
123

José-Luis Sierra-Rodríguez
José Paulo Leal
Alberto Simões (Eds.)

4th International Symposium, SLATE 2015
Madrid, Spain, June 18–19, 2015
Revised Selected Papers

Languages, Applications
and Technologies

Communications in Computer and Information Science 563

Communications
in Computer and Information Science 563

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

José-Luis Sierra-Rodríguez • José Paulo Leal
Alberto Simões (Eds.)

Languages, Applications
and Technologies
4th International Symposium, SLATE 2015
Madrid, Spain, June 18–19, 2015
Revised Selected Papers

123

Editors
José-Luis Sierra-Rodríguez
Complutense University of Madrid
Madrid
Spain

José Paulo Leal
Universidade do Porto - DCC
Porto
Portugal

Alberto Simões
Universidade do Minho
Braga
Portugal

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-27652-6 ISBN 978-3-319-27653-3 (eBook)
DOI 10.1007/978-3-319-27653-3

Library of Congress Control Number: 2015957052

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the revised and extended proceedings of the fourth edition of
SLATE, the 4th Symposium on Languages, Applications and Technologies, held at the
Complutense University of Madrid, Spain, during June 18–19, 2015.

We continually use languages. First, to communicate between ourselves. Later, to
communicate with computers. And more recently, with the advent of networks, we
found a way to make computers communicate between themselves. All these different
forms of communication use languages, different languages, but that still share many
similarities. In SLATE we are interested in discussing these languages. Languages
being such a broad subject, SLATE is organized in three main tracks:

– HHL Track: Processing Human–Human Languages. HHL is a forum dedicated to
the discussion of research projects and ideas involving natural language processing
and their industrial application. In 2015 this track was chaired by Alberto Simões.

– HCL Track: Processing Human–Computer Languages. HCL is a forum where
researchers, developers, and educators exchange ideas and information on the latest
academic or industrial work on language design, processing, assessment, and
applications. The SLATE 2015 HCL chair was José-Luis Sierra-Rodríguez.

– CCL Track: Processing Computer–Computer Languages. The main goal of CCL is
to provide a broad platform for discussion on the XML markup language: examples
of usage and associated technologies. In 2015 this track was chaired by José Paulo
Leal.

In this 4th edition we received 40 full-paper submissions and seven short-paper
submissions. After a thorough peer-review process, in which each paper was reviewed
by three anonymous reviewers, 17 papers were accepted as full papers (about 42 %
full-paper acceptance rate). In addition, ten full papers were invited to be resubmitted as
short papers, and nine short papers were finally accepted for publication and presen-
tation at the symposium (about 52 % short-paper acceptance rate). This volume con-
tains the extended and revised versions of all the papers presented at SLATE 2015.

The presentations were divided into the following eight sessions: Document Pro-
cessing (CCL), Domain-Specific Languages (HCL), Tools for Natural Language
Speech and Text Processing (HHL), Web Technologies and Practical Cases (CCL),
Semantic and Text Classification (HHL), Human–Computer Language Processing
(HCL), Semantic Web and Ontologies (CCL), and Grammars (HCL). In addition, a
Lightning Talks and Demo Session was also included allowing for late-breaking pre-
sentations and tool demos. Finally, the SLATE 2015 program also included two
keynotes: one on the application of grammar inference to software language engi-
neering, by Marjan Mernik from the University of Maribor, Slovenia, and another on
the role of ontologies in machine for machine communication, by Asunción Gómez
from the Technical University of Madrid, Spain.

The organizers of SLATE 2015 want to thank the many people without whom this
event would never have been possible. In particular, the UCM’s Faculty of Philology
for serving as the venue of the symposium; the UCM’s Computer Science School for
sponsoring the keynotes through its PhD Program Conference Cycle; the UCM’s
General Foundation for being in charge of the finances of the event; the Madrid City
Council for organizing the symposium social activities; the Santander-UCM research
grants for partially funding one of the keynotes; the members of the ILSA (Imple-
mentation of Language-Driven Software and Applications) Research Group for their
collaboration in the local organization of the event; Springer for giving us the
opportunity to publish this proceedings volume as part of the CCIS series; COMLAN
and COMSIS journals for accepting submissions of additionally revised and extended
journal-oriented versions of the best papers presented at the symposium; the EasyChair
conference management system; the Program Committee members for spending their
time reviewing the papers and writing the reports; the authors of the submitted papers
for their contribution and interest in the symposium; and, finally, to all participants who
came to Madrid and contributed such a fruitful meeting.

October 2015 José-Luis Sierra-Rodríguez
José Paulo Leal
Alberto Simões

VI Preface

Organization

Program Chairs

General Chair

José-Luis Sierra-Rodríguez

HCL Track Chair

José-Luis
Sierra-Rodríguez

Universidad Complutense de Madrid

HHL Track Chair

Alberto Simões Universidade do Minho

CCL Track Chair

José Paulo Leal Universidade do Porto

HHL Program Committee

Alberto Simões Universidade do Minho, Portugal
António Teixeira Universidade de Aveiro, Portugal
Brett Drury Universidade de São Paulo, Brazil
Fernando Baptista Instituto Universitário de Lisboa, Portugal
Hugo Gonçalo Oliveira Universidade de Coimbra, Portugal
Jörg Tiedemann Uppsala Universitet, Sweden
Jorge Baptista Universidade do Algarve, Portugal
José João Almeida Universidade do Minho, Portugal
Lluís Padró Universitat Politècnica de Catalunya, Spain
Octavian Popescu IBM, T.J. Watson Research Center, NY, USA
Pablo Gamallo Universidade de Santiago de Compostela, Spain
Thiago Pardo Universidade de São Paulo, Brazil
Ulrich Heid Universität Stuttgart, Germany
Xavier Gómez Guinovart Universidade de Vigo, Spain

HCL Program Committee

Alda Lopes Gançarski Institut National des Télécommunications, France
António Menezes Leitão Universidade Técnica de Lisboa, Portugal
Bostjan Slivnik Univerza v Ljubljani, Slovenia
Casiano Rodriguez-Leon Universidad de La Laguna, Spain

Daniela da Cruz Universidade do Minho, Portugal
Ivan Lukovic University of Novi Sad, Serbia
Guido Wachsmuth Delft University of Technology, The Netherlands
Jan Kollar Technical University of Kosice, Slovakia
Jan Janousek Czech Technical University, Czech Republic
Jaroslav Poruban Technical University of Kosice, Slovakia
Jean-Cristophe Filliâtre Laboratoire de Recherche en Informatique, France
João Paiva Cardoso Universidade do Porto, Portugal
José-Luis

Sierra-Rodríguez
Universidad Complutense de Madrid, Spain

Josep Silva Universidad Politécnica de Valencia, Spain
Maria João Varanda

Pereira
Instituto Politécnico de Bragança, Portugal

Mario Beron Universidad Nacional de San Luis, Argentina
Marjan Mernik Univerza v Mariboru, Slovenia
Nuno Oliveira Universidade do Minho, Portugal
Nuno Ramos Universidade do Minho, Portugal
Paulo Matos Instituto Politécnico de Bragança, Portugal
Pedro Rangel Henriques Universidade do Minho, Portugal
Ricardo Rocha Universidade do Porto, Portugal
Salvador Abreu Universidade de Évora, Portugal
Simão Melo de Sousa Universidade da Beira Interior, Portugal

CCL Program Committee

Alda Lopes Gançarski Institut National des Télécommunications, France
Alexander Paar TWT GmbH Science and Innovation, Germany
Cristina Ribeiro Universidade do Porto, Portugal
Daniel Diaz University of Paris 1 - Pantheon Sorbonne, France
Eugenijus Kurilovas Centre of Information Technology in Education,

Lithuania
Gabriel David Universidade do Porto, Portugal
Giovani Librelotto Universidade Federal de Santa Maria, Brazil
João Correia Lopes Universidade do Porto, Portugal
José Carlos Ramalho Universidade do Minho, Portugal
José Paulo Leal Universidade do Porto, Portugal
Pedro Rangel Henriques Universidade do Minho, Portugal
Peter Sloep Open Universiteit, The Netherlands
Ricardo Queirós Instituto Politécnico do Porto, Portugal
Salvador Abreu Universidade de Évora, Portugal

