penalties.

Riley et al. implemented PoKeR [18], a rootkit behavior profiling engine.
It relies on the OS kernel source code for static analysis or debugging symbols and
type information for binary analysis. Furthermore, certain modules in PoKeR,
such as context tracking and logging, run inside the VM allowing malware to
tamper with such modules. PoKeR utilizes a resource intensive profiling engine,
which incurs a significant overhead and severely limits its practical deployment.

Yin et al. developed HookFinder [19], a method that uses dynamic analy-
sis of kernel code to identify and analyze malware hooks. Designed mostly for
analytical purposes, HookFinder does not constantly check for rootkit activity,
but rather provides a controlled experimental environment to analyze rootkits
in. The tool is relatively resource intensive and, therefore, potentially detectible
by the malware using performance monitoring.

Carborne et al. [5] implements a system called KOP to perform systematic
kernel integrity checking by mapping kernel objects. KOP operates in an offline
manner by capturing Windows kernel memory dumps and using the Windows
debugger to obtain information about the kernel objects. KOPs static analysis uti-
lizes Vistas source code to identify relevant data types, variables and structures.

Wang et al. propose HookSafe [6] a solution that creates a shadow copy
of non-movable function pointers, and return addresses mapped to a hardware
protected page aligned area. Requests to modify this shadow copy are inter-
cepted and forwarded to the hypervisor module that inspects the validity of
these requests. It requires knowledge of OS source code, which is not always
available, as in the case of Windows.

Nick et al.’s State Base Control Flow Integrity (SBCFI) [3] system conducts
periodic kernel control flow integrity checks. To do so, it relies on knowledge of
kernel source code and binary files. As stated before, OS kernel source code for
commodity OSs is usually not readily available.

Baliga et al.’s Gibraltar [4] relies on a separate observer machine to capture
periodic memory snapshots of the target machine for integrity analysis. This idea
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is similar in spirit to our approach; however, Gibraltar’s implementation relies on
constantly capturing memory snapshots via Direct Memory Access (DMA). This
poses a significant performance overhead on the observer machine and increases
training time to almost an hour; it also requires additional hardware just for
monitoring. Another shortcoming is that Gibraltar requires kernel source code
for the initial static analysis.

In summary, each of the prior efforts surveyed exhibit at least one of the
following limitations: (a) reliance on source code; (b) execution at the same
level of privilege as the malware; (c) significant performance overhead; and
(d) incomplete coverage of kernel space. The HookLocator overcomes most of
these limitations and present a viable solution to kernel heap integrity monitoring.

3 Integrity Checking for Function Pointers

3.1 Environment

In a modern virtualized environment, a virtual machine manager (VMM) allows
multiple virtual machines (VMs) to run concurrently on the same physical hard-
ware. The virtual machines are called guest VMs, and are isolated from each
other by the VMM. However, some VMMs also provide virtual machine intro-
spection (VMI) capabilities that allow a privileged VM to monitor the system
resources (such as physical memory) of guest VMs. HookLocator works in such a
virtualized environment, where it runs in a privileged VM and accesses the phys-
ical memory of guest VMs through VMI. We also assume that the kernel code
and the well-known kernel data structures inside the guest VMs are protected by
PatchGuard or an alternate solution, such as VICE [9], System Virginity Verifier
[10], ModChecker [11] and IceSword [12].

The remainder of this section describes HookLocator’s architecture in more
detail.

3.2 HookLocator Architecture

Figure 1 shows the architecture of HookLocator, which consists of four modules:
extraction, search, learning, and pool monitor. The extraction module builds a
list of function pointers from reliable sources in the physical memory of a guest
VM, which is used by the search module to locate candidate function pointers in
the kernel pool data. The learning module uses heuristics to identify the genuine
function pointers, which are then monitored for integrity by the pool monitor.
The details for each module are provided in the following sections.

Extraction Module. The extraction module obtains function pointers from
kernel code and well-known data structures residing in the physical memory of
a guest VM and builds a list that is subsequently passed to other modules in
HookLocator. The data structures are well organized and have specific fields
that either contain or lead to function pointers, which are used by the module to
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Fig. 1. HookLocator architecture. (Arrows directed towards the lists represent write
operations; otherwise, they represent read operations).

extract the pointers. On the other hand, kernel code does not have such fields.
Thus, extracting function pointers directly from the code requires a different
approach. We employ two different methods to obtain function pointers from
the code, which are described next.

The first method uses a cross-comparison approach and takes advantage of
the relocatable property of Windows kernel code. Note that we cannot directly
use the relocation table associated with kernel components, since the image
loader often removes this table when the kernel is loaded1. Instead, we build a
model from the kernel code, which identifies the absolute addresses in the code.

We accomplish this by comparing two snapshots of the kernel code loaded at
two different locations in memory. The differences in the memory contents of the
two loaded kernels are the identified absolute addresses, because the kernel has
been loaded at different locations (the code itself is invariant). Figure 2 illustrates
the process. If the addresses lie within the address range of kernel code, they
are potentially kernel function pointers, and are tagged and stored within the
protected VM. In order to extract function pointers from the kernel code of a
target VM, the model is compared with the target VM’s kernel code. The tags
in the model identify the locations of the function pointers in the code, which
are then obtained by the extraction module.

1 While the .reloc section of the MS Windows kernel does contain the relocation
table, the section is discardable as identified by the characteristic field in the section
header.
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Fig. 2. Two snapshots of the .text section of the kernel code (ntoskrnl.exe) from 32-bit
Windows 7. The kernel is loaded at the base addresses 00 10 60 82 and 00 f0 64 82.

The second approach is a simple pattern matching technique, which comple-
ments the first one in that it does not count on the relocation property of the
kernel. It is specifically designed for 64-bit Windows to overcome the limitation
of the first approach, due to the use of offsets rather than absolute addresses
[8]. We analyzed a collection of kernel functions in the 64-bit Windows 7 kernel
and found a useful pattern: after return instructions (opcode 0xC3), there are a
number of NOP instructions (opcode 0x90) followed by the entry point of the next
function. The extraction module uses the 0xC390 pattern to obtain a substantial
list of function pointers.

Search Module. The search module performs three primary tasks. First, it
obtains the kernel pool data from the kernel space in the physical memory of a
guest VM; this involves extracting data structures that reference kernel pools in
the memory, and identifying dynamic allocations in the pools.

Second, the search module searches for function pointers in the kernel pool
data. To do this, it uses the function pointer list, built by the extraction module,
and locates function pointers in the pool data.

Third, the search module decides whether to pass the pointer to the learn-
ing module or the pool monitor. This decision is based on the entries in the
genuine pointer list, which contains contextual information about the pointers.
This includes, among others, the name of the module that made the allocation
containing the pointer, the size of the allocation, and the offset of the pointer
from the base address of the allocation. When the search module finds a function
pointer in a pool allocation, it obtains its information and searches for it in the
genuine-pointer list. If it finds it in the list, it adds the pointer to the monitoring-
pointer list so that the pool monitor will check the integrity of the pointer. If the
search module does not find the pointer in the genuine pointer list, it adds it to
the learning-pointer list so that the learning module can appropriately identify
genuine pointers and add them to the genuine-pointer list.
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Learning Module. A pointer located by the search module may or may not be
genuine, because it can be confused with random data in the kernel pools that
matches a pointer in the function pointer list. When the learning module receives
a pointer via the learning-pointer list, it observes the pointer over its entire life
span. Yin et al. [2] reported that 97 % of function pointers in Microsoft Windows
do not change over their entire life span, which provides a basis to identify
genuine pointers. If a pointer in the list does not change until the de-allocation
of the memory where the pointer is located, the learning module assumes it is
genuine.

HookLocator does not check the integrity of pointers that change during their
life span. The rationale here is that attractive targets for attack are the pointers
that: (a) have a long life span; and (b) do not change throughout their life span.
This allows an attacker to create a persistent change in the control flow of the
system. Such pointers may live in the system for long time, which apparently
slows down the learning process, since the module cannot decide whether the
pointer is genuine until its memory is deallocates. Thus, in order to identify such
pointers efficiently, the learning module monitors the age of a candidate pointer
and, if the age exceeds a given threshold, the learning module considers it to be
genuine.

Pool Monitor. The sole purpose of the pool monitor is to check the integrity of
function pointers and raise alerts upon any detected modifications. HookLocator
maintains a monitoring-pointer list, which contains the pointers that are mon-
itored by the module. Typically, the pointers being monitored do not change;
however, if a pointer value is changed to another value within the address range
of the kernel-code, or it is changed to NULL or from NULL to a value within
the address range of the kernel code, the module considers the change in pointer
value as legitimate; in all other cases, it raises an alert.

4 Implementation

HookLocator is fully implemented within a privileged VM and does not require
modifications to the underlying VMM or running any components inside a guest
VM. Thus, it works on any VMM (such as Xen, KVM, etc.) that has VMI
support for physical memory analysis. Our current implementation is based on
Xen (version. 4.1.2) on 64-bit Fedora 16 (version. 3.1.0-7). The Windows guests
are Windows 7 SP1.

We use LibVMI [13] to introspect the physical memory of the guest VM to
check the integrity of function pointers. Since LibVMI simply provides access to
the raw physical memory of a guest VM, we need to bridge the semantic gap
between raw memory and useful kernel data structures, which we further discuss
in this section.

The extraction module builds a list of function pointers from kernel code
(including kernel modules) and four tables: interrupt descriptor table, system
service descriptor table, import address table, and export table. To extract
information about function pointers from kernel code and import and export
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tables, the extraction module first gathers information about the in-memory
kernel modules, including the name of each module, the module’s base address,
and the size of the module. Windows maintains a list of kernel modules in a
doubly linked list. Each node in the list is represented by the data structure
LDR DATA TABLE ENTRY. The base address of the first node in the doubly linked
list is stored in a system global variable PsLoadedModuleList, which is used by
the extraction module to reach the list. Each LDR DATA TABLE ENTRY also has
FLINK and BLINK fields that contain pointers to the next and previous node in
the list. The extraction module uses these fields to traverse the complete list of
loaded modules.

For each module in the list, the extraction module uses the base address and
size of the kernel module to extract the whole module from the memory. Each
kernel module is in the portable executable (PE) format, which contains headers,
code and data sections, and import and export tables. The extraction module
parses each kernel module in the PE format to access the tables and the code.
It further processes the code using the cross-comparison and pattern matching
approaches discussed previously to obtain the list of function pointers. Moreover,
the extraction module reads the base address and size of the IDT from the IDTR
register and copies the entire IDT into a local buffer and further processes it
to extract function pointers. It also obtains the system service descriptor table
(SSDT) using the approach from a Volatility plugin [14]. The extraction module
further processes the SSDT to obtain function pointers of system calls.

The search module locates function pointers in the Windows kernel pools by
obtaining the data from each allocation in a pool and scanning it for match-
ing function pointers. The allocations in a pool are classified into two types
based on the allocation size: small chunks, and big allocations. A small chunk
requires less than a page for an allocation. On the other hand, a big allocation
requires more than a page for an allocation. MS Windows keeps track of these
two types of allocations in separate data structures, which are also used by the
search module to track and process kernel pool allocations. The big allocations
are tracked through the PoolBigPageTable, with each entry represented by a
POOL TRACKER BIG PAGES structure. The search module finds the location of the
PoolBigPageTable in the .data section of ntoskrnl.exe. A small chunk, on
the other hand, resides completely within one page and an allocated page can
have several small chunks (represented by POOL HEADER structures), which are
adjacently located in a sequence. The search module finds the allocated pages
and further processes them to extract chunks.

The learning module observes pointers in the learning-pointer list. If a pointer
does not change during its entire life span, i.e., until deallocation of the contain-
ing block, then the learning module considers it a genuine pointer. In order to
discover the current validity of an allocation, the base address of the allocation
can be examined, if the allocation is a big one. If the content of that address is
not 1, it means it is a valid allocation. In case of a small chunk, the learning mod-
ule looks at the 1st bit of the PoolType field in the chunk header POOL HEADER.
If it is set, it means the allocation is valid. There are some cases, e.g., when
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Table 1. Number of function pointers found in the .text code section of kernel and
its modules by HookScout’s IDA plugin (H), our cross-comparison approach (C) and
our pattern matching approach (P).

Windows 7

32-bit 64-bit

Module name H C H C P

ntoskrnl.exe 5,388 5,390 401 200 2,960

hal.dll 537 537 0 0 537

ntfs.sys 147 147 0 0 416

i8042prt.sys 68 68 0 0 90

http.sys 212 212 0 0 518

disk.sys 11 11 0 0 65

volmgr.sys 18 18 0 0 35

kdcom.dll 21 21 0 0 20

a pointer has a long life span, which makes the first criteria less effective for
learning. Thus, the learning module uses a threshold value based on the age of
the pointer. If the age exceeds a certain threshold value, it considers the pointer
as genuine. The learning-pointer list maintains the creation time of a pointer
entry in the list, which the learning module uses to predict the age of a pointer.

The pool monitor observes the pointers from the monitoring pointer list
until the allocation where the pointer is located is de-allocated. In this case,
the module stops observing the pointer and also deletes the pointer entry from
the list. If the pointer changes to NULL or to any other value within the address
range of kernel code, the module considers such changes as legitimate and keeps
observing the pointer. Otherwise, it raises an alert.

5 Evaluation

In this section we quantify the performance of each component of HookLo-
cator. All experiments were performed on fresh installations of Windows 7 in
VMs running on Xen (version. 4.1.2). We also installed several common applica-
tions: Skype, Google Chrome, MS Office 2010, Acrobat Reader, WinDbg, CFF
explorer, and WinHex in order to understand the effects of user processes on
kernel heap data.

5.1 Extraction Module

We use HookScout’s IDA Pro plugin [2] as a baseline for our cross-comparison
approach as both tools rely on the relocation property of Windows kernel. Table 1
summarizes the number of function pointers extracted from the code section of
the Windows kernel by the different approaches.
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Table 2. Number of function pointers from different sources in 64-bit Windows 7

Function pointer source name Total number of function pointers

Kernel code 28,518

IDT 271

SSDT 401

IAT 12,142

Export table 4,887

TOTAL 46,219

Unique pointers 30,875

In the 32-bit case, the two methods are equally effective as they extract
almost exactly the same number of function pointers (the number differs by
2 – and the exact reason for this is under investigation). In 64-bit Windows 7,
HookScout and the cross-comparison approach do not work well, because the
kernel code in 64-bit MS Windows 7 uses offsets to address the entry point of
functions in instructions, instead of absolute addresses. Despite this fact, both
the approaches showed one exception: they both obtained a small number of
pointers from ntoskrnl.exe. HookScout finds 401 pointers (in ntoskrnl.exe)
vs. 200 found by our cross-comparison approach. We further investigated the
exception and it turns out that both methods find the pointers from the SSDT,
however, HookScout analyzes the file, whereas we analyze the in-memory version.
The file ntoskrnl.exe contains 401 absolute addresses for function pointers;
however, when the kernel is loaded into memory, the addresses are adjusted
according to where the kernel is loaded. After the adjustment, a new SSDT
is created, which overrides the original. In the new SSDT, 201 of the 8-byte
absolute pointers are replaced with 401 4-byte offsets from the base address of
SSDT. Thus, half of HookScout’s results are, in fact, false positives.

The byte pattern matching is much more effective and obtains an additional
2,960 pointers and this is the method we used to more accurately identify func-
tion pointers in 64-bit Windows 7. Table 2 shows a breakdown of the number of
function pointers obtained from different sources. Since HookScout only works
on 32-bit Windows, we present only our results for the 64-bit MS Windows 7.
We found that 33.2 % of function pointers are duplicates; after excluding them,
we are left with 30,875 distinct function pointers, which are used by the other
modules of HookLocator.

5.2 Search Module

The search module goes through all memory allocations and scans for the
function pointers identified by the extraction module. There are two types of
allocations – small and big – in each of the paged and non-paged kernel pools.
We used HookLocator to understand the number and distribution of pointers
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Table 3. Correlation between the allocation size and the number of function pointers

Allocation type Total size of alloca- Total number of Number of pointers

tions (MB) pointers per MB

Big allocations Non paged pool 34.09 0 0

Paged pool 79.13 1665 12

Small Chunks Non paged pool 4.25 3201 753

Paged pool 172.62 2297 13

in each of these cases. To obtain them, we ran HookLocator 10 times with a
five-second delay between executions.

As shown in Table 3, we obtained the number of function pointers in each type
of allocations and calculated the pointer density in each type of allocation. It is
clear that allocations in the paged pool have a lower concentration of function
pointers (12 per megabyte), which makes them less attractive for attack. More
importantly, these allocations are pageable; if used by an attacker, there is always
a chance that the page containing the modified pointer would be swapped out,
which makes retaining control of the system flow more problematic.

Pages in the non-paged pool always reside in physical memory, so the pointers
in the pool offer a more reliable means to subvert control flow. Our experiment
shows that the big allocations in the non-paged pool have no function pointers,
which leaves small chunks in the pool – with relatively high concentrations of
function pointers – as the most target-rich attack surface. Thus, for the rest of
our discussion, we narrow our focus to the small chunks in the non-paged pool
as the area to be protected.

Table 3 shows that the small chunks in the non-paged pool consist of around
4 MB immediately after boot. Our first task is to understand whether there is a
change in small chunk allocations and the number of pointers in the region when
a user process is initiated. We obtained the total size of the small chunks in the
pool before and after a user process is initiated. We ran HookLocator 10 times
with a 5-s pause in between each run. The first four runs were performed before
the initiation of a user process and obtained almost identical allocation sizes and
number of pointers. After the fourth run, we initiated the process and obtained
6 more readings. The procedure was repeated for six different applications and
their respective averages are given in Table 4.

Across the board, we see an increase of 1–2 % in the size of the small chunks
and the total number of function pointers. Therefore, for the rest of our evalua-
tion experiments we consider the system in both idle and active-user state.

5.3 Learning Module and Pool Monitor

The purpose of the learning module is to validate candidate pointers identified by
prior modules and present them as genuine targets for integrity monitoring. The
validation is based on age of the pointer and the observation that only a small
number of kernel function pointers change over their life span [2]. Therefore,
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Table 4. Effects of user process creation on small chunks in the non-paged pool.

Total size of allocations
(in Kilo Bytes)

Total number of pointers

Process name Before
initiation

After
initiation

%age
increase

Before
initiation

After
initiation

%age
increase

Skype 4,717.00 4,770.83 1.14 3,456 3,499 1.25

MS Word 4,751.25 4,793.33 0.89 3,491 3,512 0.61

MS Power-Point 4,769.25 4,789.33 0.42 3,503 3,515 0.34

Acrobat Reader 4,767.25 4,840.67 1.54 3,507 3,535 0.79

Windows Media Player 4,820.75 4,928.00 2.22 3,481 3,556 2.16

Chrome 4,789.75 4,863.33 1.54 3,472 3,533 1.76

to evaluate the false positives – our primary criterion for success – we study the
life span of discovered function pointers and whether they are modified.

We consider two extreme cases: (1) when the machine is idle and there is
no user activity; and (2) when the machine is actively in use. We use PCMark
7 [20] a performance-benchmarking tool to create a reproducible workload on
the target machine, which is representative of user activities. It automatically
performs several computational and IO activities on the system without any user
intervention, including web browsing, image manipulation, video playback, and
antivirus scanning.

We ran HookLocater for one hour to observe the function pointers in the small
chunks of non-paged pool – the results are shown on Fig. 3(a/b). In the idle case,
8 % of function pointers end up de-allocated within the first six minutes, another
0.5 % are de-allocated by the end of the hour, and 91.5 % are still valid. None of
the de-allocated pointers ever changed their value. In the active-user case, 69 %
of pointers live no longer than 20 min, another 3 % are de-allocated by end of
the experiment, and 28 % are still alive. Among pointers that have completed

Fig. 3. Life span of function pointers.
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Fig. 4. False positive rate.

their life cycle, none changed their values. The interesting result here is that, it
is easier to identify genuine pointers when the system is actively in use.

Evidently, for a practical system we need a time frame within which to make
a decision whether a pointer is genuine, or not. When a genuine pointer is iden-
tified, it is included in the genuine pointer list, which is then handed over to the
pool monitor for protection. If the assigned pointer is not genuine, it will gen-
erate false alarms and render our system less useful. In other words, we need to
balance two requirements – responsiveness (identify breaches as soon as possible)
and accuracy (have a low false positive rate).

We use a threshold parameter that determines how long we wait before we
declare a pointer genuine. Figure 4 shows the measured false positive rate as a
function of the age threshold of pointers. It is clear that even for a threshold of
10 s the false positive rate is 0.0028, which is a good starting point for tuning the
system. Further investigation into the specific instances of false positives will,
presumably, allow us to lower the rate even further but this study is outside the
scope of this paper.

As a practical test of the effectiveness of the pool monitor we created a
tool that synthetically mutates function pointers in the kernel pools at random.
HookLocator raised an alert in all cases for suspicious changes. In the next
section, we quantify the frequency at which the protection service can be run
and these integrity checks be performed.

5.4 Performance Overhead of HookLocator

We built a small test environment to evaluate the performance of HookLocator.
The physical machine that we used contained an Intel Core 2 Quad CPU (4 ×
2.8 GHz) with 4 GB RAM. We used a VM running 64-bit Windows 7 over Xen
(4.1.2), allocating one core and 1GB RAM to the VM. The privileged VM had
Fedora 16 installed with the 3.1.0-7.fc16.x86 64 kernel.

We evaluated the HookLocator’s execution performance on different types
of memory allocations (big allocations/small chunks, paged/non-paged pools).
We used two extreme test cases (1) when the target VM idle and (2) when it is
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Table 5. Performance evaluation of HookLocator when VM is idle.

Allocation type Memory overhead No. of executions

MB2 %age per minute per second

Big allocations 60 2.38 31 0.52

Small chunks (Paged Pool) 44 1.74 4 0.07

Small chunks (Non-paged pool) 24 0.94 115 1.91

Table 6. Performance evaluation of HookLocator when VM is actively being used.

Allocation type Memory overhead No. of executions

MB2 %age per minute per second

Big allocations 65 2.58 31 0.52

Small chunks (Paged Pool) 47 1.87 4 0.07

Small chunks (Non-paged pool) 24 0.96 101 1.68

actively in use. Moreover, in both cases, we did not run any extra services on the
privileged VM in order to allow HookLocator exploit all the available resources
of the VM. We obtained the HookLocator’s memory overhead and the speed of
scanning a type of memory allocations.

We ran the HookLocator for a minute and counted the number of scans it
performed. Tables 5 and 6 summarize the results for both the test case, which
show that the HookLocator is able to scan the small chunks of non-paged pool
more than once per second, which makes it suitable for even real-time moni-
toring. HookLocator also has a low memory overhead, compared to the typical
physical memory available on a modern system.

6 Conclusion

In this paper, we argued that prior work does not provide reliable and practi-
cal protection against modern rootkits on Windows systems. Specifically, their
shortcomings range from the need to analyze source code and execution in the
same address space, to prohibitive overhead and no protection for the kernel
heap. Also, they all focus on old, 32-bit Windows XP versions, and none is capa-
ble of working with 64-bit versions of Windows 7. To address these challenges, we
developed a new approach based on VM introspection and implemented it in a
tool called HookLocator. The main contributions of our work can be summarized
as follows:

We address the biggest current threat to kernel hooking, which involves tam-
pering with function pointers on the kernel heap. Microsoft’s PatchGuard has
effectively rendered most prior attack research ineffective, but does not protect
the heap. Consequently, the kernel heap is becoming the primary vector for
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intercepting kernel control flow by current malware rootkits. Our approach con-
ceptually works on both 32 and 64-bit versions of Windows. It does not rely on
examining the source of the target OS; rather, it uses the relocatable property of
Windows kernels as appropriate, supplemented by pattern matching to reliably
identify kernel function pointers to be protected.

HookLocator works at a higher level of privilege than the potentially com-
promised VM, which makes it very difficult for any rootkit to cover its tracks.
Further, since the tool runs in a separate VM and has a light performance foot-
print, it would be very difficult for a rootkit to detect that it is being monitored.

Our evaluation shows that our approach imposes minimal memory and CPU
overhead, which makes it very practical. In particular, its light footprint enables
real-time monitoring of the target VM, and easy path to scaling up the protection
service.
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Abstract. By implementing all non-essential operating system services
as user space tasks and strictly separating those tasks, a microkernel can
effectively increase system security. However, the isolation of tasks does
not necessarily imply their trustworthiness. In this paper, we propose
a microkernel-based system architecture enhanced with a multi-context
hardware security module (HSM) that enables an integrity verification,
anomaly detection, and efficient lightweight attestation of multiple sep-
arated tasks. Our attestation protocol, which we formally verified using
the automated reasoning tool ProVerif , implicitly proves the integrity
of multiple tasks, efficiently communicates the result to a remote veri-
fier, and enables a secure update protocol without the need for digital
signatures that require computationally expensive operations.

Keywords: Lightweight attestation · Microkernel tasks · Multi-context
hardware security module · Trusted platform module

1 Introduction

To increase and ensure safety and security, microkernel-based systems provide
separation mechanisms to isolate individual tasks from the rest of the system.
The system enforces this strict separation by partitioning resources, e.g., CPU
time or physical memory, and by virtualizing address spaces and devices. In
addition, a microkernel such as L4 [7] is very small in terms of code size and less
complex compared to monolithic kernels, hence considered more trustworthy.
However, a strong separation of potentially complex software components by a
trusted microkernel does not necessarily imply the trustworthiness of the isolated
tasks, which is a desirable property in most security-critical systems.

One approach to verify the trustworthiness of software components takes
advantage of a hardware security module (HSM), such as a Trusted Platform
Module (TPM) [14]. A TPM provides a cryptographic context and mechanisms
to securely store integrity measurements, create (a)symmetric keys, and perform
certain cryptographic operations, such as encryption. For a remote attestation,
for example, load-time integrity measurements are signed with a private key
inside the TPM and sent to a remote verifier together with a stored measurement
log (SML) in order to prove the integrity of a system. However, since those digital
c© Springer International Publishing Switzerland 2015
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signatures are based on asymmetric cryptography, more precisely RSA (with at
least 2048 bit keys), they are quite large and rather expensive1, even though the
TPM includes dedicated cryptographic engines for signature calculation. The
reason is that the TPM was never intended to be and, in general, does not act
as a cryptographic accelerator. In addition, the TPM was also not designed to
handle run-time integrity values, such as events or behavior scores generated by
an anomaly detection, which thus cannot be used for a remote attestation.

Furthermore, TPMs do not support virtualization natively, since they only
provide one cryptographic context for system-wide load-time integrity measure-
ments and keys. That is why most existing concepts rely on the virtual machine
monitor, also known as hypervisor, to virtualize the TPM [1,3,12]. However, as a
consequence of the implementation in software, cryptographic secrets, e.g., keys,
or integrity measurement values are not always handled inside the TPM. As a
result, recent efforts explored and showed the feasibility to realize and manage
multiple TPM contexts in hardware [4]. With multiple individual cryptographic
contexts, a TPM-based HSM can provide each task with its own security context,
which can be used to securely store, for example, keys and integrity measure-
ments on a per-task basis. However, as a consequence of the isolated contexts,
the number of digital signatures (and SMLs) in a remote attestation as spec-
ified by the Trusted Computing Group (TCG) increases with the number of
contexts (i.e., tasks), which makes classical attestation even more expensive and
also inefficient, especially on resource-constrained devices, e.g., smartphones.

To overcome these challenges, we first propose a microkernel-based archi-
tecture with an integrity verification and anomaly detection component that is
enhanced with a multi-context HSM. Within the HSM, the load-time integrity
values and events collected by an anomaly detection during run-time are stored
in distinct contexts, so that task-specific keys, for instance, can be cryptograph-
ically bound to these values. As our main contribution, we then propose and
formally verify a lightweight attestation mechanism, which mainly relies on sym-
metric cryptography and, thus, is able to efficiently verify multiple tasks in a
microkernel-based system. Additionally, our attestation protocol is designed to
enable secure code updates based on the integrity of existing security-critical
tasks while eliminating the need for digital signatures.

The rest of the paper is structured as follows. In Sect. 2, we discuss related work
on remote attestation with a focus on hardware-based attestation. In Sect. 3, we
explain our scenario and attacker model. Section 4 describes the system architec-
ture for the attestation and code update presented in Sect. 5. In Sect. 6, we analyze
the security of our protocols. Finally, Sect. 7 concludes the paper.

2 Related Work

For a hash-based remote attestation as specified by the TCG [14], static load-
time hash values of the components comprising the relevant software stack are
1 That is because of the exponentiation operations used in RSA’s encryption and

compared to symmetric cryptography.



22 S. Wagner et al.

calculated during authenticated boot starting from a Core Root of Trust for
Measurement (CRTM). That means the current software component in the boot
chain measures the next one before executing it. Later, these integrity measure-
ment values stored inside the TPM are signed and sent together with a SML
to the remote verifier. However, since this approach primarily focuses on load-
time integrity measurements for software binaries only, other schemes, such as
property-based [8], semantic [5], or logic-based attestation [11], try to extend and
generalize the attestation mechanism. For instance, property-based attestation
aims at proving certain security characteristics rather than the integrity of cer-
tain software binaries. However, most of these attestation protocols still rely on
quite expensive cryptographic operations—more precisely, digital signatures—
which make them less suitable for an attestation of multiple separated tasks in
a virtualized embedded system with limited resources, such as smartphones.

As a result, more recent efforts [10] proposed to increase the performance and
efficiency by implementing a proxy component on the prover’s system, which
verifies that system locally and, thus, reduces the time between the attestation
and the verification of the result. However, this approach still relies on tradi-
tional attestation mechanisms based on digital signatures to verify the hyper-
visor, virtualized device drivers, and the proxy component. Our mechanism, in
comparison, focuses on a lightweight attestation, which relies on symmetric cryp-
tographic operations rather than digital signatures and only requires very small
messages to prove the integrity of multiple tasks including the microkernel.

3 Attestation Scenario and Attacker Model

In this section, we describe the scenario, which captures the settings for our
attestation and secure code update protocol. We also specify the attacker model.

3.1 Scenario for the Attestation of Multiple Tasks

For our attestation and secure code update protocol, we define a (P) and a (V).
The prover is a microkernel-based embedded system with different security- or
safety-critical applications, such as a smartphone or a vehicle. V, on the other
hand, is a remote verifier, which is considered honest and trustworthy.

Without any loss of generality, we assume that the prover is a smartphone
with a microkernel-based system architecture, which can execute various tasks
in isolated virtualized environments. Typical tasks are the baseband stack for
communications with a mobile network, virtualized device drivers, native tasks
for security-critical applications, such as a secure email or VPN client, and reg-
ular user applications running on a rich operating system, e.g., a Linux-based
Android. Since those tasks have different levels of criticality, they are strictly
isolated by the separation mechanisms of the microkernel. However, an attacker
might still be able to compromise tasks, e.g., by fuzzing their interfaces. That
is why the prover has to provide verifiable evidence for the integrity of relevant
security-critical tasks before the verifier grants access to restricted resources,
such as emails, confidential documents, or updates for business applications.
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For example, in our scenario, the smartphone might regularly connect to a
company network via VPN, whenever the user needs access to company-internal
resources. To establish a secure connection, the verifier in the company network
first requires proof for the integrity of security-critical tasks, such as certain
device drivers and the VPN client. Based on the attestation result, access to the
company network is granted or denied. In case access is denied, e.g., because the
VPN client was compromised, the verifier should be able to provide a code update
based on the integrity of only the most basic security-critical tasks, such as the
microkernel and the baseband stack. That way the prover is able to recover.

3.2 Attacker Model

In our scenario, the (A) can read and manipulate messages between the prover
and the verifier as long as they are not encrypted or otherwise protected. More
precisely, an attacker cannot decrypt an encrypted message or forge a correct
message authentication code (MAC) for a modified message without the correct
key. The attacker is also not able to invert cryptographic hash functions.

Additionally, as specified for most remote attestation protocols, we assume
that hardware attacks are not possible. In particular, the security mechanisms of
the HSM cannot be compromised by an attacker. That means we assume that the
implementation of hardware-based security features, e.g., cryptographic engines,
and firmware implemented in software are correct.

4 Microkernel-Based System Architecture with
a Multi-context HSM

In security-critical systems such as described in the scenario, microkernel-based
virtualization provides the necessary means to safely execute multiple tasks with
different levels of criticality on the same hardware. Nevertheless, most critical
systems require hardware-based security mechanisms, since they need to securely
store cryptographic secrets, such as private keys, or integrity measurements.
That is why those systems are often equipped with a HSM, which acts as a
hardware-based security anchor and usually provides an internal context for the
system-specific cryptographic information. However, most HSMs with a system-
wide cryptographic context, such as a TPM, are not designed to separate and
isolate security-sensitive information of individual tasks.

For this purpose, we propose a microkernel-based system architecture
enhanced with an HSM that supports virtualization by providing multiple task-
specific cryptographic contexts. As depicted in Fig. 1, which shows the system
architecture that we designed and implemented using the L4 -based PikeOS [13],
safety- and security-critical processes are realized as native tasks, whereas other
non-critical components might be POSIX tasks or a virtualized Linux instance.
All these individual tasks are isolated by the separation mechanisms of the kernel.
However, the tasks are still able to communicate with other tasks in a controlled
way, i.e., via kernel-based inter process communication (IPC) and individually
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distinct shared memory pages. The HSM proxy, for instance, receives commands
via IPC and shared memory. It identifies the origin of the command, forwards it
to the HSM, and receives the result, which in turn is communicated back to the
respective source. Since all IPC channels and shared memory pages are isolated
by the kernel, other tasks cannot read the commands or the result messages.

Fig. 1. Microkernel-based system architecture with multi-context HSM

There is, however, one exception: the security monitor. This component is one
of the early tasks, which can start other tasks and is able to measure the integrity
of a selection of tasks as indicated by the dashed box in Fig. 1. Since the security
monitor, which is a critical task and hence realized as a native microkernel task,
holds advanced capabilities, e.g., the right to directly access the memory of other
tasks, it can effectively monitor their behavior and detect anomalies. As a result,
the security monitor can store the integrity values measured at load-time in the
task-specific context as well as keep a log of detected anomalies inside the HSM.

The design of our multi-context HSM, which is schematically depicted in
Fig. 2, implements the functionality of a TPM and includes hardware-based
security features, such as protected memory, a true random number generator
(TRNG), and cryptographic engines for hash functions, MACs, and encryption
algorithms like RSA or elliptic curve cryptography (ECC).

Based on the hardware components, the HSM firmware realizes scheduling,
multiplexing, and prioritizing of separate contexts, which can handle crypto-
graphic keys, store integrity measurements in shared and individual platform
configuration registers (PCRs), and log atypical run-time events in per-context
anomaly detection records (ADRs). That way each task can have its individual
key hierarchy, anomaly detection status, and its very own set of hardware-based
integrity measurement registers. However, the HSM also allows to (physically)
share certain PCRs, e.g., to store common integrity measurements for the boot
loader or the microkernel, in order to make the HSM design more efficient.
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Fig. 2. Design of a multi-context HSM

5 Integrity Verification of Multiple Microkernel Tasks
as Basis for a Secure Code Update

Based on the system architecture, we present our approach to implicitly verify
the integrity of multiple separated microkernel tasks and communicate the result
to a remote verifier without the need for expensive cryptographic operations.
The attestation mechanism enables a secure code update of tasks based on the
integrity of the system, in particular the microkernel and existing tasks.

The main idea of the attestation mechanism is to verify the integrity of
a number of tasks locally rather than sending digitally signed integrity values
to a remote verifier, which then has to check the signatures and evaluate the
integrity values. Our attestation protocol, which we previously proposed for non-
virtualized systems in [15], instead verifies the trustworthiness of tasks by loading
task-specific keys into the key slots inside the HSM. This load operation is only
possible if the specified tasks have not been tampered with, because the keys
have been cryptographically bound to the correct integrity measurements of the
tasks and their typical behavior, which is monitored by the anomaly detection
component of the security task.

5.1 Notation

A message authentication code (MAC ) is a cryptographic value, which is based
on a shared symmetric key and can be used to verify the authenticity and
integrity of a message. Formally, a MAC algorithm is a function that calcu-
lates a message digest dig with fixed length l for a secret key K and a given
input m with virtually arbitrary size as MAC(K,m) = dig = {0, 1}l.

One method to construct a MAC algorithm is based on cryptographic hash
functions, which are one-way functions with collision and pre-image resistance.
Essentially, a hash function H compresses arbitrary-length input to an output
with length l, that is H : {0, 1}∗ → {0, 1}l. As an example for a hash-based
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MAC, a HMAC generates a message authentication digest for data m based on
key K as HMAC

(
K,m

)
= H((K ⊕opad) ||H((K ⊕ ipad) ||m)), where || denotes

a concatenation, ⊕ the exclusive or, opad the outer and ipad the inner padding.
For our attestation protocol, we presume that the load-time integrity of a

microkernel task can be adequately described by a set of measurement values,
which are securely stored in the PCRs of our multi-context HSM. Thus, the
PCRs values, which cryptographically represent the task c, are referred to as
platform configuration Pc := (PCRc[i1], . . . ,PCRc[ik]), where i ∈ {0 . . . r} and
r is the number of physically available PCRs. To store an integrity measurement
value µ in a PCR with index i that belongs to task/context c, the current value
is combined with the new measurement value using PCRExtend(PCRc[i], µ),
which is specified as PCRc[i] ← SHA1(PCRc[i] ||µ) [14].

In addition to the load-time integrity measurements, the security task also
monitors the run-time behavior of critical tasks. Based on machine learning algo-
rithms [17,18], the anomaly detection component of the security task monitors,
for instance, the order of system calls and assesses the probability for an attack.
In case of an anomaly, an event e = (m, p) is recorded by the security task using
ADRAdd(Ac, e), which securely stores a log message m in the ADR of task c
and increases the probability for an attack stored in Ac with the value p. If the
value in Ac exceeds a threshold Tc, the task must be considered compromised.
In order to compensate for false-positives, the probability decreases over time
very slightly, which might, however, be a security weakness and needs further
research. As a consequence, we need to exclude false positives for now.

To cryptographically bind a key to a particular system state, which is also
known as wrapping, the HSM links the key to the specified platform configuration
and encrypts it with a public key (pk). A wrapped key, which is bound to a
specific platform configuration P and encrypted with pk, is denoted as {K}Ppk.
This key can only be decrypted with the secret key (sk) and used by the HSM,
if and only if the correct authentication value for the public wrapping key is
provided and the current platform configuration P ′ equals the configuration P ,
which was specified when the key was wrapped. We extend this definition by also
binding the wrapped key to an anomaly detection probability threshold Tc, that
is {K}Pc,Tc

pk . To load this wrapped key, the security monitor must also verify that
the current probability stored in Ac is below Tc, which allows for more dynamic
run-time verifications.

5.2 Cryptographic Keys

For each context c, an integrity key pair K int
c = (pkintc , skintc ) is defined that

needs to be loaded into the HSM for a successful attestation of the correspond-
ing task. As shown in Fig. 3, the integrity keys are encrypted with the public
portion of a shared non-migratable wrapping key Kwrap = (pkwrap, skwrap) and
cryptographically bound to a trusted platform configuration Pc and an anom-
aly detection probability threshold Tc, which is denoted as {K int

c }Pc,Tc

pkwrap . The
necessary authentication value, Authwrap, for loading the wrapping key is only
known to the HSM and the remote verifier. The verifier also has access to the
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Fig. 3. Cryptographic keys, PCRs, and ADRs for multiple separated contexts

hash values of the wrapped integrity keys, which are combined with an LoadKey
ordinal (load) and are denoted as SHA1(load || {K int

c }Pc,Tc

pkwrap).

5.3 Integrity Verification and Attestation of Multiple Tasks

To verify the integrity of one or more microkernel tasks, a remote verifier V sends
an attestation request (req) to the prover P as depicted in Fig. 4. The attestation
request specifies k out of n microkernel tasks, which should be included into the
attestation procedure, i.e., req = {ci} with c, i ∈ {1, . . . , n} and |req | = k.

Based on the request, P first transmits a set of random numbers noncePc
,

which are specifically calculated by the HSM for the selected tasks with context
c. The random numbers are required to generate the authentication values Authc
and prevent replay attacks. V calculates the set of authentication values as

Authc = HMAC
(
SHA1(load || {K int

c }Pc,Tc

pkwrap) ||noncePc
||nonceV ,Authwrap

)
, (1)

where load is the ordinal for the LoadKey operation and nonceV is a random
number selected by the verifier (Fig. 4, step 1). This calculation of Authc follows
the authentication for TPM commands as specified by the TCG, more precisely
for the load command [14, p. 72]. The authentication values Authc and nonceV
are then sent to P, which is now able to generate the command to load the task-
specific integrity keys K int

c . It is important to note that P has neither knowledge
about nor access to Authwrap, which is only known to V and the HSM. As a
consequence, P is not able to calculate the authentication HMACs without V.

To load the keys K int
c into the HSM and, thereby, generate the implicit proof

for the trustworthiness of the corresponding tasks, P simply needs to generate
a LoadKey command per context as shown in Fig. 4. When the HSM receives a
command for context c, it verifies the authentication value Authc and compares
the current platform configuration P ′

c with Pc, which has been specified when the
integrity key was wrapped (Fig. 4, step 2). It also checks the anomaly detection
record for any log entries (more precisely, whether the current probability value
in Ac is above the probability threshold Tc specified during the wrapping step),
which might indicate that the task was compromised during run-time. If the
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Fig. 4. Attestation protocol for multiple separated tasks

verification is successful and no anomalies were detected, the key is decrypted
and loaded. However, if the key is already loaded into a key slot, an efficient
HSM only verifies the wrapping conditions and omits the decryption.

After a successful load operation, the HSM generates HMAC-protected result
messages and a set of new random numbers noncenewPc

for each task c. The result
messages mainly include a return code (rc), which indicates the success of the
load operation, the fixed command ordinal for the LoadKey operation (load),
and the nonce selected by the verifier (nonceV). Both values are protected by an
HMAC, which is denoted as resAuthc and calculated as

resAuthc = HMAC
(
SHA1(rc || load) ||noncenewP ||nonceV ,Authwrap

)
. (2)

Again, it is important to note that the hash-based message authentication code
(HMACs) are calculated based on Authwrap, which is the shared authentication
value between the HSM and the verifier V. Before the prover P sends the new
random numbers and the HMACs resAuthc, which carry implicit proof that the
attested tasks are still trustworthy, to V, the prover P can reduce the size of the
attestation response message (res) by hashing the HMACs (Fig. 4, step 3), i.e.,

res = H(resAuthc). (3)

As a consequence, the efficiency of the transmitted attestation result can be
increased without losing cryptographic information needed to verify the integrity
of the selected tasks. However, if the attestation fail, the prover can also send
the individual HMACs in a second attempt in order to allow for a recovery. In
that case, the verifier only considers the most basic security-critical tasks and,
in our scenario, grants access to a trusted version of the compromised software
component as a failsafe. This recovery version can be provided using the secure
code update protocol, which is described in more detail in the next section.
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Finally, V verifies the response res by comparing it with a freshly generated
hash res′ (Fig. 4, step 4). First, V calculates a hash value SHA1((rc′ =0) || load),
where V assumes that the load operation was successful, i.e., the return code,
here rc′, must be SUCCESS, which is defined as zero. Corresponding with Eq. 2,
the hash value is then used to freshly calculate the task-specific HMACs based
on the random numbers and the authentication value Authwrap as

resAuth′
c = HMAC

(
SHA1((rc′) || load) ||noncenewP ||nonceV ,Authwrap

)
. (4)

By hashing those values, i.e., res′ = H(resAuth′
c) ∀c ∈ req (cf. Equation 3), and

comparing it to the attestation response, V can verify the implicit proof for the
integrity of the selected tasks. The verifier can trust the individual attestation
results, because they are protected by an HMAC and the shared secret Authwrap,
which is only known to the HSM and V. In addition, the messages also include
random numbers, which protect against replay attacks by providing verifiable
proof that the attestation response message is indeed fresh.

5.4 Updating a Task After Verifying the Integrity of Existing Tasks

Based on the attestation protocol for existing microkernel tasks, we now describe
our code update protocol, which allows to update a task, creates verifiable proof,
and maintains the ability to attest both, the tasks and the system.

The main idea of the update protocol is that the prover creates and loads a
new integrity key, which is specific to the new task, i.e., wrapped to the integrity
values of the code update and the corresponding request. To ensure that the key
is actually wrapped to the correct integrity measurements, the verifier provides a
specific cryptographic authorization value, which only the verifier can calculate.
When the HSM receives this authorization, it checks whether the new key will
be wrapped to the correct integrity values before creating and wrapping the key.
In combination with an efficient attestation of the code update, the verifier can
ensure the authenticity of the initial update request and has verifiable evidence
for the transaction. The prover, on the other hand, can use the new integrity key
to create proof of a successful load operation in order to obtain the code update.

For a code update (U), the prover P initiates the protocol by sending a
request (req) to the verifier V as depicted in Fig. 5 (step 1). Apart from the
requested software update identified by IDU , the message includes the cryp-
tographic values to generate the authorization value referred to as pubAuthU ,
which is used to create the new wrapped integrity key K int

U . In more detail, the
prover encrypts the authentication value to use and migrate the new integrity
key, which are denoted as usageAuth (uA) and migrationAuth (mA) following
the TCG specification [14]. The request also includes a nonce, which we refer to
as nonceP or nP for short.

When the verifier receives the request from the prover P, we assume that
V might require to verify the trustworthiness of existing tasks for safety and
security reasons before allowing to update or install a new software component.
That is why V first initiates an attestation, which checks the authenticity and
integrity of tasks running on P’s system as described in the previous section.
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Fig. 5. Secure code update protocol

After a successful attestation of the relevant tasks, the verifier returns the
encrypted authorization HMAC pubAuthU as well as a hash of the code update,
denoted as hU (Fig. 5, step 2). The HMAC authorizes the creation of the new
integrity key and is calculated as

pubAuthU = HMAC
(
sha1 ||nonceP ||nonceV1 ,Auth

wrap
)
. (5)

In this equation the hash value sha1 is generated as

sha1 = SHA1(wrap || usageAuth ||migrationAuth || keyInfo), (6)

where wrap is the fixed ordinal for the command, which creates a wrapped key.
The structure keyInfo defines the cryptographic properties of the new key and
follows the specification by the TCG [14, Part 2 Structures, p. 89]. In particular,
the structure specifies the trusted platform configuration the key is wrapped to,
which includes at least the integrity values of the microkernel, the update as well
as the request. Additionally, the structure also specifies the threshold value Tc.

To create the new key, P first extends the PCRs of context U with the
hash of the code update and the request (Fig. 5, step 3). After that, the prover
creates the new integrity key K int

U , which is encrypted with the wrapping key
Kwrap and cryptographically bound to the trusted platform configuration, which
is implicitly encoded into the HMAC pubAuthU (step 4).

After a successful generation of the wrapped integrity key, the prover P sends
a hash of the key, SHA1(load || {K int

u }Pu,Tu

pkwrap) and a random number noncePU
to

the verifier, which initiates an attestation procedure for the code update (cf.
Fig. 5). The verifier creates the authentication value AuthU and sends it to the
prover together with a random number nonceV2 . P uses both values to load
the new integrity key, which implicitly verifies the authenticity and integrity of
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the code update, more precisely the hash hU (Fig. 5, step 5). The attestation
response, in particular resAuthU , is then sent to V, which can check the result.
If the attestation was successful, the verifier sends the actual code update to the
prover. P can check the integrity of the code update by freshly generating the
hash value H(U) and comparing it to the previously received hash hU , which
has already been implicitly verified. If both values match, the code update is
trustworthy and the prover can install the code update.

6 Security Analysis

In this section, we analyze the security of the proposed protocols.

6.1 Analysis of the Attestation Protocol

We start our analysis from the premise that hardware attacks, such as the TPM
cold boot attack [6] or manipulations of the HSM communication bus [16], are
out of scope. As specified in Sect. 3.2, we will mainly focus on software attacks.

Furthermore, we assume that the platform configuration reflects the load-
time integrity of the system at any time, although this would require a periodic or
on-demand integrity measurement architecture, such as IBM’s IMA [9]. We also
assume that the trusted platform configuration is created during authenticated
boot and cannot be easily forged by exploiting software vulnerabilities, such
as buffer overflows. In addition, we exclude the time of check to time of use
(TOCTOU) problem, which might affect the validity of the attestation result.

Based on the attacker model and these assumptions, we now analyze our
attestation protocol. In the first attack scenario, the A might try to extract and
obtain the authentication values or cryptographic keys in order to compromise
the attestation. However, the wrapping key Kwrap is non-migratable as speci-
fied in Sect. 5.2, which means it is always securely stored inside the HSM. In
addition, the authentication value for the wrapping key Authwrap, is only known
to the verifier and never made public. Since this fact is very important for our
attestation protocol, we will verify it formally in the next section.

A might also attempt to create and wrap a new integrity key to an insecure
platform configuration, which does not include, for instance, any PCRs values,
and replace the existing wrapped integrity key {K int

c }Pc,Tc

pkwrap . However, this is not
possible, because the wrapping key Kwrap is securely stored inside the HSM and
the corresponding authentication value Authwrap, is only known to the verifier
(cf. previous attacks scenario). So in the formal verification, we will also check
that the wrapping key Kwrap does not leave the HSM during the attestation.

In a different attack scenario, the adversary tries to compromise the task by
manipulating the implementation. However, since the task is measured before
it is executed, the verifier would detect the manipulation, because the integrity
measurements in the PCR would be incorrect, the key could not be loaded, and
an attestation would fail. The failure is indicated by the return code in the result
message from the HSM. If the attacker compromises the binary and replays an
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old result message in order to convince the verifier that the load operation was
successful, the verifier can detect the attack by checking the result, in particular
the random number. Since this nonce is created by the verifier and does not
match the old random number, the replay attack can be easily detected.

Finally, the attacker might try to compromise the behavior of a task during
run-time. In this case, the security task detects an anomaly, e.g., in the number
or order of certain system calls, by monitoring the behavior of the attacked task.
As a result, the security adds an event (with a high probability, since it detected
an attack) to the ADR, which is securely stored inside our HSM. So, if the prover
tries to load the corresponding integrity key for the compromised task, the HSM
prevents a successful load operation, since the current probability value is above
the threshold Tc for any detected attack. As a consequence, the attestation fails.

6.2 Formal Verification of the Attestation Protocol

To substantiate our analysis, we have formally verified relevant security-critical
properties of our attestation mechanism using ProVerif [2], an automated verifier
for security protocols. We now discuss how our model implements certain aspects
of the attestation protocol, which is also the core of the code update protocol.

The model for our remote attestation specifies a verifier, a prover, and an
HSM, in this case with two contexts for simplicity (cf. AppendixA, Listing 1.1).
To initiate the attestation protocol, the verifier creates a request and in turn
receives the corresponding random numbers. The verifier then calculates the
authentication values Authc1 and Authc2 (lines 9 and 11) based on the hash
of the wrapped integrity keys, i.e., hWrappedKint1 and hWrappedKint2, the
random numbers noncePc1 and noncePc2 as well as nonceV. The key for the both
HMACs is AuthWrap. The prover receives the HMACs and loads the wrapped
keys, wrappedKey1 and wrappedKey2 (lines 22 and 24). The HSM verifies the
nonces (lines 34 and 39), compares the current platform configuration cpc with
the trusted one tpc (lines 35 and 40), and checks if the probability value p
matches T (lines 36 and 41; simplified with T =0, i.e., no anomalies tolerated).
Finally, the HSM generates the result message. The prover forwards the result
and the nonces noncePc1New and noncePc2New to the verifier, which then checks
the attestation result. So, the verifier assumes a successful load operation (hence
the hardcoded value true in lines 14 and 15) and calculates a fresh result hash
res (line 16), which verifies nonceV and the trustworthiness of the selected tasks.

In ProVerif , our formal verification is automated with queries, which check
if the authentication value AuthWrap (line 1) or the wrapping key Kwrap (line 2)
are disclosed during the attestation. A third query additionally checks whether
the attestation was successful (line 3), which is indicated by an event that is
created only if the attestation response can be successfully verified. The results
show that ProVerif cannot find an attack path for the AuthWrap or Kwrap and
that the attestation is successful if all verification steps are successfully passed.
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6.3 Analysis of the Code Update Protocol

To analyze the security of the code update protocol, we now discuss different
attack scenarios, where an adversary might try to compromise the code update.

For the first attack, we presume that A tries to compromise the integrity
of the code update by replacing it with a manipulated version. However, this
is not possible, since P generates a new integrity key, which is wrapped to the
untampered code update by V. To receive the actual code update, P needs to
successfully load the new integrity key in order to be able to send the correct
attestation result to V. To verify the integrity of the code update, P compares a
fresh hash of the code update with the previously received hash hU , which must
have been part of the wrapped key and the trusted platform configuration. P
also implicitly verifies the authenticity, because only V knows the authentication
value Authwrap for the wrapping key Kwrap and is able to generate the correct
authorization value pubAuth for creating the new wrapped integrity key.

To ensure the authenticity of the code update request, the verifier authorizes
the creation of a new integrity key, which is cryptographically bound not only
to the trusted platform configuration of the system and the task, but also the
code update request. That way, the prover has to extend the hash of the code
update request to PCRs of the task in order to be able to load the newly created
integrity key during the attestation procedure. If an adversary manipulates the
code update request, the verifier creates an authorization value pubAuth for a
false request and P cannot load the key, because P extended a different hash.
As a result, the attestation fails and the verifier does not provides the actual
code update in the final step of the protocol.

7 Conclusion

In this paper, we have presented a protocol for attesting the trustworthiness
of multiple microkernel tasks. Compared to most existing attestation schemes,
which mostly rely on expensive cryptographic operations, we show that our
lightweight attestation mechanism can implicitly verify the integrity of multiple
isolated microkernel tasks, securely communicate the result to a remote verifier,
and enable secure code updates while eliminating the need for digital signatures.

As future work, we plan to evaluate our implementation in more detail. In
comparison to existing attestation protocols, in particular classical remote attes-
tation, we expect that our cryptographic integrity proof is more than ten times
smaller, because our protocol mostly relies on symmetric cryptographic opera-
tions. When attesting more than one task with their own cryptographic contexts,
this difference should become rather significant. Without even considering SMLs,
we can already say that in this case our cryptographic integrity proof still only
needs a constant size, whereas the number of digital signatures used in classical
remote attestation increase with the number of tasks.

Acknowledgments. Parts of this work were funded by the HIVE project
(GN: 01BY1200A) of the German Federal Ministry of Education and Research.
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A ProVerif Code for the Attestation Mechanism

1 free AuthWrap:symKey [private ]. query attacker(AuthWrap).
2 free Kwrap:sKey [private ]. query attacker(Kwrap).
3 event successfulAttestation. query event(successfulAttestation).
4

5 let Verifier(AuthWrap:symKey , hWrappedKint1:hash , hWrappedKint2:hash) =
6 new req:attestationRequest; out(c2, req);
7 in(c2, noncePc1:bitstring); in(c2, noncePc2:bitstring);
8 new nonceV:bitstring;
9 let Authc1= MAC(c(c(h2Bs(hWrappedKint1), noncePc1), nonceV), AuthWrap

) in
10 out(c2, Authc1);
11 let Authc2= MAC(c(c(h2Bs(hWrappedKint2), noncePc2), nonceV), AuthWrap

) in
12 out(c2, Authc2); out(c2, nonceV); in(c2, res:hash);
13 in(c2, noncePc1New:bitstring); in(c2, noncePc2New:bitstring);
14 let resAuth1 = MAC(c(c(h2Bs(SHA1(cBoolBs(true , load))), noncePc1New),

nonceV), AuthWrap) in
15 let resAuth2 = MAC(c(c(h2Bs(SHA1(cBoolBs(true , load))), noncePc2New),

nonceV), AuthWrap) in
16 if res = SHA1(c(MAC2Bs(resAuth1), MAC2Bs(resAuth2))) then
17 event successfulAttestation; 0.
18

19 let Prover(wrappedKint1:wKey , wrappedKint2:wKey , noncePc1:bitstring ,
noncePc2:bitstring) =

20 in(c2, req:attestationRequest); out(c2, noncePc1); out(c2, noncePc2);
21 in(c2, Authc1:mac); in(c2, Authc2:mac); in(c2, nonceV:bitstring);
22 let cmd1 = createLoadKeyCmd(wrappedKint1 , Authc1 , noncePc1 , nonceV)

in
23 out(c1, cmd1);
24 let cmd2 = createLoadKeyCmd(wrappedKint2 , Authc2 , noncePc2 , nonceV)

in
25 out(c1, cmd2);
26 in(c1, res:hash);
27 in(c1, noncePc1New:bitstring); in(c1, noncePc2New:bitstring);
28 out(c2, res); out(c2, noncePc1New); out(c2, noncePc2New); 0.
29

30 let HSM(AuthWrap:symKey , noncePc1:bitstring , noncePc2:bitstring , cpc1:
PConf , p1:ADR , cpc2:PConf , p2:ADR) =

31 new noncePc1New:bitstring; new noncePc2New:bitstring;
32 in(c1, cmd1:LoadKeyCommand); in(c1, cmd2:LoadKeyCommand);
33 if getAuthc(cmd1) = MAC(c(c(h2Bs(SHA1(c(load , wKey2Bs(getWrappedKey(

cmd1))))), noncePc1), getNonceV(cmd1)), AuthWrap) then
34 if noncePc1 = getNoncePc(cmd1) then (* comment: check noncePc1

*)
35 if cpc1 = pc(getWrappedKey(cmd1)) then (* comment: check P_1 *)

36 if p1 = ard(getWrappedKey(cmd1)) then (* comment: check ADR_1 *)

37 let resAuth1 = MAC(c(c(h2Bs(SHA1(cBoolBs(true , load))), noncePc1New),
getNonceV(cmd1)), AuthWrap) in

38 if getAuthc(cmd2) = MAC(c(c(h2Bs(SHA1(c(load , wKey2Bs(getWrappedKey(
cmd2))))), noncePc2), getNonceV(cmd2)), AuthWrap) then

39 if noncePc2 = getNoncePc(cmd2) then (* comment: check noncePc1
*)

40 if cpc2 = pc(getWrappedKey(cmd2)) then (* comment: check P_2 *)

41 if p2 = ard(getWrappedKey(cmd2)) then (* comment: check ADR_2 *)

42 let resAuth2 = MAC(c(c(h2Bs(SHA1(cBoolBs(true , load))), noncePc2New),
getNonceV(cmd2)), AuthWrap) in

43 let res = SHA1(c(MAC2Bs(resAuth1), MAC2Bs(resAuth2))) in
44 out(c1, res); out(c1, noncePc1New); out(c1, noncePc2New); 0.
45

46 process
47 new noncePc1:bitstring; new noncePc2:bitstring;
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48 new Kint1:intKey; new Kint2:intKey;
49 let wKint1 = wrapKey(Kint1 , pk(Kwrap), tpc1 , T1) in (* cf. Sect.

5.1 *)
50 let wKint2 = wrapKey(Kint2 , pk(Kwrap), tpc2 , T2) in (* cf. Sect.

5.1 *)
51 (! Verifier(AuthWrap , SHA1(c(load , wKey2Bs(wKint1))), SHA1(c(load ,

wKey2Bs(wKint2))))) | (! Prover(wKint1 , wKint2 , noncePc1 , noncePc2
)) | (!HSM(AuthWrap , noncePc1 , noncePc2 , tpc1 , T1, tpc2 , T2))

Listing 1.1. ProVerif Code for the Attestation Mechanism (excerpt)
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Abstract. A visual cryptography scheme (VCS) encodes a secret image
into several share images, such that stacking sufficient number of shares
will reveal the secret while insufficient number of shares provide no infor-
mation about the secret. The beauty of VCS is that the secret can be
decoded by human eyes without needing any cryptography knowledge
nor any computation. Variance is first introduced by Hou et al. in 2005
to evaluate the visual quality of size invariant VCS. Liu et al. in 2012
thoroughly verified this idea and significantly improved the visual qual-
ity of previous size invariant VCSs. In this paper, we first point out the
security defect of Hou et al.’s multi-pixel encoding method (MPEM) that
if the secret image has simple contours, each single share will reveal the
content of that secret image. Then we use variance to explain the above
security defect.

Keywords: Visual cryptography · Variance · Security defect

1 Introduction

Naor and Shamir first introduced the concept of k out of n threshold visual
cryptography scheme in [12], abbreviated as (k, n)-VCS, which splits a secret
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image into n shares in such a way that the stacking of any k shares can reveal
the secret image but any less than k shares should provide no information
(in the information-theoretic sense) of the secret image. Ateniese et al. extended
the model of Naor and Shamir to general access structure in [1]. Suppose the
participant set is denoted as P = {1, 2, 3, . . . , n}, a general access structure is
a specification of qualified participant sets ΓQual ⊆ 2P and forbidden partic-
ipant sets ΓForb ⊆ 2P , where 2P is the power set of P . Any participant set
X∈ ΓQual can reveal the secret by stacking their shares, but any participant
set Y∈ ΓForb cannot obtain any information of the secret image. Obviously,
ΓQual ∩ ΓForb = ∅ should always hold. In (k, n) threshold access structure,
ΓQual = {B ⊆ P : |B| ≥ k} and ΓForb = {B ⊆ P : |B| ≤ k − 1}.

Ito et al. introduced the concept of size invariant visual cryptography scheme
(SIVCS) in [13], which has no pixel expansion. In SIVCS, both white and black
secret pixels may be decoded as black, which results in deteriorated visual quality
compared to VCS, in which a white (resp. black) secret pixel is surely decoded
as white (resp. black). To improve SIVCS’s visual quality, Hou et al. proposed
the multi-pixel encoding method (MPEM) in [9]. Compared to VCS (see [12]
and [1]), the main advantage of SIVCS and MPEM is that they are both of no
pixel expansion, while the best pixel expansion of VCS is exponential large (e.g.
the best pixel expansion of (n, n)-VCS is 2n−1). In recent years, many researchers
try to implement SIVCS with nice properties by an algorithm, referring to
[3,4,7,8,14]. Other research lines include parameter optimization in VCS [2,15],
color VCS [5,6,10].

Hou et al. introduced variance to compare the visual quality of SIVCS and
that of MPEM in [9]. Liu et al. thoroughly verify, both analytically and exper-
imentally, the idea of using variance to evaluate the visual quality of SIVCS
in [11]. In this paper, we first point out the security defect of Hou et al.’s MPEM
that if the secret image has simple contours, each single share will reveal the con-
tent of that secret image. Then we use variance to explain the above security
defect. To the best of our knowledge, this is the first effort that uses variance
to analyze a single share image, since all previous studies [9,11] use variance to
analyze the decoded image. Besides, our study adds a new perspective about the
security of VCS.

This paper is organized as follows. In Sect. 2, we give some preliminaries of
VCS. In Sect. 3, we use variance to explain the security defect that we find in
Hou et al.’s scheme. In Sect. 4, we discuss the influence of our result to real world
application and future researches. The paper is concluded in Sect. 5.

2 Preliminaries

In this section, we first give the definition of SIVCS. Then we give a brief descrip-
tion of the MPEM proposed by Hou et al. in [9].

Before moving any further, we first set up our notations. Let X be a subset of
{1, 2, · · · , n} and let |X| be the cardinality of X. For any n × m Boolean matrix
M , let M [X] denote the matrix M constrained to rows of X, then M [X] is a
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|X| × m matrix. We denote by H(M [X]) the Hamming weight of the OR result
of rows of M [X].

Definition 1 (SIVCS [13,16]). The two n×m Boolean matrices (S0, S1) con-
stitute a ({ΓQual, ΓForb},m, n)-SIVCS if the following conditions are satisfied:

1. (Contrast) For any participant set X ∈ ΓQual, we denote lX = H(S0[X]),
and denote hX = H(S1[X]). It should hold that 0 ≤ lX < hX ≤ m.

2. (Security) For any participant set Y ∈ ΓForb, S0[Y ] and S1[Y ] are equal up to
a column permutation.

S0 and S1 are also referred to as the white and black basis matrices respec-
tively. In a SIVCS [13], to share a black (resp. white) pixel, we randomly choose
a column from the black (resp. white) basis matrix, and then distribute the i-th
row of the column to participant i. In a ({ΓQual, ΓForb}, n)-SIVCS, considering
qualified participant set X ∈ ΓQual, a black pixel is recovered as black with
probability hX

m , which is higher than the probability lX
m that a white pixel is

recovered as black. Hence we can perceive the secret from the overall view. The

average contrast of qualified participant set X is defined as ᾱX =
hX − lX

m
and

the average contrast of the scheme is defined as ᾱ = min
X∈ΓQual

ᾱX .

In the following, the MPEM proposed by Hou et al. in [9] is described as
Construction 1 for reader’s convenience, which encrypts multiple pixels (non-
adjacent for most cases) simultaneously.

Construction 1. Let M0 (resp. M1) be the n × r white (resp. black) basis
matrix. Each time, we take r successive white (resp. black) pixels as an white
(resp. black) encoding sequence.

1. Take r successive white (resp. black) pixels, which have not been encrypted
yet, from the secret image sequentially. Record the positions of the r pixels as
(p1, p2, . . . , pr).

2. Permute the columns of M0 (resp. M1) randomly.
3. Fill in the pixels in the positions p1, p2, . . . , pr of the i-th share with the r

colors of the i-th row of the permuted matrix, respectively.
4. Repeat step (1) to step (3) until every white (resp. black) pixel is encrypted.

3 The Security Defect of MPEM

This section is divided into two parts: 1, our discovery of MPEM’s security
defect; 2, the explanation of the above security defect.

3.1 Our Discovery of MPEM’s Security Defect

We use the (2,2)-MPEM proposed in [9] to encode image “Pythagoras” and
image “Airplane”, where the experimental results are given in Figs. 1 and 2.
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Fig. 1. Experimental results for (2,2)-MPEM: (a) the original secret image with image
size 340 × 340, (b) share 1 with image size 340 × 340, (c) share 2 with image size
340 × 340, (d) stacked image with image size 340 × 340

Fig. 2. Experimental results for (2,2)-MPEM: (a) the original secret image with image
size 512 × 512, (b) share 1 with image size 512 × 512, (c) share 2 with image size
512 × 512, (d) stacked image with image size 512 × 512

From images (b) and (c) in Fig. 1, we can perceive the content of image
(a), perhaps with some zooming, like 300 % or 400 %. Hence we claim that the
MPEM proposed in [9] has security defect when it is used to encode simple
contour images. However, for complex contour images (e.g. image (a) in Fig. 2),
the shares generated by the (2,2)-MPEM look like noise images (e.g. images (b)
and (c) in Fig. 2) and provide no visual information about the secret. Hou et al.
only gave the experimental results for complex contour images and thus did not
notice this security defect in [9].

3.2 Using Variance to Explain the Above Security Defect

The following two basis matrices for white and black pixels are the same as those
in Sect. 2.1 of [9].

M0 =
[

��
��

]
=

[
10
10

]
,M1 =

[
��
��

]
=

[
10
01

]
.

In Hou et al.’s paper, the variance is defined separately on white and black
regions. Readers can refer to the definition of encoding sequence in Construction
1 and the definition of standard deviation in Sect. 5 of [9]. However, we think
the above definitions are improper, because the analysis results based on those
definitions (referring to Table 1) cannot explain the above experimental results.
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In this paper, we define variance on an encoding block of adjacent pixels. Similar
to the encoding sequence in [9], the size of an encoding block is also two. In the
following, we first give Hou et al.’s analysis based on encoding sequences, then
we give our analysis based on encoding blocks.

Suppose the secret image contains the following sequence of pixels at the
beginning,

� � � � � � � �
1 2 3 4 5 6 7 8

where numbers in the second line denote the positions of the pixels. The four
encoding sequences are constituted by pixels in positions {1, 3},{4, 7},{2, 5} and
{6, 8} respectively while the encoding blocks are constituted by pixels in positions
{1, 2},{3, 4},{5, 6} and {7, 8} respectively. If we denote � by 0 and � by 1, all
possible encoding sequences are “00” and “11” while all possible encoding blocks
are “00”, “01”, “10” and “11”.

We first gave the analysis of a single share from an encoding sequence’s per-
spective. Denote the average and variance of the Hamming weights of the encod-
ing sequences that are encoded from “00” by μ00 and σ00, and similarly denote
the average and variance of the Hamming weights of the encoding sequences that
are encoded from “11” by μ11 and σ11. Then μ00, μ11, σ00 and σ11 for a single
share, which is generated by the (2,2)-MPEM, are summarized as Table 1.

Table 1. For each share image, the average and variance of the Hamming weights of
the encoding sequences on it that are encoded from “00” and “11”.

μ00 μ11 σ00 σ11

1 1 0 0

Remark: Table 1 follows from the fact that each row of M0 and M1, which
are the basis matrices used by the (2,2)-MPEM, contains exactly one 1. Since
the data in Table 1 provides no insight into the above security defect, we think
the encoding sequence’s perspective is improper.

In the following, we first give an encoding block’s perspective of the MPEM
proposed in [9]. The encoding process of secret pixels �������� by the
(2,2)-MPEM contains the following steps:

1. The first block �� is encoded by randomly drawing a column from M1 and
then randomly drawing a column from M0;

2. The second block �� is encoded by filling with the remaining column of M1

from Step. 1 and then freshly and randomly drawing a column from M1;
3. The third block �� is encoded by filling with the remaining column of M0

from Step. 1 and then freshly and randomly drawing a column from M0;
4. The fourth block �� is encoded by filling with the remaining column of M1

from Step. 2 and the remaining column of M0 from Step. 3.
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The influence of the encoding of previous blocks over the encoding of the
current block is summarized by an indicator, called Encoding Situation, which
records the parity of the number of �s having been encoded and the parity of the
number of �s having been encoded. Since we encode a block of two successive
pixels at a time, there are always even number of pixels having been encoded
in total. Hence we only have the following two Encoding Situations:

Encoding Situation 1: There are even number of �s and even number of �s
having been encoded. In such a case, if the currently-processing block is �� or
��, the corresponding block on each share image will definitely have one � and
one �; else if the currently-considered block is �� or ��, the corresponding
block on each share image will have two �s with probability 1

4 , one � and one
� with probability 1

2 , and two �s with probability 1
4 .

Encoding Situation 2: There are odd �s and odd �s having been encoded.
In such a case, no matter what the currently-processing block is (possibly ��,
��, �� and ��), the corresponding block on each share image will have two
�s with probability 1

4 , one � and one � with probability 1
2 , and two �s with

probability 1
4 .

Remark: Every block is encoded under some Encoding Situation. In the pre-
vious example, the first block �� is encoded under Encoding Situation 1 ; the
second block �� is encoded under Encoding Situation 2 ; the third block ��
is encoded under Encoding Situation 2 ; the fourth block �� is encoded under
Encoding Situation 2.

We calculate the average and variance of the Hamming weight of an encoding
block on a single share image by the following formulas,

μ =
m∑

i=0

pi × i, σ =
m∑

i=0

pi × (i − μ)2 (1)

where m represents the size of an encoding block and pi represents the probability
of an encoding block of Hamming weight i appears. The variance is used to
explain the variation of the Hamming weight (gray-level) of an encoding block
on a single share,

Denote the average and variance of the Hamming weights of the encoding
blocks that are encoded from “ij” under Encoding Situation k by μk

ij and σk
ij ,

where “ij” ∈ {00, 01, 10, 11} and k ∈ {1, 2}. Then μk
ijs and σk

ijs for a single share,
which is generated by the (2,2)-MPEM, are summarized as Table 2.

Table 2. For each share image, the average and variance of the Hamming weights of
the encoding sequences on it that are encoded from “00”, “01”, “10” and “11” under
Encoding Situations 1 and 2.

μ1
00 μ1

01 μ1
10 μ1

11 μ2
00 μ2

01 μ2
10 μ2

11 σ1
00 σ1

01 σ1
10 σ1

11 σ2
00 σ2

01 σ2
10 σ2

11

1 1 1 1 1 1 1 1 0 1
2

1
2

0 1
2

1
2

1
2

1
2
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Remark: Generally speaking, contour area of the secret image contains encoding
blocks of the form “01” and “10”, while white and black areas of the secret
image contain encoding blocks of the form “00” and “11”. From Table 2, it is
easy to see that for a single share, the variance of contour area is larger than that
of the white and black areas in the overall sense, which may leak the contour
information of the secret image.

The exact value of variance of contour area and those of black and white
areas depend on the statistical character of the secret image. In the following,
we aim to explain why share images encoded from image “Pythagoras” leak the
secret while share images encoded from image “Airplane” do not.

Some statistical information of the encoding process of images (a) in Figs. 1
and 2 can be found in Table 3, where Nk

ij denotes the number of the encod-
ing blocks that are encode form blocks that are encoded under Encoding Sit-
uation k and N denotes the total number of blocks in the image, where
“ij” ∈ {00, 01, 10, 11} and k ∈ {1, 2}.

Table 3. The number of “ij” form encoding blocks that are encoded under Encoding
Situation k for images (a) in Figs. 1 and 2, where “ij” ∈ {00, 01, 10, 11} and k ∈ {1, 2}.

Image N1
00 N1

01 N1
10 N1

11 N2
00 N2

01 N2
10 N2

11 N

“Pythagoras” 28138 272 537 1539 25057 342 466 1449 57800

“Airplane” 22228 17196 17722 8393 22014 17322 17596 8601 131072

Remark: It should be noted that the above statistical information is related to
the encoding process. We encode the original secret image line by line, from left
to right.

Combining Tables 2 and 3, we can calculate the exact expected variance
of “ij” form encoding block for images (a) in Figs. 1 and 2, where “ij” ∈
{00, 01, 10, 11}. The results are summarized by Table 4.

Table 4. For each share image, the expected variance of the Hamming weights of the
encoding blocks on it that are encoded from “ij” for images (a) in Figs. 1 and 2, where
“ij” ∈ {00, 01, 10, 11}.

Image σ00 σ01 σ10 σ11

“Pythagoras” 0.23552 0.5 0.5 0.24247

“Airplane” 0.24879 0.5 0.5 0.25036

Remark: For image “Pythagoras”, the expected variance of the Hamming weights
of encoding blocks encoded from “00” is calculated by

28138
28138 + 25057

× 0 +
25057

28138 + 25057
× 1

2
= 0.23552
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For both image “Pythagoras” and image “Airplane”, the variances over con-
tour area is significantly larger than those over black and white areas. We infer
the reason why share images for image “Pythagoras” leak secret while share
images for image “Airplane” do not is due to the fact that image “Pythagoras”
has very simple contours while image “Airplane” has very complex contours.

We use the MATLAB command, “edge(f,‘sobel’,0.15)”, to extract the contour
of image “Pythagoras” and image “Airplane”. The experimental result can be
found in Fig. 3. Since image “Airplane” is a halftone image, its contour image is
very complex. Although for each share image of image “Airplane”, the variances
over contour area are significantly larger than those over black and white areas,
the contour area and black and white areas are mixed together, which results in
the invisibility of the visual unevenness.

4 Future Researches

Hou et al.’s MPEM has improved SIVCS’s visual quality, but the security defect
has limited its application in real world. In such a case, we may use Ito et al.’s
SIVCS [13], which is more secure but has worse visual quality than MPEM.

Fig. 3. Edge extraction: (a) image “Pythagoras” with image size 340 × 340, (b) image
“Airplane” with image size 512 × 512, (c) contour image of “Pythagoras” with image
size 340 × 340, (d) contour image of “Airplane” with image size 512 × 512

Fig. 4. Experimental results for (2,2)-SIVCS: (a) the original secret image with image
size 340 × 340, (b) share 1 with image size 340 × 340, (c) share 2 with image size
340 × 340, (d) stacked image with image size 340 × 340
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Figure 4 summarizes the experimental results for (2,2)-SIVCS, which demon-
strates the above fact together with Fig. 1.

Following our results, an important topic in future research is how to combine
the good visual quality of MPEM with the security properties of SIVCS and
propose secure schemes with good visual quality.

5 Conclusions

In this paper, we first point out the security defect of Hou et al.’s multi-pixel
encoding method. Then we point out that it is improper to define variance over
an encoding sequence containing nonadjacent pixels. At last, we explain the
above security defect by considering variance over an encoding block containing
adjacent pixels.
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Abstract. In this paper we consider the problem of secret sharing
where shares are encrypted using a public-key encryption (PKE) scheme
and ciphertexts are publicly available. While intuition tells us that the
secret should be protected if the PKE is secure against chosen-ciphertext
attacks (i.e., CCA-secure), formally proving this reveals some subtle and
non-trivial challenges. We isolate the problems that this raises, and devise
a new analysis technique called “plaintext randomization” that can suc-
cessfully overcome these challenges, resulting in the desired proof. The
encryption of different shares can use one key or multiple keys, with
natural applications in both scenarios.

1 Introduction

During the past three decades, cryptography research has been very successful in
developing clear notions of security and rigorous techniques for reasoning about
security of cryptographic primitives and protocols. Formal notions of security in
cryptography have evolved in essentially two main directions, with reduction-
based proofs developing from the initial work of Goldwasser and Micali [9]
and simulation-based proofs from the initial work of Goldreich, Micali, and
Wigderson [8]. While we have a good understanding of how to reason about
security in these settings, there are recurring issues with composability: using
one secure protocol as a component of another protocol while retaining security
inside the higher-level protocol. Somewhat counter-intuitively, some protocols
(e.g., some zero-knowledge proofs) fail to maintain security even when multiple
copies of the same protocol are run concurrently [7].

In this paper, we explore a combination of public-key encryption (PKE) with
secret sharing, and in the process develop a general-purpose proof technique for
analysis of cryptographic schemes and protocols that use public-key encryp-
tion (PKE) as a component. Perhaps the simplest example of such a system
is the common practice of hybrid encryption: doing large scale encryption by
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first encrypting a random session key using a PKE scheme, and then using that
session key with a symmetric cipher for bulk encryption. Due to the inefficiency
of public key encryption, hybrid encryption has been standard practice since
the 1980s, and our intuition tells us that if the PKE scheme and the symmetric
cipher are both secure in some sense (e.g., against chosen ciphertext attacks)
then the combination of these two components into a hybrid system should also
be secure. However, despite widespread use of hybrid encryption, the security of
hybrid encryption was not rigorously established until the 2003 work of Cramer
and Shoup [5]. A key insight in Cramer and Shoup’s analysis was the intro-
duction of the notion of a “key encapsulation mechanism” (KEM), which can
be built from a CCA-secure PKE scheme. The value of KEM does not come
from the power of this new cryptographic primitive, but rather comes from the
clarity it brings to the analysis of hybrid encryption. In this paper, we focus
on improving the analysis process from the beginning, so that we obtain clear
proofs directly, with no need to introduce a new primitive such as a KEM. While
hybrid encryption is a very simple example of this, our analysis technique can
be applied to any protocol that uses a PKE scheme to hide secrets used within
the protocol — we use the term “PKE-hybrid” to refer to protocols like this.

Unfortunately, current proof techniques are not sufficient for some PKE-
hybrid problems, including the very practical problem of secret sharing with
encrypted shares. To understand this problem, consider a standard key escrow
situation, in which a company escrows copies of keys for the company’s officers
so that keys can be recovered if a certain number of board members agree.
This is a classic threshold secret sharing situation, but in the real world having
board members keep copies of shares of all officer’s keys (which might change
somewhat regularly) locally would not be practical. A better solution would be
to have each board member maintain their own long-term key (perhaps on a
smartcard), and have the company store encrypted shares of the escrowed keys,
encrypted with board members keys, on a central server. This way shares can be
updated without interaction of the board members, but board members would
still be needed in order to decrypt the shares for a key recovery.

To understand why standard proof techniques do not work for this problem,
consider a situation in which a CCA-secure PKE is used to encrypt shares from
a perfect k-of-n threshold secret sharing scheme. We mirror a CCA game by cre-
ating a game in which we provide two secrets to the game oracle, which encrypts
shares of one of these secrets for the adversary who must guess which secret is
used. Using standard techniques we would try to simulate this adversary and
game oracle in a CCA PKE game to relate to the security of the PKE scheme.
However, we must make multiple encryptions and they must be consistent across
the shares that are provided. Multiple consistent encryptions suggests using a
multi-query oracle such as the left-right or real-or-random security notions of
Bellare et al. [2]; however, we must allow the adversary to decrypt some of the
encrypted shares, only disallowing decryption of a set that would allow recon-
struction of the secret. These two properties, consistent encryptions and allowing
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some decryptions, are fundamentally opposed in standard techniques, making
analysis of this situation particularly difficult.

1.1 Plaintext Randomization

To overcome the problems described in the previous section, we have developed
a new analysis technique that we call plaintext randomization, which we suc-
cessfully use to prove a strong security result for the general “secret-sharing
with encrypted shares” problem. We believe this technique will be useful in the
analysis of a wide variety of PKE-hybrid protocols.

Consider a cryptographic problem in which security is defined using a game
between an adversary and a game oracle — we don’t make any assumptions
about the goal of the adversary, so that it does not need to be a CCA-style
distinguishability goal, but rather can be any adversary goal that is well-defined.
The game oracle makes some use of a PKE scheme, but this is internal to the
game and not something that the adversary necessarily sees. The adversary may
in fact have no direct access to the PKE scheme at all, including key generation,
encryption, or decryption, but only sees the effects of these operations as allowed
by the game oracle definition. Internally, all access to the PKE scheme by the
game oracle goes through a generic interface that neither depends on the precise
PKE scheme being used nor gives access to randomness used internally to the
PKE functions.

Plaintext randomization then is the following technique: internal to the game
oracle, every time the PKE encryption function is called as EPK(p) (for plaintext
p and public key PK) we replace the plaintext with a random string r of the
same length and instead call c = EPK(r), using ciphertext c in place of what
would have been the encrypted plaintext. To allow for consistent decryption, the
game oracle remembers these “encryptions” by storing pairs (c, p) so that if the
decryption function is used by the game oracle on ciphertext c, the plaintext p
will be returned rather than the actual decryption of c (which would give r). By
modifying the game in this way, we remove any use of meaningful ciphertexts,
and the storage of pairs (c, p) allows the game to provide restricted and consistent
decryptions, solving the two problems that we identified for secret sharing with
encrypted shares. Furthermore, the use of ciphertexts that are unrelated to actual
plaintexts “cuts” any hybrid use of the PKE from the rest of the protocol, exactly
the property we need to enable or simplify proofs for PKE-hybrid problems.

There are a few technicalities that must be addressed for this to work, such
as the ability to randomly sample the plaintext space (defined as a “plaintext-
samplable PKE” in Definition 3) and a restriction on how the game in question
uses PKE secret keys (defined as “sk-oblivious” in Definition 4). Once these for-
malities are established, we are able to prove a result which we call the “Plaintext
Randomization Lemma” that bounds the difference between the adversary’s suc-
cess probability in the original game and the success probability in the modified
game that uses plaintext randomization. This is the key to the subsequent proof
for secret sharing with encrypted shares.
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Based on the high-level description given above, two questions about related
work come to mind: Is this anything more than the well-known “real-or-random”
security definition? And if multiple decryptions of a set of ciphertexts are allowed,
do selective opening attacks come into play? We address these two questions
below.

Relation to Real-or-Random Security. In real-or-random (ROR) security,
an adversary is tasked with distinguishing between the encryption of provided
plaintext and encryption of randomized plaintext [2]. Our technique replaces
plaintexts with randomized plaintexts in the same manner as ROR security, but
our model takes chosen-ciphertext security (i.e., ROR-CCA) one step further
by adding the ability to consistently “decrypt” some ciphertexts, regardless of
whether the real or random plaintext was encrypted.

Consider an attempt to reduce the encrypted secret sharing (ESS) problem
to ROR security: an ESS adversary could be used to create an ROR adversary
in which shares of a challenge value are encrypted with the ROR adversary,
and the resulting ciphertexts provided to the ESS adversary which must decide
whether they are shares of the challenge value or unrelated ciphertexts. This
is a natural definition of ESS security, but it is inherent in the definition of
ESS that the adversary should be allowed to decrypt some of these ciphertexts.
However, if the ciphertexts come from ROR-CCA oracle queries, then we are
necessarily disallowed from decrypting any of the ciphertexts produced in this
way. Furthermore, the ESS adversary doesn’t even know the “real” side of the
“real-or-random” encryption, as the real values are embedded within the ESS
game and not revealed to the ESS adversary except through specific, controlled
decryption requests. Therefore, allowing for consistent decryptions is not some-
thing that is under the control of the adversary — it must be embedded in the
ESS game itself, which is precisely what plaintext randomization does.

In the absence of any decryptions that must be made consistent, our plaintext
randomization technique can be used simply as an abstraction for replacing
PKE within a game, although the benefit is really notational in this case. In
particular, if only PKE encryptions are performed (i.e., only chosen plaintext
queries), then plaintext randomization really does behave the same as ROR-CPA
security, and in such a case a direct reduction to real-or-random security might
be more appropriate, depending on how the PKE is exposed to the adversary.
The examples we consider in this paper all rely on CCA security, and hence
make full use of the plaintext randomization technique.

Selective Opening Attacks. The encrypted secret sharing problem provides a
set of ciphertexts to the adversary and allows the adversary to open some subset
of these ciphertexts. The underlying plaintexts are not independent since they
are shares of a single secret, and this immediately raises a concern of selective
opening attacks [6] and whether IND-CCA security is sufficient for the under-
lying PKE scheme. While this might be a concern for some applications, the
encrypted secret sharing problem is based on trusted parties (either services or
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secure hardware such as a smartcard or trusted platform module) acting as both
encryption and decryption oracles, where the randomness used in performing an
encryption is never available external to the trusted party.

Our modular notation for PKE schemes ensures this property: Definition 2
defines the interface to a PKE scheme, and only encrypt/decrypt oracle calls
are allowed, with no access to randomization used in encryption or revealed in
decryption. Applications in which randomization might be revealed and made
available to an adversary either directly or indirectly do not map to our defini-
tions, and hence the plaintext randomization technique could not be applied to
schemes in which selective opening attacks are a danger. The problems that we
consider in this paper, natural and practical versions of encrypted secret sharing,
do map to our definitions and selective opening is not an issue. We believe that
many problems involving some type of escrow of secrets by trusted agents share
these attributes.

1.2 Our Contributions

We briefly summarize the contributions of this paper below.

– We define notation that can be used in cryptographic games that use a PKE
scheme inside the game oracle, for a uniform treatment and clear identification
of how the PKE scheme is integrated into the protocol and game.

– We introduce the technique of plaintext randomization and prove the Plaintext
Randomization Lemma, a powerful tool for analysis of PKE-hybrid systems.

– We formally define the “secret sharing with encrypted shares” problem, where
shares are encrypted using public key encryption and a general key mapping
function. We specify a PKE-hybrid scheme that uses a CCA-secure PKE in
conjunction with a perfect secret sharing scheme, and prove the security of
such a scheme.

While the original purpose of this work was to provide a security analysis for
encrypted secret sharing, we believe that the plaintext randomization technique
will be useful in a wide variety of situations, and will ease analysis of many
protocols that make use of PKE as a component. As an example of this, we give
a greatly simplified analysis (compared to prior work) of hybrid encryption.

2 Cryptographic Security and Games

All our schemes are parametrized by a security parameter λ. Specific parameters
such as key sizes will depend on λ in operation-specific ways, and security is
analyzed in terms of the probability of some event occurring as a function of
λ — specifically, we want the probability of some bad event (related to a security
compromise) to be a function that decreases as λ increases. Specifically, we use
the standard notion of a negligible function.
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Definition 1. A function f : Z → R is negligible in λ (or just “negligible”
when f is a function of a well-understood security parameter λ) if for every
positive integer c0 there exists an integer c1 such that for all λ > c1,

|f(λ)| <
1

λc0
.

If an event happens with probability p(λ), we say that the event occurs “with
overwhelming probability” if p(λ) = 1 − f(λ), where f(λ) is negligible.

Public-key cryptography is one of the foundations of modern cryptography,
and is based on the idea that encryption and decryption can use different keys
that are generated in pairs consisting of a public key (for encryption) and a
secret key (for decryption). To formalize the idea of public-key encryption, we
identify the three core operations that any public-key encryption scheme must
provide, resulting in the following definition. Providing the full keypair, both
public and secret keys, to the decryption function is slightly non-standard, but
simplifies our presentation without changing the technical aspects.

Definition 2. A Public-Key Encryption (PKE) scheme (referred to as “a
PKE” for brevity) is defined by four sets and three probabilistic polynomial time
operations. The sets are PK, the set of public keys; SK, the set of secret keys;
PT , the set of plaintexts; and CT , the set of ciphertexts. The algorithms are the
following:

– KeyGen : 1∗ → PK×SK — when called as KeyGen(1λ), where λ is a security
parameter, produces a random public/secret pair (pk, sk) where pk ∈ PK and
sk ∈ SK.

– Encrypt : PK ×PT → CT — when called as Encrypt(pk, p), where pk ∈ PK
and p ∈ PT , produces ciphertext c ∈ CT . It is not required that all plaintexts
be valid for every public key, so we use PT (pk) to denote the set of valid
plaintexts for a particular public key pk. If Encrypt is called with an invalid
plaintext (i.e., p �∈ PT (pk)), then the operation fails and special value ⊥ is
returned.

– Decrypt : PK × SK × CT → PT — when called as Decrypt(pk, sk, c), where
pk ∈ PK, sk ∈ SK and c ∈ CT , produces plaintext p ∈ PT . We can similarly
restrict the ciphertext set to ciphertexts that are valid for a specific secret key
sk, which we denote by CT (sk).

We require that for any (pk, sk) produced by KeyGen, and for any plaintext
p ∈ PT (pk), with overwhelming probability Decrypt(pk, sk,Encrypt(pk, p)) = p.

This definition provides the only way to interface with the PKE scheme,
and so in particular neither the game oracle nor the adversary can have any
access to randomization used during encryption. For the techniques described in
this paper, we need PKEs that allow for random sampling from the set of valid
plaintexts, a property of all widely-used PKE schemes. We call this property
“plaintext-samplability,” defined as follows.
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Definition 3. A plaintext-samplable PKE is a PKE scheme that, in addi-
tion to all operations of a standard PKE scheme, supports the following opera-
tion:

– PTSample : PK × PT → PT — when called as PTSample(pk, p), where
pk ∈ PK and p ∈ PT , produces a random plaintext of the same length as a
supplied plaintext p ∈ PT . Specifically, x is uniformly chosen from {x |x ∈
PT (pk) and |x| = |p|}.
In reduction-based security proofs, security of cryptosystems is defined in

terms of a game between a probabilistic polynomial time (PPT) adversary and
a game oracle. The oracle sets internal, persistent state variables, and answers
queries for the adversary. The goal of the adversary is typically to determine
some information in the internal state of the game oracle (e.g., a hidden bit)
based just on oracle queries. A game G is described in terms of the interface to
the game oracle, as a set of functions of the following form:

– G.Initialize(1λ): Sets up persistent variables that are maintained throughout
the game based on a security parameter λ. This can involve generating one
or more random keys, and picking a random bit that the adversary will need
to guess.

– G.OracleQuery(· · · ): One or more functions are defined that allow the adversary
to query the oracle. These definitions are the heart of the security game.

– G.IsWinner(a): Takes a value a from the adversary at the end of the game,
and returns true or false depending on whether a is a winning answer. This is
always the “final answer” for the game, and once the adversary provides an
answer a for IsWinner the game no longer accepts any more oracle queries.

A game typically relies on certain cryptographic operations, which we indi-
cate by a superscript on the game name. For example, if some game G makes
use of PKE scheme S, we indicate this specific version of G by writing GS, and
operations then might be denoted as GS .Initialize(1λ), etc. Games that use PKE
schemes typically do so in a generic way, treating keys as opaque objects. We are
specifically interested in protocols that treat secret keys in this way, so introduce
the following terminology.

Definition 4. A game G that uses a PKE scheme S is sk-oblivious if, for any
keypair (pk, sk) produced by S.KeyGen, the only way that G uses sk is to pass
sk back unmodified in calls to S.Decrypt. In such a situation, we can say that
“G makes sk-oblivious use of S”.

The goal of the adversary is to win the game (i.e., produce an answer a
such that G.IsWinner(a) = true) with higher probability than simply guessing an
answer randomly. Typically the “answer” is a single hidden bit that needs to
be guessed, although our definition purposely avoids making this a requirement
so that other goals could be accommodated. In the case where the answer is a
single bit, the probability that a random guess would give a winning answer is
1
2 , and the goal is to win with probability non-negligibly larger than 1

2 , leading
to the definition of the “advantage” against a game.
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Definition 5. The “advantage” of an adversary A in game G is denoted AdvA,G,
and defined as AdvA,G = |P (G.IsWinner(AG(λ))) − 1

2 |, where the probability is
taken over both the random choices of A and the random choices of G. For some
description of resource bounds B (e.g., time complexity, number of encryption or
decryption queries, etc.), we also refer to the best possible advantage of any such
adversary against a particular game, written AdvG(B), defined as AdvG(B) =
supA AdvA,G, where the supremum is taken over all adversaries A that meet the
bounds requirements B.

For a game G that defines the security of some type of cryptographic scheme,
the goal is typically to find some specific scheme C such that AdvGC is negligible.

2.1 Multi-user CCA Security

As an extension to the better-known single key CCA security model for PKE,
Bellare et al. considered security of public-key encryption when the system is
used with multiple users (i.e., multiple keypairs) and multiple challenges are
made that are answered consistently [1]. This is sometimes referred to as multi-
user “left-right” security, since every encryption challenge is made with a pair of
values, and the encryption oracle consistently encrypts either the left or the right
value throughout the game. A key property of this model is that since encryption
pairs are chosen by the adversary, plaintexts of the provided ciphertexts can be
related in arbitrary ways, opening up the possibility of complex attacks. The
following describes the multi-user CCA security game PK-MUS

n parametrized
by the number of users n and a PKE scheme S.

– PK-MUS
n .Initialize(1λ): For i = 1 to n, the oracle generates keypairs

(pki, ski) = S.KeyGen(1λ), picks a random bit b ∈ {0, 1}, and sets C as
an initially empty set of ciphertexts. pk1, · · · , pkn are returned to the adver-
sary.

– PK-MUS
n .Decrypt(i, x): If (i, x) ∈ C, the oracle returns ⊥; otherwise, it returns

S.Decrypt(pki, ski, x).
– PK-MUS

n .PEncrypt(i, x0, x1): The oracle calculates c = S.Encrypt(pki, xb),
adds (i, c) to C, and returns c to the adversary.

– PK-MUS
n .IsWinner(a): Takes a bit a from the adversary, and returns true if

and only if a = b.

Note that PEncrypt (“pair encrypt”) is similar to Challenge in the standard single-
key CCA2 game, except that it can be called multiple times, and consistently
encrypts either the first or second argument. While this is equivalent to the
definition of Bellare et al., we use a single multi-key oracle, as in the recent
definition of Hofheinz and Jager [11]. When there is a single encryption user (n =
1), this definition turns into the standard notion of single-key CCA2 security,
and so in that situation we will refer to this as “CCA2-security” in a single-user
setting.
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3 Plaintext Randomization

In this section, we present the technique of plaintext randomization. This tech-
nique creates a PKE scheme that can maintain some internal state between
encryption and decryption requests. This stateful behavior would not be very
useful in most real-life cryptographic uses of public key encryption, since the
state would need to be protected and shared between encryption and decryption
operations, which may be executed on separate systems. Nonetheless, it is pos-
sible to define such a stateful PKE scheme, and when this PKE is used inside
a cryptographic game oracle — which can keep state secret from users of the
oracle, and encryption and decryption are performed by the same party — it
turns out to be a very useful concept.

