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Abstract. Stress detection from speech is a less explored field than
Automatic Emotion Recognition and it is still not clear which features are
better stress discriminants. The project VOCE aims at doing speech clas-
sification as stressed or not-stressed in real-time, using acoustic-prosodic
features only. We therefore look for the best discriminating feature sub-
sets from a set of 6125 features extracted with openSMILE toolkit plus
160 Teager Energy Operator (TEO) features. We use a Mutual Infor-
mation (MI) filter and a branch and bound wrapper heuristic with an
SVM classifier to perform feature selection. Since many feature sets are
selected, we analyse them in terms of chosen features and classifier perfor-
mance concerning also true positive and false positive rates. The results
show that the best feature types for our application case are Audio Spec-
tral, MFCC, PCM and TEO. We reached results as high as 70.4 % for
generalisation accuracy.

Keywords: Stress · Emotion recognition · Ecological data · Feature
sets · Feature selection

1 Introduction

The motivations for detecting stress from speech range from it being a non-
intrusive way to detect stress, to ranking emergency calls [7], or improve speech
recognition systems, since it is known that environmentally induced stress leads
to fails on speech recognition systems [13]. Public Speaking is said to be “the
most common adult phobia” [18], showing the relevance of a tool to improve
public speaking. In VOCE1, we target developing such a tool, by developing
algorithms to identify emotional stress from live speech. In particular, VOCE

1 http://paginas.fe.up.pt/∼voce.
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J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-27653-3 1

http://paginas.fe.up.pt/~voce


4 M. Julião et al.

corpus comes mainly from public speaking events that occur within academic
context, like presentations of coursework or research seminars. The envisioned
coaching application requires detecting emotional stress in live speech in near
real time, to give the user timely feedback, which requires adapting the com-
putational costs to the limited memory and computational resources to use.
Decreasing the number of features used for classification reduces the amount of
data to collect, the amount of features to be extracted and the complexity of
the classifier, impacting a reduction in the memory and computational resources
used. Additionally, feature selection can increase the classifier’s accuracy [12].
Thus, in this paper, we focus on identifying these reduced feature sets based on
their performance as stress discriminators.

In this work, we start from the fusion of two feature sets: the group of features
extracted using the openSMILE toolkit [25], and the group of TEO-based fea-
tures, to be detailed on Sect. 4.2. We filter these feature sets with Mutual Infor-
mation (MI) and then use a branch-and-bound wrapper to explore the space of
possible feature sets. Finally, we analyse the best feature sets chosen on various
branches for the most frequently chosen feature categories.

2 Related Work

The importance of suprasegmental acoustic phenomena that can be taken as
global emotion features is highlighted in [28], like “hyper-clear speech, pauses
inside words, syllable lengthening, off-talk, disfluency cues, inspiration, expira-
tion, mouth noise, laughter, crying, unintelligible voice”. These features have
been mainly annotated by hand, and automatic extraction is not straightfor-
ward, though possible in some cases.

Stress recognition from speech is a specific case of emotion recognition.
The Fundamental Frequency, F0, is the most consensual feature for stress dis-
crimination [8,14,22,31], but several metrics for energy and formant changes
have been proposed, often represented by Mel-Frequency Cepstral Coefficients
(MFCCs) [7,21,31]. Frequency and amplitude perturbations – Jitter and Shim-
mer –, and other measures of voice quality, like Noise to Harmonics Ratio
and Subharmonics to Harmonics Ratio [26,28] have also been used. Teager
Energy Operator-based features have also shown to perform well in speech under
stress [31], and we shall look at them in detail in this work.

