
Combining Processing with Racket

Hugo Correia and António Menezes Leitão(B)

INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Rua Alves Redol 9, Lisboa, Portugal

{hugo.f.correia,antonio.menezes.leitao}@tecnico.ulisboa.pt

Abstract. Processing is a programming language created to teach pro-
gramming in a visual context. Despite its success, Processing remains a
niche language with limited applicability in the architectural field, as no
Computer-Aided Design (CAD) application supports Processing. This
work presents an implementation of Processing for the Racket platform,
that transforms Processing code into semantically equivalent Racket
code. Our Processing implementation is developed as a Racket module
language for interoperability with Racket and other module languages
of Racket’s language ecosystem. Our implementation allows us to take
advantage of Rosetta, a Racket library that provides access to several
CAD back-ends (e.g. AutoCAD, Rhinoceros, SketchUp). As a result,
architects and designers can take advantage of our implementation to
use Processing with their favourite CAD application.

Keywords: Processing · Racket · Compilers · Interoperability

1 Introduction

Processing [1] is a programming language and development environment created
to teach programming in a visual context. The language has grown over the
years, creating a community where users can share their artistic works. Many
examples and educational materials are available to newcomers, reducing their
effort to learn the language. Moreover, Processing offers a wide range of 2D
and 3D drawing primitives, as well as an Integrated Development Environment
(IDE) that provides tools to programmatically create innovative designs.

Nonetheless, Processing is a niche programming language with limited
applicability in the architectural field, as architects depend on traditional heavy-
weight CAD applications (e.g. AutoCAD, Rhinoceros 3D, etc.), that provide
APIs tailored for that specific CAD tool. Unfortunately, no CAD application
allows users to write scripts in Processing. As a result, architects that have learnt
Processing cannot use the language or any of the publicly available examples to
program in the context of their favourite CAD tool. This problem is addressed
in this paper, showing how our solution combines Processing with the Racket
programming language.

Racket [2] is a descendent of Scheme, which encourages developers to tailor
their environment to project-specific needs, offering an ecosystem that allows
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 101–112, 2015.
DOI: 10.1007/978-3-319-27653-3 10

102 H. Correia and A.M. Leitão

the creation of new languages which have direct interoperability with other
Racket libraries. For instance, Rosetta [3] is a Generative Design tool built on
top of Racket, that encompasses Racket’s philosophy of using different languages.
Rosetta allows programmers to generate 2D and 3D geometry in a variety of CAD
applications, namely AutoCAD, Rhinoceros3D, SketchUp, and Revit, using sev-
eral programming languages, such as JavaScript, AutoLISP, Racket, and Python.
Furthermore, Racket offers a pedagogic IDE, DrRacket, which can be adapted
to support new module languages of the Racket ecosystem.

Our solution is to implement a source-to-source compiler that translates
Processing code to semantically equivalent Racket code, enabling architects to
prototype designs using Processing in a CAD tool. Moreover, as Racket encour-
ages developers to use and create different languages within the Racket ecosystem
[4], we have developed an interoperability mechanism to access Racket libraries
and to combine Processing with scripts written in other languages of the Racket
ecosystem, such as Python [5] or Typed Racket [6].

2 Processing

Processing was developed at MIT media labs and was heavily inspired by the
Design by Numbers [7] project. The language was created to teach computer sci-
ence to artists and designers with no previous programming experience. Process-
ing has grown over the years with the support of a large community, which has
written several educational materials, demonstrating how programming can be
used in the visual arts.

Processing can be considered a dialect of the Java programming language,
that significantly simplifies the original language. For instance, in Java, develop-
ers have to implement a large set of steps to develop simple examples, namely
a public class that implements public methods and a static main method.
These constructs bring an initial overhead and verbosity for novice program-
mers, which are cumbersome for beginners that want to quickly try out new
ideas. To solve this problem, Processing allows users to write simple scripts (i.e.
simple sequences of statements) that do not have the verbosity of Java, thus
enabling them to quickly create new designs.