Consider an adversary A that plays a game G that uses a plaintext-samplable
PKE scheme S. We create a stateful PKE scheme that is based on S, but in
which ciphertexts are meaningless, and cannot reveal any information about the
corresponding plaintext other than perhaps its length. Specifically, ciphertexts
are simply encryptions of random plaintexts of a given length, and the scheme
uses internal state to keep track of plaintext/ciphertext pairs so that encryption
followed by decryption gives the required result. We formalize this idea in the
following definition.

Definition 6. Given a plaintext-samplable PKE scheme S, the plaintext ran-
domization of S is a set of functions that acts as a PKE scheme, denoted
S−rand, defined as follows:

– S−rand.KeyGen(1λ) computes (pk, sk) = S.KeyGen(1λ) and returns
(pk, sk).

– S−rand.Encrypt(pk, p) first computes r = S.PTSample(pk, p), and then c =
S.Encrypt(pk, r). If a tuple of the form (pk, c, ·) is already stored in S−rand’s
internal state, then ⊥ is returned (the operation fails); otherwise, S−rand

stores the tuple (pk, c, p), and returns c as the ciphertext.
– S−rand.Decrypt(pk, sk, c) looks for a tuple of the form (pk, c, x) for some x.

If such a tuple exists, then x is returned as decrypted plaintext; otherwise,
p = S.Decrypt(pk, sk, c) is called and p is returned.

Note that the Encrypt function can fail if a duplicate ciphertext is produced,
but since these ciphertexts are encryptions of random plaintexts then both the
randomly chosen plaintext and randomness used in the encryption must be a
repeat of a previous encryption, which happens with negligible probability. It is
important not to confuse the above definition with an oracle that the adversary
interacts with — the plaintext randomization of S replaces calls to a PKE
scheme that happen internal to a security game, and the adversary does not
have direct access to these functions. Replacing a PKE scheme with its plaintext
randomization typically results in a game that is much simpler to analyze, but
is a good approximation to the original game. In particular, the following lemma
shows that if the advantage against the plaintext-randomized game is negligible,
then the advantage against the original game is also negligible.
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Lemma 1 (Plaintext Randomization Lemma). Let G be a game that makes
sk-oblivious use of a plaintext-samplable public key encryption scheme S, and let
S−rand be the plaintext randomization of S. Then, for any probabilistic adver-
sary A that plays GS so that the total game-playing time of A is bounded by t, the
number of calls to S.KeyGen is bounded by n, and the number of encryption and
decryption requests for any individual key is bounded by qe and qd, respectively,
∣
∣AdvA,GS − AdvA,GS−rand

∣
∣ ≤ 2AdvPK-MUS

n
(t′, qe, qd),where t′ = t + O(log(qen))

Proof. Given adversary A that plays the game G we will construct an adversary
A′ that plays PK-MUS

n , so A′ converts A into an adversary that attacks the
basic multi-user CCA security of the underlying PKE S. A′ starts by calling
PK-MUS

n .Initialize(λ) and saves the list of public keys pk1, · · · , pkn for later use,
setting m = 0 to track the number of public keys that are “in use” by G. A′ next
simulates the original adversary A and the game oracle G, replacing G’s use of
PKE S with a specially constructed stateful PKE scheme S̃ that has access to
the public keys pk1, · · · , pkn and counter m, as well as the PK-MUS

n oracle. S̃
provides the standard three PKE functions as follows:

– S̃.KeyGen(1λ): If m = n (i.e., we have already used n keypairs), this opera-
tion returns ⊥ and fails. Otherwise, S̃ increments m (the number of keys in
use) and returns (pkm, pkm) as the generated “keypair.” Note that the “secret
key” is really just the public key, but this is not important since we can per-
form all the operations below with just this information, and G’s use of S is
sk-oblivious.

– S̃.Encrypt(pki, p) for valid public key pki: S̃ computes random plaintext
r = S.PTSample(pki, p), and then computes c = PK-MUS

n .PEncrypt(i, p, r).
The tuple (pki, c, p) is saved in S̃’s state, and c is returned.

– S̃.Decrypt(pki, pki, c): Note that the pki here is used as both the public and
the secret key, despite the notation. The decrypt function first checks to see if
S̃’s state contains a tuple (pki, c, p) for some p, and if such a tuple is found p is
returned as the plaintext. Otherwise, p = PK-MUS

n .Decrypt(i, c) is returned.

Note that all calls to PK-MUS
n .PEncrypt store a tuple that includes the returned

ciphertext, and the S̃.Decrypt function never calls the PK-MUS
n .Decrypt oracle

with such a ciphertext, so all Decrypt calls will succeed.
A′ continues simulating A and G

˜S until A outputs its final result, a, for game
G, at which point A′ calls G.IsWinner(a) to check if A’s output wins game G

˜S.
Based on this, A′ outputs its guess b′ for PK-MUS’s secret bit b as follows:

– If A wins G
˜S, A′ outputs guess b′ = 0.

– If A loses G
˜S, A′ outputs guess b′ = 1.

Thus, A′ wins if A wins and b = 0, or if A loses and b = 1. Since b is uniformly
distributed,

P (A′ wins) = 0.5P (A wins G
˜S | b = 0) + 0.5P (A loses G

˜S | b = 1). (1)
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While our simulator does not know the bit b, the construction of S̃ is such
that when b = 0 the game played by A is exactly GS (since in this case the
encryption request is answered by an encryption of the real plaintext), and when
b = 1 the game played by A is exactly GS−rand (since in this case the encryption
request is answered using plaintext randomization). Using this observation we
can simplify (1) as follows:

P (A′ wins) = 0.5P (A wins GS) + 0.5P (A loses GS−rand)
= 0.5P (A wins GS) + 0.5

(
1 − P (A wins GS−rand)

)

= 0.5 + 0.5P (A wins GS) − 0.5P (A wins GS−rand).

By definition, AdvA′,PK-MUS
n

= |P (A′ wins )−0.5|, and since A′ only does some
simple table lookups in addition to its simulation of A and G, which induces at
most qe and qd encryption and decryption requests, respectively, we can bound
AdvA′,PK-MUS

n
by AdvPK-MUS

n
(t′, qe, qd), where t′ = t + O(log(nqe)). It follows

that:
∣
∣0.5P (A wins GS) − 0.5P (A wins GS−rand)

∣
∣ ≤ AdvPK-MUS

n
(t′, qe, qd),

and so,
∣
∣P (A wins GS) − P (A wins GS−rand)

∣
∣ ≤ 2 AdvPK-MUS

n
(t′, qe, qd). (2)

Returning to the original problem, comparing the advantage of A with respect
to GS and GS−rand,
∣
∣AdvA,GS −AdvA,GS−rand

∣
∣ =
∣
∣ |P (A wins GS) − 0.5| − |P (A wins GS−rand) − 0.5| ∣∣ ,

and so,
∣
∣AdvA,GS − AdvA,GS−rand

∣
∣ ≤ ∣

∣ P (A wins GS) − P (A wins GS−rand)
∣
∣ (3)

Combining bounds (2) and (3), we conclude that
∣
∣AdvA,GS − AdvA,GS−rand

∣
∣ ≤ 2 AdvPK-MUS

n
(t′, qe, qd),

which is the bound claimed in the lemma statement. ��
We next provide a corollary that gives two alternate forms for the Plaintext
Randomization Lemma, which might be useful if a bound is desired in terms of
traditional single-user, single-challenge CCA2 security. This corollary is stated
without proof, as the bounds follow directly from the Plaintext Randomization
Lemma and multi-user PKE bounds proved by Bellare et al. [1]. The second
bound follows from the tighter multi-user security that is possible from the
Cramer-Shoup PKE scheme.

Corollary 1. Let G be a game that makes sk-oblivious use of a plaintext-
samplable public key encryption scheme S, and let S−rand be the plaintext
randomization of S. Then, for any probabilistic adversary A that plays GS
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so that the total game-playing time of A is bounded by t, the number of calls
to S.KeyGen is bounded by n, and the number of encryption and decryption
requests for any individual key is bounded by qe and qd, respectively,

∣
∣AdvA,GS − AdvA,GS−rand

∣
∣ ≤ 2qenAdvPK-CCA2S(t′, qd),

where t′ = t + O(log(qen)). Furthermore, for the Cramer-Shoup PKE scheme,
denoted CS, we can bound

∣
∣AdvA,GCS − AdvA,GCS−rand

∣
∣ ≤ 2qe AdvPK-CCA2CS (t′, qd).

4 Hybrid Encryption

In this section we provide an example of how plaintext randomization can sim-
plify proofs other PKE-hybrid protocols, by giving a very simple proof for the
security of hybrid encryption using a standard PKE rather than a KEM.

Definition 7. A hybrid encryption scheme H(P,S) combines the use of a PKE
scheme P and an SKE scheme S to produce a public-key encryption scheme
defined by the following functions:

– KeyGen(1λ): Compute (pk, sk) = P.KeyGen(1λ) and return the keypair
(pk, sk).

– Encrypt(pk, p): Compute k = S.KeyGen(1λ) and then ciphertexts ψ =
P.Encrypt(pk, k) and φ = S.Encrypt(k, p). The returned ciphertext is the
pair c = (ψ, φ).

– Decrypt(pk, sk, c): Ciphertext c = (ψ, φ) is decrypted by first finding the ses-
sion key using k = P.Decrypt(pk, sk, ψ) and then computing the final plaintext
p = S.Decrypt(k, φ).

Since the net effect of a hybrid encryption scheme is the same as a public
key encryption system, security is defined by the multi-user CCA security notion
that was given in Sect. 2.1. We also refer to the multi-user CCA security of a
symmetric encryption scheme in the following analysis. The SK-MU game is a
straightforward modification of PK-MU to a symmetric encryption setting, and
is omitted here.

Theorem 1. For any hybrid encryption scheme H(P,S), if A is an adversary
that runs in time t in a game that uses at most n keypairs and performs at most
qe and qd encryption and decryption queries, respectively, then

AdvA,PK−MUH
n

≤ 2 AdvPK-MUP
n
(t′, qe, qd) + AdvSK-MUS

qen
(t′, 1, qd),

where t′ = t + O(log(qen)).
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Proof. Consider the plaintext randomization of H, and an adversary A playing
the PK-MUH−rand

n game: in this situation, a ciphertext (ψ, φ) is such that ψ is
completely unrelated to φ — it is just an encryption of a random value. There-
fore, any attack on H−rand can be immediately turned into an attack on the
SKE scheme S by simulating A and adding encryptions of random values to
simulate the ψ portion of each ciphertext. Each use of the SKE scheme in this
scenario uses a different random key, with a single encryption per symmetric key,
and since the probability of winning the SKE game is the same as A winning the
H−rand game, we can bound the advantage of A in the PK-MUH−rand

n game as

AdvA,PK-MUH−rand ≤ AdvSK-MUS
qen

(t, 1, qd).

By the Plaintext Randomization Lemma, we know that
∣
∣AdvA,PK-MUH − AdvA,PK-MUH−rand

∣
∣ ≤ 2AdvPK-MUP (t′, qe, qd),

leading to the bound in the theorem. ��
While we generally state bounds in terms of concrete security, we restate this
bound as a simple statement about security with respect to a probabilistic
polynomial-time (PPT) adversary. In particular, we say simply that a scheme
is “PK-CCA2-secure” if AdvA,PK−CCA2 is negligible for any PPT adversary A, and
similarly for other games.

Corollary 2. If P is a PK-CCA2-secure PKE scheme, and S is a SK-CCA2-secure
SKE scheme, then hybrid scheme H(P,S) is a PK-CCA2-secure PKE scheme.

5 Secret Sharing with Encrypted Shares

Loosely speaking, a secret sharing scheme consists of a dealer, who knows some
secret, and a set of participants who are given shares of this secret by the dealer
in such a way that only authorized sets of participants can reconstruct the secret
from their shares. Formalizing this intuitive notion is not difficult, and the for-
mulation we use is a slight modification of the 1987 definition given by Ito, Saito,
and Nishizeki [12].

Formally, an n-way secret sharing scheme is one in which a secret s comes
from some space of secrets SS, and a function MakeShares:SS → PSn where
PS is the “piece space” for shares of the secret. In particular, given s ∈ SS,
MakeShares(s) produces a vector (s1, s2, · · · , sn) of shares, where si ∈ PS for
all i, and shares are identified by their index in this vector. Using notation
[n] = {1, · · · , n}, an access structure Γ ⊆ 2[n] is a set of subsets of indices that are
authorized to reconstruct the secret. For any subset {i1, i2, · · · , im} ∈ Γ we can
use function Reconstruct(si1 , si2 , · · · , sim) = s to reconstruct s from shares iden-
tified by an authorized subset of indices. We require that if {i1, i2, · · · , im} �∈ Γ
then it is infeasible to reconstruct s from shares si1 , si2 , · · · , sim , where “infea-
sible” can be defined either from a computational or an information theoretic
standpoint. All of the secret sharing schemes we consider in this paper use the
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information theoretic model of security, meaning that for any {i1, i2, · · · , im} �∈ Γ
all secrets s ∈ SS are equally likely, so no algorithm can extract any information
about s from these shares — such a secret sharing scheme is called perfect. Per-
fect secret sharing schemes are known and widely used for certain specific access
structures, such as Shamir’s secret sharing scheme for threshold access struc-
tures [13]. As is typical in secret sharing work, we require that Γ be monotone,
so that if some I ∈ Γ then all supersets of I are also in Γ .

We are interested in schemes in which shares are encrypted using a pub-
lic key scheme, so for a PKE with plaintext space PT we assume an embed-
ding function e : PS → PT and a “de-embedding” function d : PT → PS
so that d(e(si)) = si for any share si. In what follows, use of the embedding
and de-embedding functions is implicitly assumed when shares are encrypted or
decrypted. Despite the widespread use of secret sharing, both as an independent
cryptographic functionality and as a component of other cryptographic proto-
cols, we have not located any formal work analyzing the situation in which shares
are encrypted using a public key encryption scheme. Such a situation is similar to
hybrid encryption, but with the ultimate secret computed using a combination
of decryption and secret reconstruction. Traditional notions of indistinguisha-
bility games have serious challenges in this setting. Traditional games typically
have the restriction that once a ciphertext is produced by a challenge oracle,
the adversary is not allowed to request and receive a decryption of that cipher-
text, so any reduction from a standard indistinguishability game should similarly
avoid queries on ciphertexts produced by the challenge oracle. In the setting of
secret sharing, we want to allow decryption of challenge ciphertexts as long as
the full set of decryptions produced does not correspond to a set γ ∈ Γ that can
reconstruct the secret. Our plaintext randomization technique can handle this
situation quite cleanly, while it is not clear how to start with a reduction from
a traditional ciphertext indistinguishability game.

In our formalization, we consider an n-way perfect secret sharing scheme as
defined above with monotone access structure Γ for which we will use k different
keypairs (numbered 1 to k for convenience) to encrypt these shares according to
a key mapping function K : [n] → [k] so that share i will be encrypted using key
number K(i). The scheme may depend on the access structure, and may in fact
only work for some specific subset of access structures (such as threshold access
structures), and we assume there is some appropriate and compact description
D(Γ ) of valid Γ ’s for a particular scheme.

Using this general key mapping function allows us to capture several different
scenarios within one general definition. For example, with k = 1 and K(i) = 1
for all i, we capture a scheme in which all shares are encrypted with the key of
a single trusted authority and shares are distributed (either to a single party or
multiple parties) so that decryption of shares is allowed based on some criteria
determined by the trusted authority. For example, Γ might be a threshold struc-
ture with threshold t, and trusted hardware controls how many shares may be
decrypted at any particular time (this is the case in Gunupudi and Tate’s gen-
eralized oblivious transfer scheme based on trusted hardware [10]). As another
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example, consider k = n escrow authorities, all with their own keys, and K(i) = i
for all i. In this case, a single user could obtain all encrypted shares, and if the
user needs to open the secret at some point the user could approach some sub-
set γ ∈ Γ of escrow authorities and convince them that they should decrypt
the share that is encrypted with their key. This is the scenario described in the
Introduction.

We define the following security game for secret sharing with encrypted
shares.

– ESSS .Initialize(1λ, k, n,K,D(Γ )): If this scheme does not support access struc-
ture Γ , return ⊥ and do not answer any further queries. Otherwise, the oracle
generates keypairs (pki, ski) = S.KeyGen(1λ) for i = 1, . . . , k, picks a ran-
dom bit b ∈ {0, 1}, and saves n, K, and D(Γ ) for later use. γ, used to track the
set of shares that have been decrypted, is initialized to the empty set. Finally,
set flag c to false, indicating that no challenge has yet been made, and return
pk1, . . . , pkk.

– ESSS .Challenge(x0, x1): If c is true, then return ⊥. Otherwise, the oracle gen-
erates n shares s1, . . . , sn for xb, creates share ciphertexts by computing
ci = S.Encrypt(pkK(i), si) for i = 1, . . . , n, sets flag c to true, and returns
the vector (c1, . . . , cn) to the adversary (keeping a copy for future reference).

– ESSS .Decrypt(i, x) (where i ∈ [k] is a key number and x is a ciphertext): If
x �∈ {cj | K(j) = i} (so cj was not produced by encrypting with key i), then
simply compute and return S.Decrypt(pki, ski, x). Otherwise, x = cj for some
j with K(j) = i, so test whether γ ∪ {j} ∈ Γ : if it is, return ⊥; otherwise, set
γ ← γ ∪ {j} and return S.Decrypt(pki, ski, x).

– ESSS .IsWinner(a): Takes a bit a from the adversary, and returns true if and
only if a = b.

Note that the test in ESSS .Decrypt(i, x) disallows decrypting shares for a share set
that would allow reconstruction of the secret, while still allowing some decryp-
tions. Furthermore, since Γ is monotone, if the ultimate set of shares that have
been decrypted are from a set γ �∈ Γ , then every subset of γ is also not in Γ
and so this test does not restrict adversaries in any way other than not allowing
them to receive a full share set.

Since the bounds in the Plaintext Randomization Lemma depend on the
number of times each key is used, we define qe to be the largest number of times
any key is used according to our key mapping function. Specifically,

qe = max
i∈[k]

|{j | K(j) = i}| .

Theorem 2. If ESS is a k-key perfect n-way secret sharing scheme using PKE
S, with qe and qd defined as described above, then for any time t adversary A,

AdvA,ESSS ≤ 2AdvPK-MUS
n

(t′, qe, qd).

Proof. Consider the ESSS−rand, the ESS game using the plaintext randomized
version of S. Let b denote the secret random bit chosen during the initializa-
tion step, let x0 and x1 denote the challenge secrets selected by A, and let
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c1, c2, · · · , cn be the ciphertexts produced by the ESS oracle encrypting shares
of xb using S−rand. At any time while A is playing ESSS−rand, its view consists
of ciphertexts c1, c2, · · · , cn as well as a set of shares that it has decrypted,
si1 , si2 , · · · , sim , where {i1, i2, · · · , im} = γ �∈ Γ (as enforced by the ESS game).
Since the decrypted shares are not in Γ and the secret sharing scheme is perfect,
and since plaintext randomization results in ciphertexts being independent of
the actual shares (and hence the secret), each secret (x0 or x1) is equally likely
given the adversary’s view. Therefore, AdvA,ESSS−rand = 0.

Referring back to the Plaintext Randomization Lemma,
∣
∣AdvA,ESSS − AdvA,ESSS−rand

∣
∣ ≤ 2AdvPK-MUS

n
(t′, qe, qd),

and since AdvA,ESSS−rand = 0 we conclude with the bound stated in the
theorem. ��

6 Conclusions

In this paper we have examined the problem of encrypted secret sharing (ESS),
developing a general and flexible definition, and solving challenges posed in the
analysis by developing a new, general-purpose, and powerful technique called
plaintext randomization. This technique modularizes the analysis PKE-hybrid
cryptographic protocols, and separates out the dependence on the security of the
PKE scheme in a way that is captured by the Plaintext Randomization Lemma
that is proved in this paper. Beyond the immediate result for ESS, we believe
that plaintext randomization holds great promise for additional applicability,
given the prevalence of public-key encryption in cryptographic schemes and the
efficient schemes that can be derived in the reduction-based security model.
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Abstract. In the present paper, we propose private stable matching
protocols to solve the stable marriage problem with the round complexity
O(n2), where n is the problem size. In the multiparty setting, the round
complexity of our protocol is better than all of the existing practical pro-
tocols. We also implement our protocol on a standard personal computer,
smartphones, and tablet computers for experimental performance eval-
uation. Our protocols are constructed by using additive homomorphic
encryption only, and this construction yields improved round complex-
ity and implementation-friendliness. To the best of our knowledge, our
experiment is the first implementation report of a private stable match-
ing protocol that has a feasible running time.

1 Introduction

The stable marriage problem is defined as finding stable matches between two
equal-sized sets of men and women. Given an equal number of men and women
to be paired in marriage, each man and each woman ranks all of the women
and men, respectively, in order of their preference. Matching is stable when
there exists no alternative man and woman pair that prefer each other to their
already matched partners [9,15].

The stable marriage problem has applications in the design of two-sided
markets. For example, consider the matching of two groups, such as venture
companies and investment companies. Each venture company possesses intellec-
tual property and is searching for an investor to support their business. Each
investment company wishes to invest in the best possible venture company. Each
venture company ranks all investment companies based on their investment prin-
ciples and conditions, whereas each investment company ranks all venture com-
panies in the order of the potential yield that the intellectual property is expected
to produce. A stable matching achieves pairing of venture companies and invest-
ment companies that neither company has an incentive to switch partners.
c© Springer International Publishing Switzerland 2015
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Classical algorithms are known to solve the stable marriage problem in a rea-
sonable computation time [9,15].

Golle first introduced the notion of privacy into the stable marriage prob-
lem in [12]. Intuitively, in the private stable marriage problem, each participant
desires to find a stable match while keeping their preference list confidential from
other participants. In the example of investment companies and venture compa-
nies, the potential yields of the investment companies should be kept private due
to confidentiality agreements, while the venture companies desire to keep their
preference lists private because such information might reveal future business
plans. If both still wish to find a stable match, this situation is represented as
the private stable matching problem.

1.1 Related Work

Gale and Shapley proved that, for any equal number of men and women, it is
always possible to solve the stable marriage problem, and proposed an algorithm,
referred to as the Gale–Shapley algorithm, to find such a stable match [9,15].
The number of necessary iterations of the Gale–Shapley algorithm to find a
stable match is n2 − n + 1 for the worst input case, where n is the size of two
sets of the given stable marriage problem [15, pp. 14–15], referred to as the size
of stable marriage problem.

Secure multiparty computation enables two or more parties to evaluate a
prescribed function with distributed private inputs. Generic secure multiparty
computation techniques [1] allow us to find a stable match without sharing pri-
vate preference lists. However, implementation of the Gale–Shapley algorithm by
means of generic secure multiparty computation techniques has not previously
been a realistic solution because the number of the internal states of the Gale–
Shapley algorithm can exponentially increase with the number of iterations, thus
resulting in extremely high computational and communication costs.

Golle [12] proposed a specific protocol design based on the Gale–Shapley
algorithm for the private stable marriage problem. The design of existing proto-
cols are such that one iteration of the main loop in the protocol corresponds to
one iteration of the Gale–Shapley algorithm, and the one iteration of the main
loop in these protocols causes several rounds of execution.

Golle defined the private stable marriage problem and presented a proto-
col that solves this problem using the re-encryption mix network [13] and the
private equality test protocol [16] as primitives. Although the protocol works
correctly in most cases, Franklin et al. suggested that the protocol fails in
one particular situation [7]. Specifically, they reported that the counter used
in Golle’s protocol cannot be set to a sufficiently large number and can cause
overflow. Franklin et al. showed that this failure can be fixed by introducing
protocols based on the secret sharing scheme [2]. In the fixed version of the pro-
tocol (referred to hereinafter as GFGM), two different cryptographic primitives,
namely, threshold additive homomorphic encryption and secret sharing, are used
alternatively, and the round complexity of GFGM is Õ(n3), where Õ(f) denotes
the asymptotic upper bound of O(f) ignoring log f factors (line 2 in Table 1
from [7]).
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Franklin et al. proposed two protocols for the private stable marriage prob-
lem in [7]. The first protocol, FGM1, is an improvement of GFGM. In FGM1,
two novel techniques, the single free man technique and Stern’s private infor-
mation retrieval (PIR) protocol [21] along with a protocol based on a secret
sharing scheme [2], are introduced. FGM1 is terminated after O(n2) iterations
of the main loop, and PIR with O

(√
log n

)
round complexity is invoked for

each iteration. Thus, the round complexity of FGM1 is reduced to Õ(n2) and
this complexity is larger than O(n2) (line 3 in Table 1 from [7]).

Franklin et al.’s second protocol, FGM2, is completely different from GFGM
and FGM1. Here, FGM2 consists of two primitives. Yao’s garbled circuit [22]
is used to compute part of the operations of the Gale–Shapley algorithm, and
the Naor–Nissim protocol is used to securely share the private inputs [17]. This
protocol achieves the best communication complexity among the currently exist-
ing protocols. However, FGM2 is not secure if collusion occurs between the two
parties (line 4 in Table 1 from [7]).

Franklin et al. made a suggestion about the multiparty extension of FGM2
in [8], in which the secure multiparty computation [1] and a multiparty version
of the Naor–Nissim protocol [17] are used as primitives. This protocol, referred
to as FGM3, is collusion-resistant if the number of colluding parties is less than
the prescribed threshold (greater than two) specified by all of the underlying
cryptographic protocols. Note that [8] describes only the concept of FGM3 and
does not provide a formal complexity analysis of FGM3. Here, we will discuss
the round complexity of FGM3, the multiparty extension of FGM2. Since the
round complexity of the multiparty version of the Naor–Nissim protocol [8] is
O(log n), which is invoked O(n2) times, the round complexity of FGM3 is Õ(n2),
which is also larger than O(n2) (line 5 in Table 1 from [8]).

Considering the necessity for all parties to wait for the slowest party to
complete its tasks and communication, it is clear that round complexity has a
dominant influence on the completion time of the protocol. Thus, the achieve-
ment of small round complexity significantly contributes to reducing the actual
computation time.

1.2 Contribution

Our contributions are two-fold: first, we present the first O(n2) protocol for the
private stable matching problem, and, second, we guarantee the security of the
protocol by using additive homomorphic encryption only.

As mentioned earlier, the all of existing protocols are constructed using sev-
eral primitives: these are non-constant round protocols, the PIR with secret shar-
ing schemes [2,21] and the multiparty version of the Naor–Nissim protocol [8].
Our protocol is basically designed as FGM1 and GFGM, and we modified the
protocol, which consists of constant-round primitives only: private equality test
and re-encryption mix network. By doing so, we improved the number of rounds
required for private stable matching. To the best of our knowledge, this is the
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first O(n2) round practical protocol designed for private stable matching in a
multiparty setting.

Furthermore, since our protocol employs homomorphic encryption alone, the
resulting protocol can be easily implemented. The security of our protocol relies
solely on the underlying threshold additive homomorphic encryption. We imple-
mented our protocol by using Paillier encryption [20] for our experimental pro-
gram. Since our protocol uses a small space of plaintexts, Paillier encryption can
be replaced with ElGamal encryption on an elliptic curve [5], which would be
superior to in computation time.

In the present paper, we propose two private stable matching protocols: a
collusion-resistant protocol and a non-collusion-resistant protocol. The former
protocol employs threshold additive homomorphic encryption, which makes the
protocol collusion-resistant against t′ colluding semi-honest adversaries (line 6
in Table 1). The latter protocol is designed mainly for implementation purposes
(line 7 in Table 1) and is not collusion-resistant. In our implementation version,
we presume that parties do not collude with each other. Based on this assump-
tion, we can eliminate distributed decryption from the protocol and simplify
the mix network. This makes the entire protocol design much simpler and more
implementation friendly.

The remainder of the present paper is organized as follows. Preliminaries
are presented in Sect. 2. The definition and previous protocols of private stable
matching are introduced in Sect. 3. A new stable matching protocol with thresh-
old additive homomorphic encryption is described in Sect. 4. The experimental
implementation is presented in Sect. 5.

Table 1. Summary of comparison, where n denotes the size of stable marriage problem,
Õ(f) denotes the asymptotic upper bound O(f) ignoring polynomial of log f factors,
MA denotes matching authority (explained in Sect. 4.2), AHE denotes ordinary addi-
tive homomorphic encryption [5,20], TAHE denotes threshold additive homomorphic
encryption [3,6,10], SS denotes secret sharing [2], PIRSS denotes Stern’s private infor-
mation retrieval [21] and secret sharing [2], Yao denotes Yao’s garbled circuit [22], NN
denotes the Naor–Nissim protocol [17], SMC denotes the Beaver et al.’s protocol [1],
and FGM denotes the Franklin et al.’s protocol [8].

Proposals Primitives Collusion # of Total Total Round

resistance MAs comput. comm.

Gale–Shapley [9,15] – – – – – n2 − n + 1

GFGM [7,12] TAHE, SS Yes t O(n5) O(tn5) ˜O(n3)

FGM1 [7] TAHE, SS, PIRSS Yes t O
(

n4√
log n

)

O(tn3) ˜O(n2)

FGM2 [7] Yao, NN No 2 O(n4) O
(

n2)
˜O(n2)

FGM3 [8] SMC, FGM Yes t O(n4) O(tn2) ˜O(n2)

Proposal (Sect. 4.2) TAHE Yes t O(n4) O(tn4) O(n2)

Implemented ver-

sion (Sect. 5.1)

AHE No – O(n4) O(n4) O(n2)
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2 Preliminaries

In this section, we introduce the building blocks and notation. Our protocol is
constructed using four sub-protocols: re-encryption mix network, private equality
test, private index search, and private comparison. Their round complexity is
O(1) for the number of input ciphertexts. Note that these protocols are based
on additive homomorphic encryption only.

Ordinary and Threshold Additive Homomorphic Encryption. The security
guarantee of the proposed protocols is based on semantically (or IND-CPA)
secure [11] ordinary or threshold additive homomorphic public-key encryption
schemes. Threshold additive homomorphic encryption is used to construct a
collusion-resistant protocol. The ElGamal encryption scheme [5], the Paillier
encryption scheme [20], and the threshold versions thereof [3,6,10] are known
as additive homomorphic encryption schemes. We denote the encryption of a
plaintext m by E(m). The additive homomorphism of encryption is denoted by
E(a)·E(b) = E(a+b). Multiple application of operation “·” derives E(c)d = E(cd).
Let v = (v0, v1, . . . , vn−1), then we define E(v) =

(
E(v0),E(v1), . . . ,E(vn−1)

)
.

Re-encryption Mix Network. Let a party hold a sequence of ciphertexts. If the
party and mix servers jointly compute the re-encryption mix network (MIX), the
party obtains a randomly permuted and re-randomized (re-encrypted) sequence
of the ciphertexts after execution of the protocol [13]. The MIX is private if the
party and the mix servers cannot learn any information about the plaintexts
or the secret permutation. Note that the MIX can be collusion resistant if a
threshold encryption scheme is used. The computational, communication, and
round complexities of the MIX are O(n), O(tn), and O(1) for n ciphertexts and
t mix servers, respectively. Parallelization of the mix network was investigated
in [13]. This parallelized version of the MIX is used for existing private stable
matching algorithms and our proposal in Sect. 4 for computational efficiency.

Private Equality Test. Let E(m1) and E(m2) be two ciphertexts of an ordi-
nary or threshold additive homomorphic encryption scheme. Let EQTEST(
E(m1),E(m2)

)
= b denote a private equality test in which b = 1 if m1 = m2

otherwise b = 0. Here, EQTEST does not leak information to any parties, except
for the equality relation, as long as the underlying ordinary or threshold additive
homomorphic encryption scheme is semantically secure. The round, computa-
tional, and communication complexities of this protocol are all constant [16].

Lipmaa’s private equality test [16] can be performed in a parallelized man-
ner. Let EQTEST

((
E(m1,i)

)n−1

i=0
,
(
E(m2,i)

)n−1

i=0

)
= (bi)n−1

i=0 denote n parallel or
batch execution of a private equality test, where bi = 1 if m1,i = m2,i, otherwise
bi = 0 for all i = 0, 1, . . . , n − 1. The n parallel or batch execution of the private
equality test can be performed in a constant round, O(n) computational, and
O(tn) communication complexities.
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Private Index Search. Let c = (c0, c1, . . . , cn−1) be a vector of n ciphertexts
c0, c1, . . . , cn−1 of a threshold additive homomorphic encryption scheme. Given
the ciphertext of an arbitrary message c′, the private index search computes
INDEX(C, c′) = b if there exists 0 ≤ b < n such that the plaintexts of cb and
c′ are equal, otherwise b = ⊥ is returned. Golle instantiated this protocol by n
parallel or batch execution of EQTEST(ci, c

′) for 0 ≤ i < n [12]. While we make
use of batch execution of this protocol, the protocol is still completed within a
constant round.

Private Comparison. Let m1 and m2 be two plaintexts of an ordinary or thresh-
old additive homomorphic encryption scheme, where 0 ≤ m1,m2 < n. When two
parties hold private m1 and m2, private comparison evaluates whether m1 < m2

holds without sharing private values. Let COMPARE
(
E(m1),E(m2)

)
= b

denote the computation of private comparison, where b = 1 if m1 < m2, b = 0
otherwise. This protocol can be executed in a constant round through the MIX
and parallel execution of EQTEST [12].

3 Private Stable Matching

In this section, we introduce the Gale–Shapley algorithm [9,15], the definition
of private stable matching, Golle [12], and Franklin et al.’s protocols [7].

3.1 Gale–Shapley Algorithm

Gale and Shapley defined the stable marriage problem and proposed an algo-
rithm that solves it by producing stable matching [9]. In the stable marriage
problem, there are two equal-sized sets of participants consisting of men and
women. A matching is a one-to-one mapping between the two sets. We refer
to the number of men and women as the size of the stable marriage problem.
The objective is to find a matching so that none of the men or women has any
incentive to undermine any matched pairs.

The Gale–Shapley algorithm allows us to find a stable matching of this prob-
lem with O(n2) computational complexity, where n is the size of the given stable
marriage problem. The outline of the algorithm is shown in Algorithm1, which
is reprinted and slightly modified from [15] for notational convenience. None of
the participants is assigned to any matches in the initial phase. Participants that
have not been paired are referred to as free men and women. Then, in the loop
part (lines 2–8 of Algorithm 1), each free man proposes to the highest ranked
woman (according to his preference) that he has never previously proposed to,
regardless of her engagement status. The algorithm is terminated when all of the
participants have been engaged. The resulting engaged pairs are guaranteed to
be a stable matching. The Gale–Shapley algorithm is not designed to preserve
input privacy. All of the participants send their own preference lists to a sin-
gle matching authority, which performs stable matching using the Gale–Shapley
algorithm.
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Algorithm 1. Gale–Shapley algorithm [15]
1: Assign each person to be free.
2: while some man m is free do
3: w := the first woman on m’s preference list to whom m has not yet proposed.
4: if w is free then assign m and w to be engaged.
5: else
6: if w prefers m to her fiancé m′ then assign m and w to be engaged and m′

to be free.
7: else w reject m.
8: end while
9: return The stable matching consisting of n engaged pairs.

3.2 Golle and Franklin–Gondree–Mohassel Private Stable Matching

Golle defined the algorithm or protocol preserving input privacy as the private
stable matching as follows [12, Definition 1].

Definition 1 (Private stable matching). An algorithm for computing a
stable match is private if it outputs a stable match and reveals no other infor-
mation to the adversary than what the adversary can learn from that match and
from the preferences of the participants it controls.

Golle and Franklin et al. proposed practical private stable matching protocols
in the sense of Definition 1. Our protocol presented in Sect. 4 has better round
complexity than the all of the currently existing practical protocols and it is
constructed via our proposed bid technique, where bid is a data structure firstly
proposed by Golle.

Golle defined two data structures, the bid and the engaged bid, in order to
construct a private stable matching protocol based on the Gale–Shapley algo-
rithm [12]. Bids and engaged bids constructed via ciphertexts, and are used to
represent and hide the preference lists and the internal state of the Gale–Shapley
algorithm. The bids and the engaged bids represent the statuses of free men and
engaged pairs of a man and woman (explained later), respectively.

Franklin et al. modified Golle’s bid to construct FGM1. Franklin et al. used
Stern’s PIR [21] and several ciphertexts in bids are stored into a PIR server.
The number of ciphertexts in resulting bids of FGM1 is smaller than Golle’s bid.
However, PIR cannot be executed in natural manner because query indexes are
encrypted and the PIR client does not know its plaintext. Moreover, FGM1 needs
the operation to compute E(min{a + 1, b}) for given E(a), where a = 0, 1, . . . , b,
and b is a publicly known integer. These operations cannot be executed efficiently
with additive homomorphic encryption only. Franklin et al. solved these problems
by using the secret sharing scheme [2]. Consequently, the round complexity of
FGM1 is Õ(n2).
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4 Main Proposal

In this section, we propose a new private stable matching protocol, which is
improved in two ways; specifically, a new bid definition and a new protocol for
the proposed bid. Here, the bid is a data structure that represents the internal
states of the problem. In what follows, we first introduce our new bid design.
Then we describe our new private stable matching protocol. The complexity
analysis of the proposed protocol is also explained in Sect. 4.3. We refer the
reader to Appendices B and C for the correctness and security proof of our
proposal.

4.1 New Bid Design

Ciphertext Vector Representation of the Integer. In this section, we introduce a
ciphertext vector representation of integers. Let E(a) be a ciphertext, where 0 ≤
a < n, and let E(b) =

(
E(b0),E(b1), . . . ,E(bn−1)

)
be a vector of n ciphertexts.

We say that a vector E(b) is a ciphertext vector of E(a), if ba = 1 and bi = 0 for
all i �= a. We introduce two operations for the ciphertext vectors. Given vector
b = (b0, b1, . . . , bn−1) of n elements, the k-right-rotated vector of b is defined by:

b ≫ k = (b(−k)modn, b(1−k)modn, . . . , b(n−1−k)modn). (1)

Given c = (c0, c1, . . . , cn−1), where c0, c1, . . . , cn−1 are n integers, the inner
product operation of E(b) and c is defined by E(b) · c :=

∏n−1
i=0 E(bi)ci . If E(b)

is the ciphertext vector of E(a) and c = (0, 1, . . . , n − 1), then:

E(b) · c =
n−1∏

i=0

E(bi)i = E(a), (2)

i.e., E(b) can be transformed to E(a) without any additional information or
decryption. Based on the above considerations, an important property,

(
E(b) ≫

k
) · c = E

(
(a + k) mod n

)
, is derived. This technique readily enables us to

increment encryption of m mod n, c ← E
(
(m + 1) mod n

)
, by:

c ← E(m) ≫ 1. (3)

The key concept behind the proposed protocol is replacing the internal
counter of Golle’s protocol with the ciphertext vector and incrementing the
counter using the 1-right rotation technique. This resolves the counter overflow
problem.

Bid with Ciphertext Vector Representation. In this section, we introduce a new
bid by modifying the bid defined for Golle’s protocol. The proposed protocol
uses bids and engaged bids to represent the internal state of the protocol. The
bids and the engaged bids represent the statuses of free men and engaged man
and women pairs, respectively. Note that all information related to the private
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preference lists are represented as ciphertexts to prevent any party from learning
any private information by observing the bids and the engaged bids.

We apply the single free man technique proposed by Franklin et al. [7] to our
protocol, and for a given stable marriage problem of size n, we add n + 1 fake
men and n fake women to the problem, after which the preferences of n men and
n women are transformed to those of 2n + 1 men and 2n women. The details
of preference setting derived by the single free man technique is explained in
AppendixA.

Let A0, A1, . . . , A2n be 2n + 1 men, and let B0, B1, . . . , B2n−1 be 2n women.
We regard i ∈ { 0, 1, . . . , 2n } and j ∈ { 0, 1, . . . , 2n − 1 } as the identities of
a man and woman, respectively. Let ri,j ∈ { 0, 1, . . . , 2n − 1 } be the rank of
woman Bj for man Ai, and let sj,i ∈ { 0, 1, . . . , 2n } be the rank of man Ai for
woman Bj . Our convention is that the highest possible rank is 0, and the lowest
is 2n − 1 or 2n. The encryptions of the men’s and women’s ranks are denoted
by pi,j := E(ri,j) and qj,i := E(sj,i), respectively. The preferences are strict and
complete lists of ranking of the participants belonging to the opposite set, i.e.,
a preference is the permutation of (0, 1, . . . , n − 1), where n is the number of
persons in the opposite set. The encrypted preferences of man Ai are denoted in
the form of vector ai = (pi,0, pi,1, . . . , pi,2n−1).

Now, we define the bid of a man Ai, which consists of the following five
elements:

1. E(i): i is the identity of Ai.
2. ai = (pi,0, pi,1, . . . , pi,2n−1): encrypted preference of Ai.
3. vi =

(
E(0),E(1), . . . ,E(2n − 1)

)
: vector of encrypted identities of each

woman.
4. qi = (q0,i, q1,i, . . . , q2n−1,i): vector of the encrypted ranks of Ai for each

woman.
5. E(ρi): ciphertext vector of E(ρ), where ρ is the number of Ai’s rejected pro-

posals.

The bid Wi of man Ai is denoted using the five elements as follows: Wi =[
E(i),ai,vi, qi,E(ρi)

]
. All of the ciphertexts contained in the bids are given by

the input and generated in the initialization step. The details of the initialization
step are explained in AppendixA. Note that the difference between our bid and
Golle’s bid [12] is the 5th element in above.

Next, the engaged bid of man Ai and woman Bj is defined by W i,j =
〈Wi,E(j), qj,i〉, where Wi is the bid of man Ai, E(j) is the encrypted identity of
woman Bj , and qj,i is the encrypted rank of Ai for woman Bj . This definition
is same as Golle’s protocol [12], and is used to represent the engagement of man
Ai and woman Bj .

4.2 New Private Stable Matching

In this section, we describe a new private stable matching protocol using our
proposed bid. As mentioned previously, Franklin et al. improved the compu-
tational, communication, and round complexities by introducing the single free
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man technique into Golle’s protocol [7]. The single free man technique is also used
in the initialization step in proposed protocol for the same purpose (explained
in AppendixA).

In our protocol, there are matching authorities (MA) who jointly execute
distributed protocols based on the threshold homomorphic encryption scheme
in order to compute a stable matching. The numbers of matching authorities are
specified in advance.

A brief overview of our protocol is shown in Algorithm2. Our protocol
consists of five major steps: setup, input submission, initialization, main loop
(lines 2–15 in Algorithm 2), and decryption. The correspondences between
Algorithms 1 and 2 are line 3 and lines 4–7, as well as lines 6–7 and lines 8–12,
respectively. At lines 3, 11, 12, and 14, Fk denotes a set of free bids (actually,
only one bid is free in each iteration) and Ek denotes a set of engaged bids at
the kth iteration of the main loop. The setup, input submission, and decryption
steps are very similar to Golle and Franklin et al.’s protocols. We refer the reader
to [7,12] for these steps. Initialization of our protocol basically follows FGM1 [7]
and is easily derived, even though the details are dissimilar because our proposed
bid is different to them. We explain initialization in AppendixA.

The differences of main loop between our protocol and FGM1 [7] are as
follows:

– At the lines 4–5, two ciphertexts E(j) and E(sj,i) are found by using the
INDEX explained in Sect. 2 with inputs ai and E(ρi), where ai is the 2nd
element of Wi and E(ρi) is recovered by an operation locally described in
Eq. (2) applying to the 5th element E(ρi) of Wi.

– At the line 11, the 4th element E(ρh) of “loser’s” bid Wh is incremented by
using an operation described in Eq. (3).

Consequently, our algorithm is executed by additive homomorphic encryp-
tion only. At the line 6 in Algorithm2, pairs of decrypted man and woman’s
identities form a stable matching, the details are explained in AppendixB. We
note that the increment of the 5th element of our bid is computed locally, the
number of rounds is improved because this new increment method eliminates
the need for the secret sharing scheme. The security of our protocol is described
in AppendixC.

4.3 Complexity Analysis

Our protocol uses the EQTEST [16] and the MIX [13] introduced in Sect. 2. This
implies the following claim:

Claim 2. Suppose that the EQTEST and the MIX explained in Sect. 2 can be
used. The size of a given stable marriage problem is n and the number of match-
ing authorities is t. The total computational, total communication, and round
complexities are O(n4), O(tn4), and O(n2), respectively.
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Algorithm 2. Our proposed protocol
1: Input submission and Initialization.
2: for k = 1 to 2n2 do
3: Select the single free bid Wi from Fk.
4: Open Wi to recover the index E(ρi) from E(ρi).
5: Find E(j) and E(sj,i) by using E(ρi). // Use INDEX
6: Form the engaged bid, 〈Wi, E(j), E(sj,i)〉.
7: Find the conflicting engaged bid, 〈Wi′ , E(j), E(sj,i′)〉. // Use INDEX
8: Mix these two engaged bids. // Use MIX with O(n) input ciphertexts
9: Resolve the conflict to find the “winner” and “loser.” // Use COMPARE

10: Break the engagement for the loser to obtain loser’s free bid Wh.
11: Increment E(ρh) of Wh and add this free bid to Fk+1.
12: Add the winner to Ek.
13: Mix the engaged bids. // Use MIX with O(n2) input ciphertexts
14: Let Ek+1 ← Ek.
15: end for
16: Decrypt pairs of man and woman’s encrypted identities in E2n2+1, and announce

stable matching.

Proof. The proposed protocol in Sect. 4.2 uses the constant round building blocks
introduced in Sect. 2, specifically, the MIX, EQTEST, INDEX, and COMPARE
based on the threshold additive homomorphic encryption scheme. The number
of ciphertexts is determined by n.

In one iteration of the main loop, implementation of the MIX in line 13 is
the most costly component, and O(n2) ciphertexts are input. Hence, its compu-
tational, communication, and round complexities are O(n2), O(tn2), and O(1).

The complexities are dominated by the MIX in line 13. The main loop is
invoked 2n2 times, so the total computational, total communication, and round
complexities of the proposed protocol are O(n4), O(tn4), and O(n2), respectively.

Finally, the round complexity of our protocol is the same as the computa-
tional complexity of the Gale–Shapley algorithm.

5 Experimental Implementation

In this section, we outline the implementation friendly version of our protocol,
explained in Sect. 5.1, and describe an experimental implementation of this pro-
tocol. To the best of our knowledge, this is the first implementation of a private
stable matching protocol.

5.1 Implemented Version of Our Protocol

The proposed protocol described in Sect. 4 achieves collusion resistance by
using threshold encryption and the MIX. One drawback of the use of thresh-
old encryption is the synchronization cost of the distributed decryption and re-
randomization of the MIX. Considering the ease of implementation, we propose
a new implementation-friendly protocol by weakening the security assumption.



80 T. Teruya and J. Sakuma

The security of the protocol proposed in Sect. 4 is proven assuming the num-
ber of the matching authorities that collude with each other is less than a pre-
scribed threshold, which is specified by the underlying threshold homomorphic
encryption. For the relaxed version of the protocol, we further assume that the
matching authorities never collude with each other. Although the security of the
relaxed version of the protocol is obviously weaker than that in Sect. 4, in return
for this relaxation, we provide a more implementation-friendly protocol for the
private stable marriage problem.

This relaxation also allows the following protocol simplifications. First, the
process of main loop is executed by a single party, called controller. The EQTEST
and the simplified MIX are executed by a single private-key holder, called decryp-
tor and a group of several parties, called mix group, respectively. Second, distrib-
uted threshold decryption can be replaced by ordinary decryption by the decryp-
tor. Third, the MIX is simplified, with the number of re-encryption operations
and secret shuffles are reduced to one. This means that, in one time mix network
execution, it is not necessary for all of the mix servers to evaluate re-encryption
and secret shuffle. Instead, only one member of the mix group evaluates those
operations. To preserve security and privacy, the controller must send a request
for the simplified MIX so that the same mix group members do not receive the
request twice consecutively. Note that in order to guarantee security, decryption
and the simplified MIX are executed by individual parties. These replacements
do not change the computational, communication, and round complexities of the
protocol in Sect. 4.

The simplified protocol is also private if the underlying ordinary additive
homomorphic encryption scheme is semantically secure, the simplified MIX is
private against semi-honest probabilistic polynomial-time adversaries, and the
parties do not collude with each other. The details of the protocol, complexity
analysis, and security proof are described in the full version of this paper.

Table 2. Android devices.

Model number CPU name CPU freq. Memory Android

OS

# of devices Does it join to

size 3?

Nexsus 7 Tegra 3 1.3GHz 1GB 4.2.1 2 Yes

Galaxy Nexsus OMAP 4460 1.2GHz 1GB 4.0.1 1 Yes

Galaxy SII Exynos 4210

Orion

1.2GHz 1GB 2.3.5 3 Yes

Infobar A01 Snapdoragon S2

MSM8655T

1.4GHz 512MB 2.3.3 1 Yes

IS05 Snapdoragon S2

MSM8655

1GHz 512MB 2.2.1 1 No

Desire A8181 Snapdragon

QSD8250

1GHz 576MB 2.2.2 1 No
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5.2 Experimental Settings

Development Environment. Our experimental program is designed assuming
implementation using a client-server system. In the experimental implementa-
tion, Android smartphones, tablet computers, and a personal computer (PC)
were used as clients and the server, respectively. The server program acts as the
controller; the program was built with Java SE 6 [19] and ran on the Linux oper-
ating system. The runtime environment is Java SE 7 [19]. The server PC CPU is
a Core i7 970 (3.2 GHz) with 12 GB RAM. The client programs act as executors
of the simplified MIX and ordinary decryption and were built with Android SDK
Tools Revision 21.1 [14]. The specifications of Android smartphone and tablet
devices are listed in Table 2. One Galaxy SII device acts as the decryptor while
the others are the members of the mix group.

Implementation of Primitives. We implemented Paillier encryption [20] as an
additive homomorphic encryption in the experimental implementation. For the
secure channels, the transport layer security provided by the standard Java run-
time environment [19] and the Android platforms [14] were used. We did not use
other optimization techniques for implementation, including the CPU-specific
efficient implementation.

Parameter Setting. The key length of Paillier encryption was set to 896 bits
or 1, 024 bits, and the size of the input was set to 3 or 4. The combinations of
the two parameters were tested, and a total of four cases are compared. Note
that a longer key length is needed if a security level of more than 80 bits is
required [4,18].

Network. The Android devices are connected to a LAN using Wi-Fi equipment.
The PC connects to the same LAN via the Ethernet cable. The experiment is
implemented using this equipment. There were no factors that cause an extreme
delay of the communication during the execution of the programs in our exper-
iment.

5.3 Experimental Results

The experimental results are presented in this subsection. The computation time,
the communication time of the main loop (lines 2–15 in Algorithm2), and their
ratio of our experiments are shown in Table 3. Note that the computation time
(Comput. column in Table 3) includes the communication time (Comm. column
in Table 3).

The total execution time of a line 13 in Algorithm 2 in the case of a
896-bit key length were 113.61 s for size 3 and 347.33 s for size 4. In the case
of the 1,024-bit key length were 162.42 s for size 3 and 511.88 s for size 4. Note
that these times include computation and communication times. Based on these
results, it is clear that the (simplified) MIX was the most expensive component
in terms of computation time. Therefore, we can conclude that this protocol is
the bottleneck of the proposed protocol.
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Table 3. Benchmarking of the proposed protocol, where Size denotes the size of given
stable marriage problem, Comput. denotes the computation times, and Comm. denotes
the communication times of the entire iterations of the main loop.

Key length [bits] Size # of Android devices Comput. [s] Comm. [s] Comm./comput. ratio

896 3 7 250.50 84.64 0.34

896 4 9 581.47 101.64 0.17

1,024 3 7 305.17 64.90 0.21

1,024 4 9 827.80 125.34 0.15
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A Initialization of the Proposed Protocol

The initialization step is performed by the matching authorities after the input
submission step. In order to reduce the complexities, the bids are initialized
using the single free man technique, as introduced by Franklin et al. [7]. An
explicit overview of the initialization step procedure for the proposed bid design
is provided below.

The initialization step consists of (1) modification of input encrypted prefer-
ences, (2) generation of dummy encrypted preferences, and (3) initialization of
the fifth element of bids. After the input submission step, if the numbers of men
and women are not the same, the matching authorities then generate and insert
random preferences into the set that has fewer participants. Next, the match-
ing authorities modify the encrypted preferences and generate the encrypted
preferences of n + 1 fake men and n fake women as follows:

ai =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(The original preference of Ai︷ ︸︸ ︷
pi,0, pi,1, . . . , pi,n−1 ,

Part 1
︷ ︸︸ ︷
pi,n, pi,n+1, . . . , pi,2n−1

)

for i ∈ { 0, 1, . . . , n − 1 },

( Part 2
︷ ︸︸ ︷
pi,0, pi,1, . . . , pi,n−1,

Part 3
︷ ︸︸ ︷
pi,n, pi,n+1, . . . , pi,2n−2, E(n − 1)

)

for i ∈ {n, n + 1, . . . , 2n },

(4)

bj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
The original preference of Bj

︷ ︸︸ ︷
qj,0, qj,1, . . . , qj,n−1 ,

Part 4
︷ ︸︸ ︷
qj,n, qj,n+1, . . . , qj,2n

)

for j ∈ { 0, 1, . . . , n − 1 },

( Part 5
︷ ︸︸ ︷
qj,0, qj,1, . . . , qj,n−1,

Part 6
︷ ︸︸ ︷
qj,n, qj,n+1, . . . , qj,2n−1, E(n)

)

for j ∈ {n, n + 1, . . . , 2n − 1 },
(5)
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where ai and bj are encrypted preferences of man Ai and woman Bj , respec-
tively. The ciphertexts of Parts 1 through 6 in Eqs. (4) and (5) are permutation
vectors defined in Table 4, and all of the elements in the permutation vectors
are encrypted. Then, all of the preferences are ordered as follows. The first n
men and women are the true participants of the stable marriage problem. The
remaining n + 1 men and n women are fake men and women. After the above
modification, there are 2n + 1 men’s encrypted preferences and 2n women’s
encrypted preferences.

Table 4. Range of plaintext at Parts 1–6 in Eqs. (4) and (5).

Part 1 2 3 4 5 6

Range of plaintext n to 2n− 1 n to 2n− 1 0 to n− 2 n to 2n n+ 1 to 2n 0 to n− 1

Then, the matching authorities form 2n + 1 vectors q0, q1, . . . , q2n from 2n
vectors b0, b1, . . . , b2n−1, in the same manner as Golle and Franklin et al.’s pro-
tocol [7,12].

Then, 2n+1 bids are arranged as Wi =
[
E(i),ai,vi, qi,E(ρi)

]
. The arrange-

ment of the bids is the same as in [12], except that the counter is given as the
ciphertext vector.

Next, the matching authorities generate two sets F1 and E1, where F1 denotes
a set of free bids and is initialized as F1 := {W0 }, where W0 is a bid of A0. The
fifth value E(ρ0) of the free bid W0 is updated to the ciphertext vector, which
represents E(0). Here, E1 denotes a set of engaged bids and includes 2n engaged
bids. The engaged bids in E1 are initialized as follows. True men A1, A2, . . . , An−1

get engaged to fake women Bn, Bn+1, . . . , B2n−2, respectively, and fake men
An, An+1, . . . , A2n−1 get engaged to true women B0, B1, . . . , Bn−1, respectively.
Moreover, fake man A2n gets engaged to fake woman B2n−1. In other words,
E1 :=

{
W i,n−1+i

∣
∣ i = 1, 2, . . . , n − 1

}
∪

{
Wn+i,i

∣
∣ i = 0, 1, . . . , n − 1

}
∪

{
W 2n,2n−1

}
.

Then, the matching authorities jointly apply the MIX to F1 and E1 inde-
pendently. Application of the MIX to the bids in F1 is performed as follows.
First, a randomly generated secret permutation is applied to the set of bids
and engaged bids. Next, for each bid, all ciphertexts included in the bids are re-
randomized and Wi ← [

E(i), π(ai), π(vi), π(qi),E(ρi)
]

is then computed, where
π is a randomly generated secret permutation. For the engaged bids in E1, the
operation for the bid contained in each engaged bid is the same in above, then
the remaining two ciphertexts are re-randomized.

B Correctness of the Proposed Protocol

The differences between our protocol and FGM1 [7] are in lines 4–5 and line
11. The remaining steps are equivalent to FGM1. We confirm the correctness
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of the proposed protocol by ensuring that these two changes do not change the
protocol behavior.

In lines 4–5, the encryption of the counter ρi used in Golle’s protocol is readily
obtained by E(ρi) =

∏n−1
�=0 E(ρi,�)�. Thus, the change of the representation of

the counter does not affect the behavior of the protocol.
Next, we consider the treatment of the increment of the counter (at line 11).

Since the preferences are set by Eqs. (4) and (5), the true men (resp. fake men)
prefer the true women (resp. fake women) to the fake women (resp. true women).
Thus, the true men (resp. fake men) never propose to the fake women (resp.
true women). None of the fake men prefer B2n−1. Therefore, all of the fake men
propose to B2n−1 as a last resort. No matter which fake man proposes to B2n−1,
the resulting engagement is stable, except for the case in which A2n proposes.
Thus, man A2n always becomes single after 2n pairs are made. At the same time,
no fake women proposed to by A2n will agree with the engagement because A2n

is ranked as the worst by all of the women. Thus, for any input preferences,
proposals by A2n are declined at any time. Note that n is the largest number
of rejected proposals for the stable marriage problem of size n. In the proposed
protocol, the counter E(ρ2n) is incremented by 1-right rotation E(ρ2n) ≫ 1 for
each engagement. This operation corresponds to incrementing with modulo n.
Since 1-right rotation is not an arithmetic operation and the ciphertext vector
representing the counter is made to be sufficiently long, the operation E(ρ2n) ≫
1 does not cause overflow.

Therefore, the behavior of the proposed protocol is equivalent to that of Golle
and Franklin et al.’s protocol and outputs stable matching correctly after 2n2

iterations of the main loop of Algorithm 2 (lines 2–15) [7,12].

C Security of the Proposed Protocol

In the proposed protocol, the main building blocks are the EQTEST and the
MIX. These are based on the threshold additive homomorphic encryption.
The other building blocks are constructed using the main building blocks, as
explained in Sect. 2. The security and input privacy of the proposed stable match-
ing protocol are guaranteed by the underlying threshold additive homomorphic
encryption and the MIX, which are shown by the following theorem.

Theorem 3. Suppose that the threshold additive homomorphic encryption
scheme is semantically secure, that the MIX is private against any probabilis-
tic polynomial-time semi-honest adversaries, and that the number of adversaries
that collude with each other is less than the threshold, which is specified by the
underlying threshold additive homomorphic encryption scheme.

The proposed protocol presented in Sect. 4.2 is private against any probabilis-
tic polynomial-time semi-honest adversaries in the sense of Definition 1.

Proof (Sketch). We prove the security of the proposed protocol by showing that
the modifications to GFGM and FGM1 do not affect the proof of [12, Propo-
sition 3]. Since the difference of our protocol and Golle and Franklin et al.’s
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protocols is the 5th element of bid, we state the security proof of this part.
Assume an adversary that can distinguish the 5th element of our bid. In such
conditions, using this adversary can break the semantic security of the under-
lying additive homomorphic encryption. Hence, our protocol is private with the
two primitives described in the sections above.

References

1. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: Ortiz, H. (ed.) STOC, pp. 503–513. ACM (1990)

2. Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006)

3. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (2001)

4. ECRYPT II: Yearly report on algorithms and keysize (2011–2012), September
2012. http://www.ecrypt.eu.org/

5. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

6. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

7. Franklin, M.K., Gondree, M., Mohassel, P.: Improved efficiency for private stable
matching. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 163–177. Springer,
Heidelberg (2006)

8. Franklin, M.K., Gondree, M., Mohassel, P.: Multi-party indirect indexing and
applications. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
283–297. Springer, Heidelberg (2007)

9. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Crypt. 20(1), 51–83 (2007)

11. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

12. Golle, P.: A private stable matching algorithm. In: Di Crescenzo, G., Rubin, A.
(eds.) FC 2006. LNCS, vol. 4107, pp. 65–80. Springer, Heidelberg (2006)

13. Golle, P., Juels, A.: Parallel mixing. In: Atluri, V., Pfitzmann, B., McDaniel, P.D.
(eds.) ACM Conference on Computer and Communications Security, pp. 220–226.
ACM (2004)

14. Google, Open Handset Alliance: Android developers. http://developer.android.
com/

15. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. The Foundations of Computing. MIT Press, Cambridge (1989)

16. Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer,
Heidelberg (2003)

http://www.ecrypt.eu.org/
http://developer.android.com/
http://developer.android.com/


86 T. Teruya and J. Sakuma

17. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) STOC, pp.
590–599. ACM (2001)

18. NIST: Special publication 800–57, recommendation for key management - part 1:
General (revision 3), July 2012. http://csrc.nist.gov/publications/PubsSPs.html

19. Oracle: Java.com. http://java.com/
20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

21. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In:
Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg (1998)

22. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167. IEEE Computer Society (1986)

http://csrc.nist.gov/publications/PubsSPs.html
http://java.com/


Efficient and Fully Secure Forward Secure
Ciphertext-Policy Attribute-Based Encryption

Takashi Kitagawa1(B), Hiroki Kojima2,
Nuttapong Attrapadung3, and Hideki Imai1

1 Chuo University, 1-13-27, Kasuga Bunkyo-ku, Tokyo 112-8551, Japan
t.kitagawa.73@gmail.com

2 Internet Initiative Japan Inc., Tokyo, Japan
3 National Institute of Advanced Industrial Science and Technology (AIST),

Tokyo, Japan

Abstract. Attribute-based encryption (ABE) schemes provide a fine-
grained access control mechanism over encrypted data, and are use-
ful for cloud online-storage services, or Pay-TV systems and so on. To
apply ABE for such services, key exposure protection mechanisms are
necessary. Unfortunately, standard security notions of ABE offer no pro-
tection against key exposure. One solution to this problem is to give for-
ward security to ABE schemes. In forward secure cryptographic schemes,
even if a secret key is exposed, messages encrypted during all time peri-
ods prior to the key leak remain secret. In this paper we propose an
efficient Forward Secure Ciphertext-Policy Attribute-Based Encryption
(FS-CP-ABE) which is efficient and fully secure. To construct efficient
FS-CP-ABE, we first introduce a new cryptographic primitive called
Ciphertext-Policy Attribute-Based Encryption with Augmented Hierar-
chy (CP-ABE-AH). Intuitively, CP-ABE-AH is an encryption scheme
with both hierarchical identity based encryption and CP-ABE properties.
Then we show that FS-CP-ABE can be constructed from CP-ABE-AH
generically. We give the security definition of FS-CP-ABE, and security
proofs based on three complexity assumptions. The size of public para-
meter is O(log T ), and the secret key size is O(log2 T ) where T is the
number of time slots.

1 Introduction

In cryptographic schemes, the standard notions of security offer no protection
whatsoever once the secret key of the system has been compromised. Exposure
of the secret key implies that all security guarantees are lost. In 2003, Canetti,
Halevi, and Katz proposed forward secure public key encryption (FS-PKE) to
solve the key exposure problem [7]. FS-PKE is a key-evolving public key encryp-
tion scheme and achieves forward security as follows: The lifetime of the system
is divided into T time periods labeled 1, . . . , T , and the secret key evolves with
time. The receiver generates a public key PK and an initial secret key SK1.
He/she then publishes the public key and stores secret key SK1. On the first
day, a sender encrypts message m with the public key PK and the current time
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 87–99, 2015.
DOI: 10.1007/978-3-319-27659-5 6
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1, and obtains ciphertext C1. The receiver can decrypt the ciphertext C1 with
the secret key SK1. On the next day, a sender encrypts message m′ with PK
and the current time 2 and obtains a ciphertext C2. To decrypt C2, the receiver
updates SK1 to SK2, and then uses SK2. Namely, at the beginning of a time
period i, the receiver applies a key update function to the key SKi−1 to derive
the new key SKi. Moreover, the old key SKi−1 is then erased and SKi is used for
all secret cryptographic operations during period i. In forward secure encryption
schemes, the key update function should be designed to be infeasible to invert.
The public key remains fixed throughout the lifetime of the system. Due to
inversion hardness of key update function, an FS-PKE scheme guarantees that
even if an adversary learns SKi (for some i), messages encrypted during all time
periods prior to i remain secret.

Forward Secure Ciphertext-Policy Attribute Based Encryption. Attribute based
encryption schemes provide a fine-grained access control mechanism over
encrypted data. In ciphertext-policy attribute based encryption, data is
encrypted with an access policies, and a decryption key is associated with a set
of attribute. A decryption key can decrypt encrypted data if the set of attributes
satisfies the access policy which is attached to the ciphertext. The access control
mechanism of ABE is useful for cloud online-storage systems, Pay-TV systems
and so on. However, to manage these systems with ABE scheme, countermea-
sures against key exposure are necessary. To overcome this issue, we propose an
efficient and fully secure forward secure CP-ABE scheme.

Before introducing our contributions, we point out that one can easily make
them to have forward security by representing time information as attributes.
Here, we introduce two such schemes, and show that these schemes are imprac-
tical due to their huge key sizes.

Settings: Let T be the total number of time periods, and U be an attribute
universe. The system prepares another attribute universe T = {1, . . . , T} such
that U ∩ T = ∅, and generates a public parameter for attribute universe U ∪ T .

Trivial Scheme 1: When a user requests a decryption key for a set of attribute
ω, the key generation center (KGC) produces T decryption keys skω,1, . . . , skω,T

where skω,i is a key for attribute set ω ∪ {i} (i ∈ T ). A ciphertext CTA,i for an
access structure A and time period i is generated as Encryption(pk,A∧i,m). The
ciphertext CTA,i can be decrypted with skω,i. At the end of each time period,
the user removes the current decryption key. We call this scheme “trivial FS-
CP-ABE 1”. The upper bound of the decryption key size is O(T ).

Trivial Scheme 2: In this construction, key derivation function is required for
a CP-ABE scheme. On a key request for a set of attribute ω, the KGC produces
a decryption key skω,{1,...,T} for attribute set ω ∪ {1, . . . , T}. A ciphertext for
an access structure A and time period i is generated as Encrypt(pk, (A ∧ i ∧
. . . ∧ T ),m). To update a decryption key skω,{i,...,T}, the key owner uses the key
derivation function of CP-ABE and obtain skω,{i+1,...,T}. We call this scheme
“trivial FS-CP-ABE 2”. In many CP-ABE schemes, the decryption key size is
linear in the size of attribute set. Thus, the key size of this scheme is also O(T ).
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Our Contributions. In this paper, we propose an efficient Forward Secure
Ciphertext-Policy Attribute-Based Encryption (FS-CP-ABE) scheme which is
efficient and fully secure in the standard model. Toward constructing an effi-
cient and fully secure FS-CP-ABE scheme, we introduce a new primitive called
Ciphertext-Policy Attribute-Based Encryption with Augmented Hierarchy (CP-
ABE-AH), and then show how to construct FS-CP-ABE from CP-ABE-AH
generically. Roughly speaking, a CP-ABE-AH scheme has both CP-ABE and
HIBE properties. The key generation algorithm of CP-ABE-AH takes as a set
of attributes and an ID-tuple and outputs a decryption key. The encryption
algorithm takes as input an ID-tuple and an access structure, and outputs a
ciphertext. If the ID-tuples of the secret key and the ciphertext are the same,
and the set of attributes of the secret key satisfies the access structure of the
ciphertext, then the ciphertext can be decrypted with the secret key. Further-
more, CP-ABE-AH scheme has a key derivation function which is similar to the
key derivation function of HIBE which creates a secret key for a child node.
To construct fully secure FS-CP-ABE, CP-ABE-AH should have adaptive secu-
rity. We define an adaptive security notion for CP-ABE-AH schemes, and give a
concrete construction of the scheme based on two encryption schemes: HIBE of
Lewko and Waters [10] and CP-ABE of Lewko et al. [9]. To prove security of our
CP-ABE-AH system, we adapt the dual system encryption technique proposed
by Waters [13]. The security of our CP-ABE-AH scheme is reduced to three com-
plexity assumptions proposed in [9]. We then propose a generic conversion from
CP-ABE-AH to FS-CP-ABE. The conversion uses the “time tree” technique of
[7], which was used to construct a forward secure public key encryption scheme
from a binary tree encryption scheme. Our conversion is essentially the same as
that of [7] except that the attribute is introduced. Finally, we prove that the
FS-CP-ABE scheme constructed from our CP-ABE-AH has full security.

Related Works. The first efficient forward secure public key encryption scheme
was proposed by Canetti et al. based on a hierarchical identity-based encryp-
tion scheme [7]. Yao et al. then proposed the first forward secure HIBE and
the first forward secure public key broadcast encryption scheme [15] which is
selectively secure in the standard model. Boneh et al. [4] and Attrapadung
et al. [1] subsequently proposed efficiency improvements over Yao et al.’s
schemes. In this paper, we consider forward security for ciphertext-policy ABE;
however, the dual notion called key-policy ABE (KP-ABE) can also be consid-
ered. Boneh and Hamburg [5] proposed the notion of spatial encryption and
briefly suggested how to construct forward secure KP-ABE from it. However,
the policy class for which spatial encryption can express seems more limited
than general monotone access structures. Recently, Wang et al. proposed the
first explicit (selectively secure) expressive forward secure KP-ABE [12]. They
also pointed out that constructing forward secure ciphertext-policy scheme has
been an open problem.
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2 Preliminaries

2.1 Composite Order Bilinear Maps and Assumptions

In this subsection we review composite order bilinear maps and three complexity
assumptions.

Composite Order Bilinear Maps. Let G be an group generator algo-
rithm which takes as input a security parameter λ, and outputs a tuple
(p1, p2, p3, G,GT , e) where p1, p2, p3 are distinct primes, G and GT are two cyclic
groups of order N = p1p2p3, and e is a function e : G2 → GT . The map is called
a composite order bilinear map, and satisfies the following properties:

1. Bilinear: For any g, h ∈ G, a, b ∈ ZN , we have e(ga, hb) = e(g, h)ab,
2. Non-degenerate: There exists an element g ∈ G such that e(g, g) has order N

in GT ,
3. Computable: For any g, h ∈ G, there exists an efficient algorithm which com-

putes e(g, h).

We let Gp1 , Gp2 , and Gp3 denote the subgroups of order p1, p2 and p3 in G
respectively. We note that when g ∈ Gpi

and h ∈ Gpj
for i �= j, e(g, h) = 1GT

(identity element of GT ).

Complexity Assumptions. Our FS-CP-ABE scheme is based on a ciphertext-
policy attribute-based encryption scheme proposed by Lewko et al. [9], and secu-
rity of our scheme is reduced to three complexity assumptions which were also
proposed in [9]. Here, we present the three assumptions.

Assumption 1. For a given group generator G, we define the following distri-
bution:

G = (N = p1p2p3, G,GT , e) R←− G, g
R←− Gp1 , X3

R←− Gp3 ,

D = (G, g,X3), T1
R←− Gp1p2 , T2

R←− Gp1 .

The advantage of an algorithm A in breaking Assumption 1 is defined as:

Adv1G, A(λ) := | Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1] | .

We say that Assumption 1 holds if Adv1G, A is negligible for any polynomial time
algorithm A.

Assumption 2. For a given group generator G, we define the following distri-
bution:

G = (N = p1p2p3, G,GT , e)
R←− G, g,X1

R←− Gp1 , X2, Y2
R←− Gp2 , X3, Y3

R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3), T1
R←− G, T2

R←− Gp1p3 .
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We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G, A(λ) := | Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1] | .

We say that Assumption 2 holds if Adv2G, A is negligible for any polynomial time
algorithm A.

Assumption 3. For a given group generator G, we define the following distri-
bution:

G = (N = p1p2p3, G, GT , e)
R←− G, α, s

R←− ZN , g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3 ,

D = (G, g, gαX2, X3, gsY2, Z2), T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) := |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1] | .

We say that Assumption 3 holds if Adv3G, A is negligible for any polynomial time
algorithm A.

2.2 Access Structures and Linear Secret Sharing Schemes

In this subsection, we introduce the notion of access structure and linear secret
sharing scheme.

Definition 1 (Access Structures [3]). Let P = {P1, P2, . . . , Pn} be a set of
parties. A collection A ⊆ 2P is monotone if for all set B,C such that B ∈ A

and B ⊆ C, we have C ∈ A. An access structure (respectively, monotone access
structure) is a collection (respectively, monotone collection) A ⊆ 2P \ {∅}.
Definition 2 (Linear Secret Sharing Scheme: LSSS [3] ). A secret sharing
scheme Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix A of size � × d elements called the share-generating

matrix for Π. For all i = 1, . . . , �, the i − th row of A is labeled by a party
ρ(i) (ρ is a function from {1, . . . , �} to P). To share s ∈ Zp, we choose
y2, y3, . . . , yd, and construct a column vector (s, y2, y3, . . . , yd). The shares
are elements of Ay. The share λρ(i) = Aiy belongs to party ρ(i), where Ai is
an i-th row of A.

3. There exists an efficient reconstruction algorithm which takes as input ω ∈ A.
We define I = {i|ρ(i) ∈ ω}. The algorithm outputs constants {νi ∈ Zp}i∈I

such that
∑

i∈I νiλρ(i) = s.
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3 Fully Secure Forward Secure Ciphertext-Policy
Attribute-Based Encryption

In this section, we define the notion of forward secure ciphertext-policy attribute-
based encryption (FS-CP-ABE) and its full security definition. In an FS-CP-
ABE scheme, a secret key is associated with a set of attributes ω and a time
period τ . We denote this secret key by skω,τ . The ciphertext is associated with
an access structure A and a time period τ ′. If two conditions ω ∈ A and τ = τ ′

hold, then the secret key can decrypt the ciphertext. If the secret key is old one
(i.e. τ < τ ′), then the user can update the time period of the secret key without
changing the set of attributes ω. The user can decrypt the ciphertext with the
updated key.

3.1 The Model of FS-CP-ABE

Formally, a forward secure ciphertext-policy attribute-based encryption (FS-CP-
ABE) scheme consists of five algorithms: Setup, KeyGen, Update, Encryption, and
Decryption. Let U be the universe of attributes. Let S denote the universe of
access structures over U .

Setup(λ,U , T ). This is a randomized algorithm that takes as input a security
parameter λ, the attribute universe description U , and the total number of time
periods T . It outputs a public parameter pk and a master key mk.

KeyGen(pk, mk, ω, τ). This is a randomized algorithm that takes as input the
public parameter pk, the master key mk, a set of attributes ω, and an index
τ ∈ {1, . . . T} of the current time period. It outputs a secret key skω,τ .

Update(pk, ω, τ , skω,τ−1). This is a randomized algorithm that takes as input
the public parameter pk, a set of attributes ω, an index τ of the current time
period, and the secret key skω,τ−1 of time period τ − 1. It outputs a secret key
skω,τ .

Encryption(pk, A, τ,m). This is a randomized algorithm that takes as input the
public parameter pk, an access structure A ∈ S, an index τ of the current time
period, and a message m. It outputs a ciphertext CT .

Decryption(pk, skω,τ , CT ). This is a deterministic algorithm that takes as input
the system parameter pk, a secret key skω,τ and a ciphertext CT associated with
an access structure A and a time period τ ′. If two conditions ω ∈ A and τ = τ ′

hold, then the secret key skω,τ can decrypt the ciphertext CT . It outputs the
message m.

3.2 Security Model for FS-CP-ABE

We give the full security model for FS-CP-ABE. The security notion is defined
by the following game between a challenger and an adversary. The game has the
following five phases:
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Setup. The challenger runs the Setup algorithm with a security parameter λ, the
attribute universe description U , the total number of time period T , and obtains
a public parameter pk and a master key mk. We assume that T is bounded some
polynomial in λ. It gives pk to the adversary.

Phase 1. The adversary can adaptively issue key generation queries for 〈ω, τ〉
where ω is a set of attributes and τ is a time period. The challenger generates
the decryption key by the KeyGen algorithm, and gives the secret key skω,τ to
the adversary.

Challenge. The adversary submits two equal length messages m0 and m1, and
target access structure A∗ and target index τ∗ of the time period. The restriction
is that for any key query 〈ω, τ〉 in Phase 1, if ω ∈ A holds, then τ∗ should be
smaller than τ . The challenger flips a random bit b ∈ {0, 1} and computes the
challenge ciphertext CT ∗ = Encryption(pk, A∗, τ∗, mb). It then gives CT ∗ to the
adversary.

Phase 2. The adversary can issue key generation queries same as Phase 1. The
adversary cannot ask key of 〈ω, τ〉 where ω ∈ A and τ ≤ τ∗ hold.

Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} of b.
We define the advantage of the adversary in this game as

AdvFS-CP-ABE
A (λ) =

∣
∣
∣
∣ Pr[ b′ = b ] − 1

2

∣
∣
∣
∣ .

Definition 3 (Full Security). An FS-CP-ABE scheme is full secure, if all
probabilistic polynomial time adversaries have at most a negligible advantage in
the security game.

4 Ciphertext-Policy Attribute-Based Encryption with
Augmented Hierarchy (CP-ABE-AH)

Toward constructing an efficient and fully secure FS-CP-ABE, we introduce
ciphertext-policy attribute-based encryption with augmented hierarchy (CP-
ABE-AH). Roughly speaking, a CP-ABE-AH scheme has both CP-ABE and
HIBE properties. The key generation algorithm of CP-ABE-AH takes a set of
attributes and an ID-tuple, and produces a secret key which is associated with
the pair of the set of attributes and the ID-tuple (ω, ID). The encryption algo-
rithm takes an access structure and an ID-tuple, and produces a ciphertext. If
the ID-tuples of the secret key and the ciphertext are the same, and the set of
attributes of the secret key satisfies the access structure of the ciphertext, then
the ciphertext can be decrypted with the secret key. Furthermore, CP-ABE-AH
has a key derivation function which is similar to the key derivation function of
HIBE which creates a secret key for a child node.

To construct CP-ABE-AH scheme, we combine two techniques from hierar-
chical identity based encryption of Lewko and Waters [10], and ciphertext-policy
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attribute based encryption of Lewko et al. [9]. We describe the concrete construc-
tion of CP-ABE-AH in Sect. 4.3. We denote the attribute universe by U and the
identity space by I. We also denote an ID-tuple of depth z by IDz = (I1, . . . , Iz),
a secret key by skω, IDz

which is associated with the set of attributes ω and the
ID-tuple IDz.

4.1 The Model of CP-ABE-AH

Formally, CP-ABE-AH scheme consists of the following five algorithms Setup,
KeyGen, Derive, Encryption, and Decryption.

Setup(λ,U , L): This is a randomized algorithm that takes a security parameter
λ, the attribute universe U , and the maximal hierarchy depth of the ID tuple L.
It outputs a public parameter pk and a master key mk.

KeyGen(IDz, ω, pk, mk): This is a randomized algorithm that takes as input an
ID-tuple IDz = (I1, . . . , Iz) at depth z ≤ L, a set of attributes ω, the public
parameter pk, and the master key mk. It outputs a secret key skω, IDz

.

Derive(IDz, ω, skω, IDz−1 , pk): This is a randomized algorithm that takes as input
an ID-tuple IDz = (I1, . . . , Iz) at depth z ≤ L, a set of attributes ω, and a secret
key skω, IDz−1 , and the public parameter pk. It outputs a secret key skω, IDz

for
depth z without changing the attribute set ω.

Encryption(pk, A, IDz,m): This is a randomized algorithm that takes as input
the public parameter pk, an access structure A, an ID-tuple IDz, and a message
m. It outputs a ciphertext CT .

Decryption(pk, skω, IDz
, CT ): This is a deterministic algorithm that takes as

input the public parameter pk, the decryption key skω, IDz
, and the ciphertext

CT . If the ID-tuples of the secret key and the ciphertext are the same, and
the set of attributes ω of the secret key satisfies the access structure A of the
ciphertext, then the ciphertext can be decrypted with the secret key. It outputs
the message m.

4.2 Security Model for CP-ABE-AH

We give the security definition of CP-ABE-AH. Our security definition captures
adaptive security which means that an adversary declares the target access struc-
ture and the target identity tuple in the challenge phase. The security is defined
by the following game between a challenger and an adversary.

Setup. The challenger runs the Setup algorithm of CP-ABE-AH to obtain a
public parameter pk and a master key mk, and gives pk to the adversary.

Phase 1. The adversary can issue key generation queries for 〈ω, IDz〉 adaptively.
The challenger runs the KeyGen algorithm and sends the decryption key to the
adversary.
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Challenge. The adversary submits two equal length messages m0 and m1, and
the target access structure A

∗ and the target identity tuple ID∗. The challenger
flips a random bit b ∈ {0, 1} and computes the challenge ciphertext CT ∗ =
Encryption (pk, A∗, ID∗, mb). It then gives CT ∗ to the adversary.

Phase 2. The adversary can issue key generation queries for 〈ω, IDz〉 same as
Phase 1. The restriction is that if ω ∈ A

∗ then IDz must not be ID∗ nor a prefix
of ID∗.

Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} of b.

We define the advantage of the adversary in this game as AdvA(λ) =∣
∣ Pr[ b′ = b ] − 1

2

∣
∣ .

Definition 4. We say that an CP-ABE-AH scheme is adaptively secure if for
any polynomial time adversary A, AdvA(λ) is negligible in λ.

4.3 CP-ABE-AH: Construction

In this subsection we present our CP-ABE-AH construction. The scheme is adap-
tively secure, and the security is reduced to three static complexity assumptions.

Setup(λ, n, L): This algorithm chooses a bilinear group G of order N = p1p2p3
(3 distinct primes). We let Gpi

denote the subgroup of order pi in G. It
then randomly picks exponents a, α ∈ ZN , and random group elements g,
h1, . . . , hL, v ∈ Gp1 . For each attribute i ∈ U , it chooses a random value si ∈ ZN .
The public parameter is pk=(N, g, e(g, g)α, ga, Ti = gsi ∀i ∈ U , h1, . . ., hL, v).
The master key is mk= (α, g3) where g3 is a generator of Gp3 . It outputs (pk,
mk).

KeyGen(IDz, ω, pk, mk): The algorithm randomly chooses μ, r ∈ ZN and
R0, R

′
0, Ri (∀i ∈ ω) ∈ Gp3 . It outputs the secret key skω, IDz

= (ω, D(1), D(2),
{D

(3)
i }∀i∈ω, K0, Kz+1, . . ., KL) where

D(1) = gαgaμ(hI1
1 · · · hIz

z v)rR0, D(2) = gμR′
0, D

(3)
i = Tμ

i Ri ∀i ∈ ω,

K0 = gr, Kz+1 = hr
z+1, . . . ,KL = hr

L.

Derive(IDz, skω, IDz−1 , pk): The algorithm generates a secret key skω, IDz
from a

given parent key skω, IDz−1 in the ID hierarchy. Here, the parent key skω, IDz−1 is
of the following form,

skω, IDz−1 = (D(1), D(2), {D
(3)
i }∀i∈ω, K0, Kz, . . . , KL)

= (gαgaμ(hI1
1 · · · hIz−1

z−1 v)r′
R0, gμR′

0, {Tμ
i Ri}∀i∈ω, gr′

, hr′
z , . . . , hr′

L ).

To generate a secret key skω, IDz
, Derive algorithm randomly chooses δ ∈ Zn and

outputs

skω, IDz = (D(1)KIz
z (hI1

1 . . . hIz
z v)δ, D(2), {D(3)

i }∀i∈ω, K0g
δ, Kz+1h

δ
z+1, . . . ,KLh

δ
L).
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The secret key is a properly distributed secret key for IDz = (I1, . . . , Iz) for
r = r′ + δ because r′, δ are chosen uniformly.

Encrypt(pk, (A, ρ), IDz, m): Inputs to this algorithm are the public parameter pk,
an LSSS access structure (A, ρ), an ID-tuple IDz = (I1, . . . , Iz), and a plaintext
m. Here, A is an � × d matrix and ρ is a map from each row Ax of A to an
attribute ρ(x). This algorithm first randomly chooses s, y2, . . . , yd ∈ ZN and
sets vector y = (s, y2, . . . , yd) ∈ Z

d
N . For each row Ax of A, it randomly chooses

rx ∈ ZN . It outputs the ciphertext CT = (C, C(1), {C
(2)
x , C

(3)
x }x∈{1,�}, C(4))

where

C = m · e(g, g)αs, C(1) = gs, C(2)
x = ga·AxyT−rx

ρ(x) , C
(3)
x = grx , C(4) = (hI1

1 · · ·hIz
z v)s.

Decrypt(pk, skω, IDz
, CT ): This algorithm first computes constants νx ∈ ZN such

that
∑

ρ(x)∈ω νxAx = (1, 0, . . . , 0). Then it computes

K = e(C(1),D(1))/
∏

ρ(x)∈ω

(
e(C(2)

x ,D(2)) · e(C(3)
x ,D

(3)
ρ(x)

)νx · e(K0, C
(4))

and obtains the plaintext m = C/K.
We can verify its correctness as

K =
e(gs, gαgaμ · (hI1

1 · · ·hIz
z v)rR0)

∏

ρ(x)∈ω

(

e(ga·Ax·y · T−rx
ρ(x) , g

μR′
0) · e(grx , Tμ

ρ(x)Rρ(x))
)νx

· 1

e(gr, (hI1
1 · · ·hIz

z v)s)

=
e(gs, gα) · e(gs, gaμ) · e(gs, (hI1

1 · · ·hIz
z v)r)

∏

ρ(x)∈ω (e(ga·Axy, gμ))νx · e(gr, (hI1
1 · · ·hIz

z v)s)

= e(g, g)αs.

Theorem 1. Our ciphertext-policy ABE with augmented hierarchy scheme is
adaptively secure if Assumptions 1, 2 and 3 hold.

Proof. The proof is postponed to the full version of this paper due to the lack
of space. ��

5 Construction of FS-CP-ABE from CP-ABE-AH

In this section, we propose a construction of FS-CP-ABE from CP-ABE-AH. Our
construction uses the “time tree” technique of [7], which was used to construct
a forward secure encryption from a binary tree encryption. Our conversion is
essentially the same as that of [7] except that the attribute is introduced.

For an FS-CP-ABE with T time periods, we image a complete balance binary
tree of depth L = log2(T + 1) − 1. Let each node be labeled with a string in
{0, 1}≤L. We assign the root node with an empty string. The left and right
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children of a node Ω ∈ {0, 1}≤L is assigned Ω‖0 and Ω‖1 respectively. Here, ‖
means a concatenation of two strings.

From now, to distinguish the abstract “node” of an CP-ABE-AH system
from nodes in the binary tree, we refer to the former as ah-node and the latter
as usual. Following the notation in [7], we let Ωτ to be the τ -th node in a pre-
order traversal of the binary tree. Without loss of generality, we assume that
{0, 1} ∈ I, the identity space. Hence, we can view a binary string of length
z ≤ L as an ID-tuple of length z.

Encryption in time τ for an access structure A uses the encryption function of
the CP-ABE-AH scheme to the multi-node (A, Ωτ ). At time τ the secret key also
contains, beside the secret key of ah-node (ω,Ωτ ) of the CP-ABE-AH scheme,
all the keys of ah-nodes (ω, y) where y is a right sibling of the nodes on the path
from the root to Ωτ in the binary tree. When updating the key to time τ + 1,
we compute the secret key of ah-node (ω,Ωτ+1) and erase the one of (ω,Ωτ ).
Since Ωτ+1 is a left child of Ωτ or one of the nodes whose keys are stored as
the additional keys at time τ , the derivation can be done, in particular, using at
most one application of Derive. We denote this conversion as C(·).
Theorem 2. If a CP-ABE-AH scheme is adaptively secure then the converted
FS-CP-ABE scheme C(CP-ABE-AH) is full secure.

Proof. Suppose there exists an adversary A that has advantage ε against FS-
CP-ABE (C(CP-ABE-AH)). Then, we can construct an algorithm B that has
advantage ε in breaking the CP-ABE-AH scheme. Below, we show how to con-
struct B.

Setup. B receives the public parameter pk from the challenger. B then runs A
with public parameter pk.

Phase 1. In Phase 1, A issues KeyGen queries to B, and B has to answer the
queries. To answer a KeyGen query 〈ω, τ〉 for secret keys corresponding to a
set of attributes ω and a time period τ , B first computes an identity tuple
Ωτ which represents the time period τ . B then sends 〈ω,Ωτ 〉 query to the
challenger and gets a decryption key. B passes the decryption key to A.

Challenge. In the challenge phase, A issues 〈m0,m1,A
∗, τ∗〉 to B. B works

as follows: B converts the time period τ∗ to the identity tuple format, say
Ωτ∗

. Then B issues the challenge query 〈m0,m1,A
∗, Ωτ∗〉 to the challenger,

and receives a challenge ciphertext CT ∗ from the challenger. B passes the
challenge ciphertext to A.

Phase 2. In Phase 2, B answers key queries from A same as Phase 1.
Guess. When A outputs a bit b′ ∈ {0, 1}, B outputs b′ and halts.

In this game, if A wins the game, then B always wins the game. Thus, the
advantage of B is the same as the advantage of A. Therefore, the advantage of
B is at most ε(λ). This concludes the proof of Theorem 2. ��
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Table 1. Comparison among CP-ABE schemes

Scheme Forward-sec. |pk| |sk| |CT|
LOSTW [9] No (2 + |U|)|G| + |GT | (2 + |ω|)|G| (1 + 2�)|G| + |GT |
Trivial 1 Yes (2 + |U| + T )|G| + |GT | T (3 + |ω|)|G| (3 + 2�)|G| + |GT |
Trivial 2 Yes (2 + |U| + T )|G| + |GT | (2 + |ω| + T )|G| (3 + 2�)|G| + |GT |
Ours Yes (3 + |U| + log T )|G| + |GT | (log T )(3 + |ω| + log T )|G| (2 + 2�)|G| + |GT |

6 Efficiency

In this section, we discuss efficiency of our FS-CP-ABE scheme. In Table 1, we
compare sizes of public parameters |pk|, secret keys |sk|, and ciphertexts |CT |
among CP-ABE schemes: CP-ABE scheme by Lewko et al. [9], two trivial foward-
secure CP-ABE schemes introduced in Sect. 1, and our FS-CP-ABE scheme. We
denote the size of the attribute universe by |U|, the number of all time slot by
T , and the size of the set of attributes associated with the secret key by |ω|, and
the size of rows in the LSSS matrix by �.

From this table, we can see that the key sizes of the trivial constructions are
linear in the total number of time slot T , and will be very huge in real systems.
In our scheme, the size of public parameter is O(log T ), and the secret key size
is O(log2 T ).
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Abstract. Currently, chosen-ciphertext (CCA) security is considered as
the de facto standard security notion for public key encryption (PKE),
and a number of CCA-secure schemes have been proposed thus far. How-
ever, CCA-secure PKE schemes are generally less efficient than schemes
with weaker security, e.g., chosen-plaintext security, due to their strong
security. Surprisingly, Cramer et al. (Asiacrypt 2007) demonstrated that
it is possible to construct a PKE scheme from the decisional Diffie-
Hellman assumption that yields (i) bounded CCA (BCCA) security which
is only slightly weaker than CCA security, and (ii) one group element of
ciphertext overhead which is optimal.

In this paper, we propose two novel BCCA-secure PKE schemes with
optimal ciphertext length that are based on computational assumptions
rather than decisional assumptions and that yield shorter (or at least
comparable) public key sizes. Our first scheme is based on the com-
putational bilinear Diffie-Hellman assumption and yields O(λq) group
elements of public key length, and our second scheme is based on the
factoring assumption and yields O(λq2) group elements of public key
length, while in Cramer et al.’s scheme, a public key consists of O(λq2)
group elements, where λ is the security parameter and q is the num-
ber of decryption queries. Moreover, our second scheme is the first PKE
scheme which is BCCA-secure under the factoring assumption and yields
optimal ciphertext overhead.

Keywords: Bounded CCA security · Factoring · CBDH assumption

1 Introduction

1.1 Background

Indistinguishability under chosen-ciphertext attack (IND-CCA) is now widely
considered to be the standard notion of security in public-key encryption
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(PKE) schemes. Currently, many practical IND-CCA secure PKE schemes in
the standard model have been proposed thus far. However, IND-CCA secure
PKE schemes are generally less efficient than schemes with weaker security,
e.g., chosen-plaintext (CPA) security, due to their strong security. Especially,
Hanaoka, Matsuda, and Schuldt [9] recently showed a negative result, which
implies that it is hard to construct IND-CCA secure ElGamal-type PKE schemes
(under any non-interactive assumptions) whose ciphertext length is as short as
that of the ElGamal scheme. A feasible approach to overcoming this barrier and
achieving shorter ciphertext length is to (reasonably) relax the notion of security
from IND-CCA.

Surprisingly, Cramer et al. [3] demonstrated that it is possible to construct a
PKE scheme from the decisional Diffie-Hellman (DDH) assumption that yields
(i) IND-bounded-CCA (IND-BCCA) security which is only slightly weaker than
CCA-security, and (ii) only one group element of ciphertext overhead (i.e., cipher-
text length minus plaintext length), which is the same as that of the ElGamal
scheme and thus considered to be optimal. The notion of IND-BCCA is identical
to IND-CCA except that in this attack model, the number of decryption queries
is a priori polynomially bounded.

However, in contrast to such a short ciphertext length, its public key con-
sists of O(λq2) group elements, where λ is the security parameter and q is the
number of decryption queries, and it is thus considerably large. Furthermore, as
previously described, Cramer et al.’s scheme is based on a decisional assump-
tion, i.e., the DDH assumption. In general, decisional assumptions are a sig-
nificantly stronger class of assumptions than computational assumptions, and
therefore, schemes based on computational assumptions are generally preferred
to those based on decisional assumptions. For example, the computational Diffie-
Hellman (CDH) assumption is considered to be significantly weaker than the
DDH assumption, and following [3], Pereira, Dowsley, Hanaoka and Nascimento
[16] actually proposed an IND-BCCA secure scheme from the CDH assumption.
However, its public key size become even larger than that of Cramer et al.’s
scheme, and specifically, its public key consists of O(λ2q2) group elements.

1.2 Our Contribution

We propose two novel IND-BCCA secure PKE schemes with optimal ciphertext
length under computational assumptions whose public keys are shorter than (or
at least comparable to) that of Cramer et al.’s scheme [3]. More specifically, we
construct the following two schemes:

– Our first scheme is IND-BCCA secure under the computational bilinear Diffie-
Hellman (CBDH) assumption, where its ciphertext overhead is optimal (i.e.,
one group element of the underlying cyclic group), and its public key consists
of O(λq) group elements.

– Our second scheme is IND-BCCA secure under the factoring assumption,
where its ciphertext overhead is optimal, and its public key consists of O(λq2)
group elements. This is the first PKE scheme which is IND-BCCA secure
under the factoring assumption and yields optimal ciphertext length.
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Our first scheme is constructed by extending Pereira et al.’s scheme [16] in
a non-trivial manner. Speficifically, we introduce the two-dimensional represen-
tation of cover free families [18] and the two-dimensional representation of the
key index [10], and apply these two techniques to the Pereira et al.’s scheme for
reducing the public key size. Note that applying these techniques simultaneously
is totally non-trivial since both they are significantly complicated and thus may
interfere with each other.

On the other hand, our second scheme is constructed by using the CDH
assumption on QRN and the Blum-Blum-Shub (BBS) pseudo-random number
generator [1]. It is already known that the factoring assumption implies the
CDH assumption on QRN [17], and thus, it is possible to prove security of a
cryptographic scheme under the factoring assumption by proving its security
under the CDH assumption on QRN . We further show that the BBS generator
works as a hard-core function of the CDH problem on QRN , and utilize this
property for significantly reducing the size of a public key. To the best of our
knowledge, such a property has not been explicitly mentioned in the literature.