Organizing Committee

Pedro Rangel Henriques Universidade do Minho, Portugal
José Paulo Leal Universidade do Porto, Portugal
Alberto Simões Universidade do Minho, Portugal

VIII Organization

Maria João Varanda Instituto Politécnico de Bragança, Portugal
José-Luis

Sierra-Rodríguez
Universidad Complutense de Madrid, Spain

Antonio Sarasa-Cabezuelo Universidad Complutense de Madrid, Spain
Antonio Pareja-Lora Universidad Complutense de Madrid, Spain
Ana Fernandez-Pampillon Universidad Complutense de Madrid, Spain
Daniel Rodriguez-Cerezo Universidad Complutense de Madrid, Spain

Additional Reviewers

Antonio Navarro Universidad Complutense de Madrid, Spain
Antonio Sarasa Universidad Complutense de Madrid, Spain
Félix Buendía Universidad Politécnica de Valencia, Spain
Helena Moniz INESC-ID, Portugal
Maha Khemaja ISSATSo - University of Sousse, Tunisia
Marcos García Universidade de Santiago de Compostela, Spain
Miguel Anxo Solla Portela Universidade de Vigo, Spain
Vicente Blanco Universidad de La Laguna, Spain

Organization IX

Contents

Human-Human Languages

Speech Features for Discriminating Stress Using Branch and Bound
Wrapper Search . 3

Mariana Julião, Jorge Silva, Ana Aguiar, Helena Moniz,
and Fernando Batista

Oriya Morphological Analyzer Using Lttoolbox . 15
Itisree Jena, Himani Chaudhry, and Dipti Misra Sharma

Exploiting Twitter for the Semantic Enrichment of Telecommunication
Alarms. 26

Hugo Gonçalo Oliveira, João Marques, and Luís Cortesão

Meaning Inference of Abbreviations Appearing in Clinical Studies 38
Efthymios Chondrogiannis, Vassiliki Andronikou,
Efstathios Karanastasis, and Theodora Varvarigou

Experiments on Enlarging a Lexical Ontology . 49
Alberto Simões and José João Almeida

Using Unstructured Profile Information for Gender Classification
of Portuguese and English Twitter Users . 57

Marco Vicente, Joao P. Carvalho, and Fernando Batista

Yet Another Suite of Multilingual NLP Tools. 65
Marcos Garcia and Pablo Gamallo

Human-Computer Languages

Towards a DSL for Educational Data Mining . 79
Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla,
and Pablo Sánchez

WSDLUD: A Metric to Measure the Understanding Degree of WSDL
Descriptions . 91

Mario Marcelo Berón, Hernán Bernardis, Enrique Alfredo Miranda,
Daniel Edgardo Riesco, Maria João Varanda Pereira,
and Pedro Rangel Henriques

Combining Processing with Racket . 101
Hugo Correia and António Menezes Leitão

http://dx.doi.org/10.1007/978-3-319-27653-3_1
http://dx.doi.org/10.1007/978-3-319-27653-3_1
http://dx.doi.org/10.1007/978-3-319-27653-3_2
http://dx.doi.org/10.1007/978-3-319-27653-3_3
http://dx.doi.org/10.1007/978-3-319-27653-3_3
http://dx.doi.org/10.1007/978-3-319-27653-3_4
http://dx.doi.org/10.1007/978-3-319-27653-3_5
http://dx.doi.org/10.1007/978-3-319-27653-3_6
http://dx.doi.org/10.1007/978-3-319-27653-3_6
http://dx.doi.org/10.1007/978-3-319-27653-3_7
http://dx.doi.org/10.1007/978-3-319-27653-3_8
http://dx.doi.org/10.1007/978-3-319-27653-3_9
http://dx.doi.org/10.1007/978-3-319-27653-3_9
http://dx.doi.org/10.1007/978-3-319-27653-3_10

Batched Evaluation of Full-Sharing Multithreaded Tabling 113
Miguel Areias and Ricardo Rocha

Browsing the Parse Space . 125
Daniel Rodríguez-Cerezo and José-Luis Sierra

Assessing Attribute Grammars’ Quality: Metrics and a Tool 137
João Cruz, Pedro Rangel Henriques, and Daniela da Cruz

A Syntax-Directed Model Transformation Framework Based on Attribute
Grammars . 145

Antonio Sarasa-Cabezuelo and José-Luis Sierra

An AST-Based Tool, Spector, for Plagiarism Detection: The Approach,
Functionality, and Implementation. 153

Vítor T. Martins, Pedro Rangel Henriques, and Daniela da Cruz

Towards the Generation of Graphical Modelling Environments Aided
by Patterns . 160

Antonio Garmendia, Ana Pescador, Esther Guerra, and Juan de Lara

Computer-Computer Languages

Tree String Path Subsequences Automaton and Its Use for Indexing XML
Documents . 171

Eliška Šestáková and Jan Janoušek

A Structural Approach to Assess Graph-Based Exercises 182
Rúben Sousa and José Paulo Leal

Odin: A Service for Gamification of Learning Activities 194
José Carlos Paiva, José Paulo Leal, and Ricardo Queirós

SplineAPI: A REST API for NLP Services . 205
Nuno Vieira, Alberto Simões, and Nuno Ramos Carvalho

Engaging Researchers in Data Management with LabTablet, an Electronic
Laboratory Notebook. 216

Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha da Silva,
and Cristina Ribeiro

OFR: An Efficient Representation of RDF Datasets. 224
Jakub Swacha and Szymon Grabowski

Reducing Large Semantic Graphs to Improve Semantic Relatedness 236
Teresa Costa and José Paulo Leal

XII Contents

http://dx.doi.org/10.1007/978-3-319-27653-3_11
http://dx.doi.org/10.1007/978-3-319-27653-3_12
http://dx.doi.org/10.1007/978-3-319-27653-3_13
http://dx.doi.org/10.1007/978-3-319-27653-3_14
http://dx.doi.org/10.1007/978-3-319-27653-3_14
http://dx.doi.org/10.1007/978-3-319-27653-3_15
http://dx.doi.org/10.1007/978-3-319-27653-3_15
http://dx.doi.org/10.1007/978-3-319-27653-3_16
http://dx.doi.org/10.1007/978-3-319-27653-3_16
http://dx.doi.org/10.1007/978-3-319-27653-3_17
http://dx.doi.org/10.1007/978-3-319-27653-3_17
http://dx.doi.org/10.1007/978-3-319-27653-3_18
http://dx.doi.org/10.1007/978-3-319-27653-3_19
http://dx.doi.org/10.1007/978-3-319-27653-3_20
http://dx.doi.org/10.1007/978-3-319-27653-3_21
http://dx.doi.org/10.1007/978-3-319-27653-3_21
http://dx.doi.org/10.1007/978-3-319-27653-3_22
http://dx.doi.org/10.1007/978-3-319-27653-3_23

A Mixed Approach for the Representation of Nutritional Information
Through XML-to-OWL Mappings. 246

Vanesa Espín, Manuel Noguera, and María V. Hurtado

Automatic Generation of CVs from Online Social Networks. 258
Sergio Maia Dias, Alda Lopes Gancarski, and Pedro Rangel Henriques

Knowledge Identification from Requirements Specification. 264
Eduardo Barra and Jorge Morato

Author Index . 271

Contents XIII

http://dx.doi.org/10.1007/978-3-319-27653-3_24
http://dx.doi.org/10.1007/978-3-319-27653-3_24
http://dx.doi.org/10.1007/978-3-319-27653-3_25
http://dx.doi.org/10.1007/978-3-319-27653-3_26

Human-Human Languages

Speech Features for Discriminating Stress Using
Branch and Bound Wrapper Search

Mariana Julião1(B), Jorge Silva1, Ana Aguiar1, Helena Moniz2,3,
and Fernando Batista2,4

1 Instituto de Telecomunicações,
Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

{mjuliao,ana.aguiar}@fe.up.pt, up201007483@alunos.dcc.fc.up.pt

http://www.it.pt
2 INESC-ID, Lisboa, Portugal

{helenam,fmmb}@l2f.inesc-id.pt
3 FLUL/CLUL, Universidade de Lisboa, Lisboa, Portugal

4 ISCTE - Instituto Universitário de Lisboa, Lisboa, Portugal

Abstract. Stress detection from speech is a less explored field than
Automatic Emotion Recognition and it is still not clear which features are
better stress discriminants. The project VOCE aims at doing speech clas-
sification as stressed or not-stressed in real-time, using acoustic-prosodic
features only. We therefore look for the best discriminating feature sub-
sets from a set of 6125 features extracted with openSMILE toolkit plus
160 Teager Energy Operator (TEO) features. We use a Mutual Infor-
mation (MI) filter and a branch and bound wrapper heuristic with an
SVM classifier to perform feature selection. Since many feature sets are
selected, we analyse them in terms of chosen features and classifier perfor-
mance concerning also true positive and false positive rates. The results
show that the best feature types for our application case are Audio Spec-
tral, MFCC, PCM and TEO. We reached results as high as 70.4 % for
generalisation accuracy.

