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Faculty of Sciences, CRACS and INESC-Porto LA,
University of Porto, Porto, Portugal
{teresa.costa,zp}@dcc.fc.up.pt

Abstract. In the previous research the authors developed a family of
semantic measures that are adaptable to any semantic graph, being auto-
matically tuned with a set of parameters. The research presented in this
paper extends this approach by also tuning the graph. This graph reduc-
tion procedure starts with a disconnected graph and incrementally adds
edge types, until the quality of the semantic measure cannot be further
improved. The validation performed used the three most recent versions
of WordNet and, in most cases, this approach improves the quality of
the semantic measure.
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1 Introduction

This paper is part of an ongoing research [6,12,13] aiming at the development of a
methodology for creating semantic measures taking as source any given semantic
graph. This methodology, called SemArachne, does not require any particular
knowledge of the semantic graph and is based on the notion of proximity rather
than distance. It considers virtually all paths connecting two terms with weights
depending on edge types. SemArachne automatically tunes these weights for
a given semantic graph. The validation of this process was performed using
WordNet 2.1 [8] with WordSimilarity 353 [9] data set with results better than
those in the literature [13].

WordNet 2.1 has a smaller graph when compared with the recent versions
of it or even other semantic sources, such as DBpedia or Freebase. Not only the
number of nodes and edge types increases as the number of graph arcs expands
enabling them to relate semantically a large number of terms, making graphs
not only larger but also denser. Compute proximity in these conditions comes
with a price. Since SemArachne considers all the paths, the number of paths to
process tends to increase.

A rough measure of graph density is the maximum degree of all its nodes.
However, consider it can be misleading since there may be a special node where
all the edge types are applied. The real challenge is then the graph average node
degree. SemArachne computes all paths connecting a pair of terms up tp a given
c© Springer International Publishing Switzerland 2015
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length. The node degree is the branching factor for the paths crossing that node.
Hence, a high average node degree reduces the efficiency of the SemArachne
measure.

The alternative explored in this paper to reduce graph density is to reduce
the number of edge types while keeping all nodes, thus preserving the potential
to relate a larger set of terms. The approach is to incrementally build a subgraph
of the original semantic graph. This process starts with a full disconnected graph
containing all the nodes. At each iteration, a new edge type is added until the
semantic measure quality stops to improve. The result of this process is a sub-
graph where the semantic quality is maximized. The semantic measure used by
SemArachne [12] had also some minor adjustments.

The rest of the paper is organized as follows. The next section surveys the
state of the art on semantic relatedness. Section 3 summarizes previously pub-
lished work and Sect. 4 details the approach followed to measure semantic relat-
edness is larger graphs. The experimental results and their analysis can be found
in Sect. 5. Finally, Sect. 6 summarizes what was accomplished so far and identifies
opportunities for further research.

2 Related Work

Semantic measures are widely used today to measure the strength of the semantic
relationship between terms. This evaluation is based on the analysis of informa-
tion describing the elements extracted from semantic sources.

There are two different types of semantic sources. The first one are unstruc-
tured and semi-structured texts, such as plain text or dictionaries. Texts have
evidences of semantic relationships and it is possible to measure those relation-
ships using simple assumptions regarding the distribution of words. This source
type is mainly used by distributional approaches.

The second type of semantic sources is more general and includes a large
range of computer understandable resources where the knowledge about elements
is explicitly structured and modeled. Semantic measures based on this type of
source rely on techniques to take advantage of semantic graphs or higher formal
knowledge representations. This source type is mainly used by knowledge-based
approaches.

Distributional approaches rely on the distributional hypothesis [11] that states
that words in a similar context are surrounded by the same words and are likely
to be semantically similar. There are several methods following this approach,
such as the Spatial/Geometric methods [10], the Set-based methods [5], and the
Probabilistic methods [7].

The knowledge-base approaches rely on any form of knowledge representation,
namely semantic graphs, since they are structured data from which semantic rela-
tionships can be extracted. They consider the properties of the graph and elements
are compared by analysing their interconnections and the semantics of those rela-
tionships. Several methods have been defined to compare elements in single and
multiple knowledge bases, such as Structural methods [14,15,22,24], Feature-
based methods [4,23,27] and Shannon’s Information Theory methods [16,19–21].
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Knowledge-based approaches have the advantage of controlling which edge
types should be considered when comparing pairs of elements in the graph. They
are also easier to implement than distributional methods and have a lower com-
plexity. However they require a knowledge representation containing all the ele-
ments to compare. On the other hand, using large knowledge sources to compare
elements is also an issue due of high computational complexity.

