Towards a DSL for Educational Data Mining

Alfonso de la Vega, Diego Garcia-Saiz, Marta Zorrilla, and Pablo Sénchez®™9

Dpto. Ingenieria Informatica y Electrénica,
Universidad de Cantabria, Santander, Spain
{alfonso.delavega,diego.garcia,marta.zorrilla,p.sanchez}@unican.es

Abstract. Nowadays, most companies and organizations rely on com-
puter systems to run their work processes. Therefore, the analysis of
how these systems are used can be an important source of information
to improve these work processes. In the era of Big Data, this is perfectly
feasible with current state-of-art data analysis tools. Nevertheless, these
data analysis tools cannot be used by general users, as they require a deep
and sound knowledge of the algorithms and techniques they implement.
In other areas of computer science, domain-specific languages have been
created to abstract users from low level details of complex technologies.
Therefore, we believe the same solution could be applied for data analysis
tools. This article explores this hypothesis by creating a Domain-Specific
Language (DSL) for the educational domain.

Keywords: Domain-specific languages + Big data - Educational data
mining

1 Introduction

Nowadays, most work processes in companies and organizations are supported
by software systems. Thus, the way in which people interact with these systems
reflects somehow how these processes are actually executed. Therefore, a careful
analysis of this interaction can help to find out flaws of these processes that
might be removed [4].

For instance, let us suppose a company which wants to reduce the number
of products that are returned after having been shipped. In this scenario, the
company managers might be interested in getting answers for questions such as:
“What features share those products that are returned by customers?”; or “What
18 the profile of the unsatisfied customers?”. Decision makers need to know these
answers before adopting corrective actions.

Currently, it is feasible to perform this data analysis by using Big Data
technologies [3]. For instance, the profiles of the unsatisfied customers can be
computed using clustering techniques [8]. These techniques require a sound
knowledge of the algorithms and mathematical foundations they use. Never-
theless, average decisions makers do not have this knowledge.

For example, to execute a clustering, the user should know how a cluster-
ing algorithm like K-means [1] works, how its parameters must be configured,

© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodriguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 79-90, 2015.
DOI: 10.1007/978-3-319-27653-3_8

80 A. de la Vega et al.

or what are the advantages of K-means as compared to other clustering algo-
rithms, such as X-means [13]. Since decision makers lack of this knowledge, they
need to rely on third-parties to carry out these data analysis processes, which
leads to a costs increment and a productivity reduction.

In other areas of software development, Domain Specific Languages (DSLs)
[9,18] have been created in order to allow users without expertise in a certain tech-
nology to use it. This is achieved by abstracting low level details of the underlying
technology and by using a syntax and a terminology familiar to the end-user.

Therefore, we propose to build DSLs for data analysis. These DSLs would
allow decision makers to formulate queries about the performance of a business
process using a syntax and terminology familiar to them. Then, these queries
would be automatically transformed into invocations of specific algorithms for
data analysis. The DSL syntax should hide all the details associated with data
analysis techniques to the end-user, who might remain unaware of how these
techniques are used.

This article explores the feasibility of this idea by showing how a DSL with
these characteristics can be developed for the e-learning domain. The objective
of this DSL is to analyze the performance of a course hosted on an e-learning
platform, such as Moodle, by using data, like the students’ activity, gathered via
this kind of platform. The final users of the DSL will be teachers and instructors,
so it must use a syntax and a terminology familiar to them. Similar DSLs might
be created for other domains following the process described in this article.

For the development of the DSL, we will make use of modern model-driven
engineering techniques. More specifically, we will follow the development process
proposed by Kleppe [9].

After this introduction, this article is structured as follows: Sect.2 describes
the domain our DSL targets. Section3 comments on related work. Sections4
and 5 explain how a DSL for the educational domain has been developed. Finally,
Sect. 6 discusses the benefits of this work and concludes this article.