Keywords: Stress · Emotion recognition · Ecological data · Feature
sets · Feature selection

1 Introduction

The motivations for detecting stress from speech range from it being a non-
intrusive way to detect stress, to ranking emergency calls [7], or improve speech
recognition systems, since it is known that environmentally induced stress leads
to fails on speech recognition systems [13]. Public Speaking is said to be “the
most common adult phobia” [18], showing the relevance of a tool to improve
public speaking. In VOCE1, we target developing such a tool, by developing
algorithms to identify emotional stress from live speech. In particular, VOCE

1 http://paginas.fe.up.pt/∼voce.

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-27653-3 1

http://paginas.fe.up.pt/~voce

4 M. Julião et al.

corpus comes mainly from public speaking events that occur within academic
context, like presentations of coursework or research seminars. The envisioned
coaching application requires detecting emotional stress in live speech in near
real time, to give the user timely feedback, which requires adapting the com-
putational costs to the limited memory and computational resources to use.
Decreasing the number of features used for classification reduces the amount of
data to collect, the amount of features to be extracted and the complexity of
the classifier, impacting a reduction in the memory and computational resources
used. Additionally, feature selection can increase the classifier’s accuracy [12].
Thus, in this paper, we focus on identifying these reduced feature sets based on
their performance as stress discriminators.

In this work, we start from the fusion of two feature sets: the group of features
extracted using the openSMILE toolkit [25], and the group of TEO-based fea-
tures, to be detailed on Sect. 4.2. We filter these feature sets with Mutual Infor-
mation (MI) and then use a branch-and-bound wrapper to explore the space of
possible feature sets. Finally, we analyse the best feature sets chosen on various
branches for the most frequently chosen feature categories.

2 Related Work

The importance of suprasegmental acoustic phenomena that can be taken as
global emotion features is highlighted in [28], like “hyper-clear speech, pauses
inside words, syllable lengthening, off-talk, disfluency cues, inspiration, expira-
tion, mouth noise, laughter, crying, unintelligible voice”. These features have
been mainly annotated by hand, and automatic extraction is not straightfor-
ward, though possible in some cases.

Stress recognition from speech is a specific case of emotion recognition.
The Fundamental Frequency, F0, is the most consensual feature for stress dis-
crimination [8,14,22,31], but several metrics for energy and formant changes
have been proposed, often represented by Mel-Frequency Cepstral Coefficients
(MFCCs) [7,21,31]. Frequency and amplitude perturbations – Jitter and Shim-
mer –, and other measures of voice quality, like Noise to Harmonics Ratio
and Subharmonics to Harmonics Ratio [26,28] have also been used. Teager
Energy Operator-based features have also shown to perform well in speech under
stress [31], and we shall look at them in detail in this work.

TEO-based features have been shown to increase recognition robustness with
car noise [10,15]. In [17], TEO-based features reached the best performance for
stressed speech discrimination outdoor, but not indoor. They also have been
used to do voiced-unvoiced classification [19]. In the latter work, the advantages
of TEO are enunciated: because only three samples are needed for the energy
computation at each time instant, it is nearly instantaneous. Therefore, this
time resolution allows to capture energy fluctuation, and also a robust AM-FM
estimation in noisy environment. [6] uses Teager Energy Operator in the develop-
ment of a system for hypernasal speech detection. In this work, we shall look into
the discrimination power of TEO-based speech features for stress discrimination
in public speaking.

Speech Features for Discriminating Stress 5

3 Speech Corpus and Data Annotation

The VOCE corpus [2] currently consists of 38 raw recordings from voluntaries
aged 19 to 49. Data is recorded in an ecological environment, concretely during
academic presentations2. Speech was automatically segmented into utterances,
according to a process described in [5].

Annotation into stressed or neutral classes was performed per speaker, based
on the mean heart rate [4]. Utterances on the third quartile of mean heart
rates for that speaker are annotated as stressed, while the remaining ones are
annotated as neutral.

Using an ecologically collected corpus imposes an unavoidable trade-off
between the quality of the recording and the spontaneity of the speaker. Higher
quality of the recording not only allows for more reliable feature extraction, in
general, but also impacts the performance of the segmentation algorithms we
use to split the speech into sentence-like units – utterances –, and to do text
transcription, necessary for the extraction of TEO features. For these reasons,
we chose only 21 raw recordings for this work.

For these speakers, 1457 valid utterances were obtained3. The set of utter-
ances is divided into 15 speakers (507 utterances) for training and 6 speakers

Table 1. Dataset demographic data. PSE: Public Speaking Experience, 1 – 5: 1 - little
experience, 5 - large experience.

Train set Test set

Age Gender PSE #Utts Age Gender PSE #Utts

26 male 2 56 24 male 3 97

22 male 2 39 19 male 2 61

24 male 3 36 19 male 3 86

21 male 3 38 19 female 3 64

22 male 3 32 23 female 4 71

22 male 3 25 19 female 3 63

25 male 2 54

19 male 3 12

21 male 3 22

21 female 3 51

24 female 5 27

22 female 2 37

21 female 3 32

21 female 3 18

19 female 3 28

2 Please refer to [3] for details on the collection methodology.
3 Remaining utterances after discarding 94 utterances with length of less than 1 s or

more than 25 s.

6 M. Julião et al.

(442 utterances) for testing. Since the number of stressed utterances corresponds
to approximately 1/4 of the total, we randomly down-sampled the train data in
order to balance the two classes, which led to the mentioned 507 utterances.
During feature selection, the classifier was trained on 354 utterances and tested
on 153 utterances. These utterances belonged to the train set. Table 1 charac-
terises the dataset concerning age, gender, public speaking experience, and the
number of utterances considered4.

We performed outlier detection on each feature using the Hampel identi-
fier [20] with t = 10. The outliers were then replaced by the mean value of the
feature excluding outliers, and feature values were scaled to the interval [0,1].

4 Methodology

Figures 1(a) and (b) illustrate the workflow for speech segmentation and feature
selection, respectively. In this work, we start from the fusion of two feature sets:
the group of features extracted using the openSMILE toolkit [25], and the group
of TEO-based features, to be detailed on Sect. 4.2. We filter these feature sets
with Mutual Information and then use a branch-and-bound wrapper to explore
the space of possible feature sets. We then analyse the best feature sets chosen
on various branches for the most frequently chosen feature categories.

(a) Speech segmentation process.

(b) Feature selection process.

Fig. 1. Workflow for the speech segmentation and the feature selection process.

4.1 Acoustic-Prosodic Features

OpenSMILE extracts a set of 128 low-level features at the frame level from the
speech signal, known as low-level descriptors (LLD) [11]. Statistical functionals
are then applied over the LLD in order to compute values for longer segments,
providing a total of 6125 features at the segment level [25]. These features and
their extraction processes are described in [9,24].