There are also hybrid approaches [2,3,18,24] that mix the knowledge-based
and the distributional approaches. They take advantage of both texts and knowl-
edge representations to estimate the semantic measure.

3 Previous Work

This section summarizes previously published work [12,13] that is the core of
SemArachne and relevant for the graph reduction process described in the next
section. The first subsection details on the semantic measure and the following
subsection on the quality measure. The last subsection details on the fine tune
process.

3.1 Semantic Measure

A semantic graph can be defined as G = (V,E, T,W ) where V is the set of
nodes, E is the set of edges connecting the graph nodes, T is the set of edge
types and W is a mapping of edge types to weight values. Each edge in E is a
triplet (u, v, t) where u, v ∈ V and t ∈ T .

The set W defines a mapping w : T �→ Z. The bound of the absolute weight
values1 for all edge types is defined by

Ω(G) ≡ maxti∈T | w(ti) |

To measure the proximity between a pair of terms it is necessary to build a
set of distinct paths that connects them by walking through the graph. A path
p of size n ∈ N

+ is a sequence of unrepeated nodes u0 . . . un∀0≤i,j≤nui �= uj ,
linked by typed edges. It must have at least one edge and cannot have loops.
A path p is denoted as follows:

p = u0
t1−→ u1

t2−→ u2 . . . un−1
tn−→ un

The weight of an edge depends on its type. The weight of a path p is the sum
of weights of each edge, ω(p) = w(t1) + w(t2) + . . . + w(tn). The set of all paths
of size n connecting the pair of concepts is defined as follows and its weight is
the sum of all its sub paths.

Pn
u,v = {u0

t1−→ u1 . . . un−1
tn−→ un : u = uo ∧ v = un ∧ ∀0≤i,j≤n ui �= uj}

1 This semantic measure accepts negative weights for some types of edges.
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The semantic measure is based on the previous definition and also considers
the path length. Δ is the degree of each node in each path. The proximity
function r is defined by the following formula.

r(u, v) =

⎧
⎪⎨

⎪⎩

1 ← u = v

1
Ω(G)

∞∑

n=1

1
2n.n.Δ(G)n

∑

p∈Pn
u,v

ω(p) ← u �= v (1)

Given a graph with a set of nodes V , where r : V ×V �→ [−1, 1], the proximity
function r takes a pair of terms and returns a “percentage” of proximity between
them. The proximity of related terms must be close to 1 and the proximity of
unrelated terms must be close to –1.

This definition of proximity depends on weights of transitions. The use of
domain knowledge to define them has been proved a näıve approach since an
“informed opinion” frequently has no evidence to support it and sometimes is
plainly wrong. Also, applying this methodology to a large ontology with several
domains can be hard. To be of practical use, the weights of a proximity based
semantic relatedness measure must be automatically tuned. To achieve it, it
is necessary to estimate the quality of a semantic measure for a given set of
parameters.

3.2 Quality Measure

The purpose of the quality measure is to compute the quality of a semantic
measure defined by (1) for a particular set of parameters. In order to simplify
and optimize the quality measure, it is necessary to factor out weights from the
semantic measure definition. Thus its quality may be defined as function of a set
of weight assignment.

The first step is to express the semantic measure in terms of weights of edge
types. Consider the set of all edge types T with �T = m and the weight of its
elements w(t),∀t ∈ T . The second branch of (1) can be rewritten as follows,
where ci(a, b), i ∈ {1..m} are the coefficients of each edge type.

r(a, b) = α

∞∑

n1

β
∑

Pj∈P

∑

t∈Pj

w(t) =
m∑

i=1

ci(a, b) · w(ti)

Edge type weights are independent of the arguments of r but the coefficients
that are factored out depend of these arguments. It is possible to represent
both the weights of edges and their coefficients, (w(t1), w(t2), . . . , w(tk)) = w
and (c1(a, b), c2(a, b), . . . , cm(a, b) = c(a, b)) respectively, by defining a standard
order on the elements of T . This way the previous definition of r may take as
parameter the weight vector, as follows

w(a, b) = c(a, b) · w
The method commonly used to estimate the quality of a semantic relatedness

algorithm is to compare it with a benchmark data set containing pairs of words
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and their relatedness. The Spearman’s rank order correlation is widely used to
make this comparison.