In Table 1, a comparison among our proposed schemes and other existing
IND-(B)CCA secure schemes is given. We see that in our first scheme (Ours1),
the public-key size is considerably shorter than that of the Pereira et al.’s
scheme (PDHN10) [16] without increasing the ciphertext length. Namely, our
first scheme is also optimal in terms of the ciphertext length. Comparing with
Haralambiev et al.’s scheme (HJKS10) [10], which is the currently best known
CBDH-based IND-CCA secure scheme, ciphertext overhead of our first scheme
is a half of that of HJKS10. We also see that our second scheme (Ours2) is
the first optimal IND-BCCA secure scheme in terms of ciphertext length among
factoring-based schemes, and its ciphertext overhead is a half of that of the
best known factoring-based IND-CCA secure scheme, i.e., Hofheinz and Kiltz’s
scheme (HK09a) [12].

1.3 Related Works

There are generic conversions from IND-CPA secure PKE to IND-CCA secure
PKE [5,15]. However, these conversions use NIZK proofs [2] and they are there-
fore not practical. Currently many practical constructions of IND-CCA secure
schemes in the standard model have been proposed. In particular, Haralambiev
et al. [10] and Yamada et al. [19] independently proposed efficient PKE schemes
under the CBDH assumption and Hofheintz and Kiltz [12] proposed an efficient
PKE scheme under the factoring assumption. Hohenberger, Lewko, and Waters
[13] recently used an IND-BCCA secure PKE scheme as one of the building
blocks to construct a (non-bounded) IND-CCA secure PKE scheme.

2 Preliminaries

2.1 Notation

We denote the set of all natural numbers by N and the set {1, . . . n} by [n] for
n ∈ N. For prime order group G, we denote G \ {1} by G

∗. We write x
$← S
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Table 1. Comparison among IND-BCCA (or IND-CCA) secure KEMs with small
ciphertext overhead, where λ is the security parameter, q is the number of queries,
|g| is size of an element of the underlying group, and |MAC| is length of a message
authentication code.

Ciphertext
overhead

Public key size Computational
assumption?

Security

PDHN10 [16] |g| O(λ2q2) · |g| Yes(CDH) IND-BCCA

Ours1 (Sect. 3) |g| O(λq) · |g| Yes(CBDH) IND-BCCA

HJKS10 [10] 2 · |g| O(λ1/2) · |g| Yes(CBDH) IND-CCA

CHH+07 [3] |g| O(λq2) · |g| No(DDH) IND-BCCA

YHK12 [18] |g| O(λ1/2q) · |g| No(DBDH) IND-BCCA

Ours2 (Sect. 4) |g| O(λq2) · |g| Yes(factoring) IND-BCCA

HK09a [12] 2 · |g| O(1) · |g| Yes(factoring) IND-CCA

HK09b [11] |g| + |MAC| O(1) · |g| No(HR) IND-CCA

to mean that x is chosen uniformly at random from a finite set S, and write
x ← A(y) to mean that x is output by an algorithm A with input y. A function
f(·) : N → [0, 1] is said to be negligible if for all positive polynomials p(·) and
all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We say that an algorithm
A is efficient if there exists a polynomial p such that execution time of A is less
than p(λ) where λ is input size. For an integer k and xi ∈ {0, 1}k (i ∈ [n]), we
denote the bitwise XOR of xi for i ∈ [n] by

⊕n
i=1 xi and the concatenation of xi

for i ∈ [n] by x1||x2|| . . . ||xn. We consider the lexicographical order for pairs of
integers. That is, we denote (x1, y1) ≤ (x2, y2) if x1 < x2 holds or x1 = x2 and
y1 ≤ y2 hold. We denote a security parameter by λ.

2.2 Syntax and Security Notions

Here, we review two basic definitions.

Key Encapsulation Mechanism and Its Security. Here, we review the def-
inition of key encapsulation mechanism (KEM) and its security. It is known
that an IND-CCA secure PKE scheme is obtained by combining an IND-CCA
secure KEM and an IND-CCA secure symmetric cipher (DEM) [4]. There-
fore we consider a KEM instead of PKE. A KEM consists of three algorithms
(Gen,Enc,Dec). Gen takes a security parameter 1λ as input and outputs (pk, sk),
where pk is a public key and sk is a secret key. Enc takes a public key pk as
input and outputs (C,K), where C is a ciphertext and K is a DEM key. Dec
takes a public key pk, a secret key sk and a ciphertext C as input and out-
puts a DEM key K with length k or rejects. We require that for all (pk, sk)
output by Gen and all (C,K) output by Enc(pk), we have Dec(pk, sk, C) = K.
To define the IND-CCA security of a KEM, we consider the following game for
an adversary A and a KEM Π. In the game, a public key and a secret key
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are generated as (pk, sk) ← Gen(1λ), a challenge ciphertext and DEM key are
generated as (C∗, K̄) ← Enc(pk). Then, a random bit b is chosen as b

$← {0, 1}.
If b = 1, K∗ is set as K∗ := K̄ and otherwise K∗ $← {0, 1}k. The adver-
sary A is given (pk,C∗,K∗). At last, the adversary outputs b′. In the game, A
has an access to an oracle O(sk, ·) that returns Dec(sk, C) given C. A is not
allowed to query C∗. We call this phase a query phase. Let T be the event
such that b′ = b holds in the above game. We define the IND-CCA advantage
of A as Advind-ccaΠ, A (λ) = |Pr[T ] − 1/2|. We say that Π is IND-CCA secure if
Advind-ccaΠ, A (λ) is negligible for any efficient adversary A. The IND-q-CCA advan-
tage Advind-q-ccaΠ, A (λ) and the IND-q-CCA security is defined in the same way
except that A is allowed to access to O(sk, ·) at most q times. We say that the
scheme is IND-BCCA secure if it is IND-q-CCA secure for some polynomially
bounded q.

Target Collision Resistant Hash Function. For a function H : X → Y
and an algorithm A, we define AdvtcrH, A(λ) := Pr[x $← X,x′ ← A(x,H) : x′ �=
x ∧ H(x′) = H(x)]. We say that H is target collision resistant if for any efficient
adversary A, AdvtcrH, A(λ) is negligible.

2.3 Number Theoretic Assumptions

Computational Bilinear Diffie-Hellman Assumption and Its Hard-
Core Bit. Let G1, G2 and GT be groups of prime order p with bilinear
map e : G1 × G2 → GT . For any adversary A, we define the CBDH advan-
tage of A as Advcbdh

A (λ) := Pr[e(g1, g2)xyz ← A(g1, gx
1 , gy

1 , g2, g
y
2 , gz

2)] where
g1

$← G
∗
1, g2

$← G
∗
2, x, y, z

$← Zp. We say that the CBDH assumption holds
if Advcbdh

A (λ) is negligible for any efficient adversary A. Furthermore, we say
that h : GT → {0, 1} is a hard-core bit function of the CBDH problem
if Advcbdh-hcA (λ) := |Pr[1 ← A(g1, gx

1 , gy
1 , g2, g

y
2 , gz

2 , h(e(g1, g2)xyz))] − Pr[1 ←
A(g1, gx

1 , gy
1 , g2, g

y
2 , gz

2 , T )]| where g1
$← G

∗
1, g2

$← G
∗
2, T

$← {0, 1}, x, y, z
$← Z

∗
p

is negligible for any efficient adversary A. Note that if the CBDH assumption
holds, then there exists a hard-core bit function of the problem [8].

Factoring Assumption and Blum-Blum-Shub Pseudo-random Number
Generator. Let RSAGen be an efficient algorithm which takes a security parame-
ter 1λ as input and outputs a set of integers (N,P,Q) with N = PQ, P = 2P ′+1
and Q = 2Q′ + 1 where P,Q, P ′, Q′ are distinct odd primes. For an adversary
A, let AdvfactA,RSAGen(λ) be the probability that given N which is generated by
RSAGen, A outputs a non-trivial factor of N . We say that the factoring assump-
tion holds for RSAGen if AdvfactA,RSAGen(λ) is negligible for any efficient adversary
A. We define the group of quadratic residues QRN := {u2 : u ∈ ZN

∗}. This
is a subgroup of Z∗

N . Note that ord(Z∗
N ) = 4P ′Q′ and ord(QRN ) = P ′Q′. The

following is a useful proposition [12].

Proposition 1. Let N = PQ = (2P ′ + 1)(2Q′ + 1) be an integer which is
generated by RSAGen. Then the uniform distribution in [P ′Q′] and the uniform
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distribution in [(N − 1)/4] are negligibly close. In particular, the distribution of
gx where g is a random element of QRN and x

$← [(N − 1)/4] is negligibly close
to the uniform distribution in QRN .

This proposition claims that [(N − 1)/4] is an approximation of the order of
QRN . The remarkable point is that [(N − 1)/4] can be computed efficiently
without knowing P or Q.

We define the Blum-Blum-Shub (BBS) pseudo-random number generator
[1,14] as follows. Let k be any integer which is polynomially bounded in the
security parameter. For u ∈ Z

∗
N and r ∈ {0, 1}�N , we define BBSr(u) :=

(Br(u), Br(u2), . . . , Br(u2k−1
)). Here, Br(u) is the Goldreich-Levin predicate.

That is, Br(u) =
⊕

uiri where ui and ri are i-th bit of u and r respectively.

2.4 Cover Free Family and Its Two-Dimensional Representation

A cover free family is a family of sets which satisfies a certain combinatorial
property. It is useful for designing IND-BCCA secure PKE [3]. The definition is
as follows. Let S = (Si)i∈[v] be a family of subsets of [u] with |Si| = � (i ∈ [v]).
We say S is a (u, v, q)-�-uniform cover free family (CFF) (or simply q-cover free
family) if Si �⊂ ⋃

j∈F Sj for all i ∈ [v] and for all F ⊂ [v] \ {i} such that |F| ≤ q.
Given λ and q bounded by a polynomial of λ, an efficient construction of a cover
free family is known for parameters u(λ) = O(λq2), v(λ) = Ω(2λ), �(λ) = O(λq)
[6,7].

Here, we review the technique of two-dimensional representation of cover
free families [18]. In the technique, we regard [u] as [u1] × [u2], where u1 and
u2 are integers satisfying u1 ≥ u2 and u1u2 ≥ u. We regard i ∈ [u] as an ele-
ment of [u1] × [u2] by associating with (
i/u2�, i − u2(
i/u2� − 1)). Then, all
Si can be seen as a subset of [u1] × [u2] in a natural way and (Si)i∈[v] can be
seen as q-cover free family, over [u1] × [u2]. We call such a cover free family
((u1, u2), v, q)-�-cover free family. Clearly, given λ and q bounded by a polyno-
mial of λ, we can efficiently construct a ((u1, u2), v, q)-�-cover free family for
parameters u1(λ), u2(λ) = O(λ1/2q), v(λ) = Ω(2λ), �(λ) = O(λq).

3 Construction from the CBDH Assumption

This section discusses KEMs with optimal ciphertext overhead that are IND-
BCCA secure under the CBDH assumption. We note that it is possible to con-
struct such a scheme by modifying the KEM in [16] which is IND-BCCA secure
under the CDH assumption. However, the scheme which is straightforwardly
derived from [16] requires significantly large public keys, and more precisely, the
public key size of this straightforward scheme is O(λ2q2) where q is the maximal
number of decryption queries. In this section, we propose a new IND-BCCA
secure KEM from the CBDH assumption whose public key size is only O(λq).

To achieve such shorter public key size, we use following two techniques:
(1) the two-dimensional representation of cover free families [18] and (2) the
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two-dimensional representation of the key index [10]. The techniques (1) and
(2) are used for reducing the public key size of the IND-(B)CCA KEMs in [3]
and [10], respectively, by utilizing bilinear maps, and both these techniques are
considered useful to construct an efficient IND-BCCA secure KEM under the
CBDH assumption.

However, it is not easy to simultaneously handle these two techniques since
both techniques require significantly complicated procedures, and therefore, they
might interfere with each other. We demonstrate in the following that these
techniques are compatible by a careful consideration. As a result, we obtain an
IND-q-CCA secure KEM with optimal ciphertext overhead under the CBDH
assumption whose public key consists of O(λq) elements.

3.1 Construction

Here, we present the construction of the proposed IND-BCCA secure KEM under
the CBDH assumption. Our main idea is to apply both the technique of the
two-dimensional representation of cover free families and the technique of two-
dimensional representation of the key index to the scheme in [16] simultaneously.
We then obtain an IND-q-CCA secure KEM under the CBDH assumption with
public key size O(λq).

Let G1, G2 and GT be groups of prime order p with bilinear map e : G1 ×
G2 → GT . Let S be a ((u1, u2), v, q)-�-uniform cover free family. Let H : G1 → [v]
be a target collision resistant hash function and h : GT → {0, 1} be a hard-core
bit function. Let k = k1k2 be DEM key length of the KEM and for simplicity, we
assume k = λ in the following. In the following, K1,1||K1,2|| . . . ||Kk1,k2 means
that Km,n are put in lexicographical order in [k1] × [k2]. We call the following
scheme Ours1.

Gen(1λ): This chooses g1 ∈ G
∗
1, g2 ∈ G

∗
2, am,i

$← Zp, bn,j
$← Zp and computes

Am,i := g
am,i

1 and Bn,j := g
bn,j

2 (m ∈ [k1], i ∈ [u1], n ∈ [k2], j ∈ [u2]). Then
it returns public key pk = (g1, g2, (Am,i)m∈[k1],i∈[u1], (Bn,j)n∈[k2],j∈[u2]) and
secret key sk = ((am,i)m∈[k1],i∈[u1], (bn,j)n∈[k2],j∈[u2]).

Enc(pk): This chooses r
$← Zp and computes C := gr

1 and t := H(C). It
sets K := K1,1||K1,2|| . . . ||Kk1,k2 where Km,n :=

⊕
(i,j)∈St

h(e(Am,i, Bn,j)r)
(m ∈ [k1], n ∈ [k2]). Then it returns ciphertext C and DEM key K.

Dec(pk, sk, C): This computes t := H(C), Km,n :=
⊕

(i,j)∈St
h(e(C, g2)am,ibn,j )

(m ∈ [k1], n ∈ [k2]), K := K1,1||K1,2|| . . . ||Kk1,k2 . Then it returns DEM
key K.

The above completes the description of scheme.

Public Key Size. Here, we discuss the public key size of the above scheme. We
can set u1 = u2 = O(λ1/2q) (see Sect. 2.4) and k1 = k2 = O(λ1/2). Then, public
key of the scheme consists of O(u1k1+u2k2) = O(λq) group elements. Note that
we can further reduce the number of group elements of the public key to 1/

√
2

of that in the above scheme if we use symmetric pairing as in [19].
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3.2 Security

Here, we discuss the security of the scheme. We show that the above scheme is
IND-q-CCA secure under the CBDH assumption.

Theorem 1. If the CBDH assumption holds on G1, G2 and GT , h is a hard-
core bit function of the CBDH assumption, and H is a target collision resistant
hash function, then Ours1 is IND-q-CCA secure. Specifically, for any efficient
adversary A, there exist efficient adversaries B and D such that Advind-q-ccaOurs1,A (λ) ≤
AdvtcrB,H(λ) + �kAdvcbdh-hcD (λ).

The proof can be found in the full version.

4 Construction from the Factoring Assumption

This section presents another IND-BCCA secure KEM with optimal cipher-
text overhead. Remarkably, this scheme is provably secure under the factoring
assumption which is considered to be one of the most reliable assumptions in
the area of cryptography. Our scheme is based on the fact that the factoring
assumption implies the CDH assumption on QRN . By using this, we design an
IND-BCCA secure KEM under the factoring assumption.

Moreover, we observe that the BBS generator is a hard-core function of the
CDH assumption on QRN . Since the output length of the BBS generator can
be any polynomial in the security parameter, we do not need to generate public
keys for each bit of a DEM key as in [16]. Consequently, we can obtain an IND-
q-CCA secure KEM under the factoring assumption whose public key consists
of O(λq2) group elements whereas that in the scheme in [16] based on the CDH
assumption consists of O(λ2q2) group elements.

4.1 CDH Assumption on QRN and BBS Pseudo-Random Number
Generator

Here, let us recall that if the factoring assumption holds, then the CDH assump-
tion holds on QRN [17] and moreover, we show that the BBS generator is a
hard-core function of the CDH problem. More formally, our claim is as follows.

Lemma 1. For any adversary A, we define the BBS hard-core advan-
tage as Advbbs-hcA,RSAGen := |Pr[1 ← A(N, g, gx, gy, r, BBSr(gxy))] − Pr[1 ←
A(N, g, gx, gy, r, T )]| where (N,P,Q) ← RSAGen(1λ), g

$← QRN
1 , x, y

$←
Zord(QRN ), r

$← {0, 1}�N , T
$← {0, 1}k. If the factoring assumption holds for

RSAGen(1λ), then Advbbs-hcA,RSAGen is negligible.

To the best of our knowledge, this has not ever been explicitly shown. However,
the (even CPA) security of the second scheme in [14] (ElGamal-like KEM under
the factoring assumption) implies this. Note that the scheme is instantiated on
a group called a semi-smooth subgroup, but we can instantiate the scheme on
QRN without adversely affecting the security.
1 One may think that g should be sampled from generators of QRN , but since over-

whelming fraction of elements of QRN is a generator, it causes only negligible dif-
ferences.
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4.2 Construction

Here, we present the construction of the IND-BCCA secure KEM under the
factoring assumption with optimal ciphertext length. Let H : Z∗

N → [v] be a
target collision resistant hash function and S be a (u, v, q)-�-uniform cover free
family. We call the following scheme Ours2.

Gen(1λ): This generates N ← RSAGen(1λ) and chooses g
$← QRN . Then it

chooses xi
$← [(N − 1)/4], Xi := gxi (i ∈ [u]) and r ← {0, 1}�N . Then it

returns public key pk = ((Xi)i∈[u], N, g, r), and secret key sk = ((xi)i∈[u]).
Enc(pk): This chooses y

$← [(N − 1)/4] and computes C := gy, t := H(C) and
K :=

⊕
i∈St

BBSr(X
y
i ). Then it returns ciphertext C and DEM key K.

Dec(pk, sk, C): This computes t := H(C) and K :=
⊕

i∈St
BBSr(Cxi). Then

it returns DEM key K.

The above completes the description of the scheme.

Public Key Size. Here, we discuss the public key size of the scheme. We
can set u = O(λq2) (see Sect. 2.4). Then public key of the scheme consists of
O(u) = O(λq2) group elements.

4.3 Security

Here, we show that the above scheme is IND-q-CCA secure under the factoring
assumption.

Theorem 2. If H is a target collision resistant hash functions and the factoring
assumption holds for RSAGen, then Ours2 is IND-q-CCA secure. Specifically, for
any efficient adversary A, there exist efficient adversaries B and D such that
Advind-q-ccaOurs2,A (λ) ≤ AdvtcrB,H(λ) + �Advbbs-hcD,RSAGen(λ) + O(2−λ).

The proof can be found in the full version.
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Abstract. Smartphones have become the most popular mobile devices.
Due to their simplicity, portability and functionality comparable to
recent computers users tend to store more and more sensitive information
on mobile devices rendering them an attractive target for malware writ-
ers. As a consequence, mobile malware population is doubled every single
year. Many approaches to detect mobile malware infections directly on
mobile devices have been proposed. Detecting and blocking voice and
SMS messages related to mobile malware in a mobile operator’s network
has, however, gained little attention so far. The 4GMOP proposed in this
paper aims at closing this gap.

1 Introduction

In the past few years, the popularity of sophisticated mobile devices such as
smartphones and tablets has continuously increased. This is due to the avail-
ability of increasingly diversified mobile applications for smartphones that com-
plement the traditional call and SMS services offered by basic mobile phones.
The mass adoption has, however, turned mobile devices into a new target for
malware writers [21]. These are attracted by the ever increasing amount of sensi-
tive data stored on the devices and the new opportunities to make money. Even
more, due to the fact that most mobile devices are always-on, mobile malware
writers can expect to be able to contact their victim devices at all times. At the
same time, many end users believe that the mobile device itself or at least their
mobile network operator (MNO) will protect them [14]. The most trivial forms
of mobile malware just send premium SMS messages or make calls to premium
numbers on behalf of their victims. More sophisticated mobile malware samples
are also able to steal data (address books, mobile TANs, emails, SMS messages
etc.) from mobile devices, reload malicious code, initiate in-app-purchases, or
send out spam.

Some prior research on mobile malware focuses on providing an overview on
current mobile malware (e.g. [15,32]) or a particular class of mobile malware
samples [31]. Other works focus on analyzing a single form of mobile malware in
detail [25,29]. Apart from these interesting descriptive works, many approaches
to mitigate the mobile malware threat have been proposed (e.g. [5,8,10,11]).
However, most of these proposals concentrate on detecting mobile malware on
the mobile device itself. In cellular networks, the DNS traffic initiated by mobile
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 113–129, 2015.
DOI: 10.1007/978-3-319-27659-5 8
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devices has been investigated in [20] but little attention has been spent on moni-
toring other traffic initiated by mobile malware. This is particularly surprising as
all mobile malware except ransomware requires some sort of communication over
the network to fulfill its malicious goal [32]. Thus, filtering traffic initiated by
mobile malware should stop the malicious intend of almost any mobile malware
currently out in the wild. Note that netflow analysis [4] and intrusion detection
and prevention systems [26] cannot directly be used to filter traffic initiated by
mobile malware as these systems are typically designed for the TCP/IP proto-
col stack, which substantially differs from a 3G or 4G protocol stack and is in
particular not able to filter SMS messages and voice traffic initiated by mobile
malware. On the first glance, it may seem as if a mobile operator does not have
an incentive to invest in such filtering although it would have several advan-
tages. First, customers believe that it is the operator’s job to protect them from
infections [14] such that they risk loosing their reputation if they stay inactive.
Second, MNOs may be able to sell the filtering as a service to their more con-
cerned users. Finally, some proof of concepts (e.g. [9,12,27]) have shown that
the infrastructure of MNOs can be targeted by DDOS attacks originating from
malware-infected mobile devices.

In this paper, we introduce and evaluate the 4GMOP, a mobile malware detec-
tion system targeted to operator in a MNOs backbone network in order to detect
SMS messages initiated by mobile malware. We concentrate on detecting SMS
traffic as to the best of our knowledge there is no prior research work on this
topic. The 4GMOP system consists of a first line of defense, which applies list-
based, rule-based, and pattern-based filtering. This is complemented by a second
line of defense in which more sophisticated classifiers using anomaly detection or
machine learning techniques are applied. In particular, we implemented and eval-
uated a classifier for the detection of “malicious” SMS messages based on Support
Vector Machines (SVMs). We evaluated this classifier on the SMS-MV1.0 corpus,
a collection of malicious and benign SMS messages which we compiled and pub-
lished alongside this paper. We show that our classifier is able to filter over 80 %
of the malicious SMS messages with a false positive rate well below 0.1 %.

2 Mobile Malware Traffic

In this section we discuss what types of traffic initiated by mobile malware can
be detected in a MNO’s network. For this purpose we review prior work on ana-
lyzing mobile malware [15,22,25,29,31,32] as well as on proof-of-concept mobile
malware [17,29,30]. We complement these prior findings with the results of our
own analysis of 35 mobile malware samples targeting the Android platform. We
divide our discussion into the infection and execution phase.

2.1 Traffic During Infection

Current mobile malware gain access to mobile devices using one of four infection
techniques, namely repackaging [31], malicious updates, URI download, and drive-
by download [32]. In the following we briefly discuss each of these techniques.
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In repackaging, the malware author first identifies and downloads some popu-
lar benign app. He then disassembles the benign app and concatenates malicious
payload. The original app complemented by some malicious functions is then
resubmitted to the official or an alternative market where the user can down-
load it in the belief that it is the original benign app. The malicious app typi-
cally claims the same functionality and package name as the original one. This
common practice confuses users even more. In academic literature, the repack-
aging method is sometimes referred as piggybacking [15]. In malicious updates,
a mobile malware writer conceals the malicious part by adding some sort of an
update component to the app. This component then downloads the malicious
payload later at runtime [32]. URI downloads use classical phishing techniques
or cross-references in order to trick users into visiting and downloading malicious
apps from websites that copy the layout and design of official markets or other
popular sites.

A more advanced infection technique of mobile malware is a so-called drive-
by download, i.e., a download without a person’s knowledge while surfing the
Internet. Drive-by downloads are typically triggered by opening a badly format-
ted web page. Here, malware writer exploits existing vulnerabilities in mobile
browsers to download and install the mobile malware. Typically, the malware
then connects to a predefined external site and downloads additional software
which completes the installation and with the help of root privilege escalation
exploits gains full access to the device.

Note that in our analysis of samples gained from the VirusTotal database
[28], we encounter only repackaging, malicious updates and URI downloads but
no drive-by downloads. This may indicate that either drive-by downloads are
currently not used at all or that they are used only as a part of targeted attacks.

Detecting mobile malware during the infection phase in an MNO’s network is
difficult as the traffic related to repackaging, URI downloads, malicious updates,
and drive-by downloads looks like regular IP traffic from the MNO’s perspec-
tive. All an MNO could do here is to filter connections to suspicious alternative
markets and servers known to be hosting malicious apps as part of their more
general intrusion detection and prevention system. Note that the SMS service is
not involved in the infection phase.

2.2 Traffic During Execution

After the infection phase in which mobile malware is downloaded and installed,
the mobile malware remains undetectable for an MNO until it tries to contact
some remote resources via some network. Note that the overwhelming majority
of the 1260 mobile malware samples analyzed in [32] as well as the samples
analyzed by us become active and initiate network traffic after a short period of
time.

The most trivial mobile malware samples use only one single communication
channel immediately after installation, e.g. send an SMS message or make a
phone call to a premium number. Other mobile malware samples send out SMS
messages to all contacts available on the infected mobile phone. Sometimes, SMS
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messages are used in the context of mobile spyware. In this case, the content of
the SMS message carries the data harvested on the mobile phone. Most mobile
spyware, however, sends out the data collected on the phone to a remote server
via HTTP [32]. More evolved mobile malware create a network of infected mobile
devices, a mobile botnet [29]. Such a mobile botnet is remotely controlled through
a command and control (C&C) infrastructure. As known from botnets of desktop
computers, the C&C infrastructure of a mobile botnet can be centralized with
one or more central C&C servers or decentralized. In the latter case, commands
are distributed to the infected devices in a peer-to-peer (P2P) fashion [17,29,
30]. Three types of command and control channels have been discussed and
observed in the context of mobile botnets so far. The first one uses the HTTP
protocol [32], the second one uses SMS messages [17], and the third one splits
the communication into an SMS and an HTTP part [23]. Using the SMS service
as (one of the) communication channels has the advantage that commands reach
the infected mobile device even if it is currently switched off or out of network
coverage: the MNO will store incoming messages and deliver them as soon as
the mobile device is reachable again [17,30]. An advantage of using an SMS
channel in addition to an HTTP-based C&C infrastructure is that it may add
to the take-down resilience of the mobile botnet as a new C&C server can be
announced via SMS after a successful take-down of an old C&C server. Finally,
P2P botnets may be easier to implement with the help of SMS messages as IP-
based communication directly between mobile devices is challenging as long as
the majority of mobile devices do not use public IP addresses. In addition, SMS
messages support transport of arbitrary binary data with the length limited to
140 octets (or 160 septets) each which is more than enough for a secure encrypted
communication between the infected device and the botnet herder [22].

All of these activities generate traffic in the mobile operator’s network. While
it may be possible to reuse intrusion detection and prevention techniques devel-
oped in the context of desktop malware to cope with the IP-based part of the
traffic initiated during the execution phase, to the best of our knowledge there
is no prior work on filtering mobile malware initiated SMS traffic yet. In the
rest of this paper we, therefore, focus on effectively detecting and filtering SMS
messages initiated by mobile malware during the execution phase.

3 The 4GMOP Sensor

To enable filtering of mobile malware related traffic in a MNO’s backbone net-
work, we propose the 4G MObile malware Protection sensor (4GMOP). Our
sensor is able to detect and filter SMS traffic originating from or terminating at
mobile devices infected with mobile malware. It is extensible in the sense that it
allows for the integration of new detection modules on top of the one we propose
in this paper. In the following, we first provide an overview on the architecture
of the 4GMOP (see also [16]) and then describe its components in more detail.
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3.1 Architecture Overview

The 4GMOP is designed to reside in a MNO’s backbone network and to mon-
itor incoming and outgoing traffic. The core of the 4GMOP consists of three
components: a filter, a checker, and a bridge as illustrated in Fig. 1.

Filter. The filter component is responsible for monitoring and filtering SMS-
related incoming and outgoing traffic directly from the traffic flow in nearly
real-time (users can not differentiate between filtered and unfiltered traffic).
Filtering of SMS messages is particularly easy as both services are not immediate.
In particular, it takes some time to deliver or receive new SMS messages [12].
Therefore, if the detection and prevention process requires only a few hundred
milliseconds per SMS message sent, it will be unnoticeable to the user. When
a new data flow is intercepted by the filter, the flow is replicated and sent to
the checker and bridge component respectively. The idea behind the replication
is to be able to run several detection modules in parallel. The checker provides
highly efficient detection methods (list-based, content list-based and pattern-
based filtering) to detect already known malicious traffic and thus acts as a first
line of defense. The bridge forwards the traffic to one or more classifiers running
directly in the network or are remotely operated. The classifiers built a second
line of defense and provide more extensive but resource consuming anomaly
detection algorithms [24] or machine learning techniques [13].

Fig. 1. The 4GMOP architecture and its interaction with other components.

Checker. The checker acts as a first line of detection and provides (content) list-
based filtering of SMS messages and pattern-based filtering on SMS messages.
In the following we describe these filtering techniques in more detail.

The list-based filtering mechanism checks the phone numbers involved in
voice calls and SMS messages against a whitelist and a blacklist. The whitelist
collects benign phone numbers set to be benign by the MNO. The blacklist
gathers phone numbers that have been misused by mobile malware for malicious
activities. In addition, SMS messages are filtered with the help of a so-called
content blacklist where each substring of an SMS message is checked against a
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content blacklist. Note that all three types of lists need to be regularly updated.
We propose to push a modified entry from a database each time a list has
changed. Such updates may be triggered by external sources (e.g. new list entries
provided by antivirus companies) or as the result of a MNO’s own analysis of
malware samples. Note that we currently do not expect that these lists will
change on a daily basis, as different malware samples often reuse the same phone
numbers. E.g. we found that the same short phone number 1161 is misused in
the three mobile malware samples SmsSend.H, FakeInst.AH, and FakeNotify.A.

The last filtering method we use as part of the first line of defense in our
4GMOP is pattern-based filtering. It is also performed by the checker and filters
SMS messages. Opposed to content blacklisting, pattern-based filtering uses a
sliding window technique to match the current window content with regular
expressions generated from patterns and strings used in already known mobile
malware.

Matching known regular expression suffices as mobile malware send user
or device specific sensitive information in SMS messages with fixed structure.
For instance, an SMS message initiated by mobile malware (SIMM message)
with content “IMEI:358967041111111” (NickySpy.A) would be detected by the
content blacklist and by the patter-based filter. By the content blacklist because
of the static string “IMEI” and by the patter-based filter because of the 15 digits
starting with a valid1 type allocation code [2].

In the 4GMOP, the checker component is always responsible for the final
decisions. Only if the first line of detection cannot identify the analyzed data for
certain, then the checker waits for more detailed information from the bridge and
evaluates the situation based on the results obtained from the external classifiers
via the bridge. The checker also decides what happens to the analyzed data.
At this stage, various prevention measurements like blocking, partial content
deletion or modification are possible.

Bridge. The bridge component is an interface between the 4GMOP and other
resources located within or outside of the mobile network. These resources are
not necessary for the execution of the 4GMOP but can considerably improve the
detection rate. We differentiate between classifiers, a trainer, and a database. In
the outgoing direction, the bridge parses data and specifies model parameters
for classifiers. In the incoming direction, the bridge simply forwards results to
the checker. If a response from classifiers does not reach the bridge in some
predefined time, the bridge sends the delayed response to the database via the
checker component for further manual processing. The same applies for ambigu-
ous results.

Classifiers. Classifiers run more extensive computations and possess process-
ing power exceeding that of the main sensor. Their detection algorithms are not
bound to a specific service so that each classifier can handle many requests based
on the model parameter. The model parameter specifies the trained model which
should be used by the classifier. Models are requested either from the database

1 http://www.mulliner.org/tacdb/feed/contrib/.

http://www.mulliner.org/tacdb/feed/contrib/
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or are permanently stored in a local cache of the classifiers if the communi-
cation between the database and classifier should lead to notable decrease of
performance. This might happen when trained models are larger and download-
ing of each model lasts longer than the classification process. In small mobile
networks, the classifier can be a part of the checker. However, if the MNO has
free resources then the classifier should be separated from the sensor to support
more sophisticated methods and thus higher-quality detection. In addition, ded-
icated classifiers can be maintained more easily than dispersed sensors. Good
choices for more extensive algorithms detecting classical malware in networks
are support vectors machines (SVM) [6], random forests [7] or Bayesian additive
regression trees [18]. These or their variants are often part of intrusion detection
systems filtering classical malicious traffic directly in the network.

Trainer. In order to achieve good detection rates, each model should be fre-
quently updated by a trainer. The trainer takes recent data from the database
as input and generates new models reflecting the current state of the monitored
traffic. Training a model typically consists of two steps. All gathered and ana-
lyzed data is divided into two set. One is used for training the model and one for
testing. The trained model is then applied to a testing set to compute the detec-
tion rate. If the detection rate is sufficient, the trainer pushes the newly trained
model to the respective classifier and maintains the classifier’s cache based on the
computed statistics and predictions. We separated the trainer from the classifiers
because the training period for generating new models varies greatly based on
the input data and type of the classifier. The classification itself needs a constant
amount of time for classification.

Database. In the 4GMOP, the checker as well as all classifiers periodically
inform the database about all occurred events. The database (or in larger mobile
networks a set of databases) stores all relevant information indicating mobile
malware initiated traffic such as whitelisted and blacklisted phone numbers,
string patterns and data for training models. To optimize the time needed for
classification, additional information indicating the state of the respective clas-
sifiers for load balancing may be also included in the database.

3.2 Sensor Placement

The 4G network architecture is highly complex and specifies many interfaces
and planes. Nevertheless, all planes in a pure 4G architecture intersect in one
central component called System Architecture Evolution GateWay (SAE-GW).
The SAE-GW is responsible for IP address allocation, deep packet inspection,
policy enforcement, and connectivity from mobile devices to external packet data
networks (PDNs) important for SMS delivery and call transmission. We therefore
propose to place the 4GMOP sensor in front of the SAE-GW. Note that possible
sensor placements in the 2G and 3G architectures are also discussed in [16].
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4 The SMS-Mv1.0 Corpus

In order to be able to evaluate our 4GMOP and in particular any newly pro-
posed classifiers a data set of malicious and benign SMS messages is required.
Unfortunately, to date not such data set has been published. We close this gap
by introducing the SMS-Mv1.0 corpus which we published2 alongside this paper.
We describe how we extracted the SMS messages sent and received by mobile
malware samples and built the malicious part of the SMS-Mv1.0 corpus. We
complemented these with benign SMS messages taken from the SMS Spam Col-
lection v.1 corpus [3]. Note that spam messages differ greatly from SMS messages
sent by mobile malware. In particular, e.g. SMS messages used to distribute com-
mand and control information in a mobile botnet or SMS messages sent out to
premium numbers to generate profit will typically not have any similarity with
SMS spam messages.

4.1 SMS Usage in Mobile Malware Samples

The results of our analysis of 35 mobile malware samples obtained from [28]
are presented in Fig. 2. It shows how SMS messages are used in current mobile
malware samples. The first column of the figure gives the name of the analyzed
sample. The SHA-256 (32) value in the second column of the figure corresponds
to the first 32 bits of the SHA-256 hash value of the respective mobile malware
sample. In the Premium column we mark if the malware sample sends out SMS
messages to a premium (short) number with less than six digits. The column
Contacts marks if a malware sample sends out SMS messages to one or more
contacts stored in the infected phone’s address book. The next four columns are
related to the content of SMS messages sent out by mobile malware samples.
The column Hardcoded indicates the number of SIMM messages sent or received
by mobile malware where the content of the SIMM message is hardcoded in
the source code of the malicious sample. If some parts of the content of the
SIMM messages are variable, then the number of SIMM messages is given in
the Dynamic column. The IN and OUT show whether the SIMM message is
sent to or from the infected mobile device. Finally, the last column SMS C&C
marks if the mobile malware sample uses an SMS based C&C channel. A check
mark denotes that we could indeed observe and state the behavior of the sample,
while an asterisk next to the name denotes that we were only able to determine
the behavior with the help of static analysis e.g. as the C&C server was already
down or we could not obtain files a mobile malware sample tries to open.

As we can see in Fig. 2, the majority of the analyzed mobile malware samples
send fixed SIMM messages to fixed premium numbers. Note that all samples send
premium SMS messages in plaintext3 such that once the content of these mali-
cious messages is known to an operator, he can easily filter these messages with
content blacklisting. In the samples we analyzed, bidirectional SMS traffic is used

2 https://itsec.rwth-aachen.de/smscorpus.
3 Only the encoding differs from ASCII encoding.

https://itsec.rwth-aachen.de/smscorpus
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Fig. 2. SMS Usage in Mobile Malware.

by only two mobile botnets (TigeerBot.A, Zitmo.A). The observed SIMM mes-
sages carrying mobile botnet commands differ from typical benign SMS messages
as they contain a particularly high number of special characters and numerals
used as separators. Other SIMM messages sent by samples we analyzed carry
user-specific sensitive information like the International Mobile Station Equip-
ment Identity (IMEI), phone numbers, contacts from the phone book, operator
information and network information. Many mobile malware samples send sen-
sitive information in SIMM messages in plaintext, such that it can potentially
be detected and filtered by an MNO. In fact, only one of the samples we ana-
lyzed (ZertSecurity.A) communicates over an encrypted channel and two mobile
malware botnets (NickySpy.C, GppSpy.A) utilize hashmaps to obfuscate their
commands. I.e. they use a bilinear map of commands represented by numbers.
Encrypted communication is obviously hard to filter in the MNO’s network.
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4.2 Building the SMS-Mv1.0 Corpus

Our SMS-Mv1.0 corpus contains 4539 benign SMS messages and 155 SIMM
messages. We extracted the benign SMS messages from the SMS Spam Collection
v.1 [3]. In particular, we extracted all single benign SMS messages (i.e., SMS
messages containing at most 160 characters) in GSM 7-bit default alphabet
encoding [1] written in the Latin alphabet. Some of the benign SMS messages
from [3] were not correctly decoded. We processed wrongly decoded benign SMS
messages by replacing all occurrences of “&lt;”, “&gt;”, “&lt;#&gt;”, “0× 94”
and “0× 96” by an empty string. We further replaced “0× 92” by an apostrophe
and “&”amp by an “&”. Some benign SMS messages occurred more than three
times in the extracted set of benign SMS messages. In these cases, we kept three
of the identical messages and deleted any additional occurrences. This procedure
removed 47 SMS messages from the extracted set and left us with the 4539 benign
SMS messages in our SMS-Mv1.0 corpus.

We complement these benign messages with SIMM messages sent and
received by the 35 mobile malware samples described above. The most com-
mon malware we found during our static and dynamic analyzes of the malware
samples send constant SIMM messages in the sense that the whole content of
the SMS message is statically set in the source code of the malware sample and
does not change over time, see the Hardcoded column in Fig. 2. By adding such
SIMM messages to our corpus, we applied the same rule. If we found that the
mobile malware samples sends identical content of SIMM messages to more than
just three numbers, we limited the number of accepted SIMM messages for the
corpus to the first three entries. In addition, we decided to list at most two
empty SIMM messages per mobile malware sample to prevent homogeneity in
the SMS-Mv1.0 corpus due to too many empty SIMM messages.

Some of the samples we analyzed collect information about the infected device
and/or subscriber, namely the International Mobile station Equipment Identity
(IMEI) or the International Mobile Subscriber Identity (IMSI). Since each num-
ber is static regarding the entity, mobile malware samples send only one SIMM
message per infected device and/or subscriber. However, these SIMM messages
are not identical if sent from different entities. To overcome this issue with vari-
able content in SIMM messages, we later describe feature selection in which
using the same or variable IMSI and IMEI in each of these SIMM messages
will not have any effect on the detection rate. Therefore, it suffices to randomly
pick some valid values for IMSI and IMEI as shown in Table 1. Other mobile
malware samples forward all incoming and outgoing benign SMS messages from
the infected phone to a C&C server. In these cases, we added exactly three
messages to our corpus where the benign SMS messages were taken from our
SMS-Mv1.0 corpus. The content of the three SIMM messages as well as phone
numbers, date and time is also indicated in Table 1. Command numbers occur-
ring as text in command SIMM messages sent to mobile-botnet-infected devices
change the phone number of the C&C server. During our mobile malware analy-
sis, we found that phone command numbers of C&C servers are both regular and
premium numbers. Respective commands are “secured” by a static key set by
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Table 1. Strings used in SIMM messages.

Type of string 1st entry 2nd entry 3rd entry

IMSI 310111223344556

IMEI 358967041111111

Text Sorry, I’ll call later I wonder if you’ll Tired. I haven’t slept

get this text? well the past few nights

Phone number 012367894500 02109876543 0506070809

Date and Time 2013-06-06 06:07:08 2012-05-05 01:22:33 2011-04-04 05:05:55

Command number 0666666660

Premium number 5555

Key 123456

Random number 7156

Process name com.android.malicious

initialization (NickySpy.C) or accompanied by a n-digit random number
(TigerBot.A). Last entry in Table 1 refers to the TigerBot.A mobile malware
sample which can manage processes.

To avoid any misunderstandings, let us assume the SmsZombie.A sample for-
warding incoming legitimate SMS messages to the attacker. All SIMM messages
sent by SmsZombie.A have a fixed structure:

• Date and Time: Phone number–Text

This tells the C&C server the date when the benign SMS message was
received, the phone number of the sender and the content of the forwarded
message. In this case we added the following three malicious SMS messages to
our corpus:

• 2013-03-21 17:47:47:012367894500–Sorry, I’ll call later
• 2012-05-05 01:22:33:02109876543–I wonder if you’ll get this text?
• 2011-04-04 05:05:55:0506070809–Tired. I haven’t slept well the past few nights.

In such manner we were able to obtain 155 malicious SMS messages from the
35 malware samples we analyzed. Altogether, our SMS-Mv1.0 corpus contains
of 4737 SMS messages.

5 An Example Classifier

In this section we describe the design and evaluation of an example classifier
that can be used in connection with the 4GMOP to detect and filter SMS mes-
sages initiated in the context of mobile malware. Virtually all classifiers can be
used but we decided to use the Support Vector Machine algorithm (SVM) as
it has been shown that the SVM classifier is one of the most accurate meth-
ods to classify ham and spam SMS messages [3]. Also SVMs have successfully
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been used for online traffic classification directly in the network [13]. The SVM
itself represents a supervised learning technique suitable for solving classifica-
tion problems where the number of available training data for one class is rather
small. The later property is crucial for us. Although there are many captured
samples of mobile malware every day, SIMM messages sent over the mobile net-
work are quite similar. In many cases, they have identical structures leading to
a relatively small space of SIMM messages compared to benign SMS messages.
Another beneficial property of an SVM is that once a model has been generated,
the time needed for classification of yet new SMS messages is negligible.

5.1 Feature Selection

The challenge task in using SVMs in the context of classifying SMS messages
into benign and malicious messages is the design of the features used to train
the SVM. In the following we describe which features we selected and why. We
then show how using different combinations of these features to train an SVM
influences the performance of the detection. In many jurisdiction systems it is
illegal to process SMS messages on a semantic basis. We operate on the content
of the SMS message in a non-semantic way. Note that we do not take any char-
acteristics of the sending or receiving phone numbers into account as we do not
have access to this information for the benign SMS messages. Also, characteris-
tics such as the length of the premium numbers strongly vary between different
countries and are therefore not a good source for the creation of universally
usable features.

Overall we deduce eleven features based on the SIMM messages and benign
messages in our corpus. Table 2 provides an overview on the features we con-
sidered. The first three features characterize SIMM messages. The content of
the command messages used in the mobile botnets we analyzed consists of short
strings with many special characters separating respective parameters. Com-
pared to benign SMS messages, whitespace characters are very rare in the SIMM
messages we observed. As a first feature (Feature 1) we use the absolute num-
ber of special characters in a message excluding the special characters that are
frequently used in benign messages, namely whitespace, dot, comma, apostro-
phe, question and exclamation mark. While numerals occur in both benign SMS
messages and SIMM messages, in benign SMS messages they are often accom-
panied by some text which has been represented by two additional features.
Feature 2 counts the absolute number of numerals in a message, while Feature
R2 denotes the ratio of the number of numerals to the overall number of char-
acters in the SMS message. Feature 2R should be able to distinguish between
a block of numerals accompanied by text and an SMS consisting of numerals
only. Feature 0 denotes the length of the message in the number of characters
and should detect empty SIMM messages sent to premium numbers by trivial
mobile malware. Feature 3 counts whitespace characters. We observed that the
ration of whitespace characters to the overall length of the message (Feature 3R)
is around 0.2 for benign SMS messages. Finally, Feature 4 counts the absolute
number of capital letters while Feature 5 counts the number of lowercase letters.
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Table 2. List of features.

Feature Description

0 Overall number of characters

1 Number of special characters except for . , ’?!

2 Number of numerics

3 Number of whitespaces

4 Number of capital letters

5 Number of lowercase letters

xR Ratio of Feature x to Feature 0

Feature 4R and Feature 5R denote again the ration of the capital and lower-case
letters to the overall number of characters in the SMS message.

5.2 Evaluation

We empirically tested the SVM classifier using different combination of the fea-
tures described above. All results were obtained from a light-weighted module of
an SVM implementation called SVMlight [19]. We ran the SVMlight implementa-
tion with default parameters. We used a standard cross validation technique to
estimate the detection rate of SIMM messages in the MNO network. In particu-
lar, we selected five-fold cross validation where the set of benign SMS messages
as well as the set of SIMM messages in the SMS-Mv1.0 corpus were randomly
divided into five sets of equal size each. Each set of benign SMS messages con-
tained 900 randomly chosen messages and each set of SIMM messages contained
the SIMM messages generated by seven randomly chosen mobile malware sam-
ples out of the 35 by us analyzed samples. Each round had five runs. In the first
run, the first of each subsets was used for testing and the other subsets were
used for training. In the second run, the second subset was used for testing and
the remaining four subsets were used for training and so forth. The result of one
round was then the averaged over the five runs. An example for a single round
trained on features 1R, 2R and 3R is given in Table 3.

Table 3. A single round.

Set SIMM messages Benign messages TP FN TN FP TPR TNR

1. 48 900 47 1 900 0 0.979167 1

2. 31 900 27 4 899 1 0.870968 0.998889

3. 14 900 13 1 896 4 0.928571 0.995556

4. 20 900 13 7 900 0 0.650000 1

5. 42 900 28 14 900 0 0.666667 1

round 0.819075 0.998889
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Table 4. Final results.

Features MIN TPR MAX TPR TPR TNR ACC

1, 2, 3 0.646138 0.803078 0.742781 0.999107 0.990470

0, 1, 2, 3 0.403801 0.607739 0.520294 0.999980 0.984036

0, 1, 2, 3, 4, 5 0.397059 0.564518 0.536214 0.999982 0.984708

1R, 2R 0.660891 0.768364 0.718388 0.998838 0.988761

1R, 3R 0.666397 0.802566 0.743966 0.992128 0.984023

2R, 3R 0.734009 0.853231 0.791920 0.999377 0.992118

1R, 2R, 3R 0.72058 0.855411 0.806840 0.999244 0.992505

0, 1R, 2R, 3R 0.727168 0.845102 0.791113 0.999399 0.992226

1R, 2R, 3R, 4R 0.610152 0.765299 0.69.076 0.999769 0.988475

1R, 2R, 3R, 5R 0.663127 0.768443 0.712789 0.999475 0.989409

The true positives (TP) value in Table 3 is the number of correctly classified
SIMM messages. The true negatives (TN) value is the number of benign messages
correctly recognized as benign SMS messages. Complements to TP and TN are
false negatives (FN) and false positives (FP) respectively. The true positive ratio
(TPR) reflects the ability of the classifier to detect SIMM messages and can be
computed as

TPR =
TP

TP + FN
. (1)

In the wild, the number of sent benign messages exceeds malicious messages
by far and users are more bothered by having benign SMS messages be blocked
the MNO than by SIMM messages passing through the MNO’s detection sensor.
Thus, the MNO is interested in keeping the true negative ration (TNR), i.e.,
the ratio of benign messages incorrectly classified as SIMM messages as low as
possible.

TNR =
TN

TN + FP
(2)

In addition to the TPR and the TNR, the overall accuracy (ACC) of the
system is represented as the total number of classifier’s correct decisions divided
by the overall number of messages classified in one round.

ACC =
TP + TN

TP + FN + TN + FP
(3)

We empirically tested the various combinations of features listed in Table 2.
To mitigated deviations, each test consisted of one hundred rounds.

The most interesting results we obtained are provided in Table 4. Here, the
measured average values of the TPR and the TNR as well as the minimum
and the maximum value of the TPR are provided in the first four columns.
The last column shows the ACC. We found that features in absolute values
(without R) tend to provide slightly better TNRs compared to features utilizing
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ratios, while the ratio features provide a considerably better TPR rate than the
features counting absolute values. Next, we examined which features significantly
improve the TPR. It turned out that the features counting special characters
(Feature 1) and numerals (Feature 2) often occurring in SIMM messages and
whitespace characters (Feature 3) occurring in the SMS messages are indeed
essential. Surprisingly, ratio of numerals in an SMS message is more informative
than the ratio of special characters. We analyzed this phenomenon and found out
that emoticons in benign SMS messages are responsible for the slight increase
of the TPR compared to 2R or 3R. Features 0, 4, 5 and their complements 4R
and 5R were identified as essentially ineffective.

We obtained the best results with respect to the overall accuracy using the
three features 1R, 2R and 3R. Here we obtained a TPR over 80 % and a TNR of
over 99.9 %. In other words, 124 out of 155 SIMM messages would be correctly
detected by our 4GMOP as SIMM messages and only 4 out of 4500 benign SMS
messages were incorrectly classified as SIMM messages.

6 Conclusion

With the rise of mobile malware, more and more users are expecting mobile
operators to protect them. Many of the negative effects of mobile malware can be
mitigated by filtering malware-related traffic in a mobile operators network. We
developed a novel sensor that monitors mobile initiated and mobile terminated
SMS and voice traffic in order to detect and potentially block mobile malware-
related traffic. This sensor supports two lines of defense, a first line that offers
basic filtering techniques and a second line which allows for the integration of
different classifiers, including the SVM-based classifier we propose in this paper.
For the evaluation of this classifier we compiled the SMS-Mv1.0 corpus consisting
of benign and malware-related SMS messages. The evaluation of our example
classifier shows that our classifier alone is able to correctly classify 80 % of all
SMS messages related to mobile malware and over 99.9 % of all benign SMS
messages as benign.
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Abstract. In this paper, we propose a realistic malware attack against
the smart grid. The paper first briefs the architecture of the smart grid
in general. And then we explain our proposed attack that is specifically
tailored for the smart grid infrastructures. The attack considers the char-
acteristics of recent real malware attacks such as deceptive hardware
attack and multi-stage operation. We believe this analysis will benefit
the design and implementation of secure smart grid infrastructures by
demonstrating how a sophisticated malware attack can damage the smart
grid.
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1 Introduction

Smart grid is a modernised electricity infrastructure that consists of several
subsystems and field devices such as supervisory control and data acquisition
(SCADA), information systems, programmable logic controllers (PLCs) and
smart meters. The infrastructure includes bulk generation, transmission, dis-
tribution, operations, markets, service provision and end-user clients. Because
the smart grid is a huge integrated system consisting of various subsystems,
i.e. a system of systems (SoS), it should be equipped for interoperability with
present and future standards of components, devices, and systems that are cyber-
secured against malicious attacks. For this reason, Federal Energy Regulatory
Commission (FERC) has mandated the development of intersystem communi-
cations and cyber security specifications [1]. Many individual researchers and
institutions have suggested smart grid security issues including two-way secure
communications and increase in the number of paths from end-user clients to
core subsystems and components because of increased connectivity [2–5].

Though there are various research works on smart grid security, most of
them focus on the risks of individual subsystems or components such as smart
meters and AMI [4,6,7]; only a few researchers have addressed security aspects
of interplays among the smart grid subsystems and components [8]. Our main
aim is to analyse the smart grid as a single integrated system to tackle as many
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 130–139, 2015.
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security aspects as possible. In particular, attackers can cause serious damages
to the smart grid by attacking more than one subsystem and component and
overcoming the security features of the smart grid like self-healing [1].

When it comes to real attacks and offensive research on cyber-physical sys-
tems (CPS) including the smart grid, in 2010, Stuxnet has shown how a stealthy
attack targeting both hardware and software is possible [9]. Since then, indus-
try security experts have mainly focussed on either (1) demonstrating outright
attacks that visually show how the field devices can be controlled using Human
Machine Interface (HMI) software [10,11], or (2) disclosing traditional software
vulnerabilities such as buffer overflow in SCADA software, which can be used to
compromise the installed operating system, but cannot be used to compromise
field devices [12]. However, two crucial aspects have been overlooked: (1) real
attacks have to be stealthy and deceptive, hence it cannot be accomplished by
controlling HMI machine via Graphical User Interface (GUI) connections; oper-
ators would notice it immediately. And (2) modern sophisticated malware like
Stuxnet and Shamoon not only use traditional vulnerabilities to compromise
target systems but also leverage some functionalities of benign software com-
ponents installed on the victim systems to compromise field devices. To do so,
attackers embed legitimate software modules inside malware (e.g. Shamoon) or
develop a malicious component that uses those legal modules installed on target
machines (e.g. Stuxnet).

Therefore, it is clear that attacks targeting CPS exploiting both hardware and
software have unique characteristics and need to be investigated systematically
to have an accurate view of such attacks and to build optimal defensive measures
and protect the infrastructure from future cyber attacks. In this paper, to address
these research issues, we have selected the smart grid infrastructure to be the
CPS system.

The rest of this paper is organised as follows: an architecture of the smart grid
are discussed in Sect. 2. A sophisticated smart grid blackout attack that reflects
the characteristics of smart grid security and the malware attacks is presented
in Sect. 3. We conclude the paper with conclusions and future work in Sect. 4.

2 Smart Grid Architecture

The smart grid can be divided into five domains: bulk generation, transmission,
distribution, customer area, and operator/service provider (Fig. 1). Each domain
has its own core subsystems and components, most of them will be infected,
modified or damaged in the proposed blackout attack described in Sect. 3. Even
though there is no unanimous definition of smart grid architecture, the following
subsystems and components are treated as essential architectural constructs that
are found in most smart grid architectures [1–3,6,13]. We give a brief outline of
these subsystems and components; detailed descriptions can be found in [2,3].

Bulk Generation: Bulk generation plants have been the main source of power
in traditional electric grid. This is still valid in the smart grid environment.
Energy can be stored for later transmission and distribution.
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Fig. 1. Simplified smart grid architecture

Transmission: Bulk transfer of electrical energy, from power plants to distribu-
tion substations. Its components include transmission SCADA, phasor measure-
ment unit (PMU), also known as synchrophasor, intelligent electronic devices
(IED), remote terminal units (RTU) and energy storage.

Distribution: Local wiring between high-voltage substations and customers,
distributing electricity to and from the customers. It manages and controls the
smart meters and all intelligent field devices through a two-way wireless or wired
communications network. Its components include distribution SCADA, distrib-
ution data collector, distribution automation field devices, RTUs and IEDs, field
crew tools, sensors, distribution management system (DMS), smart switch, and
storage. Also, distributed energy resources (DER) and energy sources of distrib-
uted generation (DG) may operate at the distribution level.

Customer Area: With smart grid, customers can generate electricity; so they
can produce and store electricity, and manage the use of power as well as con-
suming the power. A customer can be at home or at a building, factory or other
industrial facilities. Customer is connected to the distribution network through
smart meters. Each customer has its own electricity premise and bi-directional
networks connected to the smart grid. Its components include smart meter, cus-
tomer energy management system (EMS), home area network (HAN) gateway,
customer premise display, energy usage metering device (EUMD), plug-in hybrid
electric vehicle (PHEV) and energy storage.

Operator/Service Provider: These provide power service to end-user clients,
manage and operate the smart grid. They can be service providers, util-
ity corporations, and/or independent system operator/regional transmission
organisation (ISO/RTO). Their systems communicate with more than one
subsystem to monitor, manage, and control electricity flows. Its components
include advanced meter infrastructure (AMI) head end, energy management
system (EMS), security/network/system management systems, wide area mea-
surement system (WAMS), wide area control system (WACS), load manage-
ment system/demand response management system (LMS/DRMS), meter data
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Fig. 2. Smart grid network architecture

management system (MDMS), outage management system (OMS), customer
portal, customer information system (CIS), and back office.1

Smart grid network serves as a dynamic network for bi-directional energy
flows [14]. For this, two-way end-to-end communication is required. This goes
against the traditional control system networks because control system networks
have been physically separated from corporate networks. This has necessitated
subnetworks to be connected directly or indirectly, thus making air-gapping prac-
tically impossible [1,15,16]. As a result, all the subnetworks from operational
network to customer area network are interconnected in smart grid as shown in
Fig. 2.

3 Smart Grid Blackout Attack

In this section, we propose a new and concrete blackout attack against smart
grid infrastructures. The attack reflects the characteristics of both smart grid
security and recent CPS-related malware attacks. First of all, we found that
attacks try to hide their physical impact, such as the stoppage of a motor, from
operators. This is technically much harder than cyber-only attack because hard-
ware malfunction or failure happens as soon as the attack is launched. As stated
1 These operation systems logically belong to operator/service provider, and some of
them may not be physically installed at operator/service provider premises.
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in Sect. 1, controlling field devices using GUI is not enough. This type of attack is
considered to be deceptive because the attackers need to ensure that operators do
not notice that their systems are malfunctioning or stop working. This attack is
possible since most CPS are “remotely” monitored and controlled. In particular,
Stuxnet showed that deceptive hardware attack is clearly feasible for attackers.
Next, these attacks are multi-stage attacks like most sophisticated cyber attacks.
Because most cyber-physical systems, including power plants and other smart
grid subsystems, are uniquely set up using customised commercial off-the-shelf
(COTS) hardware and software solutions with site-specific configurations, it is
almost impossible for attackers to implement one “universal” malware that can
infect and compromise all these systems.

With smart grid, attackers have to nullify built-in security features and com-
promise subsystems in order to perform a blackout. For instance, for a black out
attack, corrupting self-healing functionality is essential to prevent any form of
recovery as well as infecting field devices such as PLCs at plants and substations.
In addition, operators have to be deceived to believe their systems are intact and
normal while actual field devices are malfunctioning.

Our black out attack against a smart grid is characterised by five attack
phases. We assume that the attackers do not have any background information
about the target smart grid configurations; so a specially targeted malware is
deployed against the victim for information gathering prior to launching the
deceptive attack. The first two phases are related to this cyber espionage aspect.
The CPS-unique deceptive attack is illustrated in the latter three phases.

3.1 Phase 1: Initial Penetration

In the first phase, the attack involves the penetration of target subsystems using
a range of attack vectors. On the server side, the targets include SCADA servers,
IT servers, CIS, and customer portal; on the client-side, targets of the attack
vectors are employees, contractors, and customers as well as field devices; on
the network side, the attack involves network packet manipulation. After the
penetration, the attack installs cyber espionage malware on the targeted systems
and starts collecting information on the configuration of smart grid systems and
networks.

3.2 Phase 2: Espionage

While penetration and malware propagation continue until the attack finds
target field devices, the installed malware carries out typical cyber espionage
tasks and collects information from the compromised systems. This information
includes system and field device configuration data, network and system deploy-
ment map, etc. Internet-connected systems act as pivot points to relay data
from isolated systems to the attackers. Similar to the analysed malware attacks,
the malware uses benign protocols, such as HTTP(S) and RPC, and commu-
nications are encrypted; this makes it difficult for the commodity network and
system security solutions to detect it. Furthermore, collected data stored on
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the infected systems is also encrypted to remain stealthy as well as making the
forensic analysis difficult.

The fact that smart grid systems and field devices are not replaced frequently
gives the attackers sufficient time to analyse the data, to understand proprietary
protocols and data used in the components and subsystems, and to map the
entire target smart grid. In example, Flame performed its malicious activities for
years without being detected [17], and the oldest Stuxnet sample was submitted
to a public scanning service in 2007, whereas it was only discovered in 2010 [18].

3.3 Phase 3: Development of Malware for the Deceptive Attack

Having gained and analysed enough information about the network, the sys-
tem architecture and the configurations of the control systems, the next stage
involves the development and testing of real attack payloads. To achieve this,
a mirrored environment that includes field devices like PLCs, hardware mod-
ules, computer systems and other peripherals is required to determine how the
physical components are actually affected by the malicious payloads. Then the
malicious payloads are delivered to the infected targets for the deceptive attack.

The development of field device modification payloads can be totally dif-
ferent from that of traditional exploits that use vulnerabilities of the target
software. In the smart grid world, it is impractical to find such vulnerabilities
and develop zero-day exploits to compromise the field devices, as these devices
are not well-known to public. For instance, finding a buffer overflow vulnerability
and exploiting it on a PLC running a RTOS like V×Works is harder and more
time consuming than discovering one from ×86 Windows application. There-
fore, the attackers take a different strategy. First, they don’t need to find such
vulnerabilities on such field devices, as they already have access to the control
software. In particular, Stuxnet infects, i.e. reprograms its target PLCs using the
control system development tools (legitimate DLL of Siemens STEP7) [9]. Other
research such as uploading ladder logic to Schneider PLCs using Modbus proto-
col [19] provides the evidence that this type of attack is possible and realistic.
Second, the attackers can focus on finding hidden built-in passwords embedded
in control software or field devices. Such passwords are usually hard-coded by
the vendors to make debugging and other technical support easy [20]. These
two strategies are a huge time saver and provide a reliable way for the attackers
to implement their malware. Furthermore, the probability that the malware is
detected by security tools such as anti-virus and network intrusion detection
systems is low because the malware uses intended functionalities of the control
system, e.g. field device reprogramming.

In this particular attack example, the attack involves the development of
payloads for each component or subsystem. This is only one specific instance
among many possible deceptive blackout scenarios.

1. Field devices: PLCs on plants are reprogrammed to over-run motors involved
in power generation, which could lead to damages not only to PLCs but also
to motors and other related field devices. The PLC payload is programmed to
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report its rotational speed as normal so that all the SCADA specific IDS/IPS
and HMI cannot detect such malfunction of the field devices. Transmission
IEDs and RTUs are reprogrammed to transmit electricity at higher voltage
and current in order to cause physical damages not only to the IEDs and
RTUs but also to other transmission field devices such as Flexible AC Trans-
mission Systems (FACTS) and transmission tower. Distribution IEDs/RTUs
are reprogrammed in a similar way as the transmission IED/RTU. But for
distribution IEDs/RTUs, the attackers develop the payload to just stop power
distribution electricity.

2. SCADA systems on plants, transmission and distribution sites, and opera-
tion systems such as DMS, EMS, WAMS, WACS, OMS, and customer EMS:
hooked so that these systems display normal values (projects, code, or config-
urations) on the HMI and on the development environment so that operators
and developers cannot find the fact that the code on PLCs are modified by
the malware. SCADA systems are used to reprogram the PLCs as well. In
addition, any commands from the operator are intercepted and dropped by
the hooked functions, while making them look normal to the operator. If the
developers try to reprogram field devices in an attempt to recover, hooked
functions prevent this by replacing the original code with the malicious one
on the fly. In our example, the malware doesn’t need to modify PLC monitor-
ing routine nor intercept network packets, because PLCs report everything
to be normal. However, intercepting network packets, and modifying or drop-
ping them may be required depending on the specific implementation and
configuration of the target system.

3. Storage at bulk generation, transmission, distribution and customer area:
control code on either the control systems or on the controlling field devices
of the storage modified to release all the stored electricity so that no power
remains. Relevant control system will be modified so as to display the stored
energy amount as expected.

4. DERs and microgrids: Similar payloads are also developed for control systems
and field devices at these sites, as they are essentially same to the plants or the
power grid. Even though the attackers hold all the information about DERs,
e.g. geological locations (this information is centrally managed in the energy
management systems or other IT systems of the operator/service provider), it
may be impossible for the attackers to compromise all the DERs distributed
through out the smart grid. Thus, some DER may remain uninfected.

5. Smart switches: modified to switch power improperly or not to switch, so that
electricity from survived DERs cannot be provided to where it is needed.

6. Smart meters & EUMD : modified to stop providing any power to the cus-
tomer premise, while reporting to the customer premise display that electric-
ity provided is normal.

7. Other IT systems in smart grid sites: keeps monitoring employees’ activities,
e.g. keystrokes and screenshots, and report them to the attackers. This enables
the attackers to keep their fingers on the pulse on the near-real-time situations
of the target smart grid. The infected control and management systems report
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their malicious situation to the attackers directly or indirectly depending on
the connectivity.

8. Utility back office: modified in the same way as their original correspondents.

Network attacks such as packet interception, dropping, injection, and/or
manipulation, are practical because the widely-used communication protocols
in the smart grid control systems, e.g. DNP3 and Modbus, do not have encryp-
tion or authentication by default [5,8,15,19].

3.4 Phase 4: Deceptive Attack

After the development and testing, the payloads are introduced to the subsys-
tems and components of the target smart grid. In most cases, this job is per-
formed via the malware’s C&C communications. The process of delivering the
field device payloads is highly undetectable, because the malware reprograms
the target devices using the legitimate control and development tools that are
currently deployed in the target operation systems.

Now, the deceptive attack can be launched at any time. Once the attackers
trigger it, all the payloads installed on IT systems and field devices cooperatively
start the malicious actions developed in the previous phase. In this example, the
attack begins at the bulk and distributed generation plants, because damaging
motors at generators can take longer than damaging other field devices. This is
why deception is important in CPS attack; in this case, SCADA systems keep
reporting normal status, and operators who remotely monitor the plant cannot
notice the attack. After infected systems at the plants report their attack has
been started, other infected systems at the rest sites begin to malfunction. As
the smart grid is all connected and communication is done in real-time, such
malicious C&C communication can also be done.

3.5 Phase 5: Cleanup and Aftermath

In the last phase, the malware removes as many as possible of its traits, after
launching the deceptive attack. It modifies and removes any history server
logs, network and system access logs, and application logs. Furthermore, self-
destruction of the malware is performed as a way of withdrawal on non-critical
systems; malware instances infected on control systems are not destroyed, as
they need to deceive operators and trouble-shooters.

However, once those instances on the control systems detect any changes in
network connectivity so they cannot perform predefined malicious activities, e.g.
packet interception and modification of PLC code block, self-destruction of the
infected systems is executed to make digital forensics and recovery extremely
hard; in the case of Wiper [21], no real malware sample has been found, because
it was completely destructive. A recovery option for operators/service providers
is to replace the IT systems with mirrored backup if they exist and if they are
not infected with the malware. Setting-up new systems is another option, but
this can take a long time.
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The final action for the cleanup is the self-destruction of modified PLCs,
RTUs, and IEDs; according to PLC and real-time OS programming guides from
vendors such as V×Works (RTOS), Mitsubishi and Siemens (PLC), an inap-
propriately written PLC program can cause damages to CPU unit, which makes
replacement of the unit unavoidable. This not only removes the malware’s traits,
but also makes recovery even harder.

After some physical outcome shows up, e.g. a generator’s stoppage, the oper-
ators try to fix the problems, which they are not able to; the operation software
is modified and control command packets are intercepted and dropped. They
have to visit the actual places where the devices are installed, find out infected
and destroyed field devices including PLCs, IEDs, RTUs and motors. Replace-
ment is required, but this may take a long time, due to the availability of these
devices. As the blackout proceeds through the entire smart grid, other operators
at various sites and customers get to notice that something has gone wrong with
their systems and field devices. But recovery is very hard due to the same reason.

Even when the operators/service providers ask DERs (which are intact) and
energy storages to provide electricity to some critical regions, no power can be
provided. First, electricity from intact DERs cannot be provided, as modified
smart switches and distribution towers are not working. Second, all the storages
are empty while they have been falsely reporting their status. The damages can
be as big as or even bigger than a natural disaster. The blackout caused by the
notorious Sandy in 2012 resulted blackouts for more than two weeks. The attack
described above could cause a blackout for a similar period of time.

4 Concluding Remarks

Smart grid is the future power grid, and is one of the largest cyber-physical
systems. In this paper, we have applied several recent malware techniques to the
smart grid, and designed a stealthy and deceptive malware attack that targets
both software systems and field devices. The proposed blackout attack is also
considering the specifics of the smart grid so that it can be realistic. We are
in the process of implementing a proof-of-concept smart grid testbed in order
to evaluate the attack, and developing appropriate defensive techniques against
such attacks.
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and Stephen Wolthusen3,4

1 Computer Science Department, University of Málaga, Malaga, Spain
alcaraz@lcc.uma.es

2 Complex Systems & Security Laboratory,
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Abstract. The notion of controllability, informally the ability to force
a system into a desired state in a finite time or number of steps, is most
closely associated with control systems such as those used to maintain
power networks and other critical infrastructures, but has wider rele-
vance in distributed systems. It is clearly highly desirable to understand
under which conditions attackers may be able to disrupt legitimate con-
trol, or to force overriding controllability themselves. Following recent
results by Liu et al. , there has been considerable interest also in graph-
theoretical interpretation of Kalman controllability originally introduced
by Lin, structural controllability. This permits the identification of sets
of driver nodes with the desired state-forcing property, but determining
such nodes is a W [2]-hard problem. To extract these nodes and represent
the control relation, here we apply the Power Dominating Set problem
and investigate the effects of targeted iterative multiple-vertex removal.
We report the impact that different attack strategies with multiple edge
and vertex removal will have, based on underlying non-complete graphs,
with an emphasis on power-law random graphs with different degree
sequences.

Keywords: Structural controllability · Attack models · Complex
networks

1 Introduction

Structural controllability was introduced by Lin’s seminal work [1] as an alter-
native to the controllability, identifying a graph-theoretical model equivalent to
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Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 140–151, 2015.
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Kalman’s control [2] in order to reach a desired state from an arbitrary state
in a finite number of steps. Although the Kalman’s model enables the use of a
general, rigorous, and well-understood framework for the design and analysis of
not only control systems but also of networks in which a directed control rela-
tion between nodes is required, the model presents some restrictions for complex
and large systems. A time-dependent linear dynamical system A is controllable
if and only if rank[B,AB,A2B, . . . ,An−1B] = n (Kalman’s rank criterion),
where A is the n × n adjacency matrix identifying the interaction among nodes
and the n×m input matrix B identifies the set of nodes controlled by the input
vector, which forces the system to a desired state. Whilst straightforward, for
large networks the exponential growth of input values as a function of nodes is
problematic, giving importance to concept of structural controllability. In this
context, the graph-theoretical interpretation would be G(A,B) = (V,E) as a
digraph where V = VA ∪ VB is the set of vertices and E = EA ∪ EB is the set of
edges. In this representation, VB comprises nodes able to inject control signals
into the entire network.

Moreover, recent work by Liu et al. [3] has renewed interest in this approach
as it allows the identification of driver nodes (nd corresponding to VB) capable
of observing the entire network (graph). This work is relied on a non-rigorous
formulation of the maximum matching problem and has been expanded upon
multiple times [4,5]. However, we here focus on the equivalent Power Dominat-
ing Set (PDS) problem, originally introduced as an extension of Dominating
Set by Haynes et al. [6], mainly motivated by the structure of electric power
networks, and the need of offering efficient monitoring of such networks. A real
world scenario related to this field is precisely the current control systems (e.g.
SCADA systems) which deploy their elements following a mesh distribution to
supervise other critical infrastructures (e.g. power systems), where G = (V,E)
depicts the network distribution with V illustrating the elements (e.g. control
terminal units, servers, etc.), and E representing the communication lines. In
this context, PDS can be defined using the two following observation rules sim-
plified by Kneis et al. [7]: OR1, a vertex in the power dominating set observes
itself and all its neighbours; and OR2, if an observed vertex v of degree d ≥ 2
is adjacent to d− 1 observed vertices, the remaining unobserved vertex becomes
observed as well.

With the omission of OR2, this reverts to the Dominating Set problem
already known to be NP-complete with a polynomial-time approximation fac-
tor of Θ(log n) as shown by Feige [8]. The approach relies on creating directed
acyclic graphs G = (V,E) to find a sequence of driver nodes (denoted as ND/
∀ nd ∈ ND) such that ND ⊆ V can observe all vertices in V satisfying OR1
and OR2. Instances of driver nodes from a given G = (V,E) are not unique
and clearly depend on the selection order of vertices ∈ V to create DS using
OR1. Here, we follow the three strategies defined in [9]: (1) Obtain the set of
driver nodes with maximum out-degree satisfying OR1 (Nmax

D ); (2) find the
set of driver nodes with minimum out-degree satisfying OR1 (Nmin

D ); and (3)
obtain the set of random nodes satisfying OR1 (Nrand

D ). Hence, each Nstrat
D

represents a partial order given by the out-degree (≤ or ≥) in case of Nmax
D or
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Nmin
D , respectively; in case of Nrand

D , no such relation exists as its elements are
randomly chosen.

These three strategies have already been analysed for non-interactive
scenarios, in which a single vertex is exposed to a particular type of attack.
Our contribution in this paper is therefore to expand the approach from [9] to
multiple-round attacks, studying the robustness of controllability when multi-
ple and combined attacks affect control in several different graph classes, namely
random (Erdős-Renyi (ER)), small-world (Watts-Strogatz (WS)), and power-law
(both (Barabási-Albert (BA)) and general power-law (PLOD) distributions)1.
In addition, we also analyse here the interaction between different multi-round
attack strategies and the underlying control graph topology on robustness, con-
sidering both the earlier work on single attacks [9] and new three multi-round
attack scenarios. These scenarios are as follows: (1) Removal of some random
edges ∈ E from a single or several vertices, (2) isolation of some vertices ∈ V ,
and (3) removal of some random edges and vertices from a dense power-law
subgraph.

The remainder of this paper is structured as follows: Sect. 2 describes the
threat model based on three different multi-round attack scenarios and on a set
of attack models characterised by the number of targets. Later, in Sect. 3 we
proceed to evaluate the impact of exploiting strategic points of the mentioned
topologies and its controllability (Nmax

D , Nmin
D , or Nrand

D ), discussing the results
obtained on connectivity and observability terms. Finally, conclusions together
with our on-going work are given in Sect. 4.

2 Multi-round Threat Model

In order to study the robustness of the different types of network topologies,
first we consider the different attack types (edge and vertex removal), which
may disrupt controllability (e.g. denial of service attacks to communication lines
in order to leave parts of a system uncontrolled, unprotected or isolated by nd),
and the resulting effects that such attacks may cause in the control, the network
connectivity and observability (as the dual of controllability). The threats stud-
ied here are multi-round attacks with prior knowledge, but do not explicitly take
mitigating responses of defenders into account.

These threats are based on the combination of five attack models (AMs),
which have been grouped into three scenarios for the purposes of further analysis:
Scenario 1 (SCN-1), it focuses on removing a small number of random edges of
one or several vertices, which may compromise controllability of dependent nodes
or disconnect parts the of control graph and underlying network. The selection
of target nodes depends on the AM described below, and the removal of edges
avoids spurious node isolation. Scenario 2 (SCN-2) destined to isolate one
or several vertices from the network by intentionally deleting all the links from
these vertices. This threat may result in the isolation of vertices which depend on
the compromised node or the partition of the network into several sub-graphs.
1 For more detail on these distribution networks, please go to [9].
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Scenario 3 (SCN-3) aims to attack one or several vertices of a sub-graph by
randomly deleting part of their links (SCN-1), or carry out the isolation of such
nodes (SCN-2) so as to later assess the resulting effect of the threat with respect
to the entire graph. For the extraction of the sub-graph, we consider the Girvan-
Newman algorithm to detect and obtain specific communities within a complex
graph [10]. A community structure refers to a subset of nodes with dense links
within its community and with few connections to nodes belonging to less dense
communities. For this, links between communities are sought by progressively
calculating the betweenness of all existing edges and removing edges with the
highest betweenness.

Algorithm 2.1. Attack Models (G (V,E),Nstrat
D , AM, Scenario)

output (Attack of one vertex for a given G (V,E));
local i, target;

if AM == AM1 (F)
then

{

target ← Nstrat
D [1];

else

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

if AM == AM2 (M)
then

{

target ← Nstrat
D [(Size(Nstrat

D ))/2];

else

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

if AM == AM3 (L)
then
{

target ← Nstrat
D [(Size(Nstrat

D ))];

else

⎧

⎪

⎪

⎨

⎪

⎪

⎩

if AM == AM4 (BC)
then
{

target ← Betweenness Centrality(G (V,E));

else
{

target ← Outside Nstrategy
D (G (V,E),Nstrat

D );
if Scenario == SCN-1
then Remove Selective Edges(G (V,E), target);

if Scenario == SCN-2
then Isolate Vertex(G (V,E), target);

return (G (V,E))

Algorithm 2.2. Multi-Round Attacks( G (V,E),Nstrat
D ,TG-x, Scenario)

output (Attack of one or several vertices for a given G (V,E));
local i, Combination AM,AM,SCN ;

if Scenario == SCN-3

then

⎧

⎨

⎩

Gsub(V,E) ← Girvan-Newman(G (V,E));
Nstrat

D ← Extract Driver Nodes from Subgraph(Gsub(V,E),Nstrat
D );

SCN ← Determine New SCN-1-2();
Combination AM ← Combine Attacks(TG-x); comment: See table 1;

for i ← Size(Combination AM)

do

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

AM ← Combination AM [i];
if Scenario == SCN-3

then

{

G (V,E) ← Attack ModelsII(G (V,E),Gsub(V,E),Nstrat
D , AM, SCN);

comment:Algorithm analogous to 2.1, but considering Gsub(V,E)

else
{

G (V,E) ← Attack Models(G (V,E),Nstrat
D , AM, Scenario);

return (G (V,E); )

For each scenario, we select a set of attacks in which it is assumed that an
attacker is able to know the distribution of the network and the power domina-
tion relation (control graph). In real scenarios, these attackers could be insiders
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Table 1. Five attacks rounds with permuted AM

Targets Combination of AM−x Num. of attacks

TG-1 F, M, L, BC, O 5

TG-2 F-M, F-L, F-BC, F-O, M-L, M-BC, M-O, L-BC, L-O, BC-O 10

TG-3 F-M-L, F-M-BC, F-M-O, F-L-BC, F-L-O, F-BC-O, M-L-BC,
M-L-O, M-BC-O, L-BC-O

10

TG-4 F-M-L-BC, F-M-L-O, F-M-BC-O, F-L-BC-O, M-L-BC-O 5

TG-5 F-M-L-BC-O 1

who belong to the system, such as human operators, who known the topology
and its system itself; or outsiders who observe and learn from the topology to
later damage the entire system or sub-parts. The mentioned attacks, summarised
in Algorithm 2.1, are denoted as AM-1 to AM-5. AM-1 consists of attacking
the first (F) driver node nd in a given ordered set Nstrat

D . Depending on the
attack scenario, the attacker could randomly delete some edges or completely
isolate the nd from G = (V,E). In contrast, AM-2 aims to attack or isolate
a vertex nd belonging to a given ordered Nstrat

D positioned in the middle (M)
of the set. AM-3 attacks the last (L) driver node nd in the ordered set given
by Nstrat

D . AM-4 compromises the vertex v ∈ V with the highest betweenness
centrality (BC), whereas AM-5 randomly chooses a vertex v ∈ V and /∈ Nstrat

D

(outside (O)).
Combinations of AM-x (which are only representative of wider classes), such

that x ∈ {1,2,3,4,5}, result in a set of rounds based on multi-target attacks,
which are represented in Table 1 and described as follows: 1 Target (TG-1)
illustrates a non-interactive scenario in which a single vertex v ∈ V is attacked
according to an AM-x, being v a driver node or an observed node. In contrast,
2 Targets (TG-2) corresponds to a multi-round scenario based on two attacks
AM-x and AM-y where x, y ∈ {1,2,3,4,5} such that x �= y, e.g. the attack
F-BC identifies multiple attacks of type AM-1 and AM-4, in which one or
several attackers compromise two strategic nodes. Note that 3-5 Targets (TG-
3-5) is a multi-round scenario based on 3, 4 or 5 threats with analogous goals and
similar features to TG-2. All objectives are summarised in Algorithm 2.2, which
depends on the type of scenario and the number of targets to be attacked. For
scenarios of type SCN-3, we first extract the sub-graph from G (V,E) using the
Girvan-Newman algorithm and its driver nodes to be attacked. For the attack,
we not only consider the sub-graph itself but also G (V,E) to study the effects
that attacks on dense sub-graphs may have on the overall network.

3 Attack Scenarios on Structural Controllability

So as to evaluate the structural controllability strategies defined in [9] (Nmax
D ,

Nmin
D , Nrand

D ) with respect to ER, WS, BA and PLOD distributions, scenarios
SCN-1, SCN-2 and SCN-3 defined in Sect. 2 were studied through Matlab
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Table 2. Nomenclature for analyses

Nomenclature Definition

nd Driver node

AM-x Attack model following a particular attack strategy x, such that x ∈
{AM-1,. . . , AM-5}

TG-x Number of target nodes such that x ∈ {TG-1,..., TG-5}
Nstrat

D Set of driver nodes nd following a particular controllability strategy
such as Nmax,min,rand

D

Nmax,min,rand
D An attack with minor impact on structural controllability

Nmax,min,rand
D

N
max†,min†,rand†
D An attack with intermediate impact on structural controllability,

intensifying effect caused by Nmax,min,rand
D

N
max‡,min‡,rand‡
D An attack with major impact on structural controllability, intensifying

effect caused by †
∗ Symbol stating for all the cases

Nstrat
Ds,l,∗ Representation of small and large networks

*,{AM-x} Influence of all attacks, but with a special vulnerability for AM-x

{X-AM-x} Any X threat combined with AM-x

x − y% Minimum and maximum rate of observability

simulations. Several topologies and network sizes were generated, giving small
(≤ 100) and large (≥ 100) networks with 100, 1000 and 2000 nodes, and with
low connectivity probability so as to represent sparse networks.

Under these considerations, we assess here the robustness from two perspec-
tives: First, the degree of connectivity using the diameter, the global density and
the local density using the average clustering coefficient (CC). These statistical
values should maintain small values in proportion to the growth and the aver-
age degree of links per node, and more specifically, after an attack. Second, the
degree of observability by calculating the rate of unobserved nodes after a threat
using OR1 [9]. On the other hand, and given the number of simulations and
results obtained2, we have defined a language to summarize and interpret results
shown in Table 2.

3.1 SCN-1 and SCN-2: Exploitation of Links and Vertices
in Graphs

For SCN-1 (see Table 3), we observe that ER topologies are sensitive in con-
nectivity terms. The diameter for small networks is variable and, particularly,
for networks under the control of Nmax,min

D , with a special emphasis in scenarios
TG-3 where a complete break up of the network is verified and the observation
rate is largely influenced, reaching null values. As for local and global density,
it is also variable for all network distributions and for all TG-x, where the con-
trollability Nmin,rand

D are mainly affected. For WS graphs, the diameter changes

2 Full results and code is available from authors.
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Table 3. SCN-1: Removal of a small number of edges ∈ E from one or several vertices
∈ V

for any distribution, but particularly for small networks, and the greatest effect
is obtained when launching a TG-3 attack. For this topology, the density of
the network is slightly modified when performing a TG-2 attack, whereas no
relevant effect has been registered for the other cases. This does not, however,
hold for local density, since the effects on the network become more and more
evident as the number of targets increases, especially when the number of nodes
that constitute the network is not high (as expected in small-world networks).
The impact on the observability is not very accentuated for this topology, as the
effect is more evident when performing an attack to the nd with the maximum
out-degree in small networks.

For BA graphs, the diameter shows a small variation for any Nstrat
D and for

both single and multiple targets. The difference is made by the TG-3 strategy,
for which the consequences on the network are remarkable both for small and
large networks. The global density of the network is influenced mainly when a
small network is considered and the links of a random nd are damaged (Nrand

D ).
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Table 4. SCN-2: Isolation of one or several vertices ∈ V

Unlike ER and WS, the CC of the BA does not significantly change, but its
observability is heavily compromised for any TG-x where the control relies
on Nmax

D . In contrast, power-law distributions with α = 0.1, 0.3, 0.5 show a
high robustness in connectivity and observability terms where observation rate
reaches values 	 100 %. The global density is not affected even if CC mainly
varies for small networks and the diameter specially impacts on both Nmin,rand

D

for dense distributions with α = 0.5 and Nmax,min
D for different exponents in

TG-3 scenarios.
For SCN-2 scenarios, we observe that ER topologies continues to be very

sensitive in connection terms, and the global and local density drastically vary
for any TG-x. The observation rate is moderately high, but it presents certain
weaknesses to attack models containing AM-1, AM-2, AM-4 and AM-5 aim-
ing to break down Nmax,rand

D . The diameter in WS networks slightly changes
for any Nstrat

D where the global density remains invariant for TG-1 and its
value notably decreases according to the number of isolated nodes, and specif-
ically for small networks despite the drastic change for CC. The observation
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Table 5. SCN-3: Removal of a few edges (SCN-1) of a given sugraph Gsub = (V,E)

rate remains high with exception to multi-interactive threat scenarios based on
TG-3. As in SCN-1, the diameter, density and the CC of BA in SCN-2 net-
works remains almost invariant what shows its robustness degree for all types of
AM-s. Nonetheless, the densities can suffer some changes when three or more
nodes are compromised and these nodes belong mainly to Nrand

D . Moreover, the
rate reaches 	 2 % of the observation when driver nodes primarily of the Nmax

D

are compromised (Table 4).
This does not occur with general power-law networks where the observability

degree, except for TG-3, reaches the 90 % of the observation at all times, in
addition to following similar behaviour pattern for any exponent value. While
no effect is appreciated in diameter, the density decays only in small networks
when two or more nodes are excluded from the graph. The consequences on the
CC for small networks are not negligible, but the greatest consequences have been
observed in observability when 3 nodes are removed. Lastly, common behaviours
in SCN-1 and SCN-2 arise. The removal of random links in three vertices or
the isolation of three vertices (TG-3) using the combination M-BC-O and
L-BC-O can cause the breakdown of the entire graph. These two configurations
seem to be the most menacing within the configuration given in Table 1, in which
the observability is largely influenced for any distribution and the diameter is
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drastically decreased for Nmax,min
D . In addition, threats of the type AM-4 stand

out from the rest, underlying the importance of protecting the node with the
highest centrality.

3.2 SCN3: Exploitation of Links and Vertices in Power-Law
Subgraphs

Tables 5 and 6 show results obtained for attacks on a small number of random
edges (SCN-1) or isolation of one or several vertices (SCN-2) from power-law
subgraphs. Varying the exponent, we observe that these types of networks have
similar behavioural characteristics to those analysed in Sect. 3.1. Unfortunately,
the observation degree decays extremely when the graph is subjected to attacks
of type M-BC-O and L-BC-O, where two nd of the sub-graph and a vertex
of the sub-graph, but outside the Nstrat

D , are attacked simultaneously. Moreover,
these two attack combinations are also dangerous in connectivity terms. The
diameter values radically vary for any Nstrat

D and for any distribution, although
the global density remains broadly constant. Obviously, when the sub-graph is
subjected to massive attacks to isolate a single or multiple nodes, the diameter,
density, and CC of the entire network vary. Table 6 shows this, where the diam-
eter primarily changes for any large distribution, whereas the local and global

Table 6. SCN-3: Isolation of vertices (SCN-2) of a given sugraph Gsub = (V,E)
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densities impact on small networks. As in the previous case, the observability is
high at all times, even if insignificant variations caused by attacks in Nmax

D arise.
Given this, we conclude that both the connectivity and observation not only

depend on the network topology and construction strategies of driver nodes
(Nstrat

D ), but also on the nature of the perturbation [5], where degree-based
attacks (e.g. AM-1) and attacks to centrality (AM-4) are primarily signifi-
cant. On the other hand, BA (see Table 3) and power-law (PLOD) distributions
present analogous behaviours with respect to observability. Both are mainly
vulnerable to threats given in Nmax

D for small networks, and they are no only
sensitive to TG-3 attacks, but also to TG-4 based on a planned F-M-BC-O
attack in SCN-1. This also means that an adversary with sufficient knowledge
of the network distribution and its power domination can disconnect the entire
network and leave it without observation at very low cost.

4 Conclusions

We have reported results of a robustness analysis on structural controllability
through the Power Dominating Set problem, extending the study given in
[9] to consider multi-round attack scenarios. We have primarily focused on ran-
dom (Erdös-Renyi), small-word (Watts-Strogatz ), scale-free (Barabási-Albert)
and power-law (PLOD) distributions, where we have observed that these net-
works are sensitive in connectivity and observability terms. These weaknesses
are mainly notable when nodes with the highest degree distribution and with
the maximum value of betweenness centrality are compromised. Moreover, we
have shown that combined attacks based on three specific nodes (M-BC-O
and L-BC-O) can become highly disruptive, even if the power-law network has
proven to be robust with respect to the rest of topologies. Regarding future work,
sub-optimal approximations to repair the controllability when the power domi-
nance relationship might have been partially severed will be considered taking
into account the handicap of the non-locality of the PDS and the NP-hardness
demonstrated in [6].
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Abstract. ARIA is a 128-bit SPN block cipher selected as a Korean
standard. This paper processes meet-in-the-middle attacks on reduced-
round ARIA. Some 4-round and 5-round significant distinguishing prop-
erties which involve much fewer bytes parameters are proposed. Based
on these better distinguishers, attacks on 7-round ARIA-192/256 and
8-round ARIA-256 are mounted with much lower complexities than
previous meet-in-the-middle attacks. Furthermore, we present 7-round
attack on ARIA-128 and 9-round attack on ARIA-256, which are both
the first results for ARIA in terms of the meet-in-the-middle attack.

Keywords: Meet-in-the-Middle Attack · Cryptanalysis · ARIA · Block
cipher

1 Introduction

The block cipher ARIA was designed by Korean cryptographers Kwon et al. in
2003 [11,17]. The structure of ARIA is a SP-network structure with the same
design idea of AES [3]. Its block size is 128 bits and it supports 128-, 192- and
256-bit key sizes with 12, 14 and 16 rounds, respectively. ARIA has been estab-
lished as a Korean standard block cipher algorithm by the Ministry of Commerce,
Industry and Energy [10] in 2004, and has been widely used in Korea, especially
for government-to-public services.

The designers of ARIA algorithm gave several initial analyses of its security
in [11]. Then Biryukov et al. [1] performed an evaluation of ARIA which focused
on truncated differential and dedicated linear cryptanalysis, and were able to
develop attacks on 7-round ARIA-128 and 10-round ARIA-192/256. In [19]
Wu et al. firstly presented some 4-round non-trivial impossible differentials lead-
ing to a 6-round attack on ARIA. The cryptanalytic result was later improved
respectively to 6-round attacks with lower complexities by Li et al. [13] and
7-round attack on ARIA-256 by Du et al. [7]. In [12] Li et al. presented some
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3-round integral distinguishers of ARIA which could be used to attack 4/5-round
ARIA-128 and 6-round ARIA-192/256. Then by modifying the 3-round inte-
gral distinguishers, Li et al. [14] gave new 4-round integral distinguishers which
resulted in improved integral attacks on 6-round ARIA-128 and 7-round ARIA-
256. In [9] Fleischmann et al. proposed some boomerang attacks on 5/6-round
ARIA-128 and 7-round ARIA-256. In [18], Tang et al. gave meet-in-the-middle
attacks on 5/6-round ARIA-128, 7-round ARIA-192 and 8-round ARIA-256. Liu
et al. [15] presented another linear cryptanalysis of ARIA including attacks on
7-round ARIA-128, 9-round ARIA-192/256 and 11-round ARIA-256. Besides,
a biclique attack of the full ARIA-256 was given in [2] with almost exhaustive
search complexity 2255.2.

The meet-in-the-middle attack was firstly introduced by Diffie and Hellman
in the cryptanalysis of Two-DES [6], and its main idea is using the technique
of the time-memory tradeoff. The meet-in-the-middle attack on block cipher
AES was firstly given by Demirci and Selçuk in [4]. Later, Dunkelman et al. [8]
presented the improved meet-in-the-middle attacks on AES by using some effi-
cient techniques, which were recently improved by Derbez et al. in [5]. Inspired
by their works, and due to the similarity to AES, we construct some new
4-round and 5-round distinguishers of ARIA and apply the meet-in-the-middle
attacks against ARIA. By using the multisets and efficient truncated differen-
tial characteristics, we construct the new 4-round distinguisher and its variant
respectively involving 16 and 15 bytes parameters instead of 31 bytes in pre-
vious work [18]. Based on these 4-round distinguishers, we can attack 7-round
ARIA-128/192/256 and 8-round ARIA-256. Furthermore, we present a 5-round
distinguisher for the first time which involves 31 byte parameters, and use it to
attack 9-round ARIA-256. Although this kind of attack requires huge time and
space in the precomputation, it only needs to compute and store once. In addi-
tion, though our results using the meet-in-the-middle attack do not reach more
rounds than the known best attacks, in terms of the meet-in-the-middle attack,
our attacks on 7-round ARIA-128 and 9-round ARIA-256 are both for the first
time, and the other results in our paper also have much better complexities than
previous work. Table 1 summaries all previous attacks and our results on ARIA.
All these attacks do not contradict the security claims of ARIA.

The rest of the paper is organized as follows: Sect. 2 provides a brief descrip-
tion of ARIA and some notations used in the paper. We present the 4-round
distinguisher of ARIA in Sect. 3, then give another 4/5-round distinguishers and
meet-in-the-middle attacks on round-reduced ARIA in Sect. 4. Finally, we con-
clude our paper in Sect. 5.

2 Preliminary

2.1 A Short Description of ARIA

ARIA is an SP-network block cipher that supports key lengths of 128, 192 and
256 bits. A 128-bit plaintext is treated as a 4 × 4 byte matrix, where each
byte represents a value in GF (28). The number of rounds depends on the key
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Table 1. Summary of attacks on ARIA

Attack type Key size Rounds Data Memory Time Source

IDC all 5 271.3CP 272b 271.6 [13]

IDC all 6 2121CP 2121b 2112 [19]

IDC all 6 2120.5CP 2121b 2104.5 [13]

IDC all 6 2113CP 2113b 2121.6 [13]

IDC 256 7 2125CP a 2238 [7]

TDC all 7 281CP 280 281 [1]

TDC all 7 2100CP 251 2100 [1]

LC all 7 2105.8KP 279.73 2100.99 [15]

LC 128 7 (weak key) 277KP 261 288 [1]

LC 192/256 9 2108.3KP 2159.77 2154.83 [15]

LC 192 10 (weak key) 2119KP 263 2119 [1]

LC 256 10 (weak key) 2119KP 263 2119 [1]

LC 256 11 2110.3KP 2239.8 2218.54 [15]

Integral all 5 227.5CP 227.5b 276.7 [12]

Integral 192/256 6 2124.4CP 2124.4b 2172.4 [12]

Integral all 6 299.2CP a 271.4 [14]

Integral 256 7 2100.6CP a 2225.8 [14]

Boomerang all 5 2109ACPC 257 2110 [9]

Boomerang all 6 2128KP 256 2108 [9]

Boomerang 256 7 2128KP 2184 2236 [9]

Biclique 256 16 (full round) 280CP a 2255.2 [2]

MITM all 5 25CP 2121 2122.5 [18]

MITM all 6 256CP 2121 2122.5 [18]

MITM all 7 2121CP 2122 2125.7 Sect. 4.3

MITM 192/256 7 296CP 2185 2187 [18]

MITM 192/256 7 2113CP 2130 2132 Sect. 4.1

MITM 256 8 256CP 2250 2252 [18]

MITM 256 8 2113CP 2130 2244.61 Sect. 4.2

MITM 256 9 2121CP 2250 2253.37 Sect. 4.4

IDC: Impossible Differential Cryptanalysis,
TDC: Truncated Differential Cryptanalysis,
LC: Linear Cryptanalysis, MITM: Meet-in-the-Middle Attack,
CP: Chosen Plaintexts, KP: Known Plaintexts,
ACPC: Adaptive Chosen Plaintexts and Ciphertexts,
a: Not given in the related paper, b: Estimated in [9].
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size: 12 rounds for 128-bit key, 14 rounds for 192-bit key, and 16 rounds for
256-bit key. For sake of simplicity we denote ARIA with k-bit key by ARIA-k,
e.g., ARIA with 128-bit key is denoted by ARIA-128. We use ARIA to mean all
three variants of ARIA. An ARIA round applies three operations to the state
matrix as follows:

Substitution Layer (SL): Based on four 8 × 8-bit S-boxes S1, S2 and their
inverses S−1

1 , S−1
2 , ARIA has two types of substitution layers SL1 and SL2 that

alternate between rounds. SL1 is used in the odd rounds, and SL2 is used in
the even rounds.