4 Please note that the stated number of utterances on the train set corresponds to the
one actually used after discarding a part of the neutral utterances, and not to the
number of utterances in the natural set.

Speech Features for Discriminating Stress 7

The openSMILE toolkit is capable of extracting a very wide range of acoustic-
prosodic features and has been applied with success in a number of paralinguistic
classification tasks [23]. It has been used in the scope of this study to extract
a feature vector containing 6125 speech features, by applying segment-level sta-
tistics (means, moments, distances) over a set of energy, spectral and voicing
related frame-level features.

4.2 Teager Energy Operator Features

The following TEO-Based features were extracted: Normalized TEO autocorre-
lation envelope and Critical Band Based TEO Autocorrelation Envelope as in
[31]. The literature where Normalized TEO Autocorrelation Envelope and Criti-
cal Band Based TEO Autocorrelation are presented targets the feature extraction
for small voiced parts usually called “tokens” [31]. To work equivalently, we did
a phone recognition with the delimitation of each phone [1] and used only voiced
sounds. These correspond to phones represented by the portuguese SAMPA sym-
bols ‘i’, ‘e’, ‘E’, ‘a’, ‘6’, ‘O’, ‘o’, ‘u’, ‘@’, ‘i∼’, ‘e∼’, ‘6∼’, ‘o∼’, ‘u∼’, ‘aw’, ‘aj’, ‘6∼j∼’,
‘v’, ‘z’, ‘Z’, ‘b’, ‘d’, ‘g’, ‘m’, ‘n’, ‘J’, ‘r’, ‘R’, ‘l’, ‘L’ [29, Chap. IV.B].

These features are extracted per frame. The length of each frame is about
10ms, depending on the feature to extract. Each phone usually contains many
frames and each utterance has normally many phones. Therefore, since we want
to have values per utterance, we consider each feature extracted for all phones
and apply statistics to it. These statistics are: mean, standard deviation, skew-
ness, kurtosis, first quartile, median, third quartile, and inter-quartile range.
This process is also illustrated in Fig. 1(a). The first two columns in Table 2
summarise the feature types considered in this work5.

5 Searching for the Best Feature Sets

As already stated, we apply one filter to reduce the dimensionality from initially
6285 functional (OS) plus TEO features before applying the wrapper with a
Support Vector Machine (SVM) classifier with radial basis function kernel and
C=1006, using python library scikit-learn.

5.1 Filter: Mutual Information

There are several metrics and algorithms to compute the relevance of features
on a dataset, and the choice of this metric may hugely impact the final subset of
features. However, since there is a lack of a priori knowledge about filter metric
adequacy to specific datasets [30], we based our choice on the work of Sun and
5 The generic designation “type” is the result of aggregating Low Level Descriptor

features with their derived functionals (e.g., quartiles, percentiles, means, maxima,
minima). This procedure is, in our perspective, a way to better group and interpret
the performance of the features.

6 This value was found empirically to produce the best classification results.

8 M. Julião et al.

Table 2. Feature Types: Id, Name, Number of features of each type selected for MI,
Number of features of each type chosen for the Best Sets: T.A.1, T.A.2, G.A., Se., Sp.,
and Comb.

Id Type MI T.A.1 T.A.2 G.A. Se. Sp. Comb.

1 F0finala 10 0 0 0 0 0 0

2 TEOb 17 3 2 1 3 2 3

3 audSpec Rfiltb 187 8 8 6 7 6 6

4 audspeca 6 0 0 0 0 0 0

5 audspecRastaa 4 0 0 0 0 0 0

6 jitterDDP 6 0 0 1 0 0 0

7 jitterLocala 7 0 0 0 0 0 0

8 logHNR 8 1 0 0 0 1 1

9 mfcc smab 119 7 8 4 2 3 4

10 pcm Mag fband 17 0 0 1 2 1 0

11 pcm Mag harmonicity 14 1 0 0 0 0 0

12 pcm Mag psySharpnessb 6 3 2 1 1 1 2

13 pcm Mag spectralEntropy 6 0 1 0 0 0 1

14 pcm Mag spectralFlux 8 0 1 0 0 0 0

15 pcm Mag spectralKurtosisa 7 0 0 0 0 0 0

16 pcm Mag spectralRollOff 22 1 0 0 0 0 0

17 pcm Mag spectralSkewnessa 1 0 0 0 0 0 0

18 pcm Mag spectralSlope 6 0 1 1 0 0 0

19 pcm Mag spectralVariancea 10 0 0 0 0 0 0

20 pcm RMSenergy 6 1 1 1 1 1 0

21 pcm zcr 8 0 0 0 1 0 0

22 shimmerLocala 8 0 0 0 0 0 0

23 voicingFinalUnclippeda 4 0 0 0 0 0 0
a Type not selected by the best sets
b Type always selected by the best sets

Li et al. [27], which showed good results in terms of classification for Mutual
Information (MI), a metric that measures the mutual dependence between two
random variables.

Since MI is based on the probability distribution of discrete variables and our
features have continuous values, we had to define a binning. We (1) defined five
binning possibilities: 50, 100, 250, 500 or 1000 bins; (2) computed MI for each
feature and each binarisation possibility; (3) kept features for which the MI value
belonged to the higher quartile for all binarisation options. Their distribution
per feature type corresponds to the third column in Table 2.

Speech Features for Discriminating Stress 9

5.2 Wrapper

Feature selection has been widely studied and, as result, a large number of
algorithms have been proposed. These algorithms can be categorized into three
groups: filter, wrapper and embedded [16]. Wrapper algorithms find the final
solution using a learning algorithm as part of the evaluation criteria. The main
idea of these methods is to use the learning algorithm as a black-box to guide
the search for the optimal solution. The learning is applied to every candidate
solution and the goodness of the subset is given according to the performance
of the learning algorithm. Due to the learning algorithm being directly used on
the process of selecting features, these methods tend to find better solutions.
Nonetheless, the final solution only applies for the selected learning algorithm,
since using a different one will most likely result on a different final solution.
These methods have higher computational cost as they require training and
classifying data for each candidate solution.

We designed a branch and bound wrapper to search the space of feature sets
obtained from the MI filter for the combination of features that deliver the best
classifier performance. This wrapper starts by searching all combinations of sets
up to 10 features, keeping all that are within 1.5 % accuracy of the best solution
found so far. Larger feature sets are obtained by expanding the previously kept
solutions with blocks of features not yet in the sets. Every time a feature subset
is tested with a classification algorithm, a score is produced, which is the accu-
racy, in this case. Subsets are kept and expanded if the expansion improves the
previous accuracy. This search runs until the work list of feature sets with new
combinations empties. This wrapper provides a better exploration of the feature
set space than traditional forward and backward wrappers. Since the search
space for our wrapper is much bigger than for most wrapper methods, we used
parallel programming techniques to improve the throughput of the algorithm,
using python’sMultiprocessing package.

6 Results

The Mutual Information filter selected 487 features, distributed into types as
described in the third column of Table 2. After choosing the best 280 feature
sets with training accuracies below 85% from 20 processors, we looked at their
distribution by feature types, which is on Fig. 2.

Among these 280 feature sets we looked for the ones having the best scores
in each of the considered metrics7: Train Accuracy, Generalisation Accuracy,
Sensitivity (Se), Specificity (Sp)8, and a Combined Metric defined as

CombinedMetric =
(Se + Sp)

2
− |Sp − Se|. (1)

7 Generalisation Accuracy, Sensitivity and Specificity are computed on the test set.
8 Being TP - number of True Positives, TN - number of True Negatives, FP - num-

ber of False Positives, FN - number of False Negatives, Sensitivity= TP
TP+FN

and

Specificity= TN
TN+FP

.

10 M. Julião et al.

The need for this metric follows from the fact that it is our goal not only to
have a good generalisation accuracy, but also to have high sensitivity and high
specificity at the same time. This is relevant since, as we have an imbalanced
test set, with much more neutral utterances than stressed utterances, it can
happen that high generalisation results are due to high values of true positives,
while true negatives are neglected – which is the kind of scenario we want to
avoid. On Table 3, each line corresponds to the best feature subset for which
the metric specified in the first column was found to be maximum. The two last
lines correspond to baseline results, meaning the classification for the whole set
of features and for the set of MI filtered features.