Consider a benchmark data set with the pairs of words (ai, bi) for 1 ≤ i ≤ k,
with a proximity xi. Given the relatedness function rw : S ×S �→ � let us define
yi = rw (ai, bi). In order to use the Spearman’s rank order coefficient both xi

and yi must be converted to the ranks x′
i and y′

i.
The Spearman’s rank order coefficient is defined in terms of xi and yi,

where xi are constants from the benchmark data set. To use this coefficient
as a quality measure it must be expressed as a function of w . Considering that
y = (rw (ai, bi), . . . , rw (an, bn)) then y = Cw , where matrix C is a n×m matrix
and where each line contains the coefficients for a pair of concepts and each
column contains coefficients of a single edge type. Vector w is a m × 1 matrix
with the weights assigned to each edge type. The product of these matrices is
the relatedness measure of a set of concept pairs.

Considering ρ(x ,y) as the Spearman’s rank order of x and y , the quality
function q : �n �→ � using the benchmark data set x can be defined as

qx (w) = ρ(x , Cw) (2)

The next step in the SemArachne methodology is to determine a w that
maximizes this quality function.

3.3 Fine Tuning Process

Genetic algorithms are a family of computational models that mimic the process
of natural selection in the evolution of species. This type of algorithms uses
concepts of variation, differential reproduction and heredity to guide the co-
evolution of a set of problem solutions. This algorithm family is frequently used
to improve solutions of optimization problems [29].

In the SemArachne the candidate solution – individual – is a weight values
vector. Consider a sequence of weights (the genes), w(t1), w(t2), . . . , w(tk), taking
integer values in a certain range, in a standard order of edge types. Two possible
solutions are the vectors v = (v1, v2, . . . , vk) and t = (t1, t2, . . . , tn). Using
crossover, it is easy to recombine the “genes” of both “parents” resulting in
u = (v1, t2, . . . , tn−1, vk).

This is a closer representation of the domain than the typical binary one. It
can also be processed more efficiently with large number of weights. In this tuning
process the genetic algorithm only have a single kind of mutation: randomly
selecting a new value for a given “gene”.

The fitness function plays a decisive role in the selection of the new generation
of individuals. In this case, individuals are the vector of weight values w , hence
the fitness function is in fact the quality function previously defined in (2).

4 Graph Reduction Procedure

The previous section explained how to tune the weights of a semantic measure
by using a genetic algorithm with an appropriate quality function. This section
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Fig. 1. Semantic graph reduction procedure

introduces a procedure for selecting a subgraph of the original semantic source
with a reduced density by repeatedly applying that procedure.

Figure 1 depicts the overall strategy. It starts with a fully disconnected graph
by omitting all the edges. The small graph on the left in Fig. 1 shows the arcs
as dotted lines to denote the original connections. When a single property (edge
type) is added to this graph a number of paths is created. If the original graph
has n property types then one can create n different subgraphs. The quality of
these graphs can be measured using the approach described in the last section.
The best of these candidates is the selected graph for the first iteration. This
process continues until the quality of the candidate graphs cannot be further
improved.

More formally, consider a semantic graph G = (V,E, T,W ) where V is the
set of nodes, E is the set of edges connecting the graph nodes, T is the set of
edge types and W is a mapping of edge types to weight values. The initial graph
of this incremental algorithm is G0 = (V, ∅, ∅, ∅). This is a totally disconnected
graph just containing the nodes from the original graph, i.e., edges, types and
weights are all the empty set.

Each iteration builds a new graph Gk+1 = (V,Ek+1, Tk+1,Wk+1) based on
Gk = (V,Ek, Tk,WK). The new set of types Tk+1 has all the types in Tk. In fact,
several candidate Gi

k can be considered, depending on the types in T − Tk that
are added to Tk+1. The arcs of Ei

k+1 are those in E whose type is in T i
k+1. The

general idea is to select the Gi
k+1 that produces an higher increment on semantic

measure quality. This algorithm stops when no candidate is able to improve it.
In general, computing the semantic measure quality of Gi

k+1 is a time con-
suming task. However, there are some ways to make it more efficient. As shown
in Fig. 1, if Gi

k+1 is not a connected graph then the quality measure cannot be
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computed. This means that for the first iteration many G1
k+1 can be trivially

discarded. Moreover, if Ei
k+1 = Ei

k then the semantic quality measure is the
same. This insight can be used to speedup the iterative process. The paths con-
necting pairs of concepts using arcs in Ek+1 are basically the same that used Ek.
The new paths must appear on the nodes of previous paths and can only have
arcs of types in Tk+1. This insight can be used to compute the quality of Gi

k+1

incrementally based on the computation of Gi
k.