The Processing language introduces the notion of a sketch, which is used
to organize source code. A sketch can operate in one of two distinct modes:
Static or Active. Static mode supports simple Processing scripts, such as simple
statements and expressions. Active mode allows users to implement their sketches
using more advanced features of the language. If a function or method definition
is present, the sketch is considered to be in Active mode. Within each sketch,
Processing users can define two functions to aid their design process: setup
and draw. On one hand, the setup function is called once when the program
starts. In setup the user can define initial environment properties and execute
initialization routines needed to create the design. On the other hand, the draw
function runs after setup and executes the code to draw the design. The control
flow is simple: first setup is executed, setting-up the environment; followed by
draw called in a loop, rendering the sketch until it is stopped by the user.

Combining Processing with Racket 103

Moreover, Processing offers users a set of tools that are specially tailored for
visual artists. For instance, 2D and 3D drawing primitives are made available,
rendering designs in different 2D and 3D rendering environments. Processing also
offers a simple but effective development environment called the PDE (Process-
ing Development Environment), where users can develop their programs using a
tabbed editor with IDE services such as syntax highlighting and automatic code
formatting.

3 Related Work

The following section presents different approaches that influenced our work,
and an analysis of their main features.

3.1 Processing.js

Processing.js [8] is a JavaScript implementation of Processing for the Web that
enables developers to create scripts in Processing or JavaScript. Using Process-
ing.js, developers can use Processing’s approach to design 2D and 3D geometry
in a HTML5 compatible browser. Processing.js uses a custom-purpose JavaScript
parser, that parses both Processing and JavaScript code, translating Processing
code to JavaScript while leaving JavaScript code unmodified. Moreover, Process-
ing.js implements Processing drawing primitives and built-in classes directly
in JavaScript, allowing for greater interoperability between both languages, as
Processing code is seamlessly integrated with JavaScript. To render Processing
scripts in a browser, Processing.js uses the HTML canvas element to provide
2D geometry, and WebGL to implement 3D geometry. Processing.js encourages
users to develop their scripts in Processing’s development environment, and then
render them in a web browser. Additionally, Sketchpad [9] is an alternative online
IDE for Processing.js, where users can create and test their design ideas online
and share them with the community.

3.2 Processing.py and Ruby-Processing

Ruby-Processing [10] and Processing.py [11] produce Processing/Java as target
code. Both Ruby and Python have language implementations for the JVM, allow-
ing them to directly use Processing’s drawing primitives. Processing.py takes
advantage of Jython to translate Python code to Java, while Ruby-Processing
uses JRuby to provide a Ruby wrapper for Processing. Processing.py is fully
integrated within Processing’s development environment as a language mode,
and therefore provides an identical development experience to users. On the
other hand, Ruby-Processing is lacking in this aspect, by not having a custom
IDE. However, Ruby-Processing offers sketch watching (code is automatically
executed when new changes are saved) and live coding, which are functionalities
that are not present in any other implementation.

104 H. Correia and A.M. Leitão

3.3 ProfessorJ

ProfessorJ [12,13] was developed to be a language extension for DrScheme [14].
ProfessorJ implements a traditional compiler pipeline, that starts with lexing
and parsing phases, producing an intermediate representation in Scheme. Sub-
sequently, the translated code is analysed, generating target Scheme code by
using custom defined functions and macro transformations. ProfessorJ imple-
ments several strategies to map Java code to Scheme. For instance, Java classes
are translated into Scheme classes with certain caveats, such as implementing
static methods as Scheme procedures or by changing Scheme’s object creation
to appropriately handle Java constructors. Also, Java has multiple namespaces
while Scheme has a single namespace, hence name mangling techniques were
implemented to correctly support multiple namespaces. Moreover, Java’s built-
in primitive types and some classes are directly implemented in Scheme, while
remaining classes are implemented in Java. Strings, Arrays, and Exceptions are
mapped directly into Scheme forms. Implementing them in Scheme is possible
(with some constraints) due to similarities in both languages which, in turn,
allow for a high level of interoperability. Finally, ProfessorJ is fully integrated
with DrScheme, providing a development environment that offers syntax high-
lighting, syntax checking, and error highlighting for Java code.