Columns T.A.1, T.A.2, G.A., Se., Sp., and Comb, in Table 2, correspond to
the best feature sets, according to each of these metrics, as exposed in Table 3.
Each of the Columns in Table 2 signs the number of features of each type (each
line corresponds to a feature type).

Table 3. Metrics for the Best Subsets as percentage

Set Train Acc. Gen. Acc. Sens. Spec. Comb. # features

Train Acc 84.97 61.76 59.81 62.39 58.53 25

Train Acc 84.97 62.22 52.34 65.37 45.82 24

Gen. Acc 81.70 70.36 33.64 82.09 9.42 16

Sensitivity 81.70 59.28 71.96 55.22 46.85 17

Specificity 81.05 70.14 31.78 82.39 6.47 15

Combined 81.70 64.03 61.68 64.78 60.14 17

Complete — 63.12 50.47 67.16 42.13 6285

MI — 60.86 45.79 65.67 35.85 487

Table 3 bears the following information:

– The sets of best train accuracy do not correspond to the ones with best gener-
alisation accuracy. Actually, these have the second worse generalisation results
among these sets.

– The set of best generalisation accuracy, as well as the set of best specificity,
although having very good generalisation accuracies have very low sensitivi-
ties. This is the kind of imbalance we want to avoid.

– The same train accuracy can have sets of very different quality. We see that
for train accuracy 81.70 % we have the best generalisation accuracy, the best
sensitivity and the best combined metric. Looking at the other columns in the
table we see that only the line for Combined Metric has acceptable results in
sensitivity and specificity.

– These best reduced sets often achieve better results than both the complete
set and the filtered set, having much smaller sets, which is very good for the
envisioned real-time public speaking coaching application.

Speech Features for Discriminating Stress 11

1 F0final
2 TEO
3 audSpec Rfilt
4 audspec
5 audspecRasta
6 jitterDDP
7 jitterLocal
8 logHNR
9 mfcc sma
10 pcm Mag fband
11 pcm Mag harmonicity
12 pcm Mag psySharpness
13 pcm Mag spectralEntropy
14 pcm Mag spectralFlux
15 pcm Mag spectralKurtosis
16 pcm Mag spectralRollOff
17 pcm Mag spectralSkewness
18 pcm Mag spectralSlope
19 pcm Mag spectralVariance
20 pcm RMSenergy
21 pcm zcr
22 shimmerLocal
23 voicingFinalUnclipped

Fig. 2. Heatmap for feature type frequencies on each subset.

7 Discussion

The set of features selected by the Mutual Information filter are, grosso modo,
the ones reported in the literature for other languages (e.g., [14,32]). Those
encompass pitch information, mostly final movements of pitch, audio spectral
differences, voice quality features (jitter, shimmer, and harmonics-to-noise-ratio)
and TEO features, the latter usually described as very robust across gender and
languages. As for PCMs and MFCCs, these features are very transversal in
speech processing tasks and highly informative for a wide range of tasks, not
surprising, thus, for stress detection as well. The features selected by Mutual
Information filter give us a more complete characterization of stress predictors.
From these set the ones that are systematically chosen in the best features sets
using the wrapper are mostly TEO, MFCCs and audio spectral differences. TEO
and MFCCs features are also reported by [32], for English and Mandarin, as the
most informative ones, even more than pitch itself.

8 Conclusions

We have used a corpus of ecologically collected speech to search for the best
speech features that discriminate stress. Starting from 6125 features extracted
with openSMILE toolkit and 160 Teager Energy features, we used a Mutual
Information filter to obtain a reduced subset for stress detection. Next, we
searched for the best feature set using a branch and bound wrapper with SVM
classifiers.

Our results provide further evidence that the features resulting from the
Mutual Information filtering process are robust for stress detection tasks, inde-
pendently of the language, and highlight the importance of voice quality features

12 M. Julião et al.

for stress prediction, mostly high jitter and shimmer and low harmonics to noise
ratio, parameters typically associated with creaky voice.

Our best result compares well with work done by [10,32], although direct
comparisons are hard to establish due to different corpora, segmentations, and
metrics used in the studies.

Acknowledgments. This work was supported by national funds through Fundação
para a Ciência e Tecnologia (FCT) by project VOCE (Voice Coach for Reduced
Stress) PTDC/EEA-ELC/121018/2010, UID/CEC/50021/2013, and Post-doc grant
SFRH/PBD/95849/2013.

References

1. Abad, A., Astudillo, R.F., Trancoso, I.: The L2F spoken web search system for
mediaeval 2013. In: Proceedings of the MediaEval 2013 Multimedia Benchmark
Workshop, Barcelona, Spain, 18–19 October 2013 (2013)

2. Aguiar, A., Kaiseler, M., Meinedo, H., Almeida, P., Cunha, M., Silva, J.: VOCE
corpus: ecologically collected speech annotated with physiological and psycholog-
ical stress assessments. In: Calzolari, N., Choukri, K., Declerck, T., Loftsson, H.,
Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings
of the Ninth International Conference on Language Resources and Evaluation
(LREC 2014). European Language Resources Association (ELRA), Reykjavik
(2014)

3. Aguiar, A.C., Kaiseler, M., Meinedo, H., Abrudan, T.E., Almeida, P.R.: Speech
stress assessment using physiological and psychological measures. In: Mattern, F.,
Santini, S., Canny, J.F., Langheinrich, M., Rekimoto, J. (eds.) UbiComp (Adjunct
Publication), pp. 921–930. ACM (2013)

4. Allen, M.T., Boquet, A.J., Shelley, K.S.: Cluster analyses of cardiovascular respon-
sivity to three laboratory stressors. Psychosom. Med. 53(3), 272–288 (1991)

5. Batista, F., Moniz, H., Trancoso, I., Mamede, N.J.: Bilingual experiments on auto-
matic recovery of capitalization and punctuation of automatic speech transcripts.
IEEE Trans. Audio Speech Lang. Process. 20(2), 474–485 (2012)

6. Cairns, D.A., Hansen, J.H.L., Kaiser, J.F.: Recent advances in hypernasal speech
detection using the nonlinear teager energy operator. In: ICSLP 1996, p. 1 (1996)

7. Demenko, G.: Voice stress extraction. In: Proceedings of the Speech Prosody 2008
Conference (2008)

8. Demenko, G., Jastrzebska, M.: Analysis of voice stress in call centers conversa-
tions. In: Proceedings of Speech Prosody, 6th International Conference, Shanghai,
China (2012)

9. Eyben, F., Wllmer, M., Schuller, B.: openSMILE: the munich versatile and fast
open-source audio feature extractor. In: Bimbo, A.D., Chang, S.F., Smeulders,
A.W.M. (eds.) ACM Multimedia, pp. 1459–1462. ACM (2010)

10. Fernandez, R., Picard, R.W.: Modeling drivers’ speech under stress. Speech Com-
mun. 40(1–2), 145–159 (2003)

11. Ferreira, J., Meinedo, H.: VOCE project stress feature survey technical report 2.
Technical report, L2F, Inesc-ID, Lisboa, Portugal, November 2013

12. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

Speech Features for Discriminating Stress 13

13. Hansen, J.H., Bou-Ghazale, S.E., Sarikaya, R., Pellom, B.: Getting started with
the susas: A speech under simulated and actual stress database. Technical Report:
RSPL-98-10 (1998)

14. Hansen, J.H., Patil, S.A.: Speech under stress: Analysis, modeling and recognition
(2007)

15. Jabloun, F., Cetin, A.E., Erzin, E.: Teager energy based feature parameters for
speech recognition in car noise. IEEE Sig. Process. Lett. 6, 259–261 (1999)