TEO-based features have been shown to increase recognition robustness with
car noise [10,15]. In [17], TEO-based features reached the best performance for
stressed speech discrimination outdoor, but not indoor. They also have been
used to do voiced-unvoiced classification [19]. In the latter work, the advantages
of TEO are enunciated: because only three samples are needed for the energy
computation at each time instant, it is nearly instantaneous. Therefore, this
time resolution allows to capture energy fluctuation, and also a robust AM-FM
estimation in noisy environment. [6] uses Teager Energy Operator in the develop-
ment of a system for hypernasal speech detection. In this work, we shall look into
the discrimination power of TEO-based speech features for stress discrimination
in public speaking.
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3 Speech Corpus and Data Annotation

The VOCE corpus [2] currently consists of 38 raw recordings from voluntaries
aged 19 to 49. Data is recorded in an ecological environment, concretely during
academic presentations2. Speech was automatically segmented into utterances,
according to a process described in [5].

Annotation into stressed or neutral classes was performed per speaker, based
on the mean heart rate [4]. Utterances on the third quartile of mean heart
rates for that speaker are annotated as stressed, while the remaining ones are
annotated as neutral.

Using an ecologically collected corpus imposes an unavoidable trade-off
between the quality of the recording and the spontaneity of the speaker. Higher
quality of the recording not only allows for more reliable feature extraction, in
general, but also impacts the performance of the segmentation algorithms we
use to split the speech into sentence-like units – utterances –, and to do text
transcription, necessary for the extraction of TEO features. For these reasons,
we chose only 21 raw recordings for this work.

For these speakers, 1457 valid utterances were obtained3. The set of utter-
ances is divided into 15 speakers (507 utterances) for training and 6 speakers

Table 1. Dataset demographic data. PSE: Public Speaking Experience, 1 – 5: 1 - little
experience, 5 - large experience.

Train set Test set

Age Gender PSE #Utts Age Gender PSE #Utts

26 male 2 56 24 male 3 97

22 male 2 39 19 male 2 61

24 male 3 36 19 male 3 86

21 male 3 38 19 female 3 64

22 male 3 32 23 female 4 71

22 male 3 25 19 female 3 63

25 male 2 54

19 male 3 12

21 male 3 22

21 female 3 51

24 female 5 27

22 female 2 37

21 female 3 32

21 female 3 18

19 female 3 28

2 Please refer to [3] for details on the collection methodology.
3 Remaining utterances after discarding 94 utterances with length of less than 1 s or

more than 25 s.
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(442 utterances) for testing. Since the number of stressed utterances corresponds
to approximately 1/4 of the total, we randomly down-sampled the train data in
order to balance the two classes, which led to the mentioned 507 utterances.
During feature selection, the classifier was trained on 354 utterances and tested
on 153 utterances. These utterances belonged to the train set. Table 1 charac-
terises the dataset concerning age, gender, public speaking experience, and the
number of utterances considered4.

We performed outlier detection on each feature using the Hampel identi-
fier [20] with t = 10. The outliers were then replaced by the mean value of the
feature excluding outliers, and feature values were scaled to the interval [0,1].

4 Methodology

Figures 1(a) and (b) illustrate the workflow for speech segmentation and feature
selection, respectively. In this work, we start from the fusion of two feature sets:
the group of features extracted using the openSMILE toolkit [25], and the group
of TEO-based features, to be detailed on Sect. 4.2. We filter these feature sets
with Mutual Information and then use a branch-and-bound wrapper to explore
the space of possible feature sets. We then analyse the best feature sets chosen
on various branches for the most frequently chosen feature categories.

(a) Speech segmentation process.

(b) Feature selection process.

Fig. 1. Workflow for the speech segmentation and the feature selection process.

4.1 Acoustic-Prosodic Features

OpenSMILE extracts a set of 128 low-level features at the frame level from the
speech signal, known as low-level descriptors (LLD) [11]. Statistical functionals
are then applied over the LLD in order to compute values for longer segments,
providing a total of 6125 features at the segment level [25]. These features and
their extraction processes are described in [9,24].

4 Please note that the stated number of utterances on the train set corresponds to the
one actually used after discarding a part of the neutral utterances, and not to the
number of utterances in the natural set.



Speech Features for Discriminating Stress 7

The openSMILE toolkit is capable of extracting a very wide range of acoustic-
prosodic features and has been applied with success in a number of paralinguistic
classification tasks [23]. It has been used in the scope of this study to extract
a feature vector containing 6125 speech features, by applying segment-level sta-
tistics (means, moments, distances) over a set of energy, spectral and voicing
related frame-level features.