SL1 = (S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 ),
SL2 = (S−1

1 , S−1
2 , S1, S2, S

−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2).

Diffusion Layer (DL): The linear diffusion layer is a 16×16 involution binary
matrix with branch number 8.

y0 = x3 ⊕ x4 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x13 ⊕ x14, y1 = x2 ⊕ x5 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x12 ⊕ x15,

y2 = x1 ⊕ x4 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15, y3 = x0 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x14,

y4 = x0 ⊕ x2 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x14 ⊕ x15, y5 = x1 ⊕ x3 ⊕ x4 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x15,

y6 = x0 ⊕ x2 ⊕ x7 ⊕ x9 ⊕ x10 ⊕ x12 ⊕ x13, y7 = x1 ⊕ x3 ⊕ x6 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x13,

y8 = x0 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x10 ⊕ x13 ⊕ x15, y9 = x0 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x11 ⊕ x12 ⊕ x14,

y10 = x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 ⊕ x13 ⊕ x15, y11 = x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x9 ⊕ x12 ⊕ x14,

y12 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x12, y13 = x0 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x10 ⊕ x13,

y14 = x0 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x9 ⊕ x11 ⊕ x14, y15 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x10 ⊕ x15.

Round Key Addition (RKA): This is done by XORing the 128-bit state with
the 128-bit round key. The round keys are derived from master key through the
key schedule which processes the key using a 3-round 256-bit Feistel cipher [11].

We outline an ARIA round in Fig. 1. In the first round an additional RKA
operation is applied, and in the last round the DL operation is omitted.

2.2 Notations

The following notations are used to describe the attacks on ARIA in the next
sections: We use xi, yi, zi to respectively denote the state matrix after RKA,
SL and DL of round i, and xi,j denotes the j-th byte of xi(j = 0, 1, · · · , 15).
Δxi refers to the difference in the state x of round i.

The additional added subkey in the first round is denoted by k0, and the
regular one used in round i is denoted by ki. Similar to AES block cipher, the
order of DL operation and RKA operation of ARIA can be interchanged. As
these operations are linear, they can be interchanged by first XORing the state
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Fig. 1. An ARIA round

with an equivalent key and then applying the diffusion operation. We denote
the equivalent subkey for the changed version by wi, that is, wi = DL−1(ki) =
DL(ki)1.

We use the particular structure δ-set to denote the structured set of 256
ARIA-states that are all different in only one state byte (the active byte) which
assumes each one of the 256 possible values, and all equal in the other 15 state
bytes (the passive bytes).

We measure memory complexities of our attacks in units of 128-bit ARIA
blocks and time complexities in terms of ARIA encryptions. Besides, to be com-
pletely fair, we count all operations carried out during our attacks, and in par-
ticular the time and memory required to prepare the various tables in the pre-
computation phase.

3 New 4-Round Meet-in-the-Middle Distinguisher
of ARIA

In this section, we propose our new 4-round meet-in-the-middle distinguisher
where we consider an un-ordered multiset instead of an ordered sequence.

Observation 1. Consider the encryption of a δ-set {P 0, P 1, · · · , P 255} through
four ARIA rounds, where P 0 belongs to a right pair with respect to the 4-round
differential of Fig. 2 (i.e. both the input and output differences are nonzero in a
single byte 0), the (un-ordered) multiset {x0

5,0 ⊕x0
5,0, x

0
5,0 ⊕x1

5,0, · · · , x0
5,0 ⊕x255

5,0 }
is fully determined by the following 16 byte parameters:

– Δy1,0 of the right pair,
– x0

2,i(i = 3, 4, 6, 8, 9, 13, 14),
– Δz4,0 of the right pair,
– y0

4,i(i = 3, 4, 6, 8, 9, 13, 14).

Hence, the multiset can assume only 2128 values out of the
(
510
255

) ≈ 2505.2 theo-
retically possible values2.
1 The property DL−1 = DL results from the fact that the matrix of diffusion layer is

designed involutional.
2 The calculation of the number of possible values is explained at the end of the proof.
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Proof. The proof emphasizes the meet-in-the-middle nature of the observation.
Considering the “bottom side” of the four rounds first, we observe that if

{x0
3, x

1
3, · · · , x255

3 } and k3,i(i = 3, 4, 6, 8, 9, 13, 14) are known, the desired differ-
ences {x0

5,0 ⊕x0
5,0, x

0
5,0 ⊕x1

5,0, · · · , x0
5,0 ⊕x255

5,0 } are obtained after 256 encryptions
of rounds 3 to 4 (k4,0 is not needed to know as RKA operation preserves differ-
ences). To get the 256 values {x0

3, x
1
3, · · · , x255

3 }, it is sufficient to know one of
them, e.g. x0

3, and the differences {x0
3 ⊕ x0

3, x
0
3 ⊕ x1

3, · · · , x0
3 ⊕ x255

3 }.
Now for the “top side” of the four rounds, the differences {y0

1 ⊕ y0
1 , y

0
1 ⊕

y1
1 , · · · , y0

1 ⊕ y255
1 } are known, which are exactly the 256 possible differences in

byte 0 (the other fifteen bytes are equal). Since DL and RKA operations are lin-
ear, the differences {x0

2⊕x0
2, x

0
2⊕x1

2, · · · , x0
2⊕x255

2 } are also known. By the struc-
ture of the δ-set, these differences are active in bytes 3, 4, 6, 8, 9, 13, 14 and passive
in the other nine bytes. Since bytes 3, 4, 6, 8, 9, 13, 14 of x0

2 are given as part of
the parameters, bytes 3, 4, 6, 8, 9, 13, 14 of {x1

2, · · · , x255
2 } are thus also known,

and so are bytes 3, 4, 6, 8, 9, 13, 14 of {y0
2 , y1

2 , · · · , y255
2 }. Since the differences

y0
2 ⊕ yi

2(i = 1, 2, · · · , 255) in all the bytes except for 3, 4, 6, 8, 9, 13, 14 are zero,
the whole byte differences {y0

2 ⊕ y0
2 , y

0
2 ⊕ y1

2 , · · · , y0
2 ⊕ y255

2 } are known. Since DL
and RKA operations are linear, the differences {x0

3 ⊕x0
3, x

0
3 ⊕x1

3, · · · , x0
3 ⊕x255

3 }
are also known, as required above.

Then we deduce the full 16-byte values of x0
3 and seven bytes of subkey k3

at 3, 4, 6, 8, 9, 13, 14 by using the knowledge of the right pair, where the meet-in-
the-middle idea is used again. We focus on the right pair satisfying the particular
differential shown in Fig. 2 in the following part.

We start from the “top side” of the four rounds. Since DL and RKA opera-
tions are linear, the difference Δx2 of the right pair is known from Δy1,0, which
is active in bytes 3, 4, 6, 8, 9, 13, 14 and passive in the rest of the bytes. Together
with the given bytes x0

2,i (i = 3, 4, 6, 8, 9, 13, 14), we can get the difference Δy2
of the right pair, and the difference Δx3 is also known due to the linear property
of DL and RKA operations.

Then turn to the “bottom side” of the four rounds. Similarly, the byte differ-
ence Δz4,0 of the right pair is given, so the difference Δy4 can be easily deduced
after the linear operation DL−1 (note that DL−1(X) = DL(X)) which are active
in bytes 3, 4, 6, 8, 9, 13, 14 and passive in the rest of the bytes. Since bytes y0

4,i

(i = 3, 4, 6, 8, 9, 13, 14) are known, the difference Δx4 of the right pair is known,
and then the difference Δy3 is also known.

Now both the input and output differences of SBox in round 3 (i.e. Δx3 and
Δy3) are already known. Meanwhile, it is well known that given the input and
output differences of the SBox, there is one possibility on average for the actual
pair of input/output values. Hence we can get in average one value of x0

3, as
required above.

Then for the solution of the required subkey k3, the known values around the
two RKA layers of round 3 and 4 suggest seven bytes of subkey k3 and another
seven bytes of the equivalent subkey w2 = DL(k2) both at 3, 4, 6, 8, 9, 13, 14,
which are marked by • in Fig. 2.
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Fig. 2. The 4-round differential characteristic used in our attacks

Therefore, the multiset for difference Δx5,0 is decided by the above 16 bytes
parameters, and contains 2128 values which can be computed by first iterating
on the 2128 possible values for the 16 byte parameters and for each of them
deducing the possible values of 16 bytes of x0

3 and 7 bytes of subkey k3.
For the theoretically possible values of the multiset, we note that each entry

x0
5,0 ⊕ x1

5,i (besides the entry i = 0 which is always 0) is distributed randomly.
We focus on these 255 values which are chosen uniformly and independently
from the set {0, 1, · · · , 255}. For i = 0, 1, · · · , 255, if ci denotes the number of
each value i encountered in the last 255 entries in the multiset (we disregard
the first entry as it is always 0), we get c0 + c1 + · · · + c255 = 255 (ci ≥ 0). Let
c′
i = ci +1, then c′

0 + c′
1 + · · ·+ c′

255 = 511 (c′
i ≥ 1). Then using the knowledge of

combinatorics, it is easy to get that the number of possible multisets is
(
510
255

)
. ��

Note that, in fact, not only for l = 0 but also for each 0 � l � 15, the
multiset {x0

5,l ⊕ x0
5,l, x

0
5,l ⊕ x1

5,l, · · · , x0
5,l ⊕ x255

5,l } is fully determined by 16 byte
parameters. For the sake of clarity, we use l = 0 in the following attacks, that is,
the active byte of δ-set and the nonzero input/output differences of the particular
differential are both taken to be byte 0.
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Fig. 3. 7-Round attack on ARIA-192/256

The probability of this 4-round differential is 2−120, and thus it is expected
that 2120 randomly chosen pairs with difference only in byte 0 would contain one
pair satisfying the differential. Moreover, since each δ-set contains 28 plaintexts
which provide about 215 pairs with difference in byte 0, a collection of 2105

randomly chosen δ-sets in which byte 0 is active is expected to contain a right
pair with respect to the differential. That is, we have to consider as many as
2113 chosen plaintexts to exploit the particular differential.

4 Meet-in-the-Middle Attacks on Round-Reduced ARIA

In this section, we present 7/8/9 rounds meet-in-the-middle attacks on ARIA
based on our new distinguishing properties.

4.1 7-Round Attack on ARIA-192/256

For the 7-round attack on ARIA-192/256, we add one round before the 4-round
distinguisher and 2 rounds after, see Fig. 3. The procedure of the attack is
depicted as follows:

Precomputation Phase. Compute the 2128 possible values of the multisets
according to Observation 1 and store them in a hash table. The size of this table
is 2130 128-bit blocks by using the representation method introduced in [5,8]
which compresses such a 256-byte multiset into 512 bits of space from the point
of view of information theory. The time complexity of constructing the table is
2128 partial encryptions on 256 messages, which is equivalent to 2132 encryptions.

Online Phase.

– Phase A: Detecting the right pair
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1. Choose 257 structures of plaintexts with the form that the bytes
3, 4, 6, 8, 9, 13, 14 assume 256 possible values and the rest of the bytes
are constants. Hence each structure contains 256 plaintexts and we
can collect about 2168 plaintext pairs with nonzero differences in bytes
3, 4, 6, 8, 9, 13, 14. Encrypt the plaintexts in each structure and store the
corresponding ciphertexts in a hash table, then keep the pairs with no dif-
ference in bytes 0, 1, 2, 5, 7, 10, 11, 12, 15. Since this is a 72-bit filtering,
about 296 pairs remain.

2. For each remaining pair, guess bytes 3, 4, 6, 8, 9, 13, 14 of k0 and check
whether the difference in the state x2 is nonzero only in byte 0. For each k0
guess, there are about 296−48 = 248 pairs remaining. The time complexity
of this step is about (2·296 ·28 · 1

16+2·296 ·28 ·28 · 1
16 ·6)/7 = (2101+2109 ·6)/7

encryptions.
3. For each remaining pair, guess bytes 3, 4, 6, 8, 9, 13, 14 of k7 and check

whether the difference in the state x6 is nonzero only in byte 0. For each
k7 guess, about 248−48 = 1 pair is expected to remain. The operations
carried in this step are about (2·248 ·256 ·28 · 1

16 +2·248 ·256+8 ·28 · 1
16 ·6)/7 =

(2109 + 2117 · 6)/7 encryptions.
– Phase B: Constructing and checking the δ-set

1. Take one message of the right pair, denote it by P 0, and find its δ-set
using the knowledge of bytes 3, 4, 6, 8, 9, 13, 14 of k0. This is done by
taking y0

1,i(i = 3, 4, 6, 8, 9, 13, 14), XORing it with the 255 possible values
{V 1, V 2, · · · , V 255} each of which has the same nonzero 8-bit value only in
bytes 3, 4, 6, 8, 9, 13, 14 (i.e. for each 1 � i � 255, V i

3 = V i
4 = V i

6 = V i
8 =

V i
9 = V i

13 = V i
14 �= 0 and V i

j = 0(0 � j � 15, j �= 3, 4, 6, 8, 9, 13, 14),
V i
j denotes the j-th byte of V i), and decrypting the 255 obtained values

through round 1 using the known subkey bytes. Thus the resulting 255
plaintexts are the other members of the δ-set.

2. k7,i(i = 3, 4, 6, 8, 9, 13, 14) are known, then we guess byte 0 of w6 and
partially decrypt the ciphertexts of δ-set to obtain the multiset {x0

6,0 ⊕
x0
6,0, x

0
6,0 ⊕ x1

6,0, · · · , x0
6,0 ⊕ x255

6,0 }. Then check if the multiset exists in the
hash table built in precomputation phase. If not, discard the subkey guess
with certainty.

– Phase C: Exhaustive search the rest of the key: For each remaining
subkey guess, find the remaining key bytes by exhaustive search.

From the description above, it is clear that the time complexity of the online
phase is dominated by phase A which mainly includes: encrypting 257+56 = 2113

chosen plaintexts needs 2113 encryptions, and guessing subkeys and detecting
the right pair part processes about (2101 + 2109 · 6 + 2109 + 2117 · 6)/7 = (2101 +
2109 · 7 + 2117 · 6)/7 ≈ 2116.8 encryptions (Early abort technique [16] is applied
to reduce the complexity in this part).

Besides, the time complexity of the precomputation phase is 2132 encryptions.
Therefore, the data complexity of the attack is 2113 chosen plaintexts, the time
complexity of the attack is about 2113 + 2116.8 + 2132 ≈ 2132 encryptions, and
the memory complexity is about 2130 128-bit blocks dominated by storing the
2128 multisets in the precomputation phase.
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4.2 Extension to 8-Round Attack on ARIA-256

Based on the same precomputation with the 7-round attack on ARIA-256 above,
we add one more round at the bottom of the 7-round attack and mount a
8-round attack on ARIA-256. In this attack, we also collect 2113 plaintexts
with the same form as the 7-round attack presented above. Then we need
to guess the full k8, and for each guess, decrypt all the ciphertexts through
the last round and apply the 7-round attack. Consequently, the data com-
plexity of the attack is 2113 chosen plaintexts, the memory requirement is
2130 128-bit blocks (as in the 7-round attack above), and the time complex-
ity is dominated by the detection of the right pair, which is mainly about
(2113·2128+2·296·2128·28· 1

16+2·296·2128+8·28· 1
16 ·7+2·248·2128+56+8·28· 1

16 ·6)/8 =
(2241 + 2229 + 2237 · 7 + 2245 · 6)/8 ≈ 2244.61 encryptions.

4.3 Attack on 7-Round ARIA-128

Based on Observation 1, 16 bytes parameters generate 2128 possible multisets
resulting in too huge complexities of the precomputation to attack ARIA-128.
Hence, we slightly modify our Observation 1 by letting the differential satisfying
Δy1,0 = Δz4,0 so that one byte parameter is reduced. And the spacial variant of
Observation 1 is described as follows:

Observation 2. Consider the encryption of a δ-set {P 0, P 1, · · · , P 255} through
four ARIA rounds, where P 0 belongs to a right pair with respect to the 4-round
differential whose input and output differences are both nonzero in a single byte 0
and Δy1,0 = Δz4,0, the (un-ordered) multiset {x0

5,0 ⊕ x0
5,0, x

0
5,0 ⊕ x1

5,0, · · · , x0
5,0 ⊕

x255
5,0 } is fully determined by the following 15 byte parameters:

– Δy1,0 of the right pair,
– x0

2,i(i = 3, 4, 6, 8, 9, 13, 14),
– y0

4,i(i = 3, 4, 6, 8, 9, 13, 14).

Hence, the multiset can assume only 2120 values out of the
(
510
255

) ≈ 2505.2 theo-
retically possible values.

Based on this observation, the attack on 7-round ARIA-128 becomes possible.
The memory complexity of precomputation phase as the dominant part is 2122

128-bit blocks to store the 2120 multisets. The time complexity of constructing
the hash table in the precomputation phase is 2120 partial encryptions on 256
messages which is equivalent to 2124 encryptions. Since Δz4,0 = Δy1,0, the prob-
ability of the particular differential is 2−128 that is lower than the previous one,
and 2128 randomly chosen pairs with difference only in byte 0 are expected to
contain one pair satisfying the differential. Thus 2113 randomly chosen δ-sets
each of which contains 28 plaintexts and provide about 215 pairs with difference
in byte 0 are expected to contain a right pair with respect to the differential.
As a result, 2121 chosen plaintexts are required to exploit the particular dif-
ferential, so data complexity of the attack is 2121 chosen plaintexts which are
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provided by 265 structures of 256 plaintexts. During the online phase, we need
guess 7 bytes of k0, 7 bytes of k7 and 1 byte of w6 to detect the right pair,
which contain one more subkey byte guess than the attacks above. The opera-
tions of this part mainly include: encrypting 2121 plaintexts needs 2121 encryp-
tions, and guessing subkeys and detecting the right pair part processes about
(2 ·2176−72 ·28 · 1

16 +2 ·2176−72 ·28 ·28 · 1
16 ·7+2 ·2176−72−48 ·256+8 ·28 · 1

16 ·7)/7 =
(2109 + 2117 · 7 + 2125 · 7)/7 ≈ 2125 encryptions. Taking into account the
precomputation, the complexity of the attack on 7-round ARIA-128 is about
2121 + 2125 + 2124 ≈ 2125.7 encryptions.

All in all, the data complexity of the 7-round attack on ARIA-128 is 2121

chosen plaintexts, the memory complexity is 2122 128-bit blocks, and the time
complexity is about 2125.7 encryptions. In terms of the meet-in-the-middle attack,
our attack is the first 7-round attack on ARIA-128.

4.4 9-Round Attack on ARIA-256

Inspired by Observations 1 and 2, we present a 5-round meet-in-the-middle dis-
tinguisher on ARIA to attack 9-round ARIA-256.

Observation 3. Consider the encryption of a δ-set {P 0, P 1, · · · , P 255} through
five ARIA rounds, where P 0 belongs to a right pair with respect to the 5-round
differential of Fig. 4 (i.e. both the input and output differences are nonzero in a
single byte 0 and Δy1,0 = Δz5,0), the (un-ordered) multiset {x0

6,0 ⊕ x0
6,0, x

0
6,0 ⊕

x1
6,0, · · · , x0

6,0 ⊕ x255
6,0 } is fully determined by the following 31 byte parameters:

– Δy1,0 of the right pair,
– x0

2,i(i = 3, 4, 6, 8, 9, 13, 14),
– the full 16 bytes of x0

3,
– y0

5,i(i = 3, 4, 6, 8, 9, 13, 14).

Hence, the multiset can assume only 2248 values out of the
(
510
255

) ≈ 2505.2 theo-
retically possible values.

The proof similar to Observation 1 using the meet-in-the-middle argument is
omitted, and we directly discuss the attack on 9-round ARIA-256 based on this
observation. We apply the 5-round distinguisher in rounds 2 to 6, and the attack
is from round 1 to 9. After guessing the full k9 and decrypting all the ciphertexts
through the last round as 8-round attack, the attack procedure is almost the same
as the 7-round attack on ARIA-128. The required data is 2121 chosen plaintexts
(as in the 7-round attack on ARIA-128 due to the same probability of the two
differentials), the memory complexity is 2250 128-bit blocks to store the 2248

possible multisets, and the time complexity is about 2252(pre) + (2121 · 2128 + 2 ·
2176−72 · 2128 · 28 · 1

16 + 2 · 2176−72 · 2128+8 · 28 · 1
16 · 7 + 2 · 2176−72−48 · 2128+56+8 ·

28 · 1
16 · 7)/9(online) ≈ 2252 + (2249 + 2237 + 2245 · 7 + 2253 · 7)/9 ≈ 2253.37

encryptions. This attack is also the first 9-round attack on ARIA-256 in terms
of the meet-in-the-middle attack.
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Fig. 4. The 5-Round differential characteristic used in our attacks

5 Conclusion

In this work, by using the ideas of multisets and truncated differential character-
istics, we present some new and better 4-round and 5-round meet-in-the-middle
distinguishing properties of ARIA which involve much fewer bytes parameters
than previous work. Utilizing these distinguishers, we mount meet-in-the-middle
attacks on 7-round ARIA-128/192/256 and 8/9-round ARIA-256, with time com-
plexities 2125.7 encryptions for attack on 7-round ARIA-128, 2132 for 7-round
ARIA-192/256, 2244.61 for 8-round ARIA-256 and 2253.37 for 9-round ARIA-256,
respectively. All the above results are much better than previous meet-in-the-
middle attacks. Although meet-in-the-middle attack do not break much more
rounds of ARIA than other attack methods, such as truncated differential and
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linear cryptanalysis leading to the known best results, our attacks on 7-round
ARIA-128 and 9-round ARIA-256 are both the first results for ARIA in the
framework of meet-in-the-middle attack, and the other attacks are also mounted
with much lower complexities than previous meet-in-the-middle attacks. The
future work might focus on study of the key relations of ARIA which is signifi-
cant for attacking ARIA block cipher, although its key schedule is complicated
and there is few available result.
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4. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008)

5. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

6. Diffie, W., Hellman, M.: Special feature exhaustive cryptanalysis of the NBS data
encryption standard. Computer 10, 74–84 (1977)

7. Du, C., Chen, J.: Impossible differential cryptanalysis of ARIA reduced to 7 rounds.
In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp.
20–30. Springer, Heidelberg (2010)

8. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010)

9. Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: New boomerang attacks on
ARIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp.
163–175. Springer, Heidelberg (2010)

10. Korean Agency for Technology and Standards (KATS): 128 bit block encryption
algorithm ARIA, KS X 1213:2004, December 2004 (in Korean)

11. Kwon, D., Kim, J., Park, S., Sung, S.H., et al.: New block cipher: ARIA. In:
Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer,
Heidelberg (2004)

12. Li, P., Sun, B., Li, C.: Integral cryptanalysis of ARIA. In: Bao, F., Yung, M., Lin,
D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 1–14. Springer, Heidelberg
(2010)

13. Li, R., Sun, B., Zhang, P., Li, C.: New Impossible Differential Cryptanalysis of
ARIA. IACR eprint archive. https://eprint.iacr.org/2008/227.pdf

14. Li, Y., Wu, W., Zhang, L.: Integral attacks on reduced-round ARIA block cipher.
In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047,
pp. 19–29. Springer, Heidelberg (2010)

15. Liu, Z., Gu, D., Liu, Y., Li, J., Li, W.: Linear cryptanalysis of ARIA block cipher.
In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043,
pp. 242–254. Springer, Heidelberg (2011)

https://eprint.iacr.org/2012/011.pdf
https://eprint.iacr.org/2008/227.pdf


168 D. Bai and H. Yu

16. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the efficiency of impossible
differential cryptanalysis of reduced camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

17. National Security Research Institute: Specification of ARIA, Version 1.0, January
2005. http://www.nsri.re.kr/ARIA/doc/ARIAspecification-e.pdf

18. Tang, X., Sun, B., Li, R., Li, C., Yin, J.: A meet-in-the-middle attack on reduced-
round ARIA. J. Syst. Softw. 84(10), 1685–1692 (2011)

19. Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of reduced-
round ARIA and Camellia. J. Comput. Sci. Technol. 22(3), 449–456 (2007)

http://www.nsri.re.kr/ARIA/doc/ARIAspecification-e.pdf


Establishing Equations: The Complexity
of Algebraic and Fast Algebraic

Attacks Revisited

Lin Jiao1,2(B), Bin Zhang3, and Mingsheng Wang3

1 TCA, Institute of Software, Chinese Academy of Sciences,
Beijing 100190, People’s Republic of China

jiaolin@is.iscas.ac.cn
2 Graduate University of Chinese Academy of Sciences,

Beijing 100049, People’s Republic of China
3 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, People’s Republic of China

Abstract. Algebraic and fast algebraic attacks have posed serious
threats to some deployed LFSR-based stream ciphers. Previous works
on this topic focused on reducing the time complexity by lowering the
degree of the equations, speeding up the substitution step by Fast Fourier
Transform and analysis of Boolean functions exhibiting the optimal alge-
braic immunity. All of these works shared and overlooked a common
base, i.e., establishing an adequate equation system first, which actually
in some cases dominates the time or memory complexity if the direct
methods are used, especially in fast algebraic attacks. In this paper, we
present a complete analysis of the establishing equation procedure and
show how the Frobenius form of the monomial state rewriting matrix
can be applied to considerably reduce the complexity of this step.

Keywords: Algebraic attack · Stream cipher · Establishing equations ·
Coefficient sequence

1 Introduction

Algebraic and fast algebraic attacks [1,2,5,7] are powerful cryptanalytic methods
for LFSR-based stream ciphers [3,4,8,11,13,16], which exploit some low degree
algebraic relations between the generated keystream and the secret initial state
of the underlying LFSRs. Usually, there are three steps in an algebraic attack,
i.e., finding annihilators [12] of the involved function f or f + 1, deriving an
algebraic equation system, and finally solving the resultant system to restore
the secret initial state. The first step can be pre-computed off-line, while the
other steps have to be executed online since the time instants of the keystream
bits used to establish the equation system are unknown in advance.

In [5], fast algebraic attacks are proposed to substantially reduce the
complexity by utilizing the consecutive keystream available to the adversary.
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 169–184, 2015.
DOI: 10.1007/978-3-319-27659-5 12
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The main idea is to eliminate the high degree parts of the localized equations,
which have a recursive structure, by the well-known Berlekamp-Massey algo-
rithm in the off-line phase. Several improvements are also possible, e.g., a par-
allelizable pre-computation algorithm was presented in [1] by Armknecht and in
[6], Hawkes and Rose provided by far the most efficient pre-computation algo-
rithm using Fast Fourier Transform (FFT). A fast algebraic attack also consists
of three steps, i.e., finding localized equations, utilizing the pre-computation
algorithm to eliminate the high degree parts and expanding the low degree rela-
tions; substituting the keystream bits into the low degree relations to obtain an
algebraic system in the initial state variables; solving the algebraic equations.
The second step was analyzed and optimized in [6]. Algebraic and fast algebraic
attacks have given the best analyses of a series of primitives, e.g., Toyocrypt,
LILI-128, WG-7, Sfinks, E0 and Sober-t32.

In this paper, we present a complete analysis of the establishing equation
procedure in various algebraic and fast algebraic attacks and show how the
Frobenius form of the monomial state rewriting matrix can be applied to con-
siderably reduce the complexity of this step. Our method is adapted to the fol-
lowing attack categories: algebraic (AA) and fast algebraic attack (FAA), general
algebraic and fast algebraic attack (GA-FAA) and the Rφnjom-Helleseth attack
(R-H), respectively. In each case, we make a comparison study of the methods
and complexities. For the AA, we bring in the concept of matrix Frobenius form
and show how the direct methods of normal polynomial multiplication can be
replaced. For the FAA, we first show that the memory complexity required to
store the low degree parts of localized equations is O((D + E) · E), instead of
O(E2), i.e., the one used to estimate the memory complexity of the FAA, where
E and D (D � E) are the attack parameters. Further, if we do this step online
by the direct methods, the time complexity may exceed by a big margin those
of solving equations and substituting keystream bits, i.e., the claimed total time
complexity of the attacks. To resolve this problem, we combine the Frobenius
form of the monomial state rewriting matrix with some time/memory tradeoff
techniques. For the GA-FAA, we first investigate the features of the blocks in
the Frobenius form of the monomial state rewriting matrix and point out that
the maximum dimension of the blocks is determined by the length of the LFSR.
Based on this finding, we present the method of establishing equations online
with coefficients being polynomials of keystream bits and complexity analysis.

This paper is organized as follows. Some preliminaries of various algebraic
attacks are introduced in Sect. 2. In Sects. 3 and 4, we describe the attack process,
and discuss the direct and our new methods for establishing equations in the AA
and FAA respectively. In Sect. 5, we further analyze the features of the blocks
in the Frobenius form of the monomial state rewriting matrix and present the
method for establishing equations in the GA-FAA. Finally, some conclusions are
given in Sect. 6.
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2 Preliminaries

The filter generator is an important building block in many stream ciphers and
the basic/typical model in various algebraic attacks. It consists of an LFSR of
n-bit length and a nonlinear filter function f . The state bit st of the LFSR is
generated from the LFSR characteristic polynomial r(x) =

∑n
i=0 aix

i (an =
a0 = 1) and the LFSR initial state S0 = (s0, s1, . . . , sn−1) with the recursion
st+n =

∑n−1
i=0 aist+i. The successor state St+1 is derived from the predecessor

state St according to an invertible linear mapping L : GF (2)n → GF (2)n, called
state update function deduced from r(x), by St+1 = L(St). The function L can
be represented by an n × n matrix L over GF (2) as follows

L =

⎛

⎜
⎜
⎜
⎝

0 1 · · · 0
...

...
...

0 0 · · · 1
a0 a1 · · · an−1

⎞

⎟
⎟
⎟
⎠

,

called state update matrix. Note that St = Lt(S0). The filter function f is
assumed to have m input variables, corresponding to m(m ≤ n) cell positions
of the LFSR chosen as taps. The keystream bit zt is generated by applying the
filter function to the current state as zt = f(St) = f(Lt(S0)).

The main idea of algebraic attacks is to derive a system of low degree multi-
variate equations from the underlying cryptosystem and then solve it to retrieve
the secret information. At first, how to find an algebraic system for each cipher
remains the most challenging part of the task. However, for the LFSR-based
stream ciphers such as the filter generator, this is not a problem. The construc-
tion itself directly depicts such an algebraic system. Then there are several ways
to solve the resultant system, e.g., linearization, XL and Gröbner basis. Usually,
the methods of XL and Gröbner basis need fewer keystream bits, but the com-
plexities are hard to evaluate, which can be quite huge in some cases. So far,
most of the complexity results of algebraic attacks are based on linearization.

3 Algebraic Attacks

We first introduce two notations on algebraic attacks.

Definition 1. The annihilator of a Boolean function f with m input variables
is another Boolean function g with m input variables such that f · g = 0.

Definition 2. For a given Boolean function f , the algebraic immunity AI(f) is
the minimum value d such that f or f +1 has a nonzero annihilator of degree d.

It was shown that AI(f) ≤ min{�m
2 �,deg(f)} for any f with m inputs [12].

Now, let us describe the basic theory of algebraic attacks on a filter generator.
In the off-line phase, the adversary first finds an annihilator g of the filter function
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f (or f + 1), usually the one that admits a nonzero annihilator of degree AI1.
Assume d is the degree of g. Then given several keystream bits at different time
instants with zt = 1 (or zt = 0), he obtains a system of low degree equations as:

0 = f(Lt(S0)) · g(Lt(S0)) = zt · g(Lt(S0)) = g(Lt(S0)), if zt = 1,

(or 0 = (f(Lt(S0)) + 1) · g(Lt(S0)) = (zt + 1) · g(Lt(S0)) = g(Lt(S0)), if zt = 0).

This step has to be executed online, since the time instants of the keystream bits
used to establish the equation system cannot be determined in advance. Then,
the adversary converts the system into a linear one with D =

∑d
i=0

(
n
i

)
variables.

Since there are D unknowns, around D linear equations, i.e., D keystream bits,
are required to get a solvable system. Finally, the adversary solves the linear
system and recovers S0. The complete description is as follows.

Off-line phase
1: Find a nonzero annihilator g of the filter function f (or f + 1).

Online phase Given zt = 1 and the corresponding time instants (or zt = 0 and the
corresponding time instants).

1: Establish equations like g(Lt(S0)) = 0 and linearize them.
2: Solve the resultant system.

So far, algebraic attacks have been successfully applied to Toyocrypt, LILI-
128, Sober-t32, WG-7 and Sfinks.

To date, the time complexity estimation of the attacks is confined to Step
2 online, which always exploits the Gaussian reduction, i.e., a linear system of
D variables can be solved in time O(Dw), where w is usually taken to be log27.
The memory complexity of the attacks is O(D2), which is used to store the
coefficient matrix of the linear system. Obviously, the time complexity of Step
1 has not been taken into consideration yet. Normally, there is a simple and
straightforward method for establishing equations in this case.

3.1 Simple Method: Polynomial Multiplication

Let us take a closer look at the above diagram. At Step 1 in the online phase,
we first use the recursion of S0 to represent St as St = Lt(S0) = Lt · ST

0 ,
where ST

0 denotes the transpose of S0. Then we substitute it into the annihilator
whose algebraic normal form (ANF) is g =

∑
A,0≤wt(A)≤d cAXA with coefficients

cA ∈ GF (2). There are n input binary variables X = x0, . . . , xn−1 and for
the multi-indices A ∈ GF (2)n, denote the Hamming weight of A by wt(A).
Next, polynomial multiplication is used to expand g(St), after which simplify
the resultant system by merging similar terms. Finally, linearization is done.
1 Even though more annihilators are taken into consideration, the complexity for the

establishing equation step will not change for the total equation number of the
system is fixed.
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Now, let us analyze the complexity of this method. First, we give the com-
plexity for representing St by S0, which is based on the following theorem.

Theorem 1. The complexity for computing Lt+1 given Lt is 2n.

Thus for every state updating, the complexity for calculating Lt, i.e., the rep-
resentation of St is 2n. Next, let us calculate the complexity for polynomial
multiplication. For simplicity, we first consider the contribution from a single
monomial in g(St), say

SA
t = st+α1st+α2 · · · st+αwt(A) =

(
n−1∑

j=0

ltα1,jsj

)(
n−1∑

j=0

ltα2,jsj

)

· · ·
(

n−1∑

j=0

ltα
wt(A) ,jsj

)

where 0 ≤ αi ≤ n − 1 (1 ≤ i ≤ wt(A)) are the positions of the components
equal to 1 in A. Since each factor contains n terms, and there are wt(A) factors,
the complexity for expanding SA

t is nwt(A), which can be realized by the data
structure of linked list for polynomials in practice. In addition, it takes ni · (

m
i

)

computations for all the monomials of degree i within g(X) due to the fact
that the number of monomials with wt(A) = i can be

(
m
i

)
, where m is the

number of taps chosen by the filter function. Finally, taking all the monomials
without the linear ones into consideration, the complexity for expanding g(St)
is

∑d
i=2 ni

(
m
i

)
. The complexities for merging similar terms and linearization

are ignored without further analysis. Note that here all the operations are not
numerical, but symbolic. As stated above, we need to establish D equations.
We can exploit O(D) to estimate the domain of the given D keystream bits2.
Thus the total complexity by direct substitution and polynomial multiplication is
C1 = D · ∑d

i=2 ni
(
m
i

)
+ 2n · O(D).

3.2 Improved Method: Shift and Update from the Feedback
Polynomial

We have another method here to establish equations, which is much faster than
the simple one. We can compute g(St+1) by updating g(St) from the feedback
polynomial, more precisely, we can first derive all the factors in the monomials
of g(St) by a shift from si to si+1 where 0 ≤ i ≤ n− 1, second substitute sn into∑n−1

i=0 aisi, and then expand the monomials involving sn, after which simplify
the resultant system by merging similar terms. This method make the most of
the result of the previous step. The main cost is for the substitution of sn, calling
for n operations for each, and there are at most nD operations for one equation.
Thus it leads to an overall time complexity equal to C2 = nD2.

3.3 New Method: Frobenius Form of the Monomial State Rewriting
Matrix

In order to further reduce the complexity, here we propose a new method using
the Frobenius form of the monomial state rewriting matrix for establishing
2 The range can be just a constant multiple of D, since 0 and 1 have around equal

probability of occurrence for the randomness of the keystream bits.
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equations. At first, we bring in the notations of matrix Frobenius form in [9]
and the monomial state rewriting matrix mentioned in [6].

Definition 3. A D-dimensional column vector with each component being a
monomial of degree d or less in binary variables x0, . . . , xn−1 is called a mono-
mial vector.

The ordering of the monomial components is arbitrary; for consistency we will
enumerate using lower subscripts first. Substitute St into the monomial vector,
and obtain the monomial state Md(t) at time t. There is a mapping from one
monomial state to the successor as a matrix product, called monomial state
rewriting matrix, as Md (t + 1) = Rd · Md(t). Then Md(t) = Rt

d · Md, where
Md = Md(0) is related to the initial state. Note that the monomial state rewriting
matrix Rd only depends on the LFSR and the degree d. Each component of the
next monomial state is just a linear function of the original monomial state
components, whose coefficient vector constitutes one row of Rd. Moreover, Rd

is invertible due to the invertibility of the LFSR. Any Boolean function can be
represented as a product of its coefficient vector with the monomial vector. Let
g′ be the coefficient vector of g, then g(St) = g′ · Md(t). Combining these two
relations, we get another expression of g(St) as g(St) = g′ · Md(t) = g′ · Rt

d · Md.

Theorem 2 (Linear Algebra). Let K be a field and A be an n × n matrix
over K. Then A is similar to a unique block diagonal matrix over K

A ∼

⎛

⎜
⎜
⎜
⎝

P1

P2

. . .
Pu

⎞

⎟
⎟
⎟
⎠

, Pi =

⎛

⎜
⎜
⎜
⎝

0 1 · · · 0
...

...
...

0 0 · · · 1
p0 p1 · · · pni−1

⎞

⎟
⎟
⎟
⎠

ni×ni

where Pi is the ni × ni companion matrix of the monic polynomial pi(x) =
xni +

∑ni−1
j=0 pjx

j ∈ K[x]; in addition, the polynomials p1, p2, . . . , pu are the
invariant factors of A over K such that pi+1 divides pi for i = 1, . . . , u. The
block diagonal matrix with these properties is called the Frobenius form of A,
also called the rational canonical form.

Corollary 1 (Linear Algebra). Just change P1, . . . , Pu to the companion
matrices of the elementary divisors of A over K and other notations remain
the same as those in Theorem2. Then the conclusion of Theorem2 is still valid.

Obviously, pi(x) is the characteristic polynomial of the companion matrix Pi.
Hereafter, we take the notation in Corollary 1 as the definition of the matrix
Frobenius form. It is known that the cost for computing the Frobenius form of a
D × D matrix equals to the number of field operations required to multiply two
D × D matrices [17,18]. In our context, the field is GF (2) and the complexity
can be estimated as O(Dw) bit operations.

Now we use the method of matrix Frobenius form to establish equations. As
will be shown, this can reduce the complexity of matrix multiplication. Recall
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the concrete steps of algebraic attacks. Here we add some procedures to the
original process.

Off-line phase
1: Find a nonzero annihilator g of the filter function f (or f + 1).
2: Compute the monomial state rewriting matrix Rd depending on the LFSR and

degree d of g.
3: Compute the Frobenius form of the monomial state rewriting matrix Rd, i.e.,

Rd = Q · R̂d · Q−1, where R̂d is the Frobenius form and Q is the D × D transform
matrix.

4: Compute ĝ = g′ · Q, where g′ is the coefficient vector of g.

Online phase Given zt = 1 and the corresponding time instants (or zt = 0 and the
corresponding time instants).

1: Establish and meanwhile linearize the equations in M̂d as follows: g(Lt(S0)) =
ĝ · R̂t

d · M̂d = 0, where M̂d denotes Q−1 · Md introduced as the new unknowns.
2: Solve the resultant system.
3: Compute Md = Q · M̂d.

Now, we present the justifications of the new method. Substituting Rd =
Q · R̂d · Q−1 into g(St) = g′ · Rt

d · Md, we have

g(St) = g′ · (Q · R̂d · Q−1)t · Md = g′ · Q · R̂t
d · Q−1 · Md = ĝ · R̂t

d · M̂d = 0.

Assume we have the coefficient vector ĝ ·R̂t1
d for t1. For the next time t2 (t2 > t1),

we need to multiply ĝ · R̂t1
d with R̂d by (t2 − t1) times more to establish the

equation, as shown below

ĝ · R̂t2
d = (ĝ · R̂t1

d ) · R̂d · · · R̂d︸ ︷︷ ︸
t2−t1

.

Since there are at most two nonzero elements in each column of R̂d and the
positions of the nonzero elements are fixed as the form in Corollary 1, it takes
only 2D operations to multiply a D-dimensional row vector with R̂d. We need to
do the multiplication O(D) times, which should cover the domain of the given
keystream bits and it takes 2D · O(D) = O(D2) in total.

It is following that we have already solved the linear equations in M̂d; then
we can obtain Md and S0 by Md = Q · M̂d. Moreover, we just need to calculate
the first n components to recover S0, and this step costs n · D computations
for a multiplication of an n × D matrix with a D-dimensional column vector.
Just like the time complexity estimation of algebraic attacks before, the cost
for the off-line phase is not reckoned in here. Thus, the total complexity by
using the Frobenius form of the monomial state rewriting matrix approximates
C3 = O(D2). Moreover, Step 2–4 added off-line cost D2, Dw, and D2 computa-
tions respectively, i.e., the pre-computation of our method is reasonable for the
attack. Table 1 shows that our new method is significantly outstanding.
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Table 1. Comparison of the complexities for establishing equations in algebraic attacks

n d m C1 C2 C3 Solving equations

Toyocrypt 128 3 128 258 244 237 252

LILI-128 89 4 10 255 248 242 260

Sober-t32 544 10 160 2211 2147 2138 2194

WG-7 161 3 7 247 246 239 254

Sfinks 256 6 17 2100 285 277 2108

4 Fast Algebraic Attacks

Recall that in a fast algebraic attack, the first task is to find a relation f · g = h
with small e = deg(g) and d = deg(h) not too large, called “localized” equations.
The function sequence h(Li(x1, · · · , xn)), i = 0, 1, . . . can be synthesized by an
LFSR with linear complexity D =

∑d
i=0

(
n
i

)
. Here the Berlekamp-Massey algo-

rithm is used to compute the characteristic polynomial and get the coefficients
αi, i = 0, . . . , D − 1. Then the adversary can eliminate the right side of these
localized equations as

0 =
D−1∑

i=0

αih
(
Li+t (S0)

)
=

D−1∑

i=0

αizt+ig
(
Lt+i (S0)

)
.

Thus, the adversary eventually only needs to solve a linear system of
E =

∑e
i=0

(
n
i

)
unknowns by linearization, and finally recovers the initial state S0.

Since there are E unknowns, around E linear equations, each requiring D con-
secutive keystream bits, are required to obtain a solvable system. Hence, around
D +E consecutive keystream bits are needed by using them as sliding windows.
Unlike algebraic attacks, fast algebraic attacks can pre-compute the low degree
parts g(Lt(S0)), t = 1, . . . , D + E, since the keystream bits are consecutive. The
value e is restricted with e < d and it is easily to deduce d ≥ AI(f). Here comes
the complete description of an FAA.

Off-line phase
1: Find a low degree function g such that the degree of h = f · g is not too large.
2: Synthesize the characteristic polynomial of the function sequence

h(Li(x1, · · · , xn)), i = 0, 1, . . . and obtain the corresponding coefficients
αi, i = 0, . . . , D − 1.

3: Calculate and linearize g(Lt(S0)) for t = 1, . . . , D + E.

Online phase Given zt, t = 1, . . . , D + E
1: Substitute the keystream bits into the equations

∑D−1
i=0 αizt+ig

(
Lt+i (S0)

)
= 0

using FFT.
2: Solve the system of linear equations.
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So far, fast algebraic attacks have been successfully applied to Toyocrypt,
LILI-128, E0, WG-7 and Sfinks.

Finally, let us look at the complexity analysis of fast algebraic attacks. The
complexity of Step 2 in the online phase is about O(Ew) by the Gaussian reduc-
tion. In 2004, it was pointed out in [6] that the previous complexity estimation of
Step 1 in the online phase is incorrect and a method based on FFT was proposed
to decrease the complexity of the substitution step, where the optimal complex-
ity is 2DE · log2E. Nevertheless, it was also pointed out that the substitution
operation is based on the fact that g(Lt(S0)), t = 1, . . . , D + E are known and
the complexity for establishing these equations has been ignored. The memory
complexity of the FAA is claimed as O(E2), for storing the coefficient matrix of
the linear system. In addition, if we pre-compute g(Lt(S0)), t = 1, . . . , D + E,
then some extra memory is needed to store the pre-computed result in the size of
M1 = (D + E) · E, which is much larger than the estimated memory complexity
O(E2), please see Table 2.

Table 2. Comparison of the claimed memory complexity of fast algebraic attacks and
the actual complexity for storing the pre-computed result

n (d, e) m M1 Claimed memory

Toyocrypt 128 (3, 1) 128 225 215

LILI-128 89 (4, 2) 10 233 224

WG-7 161 (3, 1) 7 227 216

Sfinks 256 (8, 2) 17 263 230

E0 128 (4, 3) 128 245 237

Now, we analyze the methods for pre-computing g(Lt(S0)) in the off-line
phase in an FAA, which are similar to those in the AA.

4.1 Simple Method: Polynomial Multiplication

Just substitute St using the recursion representation of S0 into the ANF of
function g, then make the polynomial multiplication to expand g(St) and merge
similar terms at Step 3 in the off-line phase. The complexity analysis is similar
to that in Sect. 3.1. We just replace d with e in the complexity each time when
calculating g(St). It also neglects the complexity for merging similar terms and
linearization. Here we need to calculate for D + E consecutive times, and this
method costs

CC1 =

(
e∑

i=2

ni

(
m

i

)
+ 2n

)

· (D + E)

computations in total.
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4.2 Improved Method: Shift and Update from the Feedback
Polynomial

Compute g(St+1) by updating g(St) from the feedback polynomial at Step 3 in
the off-line phase. The complexity analysis is similar to that in Sect. 3.2. We just
replace D with E in the complexity each time when calculating g(St). Here we
need to calculate for D + E consecutive times, and the time complexity equals
CC2 = nE(D + E).

4.3 New Method: Frobenius Form of the Monomial State Rewriting
Matrix

The notations are the same as before. Here some procedures are added to the
original process of an FAA, shown in the next page.

Off-line phase
1: Find a low degree function g such that the degree of h = f · g is not too large.
2: Synthesize the characteristic polynomial of the function sequence

h(Li(x1, · · · , xn)), i = 0, 1, . . . and obtain the corresponding coefficients
αi, i = 0, . . . , D − 1.

3: Calculate the monomial state rewriting matrix Re depending on the LFSR and
degree e of g.

4: Calculate the Frobenius form of the monomial state rewriting matrix Re, i.e.,
Re = Q · R̂e · Q−1, where R̂e is the Frobenius form and Q is the E × E trans-
form matrix.

5: Calculate ĝ = g′ · Q, where g′ is the coefficient vector of g.
6: Calculate g(Lt(S0)) = ĝ · R̂t

e · M̂e, t = 1, . . . , D + E, where M̂e denotes Q−1 · Me

the new unknowns, and linearize g(Lt(S0)) for t = 1, . . . , D + E.

Online phase Given zt for t = 1, . . . , D + E
1: Substitute the keystream bits into the equations of the form below using FFT

D−1∑

i=0

αizt+ig
(
Lt+i (S0)

)
=

D−1∑

i=0

αizt+i(ĝ · R̂t+i
e · M̂e) =

(
D−1∑

i=0

αizt+i(ĝ · R̂t+i
e )

)
· M̂e = 0.

2: Solve the system of linear equations.
3: Calculate Me = Q · M̂e.

The complexity analysis is similar to that in Sect. 3.3. But it is a little different
that we should take into consideration the complexities of all the added steps
here, since they work together as a method in the pre-computation. The cost of
the new Step 3 in the off-line phase is about E2. As stated above, the complexity
for calculating the Frobenius form of an E × E matrix is about O(Ew). The
off-line Step 5 costs E2 computations. The complexity analysis for the off-line
step 6 is similar to that in Sect. 3.3. We just replace d with e in the complexity
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each time for calculating g(Lt(S0)), which results in 2E. We need to do the
multiplication D + E times here. Thus, the total complexity by this method is

CC3 = E2 + O(Ew) + E2 + 2E · (D + E) = O(DE + Ew + E2).

Table 3 shows the complexity comparison of these three methods for calcu-
lating g(Lt(S0)), t = 1, . . . , D + E in the off-line phase. But the operation in
our method is numerical and bit-size, which may run easier and faster than the
symbolic one of the simple and improved methods. In addition, we do not need
extra computations for merging similar terms and linearization.

Table 3. Comparison of the complexities for pre-computing g(Lt(S0)), t = 1, . . . , D+E

n (d, e) m CC1 CC2 CC3 Substitution Solving equations

Toyocrypt 128 (3, 1) 128 226 232 225 229 220

LILI-128 89 (4, 2) 10 240 239 235 238 235

WG-7 161 (3, 1) 7 228 234 227 231 222

Sfinks 256 (8, 2) 17 272 271 263 268 243

E0 128 (4, 3) 128 263 252 254 247 254

In addition, the memory complexity required for pre-computation can be
reduced as well by a combination of our method with the time/memory trade-
off techniques. According to [6], when substituting the keystream bits into the
equations, g(Lt(S0)) at P consecutive times are required to calculate per FFT,
as below (the notations in the formula are the same as those in [6])

Aφ =
1
P

·
P∑

t=1

a(t) · Λφ(−t).

In the optimal conditions, P is approximately equal to 2E. Thus, we need the
memory of M = 2E2 to store the corresponding g(Lt(S0)s for performing FFT
once. To lower the requirement of memory, we can pre-compute g(Lt(S0)) at the
first 2E times off-line and store them. Next, we compute g(Lt(S0)) once more
and drop the first one by sliding, once an FFT is calculated, thus we need to
compute g(Lt(S0)) at D+E−2E = D−E time instants online. The memory and
online time complexities are shown in Table 4. The table also indicates that even
using the time/memory tradeoff techniques, the simple and improved methods
still cannot reach the claimed memory and time complexities of fast algebraic
attacks on some ciphers.
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Table 4. Comparison of the trade-offs of the memory and online time complexities

M Claimed CC′
1 CC′

2 CC′
3 Substitution Solving

memory equations

Toyocrypt 216 215 226 232 225 229 220

LILI-128 225 224 240 239 233 238 235

WG-7 217 216 228 234 227 231 222

Sfinks 231 230 272 271 263 268 243

E0 241 237 263 252 245 247 254

5 General Algebraic and Fast Algebraic Attacks

General algebraic and fast algebraic attacks exploit functions like

g(X) =
∑

A,0≤wt(A)≤d

cAXA

whose coefficients cA are derived from simple polynomials of the keystream bits
in a small range zt, . . . , zt+θ. This is the main difference between the general and
classic attacks, e.g., the “ad-hoc” equations mentioned in [5] are of the following
form

{
0 = β +

∑
βisi +

∑
βjzj +

∑
βijzjsi +

∑
βijkzjzksi + · · ·

...
.

Thus the coefficient vector g′ is no more a constant vector, but a vector dependent
on the involved keystream bits. We denote it by g′

t and the corresponding Boolean
function by gt(X), which have to be obtained online. Precisely, in general alge-
braic attacks, we establish the equations like gt(Lt(S0)) = 0; while in general fast
algebraic attacks, the localized equations are of the form h(Lt(S0)) = gt(Lt(S0)).
Thus, the attacks run as eliminating the left side of the localized equations and
deducing 0 =

∑D−1
i=0 αih

(
Li+t (S0)

)
=

∑D−1
i=0 αigt+i

(
Lt+i (S0)

)
[1,6]. Hence, we

need to deal with the problem that how to efficiently compute gt(Lt(S0)) online.

5.1 Simple Method: Polynomial Multiplication

The simple method is applicable to the general attacks as well, even though the
coefficients are changeable. The complexity issue is similar to that in the previous
sections. Assume that the coefficients are relatively simple polynomials of the
keystream (as stated in [6]), the only extra cost is to substitute the keystream
bits into the coefficient vector g′

t, which amounts to about O(D2) and O(E ·
(D +E)) for general algebraic and fast algebraic attacks, respectively. Thus, the
total complexities for establishing equations in general algebraic attacks and fast
algebraic attacks are:

C̃1 = O(D) ·
(

d∑

i=2

ni

(

m

i

)

+ 2n + D

)

, C̃C1 = O(D + E) ·
(

e∑

i=2

ni

(

m

i

)

+ 2n + E

)

.
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5.2 Improved Method: Shift and Update from the Feedback
Polynomial

The improved method cannot be used in this scenario since the coefficients of
g(x) are changeable and we can no more make use of the result of previous step.

5.3 New Method: Frobenius Form of the Monomial State Rewriting
Matrix

Since g′
t1 is not necessarily equal to g′

t2 , we can no more recursively compute
g′

t2 ·Q · R̂t2
d (t2 > t1) based on g′

t1 ·Q · R̂t1
d as done in the previous sections. Let us

first take a closer look at the features of the blocks in the Frobenius form of the
monomial state rewriting matrix. Suppose the characteristic polynomial r(x) of
the LFSR is primitive, which is always true in the current designs. Then based
on a theorem by Key [10], we have our main theorem (Theorem 4) here.

Theorem 3 (Key [10]). If γ ∈ GF (2n) is a root of the characteristic poly-
nomial r(x) of the LFSR, then the characteristic polynomial of Rd is p(d)(x) =∏

ψ:w(ψ)≤d(x−γψ), where w(ψ) is the number of 1’s in the radix-2 representation
of the integer ψ.

Theorem 4. If the LFSR of length n has a primitive characteristic polynomial
r(x) over GF (2), then the Frobenius form of the monomial state rewriting matrix
Rd determined by the LFSR and degree d ≤ �n/2� is composed of blocks of which
the dimensions are at most n. Moreover, the characteristic polynomials of the
blocks are irreducible and are different from each other.

Now, we present the method of calculating gt(Lt(S0)) online based on
Theorem 4. For general algebraic attacks, we need to compute R̂t

d, then g′
t · Q,

and finally (g′
t · Q) · R̂t

d. The complexity for calculating R̂t+1
d given R̂t

d can be
analyzed in the following way. The power of a block diagonal matrix equals to
another block diagonal matrix, whose blocks are formed with the power of the
blocks in the original block diagonal matrix. Since the blocks in R̂d are of the
same form as Theorem 1, the cost for calculating the (t + 1)-th power of such a
block given the t-th power of the block is just the double of the block dimension.
If there are u blocks in R̂d, whose dimensions are k1, k2, . . . , ku respectively,
satisfying k1 + k2 + · · · + ku = D, (ki ≤ n, 1 ≤ i ≤ u), then the complex-
ity for calculating R̂t+1

d given R̂t
d is 2k1 + 2k2 + · · · + 2ku = 2D. Since we

need to compute it for O(D) times, the total cost of this step is 2D · O(D).
Next, we compute g′

t · Q. It takes D2 computations each time. We need to
compute g′

t · Q for O(D) times, and we can run this step all at once in the
way (g′

t1 , g
′
t2 , . . . , g

′
tD )T · Q = (g′

t1 · Q, g′
t2 · Q, , . . . , g′

tD · Q), which takes O(Dw)
computations in total. Finally, since R̂t

d is still a block diagonal matrix, the
number of nonzero elements in each column is at most the dimension of the
block, i.e., it is not larger than n. Then the cost for calculating (g′

t · Q) · R̂t
d is

k2
1 + k2

2 + · · · + k2
u ≈ n2 · D

n = n · D. The total cost of this step for O(D) times is
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Table 5. Comparison of the complexities for computing gt(L
t(S0)), t = 1, . . . , D + E

online

n (d, e) m C̃C1 C̃C3 Substitution Solving equations

E0 128 (4, 3) 128 263 257 247 254

nD · O(D). Recall that we also need to add the complexity of substituting the
keystream bits into g′

t. Thus, the complexity for computing gt(Lt(S0)) by this
method in the general algebraic attack is about

C̃3 = 2D · O(D) + O(Dw) + O(n · D2) + D2 = O((Dw) + (n + 3)D2).

Similarly, the complexity for computing gt(Lt(S0)) in the general fast algebraic
attack is about

C̃C3 = O((D + E)(Ew−1 + (n + 3)E)).

Let us take the general attack on the E0 keystream generator as an example.
Here we expand g as one gt rather than treat it as 10 subfunctions with constant
coefficient vector. Then the complexities by these two methods are listed in
Table 5.

Remark 1. Since the monomials containing zt, . . . , zt+θ emerged in g′
t in the

attack on E0 are in a small scale, just 10, it seems that turning gt into several
subfunctions with constant coefficient vector and calculating for each in the
way stated in Sect. 4.2 costs smaller complexity. Moreover, when θ is small, the
complexity to compute for 2θ subfunctions of g is about O((E + D) · E · 2θ).

6 Conclusion

In this paper, we have shown that previous works on algebraic and fast algebraic
attacks against stream ciphers have overlooked a common base, i.e., establish-
ing an adequate equation system first, which actually in some cases dominates
the attack complexity if the direct methods are used. We have analyzed the
complexity of this step in various algebraic attack scenarios and demonstrated
a new method to fulfill this task based on the Frobenius form of the monomial
state rewriting matrix. In each considered case, we make a comparison study
and show that this technique has efficiently reduced the complexity of establish-
ing equations. We think that the Frobenius form of the monomial state rewrit-
ing matrix and its properties may help the research of the equivalence of filter
generators [14].
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Abstract. In 2009, Heninger and Shacham presented an algorithm
using the Hensel’s lemma for reconstructing the prime factors of the
modulus N = r1r2. This algorithm computes the prime factors of N in
polynomial time, with high probability, assuming that a fraction greater
than or equal to 59 % random bits of its primes r1 and r2 is given. In
this paper, we present the analysis of Hensel’s lemma for a multiprime
modulus N =

∏u
i=1 ri (for u ≥ 2) and we generalise the Heninger and

Shacham’s algorithm to determine the minimum fraction of random bits
of its prime factors that is sufficient to factor N in polynomial time with
high probability.

Keywords: Factoring a multiprime modulus N · Random key bits leak-
age attack · Cold boot attack

1 Introduction

According to Skorobogatov [14], we know the recovery of information (bits) of
the RAM can be done with a certain error due to the data remanent property
of RAM and this error can be decreased by cooling techniques studied by Hal-
derman [4]. This attack is known as cold boot attack [2] and it is able to make
a copy of the DRAM used by the decryption process of an RSA cryptosystem
with some private key identification techniques ([4,11,13]). Then, it may identify
the set of correct bits of the secret key sk of the Basic RSA cryptosystem.1

Inspired by this attack the underlying ideas are used to identify and recover the
secret key bits of a multiprime RSA cryptosystems2.

It’s widely known that the main drawback of Basic RSA cryptosystem is the
relatively expensive encryption and decryption operations. It is relevant to men-
tion there is an advantage to use more than two primes in the RSA modulus N .
The decryption process is faster when it is done partially with respect to each
prime modulus and then combine them using the Chinese Remainder Theorem

R.C. Villena—Supported by CAPES, Brazil.
1 Basic RSA is when the modulus N is product of two primes.
2 Multi-prime RSA is a generalization of the Basic RSA where the modulus N is the

product of two or more primes.
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(see [8,12]). The more prime factors in the modulus N , the faster is the decryp-
tion process, providing a practical solution to the high cost of decryption. The
advantages for performing these operations in parallel are that the number of
bit operations is at most 3

2u3 n3 and the required space is only lg(ri) = n
u where

n = lg(N) (number of bits of modulus N) and u is the number of prime factors
of N . The time and space used to perform the decryption process is lower for
values u greater than 2 but the risk of the modulus N to be factored without
extra information is increased [7].

As mentioned before, inspired by cold boot attacks, it was shown that if
queries to an oracle for a relatively small number of bits of the secret key is
given, it is possible to factor the Basic RSA modulus N = pq in polynomial time
with:

– 1
4n LSB (Least Significant Bits) or 1

4n MSB (Most Significant Bits) of p [3].
– a maximum of log log(N) unknown blocks and ln(2) ≈ 0.70 fraction of known

bits of p [6].
– a fraction δ of random bits of p and q greater than or equal to 2 − 2

1
2 ≈ 0.59

[5].

In comparison, for a multiprime modulus N = r1r2...ru, i
i+1

n
u LSB or i

i+1
n
u

MSB of ri, for 1 ≤ i ≤ u − 1 is required [7].
An example: to factor a 3-prime modulus N (u = 3) the minimum require-

ment is:

– n
6 LSB or n

6 MSB of r1, and 2n
9 LSB or 2n

9 MSB of r2
– 0.38n fraction of bits of primes r1 and r2.

Hence more and more bits are required to factor a modulus N with u greater
than 2.

The case that we analyzed is to factor a multiprime modulus N with a
fraction δ of random bits of its primes, where δ was computed to factor N
in polynomial time with high probability. Hence we show that a multiprime
modulus N offers more security than a basic modulus N . Our main result is
that:

– To factor the integer N =
∏u

i=1 ri in polynomial time, using Hensel’s lemma,
a fraction δ = 2 − 2

1
u of random bits of its primes is sufficient.

With this result, there is a need of δ ≥ 2 − 2
1
3 ≈ 0.75 fraction of random bits

of prime factors to factor a 3-prime modulus N . Therefore 3-prime is better,
adversarially, than δ ≥ 2 − 2

1
2 ≈ 0.59 for a basic modulus N .

Kogure et al. [9] proved a general theorem to factor a multi-power modulus
N = rm

1 r2 with random bits of its prime factors. The particular cases of Takagi’s
variant of RSA [15] and Paillier Cryptosystem [10] are addressed. The bounds
for expected values in our cryptanalysis are derived directly, without applying
their theorem.
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2 Algorithm to Factor a Multiprime Modulus N

We consider an equation of integer N =
∏u

i=1 ri that can be expressed as a
polynomial

f(x1, x2, ..., xu) = N −
∏u

i=1
xi

with solution (roots) r = 〈r1, r2, ...ru〉. We applied the idea in Heninger and
Shacham’s algorithm, to rebuild the primes ri beginning with their LSB and
MSB. In others words, we can lift all roots of the polynomial f(x1, x2, ..., xu)
(mod 2j+1) from a root of the polynomial f(x1, x2, ..., xu) (mod 2j). Applying
this scheme, we can lift from one root of polynomial f(x1, x2, ..., xu) (mod 2)
to obtain all roots of f(x1, x2, ..., xu) (mod 22). Then, from these roots, lift all
roots of f(x1, x2, ..., xu) (mod 23) and so on, up to all roots for f(x1, x2, ..., xu)
(mod 2

n
u ). One of these roots is the solution for 〈r1, r2, .., ru〉, because we assume

N is balanced3 hence the length of its primes is of n
u bits.

〈r1, r2, .., ru〉 ∈ roots of f(x1, x2, .., xu) (mod 2
n
u )

To understand the relation between a root of f(x1, x2, .., xu) (mod 2j) and
the roots of f(x1, x2, .., xu) (mod 2j+1) we introduce below the Hensel’s lemma
for multivariate polynomials.

Lemma 1 (Multivariate Hensel’s Lemma [5]). Let f(x1, x2, ..., xn) ∈
Z[x1, x2, ..., xn] be a multivariate polynomial with integer coefficients. Let
π be a positive integer and r = (r1, r2, ..., rn) ∈ Z

n be a solution for
f(x1, x2, ..., xn) ≡ 0 (mod πj). Then r can be lifted to a root r + b (mod πj+1),
if b = (b1πj , b2π

j , ..., bnπj), 0 ≤ bi ≤ π − 1, satisfies

f(r + b) = f(r) +
n∑

i=1

biπ
jfxi

(r) ≡ 0 (mod πj+1)

where fxi
is the partial derivative of f with respect to xi, or equivalently

f(r)
πj

+
n∑

i=1

bifxi
(r) ≡ 0 (mod π)

Analyzing the polynomial f(x1, x2, ..., xu) = N − ∏u
i=1 xi with the Hensel’s

lemma we obtained the following results. Let r = (r′
1, r

′
2, ..., r

′
u) be a solution for

f(x1, x2, ..., xu) ≡ 0 (mod 2j) where a root for f(x1, x2, ..., xu) ≡ 0 (mod 2j+1)
is defined as r = (r′

1 +2jb1, r
′
2 +2jb2, ..., r

′
u +2jbu) where bi represents a bit ri[j]

such that
(

N −
u∏

i=1

r′
i

)

[j] ≡
u∑

i=1

ri[j] (mod 2). (1)

3 N is the product of u primes with the same bit length, as in the Basic RSA.
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It is an equation modulus 2. If all values ri[j] are considered as unknowns, it is
an equation modulus π = 2 with u variables. An equation with u variables has a
total number of solutions equal to πu−1 = 2u−1. In other words, we get a maxi-
mum of 2u−1 roots for f(x1, x2, .., xu) (mod 2j+1) from a root of f(x1, x2, .., xu)
(mod 2j). Furthermore, if a fraction of random bits are known, this number of
roots decreases, as we show below.

Let root[j] be a set of all possible roots of the polynomial f(x1, x2, .., xu)
(mod 2j+1). root[0] is a set of single elements because the ri’s are primes hence
the single root of f(x1, x2, .., xu) (mod 2) is 〈11, 12, .., 1u〉. With the definition of
root[j] we developed the following algorithm to factor a multiprime modulus N .
In Algorithm 1 there are the following inputs: a big integer N , an integer u that
is the number of prime factors of N . A fraction δ of random bits of the primes
is known and given as r̃1, r̃2...r̃n

Algorithm 1. Factoring N
Input: N,u, 〈r̃1, r̃2, ..., r̃u〉
Output: root[n

u ] where 〈r1, r2, ..., ru〉 is in root[n
u ]

1 root[0] = [〈11, 12, ..., 1u〉];
2 j = 1;
3 for each 〈r′

1, r
′
2, ..., r

′
u〉 in root[j − 1] do

4 for all possible (as explained below (*)) 〈r1[j], r2[j], ..., ru[j]〉 do
5 if (N − ∏u

i=1 r′
i)[j] ≡ ∑u

i=1 ri[j] (mod 2) then
6 root[j].add(〈r′

1 + 2jr1[j], r′
2 + 2jr2[j], ..., r′

u + 2jru[j]〉)

7 if j < n
u then

8 j := j + 1;
9 go to step 3;

10 return root[n
u ];

The algorithm begins with a set root[0] of single roots 〈11, 12, ..., 1u〉. (*)
In Line 4 for each root 〈r′

1, r
′
2, ..., r

′
u〉 ∈ root[j − 1] we generate all permuta-

tions for bits 〈r1[j], r2[j], ..., ru[j]〉. The number of values of ri[j] is one only
if this bit is known in r̃i, otherwise there are two values, 0 or 1. Each result
〈r1[j], r2[j], ..., ru[j]〉 of this permutation is analyzed in Line 5 by the Hensel’s
Eq. (1); it is added to the set root[j] if the equivalence is true. This procedure is
done until the set root[n

u ] obtained contains the prime factors of N .

3 Behavior and Complexity of the Algorithm to Factor N

We developed a brute-force search algorithm lifting all possible roots for the
polynomial f(x1, x2, ..., xu) (mod 2j) for 1 ≤ j ≤ n

u . This behavior is shown in
Fig. 1 where we can see the root r = 〈r1, r2, ..., ru〉 as a gray double circle. It was
lifted in each level j ∈ [1, n

u ] from one root in root[0]. These roots are defined
as good roots and are shown as no-color double circle. One good root in each
level j always lifts the good root for the next level j + 1. Each incorrect root is
represented as a single line circle.
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Fig. 1. (Factoring N) Behavior of Algorithm 1 to factor N

We know we have a number of n
u + 1 good roots in all executions of

Algorithm 1, but the behavior of the algorithm is determined by the number of
the lifted incorrect roots. Therefore the analysis was done with respect to incor-
rect roots, and to do this analysis, we defined the following random variables:

– Let G be the random variable for the number of incorrect roots lifted from a
good root.

– Let B be the random variable for the number of incorrect roots lifted from an
incorrect root.

– Let Xj be the random variable for the number of incorrect roots lifted at
level j.

3.1 Number of Incorrect Roots Lifted from a Good Root (G)

All cases that may occur are described in the following Table where we have
one good root 〈r′

1, r
′
2, ..., r

′
u〉 of root[j − 1] and let’s define h as the number of

unknown bits in 〈r1[j], r2[j], ..., ru[j]〉.
There are h cases (1 ≤ h ≤ u in Eq. (1)). It is an equation modulus 2 with

h variables where the number of solutions is 2h−1. Hence we get a total of 2h−1

roots for root[j]. In the case h = 0 we obtain a single root and it is the good
root of root[j] because it is built from the good root of root[j −1] and all known
bits are of the correct root. But we do not have the number of incorrect roots
that were lifted. The number of incorrect roots lifted are in the third column
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Table 1. (Factoring N) Number of incorrect roots lifted from a good root.

Cases Number of lifted roots Number of lifted incorrect roots

1 ≤ h ≤ u 2h−1 2h−1 − 1

h = 0 1 0

of Table 1 and are the values of the second column decreased by 1 (because the
good root in root[j] is always lifted by the good root in root[j − 1]). Therefore
we can define the expected value of G as follows:

E[G] =
u∑

h=1

(2h−1 − 1)
(

u

h

)
(1 − δ)hδu−h (2)

where the probability of occuring h unknown bits in a set of u bits is
(
u
h

)
(1 −

δ)hδu−h.

3.2 Number of Incorrect Roots Lifted from an Incorrect Root (B)

Before computing the number of incorrect roots lifted from an incorrect root
let’s define c1 as the computed value of

c1 =

(

N −
u∏

i=1

r′
i

)

[j]

from the good root in root[j −1]. With this definition, we can observe two kinds
of incorrect roots in root[j − 1]: either the computed value of (N − ∏u

i=1 r′
i) [j]

is equal to c1 or is different from c1 (denoted by c1). Considering all this, we
analyzed all cases for computing the number of incorrect roots lifted from an
incorrect root in the next Table.

The cases where 1 ≤ h ≤ u, the values c1 and c1 are not important because
in Hensel’s Eq. (1) there is a modular equation of h variables, and a total of 2h−1

incorrect roots. For the case of c1, the incorrect root is going to act like a good
root, hence for h = 0 the incorrect root lifts an incorrect root. But in the case
of c1 the incorrect root is dropped because we have a contradiction.

The computed value of (N − ∏u
i=1 r′

i)[j] in an incorrect root can be 0 or
1 with probability 1

2 . The probabilities are P ((N − ∏u
i=1 r′

i)[j] = 1) = 1
2 and

Table 2. (Factoring N) Number of incorrect roots lifted from an incorrect root.

Cases (N −
u∏

i=1

r′
i)[j] = c1 (N −

u∏

i=1

r′
i)[j] = c1

1 ≤ h ≤ u 2h−1 2h−1

h = 0 1 0



Factoring a Multiprime Modulus N with Random Bits 191

P ((N − ∏u
i=1 r′

i)[j] = 0) = 1
2 . In other words, the probabilities are the same

because c1 and c1 represent the value of one bit. Hence we have P ((N −∏u
i=1 r′

i)[j] = c1) = 1
2 and P (N − ∏u

i=1 r′
i)[j] = c1) = 1

2 .
Analyzing Table 2 and with the probabilities defined above, we can determine

the expected value of B.

E[B] =
u∑

h=1

2h−1
(u
h

)
(1− δ)hδu−h 1

2
+

u∑

h=1

2h−1
(u
h

)
(1− δ)hδu−h 1

2
+
(u
0

)
(1− δ)0δu−0 1

2

(3)

=
(2− δ)u

2

3.3 Number of Incorrect Roots Lifted at Level j (Xj)

The expected value of the discrete random variable Xj is defined in the following
recursion:

E[Xj ] = E[Xj−1]E[B] + E[G]

because the number of incorrect roots at level j is equal to the number of incor-
rect roots lifted from the incorrect roots at level j−1 plus the number of incorrect
roots lifted from the only one good root at level j−1. And we have E[X1] = E[G]
because at level 0 there is no incorrect root, hence we can compute the closed
form as follows:

E[Xj ] = E[G]
1 − E[B]j

1 − E[B]
. (4)

3.4 Complexity of the Algorithm to Factor

The algorithm to factor N should run up to level n
u and return the prime factors

of N , thus the expected value of the number of incorrect roots analyzed by
Algorithm 1 is defined as:

E

⎡

⎣
n
u∑

j=1

Xj

⎤

⎦ =

n
u∑

j=1

E[Xj ] Property of expected value

=

n
u∑

j=1

E[G]
1 − E[B]j

1 − E[B]
Definition (4)

=
E[G]

1 − E[B]

n
u∑

j=1

1 +
E[G]

E[B] − 1

n
u∑

j=1

E[B]j

=
E[G]

1 − E[B]
n

u
+

E[G]E[B](E[B]n/u − 1)
(E[B] − 1)2

.

The equation above is exponential on n and on E[B] but it can be bounded
as follows. For values of E[B] > 1 this function is actually exponential
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(limn→∞ E[B]n/u = ∞) but for values E[B] < 1 we get limn→∞ E[B]n/u < 1.
Therefore the expected number of analyzed incorrect roots is bounded by a linear
equation on n for values E[B] < 1.

E

⎡

⎣
n
u∑

j=1

Xj

⎤

⎦ =
E[G]

1 − E[B]
n

u
+

E[B]E[G](E[B]n/u − 1)
(E[B] − 1)2

≤ E[G]
1 − E[B]

n

u
for E[B] < 1

In summary, we can factor the modulus N =
∏u

i=1 ri in polynomial time, given
a δ fraction of random bits of its prime factors greater than 2−2

1
u (by Definition

(3) E[B] = (2−δ)u

2 < 1) because the expected number of analyzed incorrect roots
is O(n).

E[B] =
(2 − δ)u

2
< 1

(2 − δ)u < 2

2 − δ < 2
1
u

δ > 2 − 2
1
u

Some results from this analysis are, to factor in polynomial time an integer:

– N =
∏2

i=1 ri, δ ≥ 0.59(2−2
1
2 ≈ 0.5858) fraction of the bits of its prime factors

is needed.
– N =

∏3
i=1 ri, δ ≥ 0.75(2−2

1
3 ≈ 0.7401) fraction of the bits of its prime factors

is needed.
– N =

∏4
i=1 ri, δ ≥ 0.82(2−2

1
4 ≈ 0.8108) fraction of the bits of its prime factors

is needed.

4 Implementation and Performance

The algorithm to factor N was implemented in 300 lines of code using the
program language C with the library Relic-toolkit [1] that is focused for the
implementation of cryptosystems, and was executed on a processor Intel Core
I3 2.4 Ghz with 3 Mb of cache and 4 Gb of DDR3 Memory.

The experiments were executed for integers N (n = 2048 bits) and they were
the product of u primes, 2 ≤ u ≤ 4. For each value δ a total of 100 integers N
were generated, and for each integer N 100 inputs with a fraction δ of bits of its
primes were generated. The results of the total of 550000 experimental runs are
shown in Tables 3, 4, 5 and Fig. 2.

With the results obtained by Heninger and Shacham in [5] we can say that
the number of analyzed incorrect roots in an experiment has a low probability to
surpass 1 million. In our experiments we did the same to avoid trashing, hence
we canceled all experiments that surpassed one million analyzed incorrect roots.

In Tables 3, 4 and 5 we have in the second and third column the minimum and
maximum analyzed incorrect roots, respectively. The fourth and sixth column
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Table 3. Results of total examined roots by the algorithm to factor N =
∏2

i=1 ri,
2048 bits.

δ Number of analyzed roots # Exp (> 1M) Average time (s)

Minimum Maximum Average

0.61 1983 945728 4949 0 0.115277

0.60 2233 789608 6344 0 0.119484

0.59 2411 928829 8953 2 0.187600

0.58 2631 987577 14736 7 0.250224

0.57 3436 994640 24281 29 0.531079

0.56 4012 998414 42231 134 0.722388

Table 4. Results of total examined roots by the algorithm to factor N =
∏3

i=1 ri,
2048 bits.

δ Number of analyzed roots # Exp (> 1M) Average time (s)

Minimum Maximum Average

0.77 1128 171142 2022 0 0.033884

0.76 1205 323228 2777 0 0.049238

0.75 1380 177293 3723 1 0.099373

0.74 1607 571189 5941 1 0.197553

0.73 1681 999766 11470 11 0.281414

0.72 2087 983404 23826 50 0.995017

Table 5. Results of total examined roots by the algorithm to factor N =
∏4

i=1 ri,
2048 bits.

δ Number of analyzed roots # Exp (> 1M) Average time (s)

Minimum Maximum Average

0.84 716 31447 1245 0 0.024748

0.83 823 67456 1649 0 0.040714

0.82 931 217391 2424 0 0.063754

0.81 1044 558521 4408 1 0.111688

0.80 1249 994386 9571 14 0.236320

0.79 1632 972196 24085 58 0.609435

contain the average number and the average time of analyzed incorrect roots in
all experiments that did not surpassed one million of incorrect roots. The fifth
column contains the number in all experiments that were canceled because it
surpassed one million incorrect roots.
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Fig. 2. (Factoring N) Average number of analyzed roots by the algorithm to factor
N =

∏u
i=1 ri where 2 ≤ u ≤ 4

Table 6. Comparison of basic, 2-power and 3-primes modulus N .

Cases

Basic Modulus N 2-power Modulus N 3-primes Modulus N

N = r1r2 N = r21r2 N =
3∏

i=1

ri

Random bits δ ≥ 0.59 δ ≥ 0.59 δ ≥ 0.75

For all experiments, we obtained an average time less than 1 second to factor
N . And only 305 experiments were canceled because they had over one million
of analyzed incorrect roots. For the rest of experiments, the algorithm always
returned the prime factors of N .

Figure 2 shows the average number of analyzed roots of our experiments to
factor N with n = 2048 bits. We observe the exponential growth of E

[∑n
u
j=1 Xj

]

for values of δ lower than 2 − 2
1
u (E[B] > 1) for u in [2, 4].

5 Concluding Remarks

We designed an algorithm to factor a multiprime integer N based on Hensel’s
lemma.

The statistical analysis shows that factoring a multiprime modulus N for
u greater than 2 offers more security (adversarially thinking) than for u = 2,
assuming a fraction of random bits of its primes is given. Table 6 shows a com-
parison done for Basic, 2-power and 3 multiprime modulus N .

Using a multi-power N = rm
1 r2 allows a faster decryption process than using

a basic N = r11r2. There is no advantage to factor a multi-power modulus N
with random bits because for any value of m ≥ 1 we always need a fraction
δ ≥ 0.59 of random bits. Due to page number restrictions, our analysis and
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implementation results to factor a general multipower modulus N = rm
1 r2 (for

the cases even and odd m) with random bits of its prime factors are given in the
extended version of this paper to be published elsewhere.

The advantages of using a multiprime modulus N are: the decryption is faster,
and with respect to cold boot attacks, the attacker needs more than 2

1
u − 2

1
2

fraction of random bits if a basic modulus N is used. Therefore if u > 2, to factor
N is harder but there is a limit for the value u. When u is large the modulus N
can be factored without extra information using the algorithm called Number
Field Sieve (NFS)4 or by an elliptic curve method (ECM)5.
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Kogure et al. [9].
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Abstract. The 3GPP Task Force recently supplemented mobile LTE
network security with an additional set of confidentiality and integrity
algorithms, namely 128-EEA3 and 128-EIA3 built on top of ZUC, a
new keystream generator. We contribute two techniques to improve
the software performance of these algorithms. We show how delayed
modular reduction increases the efficiency of the LFSR feedback func-
tion, yielding performance gains for ZUC and thus both 128-EEA3 and
128-EIA3. We also show how to leverage carryless multiplication to eval-
uate the universal hash function making up the core of 128-EIA3. Our
software implementation results on Qualcomm’s Hexagon DSP architec-
ture indicate significant performance gains when employing these tech-
niques: up to roughly a 2.4-fold and a 4-fold throughput improvement
for 128-EEA3 and 128-EIA3, respectively.

Keywords: Stream ciphers · Universal hash functions · ZUC ·
128-EEA3 · 128-EIA3 · Carryless multiplication · LTE

1 Preliminaries

In 2009, Chinese regulators mandated augmenting mobile LTE security algo-
rithms with a new set of algorithms. Standardized in 2012, new LTE confiden-
tiality and integrity algorithms 128-EEA3 and 128-EIA3 [1] (hereafter EEA3
and EIA3) rely on the new stream cipher ZUC [2]. In contrast to existing litera-
ture [3–6] focused on hardware implementation aspects of these algorithms, this
work focuses exclusively on efficient software implementation.

Keystream Generator: ZUC. As Fig. 1 illustrates, ZUC utilizes a 16-stage
Linear Feedback Shift Register (LFSR) defined over IFp for p = 231 − 1. ZUC
produces one 32-bit keystream word per clock by combining LFSR and Finite
State Machine (FSM) outputs. Let IFp = {1, 2, . . . , p−1, p}, the canonical repre-
sentation with the exception of representing 0 by p. The LFSR feedback function
F1 : IF5

p → IFp is defined as follows.

F1 : (s0, s4, s10, s13, s15) �→ (1 + 28)s0 + 220s4 + 221s10 + 217s13 + 215s15 (1)

Full version: http://eprint.iacr.org/2013/428/.

c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 199–208, 2015.
DOI: 10.1007/978-3-319-27659-5 14
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Fig. 1. The ZUC keystream generator. Solid boxes are registers. Dashed boxes are func-
tions. The specification describes the process of extracting and concatenating partial
LFSR cells for input to the FSM as the bit reorganization (BR) layer. Denote ⊕, �, �,
and ‖ addition in IF32

2 (i.e., XOR), addition in ZZ232 , logical left shift, and concatenation
(resp.). Let FL, FH : IF32

2 → IF16
2 be FL : x �→ (x0, . . . , x15) and FH : x �→ (x16, . . . , x31).

Denote L1, L2 : IF32
2 → IF32

2 linear transformations and S : IF4
28 → IF4

28 a nonlinear
function implemented by four parallel 8 to 8-bit S-boxes.

Confidentiality Algorithm: EEA3. Built on top of ZUC, EEA3 is a binary
additive stream cipher utilizing ZUC keystream words in the obvious way:
Ciphertext bits are message bits XOR-summed with ZUC keystream word bits.
Keystream bits z0 to z31 are the MSB to LSB of keystream word Z0, bits z32
to z63 of Z1, and so on. A noteworthy restriction is that EEA3 and EIA3 limit
message lengths from 1 to 65504 bits (i.e., 4 bytes shy of 8kB).

Integrity Algorithm: EIA3. Built on top of ZUC, EIA3 is a Message
Authentication Algorithm (MAA) utilizing ZUC keystream words to produce a
32-bit Message Authentication Code (MAC) for a message. At a high level, the
keystream bits zi and message bits mi are inputs to an IF2-linear universal hash
function (UHF). A dedicated keystream word serves as a one-time pad (OTP),
encrypting this 32-bit UHF output. Briefly, the steps are (1) Append a one fol-
lowed by 31 zeroes to m; (2) Append zeroes to m until the length is a multiple
of 32, i.e. from 0 to 31 zeroes; (3) Append a one to m. Denoting n the resulting
length of m, EIA3 MACs are the output of H : IFn

2 × IFn+31
2 → IF32

2 computed as

H : (m, z) �→
n−1∑

i=0

mi · (zi+31, . . . , zi) (2)

In this light, the construction is similar to the formalization by Krawczyk
[7, Sec. 3.2].
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2 Software Optimizations

This section describes many techniques to increase the performance of ZUC,
EEA3, and EIA3 software. Our main contributions are the application of delayed
modular reduction in the ZUC LFSR feedback function and carryless multipli-
cation in the EIA3 UHF. While these techniques can potentially apply to a wide
range of architectures, we concentrate on one particular architecture where all of
these optimizations apply: Qualcomm’s Hexagon digital signal processor (DSP).

Delayed Modular Reduction. The standard exploits the fact that reduction
modulo p = 231 − 1 is fast by specifying first reduced computation of each
summand in (1). Each multiplication by a power of two is a 31-bit rotation in this
field: free in hardware but rather awkward in software. The computation then
successively reduces each sum. The following formula reduces a 32-bit positive
value k ≤ 232 −2 e.g. the sum of two reduced quantities to the range 1 ≤ k′ ≤ p,
i.e. consistent with the definition of IFp in the specification.

k′ = (k & 0x7FFFFFFF) + (k � 31) (3)

The same formula applies, suitably repeated, to reduce any integer: any input
that is at least 62 bits long shortens by 30 bits or more. The only 32-bit value that
requires (3) to be applied twice is 232 −1. In the context of Elliptic Curve Cryp-
tography (ECC), accumulating the results of several additions before reduction
can be effective: using sufficiently small prime moduli and accumulating without
increasing the precision [8,9]. Furthermore, the lesson of [10,11] is that increasing
the unreduced accumulator precision can be acceptable to reduce the number
of reductions, even if this requires extending the reduction routine: the latter
can take a performance hit but the net effect can still be a significant overall
speedup. Along these lines, our approach is to use 64-bit registers (or pairs of
32-bit registers) and compute the unreduced sum of integer values

k = s0 + 28s0 + 220s4 + 221s10 + 217s13 + 215s15 .

This positive integer is clearly smaller than 231 · 222 = 253. Now we proceed to
reduce it, first by computing

k′ = (k & 0x7FFFFFFF) + (k � 31) ≤ (231 − 1) + (222 − 1) < 232 − 2

and then to further reduce k′ to the range 1 ≤ k′ ≤ p requires only one additional
application of (3) to a 32-bit value. Even on a 32-bit architecture, this is faster
than the straightforward approach in the specification, as the savings from the
fewer reductions vastly offset the more expensive double precision additions.
This is our most significant optimization to ZUC in this work.

Carryless Multiplication. Integrating carryless multiplication (i.e. multipli-
cation of words as polynomials in IF2[x]) into an instruction set architecture
(ISA) is a budding trend in commodity microprocessors due to its applica-
tions to signal processing, finite fields, error correcting codes, and cryptography.
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In the latter case, previous results show how to leverage the instruction for effi-
cient implementation of many cryptosystems, e.g. GHASH in AES-GCM [12]
and ECC on curves over binary fields [13–15]. Similar to integer multiplication,
the instruction first computes shifted partial products, yet the final summation
in carryless multiplication is an XOR sum, discarding carries (Hexagon features
such an instruction). We aim to leverage this to compute (2) a word at a time
rather than a bit at a time. Define polynomials a, b, c, d, e ∈ IF2[x] as follows.

a =
31∑

i=0

z31−ix
i, b =

31∑

i=0

z63−ix
i, c = ax32 + b

d =
31∑

i=0

mix
i (4)

e = cd = e2x
64 + e1x

32 + e0 (5)

That is, a is the first 32-bit keystream word as a 31-degree polynomial in IF2[x],
b the next 32-bit keystream word, c the 63-degree polynomial in two 32-bit
words. Note the bit ordering of keystream bits to words to polynomials (a, b) is
consistent with the standard, yet the ordering in d differs, reversing the message
word bits mi. The three ei are the 32-bit words of the product of c and d.
Given these equations, e1 in (5) is the output of 32 consecutive iterations of the
summation in (2). To see why this is so, consider the following matrix.

U0 =

⎡

⎢
⎢
⎢
⎣

z31 z32 · · · z62
z30 z31 · · · z61
...

...
. . .

...
z0 z1 · · · z31

⎤

⎥
⎥
⎥
⎦

Denote v = (m0,m1, . . . ,m31)T , i.e., d as a column vector, and observe U0v
computes the first 32 iterations of (2). The low and high words of the products
ad and bd in (5) are U1v and U2v (resp.) where U1 and U2 are the following
matrices.

U1 =

⎡

⎢
⎢
⎢
⎣

a0 0 · · · 0
a1 a0 · · · 0
...

...
. . .

...
a31 a30 · · · a0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

z31 0 · · · 0
z30 z31 · · · 0
...

...
. . .

...
z0 z1 · · · z31

⎤

⎥
⎥
⎥
⎦
, U2 =

⎡

⎢
⎢
⎢
⎢
⎣

0 b31 · · · b1

0 0 · · ·
...

...
...

. . . b31
0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0 z32 · · · z62
0 0 · · ·

...
...

...
. . . z32

0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

The important equality is U0 = U1 +U2 hence U1v+U2v = U0v = e1. Repeating
these steps for subsequent message words allows us to calculate (2) a message
word at a time instead of a message bit at a time, and furthermore using no
branch instructions. Considering software implementation aspects, forming vari-
ables a, b, and c have no software implications; they are simply keystream words.
In contrast, (4) and (5) must be implemented. Reversing the bits of a message
word in (4) requires either a dedicated bit reverse instruction (Hexagon features
such an instruction) or a sequence of logic implementing a manual bit reverse
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(bit twiddling, table lookups, etc.). Two instances of a 32 by 32 to 64-bit carry-
less multiplication instruction (ad, bd) followed by a single 32-bit XOR implement
(5) producing e1 (e0 and e2 are discarded). Finally, an additional 32-bit XOR
accumulates to the tag.

Optimizing the S-box. S-boxes S0 and S1 (8 to 8 bits) implement the non-
linear function S of ZUC. These must be applied to each byte of a 32 bit word
as follows. Let w = w0||w1||w2||w3 be a 32-bit input where each wi is 8-bit.
Its nonlinear transform is S(w) = S0(w0)||S1(w1)||S0(w2)||S1(w3), requiring bit
shifts and masking for both extracting each wi and assembling the final result.
On the target architecture the ratio of the memory subsystem clock to the CPU
clock is relatively small, so we reduce the amount of shifts by keeping two 32-bit
tables for each S-box where S′

0 = S0 � 24, S′′
0 = S0 � 8, S′

1 = S1 � 16, and
S′′
1 = S1 and computing S(w) as S(w) = S′

0(w0) ⊕ S′
1(w1) ⊕ S′′

0 (w2) ⊕ S′′
1 (w3).

Optimizing the Keystream Generator. One important step in the
keystream generator is the concatenation of two 16-bit halfwords extracted from
32-bit values into a third 32-bit value, e.g. to compute FL and FH followed by ‖ in
Fig. 1. There are six such calculations in the keystream generator. The Hexagon
architecture includes a combine instruction that performs such an operation.

Classical Techniques. We implement the LFSR state as a circular buffer
with a sliding window [16, Sec. 2.2] to avoid unnecessary data movement and
simplified indexing. In order to improve code path execution locality, the EIA3
implementation keeps a buffer of ZUC keystream words, up to 64 words, gen-
erated all together on demand. Similarly, we unroll EEA3 up to 16 times and
always invokes the ZUC keystream generator to provide the necessary amount of
keystream words. Other than this, all optimizations are standard software tun-
ing optimizations, e.g. explicit loop unrolling with overlapping and interleaving
of loop body boundaries.

3 Results

Our target architecture is Qualcomm’s Hexagon DSP, the global unit market
leading architecture for DSP silicon shipments [17]. Qualcomm’s recent MSM-
8960 and MSM8974 Snapdragon system on chips (SoCs) aimed at mobile markets
both feature multiple instances of Hexagon DSPs. Since the Hexagon architec-
ture is not widely known, we briefly summarize its salient aspects before pre-
senting and discussing performance results.

3.1 Hexagon Architecture

Hexagon is an unusual type of DSP because it inherits several features from gen-
eral purpose CPUs and Very Long Instruction Word (VLIW) machines, enabling
programming with standard development tools (toolchains based on gcc and



204 R. Avanzi and B.B. Brumley

clang/llvm are available) and running generic operating systems with virtual-
ization support. It natively supports a complete RISC instructions set working
on integer and floating point types, and vector operations. It features 32 32-bit
general purpose registers, optionally paired to form 64-bit registers.

VLIW Architecture. Up to four instructions group together (at compile
time) in variable length packets. The packets execute in order. The absence
of a complex instruction scheduler reduces area and power consumption. Most
arithmetic and logic operations can be accumulated: Hexagon does not only offer
DSP-typical multiply-and-accumulate operations, but combinations such as and-
then-add or add-then-xor as well. It features zero overhead hardware loops and
various types of operations can be executed conditionally on four different sets
of predicates.

A Barrel Processor Design. Three or four hardware threads can execute
in a round robin fashion with single cycle granularity. For instance, a 600 MHz
Hexagon (typical frequency of the DSP inside a recent Qualcomm modem) can
present itself as a three-core CPU clocked at 200 MHz. This feature reduces the
visible latency per thread to, usually, a single cycle.

Memory Management. Hexagon has a unified memory model similar to that
of a general purpose CPU. It addresses a linear memory space with memory
mapped I/O, integrating an ARM compliant MMU with two stages of transla-
tion, has separate L1 data and instruction caches and a large L2 unified cache.

Relevant Instructions. Table 1 highlights instructions that are vital to imple-
menting our optimizations for the Hexagon architecture. The intrinsics can be
used as if they were C functions and are directly translated by the compiler into
machine instructions. The ZUC specification mandates big endian byte ordering
on keystream words: Hexagon features a dedicated endianness swap instruction.

Table 1. Noteworthy Hexagon instructions

Mnemonic Intrinsic Description

swiz Q6 R swiz R 4-byte word endianness swap

brev Q6 R brev R 32-bit word bit reverse

pmpyw Q6 P pmpyw RR carryless multiplication of 32-bit operands

combine Q6 R combine R[hl]R[hl] combine two halfwords into a word

3.2 Performance

We compare the performance of two versions of our code. The first version is a
clean room implementation of the standard, presenting none of the optimizations
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described in this work, with essentially the same performance as the standard’s
reference implementation. The second version implements all the optimizations
described in this work. We built the code with Qualcomm’s Hexagon develop-
ment tools (v6.2). It includes two C compilers based on gcc 4.6.2 and clang 3.2:
We used the clang compiler since it performs consistently better than gcc on our
code base.

Throughput. Tables 2, 3, and 4 present the performance results as through-
put, the unit being processed bits per hardware thread cycle, initialization phase
inclusive. We include the timings on small buffers to underline the impact of ini-
tialization, but note that large buffers are most common since LTE chiefly carries
large amounts of data at high speed. For EIA3 we also compare the performance
of the optimized code but without our carryless multiplication optimization, in
order to highlight its impact.