16. Kumar, V., Minz, S.: Feature selection: a literature review. Smart CR 4(3), 211–
229 (2014)

17. Lu, H., Frauendorfer, D., Rabbi, M., Mast, M.S., Chittaranjan, G.T., Campbell,
A.T., Gatica-Perez, D., Choudhury, T.: Stresssense: detecting stress in uncon-
strained acoustic environments using smartphones. In: Proceedings of the 2012
ACM Conference on Ubiquitous Computing, UbiComp 2012, pp. 351–360. ACM,
New York (2012). http://doi.acm.org/10.1145/2370216.2370270

18. Miller, T.C., Stone, D.N.: Public speaking apprehension (psa), motivation, and
affect among accounting majors: a proofofconcept intervention. Issues Account.
Educ. 24(3), 265–298 (2009)

19. Sundaram, N., Smolenski, B., Yantorno, R.: Instantaneous nonlinear teager energy
operator for robust voicedunvoiced speech classification (2003)

20. Pearson, R.K. (ed.): Exploring Data in Engineering, the Sciences, and Medicine.
Oxford University Press, USA (2011)

21. Sarikaya, R., Gowdy, J.N.: Subband based classification of speech under stress.
In: ICASSP, pp. 569–572 (1998)

22. Scherer, K.R., Grandjean, D., Johnstone, T., Klasmeyer, G., Bnziger, T.: Acoustic
correlates of task load and stress. In: Hansen, J.H.L., Pellom, B.L. (eds.) INTER-
SPEECH. ISCA (2002)

23. Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., MüLler, C.,
Narayanan, S.: Paralinguistics in speech and language-state-of-the-art and the
challenge. Comput. Speech Lang. 27(1), 4–39 (2013)

24. Schuller, B., Batliner, A., Seppi, D., Steidl, S., Vogt, T., Wagner, J., Devillers, L.,
Vidrascu, L., Amir, N., Kessous, L., Aharonson, V.: The relevance of feature type
for the automatic classification of emotional user states: low level descriptors and
functionals. In: INTERSPEECH, pp. 2253–2256. ISCA (2007)

25. Schuller, B., Steidl, S., Batliner, A., Nöth, E., Vinciarelli, A., Burkhardt, F., van
Son, R., Weninger, F., Eyben, F., Bocklet, T., Mohammadi, G., Weiss, B.: The
interspeech 2012 speaker trait challenge. In: INTERSPEECH. ISCA (2012)

26. Sun, X.: A pitch determination algorithm based on subharmonic-to-harmonic
ratio. In: the 6th International Conference of Spoken Language Processing, pp.
676–679 (2000)

27. Sun, Z., Li, Z.: Data intensive parallel feature selection method study. In: 2014
International Joint Conference on Neural Networks (IJCNN), pp. 2256–2262, July
2014

28. Vogt, T., André, E., Wagner, J.: Automatic recognition of emotions from speech:
a review of the literature and recommendations for practical realisation. In: Peter,
C., Beale, R. (eds.) Affect and Emotion in Human-Computer Interaction. LNCS,
vol. 4868, pp. 75–91. Springer, Heidelberg (2008)

29. Wells, J.: Handbook of Standards and Resources for Spoken Language Systems.
Mouton de Gruyter, Berlin (1997)

30. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms.
Neural Comput. 8(7), 1341–1390 (1996)

http://doi.acm.org/10.1145/2370216.2370270

14 M. Julião et al.

31. Zhou, G., Hansen, J., Kaiser, J.: Nonlinear feature based classification of speech
under stress. IEEE Trans. Speech Audio Process. 9, 201–216 (2001)

32. Zuo, X., Fung, P.N.: A cross gender and cross lingual study on acoustic features
for stress recognition in speech. In: Proceedings 17th International Congress of
Phonetic Sciences (ICPhS XVII), Hong Kong, pp. 2336–2339 (2011)

Oriya Morphological Analyzer Using Lttoolbox

Itisree Jena, Himani Chaudhry(B), and Dipti Misra Sharma

International Institute of Information Technology, Hyderabad, India
{itisree,himani}@research.iiit.ac.in, dipti@iiit.ac.in

Abstract. A Morphological analyzer is an essential tool for many NLP
applications. Developing a fully-fledged morphological analyzer (MA)
tool for an agglutinative language like Oriya is a challenging task. This
paper deals with development of a MA for Oriya, a resource poor lan-
guage. The MA is being developed using the paradigm approach. It
consists of various paradigms under which nouns, pronouns, adjectives,
verbs and indeclinables are classified. The paradigms have been created
for inflected forms using an XML based morphological dictionary from
the Lttoolbox package. At present, a total of 10,840 words have been
entered into the dictionary. In the course of the paper we talk about the
design and implementation of the MA. We also talk about the issues and
limitations experienced in developing it using Lttoolbox.

Keywords: Oriya morphological analyzer · Apertium · Lttoolbox ·
Compound verb · Paradigm approach · Morphological analyzer

1 Introduction

Efforts are on for past many years, to develop various of NLP tools such as Mor-
phological Analyzers (MA), Part-of-Speech (POS) taggers, spell checkers and
so on, for Indian languages (ILs), to assist tasks such as Machine Translation.
These efforts to develop NLP tools for ILs have especially focused on computa-
tional morphology, since ILs are morphologically quite rich. Developing an Oriya
MA becomes important, to help build these tools for the language. This work
presents the design and development of a MA for Oriya.

The official language of the state of Odisha (Orissa), Oriya, now officially
pronounced ‘Odia’ belongs to the eastern branch of the Indo Aryan sub family
of the Indo-European language. It has the status of the sixth classical language in
India. Around 31 million people are using this language. “Oriya is a syntactically
head-final and morphologically agglutinative language” [15]. Thus, quite some
information is contained in morphological structures in Oriya.

The nouns in Oriya are generally characterized by inflectional categories like
number, gender, case and also take articles and number classifiers. The definite
articles ‘-ti’ and ‘-taa’ occur only with singular nouns. Its plural markers include
‘-maane’, ‘-gudaa’, ‘-gudika’, ‘-gudaaka’. The plural marker ‘-maane’ is only added
to animate nouns e.g. ‘pua+maane (son+s). It can not be added to either human
propernounsor in-animatenouns.Thus,wecannot say ‘kaatha+maane’ (wood+s).
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 15–25, 2015.
DOI: 10.1007/978-3-319-27653-3 2

16 I. Jena et al.

Oriya has natural gender that does not reflect in the agreement with grammat-
ical categories like verbs. For example, baagha (tiger) and baaghuNi (tigress).
We use roman transliteration scheme to represent examples in this paper.

In Oriya, “adjectives which precede the nouns in attributive position do not
show any agreement with the nouns except in a few cases where the adjective
agrees with the noun in gender” [12]. For example, kaLaa baLada (black bull),
kaaLi gaaii (black cow).

Oriya finite verbs are marked for person, number, tense, aspect and mood.
They agree with subject nouns and this is reflected by an agreement marker that
manifests attached to the end of the main verb. For example:

aame khaa-il-u
we eat-pst-agr.

‘We ate’

1.1 Related Work

Various methods have been adopted for morphological analysis in natural lan-
guage processing. Brute Force method, Root Driven approach, Affix Stripping
method are some of the methods evolved typically for the analysis of ILs. MAs
being developed using the paradigm approach include Hindi MA by Bharati et al.
(1995) [3], and the Marathi MA by Bapat et al. (2010) [2], of which, [2] combine
a paradigm based inflectional system with finite state machines for modeling the
morphotactics. Marathi derivational MA by Vaidya et al. (2009) [16], Tamil MA
by Parameshwari (2011) [13] and Benagli by Faridee et al. (2009) [7], all adopt
paradigm approach using Lttoolbox to develop their MA, which is similar to our
work, discussed later in this paper.

Further, Oriya MA have been developed by Shabadi (2003) [15], Sahoo (2003)
[14] using deterministic Finite State Automata (FSA), where the FSA recognize
if the input string of morphemes is an appropriate Oriya word or not. They
do this by plugging each forms into the FSA, using two level morphology. The
work propose a model which can provide lexical, morphological and syntactic
information for each lexical unit in the analyzed word form. The second approach
followed for Oriya is our work using Lttoolbox from the Apertium toolkit which
we have reported in Jena et al. (2011) [8].