The generation of the sets T i
k+1 is a potential issue. Ideally T i

k+1 would
have just one element more than T i

k. However this may not always be possible2.
Consider T i

1, the candidate sets of types for the first iteration. In most cases
they will produce a disconnected graph, hence with a null semantic measure
quality. They will only produce a connected graph if the selected type creates a
taxonomy. In many cases this involves 2 types of arcs: one linking an instance
to a class, another linking a class to its super-class. To deal with this issue the
incremental algorithm attempts first to generate T i

k+1 such that �T i
k+1 = �T i

k +1,
where � stands for set cardinality. In none of these improve the semantic measure
quality then it attempts to generate T i

k+1 such that �T i
k+1 = �T i

k+2, and so forth.

5 Validation

The validation of SemArachne was performed using the semantic graphs of dif-
ferent versions of WordNet along with three different data sets.

WordNet3 [8] is a widely used lexical knowledge base of English words. It
groups nouns, verbs, adjectives and adverbs into synsets – a set of cognitive syn-
onyms – that expresses distinct concepts. These synsets are linked by conceptual
and lexical relationships. The validation process used three different data sets:
WordSimilarity-3534 [9] Rubenstein & Goodenough [25] (RG65) and Miller &
Charles [17] (MC30).

Table 1 compares the performance of SemArachne against the state of the
art for methods using the same knowledge-based approach. For WordNet 2.1,
SemArachne achieves a better result than those in the literature when using
WordSim-353 data set. Using WordNet 3.1 as semantic graph, SemArachne pro-
duces also a better semantic quality than those in the literature. Although results
are not the best in the WordNet 3.0, despite the data set used, they have the
same order of magnitude.

The quality of the semantic measure produced with graph reduction was vali-
dated against several approaches in the literature. An advantage of this method-
ology is the ability of measure the semantic relatedness regardless the semantic
graph used and produce comparable results for each semantic graph and data
set. It is also scalable, since it handles gradually larger graphs.

2 However, so far this situation has not yet occurred in validation.
3 http://wordnet.princeton.edu/.
4 http://www.cs.technion.ac.il/∼gabr/resources/data/wordsim353/wordsim353.html.

http://wordnet.princeton.edu/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html
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Table 1. Spearman correlation of SemArachne compared with literature

Graph Data set Edges
selected

SemArachne
correlation

Literature
correlation

Author

WordNet 2.1
(26 edge types)

MC30 14 0.81 0.82 Strube et al. [28]
2006

RG65 8 0.60 0.86

WS-353 21 0.45 0.36

WordNet 3.0
(47 edge types)

MC30 16 0.80 N/A Agirre et al. [1]
2009

RG65 9 0.63 0.78

WS-353 20 0.48 0.56

WordNet 3.1
(64 edge types)

MC30 14 0.97 0.87 Siblini et al. [26]
2013

RG65 8 0.94 0.92

WS-353 24 0.54 0.50

6 Conclusion

As semantic graphs evolve they become larger. Since larger graphs relate more
terms this improves their potential as semantic sources for relatedness measures.
However, these larger graphs are also a challenge, in particular to semantic mea-
sures that consider virtually all paths connecting two nodes, as is the case of
SemArachne.

The major contribution of this paper is an incremental approach to select a
subgraph with a reduced number of edge types (arcs) but with the same num-
ber of entities (nodes). This approach starts with a totally disconnected graph,
at each iteration adds an arc type that increases the quality of the semantic
measure, and stops when no improvement is possible.

These contributions were validated with different versions of WordNet, a
medium size graph typically used as semantic source for relatedness measures.
Although this is not the kind of large semantic graphs to which this approach is
targeted, it is convenient for initial tests due to its relatively small size.

In the WordNet graph the reduction of properties is not so expressive, since
the total number of properties is comparatively small. The obtained subgraphs
do not always improve the quality of the SemArachne measure, but produce a
result that is similar, and in most cases better, than best method described in
the literature for that particular graph.

The immediate objective of the SemArachne project is to extend the valida-
tion presented in this paper to other data sets and, most of all, to other graphs.
Massive graphs with very high density, such as Freebase, are bound to create new
and interesting challenges. Another important consequence of this graph reduc-
tion procedure is that it decouples the original graph from the actual semantic
source. Thus SemArachne can be extended to process multiple semantic graphs
(with shared labels) and create an unified semantic measure combining their
semantic power.
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