
SplineAPI: A REST API for NLP Services

Nuno Vieira1, Alberto Simões1,2(B), and Nuno Ramos Carvalho1

1 Centro Algoritmi, Universidade do Minho, Braga, Portugal
nunovieira220@gmail.com, ambs@ilch.uminho.pt, narcarvalho@di.uminho.pt

2 Centro de Estudos Humańısticos, Universidade do Minho, Braga, Portugal

Abstract. Modern applications often use Natural Language Process-
ing (NLP) techniques and algorithms to provide sets of rich features.
Researchers, who come up with these algorithms, often implement them
for case studies, evaluation or as proof of concepts. These implementa-
tions are, in most cases, freely available for download and use.

Nevertheless, these implementations do not comprise final software
packages, with extensive installation instructions and detailed usage
guides. Most lack a proper installation mechanism and library depen-
dency tracking. The programming interfaces are, usually, limited to their
usage through command line, or with just a few programming languages
support.

To overcome these shortcomings, this work aims to develop a new web
platform to make available a set of common operations to third party
applications that can be used to quickly access NLP based processes.
Of course this platform still relies on the same tools mentioned before,
as a base support to specific requests. Nevertheless, the end user will
not need to install and learn their specific Application Programming
Interfaces (API). For this to be possible, the architectural solution is to
implement a RESTful API that hides all the tool details in a simple API
that is common or, at least, coherent, across the different tools.

Keywords: Natural language processing · REST API · Web service ·
DSL

1 Introduction

Natural Language Processing (NLP) techniques are being used in very different
types of applications.

Some companies are mining social communities to find out what their cus-
tomers think about their products or services [3]. Others are making their infor-
mation available in different languages by using machine translation techniques
[9]. Newspapers and other news agencies, are using NLP techniques to summarise
news and cluster them by specific areas, or based on their similarities [5].

Any one of these applications require a stack of NLP tools to work. This stack
can be very different from tool to tool, but might include common tasks like:
language identification, text segmentation, sentence tokenization, part of speech

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 205–215, 2015.
DOI: 10.1007/978-3-319-27653-3 20

206 N. Vieira et al.

tagging, dependency parsing, probabilistic translation, dictionaries querying, or
named entity detection, just to mention some [6].

Although there are some NLP toolkits that include a good number of tools
for most of these tasks [1,4], developers are likely to need other tools that are
not directly available. This leads to the installation of different tools. If the
developers need to support a wide range of languages, this list of tools is prone
to grow, as some tools are not language independent or because they do not
include training data for some of the required languages.

These requirements lead to the need of installing a variety of tools to have a
complete NLP stack. Unfortunately, most of these installations are not as simple
as they should be, as most of their developers are more interested in using the
tools and adding new features than to document their usage and installation,
or to provide good installation procedures. This leads to the need of dealing
with different kinds of installation problems, and to learn each tool application
programming interface (API).

Although our NLP team is small, we have been dealing with this problem for
some time, and therefore, we are proposing a tool and a service to hide all these
details from the end-user, making these libraries available as web services based
in the REST philosophy. Of course that, if the web services are, themselves, using
those same tools, someone will need to deal with the installation procedure, and
will need to learn its usage. But if this process could be done only once, and the
installed tools are available as a simple web service, application development is
faster, and application deployment gets easier.

As a side benefit, having a different server running some tools, helps in dis-
tribution. Even if at the moment we have the system working on a single server,
it is simple to distribute the tools between different machines.

Nevertheless, the process of making these tools available through a web ser-
vice is not straightforward, as one needs to deal with timely processes, that can
not be served easily using a single HTTP request, given timeouts; problems on
service abuse; problems on load distribution, and others.

In this paper we present SplineAPI, that is both a service, that we are making
available for free, and a platform, for anyone to replicate this kind of service in
their own servers. Section 2 will compare our proposal with other services already
available on the Web. Section 3 includes a presentation of our design goals as
well as the SplineAPI architecture and implementation. Section 4 concludes with
future work.

2 Related Work

The idea to make APIs available through web services is not new. There are
several platforms that make NLP processes available online, each with its own
characteristics and targeting different kinds of users. They range from simple
tools that allow a single kind of task to be performed, to fully featured sites
with a diverse set of functionalities.

SplineAPI: A REST API for NLP Services 207

In this section we compare our main goals with some of the tools already
available. We focused mainly on tools that have more similarities with our app-
roach. Therefore, we are looking mainly to tools that include more than one
kind of task and targeting more than one type of user. Then, we looked up their
popularity.