2 Current Work

2.1 Approach

We have adopted the paradigm based approach to create a MA for Oriya. Par-
adigms are employed to represent the inflectional regularities of lexical units in
a language [6]. A paradigm is a set of related word forms which follow the same
set of spelling rules and take the same kind of affixes. “Paradigm approach is
well suited for agglutinative language nature” [1]. Oriya being an agglutinative
language, the paradigm approach seems to work well for it.

Oriya Morphological Analyzer Using Lttoolbox 17

2.2 Resources Used

Lexical Resources. The foremost requisite for a MA is a root word dictionary.
But, Oriya being a resource poor language, an online root word dictionary wasn’t
available for it. We, thus, manually created the dictionary using the following
resources:

– ‘Taruna Sabdakosha’ [9] an Oriya dictionary.
– ‘A synchronic grammar of Oriya’ [12].
– A corpus of 2,720,400 words from Central Institute of Indian Languages,

Mysore (CIIL) - Our major resource for the database of the dictionary and
also for the training and testing data for our MA.

The root word dictionary was created using the lexical resources mentioned
above. Initially, we used a frequency based list from the CIIL Oriya corpus and
added root words to it from the ‘Taruna Sabdakosha’, to enhance it. Currently
the dictionary contains 10,840 root words, details of which are:

1. Nouns - 5,031
2. Pronouns - 18
3. Adjectives - 930
4. Verbs - 4,537
5. Adverbs - 179

6. Postpositions - 40
7. Conjunctions - 36
8. Clitics - 15
9. Particles - 14

10. Interjections - 40

Tool. We used Lttoolbox [11] package from the Apertium [6] toolkit to develop
the Oriya MA. The Lttoolbox is a well known NLP tool used to build tools like
morphological analyzer and morphological generator. It is a free software and
released under the terms of the GNU General Public License. It uses an XML
based format to represent linguistic data. Paradigms are created inside it using
some of the elements in its morphological dictionary. Further, a morphological
dictionary can be used for both, a morphological analyzer and a morphological
generator, depending on the direction in which it is read by the system.

2.3 Data Development for Oriya Morph Analyzer

Oriya Morphological Dictionary in Lttoolbox. The Oriya morphological
dictionary consists of declension or conjugation patterns of words in XML for-
mat used in Lttoolbox. The dictionary has four sections, of these the two main
sections are paradigm definition section and dictionary section. Alphabet and
symbol definition sections being the other two sections.

Declension or conjugation used, are based on parameters such as, gender,
number, person, case, vibhakti (case marker) for nouns and pronouns. Gender,
number, person, suffix string taken as TAM (tense, aspect and modality) for
verbs. [3]

18 I. Jena et al.

Classification of Paradigms. Paradigms have been created for the open class
categories like nouns, verbs and adjectives and later on, closed class categories
like postpositions and conjunctions etc. The words that have identical gram-
matical information make one paradigm class. However, all words with similar
endings/suffixes may not follow the same paradigm. For instance, two verbs
‘khaa’ (eat) and ‘gaa’ (sing) fall in the same paradigm as they take similar
inflections. But the verb ‘jaa’ (go) falls in a different paradigm though it has
the same ending. This is because the verb ‘jaa’ (go) changes its root form when
it takes past tense inflection e.g. ‘jaa’ (go) becomes ‘gali’ (go+past) but in case
of verb ‘gaa’ (sing) becomes ‘gaaili’(sing+past). There are some parts of speech
like adverbs, conjunctions, postpositions, clitics etc., that remain uninflected,
so we have listed them directly in our dictionary. Table 1 shows the paradigm
classification for different categories.

Table 1. Number of paradigm classes.

S.No Category Paradigm classes

1 Noun 14

2 Pronoun 9

3 Adjective 13

4 Verb 13

3 Evaluation and Result

We conducted three experiments to evaluate our MA. We discuss this shortly.
Since a MA produces more than one answer, we found it more appropriate to
carry out a more detailed evaluation of the MA than just evaluating the precision
and recall values, since “Precision-Recall gives general overall impression about
the performance of a system” [10]. A more detailed evaluation is necessary to
know what kind of words are over analyzed, which are under analyzed, and so
on. This is discussed in detail, in Subsects. 3.3 and 3.4.

3.1 Evaluation I

Here we focus on the overall coverage of our MA (Table 2). A corpus of 11,368
words (non-unique) was taken (Sect. 2.2) in order to evaluate the overall coverage
of the morph in a random test data environment.

It must be noted that the coverage here is based on a small dictionary size
of 10,840 root words. The class of recognized words includes the cases where the
tool gave an analysis (irrespective whether the analysis was correct, partially
correct or wrong). While the class of unrecognized words comprises those cases
where the morph analyzer didn’t give an output or analysis.

Oriya Morphological Analyzer Using Lttoolbox 19

Table 2. Results: the overall coverage.

Total no. of words 11,368

Recognized words 8,303

Unrecognized words 3,065

Coverage 73.03%

3.2 Results and Error Analysis

In Table 2 we see that 3,065 words remained unrecognized by our MA, which
forms 26.97 %. These words can be easily accounted for (Table 3 shows the break
up of the unanalyzed words). Out of this 26.97 %, out of vocabulary (OOV) words
(which include foreign words, proper nouns and numerals) form 29.81 % and noise
(meaningless characters/words occurring in the corpus) takes up 6.62 %. The
remaining words fall into causative verbs (2.34 %) and ‘others’ (61.20 %). Since
causative verbs are currently not being handled, these remain unanalyzed. ‘Oth-
ers’ in Table 3, are Oriya words that remain unanalyzed because they have yet
to be entered in the morphological dictionary. These form a major part of the
unrecognized words.

Therefore, the two major categories that affect the coverage of the MA, are
OOV & noise (36.43 %) and ‘Others’ (61.20 %) of 3,065 unrecognized words.
With a small dictionary size of 10,840 words, the MA’s coverage is 73.03 % and
increasing the dictionary size can further improve the coverage.

Table 3. Error analysis.

S.No Unanalyzed words Occurrences %

1 Numerals 164 5.35

2 Foreign words 338 11.02

3 Proper nouns 412 13.44

4 Causative verbs 72 2.34

5 Others 1876 61.20

6 Noise 203 6.62

Total 3065 100%

3.3 Evaluation II

When an MA produces output, it may have 6 possible cases:

1. Type1: correct output, e.g. ABCD/ABCD.
2. Type2: added some wrong output to correct output, e.g. ABCD/ABCDE.
3. Type3: missed some correct output, e.g. ABCD/ABC.
4. Type4: missed some correct output and add some wrong output, e.g. ABCD/

ABCE.

20 I. Jena et al.

5. Type5: all incorrect output, e.g. ABCD/EFG.
6. Type6: no output, ABCD/No Output.

These six cases help us to decide which aspect of morphology needs further
attention for improvement. To evaluate an MA, some data manually tagged with
morph features (gold-standard data) is needed. It contains all possible analysis
of the words. In the above examples ‘ABCD’ is gold standard data and others are
machine’s output. To create the gold standard data to evaluate our MA we ran-
domly took 1066 words from the CIIL Oriya corpus. The data was tagged using
Sanchay (an open source platform for working on languages, with components
like a text editor with customizable support for languages and encodings, anno-
tation interfaces, etc.) annotation interface, in Shakti Standard Format (SSF)
(This format is a highly readable representation for storing language analysis
[4]). The Apertium produced morphological analysis was compared with the
gold standard data.

We compared the machine produced morphological analysis using our gold
standard data as the reference data. After we ran our MA on the randomly taken
corpus we compared it with the gold standard data. Table 4 shows the results
for type wise evaluation of the accuracy against a gold-standard corpus.

Table 4. Results: type wise evaluation of the accuracy against a gold-standard corpus.