2 Educational Data Mining

The first step to develop a DSL, according to [12], is to know for what purpose
the DSL will be used and obtain a sound knowledge of the domain it will target.
In our case, this domain will be the educational domain, and we are mainly
interested in knowing for what kind of questions decision makers would like
to get an answer. Moreover, we are also interested in discovering what data is
available to compute these answers. The domain information has been obtained
using our own experience in the educational data mining domain as well as
the assistance of several external teachers and instructors. In the following, the
Educational Data Mining domain is described briefly.

Data Mining is the process of discovering interesting patterns and knowledge
from large amounts of data [8]. In the last few years, it has been applied to the
educational domain, what is known as Fducational Data Mining (EDM) [17].
Educational Data Mining aims to take advantage of the data gathered by e-
learning platforms, such as BlackBoard [16] or Moodle [15], which store data

Towards a DSL for Educational Data Mining 81

related to the activity carried out by the students of their courses. Educational
Data Mining is defined as “an emerging discipline, concerned with developing
methods for exploring the unique types of data that come from educational set-
tings, and using those methods to better understand students, and the settings
which they learn in.” [17]. The discovered information could be useful for teach-
ers and instructors in order to improve the performance of their teaching-learning
processes.

For instance, at the beginning of a course, a teacher might be interested in
what kind of students’ profiles exist. Based on the obtained information, the
teacher might adapt the course before it starts in order to tune it for these
students. Thus, at the beginning of the course, the teacher could ask: “What
are the profiles of my students?”. This information can be computed by using
clustering techniques [8] on the students’ demographic and activity data.

When the course finishes, teachers are usually worried about the students
that have not passed the course. Therefore, they would like to refine the previous
question and ask: “What are the profiles of the students who have not passed?”.
As before, this information can be computed using clustering techniques on the
students’ data, but removing those students that have passed from this dataset.
Moreover, teachers are obviously interested in asking “What are the reasons why
my students failed?”. This might be partially answered by applying classification
techniques [8] on the students’ data, by analysing the student activity logs to
find out these reasons.

Obviously, most teachers know nothing about clustering and classification
rules, so they cannot use these techniques directly by themselves. This is the
reason behind the aim of hiding these details to the end-user.

Next section analyses whether this objective can be achieved using current
state-of-art techniques.

3 Related Work

To the best of our knowledge, there is little work done about how to make data
analysis techniques more usable by decision makers. The approaches which tackle
this issue can be grouped in two sets.

The first group aims to assist decision makers in the process of defining a
data analysis process. For instance, [5] defines a method where end-users are
prompted with different questions, which guide them in the definition of a data
mining process that fits in with their needs.

For example, a question could be if the decision maker is interested in com-
puting the profiles of a certain dataset. If so, the user is asked for more detailed
information that is required to execute this task. Some of these questions might
result confusing. As an example, the user should be able to answer about how a
certain data is represented, if as a string label or as a numerical value. An aver-
age decision maker might not know these technical details. Moreover, answering
these questions can be a large and tedious process, which could lead to build
wrong mining models or to stop using the tool.

82 A. de la Vega et al.

In [2], a query-by-example based language is defined. In basic query-by-
example, the decision maker constructs a prototype of an answer for the ques-
tion he or she would like to ask. This prototype is a table, where each column
represents an attribute of the desired answer. These columns can be constrained
to certain values, which are used to select the desired results. The system depicted
in [2] enhances this table with specific columns to execute data mining processes.
Again, the information we need to supply in these columns requires some knowl-
edge of the underlying data analysis technique to be applied, so the user is not
completely unaware of these techniques. Moreover, the construction of these pro-
totypes is based on data warehouse concepts, such as OLAP (On-Line Analytical
Processing) [20]. Average decision makers also often lack of this kind of knowledge.