Comments. The keystream generator approaches an 82 % throughput increase
and comes mostly from the improvements in the LFSR, i.e. the delayed modular

Table 2. ZUC keystream generator performance on Hexagon

Length (bytes) Throughput (bits/cycle) Throughput increase

Unoptimized Optimized

128 0.2775 0.4406 59 %

256 0.3758 0.6236 66 %

512 0.4566 0.7871 72 %

1024 0.5117 0.9058 77 %

1500 0.5322 0.9513 79 %

2048 0.5445 0.9797 80 %

4096 0.5625 1.0213 82 %

8188 0.5721 1.0435 82 %

Table 3. EEA3 confidentiality algorithm performance on Hexagon

Length (bytes) Throughput (bits/cycle) Throughput increase

Unoptimized Optimized

128 0.2213 0.4180 89 %

256 0.2824 0.5819 106 %

512 0.3277 0.7237 121 %

1024 0.3562 0.8242 131 %

1500 0.3665 0.8599 125 %

2048 0.3725 0.8856 138 %

4096 0.3812 0.9199 141 %

8188 0.3856 0.9375 143 %
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Table 4. EIA3 integrity algorithm performance on Hexagon

Length (bytes) Throughput (bits/cycle) Throughput increase

a: Unoptimized b: No clmul c: Optimized b over a c over b c over a

128 0.1497 0.2239 0.3705 50% 65% 147%

256 0.1776 0.2871 0.5119 62% 78% 188%

512 0.1960 0.3343 0.6715 71% 101% 243%

1024 0.2065 0.3566 0.7676 73% 115% 272%

1500 0.2103 0.3663 0.8084 74% 121% 284%

2048 0.2126 0.3729 0.8426 75% 126% 296%

4096 0.2157 0.3817 0.8771 77% 130% 307%

8188 0.2168 0.3861 0.8995 78% 133% 315%

reduction and the use of a sliding window circular buffer, but also to a lesser
extent the use of the combine instruction. Loop unrolling and standard optimiza-
tions are the main reason the optimized implementation of EEA3 reduces the
gap between the unoptimized implementations of the keystream generator and
EEA3: for large packets throughput more than doubles. In the case of EIA3,
the mathematical improvements implemented via the carryless multiplication
instruction more than double the throughput, bringing it much closer to the
performance of the keystream generator alone: the optimized integrity algorithm
performs about four times faster than the standard implementation.

LTE Performance. In theory, a single hardware thread on a 600 MHz Hexagon
is capable of processing 182 Mbps for integrity and 175 Mbps for confidentiality:
two threads can meet the LTE CAT 4 150 Mbps requirements. The actual perfor-
mance is lower since a lightweight operating system is also running on the chip
to manage the baseband. However, LTE data streams are split into relatively
short segments (of up to 8188 bytes) which can be processed in parallel, so the
effective throughput triples with respect of that of a single operation on a single
thread. This means that in practice, Hexagon is comfortably capable of handling
LTE CAT 4 150/50 data streams even at lower clock speeds. This performance
would not be attainable without the improvements presented in this work.

Other Architectures. The full version of this paper contains benchmarks for
an Intel Core i7-2760QM CPU. The results are similar, with the gain for EIA3
being smaller and the Intel chip processing significantly less bits per cycle in
most cases.

4 Conclusion

Being not only new algorithms but also standardized and widely-deployed, ZUC,
EEA3, and EIA3 are ideal candidates to consider performance optimizations. To
this end, the software techniques presented in this work prove highly effective on
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a particularly relevant platform for these algorithms. Delayed modular reduction
for ZUC and carryless multiplication for EIA3 yield up to roughly a 2.4-fold and
4-fold throughput improvement for EEA3 and EIA3, respectively, demonstrated
on Qualcomm’s Hexagon DSP architecture.

Our proposed use of delayed modular reduction in ZUC stems from public
key cryptography optimization techniques and applies them, for the first time
to our knowledge, to a stream cipher. This shows that the linear part of LFSR
based stream ciphers, traditionally accomplished with an LFSR over a binary
field, can indeed be efficiently realized in other algebraic structures providing
similar provable theoretic properties.

Our proposed use of carryless multiplication to evaluate the UHF in EIA3
shows yet another application of this increasingly important microprocessor
instruction to standardized symmetric cryptography. In 1999, Nevelsteen and
Preneel wrote that Krawczyk’s UHF construction “is more suited for hardware,
and is not very fast in software” [18, Sec. 3.4]. Unquestionably true at the time,
this work exemplifies ways cryptography engineering has evolved to make mutu-
ally exclusive design concepts more compatible. On one hand, the throughput
improvement shows our proposed technique is dramatically effective. On the
other hand, the bit ordering mandated by the specification implies an obtuse
bit reversal on message words: fortunately, Hexagon is equipped to handle this
natively, but this is not the case for all architectures. Cryptographically speak-
ing, this bit ordering is irrelevant and this oversight in the specification highlights
the importance of careful consideration and close collaboration between cryptol-
ogists, standardization bodies, and cryptography engineers.

Acknowledgments. We thank Alex Dent for his input on EIA3 performance opti-
mizations.
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Abstract. For some block ciphers such as AES, substitution box
(S-box) based on multiplicative inversion is the most complex opera-
tion. Efficient constructions should be found for optimizing features like
the area, the amount of memory, etc. Composite representations in finite
fields are the prominent ways to represent the multiplicative inverse oper-
ation in a compact way. In this manuscript, different constructions based
on composite fields are shown to represent the AES, Camellia and SMS4
S-boxes. Mainly, this manuscript describes representations in GF ((24)2).
From these representations, an evaluation is performed to choose those
feasible solutions that help to merge the AES, Camellia and SMS4 S-
boxes into a single one. For instance, by using merged matrices and the
same composite polynomial basis, it is possible to reduce from 172 XOR
gates (independent matrices) to 146 XOR gates (merged matrices).

Keywords: Block ciphers · S-boxes · Composite fields · Multiplicative
inverse · Merging

1 Introduction

Currently, information protection is an important task that must be applied to
every existing communication environment. However, some environments have
restrictive requirements on area, data storage, power consumption or processing
time, thus compelling to hardware designers to look for ways to adapt existing
cryptographic primitives to obtain compacts representations, either individu-
ally or merging two or more cryptographic primitives [17,18]. Furthermore, it is
important to provide the users with different alternatives to protect their infor-
mation and not only to limit them in the use of a given cryptographic primitive.
Then, it is interesting to apply an approach of “Swiss Army knife” concept in
Cryptography for merging common operations among different cryptographic
primitives, consequently, saving footprint and allowing the users to perform dif-
ferent security tasks (encryption, hashing, etc.) by using the same hardware
resources. An example is given by Beuchat et al. [3] where the current USA
standard block cipher AES is merged with the hash function Echo. An addi-
tional example is given by Rogawski et al. [16], where AES is merged with the
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hash function Grøstl. The previous mentioned hash functions participated in the
NIST SHA-3 contest1.

In this work, different constructions based on composite fields in GF ((24)2)
are shown to represent the AES, Camellia and SMS4 S-boxes. From these con-
structions, different ways of merging the S-boxes are described, hence, obtaining
merged S-box representations like AES-Camellia, AES-SMS4, Camellia-SMS4
and AES-Camellia-SMS4. In this way, only one multiplicative inverse operation
is used instead of different Look Up Tables (LUTs).

This manuscript is formed by the following sections. In Sect. 2, composite
bases are described. In Sect. 3, a brief description of the Camellia, AES and
SMS4 S-boxes is given [2]. In Sect. 4, results and comparison tables that show
the number of gates used to implement the AES, Camellia and SMS4 S-boxes
are presented. In Sect. 5, the conclusions of this work are summarized.

2 Notation and Mathematical Representations

An octet can be represented as a vector of bits b = [b0 b1 b2 b3 b4 b5 b6 b7] (more
details in [4,12,23]). Vector b can also be represented in GF ((24)2), where the
fields used are the bases Y 8 + Y 4 + Y 2 + Y , y4 + y3 + y + 1, X16 + X, x + 1.
For instance, b can be represented as Normal-Normal (NN) with b(X,Y ) =
[b0Y + b1Y

2 + b2Y
4 + b3Y

8]X + [b4Y + b5Y
2 + b6Y

4 + b7Y
8]X16. Expressed in

binary notation and considering 1 as an example, let NN 1 = [1 1 1 1 1 1 1 1],
taking into account that 1 is equivalent to have all-ones for b in normal bases. It
is also possible to find similar equivalences for PP, NP and PN representations.
On the other hand, being the irreducible polynomial f(z) defined in GF (28),
a Boolean matrix of dimension 8 × 8 is generated by a root β = b that nulls
f(z). Thus, M = [bT

0 bT
1 bT

2 bT
3 bT

4 bT
5 bT

6 bT
7 ], where each sub-index indicates

the power that β was raised. Besides, there are eight different Boolean matrix
transformations derived from the conjugates of β that nulls f(z) [12,13,15].
Regarding the use of composite fields, let h and l the subindexes that indicate
the most significant and the least significant component of the composite field,
respectively, τ , ν, Δ, αh, αl, bh, bl ∈ GF (24), where τ , ν are constants. According
to Canright [4], the multiplicative inverse operation can be computed as

Normal basis Polynomial basis

Δ = αhαlτ
2 + (αh + αl)2ν (1)

γl = αhΔ−1 (2)
γh = αlΔ

−1 (3)

Δ = (αh)2ν + (αhτ + αl)αl (4)
γl = (αhτ + αl)Δ−1 (5)
γh = αhΔ−1 (6)

1 The winner of the contest was Keccak, as shown in the NIST webpage http://csrc.
nist.gov/groups/ST/hash/sha-3/winner sha-3.html.

http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html
http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html


Merging the Camellia, SMS4 and AES S-Boxes in a Single S-Box 211

Then, the complete operation can be represented as

α = Ma (7)
γ = [γl γh] (8)
b = M−1γ (9)

3 Mathematical Representation of the Camellia,
AES and SMS4 S-Boxes

Camellia S-Box. Camellia is a Japanese cipher designed by NTT DoCoMo
and Mitsubishi Corporation [2]. Its construction is based on a Feistel Network.
Four S-boxes are used as the non-linear stage of the cipher, but the last three
S-boxes are derived from the first S-box. Letting a and b the input and output
of the Camellia S-box, then b = S1(a), S2(a) = [b7 b0 b1 b2 b3 b4 b5 b6],
S3(a) = [b1 b2 b3 b4 b5 b6 b7 b0], S4(a) = S1([a7 a0 a1 a2 a3 a4 a5 a6]), Camellia
primitive polynomial is f(z) = z8+z6+z5+z3+1 and the composite polynomial
is q(w) = w4 + w + 1 [2]. Satoh et al. specified the composite polynomial p(x) =
x2 + τw + ν with τ = 1 = [1 0 0 0] and ν = 1 + w3 = [1 0 0 1] under GF (24)
[18]. The equations that describe Camellia are shown as

b = SCAM (a) = H[Z(F(a + ci1))] + co1 ∈ GF ((24)2) (10)
b = SCAMA(a) = Ho(Fo(a + ci1))−1 + co1 ∈ GF (28) (11)

where S1(a) = SCAM (a) = SCAMA(a), F and H are Boolean matrices,
ci1 = [1 0 1 0 0 0 1 1]T and co1 = [0 1 1 1 0 1 1 0]T are Boolean vec-
tors, and Z is treated as the composite operation in GF ((24)2). Additionally,
F = MFo and H = HoM−1. Thus, Ho and Fo can be computed as Fo = M−1F
and Ho = HM, respectively [12]. The name of each equation is used to dis-
tinguish the representation of the operation, being SCAM (a) for the original
equation based on the composite inverse operation and SCAMA(a) based on the
raw multiplicative inverse.

AES S-Box. AES is currently the USA block cipher standard. Based on
Rijndael, it was designed by Rijmen and Daemen as a Substitution Permutation
Network [5]. AES is divided in 4 stages denoted as SubBytes, ShiftRows, Mix-
Columns and AddRoundKey. SubBytes is the non-linear stage of this cipher and
it is formed by two S-boxes. SAES(a) is used for encryption and SAESinv(a) is
used for decryption. AES irreducible polynomial is f(z) = z8 + z4 + z3 + z + 1.
Letting a and b the input and output of the AES S-box, then

b = SAES(a) = A(a)−1 + c ∈ GF (28) (12)
binv = SAESinv(a) = A−1(a + c)−1 ∈ GF (28) (13)

where c = [1 1 0 0 0 1 1 0]T is a Boolean vector and A, A−1 are Boolean
matrices.
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SMS4 S-Box. SMS4 is a Feistel block cipher designed by Chinese researchers
[20]. SMS4 uses one S-box as non-linear stage. The way of obtaining the SMS4 S-
box are given by description is given by Liu et al. by inferring the most accurate
representation of the S-box from the published tables [11], and Erickson et al.
[6] . According to them, the irreducible polynomial is f(z) = z8 + z7 + z6 +
z5 + z4 + z2 + 1. Letting a and b the input and output of the SMS4 S-box, the
mathematical description is given as

b = SSMS4(a) = [(aA1 + ci2)−1]A2 + co2 ∈ GF (28) (14)
b = SSMS4A(a) = A2[(A1a + ci2)−1] + co2 ∈ GF (28) (15)

where ci2 = co2 = [1 1 0 0 1 0 1 1] is a Boolean vector, A1 is a Boolean matrix
and A1 = A2 in the case of Eq. 14 ([11]). For Eq. 15, ci2 = [1 1 0 1 0 0 1 1]T ,
co2 = [1 1 0 0 1 0 1 1]T are Boolean vectors, A1 and A1 are Boolean matrices,
where A1 �= A2 ([6]). In this manuscript, Eq. 15 is used. Nevertheless, the input,
constants and the final output should be reversed for maintaining consistency
before and after using the multiplicative inverse, while the matrix set is the same
as shown by Erickson et al.2.

3.1 Merging the Camellia, AES and SMS4 S-Boxes by Using
Composite Fields

From previous descriptions of the Camellia, AES and SMS4 S-boxes, all the
S-boxes can share the same Z operation (composite inverse). Equations (16–19)
are the composite field versions of the Camellia, SMS4, AES and AES inverse
S-boxes where F = MFo, H = HoM−1, Ã1 = MA1, Ã2 = A2M−1, c̃i2 =
Mci2, Ã = AM−1, B̃ = MA−1. Then, the identities are listed as follows

SCAM (a) = H[Z(F(a + ci1))] + co1 (16)
SSMS4Ac(a) = Ã2[Z(Ã1a + c̃i2)] + co2 (17)

SAESc(a) = Ã[Z(Ma)] + c (18)
SAESinvc(a) = M−1[Z(B̃(a + c))] (19)

Note that c̃i2 will change because of the matrix transformation that is used.
By using F, H, Ã1, Ã2, M, Ã, B̃ and M−1, we are able to determine the
number of minimal XOR gates that represent such matrix transformations. For
description purposes, let U = F, V = H for the matrix representations of the
Camellia S-box, U = Ã1, V = Ã2 for the SMS4 S-box, U = M, V = Ã for the
AES S-box and U = B̃, V = M−1 for the AES inverse S-box.

4 Results and Comparisons

Paar’s matrix generation algorithm [15] was applied to compute the set of matri-
ces of the Camellia S-box. A similar analysis was performed to the set of matrices
2 The same observation applies on Eq. 17 when computing c̃i2 = Mci2.
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of the AES and SMS4 S-boxes by using Zhang et al.’s algorithm [24]. That means,
the way to compute M (or equivalent matrix representations such as U and V).
For the optimization of these matrices, Boyar et al.’s LDG technique helps to
compute the number of XOR gates and the critical path for each obtained matrix
[10]. In similar ways to previous works available in the literature, identity τ = 1
was considered for all the representations. An additional analysis with respect to
Martinez et al.’s work is the inclusion of normal bases in GF (24). Tables 1 and 2
include the number of gates (NG) and critical path (CP) in terms of XOR, AND
and NOT gates because the results include the non-linear term γ. By adopting
Martinez et al.’s notation [12], X means XOR, No means NOT, A means AND,
while N means Normal and P means polynomial basis representation. Addition-
ally, XOR means to have two-input XOR gate, AND means to have two-input
AND gate.

Performing an extensive search for the given composite bases, there are fea-
sible solutions to implement the Camellia, AES and SMS4 S-boxes at the same
time with PP and PN representations. That means, the three S-boxes use the
same composite field representation. Condensed results are shown in Table 1,
which includes those results that are feasible to be merged. Those cases reported
by Xu et al. [22] and Abbasi et al. [1] were considered as described in those refer-
ences. The same criterion was applied to include the Camellia S-box reported by
Martinez et al., where (τ = 2, ν = 2) (marked in Table 1 as %). To complement
the reported results, the given S-boxes were synthesized by using XILINX ISE
Design Suite 14.4 with the FPGA Virtex 6 Kit ML605, thus obtaining the cor-
responding number of used LUTs and slices in a simulated way. The estimated
path delay is also reported (in nano-seconds).

The results shown in Table 2 are summarized from the data showed in Table 1,
by adding the corresponding AND/XOR/NOT gates and merging the Z opera-
tion. Cases marked as “M Set” were obtained by concatenating the corresponding

Table 1. Number of gates (NG) and critical path (CP) for the Camellia, SMS4 and
AES S-boxes (D=delay).

Field Cipher NG (U,γ,V) CP (U,γ,V) LUTs/Slices/D(ns)

PP Camellia % [12] 91 X /58 A/9 No 15 X/4 A/2 No

PPP SMS4 [22] 157 X /63 A

NNN SMS4 [1] 134 X /36 A

PP Camellia [18] 89 X/58 A/9 No 15 X/4 A/1 No 40/16/5.796

SMS4 102 X/58 A/9 No 17 X/4 A/2 No 66/28/7.341

AES [18] 127 X/ 58 A/8 No/2 MUX 17 X/4 A/1 No/2 MUX 80/34/8.998

NP Camellia [12] 94 X/58 A/9 No 14 X/4 A/2 No 37/15/5.158

SMS4 99 X/58 A/11 No 16 X/4 A/2 No 65/33/6.837

PN Camellia 98 X/58 A/9 No 17 X/4 A/2 No 50/20/7.945

SMS4 102 X/58 A/7 No 17 X/4 A/2 No 52/21/7.801

AES 129 X/58 A/8 No/2 MUX 17 X/4 A/1 No/2 MUX 60/21/9.892

NN Camellia 100 X/58 A/9 No 16 X/4 A/2 No 54/23/8.392

SMS4 101 X/58 A/8 No 15 X/4 A/2 No 54/23/8.048
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Table 2. Merged cases of the Camellia, SMS4 and AES S-boxes (D=delay).

Field Cipher NG (U,γ,V) CP (U,γ,V) LUTs/Slices/D(ns)

PP AES/Cam [18] 143 X/ 58 A/17 No/2 MUX 17 X/4 A/1 No/2 MUX 89/34/7.810

AES/SMS4 156 X/ 58 A/17 No/2 MUX 17 X/4 A/1 No/2 MUX 71/28/9.459

Cam/SMS4 118 X/ 58 A/18 No/2 MUX 17 X/4 A/2 No/2 MUX 74/27/8.839

Set 172 X/ 58 A/26 No/2 MUX 17 X/4 A/2 No/2 MUX 78/31/8.878

M Set 146 X/ 58 A/26 No/2 MUX 17 X/4 A/2 No/2 MUX 81/28/8.878

NP Cam/SMS4 120 X/ 58 A/20 No/2 MUX 16 X/4 A/2 No/2 MUX 60/24/7.064

PN AES/Cam 153 X/58 A/17 No/2 MUX 17 X/4 A/2 No/2 MUX 76/33/10.204

AES/SMS4 157 X/58 A/15 No/2 MUX 17 X/4 A/2 No/2 MUX 71/27/9.650

Cam/SMS4 126 X/58 A/16 No/2 MUX 17 X/4 A/2 No/2 MUX 66/26/9.580

Set 181 X/58 A/24 No/2 MUX 17 X/4 A/2 No/2 MUX 87/37/12.504

M Set 161 X/58 A/24 No/2 MUX 17 X/4 A/2 No/2 MUX 81/32/10.817

NN Cam/SMS4 127 X/58 A/17 No/2 MUX 16 X/4 A/2 No/2 MUX 60/25/8.867

matrices as GI = [F Ã1 M B̃]T and GO = [H Ã2 Ã M−1]T , each one with
dimensions 32 × 8. For PP representation GI has 35 XOR gates and GO has 38
XOR gates. For PN representation GI has 44 XOR gates and GO has 43 XOR
gates. It is needed to add two multiplexers to choose the corresponding S-box
and it is important to consider that these components can add extra delay at
the critical path.

For calculating the number of gates in Δ−1, identities provided by Wolker-
storfer et al. [21] and Nikova et al. [14] were applied to compute the corresponding
outputs. For the sake of simplicity, only cases for P with p1(y) = y4 + y + 1 and
N with p2(y) = y4 + y3 + y2 + y + 1 were considered. For P there are 18 X/10
A gates with 3 X/2 A gates as the critical path. For N there are 17 X/10 A
gates with 3 X/2 A gates as the critical path. Nikova et al.’s suggest to use out-
puts A and H (Table 2 of [14]) as the suitable ones. Nevertheless, it is possible
that outputs D and G can also be suitable. This claim is supported by using
the Little-Fermat-Theorem version of the multiplicative inverse published in the
IEEE P-1363 standard documents (see [7,8]) and additional sources (see [9,19])
where D and G are obtained for normal and optimal normal bases, respectively.
For G, we obtain

a−1
0 = x0x1 + x2 + x0x2 + x0x1x2 + x1x3 + x0x2x3 + x1x2x3 (20)

a−1
1 = x0x2 + x1x2 + x3 + x1x3 + x0x1x3 + x0x2x3 + x1x2x3 (21)

a−1
2 = x0 + x0x2 + x0x1x2 + x1x3 + x0x1x3 + x2x3 + x0x2x3 (22)

a−1
3 = x1 + x0x2 + x0x1x2 + x0x3 + x1x3 + x0x1x3 + x1x2x3 (23)

Here, identities of Eqs. 20–23 were used.

5 Conclusions

With respect to SMS4 under composite field implementations, the cases reported
in this manuscript are shorter in number of XOR gates than previous cases given
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by Abbasi et al. and Xu et al. Nevertheless, the number of AND gates shown
in this manuscript is worse than Abbasi et al.’s normal basis case. Nonetheless,
it is needed to have more accurate parameters to be able to compare the SMS4
S-box in GF (((22)2)2) and such task is left as future work. Unfortunately, there
is not a straightforward way to compare the theoretical critical path among the
Abbassi et al.’s and Xu et al.’s cases and the cases shown in this manuscript.
If the AES and Camellia S-boxes are combined, Satoh et al.’s case remains as
the best one. Nevertheless, there are additional ways to merge the Camellia and
SMS4 S-boxes, AES and SMS4 S-boxes, and the complete set of S-boxes. A
new way to construct S-boxes by using normal bases is also provided with PN
representation. It is interesting to see that merging the transformation matrices
in a unique matrix, the number of XOR gates can be reduced in a significant
way. For PP representation, 172-146= 26 XOR gates are saved, while for PN
representation, 181-161=20 XOR gates are saved. There is a penalty by merging
the complete set of S-boxes, which is the use of two multiplexers. Even so,
this impact is minimal if we consider that each S-box implemented individually
spends more hardware resources than in merged way i.e. a multiplexer is less
complex than implementing a complete S-box as Satoh et al. demonstrated in
their work [18]. By using FPGA platforms, the extended matrix merged Satoh’s
case remains as the best one because it works with 78 LUTs/31 slices/8.878 ns
for non-merged matrix set and 81 LUTs/28 slices/8.878 ns for merged matrix
set. As future work, the authors will implement the given constructions with
appropriate standard CMOS libraries in order to obtain more accurate results
for ASIC cases.
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Abstract. The design of secure and efficient smart-card-based password
authentication schemes remains a challenging problem today despite two
decades of intensive research in the security community, and the current
crux lies in how to achieve truly two-factor security even if the smart
cards can be tampered. In this paper, we analyze two recent proposals,
namely, Hsieh-Leu’s scheme and Wang’s PSCAV scheme. We show that,
under their non-tamper-resistance assumption of the smart cards, both
schemes are still prone to offline dictionary attack, in which an attacker
can obtain the victim’s password when getting temporary access to the
victim’s smart card. This indicates that compromising a single factor
(i.e., the smart card) of these two schemes leads to the downfall of both
factors (i.e., both the smart card and the password), thereby invalidat-
ing their claim of preserving two-factor security. Remarkably, our attack
on the latter protocol, which is not captured in Wang’s original proto-
col security model, reveals a new attacking scenario and gives rise to
the strongest adversary model so far. In addition, we make the first
attempt to explain why smart cards, instead of common cheap storage
devices (e.g., USB sticks), are preferred in most two-factor authentication
schemes for security-critical applications.

Keywords: Password authentication · Offline dictionary attack · Smart
card · Common memory device · Non-tamper resistant

1 Introduction

Back in 1992, Bellovin and Merritt [3] demonstrated how two parties, who only
share a low-entropy password and communicate over a public network, can
authenticate each other and agree on a cryptographically strong session key
to secure their subsequent communications. Their work, known as encrypted
key exchange, is a great success in protecting poorly-chosen passwords from the
notorious offline dictionary attacks and thus confirms the feasibility of using
password-only protocols to establish virtually secure channels over public net-
works, which is one of the main practical applications of cryptography. Due to the
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 221–237, 2015.
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practical significance of password-based authentication, Bellovin-Merritt’s semi-
nal work has been followed by a number of remarkable proposals (e.g., [6,7,27])
with various levels of security and complexity.

While password authentication protocols are well suited to applications with
moderate security demands, they are inadequate for use in security-critical appli-
cations such as e-banking, e-health and e-government [8]. Since password-based
protocols generally require the server to store and manage a sensitive password-
related file, a compromise of this file will lead to an exposure of the passwords of
all the registered users, resulting in the downfall of the entire system. With the
prevalence of zero-day attacks [4], these days it is no news to see the headlines
about catastrophic leakages of tens of millions of passwords [13,16]. It is due
to this inherent limitation that two-factor authentication schemes1 are intro-
duced to enhance the systems’ security and privacy. Owing to its portability,
simplicity and cryptographic capability, smart-card-based password authentica-
tion has become one of the most effective, prevalent and promising two-factor
authentication mechanisms.

Since Chang and Wu [9] developed the first smart-card-based password
authentication scheme in 1991, there have been ample (in the hundreds) of
this type of schemes proposed [15,20,23,26,28,31,48,53,57,58]. Unfortunately,
as stated in [34,45], although there has been no lack of literature, it remains an
immature area – all existing schemes are far from ideal and each has been shown
to be either insecure or short of important features. For an intuitive grasp, we
summarize the “break-fix-break-fix” history of this area in Fig. 1. Note that many
other important schemes cannot be included here only due to space constraints.

Motivations. The past thirty years of research on password-only protocols have
proved that it is incredibly difficult to get a single-factor protocol right [43,60],
while the past twenty years of “break-fix-break-fix” cycle of smart-card-based
password protocols have manifested designing a two-factor scheme can only be
harder [33,34,40]. It remains an open problem to construct an efficient and secure
two-factor protocol that can meet all the security goals (see Sect. 2 of [54]) and
preserve all the desirable features such as user anonymity and repairability (see
[34] for a comprehensive list of desirable features).

We have analyzed more than one hundred and fifty smart-card-based pass-
word protocols and observe that, as with the domain of password-based single-
factor authentication, offline dictionary attack is still the most prominent issue
in two-factor authentication. This attack against many of previous protocols has
emphasized the need for rigorous proofs of security in a formal, well-defined
model. On the other hand, the practicality of a formal model largely depends on
whether it “accurately captures the realistic capabilities of the adversary” [17].
As stated by Alfred Menezes [36,37], although many formal security definitions
“have an appealing logical elegance and nicely reflect certain notions of security,
they fail to take into account many types of attacks and do not provide a com-
prehensive model of adversarial behavior”, and “the old-fashioned cryptanalysis
continues to play an important role in establishing confidence in the security of a
1 Note that the terms “protocol” and “scheme” will be used interchangeably thereafter.
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Fig. 1. A brief history of smart-card-based password authentication

cryptographic system”. All this and the continuous failures in designing a prac-
tical two-factor scheme outline the need for exploring the adversarial behaviors
and for revealing the underlying subtleties by cryptanalysis.

Recent studies have pointed out that the secret parameters stored in com-
mon smart cards can be extracted by side-channel attacks such as power analysis
[29,38,39] or reverse engineering techniques [35,42]. Even though the card man-
ufacturers may have considered the risks of side-channel attacks and provided
countermeasures to cope with the problem, how much confidence can one have
that these countermeasures residing in the card are still effective after three
years of the card production and circulation? Considering this, since 2004 most
schemes have preferred to use a non-tamper-resistant smart card (see the arcuate
dash line of Fig. 1). This brings forth a question: While non-tamper resistance
assumption has been made about smart cards (which means the core feature of
the smart cards is lost), why not just use cheap memory devices (e.g., USB sticks)
instead? As far as we know, little attention has been paid to this interesting (and
fundamental) question.

Our Contributions. This paper examines the security of two recently proposed
schemes, namely Hsieh-Leu’s scheme [25] and Wang’s PSCAV scheme [54]. These
two schemes are the foremost ones and claimed to be secure against various
known attacks. However, this work invalidates their claims by demonstrating
that, under their assumption of the capabilities of the adversary, both schemes
are vulnerable to the offline dictionary attack. This indicates that none of them
can achieve the “precious” two-factor security.
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Interestingly, our attack on Wang’s PSCAV scheme [54] highlights a new
attacking scenario: Firstly, an attacker gets temporary access to the victim’s
smart card and extracts its sensitive data (hereafter we say this card is exposed);
Secondly, she returns the exposed card without awareness of the victim; Finally,
she performs malicious attacks when the victim uses this exposed card. This new
attacking scenario has already given rise to the strongest adversary model so far
(see the “Returned stolen token” Section of [61]).

In addition, we take the first step toward giving a plausible explanation
to the rather confusing question – why smart cards, instead of common cheap
storage devices (e.g., USB sticks and flash-memory cards), are preferred in most
two-factor authentication schemes for security-critical applications, even if smart
cards can be tampered?

The remainder of this paper is organized as follows: Sect. 2 sketches the
system architecture and elaborates on the adversary model; Then, Hsieh-Leu’s
scheme is reviewed and analyzed in Sect. 3; In Sect. 4, we review Wang’s scheme
and show its weakness; The conclusion is drawn in Sect. 5.

2 System Architecture and Adversary Models

2.1 System Architecture of Two-Factor Authentication

In this paper, we mainly focus on the most general case of two-factor authen-
tication where the communication parties only involve a single server and a set
of users, i.e. the traditional client/server architecture. It is not difficult to see
that our results in this paper can be applied to more complex architectures
where more than one server are involved, such as the multi-server authentica-
tion environments [58], the mobile network roaming environments [48] and the
hierarchical wireless sensor networks [14].

In this sort of schemes, firstly the user chooses an identity (often as well as a
password) and registers at the server; The server returns the user a smart card
storing some security parameters. After registration, whenever the user wants
to login to the server, she inserts the card into a terminal and enters her pass-
word. Then the card constructs a login request and sends it to the server. Upon
receiving the request, the server checks its validity and will offer the requested
service if the verification holds. Generally, a session key is established for securing
the subsequent data communications. More sophisticated schemes also achieves
mutual authentication, i.e. the client is also convinced that the server on the
other end is authentic. What a truly two-factor protocol can guarantee is that,
only the user who is in possession of both the smart card and the corresponding
password can pass the verification of the server. This implies that a compromise
of either factor will pose no danger to the security of a truly two-factor protocol.

2.2 Adversary Models for Smart-card-based Authentication
and for Common-memory-based Authentication

In this section, we attempt to take the initial step to justify the use of smart cards
rather than common memory devices in security-critical applications. Firstly,
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we explicitly define the practical capabilities that an attacker may have in the
smart-card-based authentication environment and in the memory-device-based
authentication environment, respectively. Then, we investigate into the advan-
tages and disadvantages of these two kinds of authentication.

Two Kinds of Mobile Devices. A smart card is an integrated circuit card with
a processor for executing applications and a memory, coupled to the processor,
for storing multiple applications. This kind of device has been widely used for
various security-critical applications ranging from online-banking over digital
rights management (DRM) to stream media (e.g., Pay-TV). For example, a
HiPerSmart-P9SC648 smart card [47] from the 32-bit HiPerSmartTM family is
of the RISC MIPS32 architecture, with a maximum clock speed of 36 MHz, a
512 Kbyte Flash, a 142 Kbyte EEPROM and a 16 Kbyte RAM. In the current
market, such a smart card is priced at $3.0 ∼ 3.5. In contrast, a common USB
memory stick is a data storage device that includes the flash memory with an
integrated Universal Serial Bus (USB) interface, and the typical cost of an 1 GB
USB stick is $1.3 ∼ 1.5 [21]. Since USB memory sticks2 are not equipped with
micro-processors, they cannot execute cryptographic operations as opposed to
smart cards, and thus the operations have to be performed on the user terminal
(e.g., PCs and PDAs).

As discussed in the previous section, it is prudent and reasonable to take into
consideration the side-channel attacks [29,38,39,42] when designing a smart-
card-based two-factor authentication scheme. In other words, the secret data
stored in the card memory are assumed to be extractable when the smart card is
in the hands of an attacker. On the other hand, in the past it was just the tamper-
resistant feature that makes smart cards prevail over other cheap (but non-
tamper-resistant) memory devices. Now that smart cards can be tampered, why
we do not choose cheap USB memory sticks instead of expensive smart cards? Or
equally, what’s the rationale under these propositions [20,25,31,50,51,55,57,59]
that endeavor to construct two-factor authentication schemes using non-tamper
resistant smart cards rather than memory sticks? To the best of our knowledge,
until now, little attention has been given to this question.

Two Kinds of Adversary Models. To identify the differences in security
provisions offered by two-factor authentication schemes using these two differ-
ent devices, we need to discuss the realistic capabilities that an attacker may
have under these two different authentication environments. On the basis of the
studies [50,54,57,59], the following assumptions are made on the capabilities of
the adversary M in the smart-card-based environment:

S(i) M can fully control the communication channel between the user and the
server. In other words, she can inject, modify, block, and delete messages
exchanged in the channel at will. This assumption is consistent with the
Dolev-Yao model;

2 Hereafter, we use “USB sticks” and “common memory devices” interchangeably. In
this work, we do not consider hybrid devices like Trust Extension Devices [1].
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S(ii) M is able to get access to the smart card and may compromise the user’s
smart card through side-channel attacks (only) when getting access to the
smart card for a relatively long period of time(e.g., a few hours) [54,59];

S(iii) M may comprise the user’s password (e.g., by shoulder-surfing or mali-
cious card reader [19,32]).

S(iv) M is not able to extract the sensitive information on the smart card while
intercepting the victim’s password by using a malicious card reader, since
the user is on the scene and the time is not sufficient for launching a
side-channel attack [2,54];

S(v) M is not allowed to first compromise the user’s password (e.g., by
shoulder-surfing) and then compromise the smart card [51,54,57]. Other-
wise, no scheme can prevent M from succeeding. More specifically, if M
has compromised both factors, there is no way to prevent M from imper-
sonating the user, since it is these two factors together that precisely
identifies the user. This is a trivial case.

The above Assumptions S(i) ∼ S(v) have been made in most recent schemes
and their reasonableness is quite evident. For a detailed justification, read-
ers are referred to [52]. It is worth noting that, Assumptions S(ii) and S(iv)
together imply that the common non-tamper-resistance assumption made about
the smart cards is conditional. In particular, it is Assumption S(iv) that makes
it possible for the smart-card-based schemes to be adopted in completely hostile
environments, yet most studies [11,20,25,28,51,57–59] (except few ones [52,54])
do not make this assumption clear and just implicitly rely on it. Failing to catch
this subtlety may cause great misconceptions and lead to curious situations as
it did in the works [10,44,45,59], which will be discussed later in this section.

Regarding USB-stick-based schemes, Assumption S(iv) will not be valid,
because it is not difficult for a malware to copy all the contents in the USB
memory stick within only seconds, even if the user appears on the scene. Never-
theless, the other four assumptions do roughly hold for common-memory-based
environment:

M(i) M can fully control the communication channel between the user and the
server. In other words, she can inject, modify, block, and delete messages
exchanged in the channel at will. This assumption is consistent with the
Dolev-Yao model;

M(ii) M is able to compromise the user’s memory device through malware
within a short time period (e.g., in a few seconds);

M(iii) M may comprise the user’s password (e.g., by shoulder-surfing or social
engineering);

M(iv) M is able to extract the sensitive data on the memory device while
intercepting the password that the user input by using malwares;

M(v) M is not allowed to first compromise the user’s password and then
compromise the user’s memory device. Clearly, if M compromises both
factors, there is no way to prevent M from impersonating the user, since
these two factors together precisely identify the user. It is a trivial case.
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Justification for Using Smart Cards. Having examining the differences of
adversary models between the smart card scenario and the common memory
device scenario, we proceed to look into the rationales underlying the wide use
of smart cards rather than common memory devices in two-factor authentication.

Recently, with the popularity of mobile devices, a few studies [10,44] advo-
cated the use of common memory devices instead of smart cards to construct
two-factor schemes, and claimed that their schemes can “enjoy all the advantages
of authentication schemes using smart cards” [44]. However, such a claim is a bit
optimistic. According to the above adversary model for common-memory-device
environment, such a claim holds only when the scheme is adopted in a trusted
user terminal (otherwise, the malicious terminal could just intercept the pass-
word and copy the content of the memory device, and with no doubt the attacker
is able to impersonate the victim in future). Smart-card-based schemes, in con-
trast, do not subject to this restriction. For example, under the five assumptions
S(i) ∼ S(v), Wang et al. [52] manage to construct a smart-card-based scheme
with provable security, and this scheme can well operate in a hostile user termi-
nal.

In contrast to the optimistic view of [10,44], the work in [45] pessimistically
stated that, if the smart card are assumed to be non-tamper-resistant, then “it
is no better than a passive token”. Consequently, smart cards are abandoned in
their choice and static clonable tokens are in place, and a software-only two-factor
scheme is proposed. Obviously, according to our above analysis, such a software-
only scheme can never achieve the same level of security as compared to smart-
card-based schemes. Nevertheless, this scheme may be suitable for applications
where costs gain more concerns than security. The authors in [59] also explicitly
advocate that they “do not make assumption on the existence of any special
security features supported by the smart-cards” and “simply consider a smart-
card to be a memory card with an embedded micro-processor for performing
required operations specified in a scheme.” It is not difficult to see that, in the
light of their statements, their proposed smart-card-based scheme [59] can never
achieve the claimed two-factor security.

In security-critical applications, user terminals are often the targets of attack-
ers and may be infected with viruses, trojans and malwares, only two-factor
authentication schemes using smart cards (which is though only condition-
ally tamper-proof) are suitable for such environments, common-memory-device-
based two-factor schemes cannot “enjoy all the advantages of authentication
schemes using smart cards”. This explicates why most studies adhere to use
smart cards rather than common memory devices when designing two-factor
schemes (which is made for security-critical applications), even if it is supposed
that the data stored in the card memory can be extracted.

3 Cryptanalysis of Hsieh-Leu’s Scheme

In 2012, Hsieh and Leu [25] demonstrated several attacks against Hsiang-Shih’s
[24] smart-card-based password authentication scheme. To remedy the identified
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security flaws, they proposed an enhanced version over Hsiang-Shih’s scheme
[24] by “exploiting hash functions”, and claimed that their improved scheme can
withstand offline dictionary attack even if the sensitive parameters are extracted
by the adversary. However, as we will show in the following, under their non-
tamper-resistance assumption of the smart cards, Hsieh-Leu’s scheme is still
vulnerable to offline dictionary attack, which is similar to the one that Hsiang-
Shih’s scheme suffers.

3.1 A Brief Review of Hsieh-Leu’s Scheme

For ease of presentation, we employ some intuitive notations as listed in Table 1
and will follow the descriptions in Hsieh-Leu’s scheme [25] as closely as possible.
This scheme is composed of four phases: registration, login, verification and
password change.

Table 1. Notations and abbreviations

Symbol Description

Ui ith user

S remote server

M malicious attacker

ID i identity of user Ui

PWi password of user Ui

x the secret key of remote server S

⊕ the bitwise XOR operation

‖ the string concatenation operation

h(·) collision free one-way hash function

A → B : C message C is transferred through a common channel from A to B

A ⇒ B : C message C is transferred through a secure channel from A to B

Registration Phase. In this phase, the initial registration is different from
the re-registration. Since the re-registration process has little relevance with our
discussions, it is omitted here. The initial registration is depicted as follows.

(1) Ui chooses a random number b and computes h(b ⊕ PWi).
(2) Ui ⇒ S : IDi, h(PWi), h(b ⊕ PWi).
(3) On receiving the login request, in the account database, server S creates

an entry for Ui and stores n = 0 in this entry.
(4) S computes EID = (h(IDi)||n), P = h(EID ⊕ x), R = P ⊕ h(b ⊕ PWi)

and V = h(h(PWi) ⊕ h(x)), and stores V in the entry corresponding to Ui.
(5) S ⇒ Ui : a smart card containing R and h(·).
(6) On receiving the smart card, Ui inputs b into his smart card and does

not need to remember b since then.
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Login Phase. When user Ui wants to login to S, she inserts her smart card
into the card reader and keys her IDi with PWi. The smart card performs the
following steps:

(1) The smart card computes C1 = R ⊕ h(b ⊕ PWi) and C2 = h(C1 ⊕ Ti),
where Ti denotes Ui’s current timestamp.

(2) Ui → S : {IDi, Ti, C2}.

Verification Phase. On receiving the login request from Ui, the remote server
S and Ui’s smart card perform the following steps:

(1) If either IDi or Ti is invalid or Ts − Ti ≤ 0, S rejects Ui’s login request.
Otherwise, S computes C ′

2 = h(h(EID ⊕ x) ⊕ Ti), and compares C ′
2 with the

received C2. If they are equal, S accepts Ui’s login request and proceeds to
compute C3 = h(h(EID ⊕x)⊕h(Ts)), where Ts denotes S’s current timestamp.
Otherwise, Ui’s login request is rejected.

(2) S → U : {Ts, C3}.
(3) If either Ts is invalid or Ts = Ti, Ui terminates the session. Otherwise, Ui

computes C ′
3 = h(C1 ⊕h(Ts)), and compares the computed C ′

3 with the received
C3. If they are equal, Ui authenticates S successfully.

Password Change Phase. When Ui wants to update her password, this phase
is employed. Since this phase has little relevance with our discussions, it is
omitted.

3.2 Offline Dictionary Attack

Offline dictionary attack is the most damaging threat that a practical password-
based protocol must be able to guard against [3,27]. Hsieh and Leu showed
that Hsiang-Shih’s scheme [24] is vulnerable to offline dictionary attack once the
secret parameters stored in the victim’s smart card are revealed by the adversary
“by monitoring the power consumption or by analyzing the leaked information”.

Now let’s see how exactly the same attack could be successfully launched
with Hsieh-Leu’s own scheme in place. Suppose user Ui’s smart card is somehow
(stolen or picked up) in the possession of an adversary M, and the parameters
R and b can be revealed using side-channel attacks [35,38]. With the previously
intercepted authentication transcripts {IDi, C2, Ti} from the public channel, M
can obtain Ui’s password PWi as follows:

Step 1. Guesses the value of PWi to be PW ∗
i from the dictionary space Dpw.

Step 2. Computes C∗
1 = R ⊕ h(b ⊕ PWi), where R, b is extracted from Ui’s

smart card.
Step 3. Computes C∗

2 = h(C∗
1 ⊕ Ti), where Ti is previously intercepted from

the public channel.
Step 4. Verifies the correctness of PW ∗

i by checking if the computed C∗
2 is

equal to the intercepted C2.
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Step 5. Repeats Step 1 ∼ 4 of this procedure until the correct value of PWi

is found.

Our attack shows that once the smart-card factor is compromised, the cor-
responding password factor can be offline guessed and hence the entire system
collapses. This indicates that Hsieh-Leu’s scheme is intrinsically not a two-factor
scheme and is as insecure as the original scheme (i.e., Hsiang-Shih’s scheme [24]).
This also corroborates the “public-key principle” [33] that, under the non-tamper
resistance assumption of the smart cards, only symmetric-key techniques (such
as Hash, block cipher) are inherently unable to resist offline dictionary attack.

Let |Dpw| denote the number of passwords in Dpw. The time complexity of
the above attack procedure is O(|Dpw| ∗ (2TH + 3TX)), where TH is the running
time for Hash function and TX the running time for bitwise XOR operation. It
is easy to see that, the time for M to recover Ui’s password is a linear function
of the number of passwords in the password space. And hence our attack is
quite effective. For an intuitive grasp of the effectiveness of this attack (and the
following attack on PSCAV), we further obtain the running time (see Table 2) for
the related operations on common Laptop PCs by using the publicly-available,
multi-precision integer and rational arithmetic C/C++ library MIRACL [46]. In
practice, the password space is very limited, e.g., |Dpw| ≤ 106 [5,18,56], and it
follows that the above attack can be completed in seconds on a common PC.

Table 2. Computation evaluation of related operations on common Laptop PCs

Experimental platform Exponentiation Symmetric encryp- Hash operation Other lightweight

(common PCs) TE (|n|=1024) tion TS (AES-128) TH (SHA-1) operations(e.g.,XOR)

Intel T5870 2.00GHz 10.526ms 2.012µs 2.437µs 0.011µs

Intel E5500 2.80GHz 7.716ms 0.530µs 0.756µs 0.009µs

Intel i5-3210 2.50GHz 4.390ms 0.415µs 1.132µs 0.008µs

The above attack can be generalized as follows: with the security parameters
extracted from the smart card and the transcripts intercepted during the previ-
ous login session(s), the attacker can repeatedly guess the victim’s password via
an offline automated program. This attack strategy is not new. Actually, it is
the common “Waterloo” of many broken schemes [11,12,24,28,49]. This attack
scenario (adversary behavior) has been captured in several two-factor security
models [54,55,57]. Yet, the following attacker is still at large.

4 Cryptanalysis of PSCAV from SEC 2012

In SEC’12, Wang [54] observed that the previous papers in this area present
attacks on protocols in earlier works and put forward new proposals without
proper security justification (let alone a security model to fully identify the
practical threats), which constitutes the main cause of the long-standing failure.
Accordingly, Wang presented three kinds of security models, namely Type I, II



Offline Dictionary Attack on Password Authentication Schemes 231

and III. In the Type III model, which is the harshest model, mainly three
assumptions are made:

(1) an adversary M is allowed to have full control of the communication channel
between the user and the server;

(2) the smart card is assumed to be non-tamper resistant and the user’s password
may be intercepted by M using a malicious smart card reader, but not both;

(3) there is no counter protection in the smart card, i.e. M can issue a large
amount of queries to the smart card using a malicious card reader to learn
some useful information.

Note that, the above Assumption 1 accords with S(i), and Assumption 2 is
consistent with S(ii)∼S(v)(see Sect. 2.2). As for Assumption 3, its opposite is
implicitly made in most of previous schemes as well as the model introduced in
Sect. 2.2. Apparently, a scheme which is secure in Type III shall also be secure
in a model only with Assumptions 1 and 2. To the best of our knowledge, the
Type III model is the strongest model that has ever been proposed for smart-
card-based password authentication so far.

Wang [54] further proposed four schemes, only two of which, i.e. PSCAb and
PSCAV, are claimed to be secure under the Type III model. However, PSCAb
requires Weil or Tate pairing operations to defend against offline dic tionary
attack and may not be suitable for systems where pairing operations are consid-
ered to be too expensive or infeasible to implement. Moreover, PSCAb suffers
from the well-known key escrow problem and lacks some desirable features such
as repairability, user anonymity and local password update. As for PSCAV, in
this paper, we will show that it is susceptible to offline dictionary attack under
Assumptions 1 and 2 (or equally, S(ii)∼S(v)) plus a new (but realistic) assump-
tion – the attacker can return a victim’s exposed card without detection.

4.1 A Brief Review of PSCAV

In this section, we firstly give a brief review of PSCAV and then present the
attack. Here we just follow the original notations in [54] as closely as possible.
Assume that the server has a master secret β (β could be user specific also).
For each user (or called client) C with identity C and password α, let the user
specific generator be gC = H(C, α, β), the value g

H2(α)
C (= EH2(α)(gC), and thus

gC = DH2(α)(g
H2(α)
C )) is stored in the smart card, where H and H2 are two inde-

pendent hash functions, and E/D stand for symmetric encryption/decryption
(see Sect. 3.2 of [54]). The value gC = H(C, α, β) will be stored in the server’s
database for this user. The remaining of the protocol runs as follows:

(1) The card selects random x, computes gC = DH2(α)(g
H2(α)
C ) and sends

RA = gx
C to the server;

(2) Server selects random y and sends RA = gy
C to the card;

(3) The card computes u = H(C,S, RA, RB) and sk = g
y(x+u)
C , where S is

identity string of the server;
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Fig. 2. Message flows of PSCAV Fig. 3. Our attack

(4) The card sends CC = H(sk, C,S, RA, RB , 1) to the server;
(5) After verifying that CC is correct, the server computes u = H(C,S, RA, RB),

sk = g
y(x+uα)
C = (gx

C)y ·gyuα
C = (RA)y ·gyuα

C , and sends CS = H(sk,S, C, RB ,
RA, 2) to the card.

The message flows of PSCAV are shown in the Fig. 2. Since the session key
sk is computed with the contribution of the password α by server S in the
above Step 5, the password α (or the parameter gα

C) is needed to be known
by S. However, the original specification in [54] does not explicitly explain how
can the server obtain the user’s password α to compute sk in the above Step
5. We assume (suggest) gα

C is also stored in the server’s database, i.e. an entry
(C, gC , gα

C) corresponding to user C is stored in the server’s database.3 This ambi-
guity does not affect our security analysis however.

4.2 Offline Dictionary Attack

Suppose an adversary M has got temporary access to the client C’s smart card
and obtained the stored secret g

H2(α)
C . Then M sends back the card without

awareness of the victim C. Once C uses the exposed smart card, the attacker
can impersonate as the server to interact with C and to learn C’s password. The
attack, as summarized in Fig. 3, can be carried out by M as follows:

Step 1. On intercepting RA = gx
C from client C, M blocks it and sends RB =

g
H2(α)
C to the client on behalf of the server, where g

H2(α)
C is extracted from

C’s card;
Step 2. On receiving the response CC , M computes u = H(C,S, RA, RB).
Step 3. Guesses the value of password α to be α∗ from dictionary Dpw.
Step 4. Computes g∗

C = DH2(α∗)(g
H2(α)
C );

Step 5. Computes sk∗ = g
xH2(α

∗)
C · (g∗

C)uα∗H2(α
∗)

= (RA)H2(α
∗) · (g∗

C)u·α∗·H2(α
∗);

Step 6. M computes C∗
C = H(sk∗, C,S, RA, RB , 1);

Step 7. Verifies the correctness of α∗ by checking if the computed C∗
C is equal to

the received CC ;
Step 8. Repeats the above Steps 3–8 until the correct value of α is found.

The time complexity of the above attack is O(|Dpw| ∗ (3TE + TS + 3TH)).
As the size of the password dictionary, i.e. |Dpw|, is very limited in practice

3 This ambiguity and our suggested remedy have been confirmed by the author of [54],
and he earns our deep respect for his frankly and quickly acknowledgement.
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[5,18,56], e.g. |Dpw| ≤ 106, the above attack can be completed in polynomial
time. Further considering the experimental timings listed in Table 2, M may
recover the password in minutes on a PC by a single run of PSCAV.

Interestingly, our attack on Wang’s PSCAV scheme [54] highlights a new
attacking scenario: Firstly, an attacker gets temporary access to the victim’s
card and extracts its security parameters; Secondly, she sends back the exposed
card without awareness of the victim; Finally, she performs malicious attacks
when the victim uses this exposed card. Note that this attacking scenario is
quite realistic. For example, an employee accidentally leaves her bank card on
her desk after work, the attacker picks this card and performs the side-channel
attacks herself (or with recourse to professional labs) in the evening and puts it
back before the victim comes to work the next morning. The victim will find no
abnormality and use this card as usual. Unfortunately, once this card is put to
use, the corresponding password may be leaked, while the above procedure well
serves to illustrate how the password can be leaked to an attacker. As reported in
[41], “agencies are interested in quickly accessing someone’s room, install some
bug in the her mobile device and then return it without detection”. This also
confirms the practicality of our attack.

Wang’s PSCAV scheme is secure in their security model yet vulnerable to
our new attacking strategy. Since the identified attacking scenario is realistically
oriented towards a serious threat, it deserves special attention when defining
the underlying security model for smart-card-based password authentication.
This once again suggests that, a good security model is not one that denies the
capabilities of the attacker but rather one designed to capture the attacker’s
practical abilities as comprehensively as possible, and the powers not allowed
to the attacker are those that would allow her to trivially break any of this
type of schemes [22,30]. Fortunately, our observation has already given rise to
the strongest adversary model so far : Just two weeks ago, a new security model
named Type III-r was developed in [61].

5 Conclusion

Understanding security pitfalls of cryptographic protocols is the key to both
patching existing protocols and designing future schemes. In this paper, we
have demonstrated that Hsieh-Leu’s scheme and Wang’s PSCAV scheme suf-
fer from the offline dictionary attack under two different attacking strategies,
which reveals the challenges in constructing a practical authentication scheme
with truly two-factor security. Remarkably, our attack on Wang’s PSCAV scheme
highlights a new realistic attack scenario and thus uncovers a new behavior of
the attacker – returning the exposed smart card without awareness of the vic-
tim. As for future work, we are considering designing a practical scheme that
can survive in the Type III-r model.
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Abstract. We are witnessing the rapid expansion of smart devices
in our daily life. The need for individual privacy protection calls for
anonymous entity authentication techniques with affordable efficiency
upon the resource-constrained smart devices. Towards this objective, in
this paper we propose self-blindable credential, a lightweight anonymous
entity authentication primitive. We provide a formulation of the primi-
tive and present two concrete instantiations.

1 Introduction

The recent advances of hardware technology such as mobile phones, embed-
ded devices, and sensors, coupled with modern networking technology, set off
an explosive growth of applications using digital credentials for entity authen-
tication upon resource-constrained smart devices. For instance, vehicles can be
embedded with smart sensors carrying an electronic plate number issued from
the DMV (Department of Motor Vehicles), such that, they can communicate
with road-side devices for the road condition or traffic alerts. A mobile phone
can carry its owner’s personal credential, e.g., an electronic driver license, such
that the owner can use the mobile phone to prove his identity or certain capa-
bilities.

Two security related issues emerge from these applications. One is personal
privacy protection. Unlike a physical credential such as a plastic driver license
card which is presented by the user herself, digital credentials are often auto-
matically applied, without the user’s notice or explicit approval. This implies
that digital credentials residing on smart devices may backfire on the user’s per-
sonal privacy, despite its easiness of use. The other issue is credential revocation,
c© Springer International Publishing Switzerland 2015
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which becomes even harder if the credentials are used in a privacy-preserving
manner where the verifier cannot link credentials with user identities. Worse yet,
these two issues are aggravated by the limited computation and communication
capabilities of smart devices. The resource constraints of smart devices dictate
that the solution for privacy preservation and revocation support should have
lightweight computation and communication in order to minimize the time delay
and energy consumption.

Anonymous credentials [3,9–12] address user privacy in entity authentication
where credentials are used anonymously such that two authentication transac-
tions using the same credential cannot be linked by the verifier. Nonetheless,
existing anonymous credential schemes are not suitable for smart devices due
to high communication or computation overhead, just as observed in [7]. The
RSA-based schemes (e.g., [10,11]) normally involve costly zero-knowledge range
proofs, which entail tens of kilobits in communication and tens of modular expo-
nentiation operations in an RSA algebraic group. Although the IDEMIX anony-
mous credential and the DAA (both are RSA-based) have been implemented on
JAVA card, e.g., [2,5,9,14], the implementations either are not practically effi-
cient enough or do not well address credential revocation. The state-of-the-art
bilinear map-based schemes such as [3,4,12] rely on bilinear pairing operations
or computations over large bilinear groups.

Self-blindable certificate in [15] is another primitive that can be used for
anonymous entity authentication. The notion of self-blindable certificate con-
siders a privacy-preserving variant of the conventional public key certificate:
the certificate holder can blind the public key in the certificate by herself, such
that multiple uses of the same certificate cannot be linked, while the validity
of the CA signature is preserved. When used for entity authentication, a self-
blindable certificate essentially functions as an anonymous credential, but with
lighter computation. The high efficiency comes from the fact that the certifi-
cate holder only needs to perform computation in G1 of an asymmetric bilinear
map e : G1 × G2 → GT . Nonetheless, despite its high performance for smart
devices [6], it does not provide a satisfactory credential revocation mechanism.

To address this issue, we propose a lightweight anonymous credential scheme,
self-blindable credential. It follows the same working mechanism of self-blindable
certificate: the computation at the user side works entirely in G1, and the result-
ing authentication data only consist of group elements of G1. As G1 is much more
compact than G2 and GT , and the computation in G1 is much faster than in
G2, GT and pairing operation, self-blindable credential achieves better perfor-
mance than existing anonymous credential schemes.

2 Modeling of Self-blindable Credential

We consider a credential system that enables smart devices to authenticate them-
selves to a device reader anonymously, such that repeated uses of a credential
cannot be linked by the reader. The primary issue to be addressed is that smart
devices and the reader are asymmetric in terms of resources: smart devices are
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restraint with limited computation capability and energy resources, while the
reader is relatively powerful and has no resource constraints. In the rest, “user”
and “device” are used interchangeably. We propose the concept of self-blindable
credential as the solution to this asymmetric scenario.

A self-blindable credential system comprises a set of users, each obtaining a
special credential called self-blindable credential from a credential issuer. These
credentials are used for anonymous authentication to the verifier, e.g., a service
provider, who trusts the credential issuer. To use her self-blindable credential,
a user generates a blinded credential by blinding it with random factors. The
verifier checks the blinded credential to determine its validity. It is mandated that
blinded credentials produced from the same self-blindable credential cannot be
linked by the verifier. Credential revocation is supported, such that the blinded
credentials resulting from a revoked credential cannot be accepted. Formally, a
revocable self-blindable credential scheme is defined below.

Definition 1 (Revocable Self-blindable Credential). Let C denote the
domain of the self-blindable credentials, and BC denote the collection of all
blinded credentials. A revocable self-blindable credential scheme is composed of
five algorithms Setup, CredIssue, Blind, Revoke, CredVerify as follows.

– Setup(1κ) → (params,msk): The setup algorithm takes as input a security
parameter 1κ, and outputs a set of public system parameters params, and a
master secret key msk. Below we assume that params is implicitly included
as input to the rest four algorithms.

– CredIssue(msk, u) → c: The credential issuance algorithm takes as input msk
and user identity u, and outputs a self-blindable credential c ∈ C for u.

– Blind(c) → bc: The blinding algorithm takes as input a self-blindable credential
c ∈ C produced by CredIssue(), and outputs a blinded credential bc ∈ BC. This
is normally an interactive algorithm between a user and a verifier who inputs
a challenge message to ensure freshness. For the sake of convenience, we omit
the verifier’s challenge which should be clear from the context.

– Revoke(�msk�, c) → CRL ∪ {c}: The credential revocation algorithm takes as
input a self-blindable credential c ∈ C and optionally master secret key msk,
and outputs the updated Credential Revocation List (CRL), which is initially
empty.

– CredVerify(bc, CRL) → {0, 1}: The credential verification algorithm takes
as input a blinded credential bc and CRL, and outputs either 1 (accept) or
0 (reject).

Correctness. For all c ← CredIssue(msk, u), where (params, sk) ← Setup(1κ),
it holds that CredVerify(Blind(c), CRL) = 1 on the condition that c /∈ CRL.
Security Notions. We formulate and impose the following security require-
ments upon the revocable self-blindable credential scheme.

Unforgeability. For the self-blindable credential scheme, it mandates that an
adversary cannot forge either self-blindable credentials or blinded credentials.
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Definition 2 (Unforgeability). A revocable self-blindable credential scheme
satisfies unforgeability if for any PPT adversary A, the probability of the follow-
ing “unforgeability game” returning 1 is negligible in κ.

1. (params,msk) ← Setup(1κ);
2. bc ← ACredIssue(msk,·)(params);
3. if CredVerify(bc, CRL) = 1 ∧ Origin(bc) /∈ {c1, c2 . . . c�} then return 1; and

returns 0 otherwise, whereby {ci}�
i=1 are the set of credentials returned by

the CredIssue(msk, ·) oracle, and Origin : BC → C is a function taking as
input a blinded credential and outputting the original credential from which
the former is generated.

Unlinkability. For privacy protection, it should not possible for the adversary
to determine whether two blinded credentials are produced from the same self-
blindable credential.

Definition 3 (Unlinkability). A revocable self-blindable credential scheme
satisfies unlinkability if for any PPT adversary A, the probability of the fol-
lowing “unlinkability game” returns 1 is 1/2 + ν(κ), where ν(.) is a negligible
function.

1. (params,msk) ← Setup(1κ);
c0 ← CredIssue(msk, u0);
c1 ← CredIssue(msk, u1)

2. σ
R←− {0, 1};

3. bc ← Blind(cσ);
4. σ∗ ← A(params, c0, c1, bc);
5. if σ = σ∗ then return 1 else return 0;

A weaker notion of unlinkability would be such that, the adversary A in the
above game is not given the original credentials c0, c1, but two blinded credentials
(one is generated from c0, and the other from c1), prior to being challenged with
bc. We refer to this notion as non-forward unlinkability, which models the level
of anonymity attained by the verifier-local revocation mechanism.

Another security property is revocability, which mandates that once a self-
blindable credential is revoked, any resulting blinded credential must be rejected
by the verifier. In addition, possession of a credential represents the holder’s
access rights. Thus, sharing of a credential with other users who do not have
the access rights should be disallowed. Ideally, a self-blindable credential scheme
should deter a credential holder from sharing her credential with others. We call
this property as non-shareability.

3 Self-blindable Credential with Verifier-Local
Revocation

Our constructions of self-blindable credential will be based on the BBS+ signa-
ture scheme [1]. The BBS+ scheme, together with [3,4,12], represents the state
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of the art of bilinear map-based anonymous credentials. We start with a brief
review of the BBS+ signature scheme. The BBS+ signature scheme works over
a bilinear map e : G1 × G2 → GT , where G1, G2, GT are multiplicative cyclic
groups of prime order q. A signer’s public key is (Z = hz, h ∈ G2, a, b, d ∈ G1)
and the private key is z ∈ Z∗

q . A BBS+ signature upon message m is defined as
(M,k, s) where k, s ∈R Z∗

q , and M = (ambsd)
1

k+z ∈ G1. The resulting signature

can be verified by testing e(M,Z · hk) ?= e(A, h) where A = ambsd.
More interestingly, the signature verification can also be conducted in a zero-

knowledge proof of knowledge protocol that enables the holder of the signature to
prove the possession of (M,k, s,m) to a verifier, without revealing any informa-
tion on the signature. Specifically, it works as follows: let g1, g2 ∈ G1 be two addi-
tional public parameters; first compute and publishes M1 = M ·gr1

1 ,M2 = gr2
1 gr1

2 ,
where r1, r2 ∈R Zq; and then compute a standard zero-knowledge proof of knowl-
edge protocol (ZKPoK), denoted as PoK{(k,m, s, r1, r2, δ1, δ2) : M2 = gr2

1 gr1
2 ∧

Mk
2 = gδ2

1 gδ1
2 ∧ e(M1,Z)

e(d,h) = e(M1, h)−k · e(a, h)m · e(b, h)s · e(g1, h)r1 · e(g1, h)δ1},
where δ1 = k · r1, δ2 = k · r2. It can be seen that the computation of this ZKPoK
protocol works mostly in GT , which is actually a much larger group than G1.

3.1 Design Rationale

The basic approach of our design is to use the BBS+ signature scheme as the
self-blindable credential issuance algorithm. In other words, a self-blindable cre-
dential c is a BBS+ signature on the credential holder’s attribute. We then design
a blinding algorithm, such that the credential holder can randomize her BBS+
signature into a blinded credential bc. To convince the verifier that her bc is valid,
the credential holder proves that bc is well formed in the sense that it is derived
from a valid c. Our key innovation is the design of a highly efficient blinding
algorithm, replacing the above zero-knowledge signature verification protocol of
the BBS+ scheme.

Given a BBS+ signature σ = (M,k, s) on message m, we observe that it can
be blinded as follows. Select a blinding factor f ∈R Z∗

q and compute M ′ = Mf .
Namely, M ′ = (amfbsfdf )

1
k+z . Thus, M ′ and A′ = (ambsd)f can be verified by

e(M ′, Z · hk) = e(A′, h) (1)

To fully hide the original signature σ, we need to hide k as well. From (1),
we get

e(M ′, Z · hk) = e(A′, h)
⇔ e(M ′, Z)e(M ′, hk) = e(A′, h) (2)
⇔ e(M ′, Z)e(M ′k, h) = e(A′, h)

Let M ′′ = M ′k = Mf ·k, then k is blinded by f . As such, we get a blinded
credential bc = (M ′,M ′′, A′). To show its validity, a proof of knowledge protocol
is needed to attest that M ′,M ′′ and A′ are in a correct form. At this point of
time, an important observation is that this procedure only involves computation
in G1, accounting for higher efficiency.
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3.2 Construction Details

We proceed to present the details of our construction of a self-blindable credential
scheme with verifier-local revocation, whereby the verifier checks the revocation
status of blinded credentials against the revoked items in the CRL. The verifier-
local revocation approach has been widely used in the literature, e.g., [8,9].

– Setup(1κ): Given a system parameter 1κ, determine a bilinear map e : G1 ×
G2 → GT . Select a, b, d ∈ G1, h ∈ G2. Compute Z = hz, where z ∈R Z∗

q . Note
that (a, b, d, h, Z) are the parameters of the BBS+ signature scheme. Set the
public parameters params = (e, a, b, d, Z,CRL = ∅) and master secret key
msk = (z).

– CredIssue(msk = (z), u): The credential issuer computes a BBS+ signature
(M,k, s) on a user’s identity u, where M = (aubsd)

1
k+z ∈ G1, and k, s ∈R Z∗

q .
Set c = (M,k, s, u).

– Blind(c = (M,k, s, u)): User u computes a blinded credential as follows.
1. Select f ∈R Zq, and compute M ′ = Mf ,M ′′ = M ′k, A′ = (aubsd)f .
2. Construct a standard ZKPoK protocol (based upon the challenge from

the verifier), denoted as PoK, as follows.

PoK{(k, μ, ς, f) : M ′′ = M ′k ∧ A′ = aμbςdf}

where μ = u ·f, ς = s ·f .
3. Set bc = (M ′,M ′′, A′, PoK).

– Revoke(�msk�, c = (M,k, s, u)): To revoke credential c, the credential issuer
updates CRL with k such that CRL = CRL ∪ {k}. Similar to a CRL in the
traditional PKI, CRL is signed by the credential issuer.

– CredVerify(bc, CRL): Given the CRL and a blinded credential bc =
(M ′,M ′′, A′, PoK), the verifier outputs 1 if all of the following are true; oth-
erwise outputs 0. ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M ′ �= 1 ∈ G1

PoK is valid

e(M ′, Z)e(M ′′, h) ?= e(A′, h)
∀k ∈ CRL : M ′′ �= M ′k

Remark. The reason why M ′ is not allowed to be the unity in G1 is the following:
if M ′ = 1, then f = 0 (mod q) and any value of k would trivially satisfy the
proof PoK. The check actually provides a guarantee that f �= 0 (mod q).

3.3 Security Analysis

Correctness of the scheme is easily verified, and we next analyze its security with
respect to the requirements set out in Sect. 2.

Theorem 1. The proposed construction achieves unforgeability, given that the
BBS+ signature scheme [1] is existentially unforgeable.
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Proof. We show that the unforgeability of our scheme is based on that of the
BBS+ signature scheme. Given an adversary A against the unforgeability of
our scheme, the forger FBBS for the BBS+ signature scheme is constructed as
follow. FBBS invokes A, and answers the latter’s CredIssue oracle using its own
signature signing oracle. Upon the output of A, FBBS executes the knowledge
extractor of the ZKPoK protocol to get (k, u′, s′, f), and outputs (M ′ 1

f , k, s′
f , u′

f )
as the forgery for the BBS+ signature. �

For unlinkability, we need the DDH assumption to hold in G1. Let g1, g2 ∈ G1.
The DDH assumption states that it is computationally infeasible to distinguish
between (g1, g2, gx

1 , gx
2 ) and (g1, g2, gx

1 , gy
2 ), where x, y ∈R Z∗

q . In the context of
bilinear map, the DDH assumption is commonly referred to as XDH (external
Diffie-Hellman) assumption.

Theorem 2. Our construction achieves non-forward unlinkability under the
XDH assumption.

Proof. We construct a distinguisher D for distinguishing a DDH tuple, from
an adversary A which links blinded credentials in our scheme. Specifically,
D(g1, g2, gx

1 , C ∈ G1) works as follows.
(1) Execute Setup;
(2) Generate a credential c with CredIssue first, and then generate a blinded

credential bc0 from c;
(3) Generate another blinded credential bc1 from g1, g

x
1 as follows. Set M ′ =

g1,M
′′ = gx

1 , compute A′ = M ′zM ′′, where z is the master key. It can be checked
that (M ′,M ′′, A′) satisfies e(M ′, hz)e(M ′′, h) = e(A′, h). Next, invoke the zero-
knowledge proof simulator to produce a simulated proof PoK accordingly. Then
set bc1 = (M ′,M ′′, A′, PoK). Clearly bc1 is a valid blinded credential;

(4) Generate the challenge blinded credential bc from (g2, C) as in 3);
(5) Challenge A with bc0, bc1, and bc ;
(6) if A outputs 1, then return 1; else return 0;

Analysis. When C = gy
2 with y �= x, then bc and bc1 are not from the same

credential; on the other hand, the probability that bc and bc0 are from the same
credential is clearly negligible. Consequently, A would output 0 and 1 with an
equal probability, except for a negligible difference. That is Pr[D(g1, g2, gx

1 , gy
2 ) =

1] = 1/2 + ν0, where ν0 is a negligible function.
When C = gx

2 , then bc and bc1 are from the same credential. Then A
outputs 1 (i.e., σ∗ = σ in the indistinguishability game) with a probability
1/2+Adv, where Adv is the advantage of A in linking blinded credentials. That
is Pr[D(g1, g2, gx

1 , gx
2 ) = 1] = 1/2 + Adv. We thus have |Pr[D(g1, g2, gx

1 , gx
2 ) =

1] − Pr[D(g1, g2, gx
1 , gy

2 ) = 1]| = Adv − ν0. This completes the proof. �

Revocability is straightforward. For non-shareability, the above scheme in its
current form does not provide this feature, but it is easy to implement the so
called all-or-nothing approach, where the user identity u encoded in a credential
is replaced by, e.g., the user’s long term signing key.
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4 Self-blindable Credential with Forward Unlinkability
and Scalable Revocation

The above construction suffers from two weaknesses. (1) It lacks forward unlink-
ability − once a credential is revoked and the corresponding k is published in the
CRL, those blinded credentials generated prior to revocation become linkable.
(2) The verifier’s computation is linear to the total number of revoked creden-
tials, which grows over the time. Even though the verifier does not have resource
constraints, the unscalable revocation cost may hinder the practical deployment
of the scheme. We next propose another construction to address these issues.

4.1 Forward Unlinkable Self-blindable Credential

We continue to use the BBS+ signature scheme for credential issuance. But to
achieve forward unlinkability, we cannot simply use M ′′ = Mf ·k to hide k since
k can be exposed in the CRL. We can further blind k as M ′′ = Mf ·ktr, together
with hr ∈ G2 (which is used to cancel out the randomness tr in credential
verification), where t ∈R G1, r ∈R Zq. However, this requires hr to be an element
in G2, contradicting our efforts in making user side computation work entirely
over G1. It appears to us a challenge to solve this problem, without modifying
the BBS+ signature scheme.

We get over this issue by introducing one more pair of public parameters
(t, T = tz, ) into the BBS+ signature setting, where t ∈ G1. Specifically, the
new public key of the credential system becomes (Z = hz, h, a, b, d, t, T ) and the
private key remains z ∈ Z∗

q . The signature generation and verification algorithm
remain the same. The newly introduced (t, T ) are used for blinding purposes
only.

Specifically, a blinded credential is generated from (M,k, s, u) as follows
(based upon the challenge from the verifier), where f, r1, r2 ∈R Z∗

q :

M ′ = Mf · tr1 ∈ G1

M ′′ = Mf ·k · T r2 ∈ G1

A′ = (aubsd)f ∈ G1 (3)
T ′
1 = T r1 ∈ G1

T ′
2 = tr2 ∈ G1.

together with a standard PoK{(k, μ, ς, f, γ, r1, r2) : M ′′ = M ′kt−γT r2 ∧ A′ =
aμbςdf ∧ T ′

1 = T r1 ∧ T ′
2 = tr2}, where γ = k · r1. The blinded credential

(M ′,M ′′, A′, T ′
1, T

′
2, PoK) can be verified by checking:

⎧
⎪⎨

⎪⎩

A′ �= 1 ∈ G1

PoK is valid

e(M ′, Z)e(M ′′, h) ?= e(A′, h)e(T ′
1, h)e(T ′

2, Z)



246 Y. Yang et al.

Security. For the security of this construction (especially that the introduction
of (t, T ) does not affect unforgeability of credentials), we have the following
theorem, and the proof will be provided in the full version of the paper.

Theorem 3. If the BBS+ signature is existentially unforgeable, then the above
forward unlinkable self-blindable credential scheme achieves unforgeability. The
scheme also achieves unlinkability if the XDH assumption holds.

4.2 Scalable Revocation

To avoid the linear computation at the verifier side, we take advantage of the
dynamic accumulator in [1,13], a revocation technique widely used in anonymous
credentials and group signatures. An accumulator scheme allows a large set of
values to be accumulated into a single value called the accumulator. For each
accumulated value, there exists a witness, which is the evidence attesting that the
accumulated value is indeed contained in the accumulator. Such a membership
proof can be carried out in a zero-knowledge fashion such that no information
is exposed about the witness and the value.

Nguyen’s dynamic accumulator [1,13] works over a bilinear map e : G1 ×
G2 → GT . Let h be generators of G2. The public parameters include (Z = hz, h),
and the private key is z ∈ Z∗

q . Let Λ be the present accumulator, the witness
for a value k accumulated in Λ is W = Λ

1
k+z . As such, (W,k) can be verified

by e(W,Z · hk) = e(Λ, h). At this point of time, it can be seen that Nguyen’s
dynamic accumulator quite resembles the BBS+ signature in structure. As a
result, our blinding technique for the above forward unlinkable self-blindable cre-
dential scheme can be directly applied to blinding (W,k,Λ) in Nguyen’s dynamic
accumulator.

The complete construction is a combination of the above forward unlinkable
credential scheme and Nguyen’s dynamic accumulator scheme. The basic idea is
that the “k” element of each credential is accumulated into an accumulator, so
that if a credential is revoked, then the corresponding “k” element is removed
from the accumulator. To make the combination seamless and also for better
efficiency consideration, the two primitives would share system parameters −
the master secret key z and the public parameter Z = hz. We omit the details
as they are a bit straightforward.

Outsourcing of Witness Update. One more issue to discuss is that Nguyen’s
dynamic accumulator requires all users to update their witnesses in the event
of credential revocation. To get her witness updated, a user should either keep
connected to the revocation server around the clock or do a batch update after
a period of time. For resource-constrained devices, batch update seems the only
likely choice. In a large-scale system where credential revocations are frequent, a
batch update consists of a plethora of witness update events. Then, the out-of-
the-band witness update may become the bottleneck. Fortunately, in our scheme
the credential component corresponding to the accumulator (i.e., W,k) can be
public, as its role is simply a testimony that the credential is not revoked. This
suggests that a user can outsource the witness update task to an untrusted third
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party, who helps update her witness. The user simply needs retrieving her wit-
ness back at the time of authentication.
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Abstract. From contactless payments to remote car unlocking, many
applications are vulnerable to relay attacks. Distance bounding proto-
cols are the main practical countermeasure against these attacks. At
FSE 2013, we presented SKI as the first family of provably secure dis-
tance bounding protocols. At LIGHTSEC 2013, we presented the best
attacks against SKI. In this paper, we present the security proofs. More
precisely, we explicate a general formalism for distance-bounding pro-
tocols. Then, we prove that SKI and its variants is provably secure,
even under the real-life setting of noisy communications, against the
main types of relay attacks: distance-fraud and generalised versions of
mafia- and terrorist-fraud. For this, we reinforce the idea of using secret
sharing, combined with the new notion of a leakage scheme. In view of
resistance to mafia-frauds and terrorist-frauds, we present the notion of
circular-keying for pseudorandom functions (PRFs); this notion mod-
els the employment of a PRF, with possible linear reuse of the key.
We also use PRF masking to fix common mistakes in existing security
proofs/claims.

1 Introduction

Recently, we proposed the SKI [6–8] family of distance-bounding (DB) proto-
cols.1 In this paper, we present a formalism for distance-bounding, which includes
a sound communication and adversarial model. We incorporate the notion of
time-of-flight for distance-based communication. We further formalise security
against distance-fraud, man-in-the-middle (MiM) generalising mafia-frauds, and
an enhanced version of terrorist-fraud that we call collusion-fraud. Our formali-
sations take noisy communications into account.

Mainly in the context of security against generalised mafia-frauds (when TF-
resistance is also enforced), we introduce the concept of circular-keying security

The full version of this paper is available as [8].
1 Due to space constraints, we refer to these papers for an overview of DB protocols.
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to extend the security of a pseudorandom function (PRF) f to its possible uses
in maps of the form y �→ L(x)+fx(y), for a secret key x and a transformation L.
We also introduce a leakage scheme, to resist to collusion frauds, and adopt the
PRF masking technique from [4,5] to address distance-fraud issues. These formal
mechanisms come to counteract mistakes like those in proofs based on PRF-
constructions, errors of the kind exposed by Boureanu et al. [4] and Hancke [13].

We analyse and propose variants of SKI [6,7] and conclude that SKI is his-
torically the first practical class of distance-bounding protocols enjoy-
ing full provable security.2 On the way to this, we formalise the DB-driven
requirements of the SKI protocols’ components.

2 Model for Distance-Bounding Protocols

We consider a multiparty setting where each participant U is modelled by a
probabilistic polynomial-time (PPT) interactive Turing machine (ITM), has a
location locU , and where communication messages from a location to another
take some time, depending on the distance to travel.

Consider two honest participants P and V , each running a predefined algo-
rithm. Along standard lines, a general communication is formalised via an exper-
iment, generically denoted exp = (P (x; rP )←→V (y; rV )), where r〈·〉 are the ran-
dom coins of the participants. The experiment above can be “enlarged” with an
adversary A which interferes in the communication, up to the transmitting-time
constraints. This is denoted by (P (x; rP ) ←→ A(rA)←→V (y; rV )). At the end of
each experiment, the participant V has an output bit OutV denoting acceptance
or rejection. The view of a participant on an experiment is the collection of all
its initial inputs (including coins) and his incoming messages. We may group
several participants under the same symbolic name.

The constant B denotes a bound defining what it means to be “close-enough”.
The crux of proving security of DB protocols lies in Lemma1: if V sends a

challenge c, the answer r in a time-critical challenge-response round is locally
computed by a close participant A from its own view and incoming messages
from far-away participants B which are independent from c. Clearly, it also
captures the case where the adversary collects information during the previous
rounds. On the one hand, we could just introduce a full model in which such a
lemma holds. We do so in our full version [8]. On the other hand, we could also
just state the text of the lemma and take it axiomatically.

Lemma 1. Consider an experiment B(z; rB) ↔ A(u; rA) ↔ V (y; rV ) in which
the verifier V broadcasts a message c, then waits for a response r, and accepts if r
took at most time 2B to arrive. In the experiment, A is the set of all participants
which are within a distance up to B to V , and B is the set of all other participants.
For each user U , we consider his view V iewU just before the time when U can
2 As far as we know, there exists only one other protocol with full provable security. It

was presented at ACNS 2013 [12] and compared with SKI at PROVSEC 2013 [17].
All other protocols fail against at least one threat model. (See [7, Section 2].).
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see the broadcast message c. We say that a message by U is independent from
c if it is the result of applying U on V iewU , or a prefix of it. There exists an
algorithm A and a list w of messages independent from c such that if V accepts,
then r = A(V iewA, c, w), where V iewA is the list of all V iewA, A ∈ A.

When modelling distance-bounding protocols, we consider provers P and
verifiers V . A denotes the adversary and P ∗ denotes a dishonest prover.

Definition 2 (DB Protocols). A distance-bounding protocol is a tuple
(Gen, P, V, B), where Gen is a randomised, key-generation algorithm such that
(x, y) is the output3 of Gen(1s; rk), where rk are the coins and s is a security
parameter; P (x; rP ) and V (y; rV ) are PPT ITM running the algorithm of the
prover and the verifier with their own coins, respectively; and B is a distance-
bound. They must be such that the following two facts hold:

– Termination: (∀s)(∀R)(∀rk, rV )(∀locV ) when doing (·, y) ← Gen(1s; rk) and
(R ←→V (y; rV )), it is the case that V halts in Poly(s) computational steps,
where R is any set of (unbounded) algorithms;

– p-Completeness: (∀s) (∀locV , locP such that d(locV , locP ) ≤ B) we have

Pr
rk,rP ,rV

[
OutV = 1 :

(x, y) ← Gen(1s; rk)
P (x; rP )←→V (y; rV )

]
≥ p.

Our model implicitly assumes concurrency.

Definition 3 (α-resistance to distance-fraud). (∀s) (∀P ∗) (∀locV such
that d(locV , locP ∗) > B) (∀rk), we have

Pr
rV

[
OutV = 1 :

(x, y) ← Gen(1s; rk)
P ∗(x)←→V (y; rV )

]
≤ α

where P ∗ is any (unbounded) dishonest prover. In a concurrent setting, we
implicitly allow a polynomially bounded number of honest P (x′) and V (y′) close
to V (y) with independent (x′, y′).4

We now formalise resistance to MiM attacks. During a learning phase, the
attacker A interacts with m provers and z verifiers. In the attack phase, A tries
to win in an experiment in front of a verifier which is far-away from �−m provers.

Definition 4 (β -resistance to MiM). (∀s)(∀m, �, z) polynomially bounded,
(∀A1,A2) polynomially bounded, for all locations such that d(locPj

, locV ) > B,
where j ∈ {m + 1, . . . , �}, we have

Pr

⎡

⎣OutV = 1 :
(x, y) ← Gen(1s)
P1(x), . . . , Pm(x) ←→ A1 ←→ V1(y), . . . , Vz(y)
Pm+1(x), . . . , P�(x) ←→ A2(V iewA1) ←→ V (y)

⎤

⎦ ≤ β

3 In this paper, there is just one common input, i.e., we assume x = y.
4 This is to capture distance hijacking [10]. (See [8].).
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over all random coins, where V iewA1 is the final view of A1. In a concurrent
setting, we implicitly allow a polynomially bounded number of P (x′), P ∗(x′), and
V (y′) with independent (x′, y′), anywhere.

The classical notion of mafia-fraud [1] corresponds to m = z = 0 and � = 1. The
classical notion of impersonation corresponds to � = m.

We now formalise the terrorist-fraud by [6,8].

Definition 5 ((γ, γ′)-resistance to collusion-fraud). (∀s)(∀P ∗) (∀locV0 s.t.
d(locV0 , locP ∗) > B) (∀ACF PPT) such that

Pr
[
OutV0 = 1 :

(x, y) ← Gen(1s)
P ∗(x) ←→ ACF ←→ V0(y)

]
≥ γ

over all random coins, there exists a (kind of)5 MiM attack with some parameters
m, �, z,A1,A2, Pi, Pj , Vi′ using P and P ∗ in the learning phase, such that

Pr

⎡

⎣OutV = 1 :
(x, y) ← Gen(1s)
P

(∗)
1 (x), . . . , P (∗)

m (x) ←→ A1 ←→ V1(y), . . . , Vz(y)
Pm+1(x), . . . , P�(x) ←→ A2(V iewA1) ←→ V (y)

⎤

⎦ ≥ γ′

where P ∗ is any (unbounded) dishonest prover and P (∗) ∈ {P, P ∗}. Following the
MiM requirements, d(locPj

, locV ) > B, for all j ∈ {m + 1, �}. In a concurrent
setting, we implicitly allow a polynomially bounded number of P (x′), P ∗(x′),
V (y′) with independent (x′, y′), but no honest participant close to V0.

Definition 5 expresses the following. If a prover P ∗, situated far-away from
V0, can help an adversary ACF to pass, then a malicious (A1,A2) could run a
rather successful MiM attack playing with possibly multiple instances of P ∗(x)
in the learning phase. In other words, a dishonest prover P ∗ cannot success-
fully collude with ACF without leaking some private information. We can find
in [17] a discussion on the relation with other forms of terrorist frauds, including
SimTF [11,12].

3 Practical and Secure Distance-Bounding Protocols

The protocol SKI [6,7] follows a long dynasty originated from [14]. It is sketched
in Fig. 1. We use the parameters (s, q, n, k, t, t′, τ), where s is the security para-
meter. The SKI protocols are built using a function family (fx)x∈GF (q)s , with
q being a small power of prime. In the DB phase, n rounds are used, with
n ∈ Ω(s). Then, SKI uses the value fx(NP , NV , L) ∈ GF (q)t′n, with nonces
NP , NV ∈ {0, 1}k and a mask M ∈ GF (q)t′n, where k ∈ Ω(s). The element
a = (a1, . . . , an) is established by V in the initialisation phase, and it is sent
encrypted as M := a⊕fx(NP , NV , L), with M ∈ GF (q)t′n. Similarly, V selects a

5 Here, we deviate from Definition 4 a bit by introducing P ∗(x) in the MiM attack.
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random linear transformation L from a set L (the leakage scheme), which is spec-
ified by the SKI protocol instance, and the parties compute x′ = L(x). The pur-
pose of L is to leak L(x) in the case of a collusion-fraud. Further, c = (c1, . . . , cn)
is the challenge-vector with ci ∈ {1, . . . , t}, ri := F (ci, ai, x

′
i) ∈ GF (q) is the

response to the challenge ci, i ∈ {1, . . . , n}, with F (the F -scheme) as specified
below. The protocol ends with a message OutV denoting acceptance or rejection.

x ∈ GF (q)s x ∈ GF (q)s

NV ∈ {0, 1}k NP←−−−−−−−−−−−− NP ∈ {0, 1}k

a ∈ GF (q)t
′n L ∈ L M,L,NV−−−−−−−−−−−−→

M = a ⊕ fx(NP , NV , L) a = M ⊕ fx(NP , NV , L)
x′ = L(x) ∈ GF (q)n x′ = L(x) ∈ GF (q)n

i = 1 n
ci ∈ {1, . . . , t}

timeri
ci−−−−−−−−−−−−→

timeri
ri←−−−−−−−−−−−− ri = F (ci, ai, x′

i)

{i; ri and timeri correct} ≥ τ
OutV−−−−−−−−−−−−→

Fig. 1. The SKI schema of distance-bounding protocols

In [6,7], several variants of SKI were proposed. We concentrate on two of
them using q = 2, t′ = 2, and the response-function

F (1, ai, x
′
i) = (ai)1 F (2, ai, x

′
i) = (ai)2 F (3, ai, x

′
i) = x′

i + (ai)1 + (ai)2,

where (ai)j denotes the jth bit of ai. In the SKIpro variant, we have t = 3 and
L = Lbit, consisting of all Lμ transforms defined by Lμ(x) = (μ · x, . . . , μ · x)
for each vector μ ∈ GF (q)s. I.e., n repetitions of the same bit μ · x, the dot
product of μ and x. In the SKIlite variant, we have t = 2 with the transform-set
L = {∅}. Namely, SKIlite never uses the ci = 3 challenge or the leakage scheme.

We note that both instances are efficient. Indeed, we could precompute the
table of F (·, ai, x

′
i) and just do a table lookup to compute ri from ci. For SKIpro,

this can be done with a circuit of only 7 NAND gates and depth 4. For SKIlite,
3 NAND gates and a depth of 2 are enough. The heavy computation lies in the
fx evaluation, which occurs in a non time-critical phase.

In [8], we also consider other variants with different F -schemes.
SKICompleteness (in Noisy Communications). Each (ci, ri) exchange is time-
critical, so it is subject to errors. To address this, we introduce the probability
pnoise of one response being erroneous. In practice, we take pnoise as a constant.
Then, our protocol specifies that the verifier accepts only if the number of correct
answers is at least a linear threshold τ . The probability that at least τ responses
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out of n are correct is given by:

B(n, τ, 1 − pnoise) =
n∑

i=τ

(
n

i

)
(1 − pnoise)ipn−i

noise

Thanks to the Chernoff-Hoeffding bound [9,15], τ ≤ (1 − pnoise − ε)n implies
B(n, τ, 1 − pnoise) ≥ 1 − e−2ε2n. So, we obtain the following result.

Lemma 6. For ε > 0 and τ
n ≤ 1 − pnoise − ε, SKI is (1 − e−2ε2n)-complete.

PRF Masking. Importantly, SKI applies a random mask M on the output of
fx to thwart weaknesses against PRF programming [4]. This was called PRF
masking in [4,5]. So, the malicious prover cannot influence the distribution of a.

F-scheme. Related to the response-function F , we advance the concept of F -
scheme. This will take the response-function based on secret sharing by Avoine
et al. [2] further, beyond protection against terrorist-fraud only, offering for-
malised sufficient conditions to protect against all three possible frauds.6 Thus,
we stress that using a secret sharing scheme in computing the responses may
be too strong and/or insufficient to characterise the protection against frauds
mounted onto DB protocols, and we amend this with Definitions 7 and 11.

Definition 7 (F -scheme). Let t, t′ ≥ 2. An F -scheme is a function F :
{1, . . . , t} × GF (q)t′ × GF (q) → GF (q) characterised as follows.

We say that the F -scheme is linear if for all challenges ci in their domain,
the F (ci, ·, ·) function is a linear form over the GF (q)-vector space GF (q)t′ ×
GF (q) which is non-degenerate in the ai component.

We say the F -scheme is pairwise uniform if

(∀I � {1, . . . , n},#I ≤ 2)(H(x′
i|F (ci, ai, x

′
i)ci∈I) = H(x′

i)),

where (ai, x
′
i) ∈U GF (q)t′ × GF (q), #S denotes the cardinality of a set S, and

H denotes the Shannon entropy.
We say the F -scheme is t -leaking if there exists a polynomial time algorithm

E such that for all (ai, x
′
i) ∈ GF (q)t′ × GF (q), we have

E
(
F (1, ai, x

′
i), . . . , F (t, ai, x

′
i)

)
= x′

i.

Let Fai,x′
i
denote F (·, ai, x

′
i). We say that the F -scheme is σ -bounded if for

any x′
i ∈ GF (q), we have

Eai

(
max

y

(
#(F−1

ai,x′
i
(y))

)
)

≤ σ,

where x′
i ∈ GF (q) and the expected-value is E taken over ai ∈ GF (q)t′

.

6 Secret sharing is used to defeat an attack from [16] which is further discussed in [3].
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The pairwise uniformity and the t-leaking property of the F -scheme say that
knowing the complete table of the response-function F for a given ci leaks x′

i,
yet knowing only up to 2 entries challenge-response in this table discloses no
information about x′

i. The σ-boundedness of the schemes says that the expected
value (taken on the choice of the subsecrets ai) of the largest preimage of the
map ci �→ F (ci, ai, x

′
i) is bounded by a constant σ. We have t

q ≤ σ ≤ t due to
the pigeonhole principle, since

∑
y #(F−1

ai,x′
i
(y)) = t. Furthermore, σ ≥ 1.

Lemma 8. The F -scheme of SKIpro is linear, pairwise uniform, 9
4 -bounded,

and t-leaking. The F -scheme of SKIlite is linear, pairwise uniform, 3
2 -bounded,

but not t-leaking.

The proof is available in [8].

Leakage Scheme. We can consider several sets L of transformations to be used in
the PRF-instance, of the SKI initialisation phase. The idea of the set L is that,
when leaking some noisy versions of L(x) for some random L ∈ L, the adversary
can reconstruct x without noise to defeat the terrorist fraud by Hancke [13].

Definition 9 (Leakage scheme). Let L be a set of linear functions from
GF (q)s to GF (q)n. Given x ∈ GF (q)s and a PPT algorithm e(x,L; r), we define
an oracle OL,x,e producing a random pair (L, e(x,L)) with L ∈U L. L is a (T, r)-
leakage scheme if there exists an oracle PPT algorithm A〈·〉 such that for all
x ∈ GF (q)s, for all PPT e, Pr[AOL,x,e = x] ≥ Prr[dH(e(x,L), L(x)) < T ]r,
where dH denotes the Hamming distance.

Lemma 10. Lbit is a (n
2 , s)-leakage scheme.

Proof. A calls the oracle s times, then —by computing the majority– A deduces
μ · x with probability p, for each of the obtained μ. We run OL,x,e until we
collect s linearly independent μ values. All the s obtained μ · x are correct with
probability ps. Then, we deduce x by solving a linear system. �

Circular-Keying Security. We introduce the notion of security against circular-
keying, which is needed to prove security in the context in which the key x is
used not only in the fx computation.

Definition 11 (Circular-Keying). Let s be some security parameter, let b be
a bit, let q ≥ 2, let m ∈ Poly(s), and let x, x ∈ GF (q)s be two row-vectors. Let
(fx)x∈GF (q)s be a family of (keyed) functions, e.g., fx : {0, 1}∗ → GF (q)m. For
an input y, the output fx(y) can be represented as a row-vector in GF (q)m.

We define an oracle Ofx,x, which upon a query of form (yi, Ai, Bi), Ai ∈
GF (q)s, Bi ∈ GF (q)m, answers (Ai · x) + (Bi · fx(yi)). The game Circfx,x of
circular-keying with an adversary A is described as follows: we set bfx,x :=
AOfx,x , where the queries (yi, Ai, Bi) from A must follow the restriction that

(∀c1, . . . , ck ∈ GF (q))
(
#{yi; ci �= 0} = 1,

k∑

j=1

cjBj = 0 =⇒
k∑

j=1

cjAj = 0
)
.
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We say that the family of functions (fx)x∈GF (q)s is an (ε, C,Q)-circular-PRF
if for any PPT adversary A making Q queries and having complexity C, it is
the case that Pr[bfx,x = bf∗,x] ≤ 1

2 + ε, where the probability is taken over the
random coins of A and over the random selection of x, x ∈ GF (q)s and f∗.

The condition on the queries means that for any set of queries with the same
value yi, any linear combination making Bj vanish makes Aj vanish at the same
time. (Otherwise, linear combinations would extract some information about x.)

We note that it is possible to create secure circular-keying in the random ora-
cle model. Indeed, any “reasonable” PRF should satisfy this constraint. Special
constructions (e.g., the ones based on PRF programming from [4]) would not.

Lemma 12. Let fx(y) = H(x, y), where H is a random oracle, x ∈ {0, 1}s, and
y ∈ {0, 1}∗. Then, f is a (T2−s, T,Q)-circular PRF for any T and Q.

The proof is available in [8].
We now state the security of SKI.