4 Compilation Process

Observing all previous implementations, it is clear that an IDE is an impor-
tant feature to have in any implementation of the Processing language (as only
Ruby-Processing is lacking one). Regarding the runtime system, Processing.js
and ProfessorJ implement it in the target language to achieve greater inter-
operability; while, Ruby-Processing and Processing.py take advantage of JVM
language implementations to provide Processing’s runtime.

Finally, we observe that none of the presented approaches offers a solution
that allow us to explore Processing in the context of a CAD environment. Neither
Processing.js, Processing.py, or Ruby-Processing allow designs to be visualized in
a CAD tool. Alternatively, other external Processing libraries could be explored
to connect Processing with CAD applications. For instance, OBJExport [15] is
a Processing library to export coloured meshes from Processing as OBJ or X3D
files. These files can then be imported into some CAD applications. However,
using this approach, we lose the interactivity of programming directly in a CAD
application, as users have to generate and import the OBJ file each time the
Processing script is changed, creating a cumbersome workflow. Moreover, as
shapes are transformed to meshes of triangles and points, there is a considerable
loss of information, as the semantic notion of the shapes is lost.

Our proposed solution was to develop Processing as a new Racket language
module, using Rosetta for Processing’s visual needs, and integrating Processing
with DrRacket’s IDE services. We chose Racket, firstly, because it simplifies the
development of new languages, providing libraries to implement the lexical and
syntactic definitions of the Processing language, as well as offering mechanisms

Combining Processing with Racket 105

to generate semantically equivalent Processing code. Secondly, Racket’s capa-
bilities enable us to easily adapt our Processing implementation to work with
DrRacket (Racket’s educational IDE), providing an IDE to its users. Moreover,
after analysing ProfessorJ, we concluded that many parts of the lexical and syn-
tactical definitions, and type-checking procedures could be adapted, due to the
similarities between Java’s and Processing’s language definitions. Finally, our
implementation allows us to take advantage of Rosetta to augment Processing
with capabilities that make the language suitable for architectural work.

Our Processing implementation follows the traditional compiler pipeline app-
roach (illustrated in Fig. 1), composed by three separated phases, namely pars-
ing, code analysis, and code generation.

4.1 Parsing Phase

The compilation process starts with the parsing phase, which is divided in two
main steps. First, Processing source code is read and transformed into tokens.
Secondly, tokens are given to an LALR parser, building an abstract syntax tree
(AST) of Racket objects which will be analysed in subsequent phases. To imple-
ment the lexer and parser specifications, we used Racket’s parser-tools [16]
library, adapting parts of ProfessorJ’s lexer and grammar specification to fit
Processing’s needs.

4.2 Code Analysis

Following the parsing phase, an analysis of the AST must be made, due to
differences between Processing’s and Racket’s language definitions. For instance,
Processing has static type-checking and different namespaces for methods, fields,
and classes, while Racket is dynamically typed and has a single namespace. As
a result, custom tailored mechanisms were needed to correctly type-check the
AST and support Processing’s scoping rules.

Firstly, the AST is traversed passing scope information to child nodes. When
a new definition is created, be it a function, variable, or class, the newly defined
binding is added to the current node’s scope along with its type information.
Each time a new scope is created in Processing, a new custom scope is created to
represent it, referring to the current scope as its parent. These mechanisms are
needed to implement Processing scoping and type-checking rules. For example,
the information of the return type, arity, and argument types are needed to
type-check a function call.