In the second group, there are software applications with prebuilt data min-
ing processes which can be directly executed by decision makers. An example
of this strategy is E-learning Web-Miner (EIWM) [21]. EIWM is a web-based
application whose objective is to allow instructors to analyse the performance
of a course hosted in an e-learning platform. At the time of writing this article,
EIWM offers instructors answers to three different queries: (1) what kinds of
resources are frequently used together (e.g., forum, mail) in each learning ses-
sion; (2) what are the profiles of the different sessions carried out by students;
and (3) what are the profiles of the students enrolled in a course.

In this case, the main limitation is that the set of queries is fixed and they
cannot be refined without modifying the application. For instance, if we wanted
to compute the profiles of assignments which students have failed; or the profiles
of students that do not pass the course, we would need to update the application
to allow this more specific filtering.

By developing DSLs for data analysis, we expect to overcome these shortcom-
ings. Next sections describe how this task is accomplished for the educational
domain.

4 Grammar Specification

As previously commented, we will follow the process proposed by Kleppe [9] for
the development of the DSL. According to this process, the first step to imple-
ment a DSL, once the knowledge about the target domain has been collected, is
to specify its grammar. Next subsections describe how this step is accomplished.

The definition of a grammar for a DSL, following a model-driven perspective,
implies the definition of an abstract syntax and a concrete syntax. The abstract
syntax specifies the grammar of a language independently of how this model is
represented. The concrete syntax is a specific rendering, either textual or visual,
for the abstract syntax. We describe both elements below.

4.1 Abstract Syntax

Abstract syntaxes are usually specified by using metamodels [11]. A metamodel
can be considered as a model of the syntax of a language. For the construction of

Towards a DSL for Educational Data Mining 83

E Query
1..1 queryClause 1.1 dataSet
E QueryClause E DataSet

= name : EString

0..1|filter

5 ShowProfile| | E FindReasonsFor H BooleanExpression

condition
1.1

Fig. 1. Abstract syntax of our DSL

this metamodel, we have used Ecore [19], which is the de-facto standard language
for metamodeling. Figure 1 shows the metamodel for our DSL syntax.

According to this metamodel, our language allows us to write queries. A Query
has a QueryClause. In the figure, two query clauses are depicted: ShowProfile and
FindReasonsFor. A query clause can be viewed as a command that hides a data
mining technique. Moreover, each query has an associated DataSet, which must
be available in a well-defined location.

Moreover, a data source can have an associated filter. A filter is a boolean
expression that selects the subset of instances of a data source which satisfies
such expression. The abstract syntax for boolean expressions are not shown in
this article for the sake of simplicity and brevity, as this syntax is probably
known by the reader.

Filters are used to apply a query clause to a specific subset of a data source.
For instance, an instructor might be interested in selecting students that: (1) do
not pass a course; (2) drop out; or (3) are above or below a certain age, among
other options. Obviously, these filters must be written using the attributes of
the data source. For instance, if students’ age is not stored in the database, it
could not be used in a filter.

In the case of the FindReasonsFor clause, an additional condition is required
because the goal of this query is to compute the reason why certain instances of
the data source satisfy a certain condition. As before, this condition is a boolean
expression.

After developing the abstract syntax of our DSL, the next step is to specify
its concrete syntax, which is described in the following subsection.

4.2 Concrete Syntax

We have opted for developing a textual syntax for our DSL. However, this issue
needs to be further investigated, as some decision makers might prefer a graphical
notation.

84 A. de la Vega et al.

00 grammar es.unican.dslEdm.Dsl
01 with org.eclipse.xtext.common.Terminals

02 import "EdDataMiningMetamodel™
03 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

04 Query returns Query:
05 queryClause=QueryClause 'of' dataSet=DataSet;

06 QueryClause returns QueryClause:
07 ShowProfile | FindReasonsFor;

08 ShowProfile returns ShowProfile:
09 'show _profile';

10 FindReasonsFor returns FindReasonsFor:
11 'find reasons for' condition=BooleanExpression;

12 DataSet returns DataSet:
13 name=ID ('with' filter=BooleanExpression)?;

Fig. 2. Textual concrete syntax for our DSL

For the definition of the textual concrete syntax, we have used Xtext [6],
which allows DSL developers to define a textual syntax from a Ecore meta-
model. Using Xtext, a grammar is defined following a notation similar to EBNF
(Eztended Backus—Naur Form), but where the production rules are enhanced
with constructions to create instances of metaclasses from the metamodel as the
grammar is parsed.