Theorem 13. The SKI protocols are secure distance-bounding protocols, i.e.,:

– A. If the F -scheme is linear and σ-bounded, if (fx)x∈GF (q)n is a (ε, nN,C)-
circular PRF, then the SKI protocols offer α-resistance to distance-fraud, with
α = B(n, τ, σ

t ) + ε, for attacks limited to complexity C and N participants.
So, we need τ

n > σ
t for security.

– B. If the F -scheme is linear and pairwise uniform, if (fx)x∈GF (q)n is a (ε, n(�+
z+1), C)-circular PRF, if L is a set of linear mappings, the SKI protocols are
β-resilient against MiM attackers with parameters � and z and a complexity
bounded by C,

β = B

(
n, τ,

1
t

+
t − 1

t
× 1

q

)
+ 2−k

(
�(� − 1)

2
+

z(z + 1)
2

)
+ ε.

So, we need τ
n > 1

t + t−1
t × 1

q for security.
– B′. If the F -scheme is linear and pairwise uniform, if (fx)x∈GF (q)n is a

(ε, n(� + z + 1), C)-PRF, if the function F (ci, ai, ·) is constant for each ci, ai,
the SKI protocols are β-resilient against MiM attackers as above.

– C. If the F -scheme is t-leaking, if L is a (T, r)-leakage scheme, for all θ ∈
]0, 1[, the SKI protocols offer (γ, γ′)-resistance to collusion-fraud, for γ−1

polynomially bounded, and

γ ≥ B(T, T + τ − n,
t − 1

t
)1−θ, γ′ =

(

1 − B

(
T, T + τ − n,

t − 1
t

)θ
)r

.

So, we need τ
n > 1 − T

tn for security.

Theorem 13 is tight for SKIpro and SKIlite, due to the attacks shown in [6,7].
Following Lemma 8 and Theorem 13, we deduce the following security parame-
ters:
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α β γ
SKIpro B(n, τ, 3

4 ) B(n, τ, 2
3 ) B(n

2 , τ − n
2 , 2

3 )
SKIlite B(n, τ, 3

4 ) B(n, τ, 3
4 ) 1

According to the data in the table above, we must take 1−pnoise −ε ≥ τ
n ≥ 3

4 +ε
to make the above instances of SKI secure, with a failure probability bounded
by e−2ε2n (by the Chernoff-Hoeffding bound [9,15]). If we require TF-resistance
(as per Theorem 13.C), we also get a constraint of τ

n > 5
6 + ε

2 , similarly.
The proof of Theorem13.B

′
is similar (and simplified) as the one of

Theorem 13.B. So, we prove below the A, B, and C parts only.

Proof. (Theorem 13.A) For each key x′ �= x for which there is a P (x′) close to V ,
we apply the circular-PRF reduction and loose some probability ε. (Details as
for why we can apply this reduction will appear in the proof of Theorem13.B.)

If ri comes form P (x′), due to the F -scheme being linear, ri is correct with
probability 1

t . If ri now comes from P ∗, due to Lemma 1, ri must be a function
independent from ci. So, for any secret x and a, the probability to get one
response right is given by pi = Prci∈{1,...,t}[ri = F (ci, ai, x

′
i)]. Thanks to PRF

masking, the distribution of the ai’s is uniform.
Consider the partitions Ij , j ∈ {1, . . . , t} as follows: Ij is the set of all i’s

such that maxy

(
#(F−1

ai,x′
i
(y)

)
= j. Then, we are looking at the probability

Pj(x′
i) := Pr

ai

[
max

y

(
#(F−1

ai,x′
i
(y))

)
= j

]
,

Given x′ fixed, each iteration has a probability to succeed equal to
∑

j
jPj

t = σ
t .

So, the probability to win the experiment is bounded by p = B(n, τ, σ
t ). �

Proof. (Theorem 13.B) Let Game0 be the MiM attack-game described in
Definition 4. Below we consider a prover Pj and a verifier Vk in an experiment,
j ∈ {1, . . . , �}, k ∈ {1, . . . , z + 1}. Let (NP,j ,M j , Lj , NV,j) be the values of the
nonces (NP , NV ), of the mask M , and of the transformation L that the prover
Pj generates or sees respectively, and (NP,k,Mk, Lk, NV,k) be the values of the
nonces (NP , NV ), mask M , and transformation L that a verifier Vk generates or
sees at his turn, j ∈ {1, . . . , �}, k ∈ {1, . . . , z + 1}.

Using a reduction by failure-event F , the game Game0 is indistinguishable
to game Game1 where no repetitions on NP,j or on NV,k happen, j ∈ {1, . . . , �},

k ∈ {1, . . . , z + 1} based on Pr[F ] ≤ 2−k
(

�(�−1)
2 + z(z+1)

2

)
.

Since the F -scheme is linear, we can write F (ci, ai, x
′
i) = ui(ci)x′

i+(vi(ci)·ai)
where ui(ci) ∈ GF (q), vi(ci) ∈ GF (q)t′

. Note that, in terms of i, the vectors
(vi(1), . . . , vi(t)) span independent linear spaces. In Game1, each (NP , NV , L, i)
tuple can be invoked only twice (with a prover and a verifier) by the adversary.
The pairwise uniformity of the F -scheme implies that yvi(ci) + y′vi(c′

i) = 0
implies yui(ci) + y′ui(c′

i) = 0 for all ci, c
′
i ∈ {1, . . . , t} and all y, y′ ∈ GF (q). So,

we deduce that the condition to apply the circular-keying reduction is fulfilled.
We can thus apply the circular-PRF reduction and reduce to Game2, where
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F (ci, fx(NP , NV , L)i, x
′
i) is replaced by ui(ci)x̃i+(vi(ci)·f∗(NP , NV , L)i), where

f∗ is a random function. This reduction has a probability loss of up to ε.
From here, we use a simple bridging step to say that the adversary A has

virtually no advantage over Game2 and a game Game3, where the vector
a = f∗(NP , NV , L) is selected at random. So, the probability p of A of suc-
ceeding in Game3 is the probability that at least τ rounds have a correct ri. Due
to Lemma 1, ri must be computed by A (and not Pj). Getting ri correct for ci

can thus be attained in two distinct ways: 1. in the event e1 of guessing c′
i = ci

and sending it beforehand to Pj and getting the correct response ri, or 2. in the
event e2 of simply guessing the correct answer ri (for a challenge c′

i �= ci). So,
p = B(n, τ,Pr[e1] + Pr[e2]) = B(n, τ, 1

t + t−1
t × 1

q ). �

Proof. (Theorem 13.C) Assume as per the requirement for resistance to collusion-
fraud that there is an experiment expCF = (P ∗(x) ←→ ACF(rCF)←→V0(y; rV0)),
with P ∗ a coerced prover who is far away from V0 and that PrrV0 ,rCF

[OutV0 =
1] = γ. Given some random c1, . . . , cn from V0, we define V iewi as being the
view of ACF before receiving ci from V , and wi as being all the information that
ACF has received from P ∗ before it would be too late to send ri on to V0. This
answer ri done by ACF is formalised in Lemma 1. So, ri := ACF(V iewi‖ci‖wi).

Let Ci be the set of all possible ci’s on which the functions ACF(V iewi‖ ·
‖wi) and F (., ai, x

′
i) match. Let Ci = {c ∈ {1, . . . , t} |ACF(V iewi‖c‖wi) =

F (c, ai, x
′
i)}, S = {i ∈ {1, . . . , n} | ci ∈ Ci}, and R = {i ∈ {1, . . . , n} |#Ci = t}.

The adversary A succeeds in expCF if #S ≥ τ .
If we were to pick a set of challenges such that #S ≥ τ and #R ≤ n − T , we

should select a good challenge (from no more than t − 1 existing out of t), for
at least T + τ − n rounds out of T . In other words, Pr[#S ≥ τ,#R ≤ n − T ] ≤
B(T, T + τ − n, t−1

t ). But, by the hypothesis, Pr[#S ≥ τ ] ≥ γ. So, we deduce
immediately that Pr[#R ≤ n−T |#S ≥ τ ] ≤ γ−1B(T, T +τ −n, t−1

t ). Therefore,
Pr[#R > n − T |#S ≥ τ ] ≥ 1 − γ−1B(T, T + τ − n, t−1

t ).
We use m = � = z = O(γ−1r) (i.e., A2 will directly impersonate P to V after

A1 ran m times the collusion fraud, with P ∗ and V ). We define A2 such that, for
each execution of the collusion fraud with P ∗ and V , it gets V iewi, wi. For each
i, A2 computes the table c �→ ACF(V iewi‖c‖wi) and apply the t-leaking function
E of the F -scheme on this table to obtain yi = E(c �→ ACF(V iewi‖c‖wi)). For
each i ∈ R, the table matches the one of c �→ F (c, ai, x

′
i) with x′ = L(x), and

we have yi = x′
i. So, A2 computes a vector y. If V accepts the proof, then y

coincides with L(x) on at least n−T +1 positions, with a probability of at least
p := 1 − γ−1B(T, T + τ − n, t−1

t ). That is, after O(γ−1) runs, A2 produces a
random L ∈ L and a y which has a Hamming distance to L(x) up to T − 1.

By applying the leakage scheme decoder e on this oracle, with r samples, it
can fully recover x, with probability at least pr. Then, by taking γ = B(T, T +
τ − n, t−1

t )1−θ and γ′ =
(
1 − B(T, T + τ − n, t−1

t )θ
)s, we obtain our result. �
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Abstract. Telephony systems are imperative for information exchange
offering low cost services and reachability to millions of customers. They
have not only benefited legitimate users but have also opened up a
convenient communication medium for spammers. Voice spam is often
encountered on telephony systems in various forms, such as by means
of an automated telemarketing call asking to call a number to win a
reward. A large percentage of voice spam is generated through auto-
mated system which introduces the classical challenge of distinguishing
machines from humans on telephony systems. CAPTCHA is a conven-
tional solution deployed on the web to address this problem. Audio-based
CAPTCHAs have been proposed as a solution to curb voice spam. In this
paper, we conducted a field study with 90 participants in order to answer
two primary research questions: quantifying the amount of inconvenience
telephony-based CAPTCHA may cause to users, and how various fea-
tures of the CAPTCHA, such as duration and size, influence usability
of telephony-based CAPTCHA. Our results suggest that currently pro-
posed CAPTCHAs are far from usable, with very low solving accuracies,
high solving times and poor overall user experience. We provide certain
guidelines that may help improve existing CAPTCHAs for use in tele-
phony systems.

1 Introduction

Telephony is a vital medium for information exchange as it offers services to
more than 6 billion mobile users in the world today [19]. In the last decade, tele-
phony systems migrated from Public Switched Telephone Networks (PSTN) to
Internet Telephony for communication. Internet telephony also known as Voice
over Internet Protocol (VoIP) offers low-cost, and instant communication facil-
ities, e.g., distant calling and video conferencing anywhere around the world.
However, VoIP is vulnerable to many attacks such as interception and mod-
ification of the transmitting voice packets, and cyber criminal activities, e.g.,
phishing, and malware [23]. Voice spam, also referred to as Spam over Internet
Telephony (SPIT), is an emerging threat to telephony systems causing direct
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or indirect loss to users. For instance, during the Canadian spring 2011 federal
election, thousands of voters complained about receiving false automated calls,
misleading voters about polling locations and discouraging to cast votes [11].
SPIT might originate from the Internet but also affects both PSTN and wireless
users. Internet telephony attracts spammers, as SPIT is convenient to gener-
ate by reusing the existing botnet infrastructure used for email spam, and can
impact masses by sending bulk calls to many users [29]. The prime stakehold-
ers interested in producing SPIT include telemarketers, and malicious bodies
intending to fool people forcing them to call expensive numbers (voice phish-
ing). The threat raised by SPIT is real and worrisome; for instance, the Tele-
com Regulatory Authority of India (TRAI) stated that 36,156 subscribers were
issued notices, 22,769 subscribers were disconnected, and 94 telemarketers were
penalized for spreading spam. Similarly, the Federal Trade Commission (FTC)
received more than 200,000 complaints every month in 2012, about automated
calls even though 200 million phone users had registered for the “Do-Not-Call”
facility. Some of these calls scammed users by offering convenient solutions to
save money from their credit card investments [15]. Recent reports show crimi-
nals have targeted telephony systems of financial institutions such as banks and
emergency helplines, using automated dialing programs and multiple accounts
to overwhelm the phone lines [27,34].

CAPTCHA (Completely Automated Public Turing test to tell Computers
and Humans Apart) is a mechanism that can differentiate machines (bots) from
human users and has successfully reduced the abuse of the Internet resources,
particularly reducing spam [36]. Given the success of CAPTCHA (hereafter
denoted “captcha” for simplicity) on the Internet, the systems that use audio
captcha over telephony have been prototyped [24]. FTC also announced a chal-
lenge in October 2012 to fight automated calls, asking innovators to propose
solutions for stopping robocalls. FTC offered $50,000 to the winners. Many of the
solutions proposed during the challenge offered protection through captcha on
telephony, e.g., Baton, Telephone Captcha, Call Captcha, and Captcha Calls [2].
The two co-winners of the challenge proposed to filter out unapproved automated
calls using a captcha. The winners proposed routing calls to a secondary line, and
hung-up the pre-recorded / automated calls using captcha even before the phone
rang. This allowed only real callers to connect. However, white lists could be used
if a user would like to get genuine automated calls from authenticated sources.
Captcha is a classic case for the “human-in-the-loop” paradigm [13] therefore,
it is very important to assess how the humans fare with captcha in telephony
systems. Telephony communication is lossy in nature, and audio quality is poor
in comparison to the Internet which changes the experience of audio captcha
on telephony. Audio captcha, like any other captcha, is intended to be easy for
humans and hard for machines. However, recent research on telephony captcha
largely concentrates on making it hard for machines than making it usable for
humans. In the context of the Internet, there has been some recent work on the
usability of different types of captcha [7,10]. Bursztein et al. found that 0.77 %
(N = 14,000,000) of the time users preferred to answer eBay’s audio captcha
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rather than image captcha on the web [10]. They found this number to be signif-
icantly large and felt essential to improve audio captcha on the web [10]. To the
best of our knowledge, there has been no comprehensive analysis of the usability
of different audio captcha over the phone / mobile through a full-fledged field
study. The scope and impact of such an analysis would be quite broad, given
that audio captcha will affect every user of the telephony system.

Contributions: In this paper, we analyze the usage pattern and human per-
spective when faced with captcha on telephony via a comprehensive usability
field study. Although captcha could be potentially applied to multiple scenar-
ios, we draw on a banking scenario to transfer money as an initial case study
given that users have been affected due to telephony scams [27,34]. We make the
following contributions related to the use of audio captcha in telephony systems:

1. We conducted a field study of various captchas with 90 participants eval-
uating their performance in the real world telephony environment. Partici-
pants remotely dialed our study set-up from 5 cities in India (Delhi, Mumbai,
Chennai, Noida, and Vellore).

2. We evaluated and compared the tradeoff among users’ accuracy, time spent
and keystrokes while solving audio captcha on telephony. We found that the
accuracy of captcha decreased multifold on telephony in comparison to web.
Also, time taken to solve captcha increased for popular captcha schemes e.g.
Recaptcha and slashdot.

3. We propose guiding principles for designing and improving telephony captcha.

Organization: Sect. 2 elaborates the previous captcha usability studies and
telephony captcha studies. Sections 3 and 4 present various hypotheses formu-
lated and the types of captcha used in our study. The implementation and design
details, and study methodology are discussed in Sect. 5. Section 6 elaborates main
findings regarding the captcha usage and current user practices. Sections 7 and 8
present the discussion, guidelines proposed from the study and future work.

2 Related Work

SPIT, broadcasting unsolicited bulk calls through VoIP, is one of the emerging
threats to the telephony. Various techniques have been suggested to deal with
SPIT e.g. device fingerprinting, use of the White, Grey, or Black lists, heuristics,
and captcha [3]. Most of the proposed system use combination of one or more
above mentioned techniques, to fight SPIT. Captcha is commonly used as a final
check for the user. Captcha on the web has been subject to a broad range of
research, including design, study of guiding principles, comparative evaluation
of different captcha, and attack / threat models. Different types of captcha have
been designed for protecting various Internet resources like online accounts, and
emails. A few notable design examples include, asking users to identify garbled
string of words or characters, identify objects in an image rather than charac-
ters [14], identify videos [25], and identify textual captcha that involves click-
ing on the images rather than typing the response [30]. Other variants include
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sketcha, which is based on object orientation [31], and Asirra, which uses pic-
tures of cats and dogs [20]. Yan et al. found that contrary to the usual opinion,
text based captcha was difficult for foreigners. They showed that the length
of captcha interestingly influenced usability and security [21]. Audio captcha,
another type of captcha, was especially designed for the visually impaired users
on the web [16]. Lazar et al. conducted a study with 40 participants, sighted and
blind, to evaluate the radio-clip based captcha. They showed various usability
issues related with this captcha and also, proved it to improve the task success
rate for sighted users whereas, it was still difficult for blind users [26]. Bursztein
et al. showed that captcha especially audio captcha was remarkably difficult for
users to solve. They also found that non-native speakers felt English captcha
difficult and were slow in solving captcha [10].

Captcha’s effectiveness in controlling machine attacks on the web encouraged
its use over telephony. Telephony for years has largely supported verbal / voice
based communication. We found that systems proposed for curbing SPIT used
the existing web-based audio captcha setup. Tsiakis et al. proposed the princi-
ples for understanding the spam economic models, and their analogies to SPIT,
which could help evaluate the benefits of audio captcha protection against the
costs involved [35]. Polakis et al. developed different attacks, threat models, and
solutions for phone captcha [28]. Soupionis et al. proposed and assessed various
attributes of an audio captcha, which make it effective against automated test.
They also evaluated audio captcha against open source bot implementation [33].
Zhang et al. used out-of-band communication such as the Short Message Service
(SMS) to send the captcha text to differentiate bots from humans [37]. In addi-
tion to these research efforts, some patents have been developed around audio
captcha. These include captcha based on contextual degradation [4] and ran-
dom personal codes [5]. Johansen et al., developed a VoIP anti-SPIT framework
using open source PBX system [24]. A few commercial products aimed at reduc-
ing SPIT have also been designed by NEC and Microsoft [1,18]. However, the
usability of audio captcha on telephony in the real world has not been tested.
Some preliminary work has been done on evaluating telephony captcha [28]. Sou-
pionis et al. also conceptually evaluated the existing audio captcha solutions [32].
They discouraged use of alphabetic captcha on telephony and suggested a new
algorithm for telephony audio captcha. They used soft phones,1 which were dif-
ferent from real world implementation of telephony captcha. On the contrary, in
our work, we conducted our experiment on a real-world system that users could
call-in from anywhere in the world.

The study presented in this paper is different from the existing studies in
important aspects. Prior studies were geared for the web, using traditional com-
puting devices or for telephony using soft phones, whereas, the target platform
for our work is telephony system and the terminal with which the user interacts
within our setting is a phone. Furthermore, previous studies were performed
in a controlled environment; in contrast, our study is a field evaluation, which
1 Softphone is an application that allows a desktop, laptop or workstation computer

to work as a telephone via Voice over IP technology e.g. Skype.
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involves users interacting with the system in a real world environment. It is
also the first study where 90 users participated in evaluating different kind of
captchas (web-based and the explicitly designed telephone captcha) in the real
world.

3 Hypotheses

We now discuss our hypotheses related to captcha usage and viability on tele-
phony.

H1: Users might be close to the expected / correct answers even though the overall
captcha solving accuracy on telephony may be low.

Captcha comprises of a simple challenge not involving much human intelligence,
e.g., the addition of 2 numbers. However, the existing literature suggests that
users’ accuracy to solve audio captcha is low. We hypothesize that the accuracy
will be higher, if 1 or 2 mistakes in the user’s response are discounted. We
calculate the edit distance between the user’s response and the correct answer
to evaluate response’s closeness to the correct answer.

H2: Users’ accuracy of answering the captcha correctly on telephony will decrease
as the number of key presses required increases.

Audio captcha presents various cognitive challenges to the user. Human brain
sequentially processes speech and “short-term” memory handles only 7(+/− 2)
chunks of information [8]. For audio captcha, cognitive load increases with the
increase in the size of the captcha, i.e., the number of digits / characters to
remember or recognize. This increases the chances of errors. We hypothesize
accuracy of users decrease as the size increases. We measure the size (number of
digits / characters) input by recording the key presses for each captcha. The key
presses are recorded in our study setup through the number of DTMF received
by the server (as discussed in Sect. 5).

H3: Users will take more time responding to a captcha that requires more key
presses than to the one requiring less key presses.

Size of the captcha, i.e., the number of digits / characters a user has to press
also affects the amount of time the user spends on the captcha. We hypothesize
that the user will spend more time on a captcha which requires more number
of key presses than on a captcha which requires less number of key presses.
Analyzing the amount of time a user spends on solving captcha on the telephony
is important because more is the time spent, more is the inconvenience caused.

4 Studied Audio CAPTCHAs

In this section, we describe various audio captchas (web and telephony) used in
our study and the associated challenges posed to participants. Existing studies
proposed to make use of distortions and noise in the existing telephony captcha
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Table 1. Studied audio captchas with their features. Char. set represents the character
set. Duration presents average playtime of captcha in seconds. RPC represents Random
Personal Code Captcha

Category Char. Set Word Repeat Duration Noise Voice Beep Min length Max length

Google 0-9 No Yes 34.4 Yes Male yes 5 15

Ebay 0-9 No No 3.7 Yes Various No 6 6

Yahoo 0-9 No No 18.0 Yes Child No 6 8

Recaptcha a-z Yes No 10.6 Yes Female No 6 6

Slashdot a-z Yes No 2.9 No Male No 1 1

CD 1-5 No No 14 Yes Male No 1 1

Math-function 0-9 No No 6.0 No Male No 4 3

RPC 0-9 No No 20.0 No Male No 3 2

C+CD 0-9 No No 14.0 No Male No 4 3

to improve the security. We found that existing audio captchas on the web offered
these features and, therefore, were also included for evaluation. We summarize
various features of the web and the telephony audio captchas in Table 1.

Captchas from the Web: We deployed various web based captchas comprising
of numeric or alphabetical challenges on telephony in our study. Yahoo! offered
audio captcha as an alternative to the text captcha on the “create account page”2

of its e-mail account service. The audio test started with 3 beeps, followed by 6
to 8 digits in various voices (children and females). Google captchas obtained
from the “Google Account” page were shown when a user requested for an audio
captcha. They started with 3 beeps followed by 5 to 15 digits in male voice
and offered assistance by repeating the captcha test following the phrase “once
again.” It took longest to annotate Google captchas (annotation process is dis-
cussed in Sect. 5), as it was difficult to make decisions between noise, e.g. “Oh,”
“it,” and “now,” and digits, like “zero,” and “eight.” eBay audio captchas were
obtained from the eBay website; these were offered as an alternative to the text
captcha. These consisted of the same six digits as shown on the website. The
tests were consistently 6 digits long in various voices (male and female). The
frequency at which digits occurred in the eBay audio was reported to be faster
than the other schemes e.g. Google and Yahoo!. Recaptcha audios were col-
lected from the “Gmail’s login page,” and comprised of 6 words in female voice,
for example “white, wednesday, two, chef, coach, napkin.” Slashdot captchas
were collected from the “login and join page” of Slashdot website.3 Each audio
presented a word in a male voice. They also offered assistance by spelling the
word contained in every test for e.g. “Wrapping w r a p p i n g” where first the
complete word was said and then each letter was spelled out.

Captchas for Telephony: We deployed following telephony captchas in our
study. Random Personal Code (RPC) used random numbers as a menu

2 https://login.yahoo.com/config/login?.
3 http://slashdot.org/.

https://login.yahoo.com/config/login?
http://slashdot.org/


On the Viability of CAPTCHAs for use in Telephony Systems 267

option instead of a standard menu [5]. For evaluating the scheme, we imple-
mented a 3-digit random menu number using the age details of the participant
(discussed in Sect. 5) e.g. the audio content included, “Press 182, if your age is less
than 18.” Contextual Degradation (CD) [4] suggested adding background
noise depending on the context of the call and the individuals associated with the
call; this assumes contextual noise is less interfering. For evaluating the scheme,
a voice menu was implemented based on the education details of the participant
(collected during the pre-study) with mild music from an instrument in the back-
ground as contextual noise. Math-function captcha [17], recommended using
mathematical function, e.g. adding 2 numbers as a test. We implemented this
variant requiring participants to add two, 2 or 3 digit numbers chosen randomly,
for e.g. “Solve the following, and enter your response; 48 plus 45 to continue.”
Math-function with Contextual Degradation (C+CD) required partic-
ipants to solve a simple math function with some contextual music playing in
the background, e.g. “Solve the following and enter your response; 48 plus 45 to
continue”. The assumption is that the simple usage of Math function would not
offer sufficient security.

5 Usability Evaluation

In this section, we present details of our usability field study, including the exper-
imental setup, study methodology, participant recruitment and demographics.

Experimental Setup: Fig. 1 presents the 3 phases of our study: pre-study,
participants calling up our setup (the actual study), and post-study. First, par-
ticipants registered for our study and were provided with a scenario of credit card
transaction. They were asked to imagine making a transaction worth 10,000 INR
(200 USD) using a bank telephony service. At this time the captcha was shown to
the participants. We provided participants with a telephone number where they
could call to participate in our study, an application ID, and a PIN / password
using which participants to access our setup. In the second phase, participants
called up the given phone number and authenticated to the system, after which
a series of 9 audio captchas (discussed in Sect. 4) were presented to them. We
developed a counterbalancing schedule [9] to reduce learning effect and avoid the
influence of natural responses of participants on captcha solving ability. Partici-
pants were divided randomly and equally into groups of 9 each. Every participant
in the group was assigned a captcha using Latin Squares of 9 X 9 [9]. In the last
phase, an email was sent to participants requesting for their feedback about
captchas used in our study. We used System Usability Scale (SUS) in addition
to few other questions on the user’s preference to evaluate system performance.

System Design and Implementation: Participants were required to call our
system to provide their responses. Our implementation emulated a captcha shield
between the Source (caller, which may have malicious intent) and the service
being offered (such as making a credit card transaction or checking balance of a
bank account). The shield required the caller to correctly answer the presented
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Fig. 1. Three phases of the study: pre-study, calling up the setup, and post-study.

challenge for accessing the intended service. Participants could call our imple-
mentation at anytime and the call could originate from any of the telephony
networks, such as PSTN, Cellular Network or VoIP. The input to the captcha
shield was DTMFs (Dual-Tone-Multi-Frequency) sent through the key press on
the phone. Figure 2 shows the system components included a Linksys gateway
SPA 3102 and a Linux Server supporting FreeSWITCH4. In order to support
calls through FreeSWITCH, we used a Linksys SPA 3102 device as a gateway,
which allowed connection to the PSTN network as depicted in Fig. 2. The gate-
way converted analog signals into compatible SIP (Session Initiation Protocol)
format, which were then forwarded to FreeSWITCH on the server. We imple-
mented a simple authentication login (using a pre-registered ID and a PIN) for
users to participate in the study. For maintaining the privacy of participants,
calls were not recorded; only DTMF input to the setup was captured.

Annotators: As a prerequisite to our study, it was essential to create a corpus of
audio captchas (discussed in Sect. 4), and their respective true positive answers.
We built the corpus by manual annotation of each captcha; this methodology has
been used in the prior studies [32]. Each annotator annotated 50 correct captcha
of the assigned service, e.g. eBay, and Google. They entered their response for the
captcha challenge presented to them through the respective web service. Once
the answer was accepted as correct answer by captcha server of the website, it was
added to correct captcha corpus. Annotators were recruited through the mailing
list of our institute. They were from Computer Science background; some were
undergraduate but the majority were postgraduate students, pursuing Masters
or Ph.D degrees at the IIITD, India, e.g. Slashdot annotator visiting Slashdot
new user page.5

Participants: We recruited participants for evaluating captcha through word of
mouth. Participants from different cities of India, Mumbai, Chennai, Delhi, Vel-
lore, and Noida took part in the study. A monetary reward of 75 INR (1.5 USD)

4 FreeSWITCH is one of the open source telephony platforms which has enabled easy
access to telephony often required by various businesses. http://www.freeswitch.
org//.

5 https://slashdot.org/my/newuser.

http://www.freeswitch.org//
http://www.freeswitch.org//
https://slashdot.org/my/newuser
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Fig. 2. The IVR system setup. The user dials the IVR on phone from any network. The
call is received by Gateway, which forwards it to FreeSWITCH. An application written
in Java answers the call by playing appropriate voice prompts. The Java application
accesses database, file-system for storing and retrieving information.

was offered to every participant for contributing to the study. One hundred and
forty participants registered for the study; of these 90 participants called up
our system and completed the study. We were not required to go through an
Institutional Review Board (IRB) approval process before conducting the study.
However, the authors of this paper have previously been involved in studies with
U.S. IRB approvals, and have applied similar practices in this study. Participants
were shown “consent information” on the registration page, which they agreed
to participate in our study. Participants belonged to different age groups, rang-
ing from 18 years to 65 years. Participants’ profession varied with 45.56 % from
Computer Science, 8.89 % from Designing in various fields, 10 % from Finance,
and 35.55 % were Lawyers, Journalists, and Homemakers. As reported, 25.56 %
participants had used IVR for 2 to 3 years, 24.44 % had used IVR for 3 to 5 years
and another 25.56 % for 5 years also, and 24.44 % users had used IVR for 0 to
2 years. Participants could call in from any type of a phone, may use a headphone
or a paper and pen during the call.

6 Study Results

We now discuss the two primary research questions of our study: how much
inconvenience does the captcha causes to the users, and how different features
of captcha, e.g. duration, size and character set influence captcha’s usability.

6.1 Captcha Inconvenience

In this section, we discuss the first question, i.e., the inconvenience caused to the
users in terms of time spent, accuracy and experience with the different audio
captchas.

Accuracy: Captchas are meant to be easy for humans to solve however,
captchas which can’t be guessed correctly cause considerable inconvenience to
the users [10]. We calculate accuracy defined as the percentage of all the captchas
solved correctly in each category to measure captcha inconvenience. Table 2
shows that the maximum average accuracy was only 13.71 % for telephony
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captcha. CD telephony captcha performed the best with 18.71 % accuracy. It was
easier to remember as it involved one time instruction for users like select the
correct option from a simple menu [12]. Among the web-based captcha, alphabet
captcha performed marginally (Δ = 0.97 %) better than number captcha. This
marginal improvement could be attributed to the fact that random numbers are
more difficult to remember than common English words [12]. Table 2 shows that
the percentage of participants who skipped responding to captcha challenge was
maximum (46.07 %) for Recaptcha. High Skip rate and low accuracy for most
captchas show the difficulty caused in solving audio captcha on telephony. We
found significant difference (Chi-sq = 81.42, p-value < 0.001) between Accu-
racy and Error showing considerable inconvenience caused to users while solving
audio captcha.

Further comparing the accuracy of audio captcha on the web and telephony,
we analyzed our results with existing studies on the web. Bursztein et al. found
that Google’s audio captchas were hardest to solve, with only 35 % optimistic
accuracy [10], while Slashdot and Yahoo! performed the best with 68 % accuracy
followed by eBay yielding 63 % accuracy on the web. Participants achieved 47 %
accuracy for Recaptcha on the web. However, in our experiment the accuracy
was nil for Google captcha. Slashdot performed the best on telephony as well,
but accuracy dropped to 13.73 %. eBay performed marginally (1.01 %) better
than Yahoo! on telephony. We understand that these comparisons may not give
an exact picture of the differences between the web and telephony as the two
experiments were conducted in different environments and with participants of
different ethnicity. However, the large difference in accuracy on the two media,
shows the significant increase in the inconvenience caused to participants when
shown audio captcha on telephony.

Solving Time: Time is another important aspect which helps in measuring the
inconvenience caused to users while solving an audio captcha on telephony. It
has been found on the web that a captcha which takes more than 20 s causes
inconvenience to the users [10]. We found that users took much longer to solve a
captcha on telephony than on the web through our study. We measured solving
time per captcha as the time elapsed from the instance when the user is presented
with a captcha to the instance when the user moves to the next captcha type.
Table 2 shows the average time taken to solve different captcha types. Users took
the least of 80.25 s to solve eBay captcha. There was no significant difference in
time taken by users for solving web-based captcha to telephony-based captcha.
We found that the most time consuming captcha on telephony was RPC captcha
with an average solving time of 147.44 s. Among the web-based captcha, Google,
ReCaptcha and Slashdot were the most time consuming with mean greater than
120 s (min: 120.64 s and max: 123.49 s). On analyzing the existing studies on the
web, we found that Google and ReCaptcha were the most time consuming with
a mean value greater than 25 s. However, users took on an average 12 s to solve
Slashdot captcha on the web [10] in comparison to 122.57 s on telephony. The
increase in the solving time shows that the inconvenience caused to users is more
for solving audio captcha on telephony than that on the web.
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Table 2. Aggregate of error, accuracy values for each of the voice captcha in percentage.
Skip gives the percentage of participants who skipped the Captcha. N represents the
total number of Captcha presented in each category.

Captcha Category Time (s) Accuracy (%) Skip (%) Total (N)

CD Telephony 96.11 18.71 35.67 171

Math-function Telephony 90.23 17.47 26.51 166

RPC Telephony 147.44 15.47 40.33 181

C + CD Telephony 109.59 4.57 40.10 197

Total Telephony 85.03 13.71 35.94 715

Ebay Web-Number 80.25 8.75 13.13 160

Google Web-Number 123.49 0.00 43.83 162

Yahoo Web-Number 95.88 7.74 20.24 168

Total Web-Number 99.87 5.51 25.71 490

ReCaptcha Web-Alphabet 120.64 0.00 46.07 171

Slashdot Web-Alphabet 122.57 13.73 30.06 153

Total Web-Alphabet 121.60 6.48 39.51 324

User Experience: As the ultimate assessment metric to understand the incon-
venience caused, we study the feedback provided by the participants for differ-
ent captcha types. Figure 3(a) shows 50 % of the participants found the system
(on which users called to answer captcha in our study) extremely complex to
use. We found statistical difference (Chi-sq = 12.77, p-value < 0.001) in user’s
preference for different captcha (numeric, alphabetic or math function). Users’
feedback suggests that they did not like alphabet audio captcha as only 14.44 %
of users preferred alphabet audio captcha. Most participants (52.22 %) preferred
numeric captcha (Contextual Degradation, Random menu captcha and numeric
web based captcha) and 33.33 % of the users favored captcha involving math
functions (math-function and math-function with contextual degradation). We
also analyzed if age has any effect on captcha preference of the participants.
Figure 3(b) shows participants in the age group of 36 to 50 did not prefer to use
the alphabet audio captcha at all, where as numeric captcha was appreciated
among all age groups.

Next, we wanted to analyze if participants felt that using speakerphones or
headphones would help them solve the captcha better. We did not find signifi-
cant difference between participants who agreed / disagreed that use of speak-
erphones would help (Chi-sq = 0.3846, p-value = 0.5351) but headphones were
felt to be helpful by significant number of participants (Chi-sq = 22.70, p-value
<0.001). We found that 30 % of the users disagreed and 8.89 % strongly dis-
agreed, feeling that speakerphones will be of no use. A participant mentioned
“the voice recording was not clear, therefore, any audio accessory would not have
helped”disagreeing with the use of speakerphones. We also asked the participants
if they felt the use of headphones would help them solve the captcha better.
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Fig. 3. (a) Users reported the system to be complex, not usable, suggesting the need
for technical help for using captcha over telephony. (b) Participants in various age
groups found the numeric captcha to be most usable whereas alphabet captcha was
least preferred by the participants.

The results show that 15.56 % of the users strongly agreed and 70 % agreed;
using headphones would help them respond better to the challenge.

In order to understand the user perspective about the mode of input, we
asked users if they would prefer to respond verbally to the captcha challenge.
We found that statistically significant (Chi-sq = 24.8205, p-value < 0.001) num-
ber of participants felt that the verbal input would be helpful; 36.67 % of the
users agreed with the statement and 28.89 % strongly agreed. This suggests that
entering responses using a keypad is difficult and causes trouble for respondents;
this might be one of the primary reasons for errors in the captcha responses lead-
ing to low solving accuracy in the study [22]. We suggest the need for further
research to investigate what makes an audio captcha easier to answer – verbal
response or keypad touch.We calculated the SUS score for the telephony captcha
as 38.42, which is extremely low.6 Participants (35.71 %) also complained about
voice being not clear, a participant commented “It sounded like ghost voices.
I was not able to understand almost any utterance.” Around 8.92 % explicitly
complained about the accent in the voice captcha stating, “at least the accent
should be better.” Participants (17.85 %) also complained about the noise in the
audio being very disturbing. A participant commented, “too many disturbances
and the accent was bad and 80% of time I couldn’t understand.”

6.2 Hypotheses Validation

The inconvenience parameters discussed above are important for evaluating the
usability of captcha. However, these do not provide much guidance on how differ-
ent captchas feature like duration, and length of captcha (as discussed in Table 2)
influence the users’ accuracy. In this section, we test the various hypotheses
6 Given that SUS is 68 for average usable system.http://www.measuringusability.com/

sus.php.

http://www.measuringusability.com/sus.php
http://www.measuringusability.com/sus.php
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(discussed in Sect. 3) to study the influence of some of these features on audio
captcha usability.

H1– Accuracy vs. Closeness: Sect. 6.1 shows that accuracy of solving captcha
on telephony was low as maximum accuracy achieved was only 13.71 % for tele-
phony captcha. However, we found that the users were close to the actual answer
of the captcha presented. To analyze closeness, we calculated the most frequent
edit distance (also known as Levenshtein distance) between the user’s response
and the expected answer. Figure 4 shows that the edit distance was 2 for most of
the captcha types, followed by 1 (μ = 3.22 and σ2 = 3.40), implying that users
committed 2 errors per captcha response frequently. As an example, for the audio
challenge, “824388” (eBay), the user responded “624386”. Users were required to
remember and input many words for Recaptcha resulting in exceptionally high
edit distance. This supports our Hypothesis H1. This also suggests the need
for further research on developing fault tolerant captcha, which could distin-
guish between human natural behavior error variance, and machine attacks on
audio captcha. Analyzing human behavior when solving captcha has already been
proposed for image based captcha, which can help decrease the inconvenience
caused to users.7
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Fig. 4. The relation between edit distance and number of captcha for each captcha
type.

H2 – Expected Key Press vs. Accuracy: We found that the length of the
answer i.e. size of captcha did not influence the accuracy of the user’s response.
The accuracy decreased from 18.71 % (CD) to 4.57 % (C + CD) irrespective of
the fact that users were required to solve the captcha comprising of similar tasks
7 Are you human Captcha. Secure from All Angles, http://areyouahuman.com/

security/.

http://areyouahuman.com/security/
http://areyouahuman.com/security/
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Table 3. The Average DTMF expected for captcha (Avg. DTMF), accuracy, time and
Average DTMF input by users (Avg. User DTMF) of each captcha. N represents the
total number of Captcha presented in each category.

Scheme Category Avg. DTMF Accuracy Time Avg. User DTMF Total (N)

CD Telephony 1.00 18.71 96.11 1.76 171

Math-function Telephony 2.05 17.47 90.23 2.71 166

RPC Telephony 3.00 15.47 147.44 3.92 181

C + CD Telephony 2.06 4.57 109.59 2.65 197

Ebay Web 6.00 8.75 80.25 3.85 160

Google Web 6.36 0.00 123.49 4.68 162

Yahoo Web 7.09 7.74 95.88 4.99 168

Slashdot Web 15.34 13.73 120.64 6.02 153

ReCaptcha Web 64.93 0.00 122.57 10.97 171

and comparable expected DTMF count. Similar trends were noticed for the web
captcha, where users were expected to identify a similar number of spoken digits
(eBay, Google, Yahoo) but the accuracy varied from 0 % to 8.75 %. Table 3 shows
the expected DTMF users were required to input for a correct response and the
corresponding accuracy for each captcha type. The correlation between expected
DTMF count and accuracy was found to be very low (r = −0.52) with a negative
fit. Further analysis of the data showed the presence of a positive relationship
between Expected key press and accuracy parameters for Math function, but we
noticed a negative relationship with correlation coefficient r = −0.47 for web-
based captcha. Finally, we found the significant difference (t-test, t-value = 5.30
p-value < 0.001) between Expected Key Press (Average DTMF) and accuracy
in statistical results shows that these two were independent of each other. The
results mentioned above do not approve our hypothesis H2.

H3 – Time vs. Number of Key Press: Table 3 shows that users spent varying
amount of time in submitting a comparable number of DTMF responses. For
example, the average time spent for Google was 123.49 s (min: 17.15 and max:
341.21) whereas for Yahoo, it was 95.88 s (min: 25.88 and max: 278.00), although
both of them had same average DTMF (5) to input. There was a significant
difference between the time taken to solve Google vs. Yahoo! (t-Test, t-value =
−12.39, p-value < 0.01). Further, we found a correlation (r =0.85) between time
spent and DTMF input for Math-function captcha, suggesting an increase in the
time was proportionate to DTMF input. However, this correlation dropped to r =
0.56 for web-based captcha, implying an absence of any strong relativity between
time and DTMF input. The results from our study suggest lack of any strong
relationship between the time spent by the participants in solving a captcha
and the number of DTMF input from them. We found that the correlation
between the time spent to answer the captcha and DTMF response from the
users was 0.36 for all the captcha used in our study. We found the significant
difference (t-test, t-value = 4.33, p-value < 0.0001) between number of key press
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Fig. 5. Figure shows Aggregate accuracy (%), Number of DTMF and Average play
time (seconds) of web-based captcha. Exposing users longer to Captcha does not help
improve accuracy.

(Average User DTMF) and accuracy in statistical results suggesting that these
two were independent of each other. We further tested, if the duration for which
a captcha is played influences the accuracy but found that exposing users longer
to a captcha did not help improve solving accuracy. Figure 5 shows the average
playtime of the number web-based captcha (eBay, Yahoo, Google) varied from
as low as 3.7 to 34.4 s where all these required a similar number of DTMFs to
be recognized. Google captcha provided a feature to repeat the challenge in each
attempt, without users asking for it explicitly, irrespective of these; the correct
response was 0 % for Google and 8.75 % for eBay.

7 Discussion

In this paper, we explored user’s experiences and views on telephony captcha
through a real world study. We concentrated on two primary research questions:
how much inconvenience does captcha causes to the user, and how different
features of the captcha, e.g. duration, size and character set influence captcha’s
usability. We measured the level of inconvenience caused to users in terms of time
spent, accuracy, and perceived difficulty / satisfaction of using various captchas
schemes. We found that the accuracy of captcha decreased multifold on tele-
phony in comparison to web, and the time taken to solve captcha increased
to as high as 122.57 and 120.64 s for popular captcha schemes, e.g. Recaptcha
and Slashdot, respectively. However, we found that users were relatively close to
the expected correct answers (discussed in Hypotheses Validation of H1), which
may suggest the possibility of deploying captcha on telephony platforms in the
future. We found that the captcha could be a viable solution for telephony with
improved features, such as fault tolerance, better voice and accent as most par-
ticipants suggested in their feedback. Next, to study the influence of different
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features, which might improve accuracy, and usability of captcha on telephony,
we tested 3 hypotheses. The results from the study supported hypotheses 1,
whereas hypothesis 2 and 3 remain tenable. We did not find strong influence of
captcha size and duration on solving accuracy.

Contrary to the existing work [28]; we found Math-function captcha per-
formed better than alphabet captcha. Soupionis et al. discarded the use of alpha-
bet captcha assuming that sending letters to answer a captcha could be difficult
for an average user. However, we found that alphabet captcha’s accuracy was
comparable to numeric captcha. Finally, we present our results for recommen-
dations proposed in literature for improving telephony captcha. Polakis et al.
suggested adding distortion to speech signals to make it more usable for humans
and difficult for machines rather than just adding noise [28]. We used the dis-
tortions available on the web-based captchas to test the recommendation. We
understand that these distortions might not be the best but as these have been
able to provide sufficient security on the web, therefore, for initial testing we
used distortions available in web-based captcha. Contrary to the recommenda-
tions, we found that it was still difficult for participants to solve these captchas.
We found that both forms of noise, intermediate and background, caused incon-
venience for the users and captcha solving accuracy was low in the presence of
both of them.

We suspect instances during the study, when the DTMF sent by the users
may not have completely reached the captcha server. In our setup, the receiver
used a PSTN network, which helped in minimizing such errors but in certain
real world scenario, where both receiver and caller are wireless users, the lossy
nature may lead to total failure of the captcha test [6]. The telephony captcha
would probably need to be more loss-tolerant, but this would demand a trade-off
between accuracy of captchas and security (i.e., resistance to automated attacks).
Telephony network consists of inherent noise, which effects the audio quality. As
also observed by the annotators during our annotation phase, the quality of the
audio being played through the laptop speaker (often used in the studies so far
with soft phones) was much more audible and clear than the one from speakers
of the telephone / mobile phone. It would be interesting to study the influence
of these factors on the captcha solving performance.

8 Guidelines

Based on our overall results and analysis, we recommend following design con-
ventions for improved telephony captchas.

1. One time instruction: All telephony captchas and slashdot captcha in our
study presented one time instruction to the users whereas most web-based
captchas had random numbers or strings. We found that the accuracy of
the telephony captcha, and Slashdot was comparatively better than random
strings. This indicates that the captcha involving one time instruction or
challenge are appropriate for telephony interfaces (e.g., one word challenge or
logic questions) as speech competes with verbal processing [8].
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2. Loss/error tolerant: The captcha should be error / loss tolerant since the
telephony network might drop DTMF carrying user response. The telephone
network itself introduces its own noise causing the audio to degrade [6]; hence
external noise has to be calibrated accordingly.

3. Feedback: Visual/audio feedback for the response should be made available
to the users for the response they input, especially required on voice medium
because of its inherent lossy nature. We suggest presenting the characters of
the captcha for a fraction of a second while the user is solving it (e.g. as in
the some of the latest handheld devices for entering the passwords).

4. Verbal responses: Users are better trained and prefer voice as input modality
instead of keypad touch as telephony networks are primarily voice based. It
is advisable to use captcha based on secure verbal inputs (voice recognition)
instead of key press. This can help reduce the manual errors in keying in the
responses and improve usability.

Finally, we note that our study has some limitations. As the study was con-
ducted in the real world, we had no control on the environmental conditions and
assume that all participants had the similar environment. Participants could opt
to finish the study in multiple sessions, some participants who called in multiple
times to the system were exposed more to the captchas and experienced varied
cognitive load.

In the future, we envisage applying other techniques such as illusion effects,
earcons to build a captcha system and to evaluate the effectiveness of such new
approaches. We plan to conduct a detailed study of the cognitive loads and
psychology of the auditory system with captchas to help us design a better
mechanism to differentiate between machines and human beings.
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Abstract. Participation on Online Social Networks (OSNs) inherently
requires information sharing and thus exposes individuals to privacy
risks. Risk mitigation then has been encouraged through adoption of
usable privacy controls. Apparently stronger privacy enhancing technolo-
gies (PETs) decrease both risk and perceptions of risk. As a result indi-
viduals feel safer and may respond by in fact accepting more risk. Such
perverse results have been observed offline. Risk perception offline has
been understood to be a function of characteristics of the risks involved
rather than as a calculus grounded only in the probability of the risk
and the magnitude of harm. In this work we use nine characteristics of
risk from a classic and proven offline model of perceived risk to conduct
a survey based evaluation of perceptions of privacy risks on Facebook.
We find that these dimensions of risk provide a statistically significant
explanation of perceived risk of information sharing on Facebook.

Keywords: Privacy · Facebook · Risk perception · Control

1 Introduction

Information sharing on Online Social Networks (OSNs), e.g. Facebook, exposes
individuals to privacy risks. These risks often manifest as tractable losses, e.g.
Facebook fired. Yet participation in Facebook is continent upon sharing infor-
mation. It is then not surprising that although individuals express privacy con-
cerns, they willingly post potentially harmful information online. This disconnect
between the expressed preference for privacy and observed behavior of willful dis-
closure has been called the privacy paradox [3]. To alleviate the harm from this
information sharing, the foremost proposal has been that of Privacy Enhancing
Technologies (PETs); for Facebook specifically these manifest as privacy con-
trols. These controls have been bemoaned for the lack of usability [15]. However,
assuming that usable controls are available corresponding reduction in harm is
not given. As in the case of cars and seat belts, individuals may compensate
for better privacy controls with risk seeking behavior [2]. Even when individual
perceive a higher control in the publication of information they tend to share
more [4]. Thus, similar to case of automobile safety the protection provided by
stronger PETs may be mitigated by increase in information sharing.
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The presence of strong technical solutions that are usable is necessary to
enable privacy online. However, it is not sufficient as individuals do not engage a
economically rational calculus, optimizing the cost-benefit tradeoff, when shar-
ing/protecting information [12]. Instead privacy behaviors, akin to behaviors
offline, are boundedly rational [1]. Thus, the acceptability of (privacy) risks
is driven by the perceived risk vs. the perceived benefit of an activity. Previ-
ous research indicates that perceived risk offline is driven by nine characteris-
tics of the hazard [9]: (1) voluntariness, (2) immediacy, (3) knowledge to the
exposed, (4) knowledge to experts, (5) control, (6) newness, (7) common-dread,
(8) chronic-catastrophic, and (9) severity. Online, this framework has been used
to explain perceptions of technical security risks [10] and insider threats [8].

In this paper, we will conduct a first examination of this framework for
privacy risks on Facebook using the psychometric paradigm of expressed prefer-
ences. In the process we adapt and translate Fischhoff’s canonical nine dimen-
sional model for privacy risks on Facebook. By grounding our analysis in a
framework that has been used to examine perceived risk across domains and
cultures we allow for a systematic comparative across risk perception studies,
both online and offline. We detail the related work in Sect. 2. Section 3 outlines
the methodology including the survey instrument design and deployment proce-
dure. We present our findings in Sect. 4. Section 5 discusses the implications of
our findings. We conclude in Sect. 6 with a description of future work.

2 Background and Related Work

Information disclosure on Facebook is to a large extent voluntary. Individuals,
however, share more information when disclosure is voluntary [21]. Thus, indi-
viduals who perceive information sharing on Facebook to be voluntary should
share more than others. Similarly, higher perceived control over publication can
increase information sharing [4]. Perceived risk of an activity appears lower when
the consequences are delayed. Smoking, for example, in the immediate term pro-
vides stress-relief, but the long term may lead to cancer. Regret on Facebook is
similarly delayed and felt only after the information has been shared [25].

As individuals better understand the underpinnings of an activity their per-
ceptions of risk are similarly informed. When privacy risks are communicated in
an effective manner, individuals share information in a manner aligned with their
preferences [5]. Counterintuitively, informed individuals may feel empowered and
share more. The perceived knowledge to experts, or in this case the effective-
ness of expert systems also informs risk perceptions and therefore behaviors. For
example, non-experts assume comprehensive anonymous communication when
running Tor, even though the protection is only available selectively [19].

The newness of a risk impinges the individual ability for objective evalua-
tion. New risks would be poorly understood and thus likely to be exaggerated
or underestimated. For example, offline information sharing is likely one to one.
Online, information shared on different platforms, at various times, with dis-
tinct entities can be aggregated and thus the potential for privacy violations is
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exponentially higher. Such privacy risks are both intractable for the end-users, as
humans are better at averages than aggregation [24], and not acceptable [17]. Per-
ceptions of risks that are commonly encountered are typically lower than those
rarely encountered. The evolutionary rationale for such perceptions is intuitive. If
individuals constantly worried about the risk of crossing the street if would lead
to a functional paralysis. Simultaneously, the data on rare risks would be sparse;
thus, it would be difficult to ex-ante approximate a strategy for risk mitigation.
Information sharing is a risk that is commonly encountered and is commonly
beneficial as it increases market efficiency; however the data on privacy risks
is difficult to obtain. Even when information is shared willingly, it is difficult
(in fact impossible) for an individual to identify how often the information was
accessed, by whom, and for how long [20].

Catastrophic risks, where many people are impacted in a single incidence
of an event, may appear more scary than those in which only an individual is
impacted. For example, terrorist attacks often impact multiple individuals and
thus can be overestimated. Food poisoning appears to impinge solitary individ-
uals and thus appears relatively benign. However, in most countries more indi-
viduals die of food poisoning than of terrorist attacks. The perceived severity
of the consequences of information sharing also impinges the perceived privacy
risk. For example, acknowledging affinity for an unconventional book may sim-
ply lead to teasing the peer group; however, sharing sexual orientation can lead
to social discrimination, denial of employment, and even physical violence for
traditionally vulnerable communities.

While perceptions of risks are driven by the characteristics of the risk, individ-
ual demographic considerations are equally important. Factors such as income,
age, and gender are equally relevant. Individuals with lower incomes are less con-
cerned about privacy [1]. Older adults may share less information than younger
cohorts [7]. Women are more risk averse than men both online and offline [11]
and thus should share less information [14]. Finally, the perceived risk of an
activity is also influenced by its perceived benefit. Previous research indicates
that for most activities there exists a negative correlation between the respective
perceived risk and perceived benefit [9]. Thus, activities that are considered to
be less risky are seen as more beneficial and vice versa.

H01 : There is no correlation between the perceived risk of sharing an informa-
tion item and its perceived voluntariness.
H02 : There is no correlation between the perceived risk of sharing an informa-
tion item and the perceived immediacy of consequences.
H03 : There is no correlation between the perceived risk of sharing an informa-
tion item and perceived knowledge to exposed.
H04 : There is no correlation between the perceived risk of sharing an informa-
tion item and perceived knowledge to experts.
H05 : There is no correlation between the perceived risk of sharing an informa-
tion item and perceived control over consequences.
H06 : There is no correlation between the perceived risk of sharing an informa-
tion item and its perceived newness.
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H07 : There is no correlation between the perceived risk of sharing an informa-
tion item and its perceived rarity.
H08 : There is no correlation between the perceived risk of sharing an informa-
tion item and catastrophic nature of its impact.
H09 : There is no correlation between the perceived risk of sharing an informa-
tion item and perceived severity of impact.
H010 : There is no correlation between perceived risk of sharing and individual
privacy preferences.
H011 : There is no correlation between perceived risk of sharing and income.
H012 : There is no correlation between perceived risk of sharing and age.
H013 : There is no correlation between perceived risk of sharing and gender.
H014 : There is no correlation between perceived risk of sharing an information
item and the corresponding perceived benefit.

3 Methodology

In this research we are concerned with the underlying determinants of perceived
risk, as well as the relationship between perceived risk and perceived benefit, as
they pertain to sharing information on Facebook. To the extent that information
sharing on Facebook is a risk, we posit that perceived risk would be informed by
nine characteristics of risk [9]: (1) voluntariness, (2) immediacy, (3) knowledge
to the exposed, (4) knowledge to experts, (5) control, (6) newness, (7) common-
dread, (8) chronic-catastrophic, and (9) severity.

We use the psychometric paradigm of expressed preferences, which surveys
individuals to elicit perceived risk. Previous research has identified, acknowl-
edged, and addressed the limitations of this methodology [22]. However, given
that privacy decisions are situated in the context of praxis [18], a survey based
approach is additionally limited as it may not illuminate deeper specific factors
that can be discovered from an in-situ study. To reduce the impact of divergent
contexts, we focus our study on information sharing on Facebook and target a
relatively self similar demographic in terms of age, education etc. by selectively
recruiting participants from an undergraduate computer science class.

The design of the survey was kept similar to the original instrument used
by Fischhoff et al. for consistency. Participants provided general demographic
information: (1) gender, (2) age, (3) household income, (4) frequency of Facebook
accesses, (5) frequency of status message updates on Facebook, and (6) frequency
of location sharing on Facebook. Individual privacy preferences were enumerated
by using a subset of the Internet Users’ Information Privacy Concerns (IUIPC)
scale [16]. The subset measures global privacy concerns rather than concerns
about specific contexts such as consumer privacy.

A typical Facebook profile consists of twenty-two information items: real
name, DoB (without year) or DoB (with year), current address, telephone, email
id, personal website, music, movies, books, television, personal interests, pho-
tographs, political affiliation, religious affiliation, sexual orientation, friends list,
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education, work experience, current employment, and hometown. All partici-
pants were asked to identify which of these information items they shared on
Facebook and with whom, i.e. friends, friends of friends, or everyone. (No sharing
was coded as 0, sharing with friends, friends of friends, and everyone was coded
as 1, 2, and 3 respectively).

Participants then rated the risk (or benefit) of sharing individual information
item on Facebook. Participants were not given a definition of what is implied by
either risk or benefit. Participants rated the least risk (or beneficial) item ‘10’.
Thus, if sharing your DoB with the year gave you the least risk (or benefit),
then that would be rated ‘10’. Each subsequent item was to be evaluated in
comparison with this item. Thus, an item that was rated ‘20’ would be twice as
risky (or beneficial) as the least risky (or beneficial) item.

All participants rated the risk of each of the 22 items on the nine dimensions
of perceived risk [9]. The nine dimensions were defined as:

1. Voluntariness: Do you share this information voluntarily? Or is this infor-
mation demanded by external entities such as Facebook, friends, etc.?
(1 = Voluntary; 7 = Involuntary)

2. Immediacy: Is the impact of sharing this information immediate or does it
happen at a later point in time? (1 = immediate; 7 = delayed)

3. Knowledge to exposed: To what extent are you aware of the consequences of
sharing this information? (1 = known precisely; 7 = unknown)

4. Knowledge to experts: To what extent do you think experts are aware of the
consequences of sharing the information? (1 = known precisely; 7 = unknown)

5. Control: Do you think you have control of the consequences of sharing the
information? (1 = uncontrollable; 7 = controllable)

6. Newness: Do you think the implications generated from sharing this informa-
tion are new? (1 = new; 7 = old)

7. Chronic-catastrophic: Does sharing this information affect only you (chronic)
or several people (catastrophic)? (1 = chronic; 7 = catastrophic)

8. Common-Dread: Is sharing this information so common that you don’t think
about it? Or is it so unique that it fills you with dread? (1 = common;
7 = dread)

9. Severity: How severe do you think are the consequences of sharing this infor-
mation? (1 = certain to not have adverse consequences; 7 = certain to have
adverse consequences)

The study was conducted using paper surveys. The order of presentation of
the 22 information items was static and consistent across all survey instruments.
Participants were recruited from a convenience sample of college undergraduates.
Students were allowed a two-course-credit bonus to incentivize participation,
contingent on their having used Facebook. The alternative was to opt out and
write a short essay, on Facebook or privacy, (≈500 words) instead. Participants
blindly selected one of two survey instruments. The study was approved by the
Institutional Review Board (IRB) at Indiana University, Bloomington.
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4 Results

Of the 200 students who took the survey, 74 were returned. Thus, the response
rate was approximately 37 %. One of the surveys was discarded as it was com-
pletely empty. Two survey instruments were discarded as participants did not
follow the instructions. Specifically, participants were asked to rank the nine
dimensions on a scale of 1 through 7. However, one of the participants provided
ratings higher than 7. Participants were also asked to give the item with the low-
est perceived risk a rating of 10. A second participant provided risk ratings less
than 10. Thus, there were 71 correctly completed survey instruments returned.

40 participants completed the perceived benefit survey. Of these, 30 were
men and 10 were women. 38 participants were between the ages of 18–25 while
2 participants were between the ages 26–30. 31 participants completed the per-
ceived risk survey. Of these, 24 were men and 7 were women. 30 participants
were ages 18–25, and 1 participant was 26–30.

We acknowledge that this is a convenience sample. Participants consisted of
individuals in an undergraduate computer science class. Therefore, they are likely
to be more informed. The average privacy rating for participants completing the
benefit survey was 26.81579, while that for risk was 26.03571. A one-sided T-test
did not indicate a statistically significant difference with p-value = 0.7935. The
correlation for the mean values of perceived benefit and perceived risk was not
statistically significant with a p-value = 0.6321. The correlation for the respective
median values was similarly not significant statistically with a p-value = 0.9367.
Participants were also asked to rate the 22 risk items on Fischhoff’s nine dimen-
sions. We computed the (Spearman) correlation (ρ) between the nine dimensions
of perceived risk as shown in Table 1. We also constructed two Ordinary Least
Squared (OLS) linear regression model with perceived risk as the dependent
variable; independent variables were limited to Fischhoff’s nine dimensions in
the first model, while the second included demographic variables as well as item
order, information shared, and privacy preferences; Table 11.

5 Discussion

In this paper, we examine the perceived benefit of information sharing on Face-
book, compared to the perceived risk. There are several limitations to our study,
i.e. small sample size, convenience sample, ordering effects. Thus, our findings
are not generalizable. We also can not compare the relative sensitivity of differ-
ent information items. Our analysis of the relative importance of Fischhoff’s nine
dimensions and the framework itself is appropriate. As noted in the regression
model in Table 1, information order is not statistically significant. Despite these
limitations this study allows us to test a set of falsifiable hypotheses.

Table 1 indicates that hypotheses H01 ,H03 ,H05 ,H07 ,H08 , and H09 can be
rejected; however, there is limited evidence to reject to H02 ,H04 , and H06 . Thus,

1 Age is not considered as the standard deviation for this variable is ≈0.
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Table 1. Linear regression analyses and correlations

perceptions of privacy risks are lower when information sharing appears volun-
tary, individuals know more about the risk, the consequences of sharing appear
controllable, the information is commonly shared, information sharing impacts
only individuals, and the severity of consequences appears low.

The rejection of H01 ,H03 indicate a counterintuitive insight for the providers
of Online Social Networks, specifically Facebook. If individuals perceive higher
control on consequences of sharing and sharing appears voluntary, they share
more. Thus, if OSN should provide better PETs and empower their users.

The rejection of H03 is also counterintuitive. We agree that there is need to
educate end-users about the consequences of sharing information. However, edu-
cated individuals may feel a false sense of safety as awareness lowers perceptions
of risk. Thus, OSN providers should invest in privacy education as it lowers the
inhibitions of their users. The impact of such educational input is made salient
by Table 1, as knowledge to the exposed is a statistically significant determinant
of perceived risk.

Intuitively, information that is commonly shared is perceived to be less risky.
However, often commonly shared attributes such as real name can lead to privacy
violations. For example, using real name on OSNs can make it easier for an adver-
sary to search and locate an individual’s profile. (Note that while individuals do
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not consider Real Name to be a commonly shared attributed (mean = 3.0); it is
a required information item on Facebook). Items marked as commonly shared
by the participants, such as sexual orientation or political affiliation, can clearly
have a real life impact. (In fact many of the participants report sharing such
sensitive information online. For example, in our sample 54 participants report
sharing their sexual orientation on Facebook).

Information that impacts fewer individuals is perceived to be less risky. This
is not problematic when individuals correctly assess whether the information is
catastrophic in nature or not. However, often this assessment may be incorrect;
for example, individuals may consider that Friends List is not a catastrophic
risk. Arguably, sharing the friends list would not only impinge the individual
sharing but also all their friends.

Sharing information when the severity of consequences is lower is also per-
ceived to be less risky. Offline severity is the most important determinant of
perceived risk [9]. There is evidence that severity is very important even for per-
ceptions of privacy risks. Severity is significantly correlated with perceived risk
(Table 1) and also statistically significant in the regression model (Table 1).

The nine-dimensional framework provided a statistically significant explana-
tion (p-value � 0.001) of the (13.17 %) variance in perceived risk of information
sharing on Facebook (Table 1). Perceptions of privacy risks on Facebook may
then be similar to those offline and may be addressed by translating offline
strategies online. For example, public awareness campaigns have successfully
addressed drunken driving [13]. Our results indicate that it is in the interest of
OSN providers to facilitate similar campaigns online and simultaneously provide
(subsidized/usable) technical solutions for privacy. Investment in such aware-
ness may be additionally justified by the costs of self-regulated behavior under
a perceived panopticon that may hamper information sharing [23].

Individual privacy preferences were strongly and positively correlated with
the perceived risk of information sharing, rejecting H010 . Thus, while privacy
decisions are often contextual, general risk attitudes towards information sharing
significantly impinge on an individual’s decision to divulge information on social
networking sites as well. Given that contextual user education about information
sharing may be expensive and less tractable, general awareness about privacy, if
leveraged, would still improve outcomes.

H011 ,H012 , and H013 could not be rejected. H011 was difficult to test. About
one-third of the sample, i.e. 22 participants did not report their household
income, while another third, i.e. 24 participants, had a income higher than
$75,000. H012 could not be tested as most participants were of the same age.
H013 similarly could not be tested appropriately as the sample was heavily gen-
der skewed with more than three-fourths of the participants being male.

Finally, H014 could not be rejected. In similar offline studies, perceived risk
has been negatively correlated with perceived benefit for most activities, e.g.
smoking. The lack of correlation suggests that certain information items are not
perceived as beneficial, but are shared due to the design of the website, the need
to fill in blanks, etc. [21].
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6 Conclusion and Future Work

Condoms alone do not limit the spread of Sexually Transmitted Diseases (STDs)
as individuals compensate by have multiple partners or more risky sexual encoun-
ters [6]. The effective strategy has been addressing behaviors, for example in
Uganda, rather than a singular reliance on technology. Similarly, it is imperative
to address non-expert behaviors and lower the individual risk budget for security
and privacy risks online.

In this paper we used the psychometric paradigm of expressed preferences to
survey individuals regarding the perceived risk of sharing information on Face-
book. The results starkly resemble previous research on offline risks, despite the
lack of physical harm online. This has the promise of translating existing lit-
erature in risk communication and public policy for security and privacy risks
online. We validated prior results based in revealed preferences. Voluntary dis-
closure and greater control may encourage more information sharing. Simulta-
neously, more informed users have lower perceptions of risk and thus may share
more. Thus, there is a perverse incentive for OSN providers, like Facebook, to
empower their users to protect privacy. Educated users may demonstrate behav-
iors that reduce harm for a single incidence of information disclosure. However,
as perceived risk of information sharing decreases they may share information
more frequently. Thus, the overall privacy risk remains the constant, i.e. the risk
thermostat is not impinged as individuals compensate [2].

Finally, while the acceptability of privacy risks manifests contextually, our
results indicate that baseline privacy preferences may significantly inform indi-
vidual perceptions. Thus, risk communication through generalized privacy cam-
paigns is needed and can be potentially effective. Risk communication designers
should focus on the relevant determinants of perceived risk on Facebook, i.e.
severity and knowledge to the exposed. Future work should validate these find-
ings with a larger representative participant pool.
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Abstract. Attribute-based encryption (ABE) is well suited for fine-
grained access control for data residing on a cloud server. However, exist-
ing approaches for user revocation are not satisfactory. In this work, we
propose a new approach which works by splitting an authorized user’s
decryption capability between the cloud and the user herself. User revo-
cation is attained by simply nullifying the decryption ability at the cloud,
requiring neither key update nor re-generation of cloud data. We propose
a concrete scheme instantiating the approach, which features lightweight
computation at the user side. This makes it possible for users to use
resource-constrained devices such as mobile phones to access cloud data.
We implement our scheme, and also empirically evaluate its performance.

1 Introduction

Data residing on a cloud storage need to be encrypted in order to safeguard their
secrecy against the untrusted cloud provider [8–10], and to serve as an access
control mechanism where a user’s decryption capability is assigned according
to the access control policy. For instance, a hospital encrypts its medical data
outsourced to a cloud storage such that a patient’s medical records are only
allowed to be decrypted by her doctors and nurses. Attribute-based encryption
(ABE) [6,12,18], has been hailed as the solution to cloud data encryption because
it enforces fine-grained access control over the decryption capabilities. Informally,
as an one-to-many encryption mechanism, ABE allows data to be encrypted with
certain policy/attributes while each decryption key is associated with certain
attributes/policy. Only when the attributes satisfy the policy can the ciphertext
be deciphered correctly by the key.

Nonetheless, user revocation remains a thorny problem in the setting of cloud
data encryption without a satisfactory solution. In the following, we review
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 293–308, 2015.
DOI: 10.1007/978-3-319-27659-5 21
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several possible approaches to user revocation. Firstly, authentication-based
revocation used in conventional access control systems are expensive for the
cloud setting. This approach requires an extra authentication mechanism at the
user-cloud interface. It costs the user to possess extra secrets and the cloud server
is burdened with the authentication task. The second approach is key-update
based revocation as proposed in [1,19,20]. This method suffers from poor scal-
ability as all data must be re-encrypted and all remaining legitimate user keys
are to be updated or re-distributed, whose cost is tremendously high when the
data volume or the number of users scales up.

The third approach is to retrofit ABE schemes with revocation support by
assigning revocation related attributes. The ABE schemes in [6,12] propose to
include an “expiry time” attribute in the attribute set such that each decryption
key is effective only for a period of time. The shortcoming of this method is
that it does not allow for immediate revocation due to the time gap. In [16],
Ostrovsky et. al. propose negative constrains in the access policy, such that
a revocation of certain attributes amounts to negating these attributes. This
mechanism is not scalable in revoking individual users, as each encryption has
to involve information of all revoked users each of which is treated as a distinctive
attribute.

The fourth approach is key splitting [4], where an untrusted security medi-
ator holds one part of a decryption key. Once a user is revoked the mediator
immediately refuses to participate in her decryption. Although this paradigm is
suitable for the cloud setting where the cloud server plays the role as a security
mediator, it requires the underlying decryption algorithm to be homomorphic.
However, existing homomorphic encryption schemes do not allow for fine-grained
access control policies. Another downside of this approach is that it requires a
TTP (Trusted Third Party) to perform key splitting which is not suitable for
certain cloud storage applications.

In short, cloud storage applications desire an encryption mechanism with the
following two properties: (a) fine-grained access control with strong expressive-
ness to describe complex access policies; (b) scalable and efficient revocation to
instantly nullify a user’s decryption privilege without affecting legitimate users
and inflicting high cost on the cloud server. This paper presents such an encryp-
tion system for cloud storage. We first envision a general approach solving the
user revocation problem in encryption of cloud storage, with the basic idea of
splitting a user’s decryption capability between the cloud server and the user
herself, such that a full decryption requires the cloud server’s assistance. User
revocation is achieved by instructing the cloud server not to offer the needed
assistance. We then propose a concrete scheme realizing the approach, which
achieves the same level of fine-grained access control as ABE. Different from
key splitting, decryption-capability splitting does not require a TTP to know all
users’ secrets. Another feature of our scheme is the lightweight computation at
the user end, such that a user only performs power exponentiations in a regu-
lar algebraic group, though the scheme is based on bilinear mapping. We have
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implemented our scheme, and empirically tested on a smartphone where the
decryption at the user side only takes 12 ms.

Organization. In Sect. 2, we elaborate our decryption-capability splitting app-
roach for user revocation, and formulate a system model. A concrete instantia-
tion is presented in Sect. 3. Experimental results are given in Sect. 4, and Sect. 5
introduces related work. Section 6 concludes the paper.

2 Synopsis

2.1 System Setting

A data owner (denoted as Owner) uploads her data records to a cloud stor-
age server (denoted by Server). Without fully trusting the Server, the Owner
encrypts her cloud data such that data privacy is protected against the Server.
This encrypted cloud data storage is to be accessed by a group of users autho-
rized by the Owner. Data encryption enforces fine-grained access control, such
that different users have different decryption capabilities matching their respec-
tive functional roles. In particular, a user’s decryption capability is delineated
by a set of attributes according to her role. Each data encryption is associated
with an access control policy such that a user can successfully decipher the
encrypted record only if her attributes satisfy the record’s policy. Under cer-
tain circumstances, the Owner may need to revoke a user, in the sense that the
revoked user is not allowed to decipher any record in the cloud. We consider the
Server as an honest-but-curious adversary, which honestly runs the algorithms
or tasks assigned to it while attempting to attack data privacy. Figure 1 depicts
an overview of the system.

Fig. 1. An overview of the cloud storage system

2.2 Fine-Grained Access Control

To facilitate fine-grained decryption capabilities, we use “attribute” and “access
structure” utilized in [18] to describe our access control model.

Attributes. Let Λ denote the dictionary of attributes used in the system. Each
user u of the cloud storage is assigned with a set of attributes Su ⊆ Λ. The
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attribute assignment procedure is application specific which is beyond the scope
of this paper.

Policy and Access Structure. In our system, an access control policy is
expressed by a monotonic access structure which is a subset of 2Λ. In particular,
a collection A ⊂ 2Λ is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of Λ. The sets in A

are called the authorized sets, and the sets not in A are called the unauthorized
sets. We restrict our attention to monotone access structures in this work.

Linear Secret-Sharing Schemes. Linear secret-sharing schemes will be used
to establish access structures. A secret-sharing scheme Π over a set S of
attributes is linear if (1) the shares for each attribute form a vector over Zp;
(2) there exists a matrix M (with � rows and n columns) called the share-
generating matrix for Π. For the ith row of M , i = 1, ..., �, we let the function ρ
define the attribute labeling row i as ρ(i). When we consider the column vector
v = (x, y2, · · · , yn), where x ∈ Zp is the secret to be shared, and y2, · · · , yn ∈ Zp

are random, then M · v is the vector of � shares of the secret x according to Π.
The share (M · v)i belongs to attribute ρ(i).

It is shown in [2] that every linear secret-sharing scheme as above also enjoys
the linear reconstruction property: Suppose that Π is a linear secret-sharing
scheme for the access structure A. Let S ∈ A be any authorized set, and let
I = {i : ρ(i) ∈ S} ⊂ {1, 2, ..., �}. Then, there exist a set of constants {ωi}i∈I such
that if {λi}i∈I are valid shares of any secret x according to Π, then

∑
i∈I ωiλi =

x. Furthermore, these constants {ωi}i∈I can be found in time polynomial in the
size of the share-generating matrix M .

2.3 Our Approach

A notable difference (in terms of data encryption) between the cloud storage
setting and the conventional PKI or group communication settings is that the
untrusted cloud server is always involved in users’ data accesses. To leverage this
fact towards addressing user revocation, we split a user’s decryption capability
between the Server and the user herself, such that decryption of encrypted cloud
record depends on the cooperation between Server and the user. Specifically, a
user’s decryption capability is rendered by a server-side key and a user-side key,
where the former is held by the Server and the latter is possessed by the user. To
manage users’ server-side keys, the Server maintains a Server-side Key list, with
each entry containing a user’s identity and her server-side key. When the user
requests a data record from cloud, the Server executes a server decryption oper-
ation over the data with the user’s server-side key, generating an intermediate
value. The intermediate value is then returned to the user, who gets the plain-
text data by a user decryption operation using her user-side key. We remark that
the pair of server-side key and user-side key are not the result of key splitting.
Therefore, our approach does not require a trusted party (i.e., the Owner in our
case) to compute the user-side key on behalf of the user.
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In line with our approach, a secure cloud storage system involves three types
of entities, the Owner, a set of users, and the Server. These entities interact with
one another in the following algorithms.

Definition 1. A secure cloud storage system (SCSS) is defined as a collection
of the following seven algorithms.

Setup(1κ) → (params,msk): Taking as input a security parameter 1κ, the
Owner executes this algorithm to set up public parameters params and a
master secret key msk. Below we assume that params is implicit in the
input of the rest algorithms, unless stated explicitly.

UsKGen(u) → (Upku, Usku): The user-side key generation algorithm takes as
input the public parameters and a user identity u, and outputs a pair of user-
side public/private keys (Upku, Usku) for u.
Each user executes this algorithm to generate a key pair for herself.

SsKGen(msk,Upku, S) → SsKu: The server-side key generation algorithm
takes as input master secret key msk, user-side public key Upku, and a set
S ⊂ Λ of attributes, and outputs a server-side key SsKu for u.
The Owner executes this algorithm to authorize a user, based on her
attributes. The server-side key SsKu will be secretly given to the Server
who then adds a new entry in the Server-side Key list LSsK , i.e., LSsK =
LSsK ∪ {u, SsKu}.

Encrypt(m,A) → c: The encryption algorithm takes as input a message m
and an access structure A, and outputs a ciphertext c by encrypting data m
under the access structure.
The Owner executes this algorithm to encrypt a data record to be uploaded
to the Server.

SDecrypt(SsKu, c) → v: The server decryption algorithm takes as input
a server-side key SsKu and a ciphertext c, and outputs an intermediate
value v.
The Server executes this algorithm to help a user decrypt a scrambled data
record requested by the user u with her server-side key.

UDecrypt(Usku, v) → m: The user decryption algorithm takes as input a user-
side private key Usku and an intermediate value v, and outputs a plaintext
m.
An authorized users executes this algorithm to obtain the desired data from
the intermediate value returned by the Server.

Revoke(u,LSsK) → LSsK \ {u, SsKu}: Taking as input a user identity u and
the Server-side Key list LSsK , the algorithm revokes u’s decryption capability
by removing her entry from LSsK , and outputs the updated LSsK = LSsK −
{u, SsKu}.
Correctness of the system requires that UDecrypt(Usku, SDecrypt

(SsKu, c)) = m if S satisfies A, for all (Upku, Usku) ← UsKGen(u), SsKu ←
SsKGen(msk,Upku, S) and c ← Encrypt(m,A), where (params,msk) ←
Setup(1κ).
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Caveat. To highlight the distinction between decryption-capability splitting and
key splitting syntactically, we point out that for the latter, the UsKGen algorithm
and the SsKGen algorithm above could be combined into a single algorithm which
is to be executed by the same entity (i.e., the Owner in our case).

Security Requirements. Below we explain the intuitions of three security
requirements imposed upon the system, while the formulations are deferred to
Appendix A.

Data Privacy Against Cloud. In our adversarial model, the Server is an honest-
but-curious adversary. It stores the Owner’s data and performs server decryptions
to serve users’ accesses by applying the corresponding server-side keys. It man-
dates that the Server cannot learn any semantic information about the data in
the storage, but it should behave honestly in terms of managing cloud data,
processing user access requests, and other administrative activities.

Data Privacy Against Users. It mandates that a user cannot obtain data beyond
the authorized access rights stipulated by the Owner. In particular, the collu-
sion between a set of malicious users does not yield new decryption capabilities
beyond those privileges assigned to those users.

User Revocation Support. When a user’s decryption capability is revoked, she
is no long able to decipher the encrypted data on the storage. In other words,
without the assistance of the Server, no user can decipher the encrypted data by
herself, even when her attributes satisfy the policy attached to the ciphertext.

3 A Concrete Instantiation

In this section, we present a concrete instantiation of the above approach and
algorithms. Of particular interest of our scheme is the computation efficiency at
the user side, i.e., the user decryption algorithm UDecrypt only involves exponen-
tiation operations in regular algebraic groups, while the scheme itself is based on
bilinear mapping. This makes it possible for users to use resource-constrained
device such as mobile phone to access the cloud data. This is one of the fea-
tures that distinguish our scheme from all other proposals on using ABE for
encryption of cloud data, e.g., those reviewed in Sect. 5.

3.1 Construction Details

Our construction is based on the scheme in [18], which is proved secure under the
decisional q-BDHE assumption. The main trick we have rests with the generation
of a user’s server-side key, such that an ABE ciphertext can be transformed into
one under the user’s (standard) public key.

Let s ∈R S denote an element s randomly drawn from a set S. The details
of our scheme are as follows.

Setup(1κ) → (params,msk): On input a security parameter 1κ, the setup
algorithm
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– determines a bilinear map e : G0 × G0 → G1, where G0 and G1 are cyclic
multiplicative groups of κ-bit prime order p.

– selects random exponents z, a ∈ Zp, and a generator g of G0.
– chooses a cryptographic hash function H : {0, 1}∗ → G0.
– decides a standard public key encryption scheme. Below we use Enc(·, ·) to

denote both the description of the scheme and its encryption function.
– sets params = (g, e(g, g)z, ga,H,Enc), and msk = gz.

UsKGen(u) → (Upku, Usku): On input a user identity u, the user-side key
generation algorithm outputs a public/private key pair (Upku, Usku) for Enc.

SsKGen(msk,Upku, S) → SsKu: On input master secret key msk = gz, a user
public key Upku, and a set of attributes S, the server-side key generation
algorithm picks α, t ∈R Zp, and sets the server-side key SsKu for u as

SsKu =
(
K = gzαgat,K ′ = Enc(Upku, α), L = gt,

{∀s ∈ S : Ks = H(s)t}
)
,

where Enc(Upku, α) denotes encryption of α by Enc under Upku.
Encrypt(m,A) → c: Taking as input a message m, and an access structure

A = (M,ρ), and implicitly params, the encryption algorithm proceeds as
follows.
We limit ρ to be injective function, i.e., an attribute is associated with at
most one row of M . Let M be an � × n matrix. It first selects a random
column vector v = (x, y2, . . . , yn) ∈ Zn

p , which will be used to secret-share
the exponent x. Calculates λi = Mi · v, i = 1 to �, where Mi denotes the ith

row of M . Sets the ciphertext c as

c = (C = m · e(g, g)zx, C ′ = gx, {∀i ∈ [1 · ·l] : Ci = gaλiH(ρ(i))−x}, (M,ρ))

SDecrypt(SsKu, c) → v: On input a server-side key SsKu associating with
a set of attributes S, and a ciphertext c under access structure (M,ρ), the
server decryption algorithm outputs an intermediate value v if S satisfies the
access structure, or ⊥ otherwise. Suppose S satisfies the access structure and
I = {i : ρ(i) ∈ S} ⊂ {1, 2, · · · , �}. Then, let {ωi}i∈I be a set of constants such
that if {λi} are valid shares of a secret x according to M , then

∑
i∈I ωiλi = x.

Note that it suffices to determine {ωi}i∈I based on M and I. The algorithm
first computes

e(C ′,K)
∏

i∈I(e(Ci, L)e(C ′,Kρ(i)))ωi

=
e(gx, gzαgat)

∏
i∈I(e(gaλiH(ρ(i))−x, gt)e(gx,H(ρ(i))t))ωi

=
e(g, g)xzαe(g, g)xat

∏
i∈I(e(g, g)aλite(H(ρ(i)), g)−xte(g,H(ρ(i)))xt)ωi

=
e(g, g)xzαe(g, g)xat

∏
i∈I e(g, g)aλitωi

= e(g, g)xzα.
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Then, sets v as

v = (V1, V2, V3)
= (C = m · e(g, g)zx, e(g, g)xzα,K ′ = Enc(Upku, α))

UDecrypt(Usku, v) → m: On input a user-side private key Usku and an inter-
mediate value v resulting from the server decryption algorithm with u’s
server-side key, the user decryption algorithm works as follows. Recall that
v = (V1 = m · e(g, g)zx, V2 = e(g, g)xzα, v3 = Enc(Upku, α)). Decryption is
straightforward, by decrypting V3 using Usku to get α, and then computing
e(g, g)xz = (V2)1/α and finally getting m = V1/e(g, g)xz.

Revoke(u,LSsK) → LSsK \ {u, SsKu}: On input of a user identity u and
the Server-side Key list LSsK , the entry corresponding to u is removed from
LSsK . Depending on applications, either the Server updates LSsK instructed
by the Owner, or an interface is provided to the Owner so that he does the
deletion.

Correctness. Correctness of the construction is easily verified, so we do not
elaborate.

Performance. The bit length of the intermediate value v returned by the
SDecrypt algorithm is 2|G1| + |Enc(·)|, independent of the complexity of the
encryption access policy (represented by the total number of rows of the share-
generating matrix). So is the computation overhead of the UDecrypt algorithm,
which consists mainly of a decryption operation of a standard public key encryp-
tion scheme and a power exponentiation in G1. This means that no pairing oper-
ation is involved at the user side, although the scheme bases itself on bilinear
mapping and enjoys the fine grained encryption/decryption capabilities compa-
rable to the ABE schemes in [6,18].

3.2 Security Analysis

Security of our scheme is reduced to the decisional q-Bilinear Diffie-Hellman
Exponnet (q-BDHE) assumption defined in [18].

Assumption 1 [Decisional q-BDHE Assumption]. Let G0 be a group of prime
order p. Let a, x ∈ Zp be randomly chosen, and g be a generator of G0. Let
v = (g, gx, ga, ga2

, ga3
, · · · , gaq

, gaq+2
, · · · , ga2q

). The decisional q-BDHE
assumption holds if for any PPT adversary A and Z ∈R G0,

|Pr[A(v, gax(q+1)
) = 1] − Pr[A(v, Z) = 1]| < ν

where ν is a negligible function, and the the probability is taken over the random
choice of a, x ∈ Zp, Z ∈ G1, and of the random coins of A.

We have the following theorem, regarding data privacy and user revocation
support of our scheme, and the security proof can be found in Appendix B.



Achieving Revocable Fine-Grained Cryptographic Access Control 301

Theorem 1. The above scheme achieves data privacy and user revocation sup-
port (specified in Definitions 2 and 3), if the decisional q-BDHE assumption
holds, the standard public key encryption Enc is semantically secure, and H(·)
is a random oracle.

4 Experimental Results

To gauge its performance, we have implemented and experimented with our
proposed scheme. The implementation is coded in Java, and the cryptographic
algorithms are implemented based on the Bouncy Castle Java Crypto Library1.
We instantiated the bilinear map in the scheme with a 512-bit supersingular
curve with embedding degree 2.

4.1 Experimental Results

Cost in Cloud and Owner. In our scheme, the computation costs of both Encrypt
and SDecrypt are dependent on the complexity of the access control policy, linear
to the number of rows of the share-generating matrix. These costs constitute the
most demanding part of our construction.

To empirically evaluate the computational costs of the Encrypt and SDecrypt
algorithms (while avoiding compounding factors such as network latency, insta-
bility of on-demand computing, etc.), we run these algorithms on a PC with
2.66 GHz Intel Core2Duo and 3.25 GB RAM. We experiment them with a set of
access structures, whose share-generating matrixes are of � rows and � columns.
Access structures in such a form ensure that all involved attributes are used in
the SDecrypt algorithm, thus imposing the heaviest workload. We repeat each
experiment for 100 times and calculate the average. The experimental results
are shown in Fig. 2, which displays the time of the two algorithms with respect
to the number of attributes (i.e., the number of rows of the share-generating
matrix).

As evident from the figure, the results corroborate the fact that both algo-
rithms perform linear computations with the number of attributes. Note that
the cost of SDecrypt with 60 attributes is about 1.7 s. This performance should
be acceptable for practical applications, since 50–60 attributes should suffice for
specifying access control policies based on functional roles.

Cost in User End. We have also implemented and tested the UDecrypt algo-
rithm of our scheme on an HTC HD2 smartphone, which is configured with a
1 GHz Scorpion CPU and 448 MB RAM. We instantiate the standard public-key
encryption scheme Enc associated with the user-side public/private key pair by
the ElGamal-type encryption in G0, i.e., (Upku, Usku) = (gxu , xu ∈ Z∗

p ). The
experimental results indicate that on average, it takes about 12 ms to decrypt
a ciphertext of the form (m · e(g, g)zx, e(g, g)xzα, Enc(Upku, α)). On the other
hand, the communication overhead for the user is 2|G1|+2|G0|, about 1.5 Kbits
in our implementation. These results suggest that it is affordable for a user to
access the cloud storage using a low-end device like a smartphone.
1 http://www.bouncycastle.org/java.html.

http://www.bouncycastle.org/java.html
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Fig. 2. Experimental results

5 Related Work

This section provides an overview of the related work on encryption of cloud
data and user revocation, respectively.

Encryption of Cloud Data with ABE. Among many proposals on enforce-
ment of cryptographic access control upon cloud data with encryption, we focus
on those using ABE and PRE. The proposal by Yu et al. applies KP-ABE for
encryption of cloud data to achieve fine-grained data sharing [20]. For user revo-
cation support, they suggest adopting the specific technique of PRE scheme [3]
to update users’ decryption keys. The advantage is that the cloud is entrusted
to taking the majority of the workload for re-generation of cloud data and re-
distribution of new keys. While their scheme improves considerably over the
trivial solution, i.e., the Owner is fully responsible for data re-generation and
key re-distribution, it is always preferable not to burden the cloud if possible. In
addition, their scheme requires the cloud to maintain user revocation information
for legitimate users to gradually complete key update. Our decryption-capability
splitting approach avoids these problems and the overhead incurred due to user
revocation is minor.

Wang et al. achieve hierarchical attribute-based encryption for cloud storage,
by augmenting CP-ABE with hierarchical identity-based encryption [19]. Hierar-
chical attribute-based encryption could cope with more complicated application
requirements, but for user revocation, their scheme is similar to [20]. The pro-
posal by Liu et al. also aims at hierarchical attribute-set-based encryption for
cloud storage [15], and its approach for user revocation is the “expiry time”
mechanism.

As a final note, our proposed scheme distinguishes itself from all the above
work because the computation at the user side is lightweight, independent of the
complexity of the access control policy of the underlying ABE scheme.

Key-Split Cryptography. We realize that the idea of splitting key for revo-
cation of cryptographic capabilities is not new. Boneh et al. propose “mediated
RSA” to split the private key of RSA into two shares, such that one share is
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delegated to an online “mediator” and the other is given to the user [4]. As RSA
decryption and signing require the engagement of both parties, the user’s crypto-
graphic capabilities are immediately revoked if the mediator does not cooperate.
Our approach for user revocation follows a similar rationale, but it is more pre-
cisely split of decryption capability (rather than simply split of key). A technical
difference resulting from this distinction is that the party responsible for key
split knows both shares, but the party in charge of capability split does not
necessarily know both shares, i.e. in our scheme, the Owner does not learn users’
private keys.

A broader class of cryptographic primitives related to key split is threshold
cryptography, e.g., [13,17]. A threshold cryptosystem works by splitting a private
key among n parties, in a way that any t out of n parties together can decrypt
or sign. Threshold cryptography is by no means designed for user revocation
purposes; rather, it is intended to work in a distributed environment where
individual parties are restricted from abusing cryptographic capabilities.

The recent work by Green et al. [11] proposes delegating the bulk of decryp-
tion overhead of ABE to a powerful proxy server in order to mitigate the burden
at the user side. As a result, the user only performs a standard ElGamal decryp-
tion operation (similar to ours). While their constructions are not intended for
user revocation, they can be directly used to instantiate our approach, but result-
ing in a scheme of key splitting. In contrast, our scheme implements decryption-
capability splitting with the advantage that users do not need to disclose their
secret keys to the Owner.

6 Conclusions

A main issue to be addressed when using ABE for encryption of cloud storage
is user revocation. In this work we proposed a decryption-capability splitting
approach for user revocation, which is advantageous over existing solutions. A
user’s decryption capability is split between the cloud and the user herself, such
that user revocation is achieved by simply invalidating the cloud’s decryption
ability. As a result, neither key update nor re-generation of cloud data is required.
We further proposed a concrete scheme instantiating the approach, which is
featured with lightweight computation at the user side such that users can use
resource-constrained devices to access cloud data.

Acknowledgments. This work is supported in part by A*STAR funded project
SecDC-112172014 (Singapore), and the second author is funded by the Singapore
Management University through the research grant MSS12C004 from the Ministry
of Education Academic Research Fund Tier 1.

A Formulation of Security Notions

The definitional model for data privacy against cloud is captured in the following
game between a challenger managing a SCSS system and an adversary who wants
to break the system.
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Definition 2 [Data Privacy Against Cloud]. A secure cloud storage system
(SCSS) satisfies data privacy against cloud if for any PPT adversary, the prob-
ability of the following game returns 1 is 1/2 + ν(κ), where ν(.) is a negligible
function.

Setup. The challenger runs the Setup algorithm and gives the public parameters
params to the adversary.

Phase 1. The adversary makes repeated queries to the server-side key generation
oracle by submitting sets of attributes S1, ..., Sq1 . For each query, the challenger
first runs the UsKGen algorithm to get a user-side public/private key pair; with
the user-side public key and the attribute set Si, the challenger then runs the
SsKGen algorithm to get a server-side key; the challenger returns the server-
side key together with the user-side public key to the adversary.

Challenge. The adversary submits two equal length messages m0 and m1,
together with a challenge access structure A∗. The challenger flips a random
coin b, runs the Encrypt algorithm on mb and A∗, and returns the ciphertext c∗

to the adversary.

Phase 2. Phase 1 is repeated.

Guess. The adversary outputs a guess b′ on b. If b′ = b, then the challenger
returns 1; otherwise returns 0.

The formulation of data privacy against authorized users and of user revoca-
tion support bases on the same fact that without an appropriate server-side key,
a user cannot decrypt even with her user private key. Following is the formal
security model.

Definition 3 [Data Privacy against Users & Revocation Support]. A secure
cloud storage system (SCSS) satisfies data privacy against users and user revo-
cation support if for any PPT adversary, the probability of the following game
returns 1 is 1/2 + ν(κ), where ν(.) is a negligible function.

Init. The adversary declares the access structure A∗ he wants to be challenged
upon.

Setup. The challenger runs the Setup algorithm and returns the public parame-
ters params to the adversary.

Phase 1. The adversary makes repeated queries to the user-side key genera-
tion oracle (UsKGen), and the server-side key generation oracle (SsKGen). For
the former, the challenger returns the resulting user-side key (both public and
private) to the adversary; for the latter, the adversary submits sets of attributes
S1, ..., Sq1 with the restriction that each Si does not satisfy A∗, and the challenger
returns the resulting server-side key to the adversary.

Challenge. The adversary submits two equal length messages m0 and m1,
together with the challenge access structure A∗. The challenger flips a random
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coin b, runs the Encrypt algorithm on mb and A∗, and returns the ciphertext c∗

to the adversary.

Phase 2. Phase 1 is repeated.

Guess. The adversary outputs a guess b′ on b. If b′ = b, then the challenger
returns 1; otherwise returns 0.

We stress that giving the server-side keys to the adversary models authorized
users’s ability to get intermediate values from the Server (who uses the server-
side keys). Intuitively, user revocation support (in which case the adversary does
not have any server-side key) is implied by the fact the adversary even cannot
decrypt the challenge ciphertext without appropriate server-side keys.

B Security Proof for Theorem1

Proof. We prove that our scheme satisfies Definitions 2 and 3, respectively.

Satisfying Definition 2. The proof is much simpler than in [18], due to the use of
semantically secure public-key encryption Enc, and the fact that the adversary
does not have the private key. Satisfaction of Definition 2 is actually based on
the DBDH (Decisional Bilinear Hiffie-Hellman) assumption, which states that
it is infeasible to distinguish between (g ∈ G0, g

c, gd, gx, e(g, g)cdx ∈ G1) and
(g, gc, gd, gx, Z ∈R G1). The DBDH assumption clearly is weaker than the deci-
sional q-BDHE assumption.

Suppose we have an adversary A with non-negligible advantage AdvA in the
game of Definition 2 against our scheme. We build a challenger C breaking the
DBDH assumption. Details follow.

Setup. The challenger takes in the DBDH challenge (g, gc, gd, gx, Z). The chal-
lenger implicitly sets z = cd by setting e(g, g)z = e(gc, gd), and selects a random
number in G0 as ga. In addition, the challenger programs the random oracle
H by building a table as follows. Consider a call to H(s). If H(s) was already
defined in the table, then simply return the same answer as before; otherwise,
select a random value τs ∈ Zp and define H(s) = gτs .

Phase 1. The challenger answers server-side key generation queries from the
adversary. For a query, the challenger first generates a public/private key pair
for Enc by executing UsKGen; then chooses z′, t ∈R Zp and a random K ′ from
the range of Enc, and computes K = gz′

gat, L = gt,∀s ∈ S : Ks = gτst. We
argue that the distribution of the simulated key (K,K ′, L, {Ks}) so generated
is computationally indistinguishable from the actual server-side key. First, due
to the semantic security of Enc, the randomly chosen K ′ is indistinguishable
from Enc(α) in the actual key. Second, conditioned on the random K ′ replacing
Enc(α), the gzα in the actual K is no different from gz′

for a random z′. Our
argument thus holds.

Challenge. The challenger builds the challenge ciphertext. The challenger flips
a coin b. Then it computes C = mbZ, and sets C ′ = gx. Suppose the challenge
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access structure is A∗ = (M∗, ρ∗), where the share-generating matrix M∗ has �∗

rows. The challenger computes the shares {λi} as usual according to M∗, and
then computes ∀i = 1, · · · , �∗, Ci = gaλi(gx)τρ∗(i) .