Fig. 1. Overall compilation pipeline

106 H. Correia and A.M. Leitão

Secondly, the type-checking procedure runs over the AST starting topmost
AST node. As before, it repeatedly calls the type-checker on child nodes until the
full AST is traversed, using previously saved bindings in the current scope to find
out the types of each binding. During the type-checking procedures, each node
is tested for type correctness and, in some cases, promoting types if necessary.
In the event that types do not match, a type error is produced, signalling where
the type error occurred.

4.3 Code Generation

After the AST is fully analysed and type-checked, semantically equivalent Racket
code can be generated. To achieve this, every AST node generates Racket code
by using custom defined macros and functions. Afterwards, Racket will expand
the defined macros and load the generated code into Racket’s VM. By using
macros we can create boilerplate Racket code that can be constantly modified
and tested by the developer

Racket and Processing follow the same evaluation order on their programs,
thus most of Processing’s statements and expressions are directly mapped into
Racket forms. However, other statements such as return, break, or continue
need a different handling, as they use control flow jumps. To implement this
behaviour, we used Racket’s escape continuations [17] in the form of let/ec.

Furthermore, Processing has multiple namespaces, which required an addi-
tional effort to translate bindings to Racket’s single namespace. To support mul-
tiple namespaces in Racket, binding names were mangled with custom tags. For
instance, a fn tag is appended to functions, so function foo internally would be
foo-fn. The use of ’-’ as a separator allows us to solve the problem of name
clashing with user defined bindings, as Processing does not allow ’-’ in names.
Also, as we have function overloading in Processing, we append specific tags that
represent the argument’s types to the function’s name. For instance, the following
function definition: int foo(float x, float y){ ... } would be translated
to (define (foo-FF-fn x y) ...).

To correctly support Processing’s distinctions between Active and Static
mode, we used the following strategy. We added a custom check in the parser
that signals if the code is in Active mode, i.e. if a function or method is defined.
In this mode, global statements are restricted, thus when generating code for
global statements we check if the code is in Active mode, if so we signal an error
indicating the invalid statement.

5 Runtime

Our runtime is implemented directly in Racket, allowing for greater interop-
erability with Racket libraries, namely Rosetta. However, this presents some
important issues. First, as Racket is a dynamically typed language, the type-
checker, at compile time, cannot know the types of Racket bindings. To solve

Combining Processing with Racket 107

this problem, we introduced a new type in the type hierarchy, which the type-
checker ignores when type checking these bindings. Furthermore, as Processing
primitives and built-in classes are implemented in Racket, we also have the prob-
lem of associating type information for these bindings. Therefore, we created a
simple macro that allows us to associate type information to Racket definitions,
by adding them to the global environment, thus the type-checker can correctly
verify if types are compatible.

Moreover, Processing’s drawing paradigm closely resembles OpenGL’s tradi-
tional push & pop matrix style. To provide rendering capabilities in our system,
we use Rosetta, as it provides design abstractions that not only let us gen-
erate designs in an OpenGL render, but also give us access to several CAD
back-ends. Custom interface adjustments are needed to implement Processing’s
drawing primitives in Racket, as not every Processing primitive maps directly
into Rosetta’s. Furthermore, Rosetta also enables us to provide with additional
drawing primitives that are unavailable in the original Processing environment.

6 Interoperability

One of the advantages of developing a source-to-source compiler is the possi-
bility of combining libraries that are written in different languages. The Racket
platform encourages the use and development of different languages to fulfil pro-
grammers’ needs, offering a set of extension mechanisms that can be applied
to many of the language’s features. The combination of Racket’s language mod-
ules [6] and powerful hygienic macro system [18] enables users to extend the base
Racket environment with new syntax and semantics that can be easily composed
with modules written in different dialects.

To achieve interoperability with Racket, we developed Processing’s compila-
tion units as a Racket language module, adding Processing to Racket’s language
set. Nonetheless, compatibility issues between languages arise when accessing
exported bindings from a Racket module. First, a new require keyword was
introduced to specifically import bindings from other modules. This require
maps directly to Racket’s require form, receiving the location of the import-
ing module. By using Racket’s require we have access to all of Racket’s require
semantics, enabling the programmer to select, exclude, or rename imported bind-
ing from the required module.