Figure 2 shows the concrete syntax for our DSL. Lines 00-03 specify: (1) the
namespace and name for the grammar; (2) include a convenience package called
Terminals, provided by Xtext; and, (3) specifies that the grammar will be based
on the Ecore and the EdDataMiningMetamodel metamodel, which corresponds
to the abstract syntax depicted in Fig. 1.

Then, Lines 04-05 specify Query as the entry point of our grammar. A Query
is composed of a QueryClause, followed by the of keyword and the specification
of a Dataset. Both lines are equivalent to the EBNF rule Query :: = QueryClause
“of 7 DataSet.

Moreover, in Line 04, the return Query clause specifies that an instance of
the Query metaclass (see Fig.1) must be created when this production rule is
executed. Furthermore, the results of executing the DataSet and QueryClause
production rules must be assigned to the queryClause and dataSet attributes of
the Query metaclass, respectively.

Similarly, a QueryClause can be either a ShowProfile or a FindReasonsFor
(Lines 06-07) clause. In the first case, the query clause is simply written using
the show_profile keyword (Lines 08-09). In the second case, after the keyword
find_reasons_for, a boolean expression that serves as condition for evaluating the
query is required (Lines 10-11).

Towards a DSL for Educational Data Mining 85

00 show_profile of Students;
01 show_profile of Students with courseOutcome=fail;

02 find reasons_for courseOutcome=fail of Students;

Fig. 3. Queries written using the DSL

Finally, a Dataset is simply represented by an identifier plus an optional filter
definition (Lines 12-13). This identifier must correspond to an available dataset.
This constraint is checked by means of external rules.

Once the grammar has been specified, a full editor for our grammar, with
syntax colouring, helpers and automatic formatting, as well as parsing, type-
checking and validation capabilities can be automatically generated by Xtezt.
Using this editor, queries as shown in Fig. 3 can be written.

Thus, instructors can now write queries to analyse course performance by
using a terminology that is familiar to them. The next step is to provide exe-
cution capabilities to these queries, which is achieved by translating them into
Java code.

5 Query Execution

To compute the result of a query, data mining techniques are used. For instance,
to identify profiles in a dataset, clustering techniques must be chosen. Therefore,
the strategy to execute a query is to transform it into a Java code snippet which
invokes a prebuilt implementation of the corresponding data mining algorithm.
In our case, these prebuilt implementations are provided by Weka [7], a widely
used data mining tool suite.

It should be taken into account that most data mining algorithms require
the specification of a set of input parameters, which are necessary for tuning the
algorithm. For instance, most clustering techniques require the specification of
the number of clusters to be built. Obviously, if the ultimate goal of the DSL
is to abstract the end user from data mining techniques, it cannot be expected
that the end-user provides the values for these parameters.

Therefore, these parameters have to be self-computed. Currently, there is a
research area inside the data mining field, known as parameter-less data mining,
that aims to build self-configuring data-mining algorithms. Thus, these tech-
niques will be used whenever possible.

To illustrate how this code generation process works, we describe how the
Show Profile queries are transformed into Java code. The query show_profile of
Students with courseOutcome=fail; will be used as an example.

The code generation process has been implemented using templates. More
specifically, we have used EGL (Epsilon Generation Language) [10], which is a
language that allows code generation from Ecore-based models.