The main differences from the analysed platforms and our main goals are:

– some of the platforms are not NLP specific, like Mashape. They just work like
a proxy that hides some of the web-services requirements (like user authenti-
cation and quota management). Nevertheless, there is no information about
how the real service is implemented, and if its architecture is generic enough
to be configured for other requirements;

– other platforms, like Text-Processing, although allow different types of ser-
vices, all of them are based on one single tool (in this case, NLTK). Again, no
information is given on the system implementation and how it can be adapted
to other tools, and in specific, for functionalities not available in NLTK.

– and finally, mono-application services. Some are available together in a similar
place, like CORE API by TextAlytics but there is no integration or homo-
geneity between the different offered services.

During the development of SplineAPI our main goal is to have an extensive
system, to be used by anyone interested in offering Web Services, that can be
easily configured and monitored.

3 Design Goals and Architecture Details

The main goal is to create a solution that minimizes the challenges develop-
ers face, when trying to take advantage from a large set of NLP tools already
available.

In today’s connected world, applications are no longer running only on the
client machine. Also, they are no longer running only server-side. They are dis-
tributed, both on the client machine, server machine and others that might help
in the process.

Therefore, our goal is to help the conversion of NLP tools into web services.
Although the tool installation may be a challenge, the administrator of these
services needs to deal with it, we intend to make the API construction easy,
recurring to a set of Domain Specific Languages (DSL).

With the idea of creating a web API, it was necessary to think what is the
best implementable architecture to develop this idea. The easiest and the cleanest
method, to make available all the NLP tools, is to build a web service. Inside
the web service world, there are various options of architectures, depending on
how do we want to provide the service. The most popular are: Simple Object
Access Protocol (SOAP) and Representational State Transfer (REST), each one
with its own advantages and disadvantages depending on the objective in mind.
When it comes to SplineAPI, the obvious choice was REST [2,8].

208 N. Vieira et al.

REST is more and more popular, and the best benefit it offers, is the opti-
mization for stateless interactions that, in this case, is an essential feature,
because the platform handles specific requests and responses based on text data,
and that, does not require a connection status. To the users, REST is the sim-
plest way to query a service because it is less verbose and easy to understand,
as it bases its interaction with the clients in well known HTTP commands.

With the platform’s architecture decided, it was then fundamental to inves-
tigate the best way of developing all the connections between the tools and the
service, and the software technologies needed to make everything work.

3.1 Spline Architecture

Figure 1 shows our solution architecture. The server is composed of three main
components: the Spline REST server, the NLP tools and their interface defini-
tions, and a quota database.

NLP
Tool

Tool

File

Quota

Spline
REST
Server

Internet

Client

Client

Client

Client

Fig. 1. Spline architecture.

NLP Tools and Definition Files. Different NLP tools communicate in differ-
ent ways with the user. Some tools are command line applications that read infor-
mation from a file, or from the standard input, and produce results in another
file, or into the standard output. Some other are library-based, meaning that
they expose an API that can be used in order to process information and obtain
a desired output.

In order to be able to tackle with these different aspects of tools, each tool
interface is described in an XML file.

This XML file is processed and a Perl module is created. This Perl module
is responsible for the interaction with the Spline REST server, as is detailed in
Sect. 3.2.

SplineAPI: A REST API for NLP Services 209

Listing 1.1. XML example for the Tokenization Service based on FreeLing Perl library.

<s e r v i c e>
<meta batch=” f a l s e ”>

<t o o l>FreeLing</ t oo l>
<name>Tokenizer</name>
<route>t ok en i z e r</ route>
<parameters>

<parameter r equ i r ed=” true ” name=” text ” type=” tex ta r ea ”>
<de s c r i p t i o n>The text to be token ized</ d e s c r i p t i o n>

</parameter>
</parameters>
<d e f i n i t i o n>Process o f breaking a stream of text up in to tokens

.</ d e f i n i t i o n>
<co s t>1</ cos t>

</meta>
<implementation>

<packages>
<package>FL3 ’ pt ’</package>

</packages>
<main lang=” pe r l ”>

my $ pt tok = Lingua : :FreeL ing3 : :Token i z e r−>new(”pt”) ;
my $ tokens = $pt tok−>t oken i z e ($ text , t o t e x t => 1) ;
r e turn $ tokens ;

</main>
</ implementation
<t e s t s>

<t e s t>
<param name=” text ”>I w i l l be token ized .</param>
<code>

ok ($ r e su l t −>[0] eq ’ I ’ , ”Test the f i r s t word”) ;
</code>
<code>

ok ((s c a l a r @{$ r e s u l t }) == 5 , ”Test the r e s u l t l ength ”) ;
</code>

</ t e s t>
</ t e s t s>
<documentation>

<header t i t l e=”module”>Sp l i n e : : F r e eL i n g : :Tok en i z e r − a module that
t oken i z e s your text .</header>

</documentation>
</ s e r v i c e>

The XML structure follows a proper XML Schema that allows the validation
of the XML file. It also defines the domain of specific elements and attributes,
which allow easy verification on the XML semantics.