Furthermore, Racket and Processing have different naming rules. For
instance, function foo-bar! is a valid identifier in Racket but not in Process-
ing, thus we cannot reference the foo-bar! function in our Processing code.
To solve this issue, we use a translation procedure that takes a Racket identi-
fier and transforms it into a valid Processing identifier. For example, foo-bar!
would be translated to fooBarBang. Therefore, for each provided binding of a
required module, we apply the translation procedure on each binding, making
it available to the requiring module. By providing an automatic translation, the
developer’s effort is reduced, as he can quickly use any Racket module with his
Processing code. Notwithstanding, as developers may not be satisfied with our

108 H. Correia and A.M. Leitão

#lang racket

(provide foo-bar)

(define (foo-bar foo)

...)

Fig. 2. The foo-bar module in Racket

#lang processing

require "foo -bar.rkt";

void checkFoo(String s) {

println(fooBar(s));

}

Fig. 3. checkFoo in Processing

automatic translation procedure, they can develop their custom mappings in a
Racket module adhering to Processing identifier’s rules.

Another issue that arises by importing foreign bindings, is making them
accessible to our custom environment and type-checker, as they are needed dur-
ing the code analysis phase. To solve this issue, we dynamically load the required
module, saving exported bindings along with their arity. As Racket is dynami-
cally typed, we use a special type for arguments and return types that the type-
checker skips. As a result, when using bindings with this type, typing errors will
only be observed when these bindings are executed at runtime. To illustrate the
interoperability mechanism consider the foo-bar module Fig. 2, which provides
the foo-bar function, and the Processing code illustrated in Fig. 3.

As illustrated in Fig. 3, the function checkFoo uses the foo-bar procedure
from foo-bar.rkt. Note that our automatic translation procedure has been
applied to provided bindings from the foo-bar.rkt modules. So in checkFoo,
we use the automatically translated fooBar identifier to refer to foo-bar.

To understand how this is accomplished, our require uses a custom macro
that receives the module’s path (i.e. the location of the required module), as well
as a list of pairs that map the original bindings of the module into their man-
gled form. To compute this list, we used Racket’s module->exports primitive to
provide the list of exported bindings. However, this information does not suffice,
as we need to know the arity of each exported binding. This is information is
needed to produce a compatible biding (i.e. a mangled binding) with our gener-
ated code. Therefore, we analysed each exported binding by module->exports,
and retrieved its arity using the procedure-arity primitive. This way we can
correctly perform the translation of external bindings to valid Processing identi-
fiers and generate bindings that work with our code generation process. Lastly,
when generating Racket code, our custom macro expands to Racket’s require
form, making each mangled binding available in the requiring module.

7 Example

Developing a source-to-source compiler has the advantage of allowing us to
explore libraries written in another language. We provide an example of our
implementation, showing how Processing code can take advantage of libraries

Combining Processing with Racket 109

require "fib.rkt"; require "draw.rkt";

void echo(int n, Object pos , float ang , float r) {

if (n == 1) {

fullArc(pos , r, ang , HALF_PI , 20);

} else {

fullArc(pos , r / fib(n), ang , HALF_PI , 20);

echo(n-1, pos , ang , r);

}

}

void mosaics(float l, int size) {

for(int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {

echo(10, xyz(i*l, j*l, 0), 0, l);

echo(10, xyz(i*l+l, j*l, 0), HALF_PI , l);

echo(10, xyz(i*l+l, j*l+l, 0), PI, l);

echo(10, xyz(i*l, j*l+l, 0), 3/2 * PI, l);

}

}

frame(xyz(0,0,0), size * l, 20);

}

Fig. 4. Processing code to generate mosaics

that were previously built for 3D modelling. This is still a work in progress, thus
the compilation results are likely to change.