Phase 2. Same as Phase 1.

Guess. The adversary outputs a guess b′ of b. If b = b′ then the challenger
outputs 1 to indicate that Z = e(g, g)cdx; otherwise, it outputs 0 to indicate
that Z is a random element in G1.

When Z = e(g, g)cdx, then the above simulation by the challenger C for
the challenge ciphertext is perfect. Thus we have Pr[C(g, gc, gd, gx, gcdx) = 1] =
Pr[b′ = b] = 1/2 + AdvA. On the other hand, if Z is random number in G1,
then mb in the challenge ciphertext of the above simulation is completely hidden
from the adversary. Thus we have Pr[C(g, gc, gd, gx, T ) = 1] = Pr[b′ = b] = 1/2.
Combined, we get |Pr[C(g, gc, gd, gx, gcdx) = 1] − Pr[C(g, gc, gd, gx, T ) = 1]| =
AdvA. This completes the proof.

Satisfying Definition 3. We prove this by presenting a reduction from Waters’
scheme which is proved secure under the decisional q-BDHE assumption in [18] to
ours. To this end, we first point out that the main differences between our scheme
and Waters’ that are relevant to the proof here are the format of the server-side
key in our scheme and of the private key in Waters’ scheme. In Waters’ scheme,
the format of a private key is (K = gzgat, L = gt, {∀s ∈ S : Ks = H(s)t}).
Bearing this difference in mind, we build an adversary B against Waters’ scheme,
given an adversary A of our scheme. Details follow.

B acts as the challenger in the game in Definition 3.

Init. A declares a challenge access structure A∗ to B, who then declares A∗ to
the challenger of Waters’ scheme.

Setup. B takes in the public parameters of a Waters’ scheme, and gives them
to A. B also determines a standard public-key encryption scheme Enc and gives
the description to A.

Phase 1. B answers user-side key generation and server-side key generation
queries from A. To answer a user-side key generation query, B simply generates a
public/private key pair according to Enc. To answer a server-side key generation
query on a set S of attributes and a user public key Upk, B submits a key
generation (KeyGen) query to the challenger of Waters’ scheme with S (if S does
not satisfy A∗), and as a response B is returned a key of the form (K = gzgat, L =
gt, {∀s ∈ S : Ks = H(s)t}). Then B selects α ∈R Zp, and computes Enc(Upk, α)
and sets the server-side key as (Kα,Enc(Upk, α), Lα, {∀s ∈ S : Kα

s }). It can
easily see that the resulting server-side key is valid with respect to our scheme.

Challenge. B builds a challenge ciphertext under A∗, given m0,m1 from A.
To this end, B submits m0 and m1 to the challenger of Waters’ scheme as a
challenge, and gets back a challenge ciphertext c∗. B returns c∗ as the challenge
ciphertext to A.

Phase 2. Same as Phase 1.
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Guess. A outputs a guess b′, which is also used by B as the guess to the chal-
lenger of Waters’ scheme. It is easily seen that the simulation by B is perfect,
and the advantage of B is at least that of A. This completes the proof. �
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Abstract. HTML5-based mobile applications are becoming more and
more popular because they can run on different platforms. Several newly
introduced mobile OS natively support HTML5-based applications. For
those that do not provide native support, such as Android, iOS, and Win-
dows Phone, developers can develop HTML5-based applications using
middlewares, such as PhoneGap. In these platforms, programs are loaded
into a web component, called WebView, which can render HTML5 pages
and execute JavaScript code. In order for the program to access the
system resources, which are isolated from the content inside WebView
due to its sandbox, bridges need to be built between JavaScript and
the native code (e.g. Java code in Android). Unfortunately, such bridges
break the existing protection that was originally built into WebView. In
this paper, we study the potential risks of HTML5-based applications,
and investigate how the existing mobile systems’ access control supports
these applications. We focus on Android and the PhoneGap middleware.
However, our ideas can be applied to other platforms. Our studies indi-
cate that Android does not provide an adequate access control for this
kind of applications. We propose a fine-grained access control mechanism
for the bridge in Android system. We have implemented our scheme in
Android and have evaluated its effectiveness and performance.

1 Introduction

With the increasing support for HTML5, HTML5-based mobile applications are
becoming more and more popular [2,6]. These applications are built on standard
technologies such as HTML5, CSS and JavaScript, with HTML5 and CSS being
used for building the graphical user interface, and JavaScript being used for the
programming logic. Because these technologies are the basis of the Web, they
are universally supported by all mainstream mobile systems. Porting such apps
from one platform to another is much more simplified; of course, if they use
platform-specific APIs, they need to be modified to run on a different platform,
but this job is much easier than porting the native mobile applications [3].

The advantages of HTML5-based applications have attracted people to use
the same technology to develop applications for existing popular mobile plat-
forms such as Android and iOS, so developers only need to develop one version of
applications that can run on multiple platforms. Because the OS cannot natively
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 309–318, 2015.
DOI: 10.1007/978-3-319-27659-5 22
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support HTML5-based applications, middleware is needed for such applications
to run on these platforms. Several such middlewares have been developed, includ-
ing PhoneGap, RhoMobile, Appcelerator, WidgetPad, MoSync, etc. Because
PhoneGap is the most popular one [5], in the rest of this paper, we use PhoneGap
to represent this entire class of middlewares.

For HTML5-based applications, bridges need to be built, allowing JavaScript
code inside to access the mobile system resources. However, at the same time, the
bridges bring in risks into the mobile systems. We did a study on the PhoneGap
framework for Android. In the application that we used in this study, there
are two regions: one is called the main frame, and the other is called subframe
(achieved using iframe). The main frame contains the code from the developers
and the subframe contains the code from a third-party. The application is given
a set of permissions, which are meant to be given to the code running in the
main frame. However, our investigation shows that the JavaScript code inside
the subframe can use exactly the same permissions.

Contribution of this Paper. In this paper, we make the following contribu-
tions: (1) We systematically study the “bridges” that expose mobile resources to
JavaScript in order to support HTML5-based mobile apps. Based on the emerg-
ing threats that we have identified, we point out that most mobile systems’
access controls support for HTML5-based mobile applications is not sufficient,
because the assumptions that are true for native mobile applications may not
be true anymore for HTML5-based applications. (2) We propose a fine-grained
access control model for Android, which can provide a solid trusted computing
base for HTML5-based applications. We have implemented it in Android.

In the rest of this paper, we first conduct an in-depth analysis of the access
control for HTML5-based applications (Sect. 2). Then we present the design of a
fine-grained access control system (Sect. 3). We have implemented our design in
Android, which involves the modification of the operating system code and the
WebKit engine. We use a comprehensive evaluation to demonstrate the effec-
tiveness and the efficiency of our design (Sect. 4).

2 The Problem

To support HTML5-based mobile applications, bridges need to be provided, so
JavaScript code inside web container can access the system resources, which
were originally blocked by the sandbox of web container. There are two typical
approaches. One is used by Firefox OS and Tizen OS, which natively supports
HTML5-based applications; we call it the Native-API approach. The second
approach is used by the PhoneGap middleware and alike in Android and iOS;
we call it the Middleware approach. (More details can be found in full version
[10] for these two approaches.)

2.1 Security Problems

Android does not provide a system-level access control to protect the invoca-
tion from JavaScript to Java, whether the invocation is indirect or direct. It is
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application’s or middleware’s responsibility to enforce the access control. For the
indirect approach, the job is easier, as there is a single entry point, i.e., the event
handler; this place can be used for access control. Unfortunately, for the direct
approach using addJavascriptInterface, implementing access control inside
applications and middleware is problematic due to the following reasons.

First, when applications attach a Java object to WebView, it can perform
access control based on the origin of the page inside WebView (typically using a
whitelist, like what PhoneGap does), but once the object is attached, there is no
more access control when the object’s APIs are invoked, unlike the onJsPrompt()
approach, which can conduct access control on every invocation. This is not a
problem if the contents inside WebView all come from the same origin. Unfor-
tunately, when a Java object is attached to WebView, it is attached to all the
frames inside WebView, such as iframes. These frames are not subject to the
whitelist checking at the attaching time (only the main frame is subject to that
access control); namely, even if their URLs are not on the whitelist, they can still
be loaded into iframes. The assumption behind this decision is that if we trust a
web page, we should trust all the frames it contains; this is a wrong assumption.

Second, once a Java object is attached to WebView, there is no further
restriction on what permissions an invocation can have. Currently, the invoca-
tion has all the application’s permissions, even though it is potentially triggered
by untrusted code. Clearly, there is a lack of granularity. There is no easy way
for applications to restrict what permissions an invocation can have, because
the permissions used by an invocation are not clear during the invocation time.
For example, when a Java API is invoked by JavaScript, it is not easy to know
whether the API will lead to the use of camera or not.

2.2 Our Approach

We believe that the current access control systems for Android and PhoneGap
are not appropriate for supporting HTML5-based mobile applications. If the
situation is not improved, the problem will get worse, because more and more
developers are going to switch to developing HTML5-based applications. This
calls for a research to study what kind of access control system is adequate for
this emerging type of mobile applications. The solution should have the following
properties:

• The solution should be built into Android, not PhoneGap. This is because
PhoneGap is not the only framework that supports HTML5-based mobile
application development. There are several other frameworks, including Rho-
Mobile, Appcelerator, MoSync, WidgetPad, etc. A solution at the OS level
can benefit all these frameworks.

• We should not give all the application’s permissions to every frame inside
WebView. Because the page in WebView can embed pages from different ori-
gins, it is important for the system to distinguish between the accesses initi-
ated by untrusted origins from those by trusted ones, and give them different
permissions.
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3 Design

3.1 Access Control Model

The fundamental problem of WebView is that when JavaScript code invokes Java
code through the bridge on the web container, there is no isolation of privileges,
so all the invocations from the bridge have the same privileges. In Android,
this means all the invocations have the same permissions that are assigned to
the application. A good access control system should be able to grant different
permissions to different invocations, depending on where the invocations are
initiated. Inside WebView, contents from multiple origins can co-exist, because
each page inside WebView can have frames (such as iframes), which can contain
pages from different URLs, some are more trustworthy than the others. Thus,
different frames should be granted with different permissions.

Fig. 1. Access control in the original Android and our proposed model

We propose an access control model that allows developers to assign dif-
ferent permissions to different frames. We use an example to illustrate our
model. Figure 1(a) illustrates the original access control model in Android, and
our model is illustrated in Fig. 1(b). In both figures, The main frame is called
“UNTAPPD”, and it has three iframe pages: Facebook, Twitter, and a page
from an untrusted origin. The application has four permissions, P1, . . . , P4. In
Fig. 1(a), we can see that all the iframes have these four permissions. In Fig. 1(b),
through the configuration provided by the developer, different sets of permis-
sions are given to different frames, based on the requirement of the web pages
and how much developers trust them. We can even prohibit an untrusted page
from invoking any Java API from its frame.

3.2 Policy Configuration

We provide two ways for developers to assign permissions. First, developers can
assign permissions directly to each frame (in the HTML file), and this kind of
permissions is called frame permissions (denoted by Pframe). Second, developers
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can also assign permissions to origins (in the manifest file), and these permis-
sions are called origin permissions (denoted by Porigin). We also use Papp to
represent the permission assigned to the entire application. The effective per-
missions (Peffective) for each frame is the intersection of these three types of
permissions:

Peffective = Papp

⋂
Pframe

⋂
Porigin (1)

It should be noted that Porigin can change, so every time the origin inside a
frame changes, a new Peffective will be calculated for this frame. The definition
of “origin” in our model is the same as the “origin” in the Same-Origin Policy,
i.e., it is the unique combinations of three elements: port, scheme, and domain.
Developers can specify frame permissions using the permissions attribute for
frames in HTML code:

<iframe permissions="READ_CONTACTS" src="http://www.untappd.com"/>

Or developers can configure origin permissions in the manifest file:
<access origin=http://*.untappd.com>

<origin-permission android:name="ACCESS_NETWORK_STATE"/>

<origin-permission android:name="READ_EXTERNAL_STORAGE"/>

<origin-permission android:name="WRITE_EXTERNAL_STORAGE"/>

<origin-permission android:name="READ_CONTACTS"/>

</access>

(More details of permission assignment can be found in full version [10].)

3.3 Assigning Effective Permission to Frame

As we have discussed above, our security policies are specified in two places: in
HTML pages (for frame permissions) and in the manifest file (for origin permis-
sions). To read the permission information, we extend the existing manifest file
parser and the HTML parser (in Webkit) to retrieve the permission information
from these two places. The origin permissions will be stored in the same place
where Android stores permissions for each application. The frame permission is
stored as an attribute of the frame object in the DOM tree. Using Eq. (1), we
can calculate the effective permission of a frame.

Every time a page is loaded into a frame, an object called SecurityOrigin is
created, and this object is used by browsers to enforce the same-origin policy, so
JavaScript code from one origin cannot access the resources belonging to other
origins. There is one SecurityOrigin object per frame. We store the frame’s
effective permission in this object. Every time a new page is loaded into a frame,
the effective permissions will be recalculated, and the corresponding values in
SecurityOrigin will be updated accordingly.

3.4 Setting Effective Permission at Invocation

Setting the effective permissions for each frame is not enough, we need to ensure
that when JavaScript inside a frame invokes a Java API through the bridge, the
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API is executed only with the frame’s effective permissions, not the application’s
permissions. To achieve this goal, we need to understand how JavaScript invokes
a Java API in Android; we need to intercept this invocation, and set the effective
permissions before the API code starts running.

As we have discussed before, there are two ways for JavaScript in WebView to
invoke Java code: indirect invocation and direct invocation. The indirect invoca-
tion is quite straightforward, and easy to be intercepted. The direct invocation,
i.e., through the APIs attached by addJavascriptInterface(), is quite com-
plicated. In the following, we only focus on the direct invocation method.

How JavaScript Invokes Java code. In browsers, it is often necessary to allow
JavaScript to interact with browser plugins, such as Flash, PDF reader, Java
Applet, etc. A de facto standard for such an interaction was initially developed
for Netscape, but was subsequently implemented by many other browsers [4]. It
is called Netscape Plugin Application Programming Interface (NPAPI) [4], which
provides a cross-platform plugin architecture for browsers. It allows JavaScript
within a browser to access the APIs of plugins, and vice versa. In Android, from
the WebView’s perspective, Java is treated just as a plugin, and invocation of
Java code from JavaScript follows the NPAPI standard.

To explain how NPAPI works, we use an example, which is depicted in
Fig. 2(a). In this example, there is a Java class called ClassFoo, and an instance
of this class called javaFoo. This instance is bound to WebView through
addJavascriptInterface(), resulting in a new JavaScript object called jsFoo
in WebView. When the JavaScript code in WebView invokes jsFoo.bar(), a
series of actions will be performed, leading to the eventual invocation of the bar
method of the Java object javaFoo.

Figure 2(b) shows how the APIs of plugins (Java object, C# object, etc.) are
provided to JavaScript. (More detail explanation is provided in full version [10].)

From Fig. 2(b), we can see that there are several places where we can intercept
the invocation. We choose the place between V8Object and NPObject, because
at this point, it is easier to get the frame information. Moreover, this design does
not depend on the types of plugins, so it also works if the plugins are not Java,
but C# or Flash, etc.

Fig. 2. JavaScript-Java Communication
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3.5 Checking Effective Permissions

We extend Android’s existing Reference Monitor to check the effective permis-
sions when an application tries to access protected resources, such as external
storage, camera, contact, etc. (More details can be found in full version [10])

4 Evaluation

In this section, we evaluate our work on two aspects: effectiveness and perfor-
mance. First, we use different cases to show how our work can be effectively used
to isolate the privilege of web components at the frame level. Then, we evaluate
the overhead caused by our work.

4.1 Restrict Permissions of Untrusted Frames

In this experiment, we show how our work can achieve privilege isolation for
frames. In all our experiments, we assume that the INTERNET permission is
granted. We use a PhoneGap application called HealthTap, which is a very popu-
lar app with more than one million downloads. We added several contact entries
into the phone, one of which is Alice, with phone number and email address. We
will use this information in our demonstration. HealthTap requires 13 permis-
sions. Several permissions are related to mobile system resources. Once granted,
all the frames in this app can access the corresponding mobile system resources,
using the app’s full privilege, through the bridge attached by PhoneGap. With
our work, we can easily limit the privileges of the frames without affecting the
original application. We achieve that by setting the origin permissions and/or
frame permissions.

To show how our work can limit the privileges of frames, we need to slightly
change the app. We first use Apktool to disassemble the application APK file;
then we add an iframe into the original app’s webpage; finally we repackage the
APK file with the modified manifest file and sign it with our key. Now we can
demonstrate how to limit the privileges of iframes.

Social Network Plugin. Developers often include social network plugins, such
as the Facebook “Like” button, in their applications to attract more users, and
iframes is widely used to load social network plugins. In this evaluation, we load
a Facebook “Like” button into an iframe of the HealthTap app (see Fig. 3(a)).
Since we know that these kinds of social network plugins do not need to require
mobile system resources, we should not give this iframe any permission. We can
give this frame an empty permission list:

<iframe src="http://www.facebook.com/plugins/like.php?href=https

%3A%2F%2Fwww.facebook.com%2FHealthTap&amp;&amp;" permissions="">

</iframe>

From Fig. 3(b), we can see that in the mainframe we can still get Alice’s
email address. But if attackers try to get the contacts in the iframe, a “Permis-
sion Denial” exception will be thrown (see Fig. 3(c)). This is because the frame
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Fig. 3. App with Social Network Plugin

permission of this iframe is empty, i.e., it can invoke Java APIs, but will not be
able to have any permission during the execution. In this situation, we can see
that although the app has the READ CONTACTS permission, the iframe that loads
the Facebook plugin does not have the permission.

Sometimes, if the social network plugin is a faked one, not from Facebook,
it will fail if it tries to invoke Java APIs. As Fig. 3(d) shows, the API cannot be
found. This is because the origin is not in the origin permissions list, which means
this origin is not trusted, and the JavaScript code from this origin cannot invoke
any Java API through the WebView bridges. (More evaluation experiments are
provided in full version [10].)

4.2 Performance Evaluation

Our environment is set up as the following: we use Jelly Bean (android-4.2.1 r2),
and we run our modified Android in Unbuntu 11.04 using an emulator. The
configuration for the emulator is the following: Nexus One (3.7, 480*720: hdpi),
RAM (2 GB), VM Heap (32 MB), Internal Storage (200 MB), and No SDCard.
The hosting machine is Intel Core i7–3540 M @ 3.00 GHZ, with 8 GB memory.
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For system overhead, all overheads are below 1 %. For application overhead,
loading overhead is about is about 5.6 % to 8.2 %, depending on the number of
URLs in the list; invocation overhead is about 4.9 % to 8.2 %. (See full version
[10] for details of performance evaluation results.)

5 Related Work

The problems with the addJavascriptInterface in WebView were initially
identified by Luo et al. [12].

Privilege Separation and Isolation in Web. A large number of works have
been proposed to limit the privilege of JavaScript in web applications: The
sandbox attribute of iframe [7] allows developers to decide whether to allow
JavaScript to execute or not. Maffeis et al. [13,14] propose a language-based
approach to filter and rewrite untrusted JavaScript. Similarly, Caja [1] and
ADsafe [8] use a safe subset of JavaScript, and they eliminate dangerous DOM
APIs such as eval and document.write, which could allow advertisements to
take control of the entire webpage. A representative work of the holistic app-
roach is the Escudo work [9]: Escudo proposes a ring-based access control model
for web browsers.

Privilege Separation and Isolation in Android. Advertisements are critical
third-party components of mobile applications, and they have the same privileges
as the hosting app. Several works attempt to address this problem by separating
advertisements’ privileges from the apps: AdSplit [16] isolates the advertisement
into a separate process so that ads will have a separate set of permissions; Leon-
tiadis et al. [11] also use a separate application to host the advertisement with
IPC to support communications with the app. AdDroid [15] provides its own
advertisement SDK and ads-specific permissions aiming at protecting user pri-
vacy.

6 Summary

In this paper, we study the potential security problems of the HTML5-based
applications in mobile systems. We have identified the insufficiency of the access
control in the existing platforms. We propose a fine-grained access control mech-
anism to support HTML5-based applications in Android platform. In our access
control, we define a frame-based and origin-based policy to separate subjects
within the same application. We enforce our access control in the operating
system, so developers of the HTML5-based applications only need to configure
their security policies, without worrying about implementing the enforcement
by themselves. Our implementation only requires light-weight code modification
of the original Android system, and poses only small overhead. The evaluation
demonstrates that our access control prototype can effectively separate privileges
for different principles within the same app.
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Abstract. The widespread use of JavaScript (JS) as the dominant web
programming language opens the door to attacks such as Cross Site
Scripting that steal sensitive information from users. Information flow
tracking successfully addresses current browser security shortcomings,
but current implementations incur a significant runtime overhead cost
that prevents adoption.

We present a novel approach to information flow security that dis-
tributes the tracking workload across all page visitors by probabilisti-
cally switching between two JavaScript execution modes. Our framework
reports attempts to steal information from a user’s browser to a third
party that maintains a blacklist of malicious URLs. Participating users
can then benefit from receiving warnings about blacklisted URLs, similar
to anti-phishing filters.

Our measurements indicate that our approach is both efficient and
effective. First, our technique is efficient because it reduces performance
impact by an order of magnitude. Second, our system is effective, i.e., it
detects 99.45 % of all information flow violations on the Alexa Top 500
pages using a conservative 5 % sampling rate. Most sites need fewer sam-
ples in practice; and will therefore incur even less overhead.

1 Motivation

Modern web pages have become complex web applications that mash up scripts
from different origins inside a single execution context in a user’s browser. Unfor-
tunately, this execution scheme opens the door for attackers, too. Vulnerability
studies consistently rank Cross Site Scripting (XSS) highest in the list of the
most prevalent type of attacks on web applications [1–3]. Attackers use XSS to
gain access to confidential user information. A recent study on privacy violating
flows confirms the ubiquity of user data theft when browsing the web [4].

Previous work on browser security shows that information flow tracking can
counter such attacks [5–9]. Even though information flow tracking prevents mis-
appropriation of sensitive data, all known approaches introduce runtime over-
heads that make execution of JS code at least two to three times slower. We
believe that industry will never adopt the information flow approach without a
substantial reduction in this overhead.

Taint tracking is a more efficiently implementable subset of information flow
tracking; for example, TaintDroid [10] reports an overhead of just 14 %. Infor-
mation flow tracking increases security by tracking both data and control flow,
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 321–337, 2015.
DOI: 10.1007/978-3-319-27659-5 23
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but unfortunately no efficient implementation is known for dynamically typed
languages such as JS.

Our solution distributes the tracking overhead among a crowd of visitors,
leveraging the same property that attackers target: site popularity. The more
visitors a site has, the less tracking effort is required by an individual client. To
balance precision and performance, our system, CrowdFlow, primarily executes
code in a partial taint tracking interpreter and probabilistically switches to a
slower information flow tracking interpreter at decision points such as function
boundaries.

The probabilistic switching between the two JS interpreters allows individ-
ual clients to execute web applications much faster than traditional approaches
where every client always performs the costly information flow tracking. Even
though the CrowdFlow approach permits individuals to miss detection of specific
information flow violations, we show that a crowd of users, in aggregate, detects
the majority of information flow violations. Clients report policy violating flows
to a trusted third party that collects suspicious information flow reports, sim-
ilar to commercial blacklisting initiatives like Google’s Safe Browsing [11] or
Microsoft’s Smartscreen-Filter [12].

Currently, corporations hosting URL blacklist services populate the database
at their own expense, through automated scanning that tends to miss real-world
use of web applications by logged-in users. These services also provide a form
through which end-users can submit a malicious URL for investigation, but
this collection mechanism tends to catch code that causes user-level annoyance
rather than surreptitious and silent data theft. Additionally, website operators in
adversarial competition submit false allegations in an attempt to put competing
websites on the blacklist.

We believe that automating the reporting process on the client side and bas-
ing it on privacy-violating information flow results in three benefits. First, auto-
mated reporting increases the amount of data that these systems have, enabling
them to improve report validation. Second, automated reporting reduces the
number of false allegations by raising the bar on the level of detail a report con-
tains. Third, automated reporting tracks into the deep web, inspecting appli-
cation behavior after a user has logged in. CrowdFlow, with its low per-user
overhead, is a perfect front-end for these systems.

We provide background information on JS security (Sect. 2) that motivates
the development of CrowdFlow, define the threat model our system defends
against (Sect. 3) and make the following contributions:

• We introduce CrowdFlow (Sect. 4), a novel approach to information flow track-
ing that switches between two JS interpreters to balance performance and
security. This architecture distributes the tracking costs across a crowd of
visitors to a page.

• We present a comprehensive information flow tracking browser (Sect. 5) based
on WebKit [13] and provide implementation details for both partial taint
tracking and information flow tracking modes.
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• We evaluate our system on a variety of real-world websites. In particular, we
demonstrate the practicality of our framework (Sect. 6) by showing that our
system satisfies the following important properties:
– Efficiency: CrowdFlow executes JS an order of magnitude faster than tradi-

tional approaches for information flow tracking, with an average runtime
overhead of 27.84 % for SunSpider [14] and 32.05 % for V8 [15] bench-
marks. To compare, execution overhead of traditional information flow
implementations ranges between 200 % and 300 %.

– Effectiveness: Our approach finds almost all (99.45 %) information flow
violations on the Alexa Top 500 [16] web sites compared to a traditional
information flow tracking system. We achieve this detection rate with a
crowd of only five users, and a conservative function invocation sampling
rate of 5 %.

2 Background on JS Security

XSS is a code injection attack that allows an adversary to execute code without
the user’s knowledge and consent. For example, XSS allows attackers to harvest
sensitive information such as keystrokes, authentication credentials and credit
card numbers. A malicious script can even traverse the Document Object Model
(DOM) [17] and steal all visible data on a compromised web page [18].

Web developers often include third-party functionality such as jQuery, Google
Analytics, and Facebook APIs to enrich a user’s browsing experience. Recent
work by Nikiforakis et al. [19] highlights the problematic situation of granting
third-party scripts access to application internals and shows the potential of
included code to perform malicious actions without attracting attention from
either developers or end users.

Currently, browsers rely on the Same Origin Policy (SOP) [20], and the Con-
tent Security Policy (CSP) [21] to limit a script’s access to information. The
CSP allows page authors to whitelist trusted sources and the SOP prevents
access for scripts of different origins when properly isolated with iframe-tags.
However, neither policy can prevent JS from stealing information on a page when
developers include multiple libraries in the same execution context, as currently
practiced [19].

3 Threat Model

Throughout this paper we assume that attackers have the following abilities: (i)
attackers can operate their own hosts, and (ii) can inject code into other web
pages. Code injection into other pages relies either on exploiting a XSS vulner-
ability of a page, or the ability to provide content for mashups, advertisements,
libraries, etc., that victim sites include. The attacker’s capabilities, however, are
limited to JS and the attacker can neither intercept nor control network traffic.

Phishing Campaigns vs. Targeted Attacks: In contrast to common infor-
mation flow tracking systems, the architecture of CrowdFlow does not attempt
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to prevent information theft attacks from within the user’s browser. Rather, it
reports detected information flow violations to a trusted third-party aggrega-
tor, such as Google’s Safebrowsing initiative or Microsoft’s Smartscreen-Filter.
CrowdFlow is not designed to defend against a targeted attack, in which the
attacker tries to steal information of one particular person. The architecture of
CrowdFlow aims to protect the majority of users against phishing campaigns,
where the attacker distributes exploit code to high-traffic web pages to gather
as much information as possible.

Threat Examples CrowdFlow Defends Against: To steal information from
a browser, malicious code must surreptitiously communicate it to an attacker-
controlled server. For example, by placing an image on the page, the attacker
can steal sensitive information through the target URL of an image request:

1 elem.src = "evil.com/p.png?v=" + creditcard_number;

The GET request for the image p.png acts as a channel through which the
attacker steals the user’s credit card number as a query parameter of the target
URL. The attacker-controlled server records the image request, including the
stolen data, in its logs.

4 CrowdFlow

The design of traditional JS information flow tracking systems requires every
client to track all information flows [5–9]. In contrast, CrowdFlow implements a
probabilistic approach, where each user only spends a fraction of the execution
time in the slower information flow tracking interpreter, thus paying only a
fraction of the performance cost. Following the distributed system design of the
Internet itself, CrowdFlow distributes the security analysis across a crowd of
visitors, aggregates the flow reports at a trusted third party, and shares findings
back to users, warning them of potentially malicious pages.

4.1 Probabilistic Tracking

The CrowdFlow browser primarily executes in a partial taint tracking inter-
preter (state PTT in Fig. 1) that propagates labels only across direct assignments
(a = b;).

IFT

1 - inspect function for potential

2 - no potential leak detected, or
     probabilistically decides to fall back to PTT
3 - potential leak detected, and
     probabilistically decides to keep tracking

PTT TFI

*

* *

t p

1

2

3

Fig. 1. Execution states in CrowdFlow. PTT - Partial Taint Tracking, IFTt - Information
Flow Tracking (trial), IFTp - Information Flow Tracking (permanent).
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CrowdFlow has a configurable sampling rate, that controls the switch from
state PTT to the trial information flow tracking interpreter (state IFT) at every
function invocation. Both IFT modes propagate every operation’s dependence
on control-flow predicates (see Sect. 5.2), preventing malicious code from using
inference of control-flow branches to circumvent the partial taint tracking. When
executing in IFTt mode, CrowdFlow watches for operations that involve the mix-
ing of data from multiple domains, as this occurrence indicates a potential infor-
mation flow violation.

Definition of a Potential Information Flow Violation: We define a
potential information flow violation as the result of two domains influencing
a value.

For example, assume variable a originates from domain A and variable b
originates from domain B, then b += a; constitutes a potential information flow
violation because data from both domains A and B influence the resulting value
of variable b. When malicious code attempts to steal data from a page, the copy
or encoding operations involved follow this definition and CrowdFlow detects the
confluence of values from multiple domains.

When no potential violation occurs in the trial information flow tracking
mode (IFTt state), the browser returns to the PTT state at the end of the
function invocation. But if the CrowdFlow browser detects a potential violation
while operating in IFTt, it probabilistically switches to the permanent infor-
mation flow tracking interpreter (state IFTp). The probability of transferring
to state IFTp and continue tracking the potential information flow violation is
also configurable. From here on, information flow tracking occurs not only intra-
procedurally but also inter-procedurally, preventing malicious code from gaming
the system by splitting the information theft attack across several functions.

4.2 Tracking Multiple Domains

Our system tracks the flow of information throughout program execution by
applying a label to every program value. These labels take the form of a bit-
vector that encodes information about a program’s origin (Sect. 5.4). CrowdFlow
maintains a registry of all domains represented on a page, mapping a unique
bit to each page. When running in information flow tracking mode, CrowdFlow
labels each value resulting from an operation with the set union of all domains
of all inputs, including implicit inputs such as the predicates of any currently
executing branches and the origin of the code itself.

4.3 Reporting Information Flows

CrowdFlow tracks flows of information not only in the JS engine, but also across
scripting-exposed browser subsystems, including the DOM and user-generated
events. During execution, CrowdFlow monitors network traffic for information
leaks.
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Definition of an Information Leak: We define an information leak as the
inequality of domains between a network data payload and the target.

When the label of the payload indicates that the data has been influenced by
any origin other than the destination domain, the network request represents a
communication to a foreign party, possibly an attacker-controlled server. Crowd-
Flow detects the attempt and reports the source domains involved in the leak
and the target URL to a commercial blacklisting initiative. We use the defined
Example Threat from our Threat Model, as the running example to explain how
CrowdFlow detects such an information leak.

1 var url = "http :// evil.com/p.png?v=" + creditcard_number;
2 img_elem.src = url;

Using a XSS vulnerability the attacker injects the example code on a page
from host bank.com. When loading the page, the CrowdFlow browser maps the
host URL bank.com to a unique label bit, say 0001. Because this snippet appears
within the page, it has access to all the host page’s application content.

To steal information, the malicious code appends the sensitive information
stored in host variable creditcard number as part of the target query-string for
an image request (line 1). Setting the source attribute of an image element on
the host page causes the browser to issue a GET request to evil.com. CrowdFlow
registers the new domain with another unique label bit, 0010. Before emitting
the request on the network, CrowdFlow inspects the label on the payload (0001)
and finds that it differs from the target (0010), triggering an information flow
violation report.

Note that the same code, even when dynamically loaded from evil.com, also
triggers a flow report. In this case, the malicious code carries label of evil.com
while the host variable creditcard number still carries the label of bank.com. As
a result of CrowdFlow’s label propagation rules, the computed url payload carries
the join of these domains (0011), which differs from the target domain (0010).

5 Implementation

A single web page can incorporate data from several different domains. Within
the JS engine, data and objects originating from different domains (security prin-
cipals) may interact, creating values that derive from more than one domain.
To model this behavior, we take inspiration from Myers’ decentralized label
model [22] and represent security labels as a lattice join over domains. Inter-
nally, the CrowdFlow browser associates each domain with a unique marker and
implements joins as a set union over domains.

5.1 Partial Taint Tracking Interpreter

We implement the CrowdFlow browser by modifying WebKit, which ships with
a register-based direct-threaded JS interpreter (JavaScriptCore), so that all
values carry a label indicating the domains that influenced its construction.



CrowdFlow: Efficient Information Flow Security 327

The partial taint tracking interpreter operates on tainted data and efficiently
propagates labels for direct assignments due to our label encoding: Because
the label resides in the virtual machine level representation of a JS value, a
direct assignment from one variable to another also carries that label, without
additional computation logic.

1 var pub = secret;

This assignment shows that the content of pub depends directly on the value
of the secret variable secret. If the variable pub is publicly observable, then the
secret variable secret explicitly leaks through this flow of information. After
the assignment, variable pub not only has the value of variable secret, but it
also carries the label of variable secret, since the assignment is a full copy of
the variable contents. Again, the partial taint tracking interpreter propagates
labels only for direct assignments.

5.2 Information Flow Tracking Interpreter

Conventional static analysis techniques for information flow, such as those devel-
oped for the Java-based Jif [23], are not directly applicable to dynamically
typed languages, such as JS. However, we adapt these techniques by introduc-
ing a control-flow stack that manages labels for different regions of a running
program, which is a common technique for securing programs [5,9]. At runtime,
CrowdFlow updates the label on top of this stack at every control-flow branch
and join within a program, to model entry and exit points for secure regions of a
program. The top of the control-flow stack always contains the current security
label of the current program counter, which carries the set join of predicates in
all enclosing branches.

Tracking Data Flow: The following accumulation operator shows the content
of variable secret adding or concatenating with the public variable pub.

1 pub += secret;

This code snippet illustrates how CrowdFlow can stop a specific data theft
attempt. An attacker gathers sensitive information on a web page, but before
the attacker can steal that information by sending it back to a server under
his control, he needs to concatenate the sensitive payload to the query-string of
the request. The information flow tracking interpreter tracks the operation by
joining the labels of the operands of the addition/concatenation together with
the label of the current program counter.

Tracking Control Flow: The following code snippet shows an implicit direct
information flow [24] which occurs when a control-flow branch predicate influ-
ences a value.

1 var pub = undefined;
2 if (secret)
3 pub = true;
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As illustrated, the script code steals a secret variable secret using such an
implicit direct information flow. An attacker can gain information about the
secret variable by inspecting the value of the variable pub after execution of the
if statement. The handling of implicit direct information flows therefore requires
joining the label of the variable pub with the label of the current program region.
The CrowdFlow information flow tracking interpreter propagates implicit direct
information flows by updating the label of the current program counter to reflect
its dependence on the variable secret. At the assignment (line 3), the variable
pub becomes tainted with the label of secret by virtue of joining with the
current program counter.

The efficient handling of implicit indirect information flows [24], where infor-
mation can be inferred by inspecting values in the non-executed path, still
remains an open research question. Our implementation can not track such
implicit indirect information flows. The browser information flow system pre-
sented by Vogt et al. [5] for example, jumps to a conservative secure mode if
their static analysis detects a function call or use eval in the non-executed
branch. CrowdFlow does not implement this technique because it steadily ele-
vates labels on all values and objects, leading to a phenomenon known as label
creep [25].

5.3 Switching Interpreters

The naive way to implement our technique adds a condition to each interpreter
instruction checking whether to perform the operation in partial taint tracking
or information flow tracking mode. Our modifications to WebKit achieve the
same effect more efficiently by duplicating the set of interpreter instructions to
obtain an information flow tracking instruction set in addition to the existing
instruction set. We make efficient use of WebKit’s direct-threaded JS interpreter
by duplicating opcodes and providing an information flow tracking equivalent
implementation of every opcode.

For example, the opcode op add now also has an information flow track-
ing equivalent op ift add. Our framework uses abstract interpretation to lazily
replace opcodes with information flow tracking opcodes the first time a function
is chosen to be executed using the information flow tracking interpreter. Having
two instruction streams allows fast and easy switching between the partial taint
tracking and the information flow tracking interpreter by directing the inter-
preter’s instruction pointer to either the original or our modified information
flow tracking instruction stream at function entry.

5.4 Multi-domain Label Encoding

We implement security labeling by repurposing the memory layout of JSValues,
the virtual machine level representation of a JS value in WebKit. This modifi-
cation of bits inside JSValues allows for low overhead encoding of a 16-bit label
within the 64-bit word size indicating the origin.
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Fig. 2. Label encoding using bits 32–47 in JSValues.

Pointers/Immediates: JSValues starting with the highest 16 bits all set
to zero (see Fig. 2), indicate a pointer or immediate type. Pointers have align-
ment that forces the lowest four bits to be zero. This encoding allows WebKit to
efficiently distinguish real pointers from immediate values which are all encoded
in the lowest four bits: null:0x02, false:0x06, true:0x07, undefined:0x0a.

The actual address of a pointer in WebKit uses 48 bits (bits 0–47). This
design unfortunately does not leave any space to directly encode a label for
pointers within JSValues. To encode a label, we repurpose bits and change the
current encoding of pointers. We use mmap with the 32 BIT flag, to force memory
allocations to be within the 32 bit address space, freeing up 16 bits (bits 32–47)
in the pointer address space. Using these 16 bits allows us to encode up to 16
different domains in a label (marked as xxxx).

Kerschbaumer et al. [9] show that web pages, on average, include content
from 12 different domains. They also provide a technique for overcoming the
space limitation for encoding domains in values by reserving the highest bit as
an overflow flag, indicating that the page includes content from more domains
than the available encoding space, where the lower bits become an index into
an array. Furthermore, this design of encoding labels allows us to use efficient
bit arithmetic for label join operations that propagate labels within the browser
and equality operations that detect information leaks at network requests.

Integers/Doubles: Values starting with the highest 16 bits all set to one indi-
cate an integer type. The ECMAScript specification [26] defines JS integers to
be 31-bit. To encode security labels in integers we can also make use of the bits
32–47, which are unused, even in the original WebKit encoding of JSValues.

WebKit’s encoding reserves all other values (highest 16 bits between 0x0001
and 0xfffe) for doubles. Since doubles in JS follow the double-precision 64 bit
format, there are no bits left for tagging JSValue doubles. Therefore we conser-
vatively label doubles by using the highest currently available security label in
the lattice (i.e., the join of all registered domains).

6 Evaluation

6.1 Security (Effectiveness)

To measure how well CrowdFlow matches the capabilities of a traditional infor-
mation flow tracking system, we simulate a crowd of users with a web crawler
that automatically visits the Alexa Top 500 web pages and stays on each web
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Fig. 3. Reported information flow violations for the 50 pages that trigger the most
warnings when visiting the Alexa Top 500 pages. One user executing the information
flow tracking interpreter vs. a crowd of up to 5 users using CrowdFlow.

page for 60 s. The crawler simulates user interaction by filling out and submitting
the first available HTML-form on each visited page.

Full (Baseline) Information Flow Tracking: To establish a baseline against
which to compare CrowdFlow we arrange for the crawler to run in permanent
information flow tracking mode (state IFTp in Fig. 1). This experiment detected
information flows across domain boundaries on 433 of the Alexa Top 500 pages.
The crawler detected a total of 8,764 such flows which are sent to a total of
1,384 distinct domains on the Internet. Together, the Alexa Top 500 pages use
a total of 391,930 different JS functions (as of 2012/12/24) which are invoked
13.5 million times in total.

CrowdFlow: To show that the detection rate provided by CrowdFlow converges
with that of traditional information flow tracking systems, we revisit the Alexa
Top 500 pages using CrowdFlow and compare the results against the baseline.
To evaluate this claim we set CrowdFlow’s sampling rate at 5%. For popular
sites, this setting “oversamples” given the number of visitors seen in practice.
However, we chose this rate because it allows evaluation of CrowdFlow with a
small, crawler-simulated crowd of five users.

Figure 3 (left) shows the 50 pages that have the most information flow vio-
lations, reported by one browser using a traditional information flow tracking
system. We sort and normalize pages based on the number of detected informa-
tion flow violations. For illustration purposes, we only show 50 pages in the plot,
but discuss our findings for all of the Alexa Top 500 pages. Figure 3 (left) shows
a total of 4,359 detected information flow violations as reported by our baseline.
On all of the Alexa Top 500 pages combined, our framework detects a total of
8,764 information flows.

Figure 3 (right) shows the detected information flows by five CrowdFlow
clients when revisiting the 50 pages having the most information flows on the
Alexa Top 500 pages. Due to randomized sampling, user A does not detect all
information flow violations present in the baseline. User A detects and reports a
total of 5,480 (58,77 % in Fig. 3) information flow violations when browsing the
Alexa Top 500 pages. In addition to the flows found and reported by User A,
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User B reports 1,957 (23.49 % in Fig. 3) new information flow violations. User C
finds an additional 903 (13.81 %) information flows and User D finds a further
173 (1.33 %) information flows. Finally, User E detects 203 (2.54 %) information
flows not previously discovered by either User A, B, C, or D.

In total, the crawler-simulated crowd of five visitors found 8,716 informa-
tion flows out of 8,764 (4,357 out of 4,359 in Fig. 3) reported by a traditional
information flow tracking system, which represents a detection rate of 99.45 %.

6.2 Performance (Efficiency)

To evaluate how CrowdFlow reduces the performance penalty of information
flow tracking within browsers, we modified WebKit version 1.4.2. We execute all
benchmarks on a dual Quad Core Intel Xeon E5462 2.80 GHz with 9.8 GB RAM
running Ubuntu 11.10 (kernel 3.2.0) where we use nice -n -20 to minimize
operating system scheduler effects. For evaluating the performance impact of our
framework, we measure performance using the SunSpider [14] and the V8 [15]
benchmark suites. Both are frequently used to evaluate JS security and therefore
facilitate comparison to related work.
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Fig. 4. Performance impact of CrowdFlow.

Figure 4 shows that CrowdFlow’s performance is directly proportional to the
sampling rate it uses. With a 100 % sampling rate, CrowdFlow performs similar to
other information flow tracking systems, i.e., showing a slowdown by about 2.7×,
or 170 % when normalized to WebKit’s original JS interpreter, JavaScriptCore.

Using our conservative setting of five percent sampling rate reduces this over-
head by 5×, down to about 30 % overhead compared to JavaScriptCore. The
lower, horizontal lines show the measured performance of both benchmark suites
using only our partial taint tracking interpreter. Interestingly, it shows that for
SunSpider we are already close to the lower bound, which is slightly below 20 %
overhead. CrowdFlow’s performance on V8 shows different results: even though
our sampling rate converges to zero percent, using only the partial taint tracking
results in almost ten percent further performance improvement.
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6.3 Discussion and Limitations

Currently browsers do not support any kind of information flow tracking and pro-
vide little security against information theft attacks. Previous information flow
tracking systems support only full tracking which severely affects a user’s brows-
ing experience. CrowdFlow provides a balanced, flexible approach that trades
the guarantee of 100 % information flow tracking in return for improved perfor-
mance. In aggregate, the CrowdFlow approach captures almost all of the infor-
mation flows found by the full tracking system, but at a much lower per-user
performance cost.

Approach Limitations: Our multi-domain labeling strategy allows our system
to clearly identify Content Distribution Networks (CDNs) which modern web
pages use for performance reasons to serve content to their users. Before our
approach can be adopted, we need a policy that allows web site authors to
express allowed information flows, for example, flows within their own CDNs
(cf. [27]). For example, a declaration of such a policy in the HTTP header,
similar to the approach of Jim et al. [28], is feasible. At the moment, we also
leave statistical analysis of the information flow reports up to a third-party
aggregator (commercial URL blacklisting service).

Implementation Limitations: Dynamic information flow tracking systems
are susceptible to timing channel attacks, and ours is no exception. At this time
we are primarily concerned with passive adversaries, those that are not actively
trying to subvert our countermeasures. Therefore, we consider this problem out-
of-scope and are focused on improving the speed of tracking. Should our system
be widely adopted, we expect that attackers will begin to craft code that exploits
the randomization mechanism, only leaking data when not running in informa-
tion flow tracking mode. We can modify CrowdFlow to label results of accesses
to the JS built-in Date class, effectively tainting the system clock as proposed
by Myers [29] and Zdancewic [30].

A privacy-violating flow report may reveal information about the user who
reported it. In the current implementation, CrowdFlow elides all information
about the state of the web application and restricts the report contents to contain
only the set of source domains and the target domain involved in the privacy-
violating flow. To hide information from the URL blacklisting service about who
visited what site, we can also incorporate a traffic anonymizing service such as
TOR [31].

7 Related Work

Distributed Dataflow Analysis: In 2011, Greathouse et al. [32,33] demon-
strate that sampling is a promising approach to optimize the performance of
dynamic data flow analysis. They show that a large population, in aggregate,
can analyze larger portions of a program than any single user individually run-
ning the full analysis of a program.
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Information Flow Systems: The survey paper of Sabelfeld and Myers [25]
puts the related work in the area of language-based information flow up until
2003 into perspective.

In 2007, Vogt et al. [5] present their implementation of information flow
control in the Firefox browser. In 2010, Russo et al. [34] provide a mechanism
for tracking information flow within dynamic tree structures. In 2011, Just et
al. [7] present their information flow system, improving upon results made by
Vogt et al. Finally, in 2012 De Groef et al. [6] describe their implementation
of secure-multi-execution [35] in the Firefox browser to give strong information
flow security guarantees.

CrowdFlow shares similarities and takes inspirations from all of these sys-
tems, e.g., support for multi-domain labeling, comprehensive DOM coverage,
and a combination of taint and information flow tracking. However, these past
approaches universally follow the all-or-nothing paradigm, forcing every client
to perform full information flow tracking. CrowdFlow distinguishes itself by per-
forming full tracking on randomized program subsets, increasing execution speed
at the expense of information flow coverage.

There exist many other approaches to secure JavaScript, such as previous
work by Hedin and Sabelfeld [36], Austin and Flanagan [8,34,37], Chugh et
al. [38], and Nadji et al. [39]. The key differentiator between these approaches
and CrowdFlow is practicality. Our system has an efficient implementation and
does not require invasive changes to the existing web architecture.

Third-Party Security Systems: In 2011, Canali et al. present a system called
Prophiler [40] and Thomas et al. present a system called Monarch [41]. Both
approaches describe details of machine learning techniques used to classify mal-
ware on the web.

For CrowdFlow, both of these projects (and the commercial blacklisting ini-
tiatives mentioned previously) are complimentary because our approach adds
efficient and effective information flow tracking as another source of input. For
example, the analysis performed by Prophiler or the rich honey-clients used in
Monarch can prioritize URLs better with data from CrowdFlow reports.

8 Conclusion

We have presented a modified browser that probabilistically switches between
a fast partial taint tracking interpreter and a slower information flow tracking
interpreter. The probabilistic approach enables both performant code execution
by participating clients and prevention of attacker code from deterministically
evading the information flow tracking mechanism. Switching interpreters during
execution of a program allows different users to track the flow of information
in different subsets of an application, enabling the distribution of tracking costs
across the crowd of visitors to a web page.

CrowdFlow can report privacy-violating information flows to a blacklisting
URL service. Users benefit from their participation in information flow tracking
by receiving warnings about malicious code on a page.
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Our results demonstrate that the CrowdFlow system is both: efficient, we
report slowdowns of around 30 % on two popular JS benchmark suites, and
effective, finding 99.45 % of information flow violations on the Alexa Top 500
pages using a conservative 5 % function invocation sampling rate (Table 1).
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A Detailed Benchmark Results

Table 1. Detailed performance numbers for V8 and Sunspider benchmarks normalized
by the JavaScriptCore interpreter.

Benchmark JSCore (%) PTT (%) IFT (%) Crowd (%)

V8-Total 6691.5 (0.0) 7466.8 (11.59) 18362.1 (174.41) 8835.9 (32.05)

crypto 1846.3 (0.0) 1896.9 (2.74) 5541.4 (200.14) 2133.8 (15.57)

deltablue 1317.7 (0.0) 1504.7 (14.19) 4255.4 (222.94) 1925.9 (46.16)

earley-boyer 425.8 (0.0) 532.2 (24.99) 1467.7 (244.69) 667.6 (56.79)

raytrace 246.7 (0.0) 269.1 (9.08) 513.8 (108.27) 332.6 (34.82)

regexp 901.5 (0.0) 917.3 (1.75) 913.7 (1.35) 904.2 (0.3)

richards 1644.8 (0.0) 2003.0 (21.78) 5088.7 (209.38) 2505.0 (52.3)

splay 308.7 (0.0) 343.6 (11.31) 581.4 (88.34) 366.8 (18.82)

Sunspider-Total 807.6 (0.0) 950.2 (17.66) 2198.0 (172.16) 1032.4 (27.84)

cube 27.8 (0.0) 34.0 (22.3) 90.0 (223.74) 37.5 (34.89)

morph 32.0 (0.0) 36.6 (14.38) 123.0 (284.38) 38.4 (20.0)

raytrace 34.7 (0.0) 38.9 (12.1) 79.7 (129.68) 46.1 (32.85)

binary-trees 10.0 (0.0) 13.2 (32.0) 38.9 (289.0) 16.0 (60.0)

fannkuch 63.8 (0.0) 89.7 (40.6) 225.7 (253.76) 106.3 (66.61)

nbody 28.5 (0.0) 30.7 (7.72) 84.9 (197.89) 33.3 (16.84)

nsieve 14.1 (0.0) 20.0 (41.84) 73.0 (417.73) 23.4 (65.96)

(Continued)
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Table 1. (Continued)

Benchmark JSCore (%) PTT (%) IFT (%) Crowd (%)

3bit-bits-in-byte 22.0 (0.0) 26.9 (22.27) 86.5 (293.18) 30.1 (36.82)

bits-in-byte 22.1 (0.0) 34.1 (54.3) 124.1 (461.54) 40.9 (85.07)

bitwise-and 23.9 (0.0) 36.2 (51.46) 115.7 (384.1) 34.2 (43.1)

nsieve-bits 31.0 (0.0) 38.0 (22.58) 141.2 (355.48) 38.0 (22.58)

recursive 12.0 (0.0) 17.0 (41.67) 70.2 (485.0) 21.6 (80.0)

aes 25.0 (0.0) 29.2 (16.8) 61.0 (144.0) 31.3 (25.2)

md5 15.2 (0.0) 19.1 (25.66) 54.6 (259.21) 22.0 (44.74)

sha1 15.0 (0.0) 18.2 (21.33) 57.3 (282.0) 20.7 (38.0)

format-tofte 21.0 (0.0) 26.0 (23.81) 51.0 (142.86) 28.2 (34.29)

format-xparb 16.5 (0.0) 21.9 (32.73) 33.2 (101.21) 24.7 (49.7)

cordic 32.4 (0.0) 40.6 (25.31) 137.5 (324.38) 48.6 (50.0)

partial-sums 38.6 (0.0) 40.6 (5.18) 74.3 (92.49) 41.2 (6.74)

spectral-norm 21.1 (0.0) 23.9 (13.27) 78.7 (272.99) 27.5 (30.33)

dna 159.5 (0.0) 158.2 (−0.82) 159.5 (0.0) 159.9 (0.25)

base64 20.3 (0.0) 22.8 (12.32) 43.2 (112.81) 23.9 (17.73)

fasta 21.6 (0.0) 28.1 (30.09) 63.7 (194.91) 30.0 (38.89)

tagcloud 33.0 (0.0) 35.0 (6.06) 42.9 (30.0) 35.1 (6.36)

unpack-code 47.4 (0.0) 50.2 (5.91) 54.1 (14.14) 52.0 (9.7)

validate-input 19.1 (0.0) 21.1 (10.47) 34.1 (78.53) 21.5 (12.57)
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Abstract. Smartphones have become a basic necessity in recent years,
and a large portion of users are using them for storing private data
such as personal contacts and performing sensitive operations such as
financial transactions. As a result, there is a high incentive for attackers
to compromise these devices. Researchers have also found that there
are indeed many malicious applications on official or unofficial Android
markets, and a large fraction of them steal private user data once they
are installed on smartphones. In this paper, we propose a novel method
to test Android applications for the leakage of private data. Our method
reuses existing test cases, produced either manually or automatically,
and converts each of them into a set of new correlated test cases. The
property of these correlated test cases is such that- they will trigger the
same result in our system if there is no leakage of private data. As a
result, the leakage of information can be detected if we observe different
outputs from executions under correlated inputs. We have evaluated our
system on an Android malware dataset and the top 50 free applications
on official Android market. The result shows that our tool can effectively
and efficiently detect leakage of private data.

1 Introduction

The use of smartphones are increasing day by day. According to a recent sur-
vey [7], over 50 percent of the US mobile users own smartphones. Nowadays, a
smartphone can be used for almost all the purposes a normal user can think of,
such as web browsing, online chatting, email, social networking, gaming, audio
and video conferences.

To meet the wide range of users’ need, millions of applications have been
developed and available in various online application stores, such as - Apple
Appstore, Google Playstore for Android etc. While these online markets make
it convenient for users to customize their smartphone systems for their needs,
attackers have also become interested in them for compromising users’ systems.
Attackers may upload malicious applications and then compromise the systems
that download and install those applications. For example, these malicious appli-
cations may steal private data or send SMS messages to premium numbers with-
out user’s knowledge. In addition, pirated versions of popular smartphone appli-
cations are commonly available at unofficial market places too. Attackers often
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 341–353, 2015.
DOI: 10.1007/978-3-319-27659-5 24
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embed malicious code in these pirated versions and can compromise a device
when installed.

The above information leakage problem has already been studied in the liter-
ature. Here we restrict our study to Android platform. Existing solutions include
static analysis [16] and dynamic monitoring [10]. Static analysis scans byte code
or source code to find paths that may leak information. However, it does not
execute the program and lacks program dynamic information. As a result, it suf-
fers from high false positive rate. On the other hand, dynamic analysis monitors
the execution of an application on a modified Android platform. However, the
modification of Android system is not always practical from the end user per-
spective. In addition, dynamic monitoring often increases the overhead at the
user side significantly.

In this paper, we propose to test Android applications before placing them
on the market. The testing can be done by the market owner or a third party
other than application developers by uploading the applications to a offline server
running the proposed system. Conceptually, the first step of testing is to generate
test cases to explore different program paths, and the second step is to examine
each program path to see if it is possible to leak any sensitive information.
The first step can be done by using GUI-based test case generation [19] or
concolic testing like DART and CUTE [17,21] as long as they are ported to
Android platform. Here, we assume that there exists a set of test cases produced
either manually or automatically by various existing methods, and our focus
is on the second step, i.e., to test if the execution under a given test input is
leaking sensitive information. One method is to monitor the outgoing packet of
an application and check the content to see if it is leaking something similar
to a phone number, a credit card number, etc. However, when the attacker
obfuscates the packet, e.g., by encryption, then this method will fail. Another
natural way to solve this problem is to use taint analysis, e.g., if the outgoing
packet is tainted by private data, then we can say that this application is leaking
information. For example, TaintDroid [10] is built on this simple idea. However,
the problem with such idea is that, the application needs to be instrumented
and monitored, which requires access to the source code. While the source code
can be obtained by reverse engineering, a common trend right now is that many
application developers obfuscate their code to make it difficult for source code-
based program analysis.

To remove the need for program source code and relieve user side from expen-
sive monitoring, in this paper we propose DroidTest, a server side black-box
testing method; we only work on the input and the output of the application
under test. In our system, each existing test case is used to produce a set of cor-
related test inputs. These correlated inputs are crafted in such a way that, the
output will stay the same if there is no leakage of private information. In fact,
the only difference between two correlated test cases is the input that includes
sensitive information, e.g., current location, personal pictures, etc. As a result,
if we observe different outputs generated by a set of correlated test cases, then
we can say that the difference is due to the difference in the sensitive inputs.
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The benefit of DroidTest are as follows. First, it does not require access to the
source code. As a result, obfuscating source code does not stop us from detecting
the leakage of information. Second, it can detect both explicit and implicit data
leakage.

We have evaluated our technique on two datasets. The first dataset includes
applications that are known to contain malicious code leaking information; the
second dataset includes the top 50 free applications from Android market. The
result shows that we can successfully detect the information leakage of the appli-
cations in the first dataset. In addition, we have also found a good number of
applications in the second dataset that are also leaking some private information
without user’s knowledge.

The remainder of the paper is organized as follows. Section 3 provides a neces-
sary background on the Android security mechanism along with the assumptions
made. Section 2 reviews related work on Android security. Section 4 describes
the high level overview of the proposed approach. Section 5 provides detailed
description of the proposed method. Section 6 contains the experimental results
and findings. The last section concludes the paper and discusses some possible
future directions.

2 Related Work

Security and privacy of smartphone applications is a field of active research in
the recent years. Among them, stealing sensitive information from smartphones
is one of the major threats [12].

Static and dynamic analysis techniques have been applied to track the sus-
picious behavior of applications. PiOS [9] applies static analysis on iOS apps
to detect possible privacy leak. In particular, it first constructs the control flow
graph of an iOS application, then checks whether there is an execution path from
the nodes that access privacy source to the nodes corresponding to network oper-
ations. If such a path exists, it is considered a potential for information leakage.
SCANDAL [20] also employs similar techniques to find the path between the
sensitive sources of data and the network write operations in Android applica-
tions. However, as we mentioned, static analysis tools often suffer from high false
positive rate.

TaintDroid [10] uses dynamic taint analysis to track data flow inside the
Android operating system. It taints data from private information sources, and
then checks the data leaving the system via network interface. It raises an alert
when the outgoing data include tainted information. A major limitation of this
system is it only looks for explicit information flow; thus cannot detect data
leakage through implicit flow of information.

ScanDroid [15] extracts security specifications from the manifests that accom-
pany Android applications, and then checks whether the information flow is con-
sistent with those specifications. However, the analysis results in [14] and [11]
show that such specification may not be always sufficient. Malicious applications
can easily bypass them and still leak data.
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TISSA [23] gives users detailed control over an application’s access to a few
selected private data (phone identity, location, contacts, and the call log) by
letting the user decide whether the application can see the true data or some
mock data. MockDroid [8] allows users to mock the access from an untrusted
application to particular resources at runtime. AppFence [18] replaces sensitive
information with shadow data. While these methods stop the leakage of data,
they also impact legitimate applications that are allowed to access these data.

3 Background and Assumptions

3.1 Android Permission Scheme

Android governs the access to resources such as internet, SMS, Contacts etc.
through its permission mechanism. At the install time, each application declares
its required permissions such as - internet access, GPS data access, read phone
state etc. There is no way to selectively accept or reject these permission requests.
A user must accept all of those to install the application, otherwise abort the
procedure. This was done with a view to informing users about which specific
resources are accessed by each application.

But in practice, users pay little attention to these permission requests [13] and
unnecessary permissions are often granted to applications. For example, an email
application needs to send and receive emails. In Android, such an application
must acquire the full internet access permission, which is more than necessary
and can be exploited.

3.2 Sensitive Information Source and Sink

To detect the leakage of sensitive data, the first task is to define the set of private
or sensitive information sources. Some commonly regarded source of private
data are: Device id (IMEI), Subscriber Id (IMSI), Phone Number, Location
and Contact information, User account information, SMS/MMS messages etc.
However, the nature of application and context information are also important
to decide whether a particular piece of data is sensitive or not. For example,
location information sent by the popular Android application Gasbuddy cannot
be termed as an instance of privacy violation, as it is the part of the its task and
user is also aware of that.

Information sink means the ways data can leave the device, which includes -
Network access, Outgoing SMS, MMS etc. Here, we check whether the informa-
tion going through the sink contains some private data.

3.3 Adversary Model

In this paper, we assume that the attacker fully controls the development of the
application under test. In other words, he can embed any code he wants. We
assume that the application has the permission to read some of the sensitive
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information sources and access Internet. The question for us is to see if such
sensitive data is leaked through Internet. During the test, we also assume that
except the application under test, all other system components, e.g., the Android
OS and the Dalvik VM, are secure. If they are compromised, then the adversary
can easily bypass our monitoring. This assumption is reasonable since the testing
system is built specifically for the purpose of detecting information leakage. On
the other hand, we cannot make such assumption if the detection is done at
the user end. Finally, we also assume that the malicious application does not
compromise the Dalvik VM or Android OS during the execution.

4 DroidTest Overview

The objective of DroidTest is to detect malicious activity in Android smartphone
applications that send out privacy-sensitive information out through network
interfaces. A straightforward idea to solve this problem is to use static analysis
techniques. Basically, we scan the program source code or binary to see if the
data write operation is reachable from the read operation performed on sensitive
data. However, as we mentioned, these techniques suffer from high false positive
rate. Dynamic analysis does not suffer from the abundance of false positives.
However, they involve significant modification of the Android operating system
and also require user devices to do the expensive monitoring.

DroidTest is a black-box testing method; the system only works on the input
and the output of the application under test. As mentioned, DroidTest uses
existing test cases. Given a test case, it will examine the path triggered by such
test case to see if there is any information leakage. The main idea of DroidTest is
based on the following observation: given a deterministic function f(x) (x ∈ X ),
the result of this function does not leak any information about x if for all x1

and x2 we have f(x1) = f(x2). In other words, given f(x), the probability
distribution of x is a uniform distribution over X . As a result, if we test f(·)
using two inputs {x1, x2} and find that f(x1) �= f(x2), then it is for sure that
function f(x) is leaking some information about the input x. This basically
means that if we fix all inputs to an application except those that are considered
as sensitive, then the content of outgoing traffic should not change if there is no
leakage of sensitive data.

In the high level, DroidTest works as follows. For each existing test case,
we convert it into multiple correlated test cases. We consider these test cases as
correlated since they only differ in the inputs from sensitive sources, e.g., current
location, personal pictures, etc. In this paper, we only produce two correlated
test cases from each of the existing test cases since we found that two is often
enough for tracking the information leakage as long as the private data part
is randomly mutated. Once we have the two correlated test cases, we run the
application twice and monitor the outgoing traffic. If we see any difference in
the outgoing traffic, then we can say that such difference is due to the difference
in the sensitive data. This basically means, some private information is leaked
by this application.
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Fig. 1. High-level view of the proposed system. (a) and (b) are a pair of correlated test
cases produced from an existing test case.

5 Implementation

Figure 1 depicts a conceptual view of the DroidTest system. DroidTest has three
major components: test case generator, test case executor and kernel log collector.
The test case generator converts each existing test case into a pair of correlated
test cases that only differ in the private data part; the test case executor runs
the application once for each of the two correlated test cases and analyze if any
private information is leaked through network interfaces; the kernel log collector
basically monitors the network interface and collects the outgoing packet data.
In the rest of this section, we first describe the necessary settings made in the
Android operating system and then discuss the three major components of the
proposed system in detail.

5.1 Test Environment Setup

DroidTest systm is a modified Android Operating system based on version 2.2,
popularly known as Froyo. Applications are loaded and run in the emulator built
from this modified Android system.

At first, We locate all APIs that are required to read phone specific infor-
mation, find location data, contact lists and read incoming SMS contents etc.
Then custom source code is inserted in these methods to change the return val-
ues with randomly generated values. As a result, different invocation of these
methods will return different values. This setting helps us to create co-related
test cases with variations in the sensitive data.

For example, to get the Device ID or IMEI number, one has to call the
getDeviceId() method of the Android.telephony.TelePhonyManager class.



DroidTest: Testing Android Applications for Leakage of Private Information 347

It internally uses the getDeviceId() method of the class PhoneSubInfo under
the package com.Android.internal.telephony. We modified the getDeviceId() of
PhoneSubInfo class to read a mock IMEI number (randomly generated) and
return it to the application.

In addition to the modification at the information sources, we also try to
fix program inputs such as system time, random number generators, and envi-
ronment variables to constant values. In the current implementation, we only
modified the java.util.Random and java.lang.System classes. It aids to offset
variation in program output for multiple runs due to the factors other than the
user provided inputs.

5.2 Test Case Generator

As said earlier, we have manually generated test cases for the applications under
test. Each application is run for some time (around 5 min) in the emulator. We
manually exercise its basic features, e.g., try to navigate to all the screens, click
the available buttons and links etc. For each such activity, we check whether the
application has performed any sort of network activity or sent any text message.
If so, the sequence of events that led up to this point from the application home
screen(entry point) is taken as one candidate test case for this application. Test
cases not resulting in any outgoing data are dropped.

5.3 Test Case Executor

This component will take a pair of correlated test cases and execute the appli-
cation once for each of them. The executor takes two command line arguments
to run - the application name, the name of the file containing the test cases. It
then converts these test cases to Junit [3] test scripts. Within the Junit frame-
work, individual test methods are written using the APIs of Robotium [6], which
automatically passes the GUI events (actions in the test case) to the Android
emulator.

Once the execution is done for each of the correlated test cases, we retrieve
and compare the monitoring results from the kernel logs. If they are different,
then we report an alarm since some sensitive information is leaked through the
internet by the application under test.

5.4 Kernel Log Collector

The last key component of our system is a simple Loadable Kernel Module, that
intercepts the outgoing network packets. To do that, we hook the System Call
Table of the Android operating system. This is done by placing a custom system
call table in the same address as the original system call table.

Android operating system uses system call - sys sendto to send data to
network. We intercept this system call and log its parameters(packet data) to
the kernel logs.
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6 Experiment and Results

6.1 Scope of Sensitive Information Source and Sink

We have discussed about the sensitive information sources earlier. For this study,
we only consider the ones listed in Table 1. As the sink of sensitive information,
we consider the network interfaces. However, Our system can be easily extended
to work with additional sources and sinks of private data.

Table 1. Information sources considered private

IMEI number, IMSI number, Android OS Version,

Phone Number, Phone Model, Contacts,

Location information, Incoming SMS contents

6.2 Datasets

We consider two datasets. The first dataset [4] includes the Android applications
that are known to contain malwares. The second data set includes applications
from the Official Android Marketplace [5]. Whether these applications leak pri-
vate data or not is unknown beforehand.

Data Set 1: Malicious Applications. The malware database [4] has total
1260 samples under 45 different malware families. Among them, 28 were found to
leak users private data by [2,22]. So, we also restrict our study to these malware
samples.

From these samples, we further discarded any application having one or more
of the following properties. Because, in that case an application do not have
the capability to send data outside through internet. This further reduces our
malware data set to 222 samples from 20 malware families.

1. Perform no internet activity during its execution.
2. Conditions to activate or complete the malicious activity is no longer present.

For example, the web server where the stolen information is sent is down, or
the emulator has to send SMS to premium rate number, which is not possible
in an emulated environment etc.

Data Set 2: Android Marketplace Applications. From the Android mar-
ket place, We select top 50 (as of March 2013) free applications to perfrom
the testing. While collecting applications, we check whether they require certain
permissions: Full Internet access and at least one of - Read phone specific infor-
mation, Contact data, and Location information. Applications not having such
permissions are discarded from further analysis. Table 3 lists the name of these
applications along with their leaked information.



DroidTest: Testing Android Applications for Leakage of Private Information 349

Table 2. Android malwares and types of leaked information

Malware samples

Malware family Number of samples Leaked information

BeanBot 4 IMEI, IMSI, Phone Number

Android OS Version

BgServ 4 IMEI, Phone Number, Android OS Version

DroidDelux 1 IMSI, Phone Model, Android OS version

DroidDreamLight 30 IMEI, IMSI

DroidKungFu1 16 IMEI, Android OS version,Phone model

DroidKungFu2 8 IMEI, Android OS version,Phone model

DroidKungFuSapp 3 IMEI, Android OS version,Phone model

DroidKungFuUpdate 1 IMEI, Phone Number, Android OS Version

GoldFream 34 Incoming SMS, IMEI

Gone60 9 Contacts, SMS

LoveTrap 1 IMSI, GeoLocation

Plankton 11 IMEI

PjApps 47 IMEI, Phone Number

RougeSP Push 9 IMEI, Phone Number, Android OS version

SMSReplicator 1 Incoming SMS

SndApps 10 IMEI, Phone Number

WalkinWat 1 IMEI, Phone Number,

Phone Model and Android OS Version

YZHC 22 IMEI, Incoming SMS

zHash 11 IMEI, IMSI

Zitmo 1 IMEI, Incoming SMS

Total 222

6.3 Results

Experiment Results of Malware Dataset. Table 2 shows the result of exper-
iment, that includes - the name of the malware family, number of samples in the
test suite and the leaked information type. For each of these samples, we could
successfully detect its known data leaking behavior. Hence, the detection rate
for the proposed tool was found to be 100 %.

Experiment Results of Android Market Place Applications. Next, we
apply the proposed method to test the top 50 free applications from the Android
market place [5]. Table 3 lists the name of these applications alongside the type
of information leaked. The value Nil indicates that we didn’t find any leakage
of information during the testing.

From the experiment, we see that some highly rated applications can also leak
private data without user’s consent. The permission requests presented by these
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Table 3. Top 50 free applications from Android market and leaked information

Application names Leaked information

TuneInRadio Location

Crackle Movie IMEI, IMSI, Android OS version

Brightest LED FlashLight Location Android OS version,
Phone model, Build Version

Tiny Flashlight, Zillo, Instagram, JetPack
Joyride, AskFM, FruitNinja, Lines, Simpson,
Drag Racing, Vector, PicsArt, Ant Smasher,
Google Translate

Nil

Scramble Free, iHeartRadio, HelloKitty IMEI, Android OS version, Phone
model, Build Version

Craiglist Mobile, Inkpad, MeetMe, Tagged,
Shoot Bubble, AccuWeather

Android OS version, Phone model,
Build version

Logo quiz, Cut the Rope, Amazon MP3 Android OS version Phone model,
Build version

Speed Test Current Location, IMEI Build ver-
sion

Sound Hound IMSI

Sudoku Current Location, Phone model
Build version

Alarm Clock Extreme Phone Model

DH Texas Poker, Words with Friends, ESPN
score center, Restaurant Story Angry Gran
Run, Castle Defence, Zombie Frontier, Mind
Game

IMEI, Android OS version, Phone
model

Imdb, iFunny, GoWeatherEX, Texas HoldEm
Poker, My Mixtapez Fashion Story, 4 Pics 1
Word, Tetris,

Android OS version, Phone model

Hulu plus Android OS version

applications had no direct mention about their sending of private information to
third party. We found that, 36 out of 50 applications (72%) send one or more
sensitive data to outside, mostly to advertising servers. This number is quite
disturbing taking into the fact that, these applications are very much popular
and widely used [5].

6.4 Discussions and Findings

We tested the applications by creating co-related pair of test cases for the pro-
gram paths explored manually. So, it may miss some instances of true positives,
as the set of test cases is not comprehensive. Detection rates of malicious appli-
cations reported above are also based on the generated test cases only. DroidTest
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Table 4. DroidTest vs Google App verfication service

Malware samples and Detection results

Malware family Detected samples

DroidTest App verification service

BeanBot 4 0

BgServ 4 0

DroidDelux 1 0

DroidDreamLight 30 18

DroidKungFu1 16 8

DroidKungFu2 8 9

DroidKungFuSapp 3 0

DroidKungFuUpdate 1 0

GoldFream 34 6

Gone60 9 0

LoveTrap 1 0

Plankton 11 2

PjApps 47 8

RougeSP Push 9 0

SMSReplicator 1 0

SndApps 10 0

WalkinWat 1 0

YZHC 22 3

zHash 9 1

Zitmo 1 0

Total 222 56

can theoretically produce false positives, because we fixed only random numbers
and system time to constant, and there may be other factors that can change
program output without changing the sensitive input. But for the applications
we tested, every instances of variation in output could be traced back to change
in sensitive input sources, thus no false positives were produced.

From Tables 2 and 3, we can see the type of information leaked by various
applications. The most commonly leaked information is the unique device id or
the IMEI number by both type of applications. If we closely observe the results
of analysis of these applications, we can easily see that, applications from the
malware data set leaks IMEI, IMSI, Phone number more than the other sensitive
data. On the other hand, the mostly leaked information by the Android market
place applications include Android operating system version, Phone model which
are definitely not as sensitive as the device id (IMEI), subscriber id (IMSI)
and the phone number. So, user must avoid downloading applications from the
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untrusted third party market places. The chance of leaking sensitive data are
much higher in case of the unofficial market place applications, because unofficial
market places apply hardly any security check of the applications.

Recently, with the release of latest Android 4.2 (JellyBean), google
announced a new and exciting security feature called the “Application Verifi-
cation Service”.Performance of this service in detecting malicious applications
has been studied in [1]. Based on that, Table 4 shows the comparison of the
results found by DroidTest and Application Verfication Service. It clearly shows
that, the proposed system performed way better than App Verification Service.

7 Conclusion

The growing popularity of smartphones has led to the rising threats from mali-
cious mobile applications. In this paper, we have demonstrated the need for
testing Android applications before they are put into the market place. It comes
from the fact that, many popular applications found in the official and unofficial
Android market places leak private data to some third parties without proper
user consent. To test mobile applications for data stealing behavior, we have
proposed the DroidTest system and described its architecture, operation and
evaluation through the testing of two datasets. The experiment results shows its
effectiveness in detecting private information leakage.

Currently our system is an offline testing tool. In future, we plan to move the
monitoring to the device to notify user about information leakage dynamically.
We also plan to include more information sources in the sensitive input list. This
will make DroidTest better equipped to detect zero day smartphone malwares.
Currently, we manually generate the test cases for the applications under test.
To make our system more robust, we also plan to generate meaningful test cases
for Android applications automatically in future.

Acknowledgments. The authors would like to thank Professor Xuxian Jiang and his
research group from North Carolina State University for sharing us with the android
malware data set.
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Abstract. In this paper, we investigate the current state of practice
about mixed-content websites, websites that are accessed using the
HTTPS protocol, yet include some additional resources using HTTP.
Through a large-scale experiment, we show that about half of the Inter-
net’s most popular websites are currently using this practice and are thus
vulnerable to a wide range of attacks, including the stealing of cookies
and the injection of malicious JavaScript in the context of the vulnerable
websites. Additionally, we investigate the default behavior of browsers on
mobile devices and show that most of them, by default, allow the render-
ing of mixed content, which demonstrates that hundreds of thousands of
mobile users are currently vulnerable to MITM attacks.

1 Introduction

Internet users today rely on HTTPS (HTTP over SSL/TLS) for secure commu-
nication of sensitive data. While websites are migrating to HTTPS, attackers
are also shifting efforts to break the TLS communication. Complementary to
protocol and infrastructure vulnerabilities in TLS and HTTPS, as illustrated by
recent attacks such as CRIME [19] and Lucky 13 [10], attackers can also exploit
mixed-content vulnerabilities to compromise TLS-protected websites.

In mixed-content websites, the webpage is delivered to the browser over TLS,
but some of the additional content, such as images and scripts, are delivered over
a non-secured HTTP connection. These non-secured communications can be
exploited by network attackers to gain access to wide set of capabilities ranging
from access to cookies and the forging of arbitrary requests, to the execution of
arbitrary JavaScript code in the security context of the TLS-protected website.

Desktop browsers are recently catching up to mitigate this vulnerability,
but the large majority of browsers on mobile devices, such as smartphones and
tablets, leave the end-user unprotected against this type of attack. This is wors-
ened by the fact that it is typically pretty straightforward to launch an active
network attack against a mobile user (e.g. via setting up a fake wireless hotspot).

In this paper, we report on an in-depth assessment of the state-of-practice
with respect to mixed-content vulnerabilities. In particular, the main contribu-
tions of this paper are the following: (1) We study the different types of mixed-
content inclusions, and assess their security impact. (2) We present a detailed
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 354–363, 2015.
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analysis of mixed-content inclusions over the Alexa top 100,000 Internet domains,
showing that 43 % of the Internet’s most popular websites suffer from mixed-
content vulnerabilities. (3) We document the behavior of mobile browsers in the
face of mixed-content inclusions. (4) We enumerate the best practices as well
as novel mitigation techniques against mixed-content inclusions for browsers,
website owners and content providers.

2 Problem Statement

It is well-known that HTTP is vulnerable to eavesdropping and man-in-the-
middle (MITM) attacks, and HTTPS is designed to precisely prevent these
attacks by adding the security capabilities of SSL/TLS to HTTP. SSL/TSL
enables authentication of the web server, and provides bidirectional encryption
of the communication channel between the client and server. Apart from the
attacks against the SSL/TLS protocol, we show that attackers can also exploit
mixed-content vulnerabilities to compromise TLS-protected websites.

The attacker model used in this paper, is the active network attacker. The
active network attacker positions himself on a network between the web browser
and the web server, and is able to intercept and tamper with the network traffic
passing by. The attacker can read, modify, delete, and inject HTTP requests and
responses, but he is not able to decipher encrypted information, nor impersonate
an HTTPS endpoint without a valid TLS certificate.

In mixed content (also known as non-secure/insecure content) websites, the
web page is delivered to the browser over TLS, but some of the additional con-
tent, such as images and scripts, are directly delivered over a non-secured HTTP
connection from the content provider towards the web browser. Although the
active network attacker can not attack the web page delivery over HTTPS, he
can still compromise the TLS-enabled website by compromising any of the addi-
tional resources that are loaded over HTTP.

3 Impact of Mixed Content Attacks

Five specific types of mixed content are studied in this paper: Image, iframe, CSS,
JavaScript and Flash. The impact of different types of mixed content attack can
be categorized as follows:

– Cookie stealing: When a browser requests mixed content, it may include
cookies associated with the content provider, which allows the attacker to
obtain the cookies. Moreover, if the content provider and the TLS-protected
website using mixed content happen to be on the same domain, sensitive
cookies used over HTTPS can get exposed to the attacker via a HTTP request,
unless the cookie is protected by the “secure” flag.

– Request forgery: As mixed content is requested over HTTP, the attacker
can manipulate the HTTP requests and responses and use them to trigger or
forge arbitrary HTTP requests, which may lead to certain variants of SSL-
Stripping [16] and Cross-Site Request Forgery (CSRF) [12] attacks.
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Table 1. Impact of mixed content attacks

Type Cookie stealing Request forgery DOM data leakage JavaScript execution

Image x x

iframe x x

CSS x x x

JavaScript x x x x

Flash x x x x

– DOM data leakage: Mixed content may leak confidential data that is dis-
played as part of the HTTPS webpage. For example, mixed-CSS content can
be used to obtain sensitive data in the DOM via scriptless attacks [14]: CSS
selectors can match against particular content in the DOM, and leak the result
of the test by fetching a web resource (e.g. image) monitored by the attacker.

– JavaScript execution: For mixed-JavaScript and mixed-Flash content, the
attacker can inject arbitrary JavaScript code that will be executed in the
context of the HTTPS website using the mixed content. This allows the
attacker to run arbitrary JavaScript code as if it was originating from the
TLS-protected site, and access a variety of security-sensitive JavaScript APIs.
Moreover, the attacker can inject malicious payloads, such as the BeEF frame-
work [2], to take over the user’s browser and launch various attacks.

The various types of mixed content and their impact are summarized
in Table 1.

4 Data Collection

In this section, we describe the setup and results of our large-scale data collection
experiment.

4.1 Crawling Experiment

Starting with Alexa’s list of 100,000 most popular domains, we first filter out
the domains that are not available over TLS. Next, we use the Bing Search API
[3] to automatically query for a set of 200 HTTPS page URLs for each website.

To discover mixed-content inclusions on TLS-enabled websites, we apply the
approach as described in [18]: the headless HtmlUnit browser is used to visit
the page URLs, and the HTTPS pages are analyzed to locate mixed-content
inclusions. HtmlUnit is able to execute the JavaScript code similar to a real
browser, and as such, it can detect dynamically-included mixed content.

4.2 Data Collection Results

With the aforementioned approach, we extracted 18,526 HTTPS websites from
Alexa top 100,000 Internet domains, and in total 481,656 HTTPS pages are
crawled, with an average of 26 HTTPS pages per website.
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Table 2. Overview of distribution of mixed-content inclusions

# Inclusions % remote inclusions # Files # Webpages % Websites

Image 406,932 38 % 138,959 45,417 30 %

iframe 25,362 90 % 15,227 15,419 14 %

CSS 35,957 44 % 6,680 15,911 12 %

JavaScript 150,179 72 % 29,952 45,059 26 %

Flash 1,721 62 % 638 1,474 2 %

Total 620,151 47 % 191,456 74,946 43 %

Fig. 1. Percentage of TLS-enabled websites vulnerable to different attacks

From the crawled HTTPS websites, 7,980 (43 %) were found to have at least
one type of mixed content. This means that almost half of the HTTPS protected
websites, are vulnerable to one or more of the attacks mentioned in the previ-
ous sections. In total, 620,151 mixed-content inclusions were found through our
experiment, which maps to 191,456 mixed-content files and 74,946 HTTPS web-
pages. Table 2 gives an overview of the distribution of mixed-content inclusions.
Image and JavaScript are the most included mixed content types, with 30 %
and 26 % of the HTTPS websites using them respectively, while mixed-Flash
content is much less used. As for the distribution over remote and local inclu-
sions for each mixed content type, mixed iframe, JavaScript, and Flash content
is mostly served by remote providers, while the majority of mixed Image and
CSS inclusions are locally included.

To better understand the risks associated with websites using different types
of mixed content, we calculate the percentage of websites that are exposed to
different levels of attacks as shown in Fig. 1. The calculation is based on the
impact analysis for each mixed content type (Table 1), which groups different
types of mixed-content inclusions according to the associated attacks. Figure 1
shows that 27 % websites are exposed to attacks up to “JavaScript execution”,
by including mixed JavaScript or Flash content.

5 Discussion

In this section, we discuss some characteristics of mixed content and the websites
including them, as discovered in our experiment. First, we identify the distribu-
tion of websites having mixed content over different categories, and then present
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some examples of important websites having mixed-JavaScript content. Second,
we investigate the availability of mixed content files over HTTPS.

5.1 Websites Having Mixed Content

To better understand the websites having mixed content, we categorize the web-
sites based on McAfee’s TrustedSource Web Database [17]. Most of the visited
HTTPS websites are categorized into 88 categories, with 1,181 websites remain-
ing uncategorized. The majority of visited websites (66 %) can be categorized
into 10 popular categories. As shown in Fig. 2, The ‘Government/Military’ web-
sites are doing better than websites in all other categories, with “only” 31 % of
them websites having mixed content. 38 % of ‘Finance/Banking’ websites hav-
ing mixed content, which is worrisome, since these websites contain valuable
information and are typically the targets of attackers.

Fig. 2. Distribution of websites having mixed content over top 10 categories

For the 74,946 HTTPS pages having mixed content, we check whether these
pages have an equivalent HTTP version of the same content. While most of them
do have an HTTP version, 9,792 (11 %) pages are only served over HTTPS, and
these “HTTPS-Only” pages map to 1,678 (9 %) HTTPS websites. We consider
it likely that these “HTTPS-Only” pages contain more sensitive data and should
be more secure, compared to those pages having the same content served over
HTTP. Thus, mixed-content inclusions on “HTTPS-Only” pages can have more
severe consequences when successfully exploited.

Table 3 lists ten examples of “HTTPS-Only” pages (selected from Alexa’s top
1,000 websites) having mixed-JavaScript content. These pages provide impor-
tant functionalities like “Account Signup”, “Account Login”, and “Password
Recovery”, all of which process sensitive user information and thus can lead to
user-data leakage if the mixed-JavaScript content is intercepted by an attacker.

Of the 1,678 HTTPS websites that have “HTTPS-Only” pages, we found
97 websites that are using HTTP Strict Transport Security (HSTS) policy [15],
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Table 3. Ten example “HTTPS-Only” pages having mixed-JavaScript content

HTTPS-Only pages Functionality

http://www.aweber.com/signup.htm Account Signup

http://www36.verizon.com/callassistant/signin.aspx Account Login

http://secure.pornhublive.com/forgot-password/ Password Recovery

http://euw.leagueoflegends.com/account/recovery/password Password Recovery

http://ww15.itau.com.br/privatebank/contatoprivate/en/index.aspx Contact Form

http://dv.secure.force.com/applyonline/Page1?brand=ccn Application Form

http://www.tribalfusion.com/adapp/forms/contactForm.jsp Contact Form

http://support.makemytrip.com/ForgotPassword.aspx Password Recovery

http://jdagccc.custhelp.com/app/utils/create account/red/1 Account Signup

http://ssl6.ovh.net/∼pasfacil/boutiquemedievale/login.php Account Login

which indicates that these websites are making use of the latest protection tech-
nology for ensuring the use of SSL, but they still fail to achieve their goal by
including mixed content from insecure channels.

5.2 Providers of Mixed-Content Files

For the total of 191,456 mixed-content files, we check whether the providers
serve these files over a secure HTTPS channel next to their insecure HTTP
versions. While the majority of mixed JavaScript, iframe and CSS content files
are available over HTTPS, the percentage of mixed Image content files available
over HTTPS is significantly less, as shown in Table 4. Though website owners
should be responsible for the mixed content issue, the data in Table 4 indicates
that blaming them is too simplistic, since it ignores the fact that approximately
half of the mixed content files are only available over HTTP.

6 Mixed Content Mitigation Techniques

In this section, we investigate and enumerate protection techniques that can be
used for browsers, TLS-protected websites, and content providers, to mitigate
the issue of insecure inclusion of content.

Table 4. Percentage of “HTTPS-Available” files, per mixed content type

Type # Files % HTTPS-Available Type # Files % HTTPS-Available

Image 138,959 40 % JavaScript 29,952 58 %

iframe 15,227 77 % Flash 638 46 %

CSS 6,680 60 % Total 191,456 47 %

http://www.aweber.com/signup.htm
http://www36.verizon.com/callassistant/signin.aspx
http://secure.pornhublive.com/forgot-password/
http://euw.leagueoflegends.com/account/recovery/password
http://ww15.itau.com.br/privatebank/contatoprivate/en/index.aspx
http://dv.secure.force.com/applyonline/Page1?brand=ccn
http://www.tribalfusion.com/adapp/forms/contactForm.jsp
http://support.makemytrip.com/ForgotPassword.aspx
http://jdagccc.custhelp.com/app/utils/create_account/red/1
http://ssl6.ovh.net/~pasfacil/boutiquemedievale/login.php
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6.1 Browser Vendors

Blocking mixed content at the browser-level, is the most straightforward way to
mitigate the mixed content issue. While most desktop browsers have developed a
mixed-content blocker to protect users against insecure content, mobile browsers
strongly lag behind on this, despite the fact that mobile browsing is becoming
increasingly important to users. According to recent statistics from StatCounter,
the market share of mobile browsing has almost tripled in the last two years,
having reached 16.08 % in June 2013.

As part of our study, we investigated how all the major mobile browsers
for Android, iOS, Windows Phone and Windows RT platform handle mixed
content – shown in Table 5. We unfortunately discovered that most of them do
not have a mixed-content blocker, with the exception of Chrome for Android and
IE 10 Mobile which protect the user against mixed content. Firefox for Android
plans to have a mixed-content blocker in a future release [1].

Table 5. Mobile browsers’ behavior towards mixed content

Platform Mobile browser Blocked? Secure padlock shown?

Google Android 4.2 Chrome 28 Yes with a yellow triangle

Firefox 23 No No

Android browser No open padlock

Opera Mobile 12 No No

Apple iOS 6.1 Safari 6 No No

Chrome 28 No with a yellow triangle

Opera Mini 7 No No

Windows Phone/RT 8 IE 10 Mobile Yes No

With respect to desktop browsers, Internet Explorer (IE) is the first browser
that detected and blocked mixed content with IE 7, released in 2006. When mixed
content is detected, the browser warns the user and allows her to choose whether
insecure content should be loaded [7]. Many users, however, would probably click
“Yes”, rendering the mixed-content blocker useless [21]. An elegant way to handle
mixed content would be to silently block mixed content without prompting the
users. This approach has been chosen in Chrome (version 21+) [8], Internet
Explorer (version 9+) [4], and the recently released Firefox 23 [9]. Safari and
Opera browsers do not currently have a mixed-content blocker, which means that
about 10 % of desktop users are still exposed to the dangers of mixed content.1

Chrome, IE, and Firefox all have a mixed-content blocker, but they only block
mixed iframe, CSS, JavaScript and Flash content, and mixed Image content is
1 Safari and Opera each owns 8.39 % and 1.03 % market share respectively, accord-

ing to the statistics of usage share of desktop browsers for June 2013 from Stat-
Counter [6].
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left out. An interesting fact is that mixed-Image content is blocked in IE 7 and
IE 8, but it is not blocked in IE 9 and IE 10. Since mixed Image and iframe
content technically have the same impact which may lead to attacks “Request
forgery” and “Cookie stealing”, we recommend all browsers vendors to block
all types of mixed content, thus completely eliminating the mixed content issue
from the browser side. While this move would likely break some insecurely-coded
websites, the security benefits of mixed-content-blocking definitely outweigh the
temporary frustration of users when they encounter some websites that do not
properly work.

6.2 Website Owners

TLS-protected websites can explicitly opt-in to only include content from secure
channels. As shown in Table 4, 47 % of the mixed-content files are not correctly
included, since the secure version of the resources exist and could thus be used.
For the remaining set of mixed-content files that do not have a secure version,
the resources can be cached locally, or proxied using their own SSL server.

To provide better security, a website using HTTPS can use a combination of
the HTTP Strict Transport Security (HSTS) and Content Security Policy (CSP)
[20] protocols, as illustrated in Listing 1.1.

Listing 1.1. Protecting TLS-protected sites via HSTS and CSP

1 St r i c t−Transport−Secur i ty : max−age=86400; includeSubDomains
2 Content−Secur i ty−Pol i cy : de fau l t−s r c https : ; \
3 s c r i p t−s r c https : ‘ unsafe−i n l i n e ’ ; \
4 s ty l e−s r c https : ‘ unsafe−i n l i n e ’

First, HSTS can be used to guarantee that webpages are only served over
HTTPS by forcing a compliant browser to only issue HTTPS requests for that
website (line 1). By enforcing the HSTS policy, it can prevent SSL-stripping
attacks [16]. Second, CSP can be used to detect mixed content violations (in
report-only mode), and to actively block mixed content by specifying that only
secure resources are allowed to be included (line 2). Notice that in this example
the unsafe-inline directives are added to preserve temporary compatibility (lines
3−4), but website owners are encouraged to fully embrace the CSP technology
so that they achieve full protection and no longer need these unsafe directives.

6.3 Resource Providers

Resource providers can also mitigate the mixed content issue by offering content
over HTTPS (even only over HTTPS). Moreover, resource provider can also use
HSTS to migrate non-HTTPS resources automatically and secure to HTTPS
version. Notice, however, that not all browsers have support for HSTS policies
(e.g., IE 10 and Safari 6), and that HSTS inherently has a bootstrapping prob-
lem during a browser’s very first visit to an HSTS website. During this first
request, an active network attacker can strip the HSTS header and circumvent
this protection technique.
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7 Related Work

To the best of our knowledge, this paper is the first that attempts to system-
atically discover the current state of practice of mixed content and uncover the
various types of mixed-content inclusions and how they could be used to attack
users and services.

While HTTPS is widely used for securing web communications, many attacks
on HTTPS have been reported over the years [13]. Apart from the exploit of
cryptographic weaknesses and design flaws in the SSL and TLS protocols, e.g.,
CRIME [19] and Lucky 13 [10], the incorrect adoption and configuration of
HTTPS by websites, may also allow attackers to bypass HTTPS. For example,
websites not using an HSTS policy are vulnerable to SSL-Stripping attacks [16].
According to the latest surveys of August 2013, about 76 % of HTTPS websites
have security issues with their SSL implementations [5].

Web browsers also play an important role in web security, since they can auto-
matically handle many sensitive, HTTPS security decisions, and provide security
indicators through their user interfaces. While, in the last few years, desktop
browsers, in response to various attacks like XSS and CSRF, have been sub-
stantially hardened, mobile browsers have unfortunately not caught up. Mobile
browsers, when compared to desktop browsers, have less support for displaying
HTTPS connection details, and for the warning about mixed content [11].

8 Conclusion

When migrating to HTTPS, many websites fail to fully update their applica-
tions, resulting in mixed-content inclusion, which can render the HTTPS pro-
tection useless. In this paper, we show that there is a considerable number of
TLS-protected websites that currently have mixed content. We also observed
that, while the desktop browsers are catching up to mitigate this issue, most
mobile browsers do not have protections against mixed content yet, despite the
increasing popularity of mobile devices. Since users are entering into the “Post-
PC era”, i.e., prefering mobile devices for regular Internet browsing and even
for sensitive online transactions, it is important for mobile browsers to develop a
mixed-content blocker, as several desktop browsers have already done. To handle
this transitory phase, we investigated and reported the best practices for web-
sites owners and content providers which can be used to counter the issue and
protect their users against MITM attacks.
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Abstract. Ordered multisignatures are digital signatures which allow
multiple signers to guarantee the signing order as well as the validity of
a message, and thus are useful for constructing secure routing protocols.
Although one of approaches to constructing the ordered multisignatures
is to utilize aggregate signatures, there is no known scheme which is
provably secure without using aggregate signatures under a reasonable
complexity assumption in the standard model. In this paper we pro-
pose a provably secure ordered multisignature scheme under the CDH
assumption in the standard model from scratch. Our proposed scheme
has a positive property that the data size of signatures and the number
of computations of bilinear maps are fixed with respect to the number
of signers and the message length.

1 Introduction

1.1 Motivation

The current Internet design aims to provide high security for routing proto-
cols without decreasing availability. A main approach to providing such a capa-
bility is to apply cryptography to the routing protocols. For instance, secure-
border gateway protocol (S-BGP) [11] and border gateway protocol security
(BGPSEC) [13] are inter-domain routing protocols with digital signatures where
each autonomous system (AS) signs its own path information. These protocols
can prevent route hijacking by virtue of the digital signatures, and is currently
under consideration for standardization by IETF. Whereas cryptographic tools
are expected to drastically improve security of network systems, they increase
processing costs of the systems. Indeed, there are 36,000 ASes in the Internet [5],
and in such a large scale network the cryptographic tools often cause a large
amount of loads to AS routers. In fact, the deployment of the above technologies
have been prevented due to the cost of ballooning memory of the routers [18]. A
cryptographic primitive to overcome such an overloading problem is a multisig-
nature scheme [9] where n signers sign a message and generate a single short
signature instead of n individual signatures. This primitive is suitable for devices
with low computational power and small storage such as routers.
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 367–377, 2015.
DOI: 10.1007/978-3-319-27659-5 26
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Table 1. Evaluation of the schemes: We denote by n the number of signers, by � the
message length, by P the computational cost of one bilinear map, by E the computa-
tional cost of one exponentiation, by H the computational cost of one map-to-point,
by L(p) the binary length of p, by k the security parameter, and by ROM the random
oracle model. Typical values for these parameters are L(p) = 176 on a symmetric pair-
ing for 80-bit security, � = 176, and n = 20. With Type A curve in PBC library [15],
the cost per one P is 2.2078 msec, the cost per one E is 2.5591 msec and the cost per
one H is 5.8960 msec.