Listing 1.1 presents an example of an XML definition file. It describes the
interface for a tokenization service based on FreeLing [7] library.

The XML file is composed by three main parts:

– The meta-data for the service includes its name, the back-end tool and the
service route (basically, the path used for the service URL). It also includes
a brief explanation of the service goals, the service usage cost (if applicable)
as well as which parameters should be used in order to request an operation.
Each parameter is described in terms of its name, requiredness, data type
(text, number, file and others) and default values. Note that, when a service
receives file parameters, it request needs to be performed using the POST
HTTP method, with multipart form data.

210 N. Vieira et al.

The file also includes documentation, adding a brief explanation of each para-
meter meaning.

– A description of how the parameters supplied by the users will be used to com-
pute a result. At the moment this is done using Perl code or Bash commands.
In the first case, there are two sections, one describing the Perl packages that
need to be loaded, and another with the code that is executed. For Bash
commands, only the executed code section should be used.
We are aware that for different tools our generator will have different needs,
and therefore this section of the XML definition file might need further options
in the future.

– It includes a set of tests that allow the service programmer or the server
administrator to test if all services are working properly. These tests include
an input for the service and a set of assertions over the obtained output.
Again, at the moment these tests are being written directly in Perl, but we
have been working into incorporate a JSON querying language like JsonPath1

or JSONiq2.
– Finally, the file adds the possibility to document the service as a module. It

divides the information by headers (like chapters) and each one has its own
proper description. It is simply a way to maintain the system’s organization
as well as explain everything in more detail.

The structure of the Perl module generated from these XML definition files
is presented later, in Sect. 3.2.

Quota Database. Although our service is designed to be stateless, meaning
that the service is connection-oriented, we want to record information on service
usage, in order to track users, most used services, and if possible, distribute
different services by different servers, so that highly used services are hosted in
different hardware.

In one hand, each service defines how much a request to it costs. This cost can
be a constant or defined accordingly with the amount of data to be processed.
On the other hand, each client has an amount of quota to be used based on a
cost limit. This quota can differ accordingly with the status of the client or, who
knows, accordingly with a paid plan. Of course there is also the possibility to
turn off quota management completely.

For this to be possible it was created a coin strategy. Each user has a daily
limited amount of coins he can use freely. All the functionalities are different in
their processing time but have a text-based parameter that can be small or big
and, based on that, we stipulated a whole panoply of cost indicators that differ
with the length of the text and the functionality itself. For that to happen, it
was obviously fundamental to create a stateless authentication process to identify
and manage all the users and their requests.
1 A XPath like language for JSON, available from: http://goessner.net/articles/

JsonPath/ (Last visited: 15-04-2015).
2 A very complete and expresssive query language for JSON, available from: http://

www.jsoniq.org/ (Last visited: 15-04-2015).

http://goessner.net/articles/JsonPath/
http://goessner.net/articles/JsonPath/
http://www.jsoniq.org/
http://www.jsoniq.org/

SplineAPI: A REST API for NLP Services 211

Spline REST Server. Considering that Perl is a programming language ade-
quate to process textual data, with a great set of interfaces to other programming
languages, it was the chosen language for the back-end server implementation.

The server is implemented in Perl, using the Dancer2 Web Framework [10].
The interaction with the NLP tools is done using Perl modules generated auto-
matically from the already mentioned XML Definition Files. These modules are
loaded automatically by the server, making all services available.

The server is responsible for querying the quota database and update it
accordingly with the user requests. When called using the standard HTTP pro-
tocol, it presents common web pages documenting the services that are available
(accordingly with the loaded modules) and their interfaces.

This strategy allows the easy creation of new services, just by creating an
XML definition file, converting it into a Perl Module (and in some cases, some
edition of the generated module) and restarting the web server. The new module
will be loaded and its description and documentation will be made available in
the website automatically.

3.2 Perl Module Generation

As already mentioned, the XML definition file is processed and “compiled” into
a Perl module. The Perl module includes information about the service itself
(namely, the meta section of the XML definition file) and a set of methods that
are used both for configuring the service, and to perform the required operations
to provide the service.

The module generation is template based. The meta-information is converted
into an associative array (hash, in Perl terminology), and the Perl code is embed-
ded in a subroutine.