4.2 Teager Energy Operator Features

The following TEO-Based features were extracted: Normalized TEO autocorre-
lation envelope and Critical Band Based TEO Autocorrelation Envelope as in
[31]. The literature where Normalized TEO Autocorrelation Envelope and Criti-
cal Band Based TEO Autocorrelation are presented targets the feature extraction
for small voiced parts usually called “tokens” [31]. To work equivalently, we did
a phone recognition with the delimitation of each phone [1] and used only voiced
sounds. These correspond to phones represented by the portuguese SAMPA sym-
bols ‘i’, ‘e’, ‘E’, ‘a’, ‘6’, ‘O’, ‘o’, ‘u’, ‘@’, ‘i∼’, ‘e∼’, ‘6∼’, ‘o∼’, ‘u∼’, ‘aw’, ‘aj’, ‘6∼j∼’,
‘v’, ‘z’, ‘Z’, ‘b’, ‘d’, ‘g’, ‘m’, ‘n’, ‘J’, ‘r’, ‘R’, ‘l’, ‘L’ [29, Chap. IV.B].

These features are extracted per frame. The length of each frame is about
10ms, depending on the feature to extract. Each phone usually contains many
frames and each utterance has normally many phones. Therefore, since we want
to have values per utterance, we consider each feature extracted for all phones
and apply statistics to it. These statistics are: mean, standard deviation, skew-
ness, kurtosis, first quartile, median, third quartile, and inter-quartile range.
This process is also illustrated in Fig. 1(a). The first two columns in Table 2
summarise the feature types considered in this work5.

5 Searching for the Best Feature Sets

As already stated, we apply one filter to reduce the dimensionality from initially
6285 functional (OS) plus TEO features before applying the wrapper with a
Support Vector Machine (SVM) classifier with radial basis function kernel and
C=1006, using python library scikit-learn.

5.1 Filter: Mutual Information

There are several metrics and algorithms to compute the relevance of features
on a dataset, and the choice of this metric may hugely impact the final subset of
features. However, since there is a lack of a priori knowledge about filter metric
adequacy to specific datasets [30], we based our choice on the work of Sun and
5 The generic designation “type” is the result of aggregating Low Level Descriptor

features with their derived functionals (e.g., quartiles, percentiles, means, maxima,
minima). This procedure is, in our perspective, a way to better group and interpret
the performance of the features.

6 This value was found empirically to produce the best classification results.
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Table 2. Feature Types: Id, Name, Number of features of each type selected for MI,
Number of features of each type chosen for the Best Sets: T.A.1, T.A.2, G.A., Se., Sp.,
and Comb.

Id Type MI T.A.1 T.A.2 G.A. Se. Sp. Comb.

1 F0finala 10 0 0 0 0 0 0

2 TEOb 17 3 2 1 3 2 3

3 audSpec Rfiltb 187 8 8 6 7 6 6

4 audspeca 6 0 0 0 0 0 0

5 audspecRastaa 4 0 0 0 0 0 0

6 jitterDDP 6 0 0 1 0 0 0

7 jitterLocala 7 0 0 0 0 0 0

8 logHNR 8 1 0 0 0 1 1

9 mfcc smab 119 7 8 4 2 3 4

10 pcm Mag fband 17 0 0 1 2 1 0

11 pcm Mag harmonicity 14 1 0 0 0 0 0

12 pcm Mag psySharpnessb 6 3 2 1 1 1 2

13 pcm Mag spectralEntropy 6 0 1 0 0 0 1

14 pcm Mag spectralFlux 8 0 1 0 0 0 0

15 pcm Mag spectralKurtosisa 7 0 0 0 0 0 0

16 pcm Mag spectralRollOff 22 1 0 0 0 0 0

17 pcm Mag spectralSkewnessa 1 0 0 0 0 0 0

18 pcm Mag spectralSlope 6 0 1 1 0 0 0

19 pcm Mag spectralVariancea 10 0 0 0 0 0 0

20 pcm RMSenergy 6 1 1 1 1 1 0

21 pcm zcr 8 0 0 0 1 0 0

22 shimmerLocala 8 0 0 0 0 0 0

23 voicingFinalUnclippeda 4 0 0 0 0 0 0
a Type not selected by the best sets
b Type always selected by the best sets

Li et al. [27], which showed good results in terms of classification for Mutual
Information (MI), a metric that measures the mutual dependence between two
random variables.