86 A. de la Vega et al.

00 DataSource source = new DataSource (" [%$=query.dataSet.name%].arff");
01 Instances ins = source.getDataSet();
02 Instances insFiltered = ins;
[%
03 if (query.dataSet.filter.isDefined()) {
04 var filterConstraints = query.dataSet.filter.operations;
05 for (constraint in filterConstraints) { %]
06 [$=constraint.toFilter () %]
07 [%}
08 }

09 XMeans xm = new XMeans();

10 xm.setMinNumClusters (Clustering.XMEANS MIN NUM CLUSTERS) ;

11 =xm.setMaxNumClusters (Clustering.XMEANS MAX NUM CLUSTERS) ;

12 xm.buildClusterer (insFiltered) ;

13 Visualizer.saveClusterer (xm, Visualizer.ClusterType.XMEANS) ;

Fig. 4. General clustering template

00 [%Qtemplate
01 operation EqualityComparison toFilter() {

02 var attrName = "attr" + self.attrName;

03 var valueName = "value" + self.attrName; %]

04 Attribute [%=attrName%] = ins.attribute("[%=self.attrName%]");
05 String [%=valueName%] = "[%=self.value%]";

06 [$ var filterName = "filter" + self.attrName; %]

07 RemoveWithValues [%=filterName%] = new RemoveWithValues/();

08 [$=filterName%] .setAttributeIndex (

09 Integer.toString ([%$=attrName%].index () + 1));

10 [$=filterName%] .setNominalIndices (

11 Integer.toString ([%=attrName%].indexOfValue ([%$=valueName%]) + 1));
12 [$=filterName%] .setInputFormat (ins) ;

13 [$=filterName%].setInvertSelection (true); // matching entries
14 insFiltered = Filter.useFilter(insFiltered, [%=filterName%]);
15 [%} %]

Fig. 5. Filter for equality comparisons

As a first step, a template is selected based on the query clause. A fragment of
the template applied for the Show Profile queries can be seen in Fig. 4, whereas
the code generated by this template for our example query is shown in Fig. 6.
The code generation process based on this template works as follows:

1. First, the dataset to be analysed is loaded, using the corresponding Weka
helper classes. In this case, Lines 00-01 of Fig.4 are in charge of generating
Lines 04-05 of Fig. 6. The name of the dataset is obtained from the attribute
name of the Dataset metaclass (Fig. 4, Line 00). As previously indicated, the
parser must have checked that a dataset with that name exists.

2. In case the dataset has an associated filter, the code to perform this filter-
ing must be generated. Consequently, the boolean expression which defines
the filter must be transformed into the corresponding Weka code to filter a
dataset according to the values of certain attributes. Figure4, Lines 03—08

Towards a DSL for Educational Data Mining 87

00 package processes;
01 import weka.[...]

02 public class ClusteringSnippet {
03 public static void main(String[] args) throws Exception {

04 DataSource source = new DataSource ("Students.arff");

05 Instances ins = source.getDataSet () ;

06 Instances insFiltered = ins;

07 Attribute attrcourseOutcome = ins.attribute ("courseOutcome");

08 String valuecourseOutcome = "fail";

09 RemoveWithValues filtercourseOutcome = new RemoveWithValues();

10 filtercourseOutcome.setAttributeIndex (Integer
.toString(attrcourseOutcome.index () + 1));

11 filtercourseOutcome

.setNominalIndices (Integer.toString(attrcourseOutcome
.indexOfValue (valuecourseOutcome) + 1));

12 filtercourseOutcome.setInputFormat (ins) ;

13 filtercourseOutcome.setInvertSelection (true); // matching entries
14 insFiltered = Filter.useFilter(insFiltered, filtercourseOutcome) ;
15 XMeans xm = new XMeans () ;

16 xm.setMinNumClusters (Clustering.XMEANS MIN NUM CLUSTERS) ;

17 xm.setMaxNumClusters (Clustering.XMEANS MAX NUM CLUSTERS) ;

18 xm.buildClusterer (insFiltered) ;