The generated Perl module can be edited manually, to perform any special
tweaks or improvements that might be necessary.

Listing 1.2 shows the relevant portions of the generated Perl module. Each
module should implement a programming interface (called Roles, in Perl world),
making available functions to access some of the needed data. Some of these
functions have default behaviour, and as such, the code generator creates stub
functions that can be then edited by the user. This means that the XML descrip-
tion can be used just for the module bootstrap.

The Perl module should also include a main function that will receive the
request in a dictionary, and should return an answer as a Perl structure. This
structure will be then converted into JSON and sent to the client.

In the Perl community a Perl module is, usually, shipped together with a set
of tests. Therefore, the test information available in the XML definition file is
used to generate such tests, like the one presented in Listing 1.3.

These tests can be used both for testing the Perl module locally, as well as
to test the production service (in order to guarantee all the services are running
correctly).

212 N. Vieira et al.

Listing 1.2. Module generated by the XML example.

package Sp l ine : : FreeLing : : Tokenizer ;

use FL3 ’ pt ’ ;

my %index i n f o = (

hash token => ’ t oken i ze r ’ ,

parameters => {
ap i token => {

de s c r i p t i o n => ”The token to i d e n t i f y the user ” ,

r equ i r ed => 1 ,

type => ’ text ’ ,

} ,

t ex t => {
de s c r i p t i o n => ”The text to be token ized ” ,

r equ i r ed => 1 ,

type => ’ t extarea ’ ,

} ,

} ,

d e s c r i p t i o n => ”Process o f breaking a stream of text up in to tokens

. ” ,

co s t => 1 ,

) ;

sub get token { re turn $ i nd ex i n f o {hash token} }

sub g e t i n f o { re turn \%index i n f o }

sub c o s t f un c t i o n {
return the t o t a l co s t o f the reques t

re turn $ i nd ex i n f o { co s t } ;

}

sub param funct ion {
return 0 or 1 depending on the va l i d a t i on o f the reques t

re turn 1 ;

}

sub main funct ion {
my ($input params) = @ ;

my $ r e s u l t = f r e e l i n g t o k e n i z e r ($input params) ;

my $json = encode j son $ r e s u l t ;

r e turn decode ut f8 ($ j son) ;

}

sub f r e e l i n g t o k e n i z e r {
my ($input params) = @ ;

my $text = $input params−>{t ext } ;

r e turn un l e s s $text ;

my $pt tok = Lingua : : FreeLing3 : : Tokenizer−>new(” pt ”) ;

my $tokens = $pt tok−>t oken i z e ($text , t o t e x t => 1) ;

r e turn $tokens ;

}

1 ;

SplineAPI: A REST API for NLP Services 213

Listing 1.3. Tests generated by the XML example.

use s t r i c t ;

use warnings ;

use HTTP: : Tiny ;

use JSON;

use Test : : More t e s t s => 2 ;

my $host = $ENV{SPLINE HOST} | | ’ l o c a l ho s t ’ ;

my $port = $ENV{SPLINE PORT} | | 8080 ;

my %params = () ;

$params{ ap i token } = ’ a token ’ ;

$params{ t ex t } = ’ I w i l l be token i zed . ’ ;

my $got = HTTP: : Tiny−>new−>post form (” http : / / ” . $host . ” : ” . $port . ”/

t ok en i z e r ” , \%params) ;

my $ r e s u l t = decode j son ($got−>{content }) ;

ok ($ r e su l t −>[0] eq ’ I ’ , ”Test the f i r s t word”) ;

ok ((s c a l a r @{ $ r e s u l t }) == 5 , ”Test the r e s u l t l ength ”) ;

3.3 Lengthy Requests

The previously presented architecture works great when the processes can be run
on the fly. Unfortunately, a lot of Natural Language Processing tasks are slow,
that would fire HTTP timeouts easily. Also, if concurrent users try to perform
such tasks, the system will overload and be even slower (if not failing at once).

With a big range of lengthy services in the NLP area, a solution to deal with
this kind of tasks was needed. It was, then, necessary to delineate a way to close
the connection to the user and, after the desired process is complete, return the
results.

The solution was the development a system daemon, that processes requests
from a queue, and make the results available to the end-user. The algorithm is
based on the following outline:

1. The REST server receives the request and detects if it is a lengthy one.
2. For lengthy requests, the server answers with a JSON that includes the URL

where the answer, when ready, will reside. At the same time, it creates a task
in the daemon queue, and a JSON file, accessible to the user, describing that
the task is running.