Schemes Computational Computational Signature Public key Proof model

cost for i-th Signer cost for verifier size size

BGOY07 [3] (i + 4)E +H 3P + nE +H 2L(p) 3L(p) ROM

LOSSW06 [14] 5E 3P 2L(p) (� + 2)L(p) Standard

AGH10 [1] (� + 5)E (� + 3)P + 2E 2L(p) + k L(p) Standard

Our scheme (i + 4)E 4P + nE 3L(p) 3L(p) Standard

Ordered multisignatures [6] enjoy such efficiency improvement of multisigna-
tures [9] and also guarantee the signing order. They are suitable for the border
gateway protocol with data-plane security [7], which guarantees not only the
validity of path information but also packet forwardings through the path. The
existing provably secure ordered multisignature schemes [1,14] require a large
memory and there is no practical scheme whose security is proven under only
standard assumptions.

1.2 Our Contribution

We propose an efficient and provably secure ordered multisignature scheme under
only the standard assumptions, i.e., under the CDH assumption and without the
random oracles. Our scheme is more efficient than the existing schemes in the
sense that the number of elements of public keys and the number of computations
of bilinear maps, whose cost is heavy, are independent of the message length.
Although several parts of the computations depend on the number of signers, it is
quite less than the message length in a practical scenario. According to Kanaoka
et al. [10], a distance between any two ASes can be fully covered by 20 hops.
Thus, the number of signers of ordered multisignatures for routing security is at
most 20 while the message length is at least 160 for 80-bit security. Hence, our
scheme is efficient in the practical scenario: more specifically, the computational
time of the proposed scheme is always less than one-tenth of that of the AGH10
scheme, and the memory size of routers is one percent of that of the LOSSW06
scheme.

The efficiency of our proposed scheme is achieved by eliminating the use
of aggregate signatures [4], which are generalized multisignatures allowing each
signer to sign an individual document. While any aggregate signature scheme
gives rise to an ordered multisignature scheme [3], the existing aggregate sig-
nature schemes [1,14] under the CDH assumption in the standard model are
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inefficient. In this work, we construct an ordered multisignature scheme from
scratch, i.e., without the aggregate signatures.

As described in Sect. 3, according to Boldyreva et al. [3], the BGOY07
scheme [3] based on the random oracle cannot be proven secure in the stan-
dard model even by introducing the Waters hash function [19]. In order to over-
come this problem, we utilize two techniques, i.e., dual re-randomization and full
aggregation. Intuitively, these techniques allow one to assign individual random
numbers to each component of ordered multisignatures and re-ranzomize them.
They do not contradict the claim by Boldyreva et al., and we can prove the
security in an improved approach.

1.3 Related Work

The first multisignature scheme was proposed by Itakura and Nakamura [9], and
the security was formalized by Ohta and Okamoto [17] and Micali et al. [16]. The
first ordered multisignature scheme was proposed by Doi et al. [6] and, to the
best of our knowledge, the existing scheme with provable security is given in [3],
called the BGOY07 scheme. As described in Sect. 1, the BGOY07 scheme has
been proposed in the random oracle model. Meanwhile, a provably secure ordered
multisignature scheme can be derived from an aggregate signature scheme in a
straightforward way as follows. Each signer signs a concatenation of a common
message and a signing list from the first signer to the current signer. To the best of
our knowledge, there are two aggregate-signature-based schemes, i.e., the AGH10
scheme [1] and the LOSSW06 scheme [14], based on the CDH problem without
the random oracles. However, as shown in Table 1, the number of computations
of the bilinear maps in the AGH10 scheme [1] and the number of elements of the
public key in the LOSSW06 scheme [14] are linear in the message length, more
precisely, the length of a hash digest of a message, which is quite large. Thus,
these schemes are impractical for routers.

As the latest results, Lee et al. [12] proposed a sequential aggregate signa-
ture scheme under a reasonable assumption without the random oracles via the
dual system methodology [20]. Hohemberger et al. [8] proposed full-domain hash
signatures. Ordered multisignatures in the standard model can be obtained via
these results. These constructions are elegant in the standpoint of cryptographic
theory, but are impractical due to the use of multilinear maps or a stronger secu-
rity assumption. In contrast, our goal is to construct a practical scheme under
the CDH assumption in the standard model.

2 Preliminaries

Notations: Let the number of signers be n. We denote by m a message to be
signed, by mi the ith bit of the message m, by σi a signature generated by an
ith signer, by pki a public key of the ith signer and by ski its corresponding
secret key, by ⊥ an error symbol, and by a ‖ b a concatenation of any elements a
and b, where the concatenation can be divided into the original elements a and
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b. We define ψi := pk1 ‖ · · · ‖ pki to be the signing order from the first signer to
ith signer where ψ0 := ∅, and denote by |ψi| the number of signers in ψi.

Security Assumption: Let G and GT be groups with the same prime order
p. We then define bilinear maps, bilinear groups and the CDH assumption in a
bilinear group as follows:

Definition 1 (Bilinear Maps). A bilinear map e : G×G → GT is a map such
that the following conditions hold, where g is a generator of G: (Bilinearity) For
all u, v ∈ G and a, b ∈ Z

∗
p, e(ua, vb) = e(u, v)ab; (Non-degeneracy) For any gen-

erator g ∈ G, e(g, g) �= 1GT
, 1GT

is an identity element over GT ; (Computable)
There is an efficient algorithm to compute e(u, v) for any u, v ∈ G.

In this paper, we say that G is a bilinear group if all these conditions hold, and
we assume that the discrete logarithm problem (DLP) in the bilinear groups is
hard. We call the parameter (p,G,GT , e) pairing parameter.

Definition 2 ((t, ε)-CDH Assumption in G). We define the CDH problem in
a bilinear group G with a security parameter 1k as follows: for a given (g, ga, gb) ∈
G with uniformly random (a, b) ∈ Zp and a pairing parameter (p,G,GT , e) as
input, compute gab ∈ G. We say the (t, ε)-CDH assumption holds in G if there
is no probabilistic polynomial-time algorithm which can solve the CDH problem
in G with an execution time t with a probability greater than ε.

3 Ordered Multisignatures

In this section, we define a syntax of an ordered multisignature scheme and
its security. Ordered multisignatures are a natural extension of multisignatures
where signatures guarantee not only messages but also the signing order. Its
signing procedure is not interactive but sequential among a group of signers. A
case that multiple signers sign in parallel is out of the scope of this primitive.

3.1 The Syntax

An ordered multisignature scheme consists of the following algorithms.

Setup: Given security parameter 1k, generate a public parameter para.

Key Generation: Given para, generate a secret key ski and its corresponding
public key pki.

Signing: Given ski, pki, a message m, a signing order ψi−1 and a multisignature
σ′, generate a signature σ. If any problem occur, output an error symbol ⊥.
Otherwise, output σ.

Verification: Given m, σ, ψn and {pki}n
i=1, output accept or reject.

(Correctness). The correctness of the ordered multisignature scheme is defined
as follows. In an ordered multisignature scheme, we say that the scheme is
correct if, for all para, ski and pki given by Setup and Key Generation,
Verification(m, Signing (ski, pki,m, σ′, ψi−1), ψi, {pkj}i

j=1) outputs accept.
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3.2 Security Model

A security model in this paper deals with a more generic forgery in comparison
with the security model in [21]. In the model, there exist an adversary A and a
challenger C. Our model is a variant of the certified key model [2]. The certified
key model assumes that each signer knows a secret key corresponding to its own
public key. C has a list L of certified keys that is used to certify users’ own
public keys. A can know all secret keys corresponding to public keys included in
L except for the one given by C to a target signer. A’s advantage is defined as a
probability that C outputs accept in the following game. Similarly as the existing
model of ordered multisignatures [3], our security model guarantees authenticity
of a message signed by an honest signer and its position i in a signing group,
but not which signers signed before or will sign after the i-th signer. Namely,
we do not consider switching of the positions among colluding malicious signers.
According to [3], this setting seems to be acceptable in the application described
in [7]. Hereinafter, we denote by x(i) the value of the ith query for all x. C
interacts with A as follows:

Initial Phase: Generate a public parameter para by Setup and a pair of chal-
lenger keys (sk∗, pk∗) by using Key Generation. Then, register pk∗ in L, and
run A with para and pk∗ as input.

Certification Query: Given (ski, pki) by A, check if ski is a secret key corre-
sponding to pki, and then register pki in L if so. Otherwise, return ⊥.

Signing Query: Given a signing query (m(h), σ′, pk∗, ψi(h)−1) by A of the chal-
lenge key for all i ∈ [1, n], check if the following conditions hold: Verification
algorithm outputs accept; ψi(h)−1 does not include pk∗; for j = [1, i − 1], pkj in
ψi(h)−1 is registered in L; |ψi(h)−1| < n. If all the conditions hold, via Signing
(sk∗, pk∗,m(h), σ′, ψi(h)), return σ. Otherwise, return ⊥.

Output: After iterating over the above steps, A outputs a forgery (m∗, σ∗, ψ∗
n),

where let the signer with pk∗ be the i∗th signer in ψ∗
n and n be the number of

signers. Check if the following conditions hold for the given forgery: Verifica-
tion(m∗, σ∗, ψ∗

n, {pki}n
i=1) outputs accept; (m∗, i∗) /∈ {(m(h), i(h))}qs

h=1 holds; ψ∗
n

includes pk∗; for j = [1, n], pkj in ψ∗
n is included in L. If all these conditions

hold, then output accept. Otherwise, output reject.

Definition 3. We say that an adversary A breaks an ordered multisignature
scheme with (t, qc, qs, �, n, ε) if a challenger C outputs accept in the security game
described above within an execution time t and with a probability greater than
ε. Here, A can generate at most qc certification queries and at most qs signing
queries, � is the length of a message, and n is the number of signers.

3.3 Technical Problem

Boldyreva et al. [3] proposed the CDH-based ordered multisignature scheme in
the random oracle model, and one might think that an ordered multisignature
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scheme without random oracles can be constructed from their scheme. However,
according to [3], if the Waters multisignature scheme [14] is substituted for a
part of the random oracle in their ordered multisignature scheme, the approach
to proving the security no longer seems to work. More specifically, a reduction
algorithm without the random oracles requires a new component including ran-
dom numbers in order to simulate the signing oracle while a reduction algorithm
with the random oracles does not require it. Here, we note that ordered mul-
tisignatures contains two components, i.e., a message and the signing order. If
a random number included in a signature is re-utilized in the other component
in order to reduce the signature size, then the reduction algorithm has to com-
pute with the random number, which is unknown for the algorithm. Namely,
the simulation becomes unworkable due to interference by the unknown random
number. An approach to overcoming this problem is to compress a signature
component into a single one by utilizing aggregate signatures. Intuitively, the
approach allows the reduction algorithm to avoid the interference of the random
number. However, the aggregate signatures bring a degradation of the efficiency.
Thus, we have to solve the problem without the aggregate signatures.

4 Proposed Scheme

We propose an ordered multisignature scheme. First, we describe our approach
to overcoming the problem in Sect. 3.3, and then describe a construction. We
assume that there exists a trusted center to generate a public parameter.

4.1 Our Strategy

Our main strategy is to utilize two properties, called dual re-randomization and
full aggregation. The proofs in [3,21] are based on the re-randomization tech-
nique. Our idea is to separate an algebraic structure of the signatures into three
components, i.e., secret keys, a message and the signing order, and to give an
individual secret value to each component in order to dually execute the re-
randomization. We call this technique the dual re-randomization. The schemes
in [3,21] deal with only two secret values, and so the interference occurs. In
contrast, our scheme deals with three components, and the re-randomization
for each component is executed individually. In this strategy, while the signing
oracle can be simulated as long as either of the components is re-randomizable,
the other random number is not affected by the random number simulating the
oracle. In other words, our proof can be considered as simulations of standard
signatures in a dual way, and we can avoid the interference.

Meanwhile, another important property, the full aggregation (of random
numbers), is a property such that the size of random parts in the signatures
is independent of the number of signers. The full aggregation provides the effi-
ciency and also makes reduction cost smaller. In particular, even if the dual
re-randomization is executable, the reduction algorithm has to execute its reduc-
tion mechanism for each random number unless achieving the full aggregation.
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This implies that the efficiency of the security reduction is degraded by the
exponential order with respect to the number of the signers. In other words, by
compressing the random numbers as small as possible, a perspective of the proof
with multiple signers comes closer to a proof of standard signatures for a single
signer, and thus the security can be proven.

4.2 The Construction

A message m will be dealt with a bit-string {0, 1}� for all �. We can let the �-bit
string be the output of a collision-resistant hash functions H : {0, 1}∗ → {0, 1}�.

Setup: Given 1k, generate a pairing parameter (p,G,GT , e), random generators
g1, g2 ∈ G and � + 1 generators (u′, u1, · · · , u�) ∈ G

�+1. Output (p,G,GT , e , g1,
g2, u

′, u1, · · · , u�) as a public parameter para.

Key Generation: Given (p,G,GT , e , g, u′, u1, · · · , u�), choose random numbers
αi, ti, vi ← Z

∗
p, and set Ai = gαi

1 , Ti = gti
1 and Vi = gvi

1 . Output (gαi
2 , ti, vi) as a

secret key ski and (Ai, Ti, Vi) as its corresponding public key pki.

Signing: Given (ski, pki,m, σ′, ψi−1), parse m as �-bit strings (m1, · · · ,m�) ∈
{0, 1}�, σ′ as (Si−1, Ri−1,Wi−1) and ψi−1 as a set {pkj}j∈[1,i−1] of public keys,
where pki = (Ai, Ti, Vi) for all i. If i = 1, i.e., for the first signer in the sign-
ing group, then set (Si−1, Ri−1,Wi−1) = (1, 1, 1) and {pkj}j∈[1,i−1] = ∅ and
the following verification step is skipped. Next, check that ψi−1 includes pki.
If so, output ⊥. Otherwise, verify that the received signature σ′ is accepted
on m in ψi−1 by using Verification for n = i − 1. If Verification outputs
reject, abort the process and output ⊥. Otherwise, generate random numbers
(ri, wi) ← Z

∗
p and compute as follows: Ri = Ri−1 · gri

1 ,Wi = Wi−1 · gwi
1 , and

Si = Si−1 · gαi
2

(
u′ ∏�

j=1 u
mj

j

)ri

W iti+vi
i

(∏
l∈[1,i−1] T

l
l Vl

)wi

. Finally, output m,
σ = (Si, Ri,Wi).

Verification: Given (m,σ, ψn, {pki}n
i=1), parse m as an �-bit string

(m1, · · · ,m�) ∈ {0, 1}�, σ as (Sn, Rn,Wn), and extract each signer’s public key
(Ai, Ti, Vi) from {pki}n

i=1. Then, check that all of {pki}n
i=1 are distinct, and

output reject if not. Otherwise, verify that the following equation holds:

e(Sn, g1)
?= e

(

g2,

n∏

i=1

Ai

)

e

⎛

⎝Rn, u′
�∏

j=1

u
mj

j

⎞

⎠ e

(

Wn,

n∏

i=1

T i
i Vi

)

.

If not, output reject. Otherwise, output accept.

4.3 Security Analysis

Theorem 4. The proposed scheme is the (t, qc, qs, �, n, ε)-secure if (t′, ε′)-CDH
assumption in G holds, where t′ = t+(2qc +nqs +n)te, ε′ = ε

16e(�+1)qs(qs+1) , te is
the computational cost for one exponentiation and e is base of natural logarithm.
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Proof. We assume that there exists an adversary A who breaks the proposed
scheme with (t, qc, qs, �, n, ε). Then, we build an algorithm B that solves the
CDH problem. In this proof, without the loss of generality, there exists exactly
one signer, the target signer, who corresponds to a challenge key. B has the list
L of certified-keys. B interacts with A as follows:

Initial Phase: Given a CDH challenge value (g, ga, gb) and a pairing parameter
(p,G,GT , e), B sets L = ∅, d = 4qs, g1 = g and g2 = gb. Then, B chooses
s ← {0, · · · , �}, �-length vectors x i ← Z

�
d and yi ← Z

�
p, x′ ← Zd, and y′ ← Zp.

Here, we define polynomials F (m) = (p − ds) + x′ +
∑�

i=1 ximi and J(m) =
y′ +

∑�
i=1 yimi. B also sets u′ = g′p−ds+x′

2 gy′
1 and ui = g′xi

2 gyi

1 as the public
parameter, i.e., u′ ∏�

j=1 u
mj

j = g
F (m)
2 gJ(m). Then, B generates a random number

k∗ ← [1, n] where n is the number of signers for A’s capability, and (t∗, v∗) ← Zp.
Finally, B sets T ∗ = (ga)t∗

, V ∗ = (ga)−t∗k∗
gv∗

, and A∗ = ga as the public key
of the target signer. This means that B implicitly sets ab as the target signer’s
secret key. Then, B runs A with (p,G,GT , e , g1, g2, u

′, u1, · · · , u�, Ai, Ti, Vi).

Certification Query: For any signer, given ski = (gαi
2 , ti, vi) and pk =

(Ai, Ti, Vi) by A, B checks if e(gαi
2 , g1) = e(g2, Ai), Vi = gvi

1 , and Ti = gti
1

hold. If these equations hold, pki is registered in L. Otherwise, the output is ⊥.

Signing Query: Given a signing query (pk∗,m(h), ψi(h)−1, σ
′), B checks if

F (m(h)) �= 0 ∨ i(h) �= k∗ holds where i(h) is a position of the target signer
for hth query, and aborts the process if the condition does not hold. Otherwise,
B generates (r, w) ← Zp and computes either one of the following cases:

(Case 1). F (m(h)) �= 0: Compute Ri(h) = gr(ga)
− 1

F (m(h)) , Wi(h) = gw, and

Si(h) = (ga)
− J(m(h))

F (m(h))

(
u′ ∏�

j=1 u
mj

j

)r (∏i(h)

l=1(T
l
l Vl)

)w

g

∑

l∈[1,i(h)−1]
αl

2 .
From Initial Phase, this (Si, Ri,Wi) is accepted as follows:

Si(h) = gab
(
(gb)F (m(h))gJ(m(h))

)− a

F (m(h))

⎛

⎝u′
�∏

j=1

u
mj

j

⎞

⎠
r⎛

⎝
i(h)∏

l=1

T l
l Vl

⎞

⎠
w

g

∑

l∈[1,i(h)−1]
αl

2

= g
a+
∑

l∈[1,i(h)−1]
αl

2

⎛

⎝u′
�∏

j=1

u
mj

j

⎞

⎠
r− a

F (m(h))
⎛

⎝
i(h)∏

l=1

T l
l Vl

⎞

⎠
w

.

(Case 2). F (m(h)) = 0 ∧ i(h) �= k∗: Compute Ri(h) = gr,Wi(h) = gw

(gb)
− 1

t∗(i(h)−k∗) ,

Si(h) = (gb)
− v∗

t∗(i(h)−k∗)

(
(ga)i(h)t∗

(ga)−t∗k∗
gv∗)w

⎛

⎝u′
�∏

j=1

u
mj

j

⎞

⎠

r

×(Wi(h))
∑

l∈[1,i(h)−1]
(ltl+vl)g

∑

l∈[1,i(h)−1]
αl

2 .

From Initial Phase, this (Si, Ri,Wi) is accepted as follows:
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Si(h) = gabg
−ab

t∗(i(h)−k∗)

t∗(i(h)−k∗) (gb)
− v∗

t∗(i(h)−k∗)

(
(ga)i(h)t∗

(ga)−t∗k∗
gv∗)w

×
⎛

⎝u′
�∏

j=1

u
mj

j

⎞

⎠

r

(Wi(h))
∑

l∈[1,i(h)−1]
ltl+vlg

∑

l∈[1,i(h)−1]
αl

2

= g
a+
∑

l∈[1,i(h)−1]
αl

2

⎛

⎝u′
�∏

j=1

u
mj

j

⎞

⎠

r ⎛

⎝
i(h)
∏

l=1

T l
l Vl

⎞

⎠

w− b

t∗(i(h)−k∗)

.

Output: After iterating over the steps described above, A outputs a forgery
σ∗ = (S∗

n, R∗
n,W ∗

n) on a message m∗ in the signing order ψ∗
n. If F (m∗) �= 0 ∨

i∗ �= k∗ holds in the forgery output by A where i∗ is the position of the target
signer, then B aborts. Otherwise, B can solve the CDH problem as follows. If
the verification equation holds holds, then S∗ can be written as follows:

S∗ = g
a+
∑n

i=1∧i�=i∗ αi

2

(
(gb)F (m∗)gJ(m∗)

)r

⎛

⎝(ga)t∗(i∗−k∗)gv∗
n∏

i=1∧i�=i∗
T i

i Vi

⎞

⎠

w

= g
a+
∑n

i=1∧i�=i∗ αi

2

(
gJ(m∗)

)r

⎛

⎝gv∗
n∏

i=1∧i�=i∗
T i

i Vi

⎞

⎠

w

.

∴ gab =
S∗

g
∑n

j=1∧j �=i∗ αj

2 (R∗)J(m∗)(W ∗)v∗+
∑n

i=1∧i�=i∗ (iti+vi)
.

B knows all the secret values except for ab and so can compute the above values.
If B’s guess is correct, B can solve the CDH problem. Therefore, the probability is
given as ε′ ≥ ε ·Pr [E1] Pr [E2], where E1 =

[(∧qs
h=1 F (m(h)) �= 0

) ∧ F (m∗) = 0
]
,

E2 =
[∧qs

h=1

(
i(h) �= k∗) ∧ i∗ = k∗] and i(h) is the position of the target signer for

the signing queries. E1 is analyzed in a manner similar to the proof in [19], and E2

is analyzed in a manner similar to the proof in [3]. Therefore, Pr [E1] = 1
16qs(�+1)

and Pr [E2] = 1
e(qs+1) . Thus, the probability is ε′ = ε

16e(�+1)qs(qs+1) . Additionally,
the execution time of B is that of A plus two exponentiation computations for
Certification Query, n exponentiation computations for Signing Query for
qs times, and n exponentiations for the final step. Therefore, t′ = t+(2qc +nqs +
n)te holds, where te is the computational time for one exponentiation. �
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Abstract. Random number generators have direct applications in infor-
mation security, online gaming, gambling, and computer science in gen-
eral. True random number generators need an entropy source which is
a physical source with inherent uncertainty, to ensure unpredictability
of the output. In this paper we propose a new indirect approach to col-
lecting entropy using human errors in the game play of a user against
a computer. We argue that these errors are due to a large set of fac-
tors and provide a good source of randomness. To show the viability of
this proposal, we design and implement a game, conduct a user study in
which we collect user input in the game, and extract randomness from
it. We measure the rate and the quality of the resulting randomness that
clearly show effectiveness of the approach. Our work opens a new direc-
tion for construction of entropy sources that can be incorporated into a
large class of video games.

1 Introduction

Randomness has a central role in computer science and in particular information
security. Security of cryptographic algorithms and protocols relies on keys that
must be random. Random coins used in randomized encryption and authentica-
tion algorithms and values such as nonces in protocols, must be unpredictable. In
all these cases, unpredictability of random values is crucial for security proofs.
There are also applications such as online games, gambling applications and
lotteries in which unpredictability is a critical requirement.

Poor choices of randomness in the past have resulted in complete break-
down of security and expected functionality of the system. Early reported exam-
ples of bad choices of randomness resulting in security failure include attack on
Netscape implementation of the SSL protocol [GW96] and weakness of entropy
collection in Linux Pseudo-Random Generator [GPR06]. A more recent high pro-
file reported case was the discovery of collisions among secret (and public) keys
generated by individuals around the world [LHA+12,HDWH12]. Further studies
attributed the phenomenon partly due to the flaw in Linux kernel randomness
generation subsystem.

In computer systems, true randomness is commonly generated by sampling a
complex external source such as disk accesses or time intervals between system
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interrupts, or is from users’ inputs. Importance of true randomness in com-
puter systems has been well recognized and operating systems such as Linux
and Windows have dedicated subsystems for entropy collection and randomness
generation. These subsystems use internal system interrupts as well as user gen-
erated events as entropy source. High demand on entropy pools, for example
when a computer runs multiple processes and algorithms that require random-
ness at the same time, can result in either pseudorandom values instead of truly
random values, or stopping the execution until sufficient randomness become
available.

The rate of randomness generation can be increased by including new sources
of randomness which in many cased requires new hardware. An attractive alter-
native that does not require additional hardware is to use human assistance in
randomness generation. This can be by directly asking human to input random
numbers or move the mouse randomly [ZLwW+09]. The process is unintuitive
and experiments in psychology have shown that the resulting randomness has
bias [Wag72].

In this paper, we propose a novel indirect approach to entropy collection
from human input in game play that uses games as a targeted activity that the
human engages in, and as a by product generates random values. Video games
are one of the most widely used computer applications and embedding entropy
collection in a large class of such games provides a rich source of entropy for
computer systems.

1.1 Our Work

Our main observation is that human, even if highly skilled, would not be able to
have perfect game play in video games because of a large set of factors related
to human cognitive processes and motor skill and coordination, limitations of
computer interface including display, keyboard and mouse, and unpredictability
elements in the game. The combination of these factors in well designed games
results in the player “missing” the target in the game where although the goal
may appear simple, achieving it is not always possible.

We propose to use the error resulting from the confluence of the complex
factors outlined above, as an entropy source. The unpredictability in the output
of this source is inherent in the game design: that is a game that always results
in win or loose is not “interesting” and will not be designed. In contrast games in
which the user can “loose” a good portion of rounds are considered interesting.
In a human game play randomness can be collected from different variables in
the game, including the timing of different actions, the size of the “miss” as well
as variables recording aspects of the human input such as angle of a shot, and
so in each round, even when the user wins, a good amount of entropy can be
generated.

Related Work. Halprin et al. [HN09] proposed to use human input in a game
played against a computer as an entropy source. Their work was inspired by
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Rapport et al.’s [RB92] experiments in psychology that showed a human playing
a competitive zero-sum game with uniform optimal strategy, generates better
randomness compared to the case that they are directly instructed to supply
random inputs. Halprin et al. used an expanded version (larger input set) of the
game and replaced one of the users by the computer. The underlying assumption
in this approach is that the human sequence of actions, when engaged in a game
with uniform optimal strategy, simulates the game optimal strategy and so can be
used as a uniform source of randomness. For the choices of human to be close to
random, Psychological results require that human is presented with few choices,
otherwise the human will tend to select certain choices with more probability.
So Alimomeni et al. [ASNS14] proposed a game design along the above game-
theoretic approach in which human had only 3 choices and the randomness
extraction was done as part of the game design with no need for seed. They
showed that this design still keep the rate of min-entropy high because of the
added extractor in the game that needs no randomness.

The above approaches are fundamentally different from the approach in this
paper that uses the complexity of the process of generation of human input in
the game, as the entropy source. Our approach is more in the spirit of sampling a
complex process such as disk access, now using human and computer interaction
as the complex process.

To use Halrin et al.’s approach in practice, one needs to design a two-party
game with the supporting game-theoretic analysis to show the optimal strategy
is uniform. The next step is to convert the game into an interesting game between
the human and computer and validate that human would play as expected (is
able to simulate the optimal strategy). In contrast our approach can be easily
incorporated into video games such as target shooting games and does not need
new game designs.

Implementation. As a proof of concept we designed and implemented a multi-
level archery game, collected user inputs in the game and extracted randomness
from the collected inputs.

Our results clearly show that error variables, for example the distance
between the target and the trajectory of the arrow, provides a very good source
of entropy. The experiments show that the game can generate 15 to 21.5 bits
of min-entropy per user shot using only the error variable. The variation in the
amount of min-entropy is due to the variations in the game level and also vary-
ing levels of skill and learnability of users. Our experiments demonstrate that
although entropy decreases as players become more experienced, but the entropy
of the error variable will stay non-zero and even for the most experienced player
at the lowest level of the game, 15 bits entropy per shot can be expected.

1.2 Applications

Game Consoles and Smart Phones. Game consoles require true randomness
for secure communication with the game servers, checking the digitally signed
games and firmware updates from the server and to provide randomness to
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the games that is played. Lack of good random generation subsystems in these
consoles may result in attacks such as reported in [Hot10]. Incorporating our
approach into the video games played in such consoles would provide a method
of generating randomness with high rate and verifiable properties. Our approach
also provides an ideal entropy source for small devices such as smart phones that
are used for gaming and have limited source of entropy.

On-demand RNG in OS. An immediate application of our proposal is to
provide on-demand entropy source for OS random number generation module.
In softwares such as PGP, Openssl, and GnuPG that need generation of cryp-
tographic keys, using true randomness is critical. Such applications rely on the
random number generation of the OS which may not have true randomness
available at the time of the request. Our proposed entropy source can be used
for entropy collection from users by asking them to play a simple game. Our
experiments showed that producing 100 bits of entropy required 6 runs of the
game, making the approach an effective solution in these situations.

Contributory Random Number Generation. In virtualized environments,
multiple users share the same hardware (including CPU and RAM) and so the
entropy pools of different users share a substantial amount of entropy produced
by the system’s shared hardware, resulting in the risk of dependence between
entropy pools of different users. This is an important concern if the resulting ran-
domness is used for key generation, potentially leading to attacks such as those
reported in [HDWH12]. Using users’ game play provides a source of randomness
that is independent from the underlying hardware and other users’ randomness.

2 Preliminaries

We will use the following notations. Random variables are denoted by capital
letters, such as X. A random variable X is defined over a set X with a proba-
bility distribution PrX , meaning that X takes the value x ∈ X with probability
PrX(x) = Pr[X = x]. Uniform distribution over a set X is denoted by UX . Min-
entropy of a source is a worst case measure and represents the best chance of
the adversary in predicting the output of an entropy source. The min-entropy
H∞(X) of a random variable X is given by, H∞(X) = − log2 maxx PrX(x).
Statistical distance measures closeness of distributions and is used to mea-
sure closeness of the output of an entropy source to that of a perfect entropy
source. The statistical distance Δ(X,Y ) between two random variables X and
Y over the same range A, is given by Δ(X,Y ) = 1

2

∑
a∈A |PrX(a) − PrY (a)|.

If Δ(X,UX ) ≤ ε, then we say X is ε-biased or ε-close to uniform. We say X
is almost truly random if X is ε-biased for a sufficiently small ε. A sequence
of random variables {Xi}n

i=1 is called an almost truly random sequence, if
{Xi|Xi−1 = xi−1, . . . , X1 = x1}n

i=1 is ε-biased. An entropy source is a gener-
ator of sequences of symbols {xi}n

i=1 each sampled from a random variable Xi,
where all Xi are defined over a finite set X . It is important to note that output
symbols of an entropy source may be correlated and not necessarily have the
same distribution.
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2.1 True Random Number Generators (TRNG)

A TRNG has two components: (1) An entropy source that generates possibly
biased and dependent sequence of random numbers. This in practice is by reading
the output of a physical source such as a lava lamp [C71], sampling a complex
process such as disk access in a computer system, or sampling user’s input.
This sequence can be further sampled and quantized; and (2) A function that
is applied to the output of the first step, resulting in an almost truly random
sequence that removes the biases and dependencies among symbols of the input.
The aim of a TRNG is to generate an almost truly random sequence. The close-
ness to a true random sequence is measured using statistical distance. The rate
of a TRNG that uses human as the entropy source is the number of random
output bits per user action. A commonly used functions in the last step of a
TRNG are extractors, briefly recalled below.
Randomness Extractor. A randomness extractor [NZ96] is a function that
transforms an entropy source X with non-uniform distribution to an almost truly
random source Y , i.e. Δ(ext(X), UY) ≤ ε However, there exists no deterministic
extractor that can extract from more general sources, i.e. sources with min-
entropy k. But by adding a random seed of logarithmic length, there exists
extractor that can extract from sources with min-entropy k. The extractor seed
needs a source of true randomness that may not be available in practice. More
details about randomness extractor can be found in the full version of the paper
[ASN14].
Barak et al. Framework. In [BST03], Barak et al. proposed a framework
for randomness extraction with guaranteed statistical property for the output
with no need for seed. The motivation of this work is to extract randomness for
cryptographic applications where the adversary may influence the output of the
entropy source. The adversary’s influence is modeled by a class of 2t possible
distributions generated by the source. They proposed a randomness extractor
with provable output properties (in terms of statistical distance) for sources that
have sufficient min-entropy while the output source symbols may be correlated.
The extraction uses t-resilient extractor which can extract from 2t distributions
(selected adversarially), all having min-entropy k. Certain hash functions are
good t-resilient extractors.

Theorem 1 [BST03]. For every n, k,m and ε and l ≥ 2, an l-wise independent
hash function with a seed of length l is a t-resilient extractor, where t = l

2
(k − m − 2 log2(

1
ε ) − log2(l) + 2) − m − 2 − log2(

1
ε ).

An l-wise independent family of hash functions can be constructed using a poly-
nomial hs(x) =

∑
1≤i≤l aix

i−1 of degree l over the finite field GF (2n), where
s = (a1, . . . , al) is the seed of the extractor and x ∈ GF (2n) is the n-bit input.

The t-resilient extractors in Barak et. al’s approach reuses a truly random
seed that is hardwired into the system (e.g. at manufacturing time) and does
not need new randomness for every extraction. Although extractors enjoy sound
mathematical foundations, in practice the output of entropy sources are mostly
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processed using hash functions with computational assumptions and so extrac-
tors have not been widely implemented in hardware or software. In this paper
we follow the framework of Barak et al.

3 Randomness from User Errors

Consider a computer game in which the player aims to hit a target, and wins
if the projectile “hits” the target. There are many factors that contribute to
the user missing the target even if they play their “best”, making the game
result uncertain. We propose to use the uncertainty in the game’s result as the
entropy source. Assuming a human is engaged in the game and plays their best,
the uncertainty in the result will be due to a large set of factors including, (1)
limitations of human cognitive and motor skill to correctly estimate values, and
calculate the best response values, (2) limitation of input devices for inputing
the best values when they are known, for example limitation of a mouse in
pointing an arrow in a particular direction, and (3) unknown parameters of the
game (e.g. game’s hidden constants) and variabilities that can be introduced
in different rounds. Other human related factors that would contribute to the
unpredictability of the results are limited attention span, cognitive biases, com-
munication errors, limits of memory and the like. These uncertainties can be
amplified by introducing extra uncertainty (pseudo-randomness) in the game:
for example allowing the target to have slow movement. As a proof of concept
for this proposal, we designed and implemented an archery game, studied user
generated sequences and the randomness extracted from them. Below are more
details of this work.

3.1 The Game

Our basic game is a single shooter archery game implemented in HTML5 (avail-
able at [Ali13]) in which the player aims an arrow at a target and wins if the
arrow hits the target: the closer to the center of the target, the higher the score.
A screen shot of the game is shown in Fig. 1. The arrow path follows the laws
of physics and is determined by the direction of the shot, initial velocity of the
arrow, and the earth gravity pull force. This results in a parabolic path that
the arrow will traverse to hit the target. The player chooses an initial speed and
angle of throw to hit the target. We will refer to each shot, as a round of the
game.

The target is shown by a circular disk on the screen. The game records the
distance between the center of the target and the trajectory (Fig. 2). To display
the trajectory on the screen, graphic engine translates the location of the arrow
into pixel values and show their locations on the display. We however use the
actual value of the distance between the center of the target and the trajectory
calculated using laws of physics (kinematic equations), and then round it off
to a 32 bit floating point number (the effective bits). The advantage of using
this approach is not only avoiding entropy loss, but also independence of the
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Fig. 1. Screen shot of the game Fig. 2. The measurement of output

implementation and measurements from the screen size and resolution of the
end device. For the error variable we use the range I = [−120, 120] with each
sample read as a 32 bit floating point number, and represented as [Sign(1bit),
Exponent(8bits), Fraction(23 bits)].

3.2 Entropy Source

The distance between the target center and the trajectory is a 32 bit float-
ing point number in I. The human gameplay will produce a sequence of these
numbers which we consider as entropy source. Note that one can use multiple
seemingly unrelated variables in the game such as the angle and initial velocity
of the shot, time that takes for a user to make a shot and the time between
two consecutive shots as the entropy source. We only analyze the error variable
in this paper though. This entropy source does not produce truly random bits
so we followed the randomness extraction framework of [BST03] to extract the
entropy from the source. Our randomness extraction and evaluation has three
steps. (i) Estimate min-entropy of the sequence; (ii) Given the estimate, apply
an appropriate extractor (in our case pairwise independent hash function) on
the sequence; and (iii) Use statistical tests to evaluate quality of the final output
sequence.

We used the NIST tests [BK12] outlined in Appendix A of the full version
of paper [ASN14], to estimate the min-entropy of our sequences. The final out-
put string (after application of extractor) was evaluated using statistical tests.
We used the TestU01 framework [LS07b] with an implementation available at
[LS07a].

3.3 From the Entropy Source to the Output

We read 32 bit floating point numbers as the output of the entropy source and
interpreted each sample as a 32 bit integer as described in Appendix C of the full
version of paper [ASN14]. To use a min-entropy test, we needed a sufficiently long
sequence over an alphabet. We interpreted each 32 bits block as a collection of
subblocks of different lengths. We were limited by available user generated data
and so the size of the subblock depended on the experiment to ensure that a
sufficiently long sequence was available. We used the min-entropy test outlined
in Appendix A of [ASN14] and considered each sample as 32 1bit subblocks,
and obtained an estimation of min-entropy per bit. Given the estimate of k bit
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min-entropy for a single bit, we obtained an approximate value for min-entropy
of each sample as 32k. Here we effectively assumed bits have similar min-entropy
which is reasonable since our per-bit min-entropy estimation considered all bits.
We performed the above calculations for data from each player including all
levels, resulting in minimum estimated min-entropy of 0.626 per bit. For 32 bits,
we estimated 32 × 0.626 ≈ 20 as the minimum min-entropy of the source per
32 bits. Note that this minimum is over the data from all levels for each user,
and the minimum we reported earlier (15 bits) is the measured min-entropy for
the most skilled user in the simplest level.

We closely followed the framework explained in Sect. 2.1 by using a 32-wise
independent hash function, with ε = 2−2, and m = 11. Using Theorem 1, the
extractor was chosen to be t-resilient with t = 16. Here 2t is the number of
possible distributions chosen by the adversary. Variations of the distribution due
to the players experience could be modeled similarly. The random seed for the
extractor was generated from /dev/random in Linux. To examine the properties
of the final output sequence, we used the statistical tests Rabbit [LS07b]. Rabbit
set of tests includes tests from NIST [ea10] and DIEHARD [Mar98] with modified
parameters tuned for smaller sequences and hardware generators. We used an
implementation of these tests in [LS07a]. All tests were successfully passed.

3.4 Game Parameters and Levels

Our initial experiments showed that the game parameters affect the final entropy.
We designed game levels with varying sets of parameters. The parameters that
we alter in the game are: (1) Location of the target, (2) Speed of the target
movement, (3) Gravity force with two possible direction, and (4) Wind speed and
direction. These parameters can change for every player shot, or stay constant
during the game. There were other possibilities such as adding an obstacle (e.g.
a blocker wall) to force the player choose angles from a wider spectrum, putting
time limit on each shot to force the player to release the arrow faster, smaller
target or farther target in the screen that could be considered in future. The
final game has 8 levels, 3 of which were used for experiments labeled as A, B
and C respectively. In level A, all parameters were “fixed” with no change during
the rounds, and so no input is used from the computer. In level B, a subset of
game parameters are changed in each round of the game and the values of
the parameters were shown in the interface so the player can decide based on
that information. In level C, the values of changing parameters of level B were
not shown to the user (except the direction of gravity and wind). The high
uncertainty in this level of the game makes the players rely on their intuition to
play the game.

We did not perform a user study to show attractiveness of these levels but
comments from users indicated level B was the most appealing level.
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4 Experimental Setup and Results

In this section, we present our experimental results. We asked a set of 9 players
to play each of the three levels at least 400 rounds. The rest of the levels were
played for learning. Our objective was to answer to the following:

1- The minimum entropy that can be expected in a single round: As noted earlier
factors such as user’s skill level before the game starts, and learning through
playing the game, and the match between the skill level and difficulty of the
game will affect the final entropy of each round.

2- The change in min-entropy of a player over time: We examine how more
experience and familiarity with the game would affect the amount of entropy
generated in a round.

3- The effect of the game level on min-entropy: In this experiment, we determine
the best game parameters that maximize the rate of the TRNG.

4.1 Entropy per Round

We performed two sets of experiments to estimate the minimum entropy per
round that can be expected from the game.

Entropy of Generated Sequences for One Player. In this experiment we
measured the min-entropy of the sequences generated by each player. We parti-
tioned a player’s sequence of shots into 20 parts and measured the min-entropy
for each part per bit, i.e. considering each bit of a floating point number as one
sample which gives us 32 samples per round. The graph in Fig. 3, demonstrates
the maximum, minimum and average min-entropy for each player, here a set of
9 players. More details of the experiment can be found on the full version of the
paper.

Fig. 3. Min-entropy for players
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Sequence Generated by the Population. In this experiment, data from
all users were considered as one. We then measured the min-entropy (per bit)
for this data set. Our estimation of min-entropy for the population shows that
the average min-entropy in the output is 0.643 per bit, so on average, with
5 shots (5× 32 bits) one can generate 103 bits of min-entropy. The average time
for each shot (over all players) was approximately 2 s. Note that the estimation
was higher than the average min-entropy of all users (when min-entropy was
measured separately) which is 0.61 because of higher estimation of min-entropy
by NIST tests for larger datasets as noted at the end of Appendix A in full
version of paper [ASN14].

4.2 Effect of Players’ Experience on Min-entropy

An important factor in game design is the effect of players’ experience on the
generated entropy. Intuitively, we expect the entropy to decrease as players play
more. In our game, one expects more experienced players to hit closer to the
target center more often and so less observable error, while an inexperienced
player’s shot to appear more random. We estimated the min-entropy of each
of the game levels for 3 different players. Our results confirms this expectation.
However it shows that even the most experienced user at the lowest game level
can generate good level of entropy.

Figure 4 illustrates the change in min-entropy in each of the three game levels
A, B and C, as players gain more experience. Figure 4 also shows how the design
of the game neutralizes the affect of player’s experience to keep the average
min-entropy high enough for randomness extraction.

The graphs of Figs. 4 and 5 are divided into three parts, each consisting of
3 graphs corresponding to the 3 players. The three parts, left (from 0 to 20),
middle (21 to 40) and right (41 to 60), correspond to the levels A, B and C,
respectively. We used 3 players with the highest (the blue curves marked with
letter H), average (the red curves with letter A) and lowest (the yellow curves
with letter L) scores for this experiment. An interesting observation about level C
is that the min-entropy does not necessarily decrease for a user which is expected
from the fact that game parameters are randomly changed and not known by
the players.

4.3 Min-entropy and Game Levels

We considered the change in min-entropy over time for a level. That is reduction
in entropy as users become more skilled. We used the min-entropy estimation for
all player’s data, when partitioned into 20 sections as in previous experiment.
The data corresponds to the sequence of shots over time and so the first section
of the data comes first -that is users starting the game- then the second and the
third sections as they get more experienced. We did this experiment for data for
all users to find the average trend of min-entropy.

The graph is divided into three parts corresponding to the three levels as
in previous section. Figure 5 shows the results of all measurements in the left
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Fig. 4. Min-entropy during level A, B,
C for 3 users

Fig. 5. Average min-entropy change
during levels over all users

(level A), middle (level B), and right (level C) parts. Level A shows a reduction
in the min-entropy as the players become more experienced, and it has the
highest min-entropy decrease among the three levels. In level B, the min-entropy
fluctuates around the value 0.625 and is relatively stable. For level C however,
there is no clear trend in the data and this is true in general for all players,
but the average min-entropy is higher than levels A and B. One reason for the
increase of min-entropy in level C is probably the reluctance of players to play
well over time due to the many unknown variables of the game that makes it
hard to win. This confirms the effect of non-deterministic and unknown values
of parameters which makes the skill level somewhat irrelevant.

4.4 Randomness Required by Computer

As noted earlier, the least significant bits of the output corresponds to cumula-
tion of small errors in different part of the system and contribute most to the
min-entropy. Thus even the sequence collected from level A without any random
input from the computer, could be used for entropy generation. To confirm this
observation we asked the most experienced player (with highest score) to play
level A again, after they had played levels A, B and C more than 1200 rounds.
We measured the min-entropy for this data. The player had 20 arrows to hit
the target and with each shot to the center, a bonus arrow was given. The user
played for 3 games, totaling 331 shots to the target. With 83 % of the shots to
the center, the estimated min-entropy of the player in this 331 shots was roughly
0.521 per bit.

This suggests that the sequence generated by the game has a minimum min-
entropy independent of the randomness used by the game (computer). For higher
levels of game that require randomness, one can use pseudorandom generators
in real-time or generate the sequences beforehand and use them as needed.

5 Concluding Remarks

We proposed and analyzed a new approach to entropy collection using human
errors in video games. We verified the approach by developing a basic intuitive
game and studied the sequences generated by users.
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Our experiments showed that with this simple design and considering the
“worst” case where the user was experienced and made the least error, the rate
of entropy generation is at least 15 bits per shot. This rate can be increased
by adding variability to the game and also using multiple measurable variables
instead of only one. Adding variability to the game increased the min-entropy
by 7 bits per round. In choosing parameters one needs to consider attractiveness
of the game: increase in entropy can be immediately obtained if game constants
such as gravitational force in our case are changed without user’s knowledge.
However this would decrease the entertainment factor of the game. Studying
these factors and in general the randomness generated by users needs a larger
user study which is part of our future work. For the randomness extraction we
implemented and used t-resilient extractors. The output from extractors passed
all statistical tests.

Our work opens a new direction for randomness generation in environments
without computational capability or randomness generation subsystems, and
provides an attractive solution in a number of applications.
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Abstract. In order to analyze a variety of cryptosystems, Boneh, Boyen
and Goh introduced a general framework, the Uber assumption. In this
article, we explore some particular instances of this Uber assumption;
namely the n-CDH-assumption, the nth-CDH-assumption and the Q-
CDH-assumption. We analyse their relationships from a security point
of view. Our analysis does not rely on any other property of the consid-
ered group and, in particular, does not use the generic group model.

1 Introduction

There are many different ways of analyzing the security of a cryptographic
scheme. One can use a formal proof system (as in [6]) or perform a direct more
concrete and computationally oriented proof or use a game based kind of proof
(see [4] or [3] for the case of computer-assisted proofs). A difficulty with formal
proofs is that the security hypothesis often needs to be stated in an abstract
black-box way which can be difficult to verify on a concrete scheme or imple-
mentation. For this reason, most proofs of cryptographic schemes emphasize the
computational aspect; this is, in particular, the case of reductionist proofs.

In general, a cryptosystem is said to have reductionist or computational secu-
rity when its security requirements can be stated in an adversarial model with
clear assumptions about the adversary, its means of manipulating the system and
its computational resources. In this approach, the security of a cryptographic
scheme is based on some core algorithmic problem which is assumed to be hard
to solve. The scheme should remain secure as long as the chosen instances of the
underlying algorithmic problem remain hard.

Among the classical security assumptions used in public-key cryptography,
we find the discrete logarithm problem proven difficult in the generic group
model by Shoup [17] or the Diffie-Hellman assumption which underlies Diffie-
Hellman key exchange protocol [12]. There is a wide variety of more specialized
assumptions which have been introduced over the years. In this article, we focus
on assumptions related to Diffie-Hellman.
c© Springer International Publishing Switzerland 2015
Y. Desmedt (Ed.): ISC 2013, LNCS 7807, pp. 391–406, 2015.
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These Diffie-Hellman related assumptions can either involve a single group
or can be stated in a richer bilinear (or pairing-based) setting. Initially, bilinear
pairings were used for cryptanalytic purposes for example the MOV attack [16].
Basically, the attacks using bilinear pairings reduce the discrete logarithm prob-
lem on an elliptic (or hyperelliptic) curve to the discrete logarithm problem
in a finite field. More recently, bilinear pairings have been used to construct
new cryptographic primitives. In [14], Joux showed that the bilinear pairings
can be used constructively, proposing to use them to construct a tripartite
one-round Diffie-Hellman key agreement protocol. At Crypto 2001, Boneh and
Franklin [8] used pairings to propose the first fully functional, efficient and prov-
ably secure identity-based encryption scheme. At Asiacrypt 2001, Boneh, Lynn
and Shacham [9] proposed a pairing-based signature scheme that features the
shortest length among known signature schemes.

One sometime confusing aspect of pairing-based cryptography is that a large
number of ad’hoc security assumptions have been introduced in parallel with the
new schemes and protocols. In particular, it is not easy to compare the different
security assumptions and, thus, to compare the security level of schemes based
on different assumptions. As an attempt to simplify the situation, Boneh, Boyen
and Goh have introduced the Uber assumption in [7]. This assumption offers a
general framework which can host all previous assumptions. This assumption is
stated as follows:

Definition 1 (Uber Assumption ([10] Sect. 5)). Let p be some large prime,
and let r, s, t, and c be four positive integers. Consider R ∈ Fp[X1, · · · ,Xc]r,
S ∈ Fp[X1, · · · ,Xc]s, and T ∈ Fp[X1, · · · ,Xc]t, three tuples of multivari-
ate polynomials over the field Fp, and respectively containing r, s, and t poly-
nomials in the same c variables X1, · · · ,Xc. We write R = 〈r1, r2, · · · , rr〉,
S = 〈s1, s2, · · · , ss〉 and T = 〈t1, t2, · · · , tt〉. The first components of R, S,
and T are forced to the constant polynomial 1; that is, r1 = s1 = t1 = 1. For
a set Ω, a function f : Fp → Ω, and a vector 〈x1, · · · , xc〉 ∈ F

d
p, we use the

notation f(R) to denote the application of f to each element of R, namely,
f(R(x1, · · · , xc)) = 〈f(r1(x1, · · · , xc)), · · · , f(rr(x1, · · · , xc))〉 ∈ Ωr; and use a
similar notation for applying f to the s-tuple S and the t-tuple T . Let then G1,
G2, and H be cyclic groups of order p, and e : G1 × G2 → H be a crypto-
graphic bilinear pairing. Suppose that g1 ∈ G1 and g2 ∈ G2 respectively generate
the groups to which they belong, and set h = e(g1, g2) ∈ H thus generating
H. Together, these form the bilinear context G = 〈p,G1,G2,H, g1, g2, e〉. The
(R,S,T,f)-Diffie-Hellman problem in G is defined as follows. Given the input
vector,

U(x1, · · · , xc) =
(
g

R(x1,··· ,xc)
1 , g

S(x1,··· ,xc)
2 , hT (x1,··· ,xc)

)
∈ G

r
1 × G

s
2 × H

t,

secretly created from random x1, · · · , xc ∈ Fp, compute the output value,

hf(x1,··· ,xc) ∈ H.

In order to state the difficulty of the Uber assumption, Boyen, Boneh and
Goh have introduced a notion of dependency as follows:
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Definition 2 (Dependence ([10] Sect. 5)). Let R = 〈r1, · · · rn〉 ∈ Fp[X1, · · · ,
Xc]r, S = 〈s1, · · · sn〉 ∈ Fp[X1, · · · ,Xc]s, and T = 〈t1, · · · tn〉 ∈ Fp[X1, · · · ,Xc]t

as defined in Definition 1.
We say that a polynomial f ∈ Fp[X1, · · · ,Xc] is dependent on the triple

〈R,S, T 〉 if there exists rs + t constants {ai,j}1≤i≤r1≤j≤s and {bk}1≤k≤t and
possibly r2+s2

{
d1n,m

}
1≤n,m≤r

and
{
d1,2

p,q

}
1≤p,q≤s

additional constants such that:

f =
r∑

i=1

s∑

j=1

ai,jrisj +
r∑

n=1

r∑

m=1

d1n,mrnrm +
s∑

p=1

s∑

q=1

d1,2
p,qspsq +

t∑

k=1

bktk

When a polynomial f is not dependent from a triple 〈R,S, T 〉, we say that this
polynomial is independent from this triple.

Recalling what is stated in the paper of Boyen [10], the constants d1,2
p,q models

the knowledge of an efficiently computable isomorphism ϕ : G1 → G2 which
exists for pairings of Type 1 and Type 2. While the constants d1n,m models
the knowledge of an efficiently computable inverse isomorphism ϕ−1 : G2 → G1.
When neither ϕ−1 nor ϕ are known, Boyen simply proposed to set the d1n,m

and the d1,2
p,q constants to zero which models the pairings of Type 3. In there

paper, they stated that the Uber assumption holds whenever the polynomial
f is not dependent from the triple {R,S, T}. The generic form of the Uber
assumption introduces a security assumption that allows virtually any of the
previous assumptions to be reformulated as a sub-case of it. As a consequence,
it suffices to rely on this generic assumption and it is no longer necessary to
introduce additional assumptions.

Our Contribution. While the Uber assumption appears to be a trustworthy
framework for assessing the security of bilinear based assumptions, it does not
cover the relative difficulty of such assumptions. In this article, we explore some
specific sub-cases of the Uber assumption in order to assess the intrinsic hierarchy
of difficulty among the different security assumptions that have been introduced
over the years. This work is motivated by the fact that the Uber assumption has
been proven secure only in the generic group model (see the appendix of [7]) and
since it subsumed previous assumption, it is very strong and it might feel riskier
to rely on it than on a simpler assumption.

Along this article, we focus on sub-cases of the Uber assumption where the
sets R, S and T are of the following form:

S = {X1, · · · ,Xn} and R = {Xn+1, · · · ,Xs} and T = ∅.

We begin by analyzing those assumptions in the group setting, that is G1 =
G2 = G3 and there is no bilinear pairing. Indeed, the proofs are easier to follow in
this setting and furthermore, can be adapted quite easily to the bilinear setting.
Thus we discuss the security relationships in the bilinear setting without recalling
all the proofs.

We distinguish three kinds of hypothesis depending on the form of the poly-
nomial f . First we consider the case where f = X1X2 · · · Xs then, we focus on
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the case where f = Xs
1 and finally, we consider the case where f is any arbitrary

polynomial of degree less or equal than s.
Throughout the different proofs, we wish to compare the difficulty of an

hypothesis H1 and another hypothesis H2. More precisely, we want to prove
relationships of the form H1 ⇐ H2, i.e. to prove that H1 is actually harder than
H2. In order to do so, we first assume that we have access to an oracle OH1 that
can solve the H2 hypothesis for any instance of H2, OH1 proposes a solution,
which should be correct with probability at least 1 − ε. Using this oracle we
construct an algorithm that solves H2.

Along the proofs, we use three types of oracles:
Definition 3 (Perfect Oracle). A perfect oracle is an oracle that, when
queried, always answers the correct solution.

We can consider another class of oracle that is somehow randomized:

Definition 4 (Almost Perfect Oracle). An almost perfect oracle is an oracle
that, when queried, answers the correct solution with a probability at least 1 − ε
such that ε is exponentially small with respect to a parameter κ ∈ R

�
+ that is:

ε < exp(−κ).

Finally, one can remark that a general difficulty is that an oracle can behave
arbitrarily on the ε fraction of incorrect answers. In particular, it may behave in
a malicious way designed to adversarily affect our algorithm. This type of oracle
can be formally defined as follows:

Definition 5 (Adversarial Oracle). An adversarial oracle is an oracle that,
when queried, answers correctly with a probability at least 1−ε. When the oracle
does not answers correctly it can adversarily adapt its answers in a malicious
way.

On can remark that normally, with discrete logarithm based assumptions,
the possibly malicious behavior of adversarial oracles can be ignored. This is
due to the classical property of random self-reducibility see [1,13]. One of our
important contribution is to propose a new form of random self-reducibility
versatile enough to deal with the different assumptions we are considering (see
Theorem 3). This allows us to reduce the probability of error to O(1/p) were
p is the cardinality of the considered groups. This allows us to complete the
work done by Bao, Deng and Zhu in [2] where they consider some variations of
the Diffie-Hellman problems. We extend their work by considering other kind of
problems and furthermore, we do not rely on perfect oracle (see Definition 3) as
they did in their paper.

In the group setting, we are able to prove that all the assumptions we are
considering are in fact equivalent — in terms of hardness — to the standard
computational Diffie-Hellman assumption. Our results are summarized on Fig. 1.

We obtain a very different situation in the bilinear setting: a hierarchy
appears between the different assumptions. This hierarchy is based on the degree
of the polynomial f . The higher the degree of f is, the harder the assumption.
In particular, the case where f = X1 · · · XS cannot be reduced to the classical
CBDH-assumption.
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Fig. 1. Security assumptions relations (Group setting)

2 Security Assumptions

As stated in the introduction, we focus on security relationships among several
sub-cases of the Uber assumption. In this section we define the different assump-
tions we analyzed as stand alone assumptions. These assumptions make use of
the following notion:

Definition 6 (Negligible Function). A function f : N → [0, 1] is called neg-
ligible if for every positive polynomial p, there exists some k0 ∈ N such that for
every k ≥ k0, |f(k)| < 1/p(k).

We state the different assumptions we are considering below.

Definition 7 (η-CDH-assumption)

∀Aη,∀x, y ∈R Fp : Pr [Aη(gx, gy) = gxy] is negligible.

This assumption has first been introduced by Diffie and Hellman in [12]. It
was the first realisation of a cryptographic protocol allowing secure communi-
cation between two parties without requiring prior knowledge. In the bilinear
context, this problem has been first introduced by Joux in [14] and is defined as
follows:

Definition 8 (η-CBDH-assumption)

∀Aη,∀x, y, z ∈R Fp : Pr [Aη(gx, gy, gz) = hxyz] is negligible.

The CBDH-assumption have been widely studied and several cryptographic
protocols have been proven secure by reduction to this hypothesis such as the first
identity based protocol introduced by Boneh and Franklin in [8]. We consider
another problem that is a generalisation of the classical CDH-assumption the
n-CDH-assumption in which instead of being given only two quantities, we are
given n random elements of a group of the form gxi and we have to compute
g
∏

xi . More formally we define then-CDH-assumption as follows:
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Definition 9 (η-n-CDH-assumption)

∀Aη,∀x1, · · · , xn ∈R Fp : Pr [Aη(gx1 , · · · , gxn) = gx1···xn ] is negligible.

This assumption have been introduced by Biswas in [5] The corresponding
bilinear assumption can be defined as follows:

Definition 10 (η-n-CBDH-assumption)

∀Aη,∀x1, · · · , xn ∈R Fp : Pr [Aη(gx1 , · · · , gxn) = hx1···xn ] is negligible.

In addition to the two extensions of the Computational Diffie-Hellman exten-
sion, we have also considered the case of power exponents problem, i.e., given a
group element of the form gx one has to compute gxn

. This problem have been
used in [15] and in [11] with n = 2 and is called Square exponent problem more
formally we define the nth-CDH-assumption as follows:

Definition 11 (η-nth-CDH-assumption)

∀Aη,∀x ∈R Fp : Pr
[
Aη(gx) = gxn

]
is negligible.

The corresponding bilinear assumption can be stated as follows:

Definition 12 (η-nth-CBDH-assumption)

∀Aη,∀x ∈R Fp : Pr
[
A(ν,η)(gx) = hxn

]
is negligible.

More generally, we define the assumption Q-CDH-assumption as follows:

Definition 13 (η-Q-CDH-assumption) Let Q be a polynomial of Fp[X1, · · · ,
Xn] of degree d.

∀Aη,∀x1, · · · , xn ∈R Fp : Pr
[
Aη(gx1 , · · · , gxn) = gQ(x1,··· ,xn)

]
is negligible.

The corresponding bilinear assumption can be stated as follows:

Definition 14 (η-Q-CBDH-assumption). Let Q be a polynomial of
Fq[X1, · · · ,Xn] of degree d.

∀Aη,∀x1, · · · , xn ∈R Fp : Pr
[
Aη(gx1 , · · · , gxn) = hQ(x1,··· ,xn)

]
is negligible.

3 From Polynomials to Powers

In this section, we focus on the main difficulty of the article: the reduction from
the Q-CDH-assumption to the nth-CDH-assumption. We conduct our analysis in
the group setting since it is easier to follow and the notations are also clearer.
The section is organized as follows. First we consider that we are given access to
a perfect oracle that solves the Q-CDH-assumption. And we use it to build an
algorithm that solves the nth-CDH-assumption. And then, we explain how it is
possible to build a random oracle solving the Q-CDH-assumption when having
access only to an adversarial oracle that solves the Q-CDH-assumption.
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3.1 Using a Perfect Oracle

In this subsection, our goal is to compute gxn

for any n ≤ degree(Q) = d
knowing gx and having access to a perfect oracle that on input gx1 , · · · , gxn

outputs gQ(x1,··· ,xn). Our result is summarized in Theorem 2:

Theorem 1. Given access to an oracle that solves any instance of the Q-CDH-
assumption, we can, after performing d + 1 oracle calls, solve any instance of
the nth-CDH-assumption with n ≤ d, where d is the degree of polynomial Q.

Proof. First, we independently sample n random values λ1
1, · · · , λ1

n and we call
the perfect oracle on the following instance:

(
gx+λ1

1 , · · · , gx+λ1
n

)
.

This sampling will prove to be essential when dealing with an adversarial oracle.
It is not strictly necessary with a perfect oracle, but for the sake of clarity, it is
easier to keep the same overall strategy in both cases.

The response of the oracle to this randomized query is, by definition of the
oracle,

gQ(x+λ1
1,··· ,x+λ1

n).

As the polynomial Q is formally known, the polynomial Q(x + λ1
1, · · · , x + λ1

n)
can be rewritten as polynomial in x:

Q(x + λ1
1, · · · , x + λ1

n) =
d∑

j=0

[Q(λ1
1 + x, · · · , λ1

n + x)]j · xj .

Where [Q(λi
1 + x, · · · , λi

n + x)]j denotes the coefficient of xj in the polynomial
Q(x + λi

1, · · · , x + λi
n).

Note that the terms of degree 0 and degree 1 could be removed since they
can be computed from the knowledge of the λi and gx. But in order to be able
to prove our argument, they are required in the matrix.

By sampling enough values, we can build the following matrix:

M =

⎡

⎢
⎢
⎢
⎣

[Q(λ1
1 + x, · · · , λ1

n + x)]0 · · · [Q(λ1
1 + x, · · · , λ1

n + x)]d
[Q(λ2

1 + x, · · · , λ2
n + x)]0 · · · [Q(λ2

1 + x, · · · , λ2
n + x)]d

...
...

...
[Q(λd+1

1 + x, · · · , λd+1
n + x)]0 · · · [Q(λd+1

1 + x, · · · , λd+1
n + x)]d

⎤

⎥
⎥
⎥
⎦

This matrix is computed without the need to call any oracle, it is derived
formally from the known coefficients λj

i . In order to be able to prove our result,
we need this matrix to be non-singular. We use the following technical lemma:

Lemma 1. The matrix M is non-singular with probability at least 1 − 2/p.
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With reasonnable parameters choices, this probability is non-negligible. Thus,
as the λj

i are randomly sampled, M can be assumed to be non singular.
Now, recall that this matrix is formally computed from the randomly sampled

values and the knowledge of the polynomial Q. Each time we compute one row
of this matrix, we query the oracle in parallel. When computing the ith row, we
query the oracle on the following input:

(
gx+λi

1 , · · · , gx+λi
n

)
.

Let z̃i be the output of the oracle. We store all those values in a vector:

V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d∑

j=0

[Q(λ1
1 + x, · · · , λ1

n + x)]jxj

d∑

j=0

[Q(λ2
1 + x, · · · , λ2

n + x)]jxj

...
d∑

j=0

[Q(λd+1
1 + x, · · · , λd+1

n + x)]jxj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By definition of the matrix M, the following equality holds:

V = M [
x0 x1 · · · xd

]T

From the previous technical lemma, we can assume that the matrix M is
non singular with overwhelming probability. By computing the inverse (using
the previous technical lemma), of the matrix M denoted M̃ , we can rewrite the
previous equality as follows:

(E) : M̃V =
[
x0 x1 · · · xd

]T

Let m̃i,j be the element of the ith row and jth column of the matrix M̃.
Using the m̃i,j ’s, we can compute the following quantities:

q1 = (z̃0)
m̃0,0 × · · · × (z̃d)

m̃0,d

...
qd−1 = (z̃0)

m̃d,0 × · · · × (z̃d)
m̃d,d

.

By definition, for any k, qk simplifies to glk with:

lk =
d∑

i=0

m̃k,i · ∑d
j=0[Q(λi

1 + x, · · · , λi
n + x)]jxj .

Using equality (E), we obtain: qk = gxk+1
.
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Thus, we can obtain all the power of x from 2 to d.

The previous result shows that if we have access to an oracle that can compute
a polynomial of degree d, it is possible, using d + 1 oracle calls to obtain an
oracle that compute any nth-CDH-assumption with n ≤ d. However, the proof
is based on the fact that an ideal oracle always outputs the correct evaluation
of the polynomial when queried. In the next section we show how to adapt the
result in the more general case where we only have access to an imperfect, even
adversarial oracle.

3.2 Using an Adversarial Oracle

In this section, we are going to prove the following result:

Theorem 2. Given access to an adversarial perfect oracle that solves any
instance of the Q-CDH-assumption with error probability bounded by ε, we can
simultaneously solve instances of nth-CDH-assumption for the same input gx in
all degrees from 2 to d = deg Q.

This requires O((d+2)/ε) oracle calls, a computational runtime of O(ε−d+2)
and yields a success probability:

pεd+2

pεd+2 + 1

Proof. First, let us recall that the λ1
i are randomly sampled (using the same

notations as in the previous subsection), so the x+λ1
i are indistinguishable from

random values. In truth, the distribution of tuples of the form (gx+λ1
i , · · · , gx+λn

i )
is identical to the distribution: (gr1 , · · · , grn) where {r1, · · · , rn} ∈R Fp. As a
consequence, the oracle is not able to adapt its behavior depending on the prob-
ability distribution of our questions1.

Thus we safely can assume that every time we submit a query to the oracle
the probability that it answers correctly with probability ≥ ε. However, if a
single answer is incorrect, then our full vector of values gxi

becomes incorrect
(at the end of the proof the evaluations of the qk’s are all wrong). This is why
we need to propose a way to test whether or not the answers of the oracle are
consistent. This is summed up in the following lemma:

Lemma 2 (Adversarial Oracle Testing). Given a set of d+1 answers to ran-
domly chosen queries from an adversarial oracle solving the Q-CDH-assumption,
there exists an algorithm that tests whether all the solutions of this set are correct
or not and correctly answers with probability:

εd+1

εd+1 + (1/p)
.

1 Remember that the oracle is stateless and thus not allowed to misbehave by counting
the questions and giving an answer that depends on the position of the question. It
would be easy to adapt to this case, but we have not considered it.
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Assume that we have d + 1 answers stored in a vector V̂ from the oracle
and that they are all correct. As in the previous case we compute the following
matrix:

M̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[Q(λ1
1 + x, · · · , λ1

n + x)]0 · · · [Q(λ1
1 + x, · · · , λ1

n + x)]d
[Q(λ2

1 + x, · · · , λ2
n + x)]0 · · · [Q(λ2

1 + x, · · · , λ2
n + x)]d

...
...

...
[Q(λd+1

1 + x, · · · , λd+1
n + x)]0 · · · [Q(λd+1

1 + x, · · · , λd+1
n + x)]d

[Q(λd+2
1 + x, · · · , λd+2

n + x)]0 · · · [Q(λd+2
1 + x, · · · , λd+2

n + x)]d

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Note that, compared to the previous case (when we had access to a perfect
oracle), the matrix now has an extra line. And we still have the following equality:

M̂

⎡

⎢
⎢
⎢
⎣

x0

x1

...
xn

⎤

⎥
⎥
⎥
⎦

= V̂.

Since this matrix has d + 2 lines and d + 1 columns, we known that, using
simple linear algebra, we can obtain a vector K that is an element of the left
kernel of the matrix M̂. By multiplying each part of the previous equality by
the vector K, we have: 〈

K|V̂
〉

= 0.

Using the coordinates ki’s of the vector K, we can check whether the oracle’s
answers are all consistent. Indeed, using the same notation as above, we can
compute:

(z̃0)
k0 × · · · × (z̃d)

kd .

And the we test whether or not this value is 1 = g0. This can occur in two
different ways. The first way occurs when the d + 1 answer are correct and has
probability εd+1. The second way occurs when the test equality is satisfied by a
vector containing some random values, this occurs with probability 1/p.

As a consequence, the a posteriory probability that the d + 1 answers are
correct when the test equality is satisfied is:

εd+1

εd+1 + (1/p)
,

where p is the cardinality of the group. This is close to 1 for reasonable parameter
choices. This concludes the proof of the previous lemma.

Remark 1. This probability is close to 1, whenever εd+1 > (1/p). This requires
(d + 1) ln ε to remain smaller (and bounded away) from ln p.

In order to obtain a set of d + 1 correct answers from the adversarial oracle
we submit a large enough amount of queries to the oracle to ensure that the
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probability of obtaining (at least) d correct answers within the set of all the
oracle answers is good enough. By “large enough amount of queries” we mean
at least c.(d + 1) × 1/ε where c > 1. With this number of queries, we are almost
certain to obtain at least d + 1 correct answers from the oracle.

The next set is to extract a subset of d + 1 correct answers from the set of
all the answers. Since there is no way to get information about the validity of an
individual answer, the best approach is to use exhaustive search. Let Qε denote
the number of correct answers, the fraction of subset of d + 1 answer than only
contains correct answer is: (

Qε

d+1

)

(
c.(d+1)×ε

d+1

) .

Assuming the degree d is not too large, this can be approximated by:

(
1
ε

)d

.

Thus, the cost of finding a correct subset is ε−d. This is quite high, however,
it is a pure computational cost that does not require any extra oracle calls.

Putting it all together, we then delete one row at random in the matrix M̃
and assume that all the corresponding oracle’s outputs are correct. We then
proceed as if we had access to a perfect oracle (see Theorem 1).

The fact that we are actually able to test the answers given by an adversarial
oracle allows us to extend the random self-reducibility result of [1]:

Theorem 3 (Random Self-reducibility of the Q-CDH-assumption).
Given access to an adversarial oracle that solves any instance of the Q-CDH-
assumption for a degree d polynomial, we can solve any instance of the Q-CDH-
assumption with probability:

pεd+1

pεd+1 + 1

using O((d + 1)/ε) queries and a computational runtime of O(ε−(d+1)).

Remark 2. This probability is close to 1, whenever εd+1 > (1/p). This requires
(d + 1) ln ε to remain smaller (and bounded away) from ln p.

In this section, we only considered the group setting. However, in the proof
we never had to assume that the inputs or the outputs belong to the same group.
Thus everything that has been stated can be straightforwardly adapted to the
bilinear setting. This adaptation requires some considerations especially when
dealing with pairings of type 2 or 3. The details are given in Sect. 6.

From now on, when we use an oracle, we assume that we are given access to
an almost perfect.
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4 From Powers to N-product

It is explained in [18] how to solve the n-CDH-assumption using an almost perfect
oracle that solves the nth-CDH-assumption with a low probability of failure ε is
close to 1. More precisely:

Theorem 4. Given access to an oracle that solves any instance of the nth-CDH-
assumption, we can solves any instance of the n-CDH-assumption.

This requires 2n oracle calls and needs all oracle answers to be correct.

5 From N-product to Polynomials

In this section we explain how it is possible to compute in the exponent any
polynomial of degree d having access to an almost perfect oracle that solves the
d-CDH-problem. We do this for a known polynomial Q whose coefficients are
given in the clear. Our result is stated in the following theorem:

Theorem 5. Let m be the number of monomials that appears in Q. Given access
to an almost perfect oracle that solves any instance of the n-CDH-assumptionwith
probability ≥ ε, we build an algorithm that solves any instance of the Q-CDH-
assumption for any polynomial Q of degree up to n with probability:

(
pεn

pεn + 1

)m

using O(m · n/ε) queries and a computational runtime of O(m · ε−n).

Even though this reduction need an exponential amount of queries, its expo-
nential dependence is on the degree of the polynomial Q we want to compute
and not in the cryptographic parameters (more precisely not in the size of the
group). It can thus be considered as efficient.

Proof. The basic is that we can individually compute all the monomials that
appears in the polynomial Q, before combining them with their respective coef-
ficients. The monomials of Q are of the form:

αi1,j ,··· ,i2,j
· x

i1,j

1 · · · xin,j
n , with i1,j + · · · + in,j ≤ d.

As the values αi1,j ,··· ,i2,j
are explicitly known we only have to be able to compute

the product x
i1,j

1 · · · xin,j
n where the ii,j are known. With an ideal oracle, it would

suffices to query it on the following input:

gx1 · · · gx1

︸ ︷︷ ︸
i1,j

gx2 · · · gx2

︸ ︷︷ ︸
i2,j

· · · gxn · · · gxn

︸ ︷︷ ︸
in,j

.

However, since repetitions are extremely rare on randomly generated inputs,
nothing prevents an adversarial oracle to answer these specific queries wrongly,
without violating its global error bound.
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Thus, in order obtain the product, we need to randomize the inputs and
derandomize the answer of the oracle. It can be done by sampling independently
d random non zero values μ1, · · · μd in Fp and then querying the oracle on the
following input:

gμ1x1 · · · gμi1,j
x1

︸ ︷︷ ︸
i1,j

gμi1,j+1x2 · · · gμi2,j
x2

︸ ︷︷ ︸
i2,j

· · · gμid−1,j+1xn · · · gμid,j
xn

︸ ︷︷ ︸
in,j

.

From the answer y of the oracle, one can compute y1/
∏d

i=1 μi and obtain the
expected value.

Finally, using the result of Theorem3, we can correctly evaluate all the mono-
mials of Q. And thus we can build an algorithm that actually compute correctly
the polynomial Q from all its monomials.

Note that a product oracle for degree d can easily be used to compute monomials
of lower degree. Indeed, it suffices to replace some of the variables in the oracle
call by randomly sampled constants. This allow us to state the following theorem:

Theorem 6. In the group setting, all the n-CDH-assumptions are equivalent
(w.r.t. n).

Proof. The proof of the previous theorem relies on the fact that all those assump-
tions are actually equivalent to the CDH-assumption. Indeed, if we assume that
we have access to an oracle solving the n-CDH-assumption, with n ≥ 2, we
can compute the CDH-assumption easily by calling the oracle on the following
instance:

x1 = x, x2 = y, x3 = λ3, · · · , xn = λn, with λ3, · · · , λn being randomly sampled.

Using the same method as the one presented above, we can retrieve the result:
gxy.

If we assume that we have access to an oracle solving the CDH-assumption,
by repeatedly calling it we can compute the n-CDH-assumption. First, we query
the oracle with instance (gx1 , gx2) and retrieve (gx1x2). Then we query the oracle
with instance (gx1x2 , gx3) and retrieve (gx1x2x3).

By repeating the process, we can compute gx1x2···xn . Since this proof does
not rely on the value of n (we only require that n ≥ 2), we can conclude that all
the n-CDH-assumptionare equivalent.

This result should be compared to the result of Maurer and Wolf [15], regarding
the equivalence of the CDH-assumption and the discrete logarithm problem.
Indeed, this equivalence can be used to show that all the assumptions we are
considering are easy when the CDH-assumption is. However, this only covers one
direction and the reduction is not explicitly constructive since it relies on the
assumption that an auxiliary elliptic curve with smooth cardinality exists and
can be found.
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In the group setting, as the input and the output of an oracle belong to
the same set (actually the same group), we can reuse an answer of an oracle
in order to compute more terms: we can iterate the oracle queries and thus
from a computational Diffie-Hellman oracle, we can obtain a polynomial of any
degree. Whereas, in the bilinear context it is not possible to reuse the output of
the oracle as a query but the different relations that we stated in the previous
theorems can be adapted to the bilinear context. This adaptation is described
in the next section.

6 The Bilinear Setting

All the previous sections focused on the group setting. We now show how our
results can be adapted to the bilinear context. The main difference between
the two settings is that in the group setting it is possible to actually reuse the
output of an oracle to build another query whereas in the pairing setting this is
not possible. Indeed, oracle answers do not belong to the same group as queries.

The type of the pairing we are considering is also important, indeed with a
type 1 or 2 pairing it is possible to perform some additional operations which
are not permitted with a type 3 pairing.

Pairing of type 1

For pairings of type 1, Theorems 2, 3, 4 and 5 can be straightforwardly adapted
(the proofs of those theorems are omitted in this paper but will be provided
in an extended version). Meaning that in any case, we will have the following
relationships: (Fig. 2)

Fig. 2. Security assumptions relations (Bilinear setting)

Theorem 6 can not be stated because in the proof, we need to reuse an oracle
output as input. However, we can state that:

Theorem 7. Given access to an oracle that solves any instance of the n-CDH-
assumption, we can solve any instance of the d-CDH-assumption where d ≤ n.
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This theorem induces a hierarchy within the different class of assumptions.
Indeed, the higher n is the harder the assumption is. This can be summarized
as follows:

CBDH-assumption ≤ n-CBDH-assumption(n = 4) ≤ · · · ≤ n-CBDH-assumption(n = d).

Pairing of Type 2 and 3

For pairing of type 2 and 3, once again, Theorems 2, 3, 4 and 5 can be straightfor-
wardly adapted (the proofs of those theorems are omitted in this paper but will
be provided in an extended version). In both type of pairings, some computations
cannot be done.

For pairing of type 2, assume that we have an oracle that on input gx1
1 , gx2

1 ,
. . . , g

xn1
1 , gy1

2 , gy2
2 , . . . , g

yn2
2 outputs hx1···xn1y1···yn2 . Using this oracle, it is not

possible to build an algorithm that can compute hx1···xn1y1···yn2 on input gx1
1 ,

gx2
1 , . . . , g

xn1
1 , gy1

1 , gy2
2 , . . . , g

yn2
2 .

For pairing of type 3, there is no isomorphism between the two base groups
and thus some more queries cannot be derived from others.
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Abstract. We present a secure and efficient scalar multiplication
method for supersingular elliptic curves over binary fields based on Mont-
gomery’s ladder algorithm. Our approach uses only the x-coordinate of
elliptic curve points to perform scalar multiplication, requires no precom-
putation and executes the same number of operations over the binary
field in every iteration. When applied to projective coordinates, our
method is faster than the other typical scalar multiplication methods
in practical situations.

Keywords: Elliptic curve cryptography · Scalar multiplication · Super-
singular elliptic curves · Binary fields · Side-channel attacks

1 Introduction

The efficiency and security of protocols that employ supersingular elliptic curves,
defined over F2m and given by Eq. 1

E(F2m) : y2 + y = x3 + x + c, (1)

depend directly on the method used to compute scalar multiplications. We pro-
pose a method to compute scalar multiplication on supersingular elliptic curves
that is efficient and robust against side-channel attacks. These features make our
method an option for restricted computational environments like smart cards.

2 Previous Work

To improve efficiency and security of elliptic curve cryptosystems, many
researchers have proposed methods to compute scalar multiplication of ellip-
tic curve points. In 1999, López and Dahab [2] proposed a method to efficiently
compute scalar multiplication over binary fields on non-supersingular curves.
c© Springer International Publishing Switzerland 2015
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Okeya and Sakurai proposed a similar method for scalar multiplication on prime
fields [3]. Fischer et al. showed the implementation of an analogous method
to compute scalar multiplication over prime fields in a coprocessor for smart
cards [4]. Joye [5] has also showed regular algorithms for scalar multiplication.
Our method is analogous to their methods, with the difference that it is specific
for supersingular elliptic curves. In spite of our work has reached similar equa-
tions to those found in the work of Saeki [6] in the case of affine coordinates, we
show how to obtain the y-coordinate and also present the equations for scalar
multiplication using projective coordinates. As will be discussed, the method
proposed is more efficient then other methods of scalar multiplication when pro-
jective coordinates are used. This does not happen with affine coordinates.

3 Multiplication Method: Montgomery’s Ladder

Our method is derived from the algorithm to perform exponentiation known
as Montgomery’s ladder [7], which was adapted to perform multiplication of a
elliptic curve point P0 by the n-bit scalar k(Algorithm 1).

Algorithm 1. Scalar Multiplication using Montgomery’s ladder [7]
Input: Elliptic curve point P0, positive scalar k = (kn−1, kn−2, . . . , k0)2.
Output: Elliptic curve point kP0.
1: R ← P0, S ← 2P0.
2: for i ← n − 2 downto 0 do
3: if ki = 0 then
4: S ← R + S, R ← 2R.
5: else
6: R ← R + S, S ← 2S.
7: return R.

An important characteristic of Algorithm 1 is that, for any n-bit positive
scalar k, the same number of operations will be performed: one point addition
and one point doubling. This does not happen in the widely used double-and-
add algorithm [8], where the number of operations performed in each iteration
i depends on the bit ki. Then, the scalar multiplication using Montgomery’s
ladder is more robust against side-channel attacks. Another characteristic of
Algorithm 1 is the invariant S − R = P0, as shown in Lemma 1. This will be
important for our method.

4 Group Law

We now present the group law for the supersingular elliptic curve over F2m given
by Eq. 1 [8], considering affine coordinates.
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– Identity: P + O = O + P for all P ∈ E(F2m);
– Negative: Let P1 = (x1, y1) ∈ E(F2m), then (x1, y1) + (x1, y1 + 1) = O. The

point −P1 = (x1, y1 + 1) is called the negative of P1;
– Point addition: Let P1 = (x1, y1) ∈ E(F2m) and P2 = (x2, y2) ∈ E(F2m),

where P1 �= ±P2. Then P1 + P2 = P3 = (x3, y3), where:

λ =
y1 + y2
x1 + x2

; (2)

x3 = λ2 + x1 + x2; (3)
y3 = λ(x1 + x3) + y1 + 1. (4)

– Point doubling: Let P1 = (x1, y1) ∈ E(F2m), where P1 �= −P1. Then 2P1 =
P3 = (x3, y3), where

x3 =
(
x1

2 + 1
)2

= x1
4 + 1, (5)

as the terms with coefficient 2 are null in binary field arithmetic, and

y3 =
(
x1

2 + 1
)
(x1 + x3) + y1 + 1. (6)

5 Improved Scalar Multiplication

Let the supersingular elliptic curve points in affine coordinates be P1 = (x1, y1),
P2 = (x2, y2) and P3 = (x3, y3) ∈ E(F2m), such that P1 + P2 = P3. The coordi-
nates x3 and y3 may be computed with Eqs. 3 and 4. Now consider another point
of the same supersingular elliptic curve given by P4 = (x4, y4), which is the result
of P2 − P1, such that P4 = P2 + (−P1). Because the subtraction may be seen as
the addition of P2 and the inverse of P1, then (x4, y4) = (x2, y2) + (x1, y1 + 1)
and so we have

x4 = (λ′)2 + x1 + x2, (7)

where λ′ =
(

y1+1+y2
x1+x2

)
. Notice that λ′ = λ + 1

x1+x2
and that Eq. 7 can be

rewritten as:
x4 = λ2 +

1
x2
1 + x2

2

+ x1 + x2. (8)

Using Eq. 3 in Eq. 8, we obtain

x4 = x3 +
1

x2
1 + x2

2

,

which depends only on x-coordinates and can be rewritten as

x3 = x4 +
1

x2
1 + x2

2

. (9)

Now consider the Montgomery’s ladder algorithm presented in Sect. 3. In
each iteration, the algorithm always performs one point addition and one point
doubling. As shown in Eq. 5, the x-coordinate of the point being doubled may
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be computed using only the x-coordinate before doubling. Equation 9, shows
that the x-coordinate of the point resulting from the addition of P1 and P2 is a
function of x1, x2 and x4. We know that x4 comes from P4 = P2 − P1, and by
the Lemma 1, P4 = P0 = (x0, y0), what means that x4 = x0. Equation 9 may be
rewritten as

x3 = x0 +
1

x2
1 + x2

2

. (10)

Notice that Eq. 10 depends only on x-coordinates of points P0, P1 and P2.
So Algorithm 1 can easily be adapted to compute the scalar multiplication of a
point P0 using only the x-coordinates of this point and of the auxiliary points
P1 and P2, as shown in the next equations. This feature may be advantageous
for restricted devices, like smart cards.

Considering P5 = kP0 = (x5, y5) and P6 = (k + 1)P0 = (x6, y6), at the end
of execution of Algorithm1, we can expect that x1 = x5 and x2 = x6. The next
equations show how to obtain y5. We know that P6 = (k + 1)P0 = kP0 + P0 =
P5 + P0, and from Eq. 3 we have:

x6 =
(

y5 + y0
x5 + x0

)2

+ x5 + x0 =
y2
5 + y2

0 + x3
5 + x3

0 + x2
5x0 + x5x

2
0

x2
5 + x2

0

. (11)

The points kP0 and P0 belong to the supersingular elliptic curve given by
Eq. 1 and so:

⎧
⎨

⎩

y2
0 + y0 = x3

0 + x0 + c
+ y2

5 + y5 = x3
5 + x5 + c

y2
5 + y2

0 + x3
5 + x3

0 = y0 + y5 + x0 + x5.

We can use the above result in Eq. 11, resulting in

x6 =
y0 + y5 + x0 + x5 + x2

5x0 + x5x
2
0

x2
5 + x2

0

, (12)

which can be rewritten as

y5 = y0 + (x5 + x0)(1 + x0x5 + x6(x5 + x0)). (13)

Notice that y5 can be calculated using only the y-coordinate of P0 and the
x-coordinates results available. Based on previous equations, it is possible to
adapt Algorithm 1 to compute scalar multiplication of a supersingular elliptic
point in F2m , as shown in Algorithm 2. A comparison between both algorithms
is presented in Sect. 7.

6 Using Projective Coordinates

In this section we show how our method can be used with traditional projective
coordinates. Considering that addition and squaring can be efficiently computed
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Algorithm 2. Scalar Multiplication on supersingular elliptic curve using affine
coordinates
Input: Point P0 = (x0, y0) ∈ E(F2m), positive scalar k = (kn−1, kn−2, . . . , k0)2.
Output: Point kP0 = R = (xR, yR) ∈ E(F2m).
1: xR ← x0, xS ← x4

0 + 1. {Compute x-coordinates of P and 2P .}
2: for i ← n − 2 downto 0 do
3: if ki = 0 then
4: xS ← x0 + 1

x2
R
+x2

S
.

5: xR ← x4
R + 1.

6: else
7: xR ← x0 + 1

x2
R
+x2

S
.

8: xS ← x4
S + 1.

9: yR ← y0 + (xR + x0)(1 + x0xR + xS(xR + x0)).
10: return (xR, yR).

for binary field [8], we will consider only the cost of the more expensive operations
in point addition and doubling, which are the multiplication and the inversion.

It is possible to eliminate the inversion during the computation of point
addition using projective coordinates. Let P1 = (X1 : Y1 : Z1), with Z1 =1,
and P2 = (X2 : Y2 : Z2) ∈ E(F2m) and suppose that P1, P2 �= O, P1 �= P2 and
P1 �= −P2. Then P3 = P1 + P2 = (X3 : Y3 : Z3), where

X3 = α2βZ2 + β4 (14)
Y3 = (1 + Y1)Z3 + α3Z2 + αβ2X2 (15)
Z3 = β3Z2, (16)

where α = (Y1Z2 + Y2) and β = (X1Z2 + X2). Note that this addition formula
requires 9 multiplications of field elements. For point doubling, 6 multiplications
are required. When projective coordinates are used, the result (X3 : Y3 : Z3) can
be converted back to affine coordinates by multiplying each coordinate by Z−1

3 .
Equations 5 and 9 may be modified to use projective coordinates.

– Doubling: from Eq. 5,

X3

Z3
=

X4
1

Z4
1

+ 1 =
X4

1 + Z4
1

Z4
1

, (17)

which means that X3 =
(
X4

1 + Z4
1

)
and Z3 = Z4

1 .
– Addition: form Eq. 10,

X3

Z3
= x0 +

1
X2

1
Z2

1
+ X2

2
Z2

2

= x0 +
Z2
1Z2

2

X2
1Z2

2 + X2
2Z2

1

=
x0t + Z2

1Z2
2

t
, (18)

where t = X2
1Z2

2 + X2
2Z2

1 . Hence, we have

X3 =
(
x0t + Z2

1Z2
2

)
, and Z3 = t. (19)
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In the same way that we have developed Eq. 13 to obtain the y-coordinate
of the point kP0 = P5 = (x5, y5) in the affine case, we can also obtain the y5
directly in the projective case. By the end of the iterations of the Montgomery
Algorithm in projective case we can make x5 = X1/Z1, x6 = X2/Z2 and use
these relations to adapt Eq. 13 and obtain Eq. 20.

y5 = y0 +
(X1 + x0Z1)(x0(X1Z2 + X2Z1) + X1X2 + Z1Z2)

Z2
1Z2

(20)

Algorithm 3 shows how to implement multiplication of point P by scalar k using
projective coordinates. We notice that one of the multiplications performed in

Algorithm 3. Scalar Multiplication on supersingular elliptic curve using pro-
jective coordinates
Input: Point P0 = (x0, y0) ∈ E(F2m), positive scalar k = (kn−1, kn−2, . . . , k0)2.
Output: Point kP0 = R = (xR, yR) ∈ E(F2m).
1: XR ← x0, ZR ← 1, ZS ← Z4

R, XS ← X4
R + ZS .

2: for i ← n − 2 downto 0 do
3: t ← (XRZS + XSZR)2.
4: if ki = 0 then
5: XR ← x0t + Z2

RZ
2
S , ZR ← t,

6: ZS ← Z4
S , X2 ← X4

S + ZS .
7: else
8: XS ← x0t + Z2

RZ
2
2 , Z2 ← t,

9: ZR ← Z4
R, XR ← X4

R + ZR.
10: xR = XR/ZR

11: yR = y0 + (XR+x0ZR)(x0(XRZS+XSZR)+XRXS+ZRZS)

Z2
R
ZS

.

12: return (xR, yR).

each iteration uses the fixed factor x0. Then, precomputation techniques [1] can
improve even more the method’s efficiency.

7 Comparison with Double-and-Add

The two steps performed in each iteration of Algorithms 2 (lines 4, 5 or 7, 8)
and 3 (lines 5, 6 or 8, 9) are independent and can be parallelized in a hardware
implementation or in a software implementation with multiple cores. In this
way, each iteration can be performed faster and the overall execution time of the
algorithm will be smaller.

We compare our method with the double-and-add method to perform scalar
multiplication, since both methods require no pre-computation. For the compar-
isons, we consider the scalar k with bit length n. In double-and-add, the point
doubling is computed at each iteration and if ki is equal to 1, it is necessary
to compute one point addition. In our method, each iteration of the algorithm
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requires the same number of operations, independently of the value of ki, a good
characteristic as it prevents side-channel attacks. By the end of the algorithm,
it must compute a few operations so as to obtain the value of the y-coordinate.

It is known that finite field addition is a low cost operation in binary fields,
since it depends only on the number of machine words representing the finite
field elements [8]. Analogously, the square operation can use lookup tables and
efficient reduction methods. For these reasons, finite field addition and square are
operations with low cost in binary fields, and the comparison presented here will
consider only the number of multiplications (M) and inversions (I). Finally, we
also consider that k has a Hamming weight of 50 %, in average, since in double-
and-add algorithm the number of operations varies depending on ki. Table 1
show the comparisons for affine and projective coordinates.

Table 1. Comparison between methods for affine and projective coordinates.

Coordinates Method Operations required

Affine Double-and-add (3n/2)M + (n/2)I

Our method 3M + (n − 1)I

Projective Double-and-add (21n/2)M + 1I

Our method 4(n + 1)M + 2I

Considering the time spent to compute the scalar multiplication of a point,
we notice in Table 1 that, for affine coordinates and for large values of n, our
method is faster than the traditional double-and-add method if I < 3 M, i.e.,
when the operation of inversion I costs less than three times the multiplication
M, which is hard to find in practical implementations. The relation I/M can vary
from 7 to 102 [8]. In the projective case we can consider n large sufficiently to
ignore the cost of the terms which are not multiplied by n, such that our method
is faster than double-and-add all the times that (13n/2)M > 1I, which is always
true for practical situations, since n assumes large values (typically, n > 100).
We have also considered that the cost of inversion algorithm includes the cost of
multiplying the numerator by the inverted value. It is important to notice that,
while the cost of the double-and-add method depends on the Hamming weight
of k, our method requires the same number of operations for all values of k.

Both Algorithms 2 and 3 were implemented and tested, and their results were
checked to validate the equations presented in this paper.

8 Comparison with Methods NAF and w-NAF

It is possible to compare the equations proposed with typical methods of scalar
multiplication that employ non-adjacent form (NAF) to represent the scalar. For
this purpose, we will consider the methods NAF and w-NAF of scalar multipli-
cation and the number of operations (multiplications and inversions in binary
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field) as shown in [8]. We consider a window of length w = 4 for w-NAF, which is
suitable for devices with constrained memory, like smart cards. First, we present
in Table 2 the number of operations for affine coordinates.

Table 2. Comparison between methods for affine and projective coordinates.

Coordinates Method Operations required

Affine NAF (4n/3)M + (n/3)I

w-NAF (6n/5)M + (n/5 + 3)I

Our method 3M + (n − 1)I

Projective NAF (9n)M + 1I

w-NAF (39n/5 + 33)M + 1I

Our method 4(n + 1)M + 2I

We can notice that, with affine coordinates, our method is more advantageous
then NAF and w-NAF when I < 2M or I < (3/2)M, respectively, which is hard
to find in practical implementations. For the projective case, the number of
operations is also shown in Table 2.

As we can notice, with projective coordinates our method is more efficient
then NAF and w-NAF for 5nM > I and (19n/5)M > I, respectively, which is
always true in practical situations.

9 Further Improvements

To take advantage of the relatively low cost of point duplication for supersingular
elliptic curves, the scalar k can be written as

k = k1 + 2(n/2)k2, (21)

where k1 and k2 have both the bitlength of n/2. In this way, the computation
of kP can be performed as two parallel scalar multiplications:

kP = k1P + k2Q, (22)

where Q = 2(n/2)P . Even in this way, the proposed method with projective
coordinates can still provide efficient computation and robustness against side-
channel attacks.

10 Concluding Remarks

We have presented an efficient method for scalar multiplication on supersingu-
lar elliptic curves over binary fields based on well known Montgomery’s ladder
algorithm. In affine coordinates, the efficiency of the method depends of the
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relative costs of the binary field operations of inversion and multiplication. In
projective coordinates and for practical situations, our method is faster than the
double-and-add algorithm. The method presented here has important features,
considering its use on security applications. Since it is based on Montgomery’s
ladder algorithm, it is secure against side-channel attacks and can be paral-
lelized. Moreover, the method uses during its iterations only the x-coordinate of
the point being multiplied and, by the end of the execution, can easily obtain
its y-coordinate.

A Appendix: Montgomery’s Ladder Invariant

Lemma 1. Every iteration in Montgomery’s ladder algorithm to compute kP0,
where k = (kn−1, kn−2, . . . , k0)2, keeps the difference S − R = P0.

Proof. Before the first iteration, we have R = P0 and S = 2P0, and thus Q2 −
Q1 = P0. Now let’s assume that during an iteration 0 ≤ i ≤ l − 2 we have
R = nP0 and S = (n + 1)P0, where 1 ≤ n ≤ k. The difference S − R = P0

holds. To prove that in iteration i + 1 the invariant S − R = P0 is held, we must
consider two cases:

– if ki = 0: the values of R and S are updated such that R = 2nP0 and
S = (n + n + 1)P0 = (2n + 1)P0. We can see that the difference S − R = P0

holds in this case.
– if ki = 1: the values of R and S are updated such that R = (n + n + 1)P0 =

(2n + 1)P0 and S = 2(k + 1)P0 = (2k + 2)P0. We can see that the difference
S − R = P0 holds in this case too.

By the end of iterations, we have i = 0 and Q2 − Q1 = P0 is mantained.
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