19 Visualizer.saveClusterer(xm, Visualizer.ClusterType.XMEANS) ;

Fig. 6. Code generated after processing the example query

show the template code which processes the constraints of the boolean expres-
sion and converts them to Java code. For each constraint, the toFilter method
is invoked. The implementation of this method is different for each kind of
constraint. In our example, an equality comparison is used to filter those
students whose courseOQutcome is fail. Therefore, the toFilter method corre-
sponding to equality comparisons is invoked. The code generation template
corresponding to this operation is shown in Fig. 5. This template makes use
of the existent Weka filter Remove WithValues to achieve this goal. Figure 6,
Lines 07-14 show the resulting code for our concrete example.
. Then, the code for executing the clustering algorithm on the loaded dataset is
generated (Fig. 4, Lines 09-12, Fig. 6, Lines 15-18). In our case, the X-means
algorithm [13] is selected to perform the clustering. The advantage of this
algorithm is that it can estimate the number of clusters that should be created
for a particular dataset. X-means only requires that this number is bound to
a certain range. Therefore, if the lower and upper bounds of this range are
set to proper values, the X-means algorithm can be used as a self-configuring
algorithm. Since teachers expect to find at least two different students groups,
2 is a reasonable lower bound in this case. For a normal course, 20 is a number
of clusters high enough to be considered as infinite, thus it is a reasonable
upper bound for our algorithm. Therefore, the responsibility of determining

88 A. de la Vega et al.

the number of clusters to be created is delegated into the X-means algorithm,
which automatically calculates it.

4. Finally, Fig.6, Line 13 shows how the result of the X-means algorithm is
placed in an output file, which is read by a visualization tool in order to
adequately render the results in a user-friendly way.

The code generation process for the FindReasonsFor queries would be sim-
ilar, but in this case, a classification algorithm would be invoked, precisely, the
J48 implementation provided by Weka of the C4.5 decision tree algorithm [14].
Therefore, a different EGL template would be used in this case.

With this last step, the development of our DSL for Educational Data Mining
is finished. DSLs for applying data mining techniques in other domains might be
developed following a similar process. Several excerpts of the DSL are agnostic
of the target domain, thus they could be reused and, consequently, a remarkable
reduction in the cost and development effort of a new DSL could be achieved.

Next section discusses whether this DSL satisfies the objectives of this work
and concludes this article.

6 Conclusions

This article has shown how a Domain-Specific Language for Educational Data
Mining can be developed. This DSL allows teacher and instructors of courses
hosted in e-learning platforms to analyse the performance of their teaching-
learning processes by means of applying data mining techniques on the data
contained in such a platform. The DSL approach provides two benefits as com-
pared to current state-of-art techniques.

First, the DSL abstracts low level-details of data analysis techniques, so it
can be used by instructors without any knowledge of these techniques. Thus,
our approach offers a solution to bridge the gap between data analysis tools
and decision makers. The DSL syntax only contains high-level keywords and
references to entities and attributes of the target domain data model. Thus, the
DSL contains a terminology that should be known by the decision makers, who
would be instructors and teachers in the case of the educational domain.

Secondly, the DSL is flexible enough to support the elaboration of arbitrary
complex new queries. This is an advantage as compared to approaches that
develop tools able to compute concrete tasks. EIWM [21] is an example of such
a tool. As commented in Sect.3, using EIWM students’ profiles of a course
can be computed. However, the profiles of students above a certain age cannot
be computed without modifying the application. Similarly, we cannot calculate
profiles of other entities, such as assignments, without updating the tool. This
is, each time we want to modify a query, the application must be updated to
support it.

Oppositely, the DSL offers a more flexible interaction. There exists limi-
tations, as decision makers cannot ask any arbitrary question and they must
adhere to the available query clauses. Thus, the included set of clauses should

Towards a DSL for Educational Data Mining 89

cover the potential questions decision makers are interested in asking. Moreover,
the queries must be written following the syntactic rules of the grammar, as the
necessity to parse them with a computer prevents the usage of most informal
natural language expressions.