Since MI is based on the probability distribution of discrete variables and our
features have continuous values, we had to define a binning. We (1) defined five
binning possibilities: 50, 100, 250, 500 or 1000 bins; (2) computed MI for each
feature and each binarisation possibility; (3) kept features for which the MI value
belonged to the higher quartile for all binarisation options. Their distribution
per feature type corresponds to the third column in Table 2.
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5.2 Wrapper

Feature selection has been widely studied and, as result, a large number of
algorithms have been proposed. These algorithms can be categorized into three
groups: filter, wrapper and embedded [16]. Wrapper algorithms find the final
solution using a learning algorithm as part of the evaluation criteria. The main
idea of these methods is to use the learning algorithm as a black-box to guide
the search for the optimal solution. The learning is applied to every candidate
solution and the goodness of the subset is given according to the performance
of the learning algorithm. Due to the learning algorithm being directly used on
the process of selecting features, these methods tend to find better solutions.
Nonetheless, the final solution only applies for the selected learning algorithm,
since using a different one will most likely result on a different final solution.
These methods have higher computational cost as they require training and
classifying data for each candidate solution.

We designed a branch and bound wrapper to search the space of feature sets
obtained from the MI filter for the combination of features that deliver the best
classifier performance. This wrapper starts by searching all combinations of sets
up to 10 features, keeping all that are within 1.5 % accuracy of the best solution
found so far. Larger feature sets are obtained by expanding the previously kept
solutions with blocks of features not yet in the sets. Every time a feature subset
is tested with a classification algorithm, a score is produced, which is the accu-
racy, in this case. Subsets are kept and expanded if the expansion improves the
previous accuracy. This search runs until the work list of feature sets with new
combinations empties. This wrapper provides a better exploration of the feature
set space than traditional forward and backward wrappers. Since the search
space for our wrapper is much bigger than for most wrapper methods, we used
parallel programming techniques to improve the throughput of the algorithm,
using python’sMultiprocessing package.

6 Results

The Mutual Information filter selected 487 features, distributed into types as
described in the third column of Table 2. After choosing the best 280 feature
sets with training accuracies below 85% from 20 processors, we looked at their
distribution by feature types, which is on Fig. 2.

Among these 280 feature sets we looked for the ones having the best scores
in each of the considered metrics7: Train Accuracy, Generalisation Accuracy,
Sensitivity (Se), Specificity (Sp)8, and a Combined Metric defined as

CombinedMetric =
(Se + Sp)

2
− |Sp − Se|. (1)

7 Generalisation Accuracy, Sensitivity and Specificity are computed on the test set.
8 Being TP - number of True Positives, TN - number of True Negatives, FP - num-

ber of False Positives, FN - number of False Negatives, Sensitivity= TP
TP+FN

and

Specificity= TN
TN+FP

.
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The need for this metric follows from the fact that it is our goal not only to
have a good generalisation accuracy, but also to have high sensitivity and high
specificity at the same time. This is relevant since, as we have an imbalanced
test set, with much more neutral utterances than stressed utterances, it can
happen that high generalisation results are due to high values of true positives,
while true negatives are neglected – which is the kind of scenario we want to
avoid. On Table 3, each line corresponds to the best feature subset for which
the metric specified in the first column was found to be maximum. The two last
lines correspond to baseline results, meaning the classification for the whole set
of features and for the set of MI filtered features.