Consider the Processing code presented in Fig. 4. The mosaics procedure
generates a grid of mosaics given the length of each mosaic and the total size
of the grid. This function uses echo to generate the interior pattern of each
mosaic, progressively generating smaller arcs from each corner of the mosaic.
After generating the interior pattern, the frame generates the full outer boundary
of the grid.

This example illustrates the use of two external Racket libraries. First, we
require the fib.rkt module to use fib to compute the reducing factor of
arches size. This illustrates how we can use simple Racket code with Processing.
Secondly, we require draw.rkt, which allows us to access fullArc and frame.
These functions enable us to generate the arcs and produce the enclosing bound-
ary, showing how we can use previously created Racket drawing libraries with our
Processing implementation. Moreover, observe the use of xyz primitive. Rosetta
provides custom mechanisms to abstract coordinate systems, namely cartesian
(xyz), polar (pol), and cylindrical (cyl) which can be used and combined inter-
changeably. As a result, we made these abstractions (xyz, pol, and cyl) available
in our system, so that users can take advantage of them in their designs. Figure 5
illustrates an execution of the mosaics function in AutoCAD.

Observe the generated Racket code for echo displayed in Fig. 6. The first
point that is immediately visible is that function identifiers are renamed to sup-
port multiple namespaces. We can see that the echo identifier is translated to

110 H. Correia and A.M. Leitão

Fig. 5. Mosaics generated in AutoCAD

echo-IOFF-fn. Theses tags indicate the argument types of the function, where F,
O, and I, represent the types float, Object, and int. Also note that imported
bindings full-arc use the type O for their arguments, enabling the type-checker
to correctly deal with these imported bindings. Functions and macros such as
p-div, p-sub, or p-call are used to implement Processing’s language primi-
tives. Function are defined within a let/ec form, to support return semantics
in functions. However, let/ec is not always needed and can be removed, for
instance, in the case of unnecessary tail returns or when functions have return
type void.

(p-function (echo-IOFF-fn n p a r)

(let/ec return

(p-block

(p-if (p-eq n 1)

(p-block (p-call fullArc-OOOOO-fn p r ang HALF_PI h))

(p-block (p-call fullArc-OOOOO-fn p (p-div r (p-call

fib-O-fn n)) a HALF_PI h)

(p-call echo-IOFF-fn (p-sub n 1) p a r))))))

Fig. 6. Generated Racket code for echo

We demonstrate another example (shown in Fig. 7) of our Processing imple-
mentation using libraries that are written in another language and renders
designs in AutoCAD and Rhinoceros 3D. To produce this example, our Process-
ing code requires "elliptic-torus.rkt", a library written in the Racket lan-
guage that is capable of generating highly parametric elliptic torus. Using this
library, we can specify in Processing, the domain range, the thickness of the
surface, the size of the surfaces’ holes, etc.

The possibility of accessing libraries written in different languages of the
Racket ecosystem enables Processing users to take advantage of the capabilities

Combining Processing with Racket 111

require "elliptic -torus.rkt";

float aMin = QUARTER_PI , aMax = 7 * aMin , h = .005;

ellipticTorus(xyz(0,0,0), h, .03, .5, aMin , aMax , 0, TWO_PI);

Fig. 7. Elliptic torus generated in AutoCAD and Rhinoceros 3D

of these libraries in their artistic endeavours. Moreover, these examples demon-
strate that users can effortlessly migrate to our system and directly use libraries
that were previously developed in Racket.

8 Conclusion

Translating a high-level language to another enables the possibility of access-
ing libraries that are written in different languages. Combining Processing with
Racket, allows users to access libraries written in any language of the Racket
ecosystem. One particularly important library is Rosetta, a portable Genera-
tive Design library that allows architects to use Processing to generate designs
in a CAD application, thus providing a motivating reason for the architecture
community to use our system.