3. At this point, the first HTTP connection is already closed.
4. When possible, the daemon unqueues the task and executes it, placing the

resulting files in the folder created by the REST server for that effect.
5. The end-user will request, periodically, the JSON file, checking if its content

changed. If so, check the URL where the results are, and fetch them. This

214 N. Vieira et al.

process might be a problem if the users check for the JSON file changes too
often. Nevertheless, a simple GET request should be faster and lighter than
having the processes running at the same time.

To differentiate these services from the common ones, the XML file describing
the process accepts an extra attribute. This type of modules need to follow the
outline above.

To make the daemon work there are four main folders, the first two private,
the second two, public:

– The logs folder is used by the daemon to save information on each processed
request. It allows the administrator to track the daemon activities, and debug
them.

– The queue folder store files describing each process in the queue. They are
organised by time, therefore allowing its use as a queue.

– The json folder save the JSON files with the information to be delivered to
the user. When the process is running, these files show that the process is not
complete. When it ends, its content changes to include the URL for the final
resources.

– Finally, the results folder will store the output files, that are kept for a couple
of days, to allow the user to collect them.

Periodically the json and results folders are cleaned for too old files.

4 Conclusions

In this document we present the architecture for a module-based server for REST
services. The motivation for its development is the need to make NLP related
operations available easily, without all the problems that comprise their usual
configuration and installation.

Although the whole framework is ready and some services are already avail-
able (http://spline.di-um.org/) we are aware that different tools will dictate
different problems to manage. In fact, we are already aware of some of the chal-
lenges we will face:

– At the moment, the lengthy services code part is not generic and it is manda-
tory that the admin manage a big part of the process. To improve this issue, it
will be added an output section to the XML generation schema. This sections
will contain all the URLs to the result files and it will be kept in the Perl
Module to use when the final JSON file is created. With this feature, the user
knows where to find the desired information before the request is completed
(although it maintains a flag that informs the process is still running) and the
admin does not have to deal with that.

– Turn the platform even more user friendly. There are some things that can
be improved like error responses, interface organisation and styling and some
specific features.

http://spline.di-um.org/

SplineAPI: A REST API for NLP Services 215

Other than these developing challenges we intend to implement in Spline, we
will face other problems as soon as the server starts to be widely used, namely
computational weight and server balancing.

Acknowledgements. This work has been partly supported by FCT - Fundação para
a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013.

References

1. Cunningham, H., Maynard, D., Bontcheva, K.: Text Processing with GATE. Gate-
way Press, California (2011)

2. Fielding, R.T.: Representational State Transfer (REST). Ph.D. thesis, University
of California, Irvine (2000). https://www.ics.uci.edu/fielding/pubs/dissertation/
fielding dissertation.pdf

3. Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cam-
bridge University Press, New York (2015)

4. Loper, E., Bird, S.: Nltk: the natural language toolkit. In: Proceedings of the ACL-
02 Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics, ETMTNLP 2002, vol. 1, pp. 63–70.
Association for Computational Linguistics (2002)

5. Mani, I., Maybury, M.T.: Advances in Automatic Text Summarization, vol. 293.
MIT Press, Cambridge (1999)

6. Martin, J., Jurafsky, D.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
2nd edn. Prentice Hall, Upper Saddle River (2009)

7. Padró, L.: Analizadores multilingües en freeling. Linguamática 3(2), 13–20 (2011)
8. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big’web

services: making the right architectural decision. In: Proceedings of the 17th Inter-
national Conference on World Wide Web, pp. 805–814. ACM (2008)

9. Rychtyckyj, N.: Machine translation for manufacturing: a case study at ford motor-
company. In: Proceedings of the 18th Conference on Innovative Applications of
Artificial Intelligence, IAAI 2006, vol. 2, pp. 1728–1735. AAAI Press (2006). http://
dl.acm.org/citation.cfm?id=1597122.1597130

10. Sukrieh, A.: Dancer2: Manual - A gentle introduction to Dancer2 (2013). http://
search.cpan.org/sukria/Dancer2-0.10/lib/Dancer2/Manual.pod

https://www.ics.uci.edu/fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/fielding/pubs/dissertation/fielding_dissertation.pdf
http://dl.acm.org/citation.cfm?id=1597122.1597130
http://dl.acm.org/citation.cfm?id=1597122.1597130
http://search.cpan.org/sukria/Dancer2-0.10/lib/Dancer2/Manual.pod
http://search.cpan.org/sukria/Dancer2-0.10/lib/Dancer2/Manual.pod

	SplineAPI: A REST API for NLP Services
	1 Introduction
	2 Related Work
	3 Design Goals and Architecture Details
	3.1 Spline Architecture
	3.2 Perl Module Generation
	3.3 Lengthy Requests

	4 Conclusions
	References