Columns T.A.1, T.A.2, G.A., Se., Sp., and Comb, in Table 2, correspond to
the best feature sets, according to each of these metrics, as exposed in Table 3.
Each of the Columns in Table 2 signs the number of features of each type (each
line corresponds to a feature type).

Table 3. Metrics for the Best Subsets as percentage

Set Train Acc. Gen. Acc. Sens. Spec. Comb. # features

Train Acc 84.97 61.76 59.81 62.39 58.53 25

Train Acc 84.97 62.22 52.34 65.37 45.82 24

Gen. Acc 81.70 70.36 33.64 82.09 9.42 16

Sensitivity 81.70 59.28 71.96 55.22 46.85 17

Specificity 81.05 70.14 31.78 82.39 6.47 15

Combined 81.70 64.03 61.68 64.78 60.14 17

Complete — 63.12 50.47 67.16 42.13 6285

MI — 60.86 45.79 65.67 35.85 487

Table 3 bears the following information:

– The sets of best train accuracy do not correspond to the ones with best gener-
alisation accuracy. Actually, these have the second worse generalisation results
among these sets.

– The set of best generalisation accuracy, as well as the set of best specificity,
although having very good generalisation accuracies have very low sensitivi-
ties. This is the kind of imbalance we want to avoid.

– The same train accuracy can have sets of very different quality. We see that
for train accuracy 81.70 % we have the best generalisation accuracy, the best
sensitivity and the best combined metric. Looking at the other columns in the
table we see that only the line for Combined Metric has acceptable results in
sensitivity and specificity.

– These best reduced sets often achieve better results than both the complete
set and the filtered set, having much smaller sets, which is very good for the
envisioned real-time public speaking coaching application.
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1 F0final
2 TEO
3 audSpec Rfilt
4 audspec
5 audspecRasta
6 jitterDDP
7 jitterLocal
8 logHNR
9 mfcc sma
10 pcm Mag fband
11 pcm Mag harmonicity
12 pcm Mag psySharpness
13 pcm Mag spectralEntropy
14 pcm Mag spectralFlux
15 pcm Mag spectralKurtosis
16 pcm Mag spectralRollOff
17 pcm Mag spectralSkewness
18 pcm Mag spectralSlope
19 pcm Mag spectralVariance
20 pcm RMSenergy
21 pcm zcr
22 shimmerLocal
23 voicingFinalUnclipped

Fig. 2. Heatmap for feature type frequencies on each subset.

7 Discussion

The set of features selected by the Mutual Information filter are, grosso modo,
the ones reported in the literature for other languages (e.g., [14,32]). Those
encompass pitch information, mostly final movements of pitch, audio spectral
differences, voice quality features (jitter, shimmer, and harmonics-to-noise-ratio)
and TEO features, the latter usually described as very robust across gender and
languages. As for PCMs and MFCCs, these features are very transversal in
speech processing tasks and highly informative for a wide range of tasks, not
surprising, thus, for stress detection as well. The features selected by Mutual
Information filter give us a more complete characterization of stress predictors.
From these set the ones that are systematically chosen in the best features sets
using the wrapper are mostly TEO, MFCCs and audio spectral differences. TEO
and MFCCs features are also reported by [32], for English and Mandarin, as the
most informative ones, even more than pitch itself.

8 Conclusions

We have used a corpus of ecologically collected speech to search for the best
speech features that discriminate stress. Starting from 6125 features extracted
with openSMILE toolkit and 160 Teager Energy features, we used a Mutual
Information filter to obtain a reduced subset for stress detection. Next, we
searched for the best feature set using a branch and bound wrapper with SVM
classifiers.

Our results provide further evidence that the features resulting from the
Mutual Information filtering process are robust for stress detection tasks, inde-
pendently of the language, and highlight the importance of voice quality features
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for stress prediction, mostly high jitter and shimmer and low harmonics to noise
ratio, parameters typically associated with creaky voice.

Our best result compares well with work done by [10,32], although direct
comparisons are hard to establish due to different corpora, segmentations, and
metrics used in the studies.
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