Our implementation follows the common compiler pipeline architecture, gen-
erating semantically equivalent Racket code and loading it into Racket’s VM.
Our approach was to develop the parts of the language that Processing users
most need, that empower them to write simple scripts. In future, our goal is
to further develop our existing work, progressively introducing more advanced
mechanisms, such as implementing Processing’s class system and exception han-
dling.

Acknowledgements. This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/ 2013,
and by the Rosetta project under contract PTDC/ATP-AQI/5224/2012.

112 H. Correia and A.M. Leitão

References

1. Reas, C., Fry, B.: Processing: programming for the media arts. AI Soc. 20(4),
526–538 (2006)

2. Flatt, M., Findler, R.B.: The racket guide (2011). http://docs.racket-lang.org/
guide/. Accessed 02 May 2014

3. Lopes, J., Leitão, A.: Portable generative design for CAD applications. In: Pro-
ceedings of the 31st Annual Conference of the Association for Computer Aided
Design in Architecture, pp. 196–203 (2011)

4. Flatt, M.: Creating languages in racket. Commun. ACM 55(1), 48–56 (2012)
5. Ramos, P.P., Leitão, A.M.: An implementation of python for racket. In: 7th Euro-

pean Lisp Symposium, p. 72 (2014)
6. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Lan-

guages as libraries. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 132–141. ACM (2011)

7. Maeda, J.: Design by Numbers. MIT Press, Cambridge (1999)
8. Resig, J., Fry, B., Reas, C.: Processing. js (2008)
9. Bader-Natal, A.: Sketchpad (2011). http://sketchpad.cc/. Accessed 28 April 2015

10. Ashkenas, J.: Ruby-processing (2015). https://github.com/jashkenas/
ruby-processing. Accessed 28 April 2015

11. Feinberg, J., Gilles, J., Alkov, B.: Python for processing (2014). http://py.
processing.org/. Accessed 28 April 2015

12. Gray, K.E., Flatt, M.: Compiling java to PLT scheme. In: Proceedings of 5th
Workshop on Scheme and Functional Programming, pp. 53–61 (2004)

13. Gray, K.E., Flatt, M.: ProfessorJ: a gradual introduction to java through lan-
guage levels. In: Companion of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pp. 170–
177. ACM (2003)

14. Findler, R.B., Flanagan, C., Flatt, M., Krishnamurthi, S., Felleisen, M.:
DrScheme: a pedagogic programming environment for scheme. In: Glaser, H.,
Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 369–388. Springer,
Heidelberg (1997)

15. Louis-Rosenberg, J.: Objexport (2013). http://n-e-r-v-o-u-s.com/tools/obj/.
Accessed 29 April 2015

16. Owens, S.: Parser tools: lex and yacc-style parsing (2011). http://docs.racket-lang.
org/parser-tools/. Accessed 22 September 2014

17. Flatt, M, Findler, R.B.:. The racket guide, chapter 10.3 continuations (2011).
http://docs.racket-lang.org/guide/conts.html?q=continuations. Accessed 05 May
2014

18. Flatt, M.: Composable and compilable macros: you want it when? SIGPLAN Not.
37(9), 72–83 (2002)

http://docs.racket-lang.org/guide/
http://docs.racket-lang.org/guide/
http://sketchpad.cc/
https://github.com/jashkenas/ruby-processing
https://github.com/jashkenas/ruby-processing
http://py.processing.org/
http://py.processing.org/
http://n-e-r-v-o-u-s.com/tools/obj/
http://docs.racket-lang.org/parser-tools/
http://docs.racket-lang.org/parser-tools/
http://docs.racket-lang.org/guide/conts.html?q=continuations

	Combining Processing with Racket
	1 Introduction
	2 Processing
	3 Related Work
	3.1 Processing.js
	3.2 Processing.py and Ruby-Processing
	3.3 ProfessorJ

	4 Compilation Process
	4.1 Parsing Phase
	4.2 Code Analysis
	4.3 Code Generation

	5 Runtime
	6 Interoperability
	7 Example
	8 Conclusion
	References