As future work, we expect to add more query options to the DSL for the
educational domain, as well as to develop DSLs for other domains. More specifi-
cally, we are interested in developing DSLs for the performance analysis of work
processes in the public administration.

Acknowledgements. This work has been partially funded by the Government of
Cantabria (Spain) under the doctoral studentship program from the University of
Cantabria, and the Spanish Government and FEDER funder under grant TIN2011-
28567-C03-02 (HI-PARTES).

References

1. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1027-1035, New Orleans (Louisiana, USA), January 2007

2. Azevedo, A., Santos, M.: Binding data mining to final business users of business
intelligence systems. In: 1st International Conference on Intelligent Systems and
Applications (Intelli), pp. 7-12, April-May 2012

3. Baesens, B.: Analytics in a Big Data World: The Essential Guide to Data Science
and Its Application. Wiley, New York (2014)

4. Bughin, J., Chui, M., Manyika, J.: Clouds, big data and smart assets: ten tech-
enabled business trendsto watch. McKinsey Q. 56, 1-14 (2010)

5. Espinosa, R., Garcia-Saiz, D., Zorrilla, M., Zubcoff, J.J., Mazén, J.-N.: Enabling
non-expert users to apply data mining for bridging the big data divide. In:
Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) SIMPDA 2013. LNBIP, vol.
203, pp. 65-86. Springer, Heidelberg (2015)

6. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Companion to the 25th Annual Conference on Object-Oriented
Programming, Systems, Languages, and Applications (SPLASH/OOPSLA), pp.
307-309, Reno/Tahoe (Nevada, USA), October 2010

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10-18

(2009)

Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann, USA (2005)

9. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
using Metamodels. Addison-Wesley Professional, Reading (2008)

10. Kolovos, D.S., Paige, R.F., Rose, L.M., Williams, J.: Integrated model manage-
ment with epsilon. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.)
ECMFA 2011. LNCS, vol. 6698, pp. 391-392. Springer, Heidelberg (2011)

11. Kiihne, T.: Matters of (meta-)modeling. Softw. Syst. Model. 5(4), 369-385 (2006)

12. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316-344 (2005)

13. Pelleg, D., Moore, A.: X-means: extending K-means with efficient estimation of
the number of clusters. In: Proceedings of the 17th International Conference on
Machine Learning, pp. 727-734. Morgan Kaufmann (2000)

o

90

14.

15.

16.

17.

18.

19.

20.

21.

A. de la Vega et al.

Quinla, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco (1993)

Rice, W.: Moodle E-Learning Course Development. Packt Publishing, Birmingham
(2006)

Rice, W.: Blackboard Essentials for Teachers. Packt Publishing, Birmingham
(2012)

Romero, C., Ventura, S.: Data mining in education. Wiley Interdisc. Rev.: Data
Mining Knowl. Discov. 3(1), 12-27 (2013)

Sierra, J.L.: Language-driven software development (invited talk). In: Pereira,
M.J.V., Leal, J.P., Simdes, A. (eds.) 3rd Symposium on Languages, Applications
and Technologies. OpenAccess Series in Informatics (OASIcs), vol. 38, pp. 3-12
(2014)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, vol. 2. Addison-Wesley Professional, Reading (2008)

Wrembel, R., Koncilia, C.: Data Warehouses and Olap: Concepts, Architectures
and Solutions. IRM Press, London (2006)

Zorrilla, M., Garcia-Saiz, D.: A service-oriented architecture to provide data mining
services for non-expert data miners. Decis. Support Syst. 55(1), 399411 (2013)

	Towards a DSL for Educational Data Mining
	1 Introduction
	2 Educational Data Mining
	3 Related Work
	4 Grammar Specification
	4.1 Abstract Syntax
	4.2 Concrete Syntax

	5 Query Execution
	6 Conclusions
	References