S.No Types Gold/Output Count % Count

1 Type:1 ABCD/ABCD 754 70.73

2 Type:2 ABCD/ABCDE 41 3.84

3 Type:3 ABCD/ABC 25 2.34

4 Type:4 ABCD/ABCE 100 9.38

5 Type:5 ABCD/EFG 0 0

6 Type:6 ABCD/No Output 146 13.69

Total tokens 1066 100%

In Table 4, Type:1 gives fully correct output (comprises 70.73 % of total
count), whereas Type:2, Type:3 and Type:4 give partially correct output
(comprises 15.56 % of the cases). Further, the coverage of the tool is 86.30 %.
As mentioned earlier, Type:4 consists of some correct output and some wrong
output (partially correct output), we notice that Type:4–9.38 % has the high-
est contribution in cases with partially correct output, as compared to the
other types with partially correct output (Type:2–3.84 % and Type:3–2.34 %).
Type:6 includes cases where MA fails to give the output.

3.4 Evaluation III

In the third evaluation we focused on the accuracy of only two features–‘root’ and
‘category’ instead of all of the features. This is so because for some applications

Oriya Morphological Analyzer Using Lttoolbox 21

only these two features are taken into consideration. Other feature structure
values may not be important for them. Thus, through evaluation II the accuracy
of the MA for such applications is also reported. Additionally, for evaluation III
we took the same data sets that were used in evaluation II. Table 5 shows the
results for type wise evaluation of the accuracy for two features.

Table 5. Results: Type wise evaluation of the accuracy for ‘root’ and ‘category’.

S.No Types Gold/Output Count % Count

1 Type:1 ABCD/ABCD 853 80.01

2 Type:2 ABCD/ABCDE 21 1.96

3 Type:3 ABCD/ABC 27 2.53

4 Type:4 ABCD/ABCE 19 1.78

5 Type:5 ABCD/EFG 0 0

6 Type:6 ABCD/No Output 146 13.69

Total tokens 1066 100%

We see that the percentage count of Type:1 increased to 80.01 % in evalua-
tion II, whereas the percentage count of Type:4 decreased to 1.78 % (dropped
by 7.60 %). Thus considering only root and category features shows an over-
all higher accuracy of the MA. The coverage remains the same for both the
evaluations.

4 Challenges and Limitations

4.1 Foreign Words

As seen in Sect. 3.2, foreign words remain unrecognized, and thus unanalyzed in
our MA since they are not part of the data base. Presence of foreign words in
ILs is a widely occurring phenomenon, given a high degree of code switching in
ILs. They cause the coverage of the MA to go down. They are not a part of the
Oriya morph dictionary since they are foreign language words and can not be
included in the ‘Oriya’ dictionary.

A possible solution to handle these would be creating a separate dictionary
for them. To add a separate tag ‘foreign word’ in the MA, a dictionary of foreign
words would have to be included and manually created. However, since foreign
words have widely occurring in the language, creating an exhaustive list would
be required for the MA to tag them as ‘foreign word’. This would be expensive
in terms of time and resources. Further, though a work around for the problem,
this is not a very good option either, as this would call for capturing too many
irregularities by way of the inflections they take (or do not take). Capturing these
irregularities falls out of the purview of our MA, as this would entail entering
all these types of inflections in the dictionary. Since their taking of inflections is
a productive process, this may make the task more complex, and may also fail
generalization.

22 I. Jena et al.

4.2 Analyzing Oriya Compound Verbs

Though simple verbs could be handled by creating paradigms for them, in Lttool-
box with relative ease, handling Oriya compound verbs (CV) proved quite a
challenge for us. Before we go on to discuss the issues we came across in this,
we would like to discuss briefly about CV in general, and about Oriya CV in
particular:

A Compound verb consists of two verbs (v1, v2), yet acts as a single verb.
One of its components is a ‘secondary’ verb which carries inflections like gender,
number, person, tense, aspects and modality and the other, the ‘main’ verb which
carries most of the semantics of the compound, and determines its arguments.
The ‘secondary’ verbs “cannot be said to be predicating fully, though they are
clearly not entirely devoid of semantic predicative power” [5].

Forming compounds is a highly productive process in IL. In languages like
Hindi and Oriya, secondary verbs are generally, a small set that form compounds
with the ‘main’ verbs.

Structure and Behaviour of Oriya Compound Verbs. We have identified
13 ‘secondary’ verbs in Oriya, as seen below in Table 6.

Table 6. List of ‘secondary’ verbs in Oriya.

S.No Secondary verbs Meaning

1 jaa go

2 de give

3 ne take

4 pakaa throw

5 bas sit

6 paar can

7 aas come

8 pad fall

9 uth awake

10 chaal walk

11 saar finish

12 aaN bring

13 he happen

In Oriya CV the stem vowel ‘-i’ attaches to the ‘main’ verb, which in turn is
followed by a ‘secondary verb’ from a limited number of verb roots that occur
as ‘secondary’ verbs. For example:

se so-i-pad-il-aa

he sleep-stemvowel-fall-pst-agr.

‘He fell asleep’

Oriya Morphological Analyzer Using Lttoolbox 23

The stem vowel ‘-i’ is different from an aspectual marker, though both have/
take the same form. The difference between them is that the aspectual marker
is followed only by an auxiliary verb while the non-aspectual marker which is a
‘stem vowel’ is followed by a secondary verb [12]. An example for this is:

a. se lekh-i-ch-i

he write-prs-aux-agr.

‘He has written’

b. aame khaa-i-de-l-u

we eat-stemvowel-give-pst-agr.

‘we have finished eating’

Also, while in simple verbs inflectional suffixes attach to the main verb root,
in CV the inflectional suffixes attach to the secondary verb, since Oriya is an
agglutinative language, and these two verbs occur together. Thus the two verbs
together arrive at a derived root. And so, we get two roots, a ‘main’ root and a
‘derived’ root.

Thus, since Oriya CV are different from simple verbs, in structure and behav-
iour, we can’t analyze them like simple verbs even though they occur as a single
entity most of the time. Also, since Oriya CV are composed of two verbs (v1,
v2) agglutinated together, that arrive at a derived root, the output of our MA
should give this inflectional information for each derived root, in order to capture
the information about their structure and the derivation happening in it.

For example, in ‘khaaidelaa’ (finished eating), the root khaa ‘eat’ is where
we get the information of the action ‘eat’. When the secondary verb attaches
to the main verb, another root ‘khaaide’ is derived. Our morph’s output for the
derived verb ‘khaaidelaa’ should thus be:

^khaaidelaa/root:khaa<droot:khaaide>

<dsuffix:de><cat:v><gen:any>

<num:sg><per:a><tam:ilaa>$

However, this may not be a feasible solution for us, since information pertain-
ing to such output will have to be incorporated in the dictionary for each CV,
making this a cumbersome task. Besides, since there wouldn’t be any (scope of)
generalization here, this would beat the purpose of using the paradigm approach.

Another solution for this would be the Apertium way–using nested paradigms
to handle derivational forms, since Oriya CV are composed of combinations of
verbs from the set of Oriya (main) verbs. “The use of nested paradigms is to
facilitate the processes of derivation followed by inflection.” [16]

Here, the paradigms of secondary verbs would be ‘called’ upon, from within
the main verbs’ paradigms to arrive at their compounds. For instance, the verb
‘khaaideichi’ is derived from the main verb ‘khaa’ (eat) and secondary verb ‘de’
(give) to form a compound. So the paradigm for ‘de’ is called from within the
paradigm of the verb ‘khaa’. Likewise, other secondary verbs would be ‘called’
from within the paradigm ‘khaa’ to form compounds.

However, not all verbs of a paradigm class take the same secondary verbs
to form compounds. There are verbs that fall under the same paradigms (since
they share same types of inflections) that form compounds with different sets of

24 I. Jena et al.

secondary verbs. For example, the verbs ‘khaa’ and ‘gaa’ are classified under the
same paradigm class, but they take different secondary verbs. Thus, if we call all
the secondary verbs that go with ‘khaa’, within the paradigm ‘khaa’, then while
processing, the analyzer gives a similar output for ‘gaa’ also, though they don’t
take same secondary verbs. We say ‘gaaiuthilaa’ ‘started singing (suddenly)’
but we don’t say ‘khaaiuthilaa’ ‘started eating suddenly’. It thus leads to some
ungrammatical structures also.

It needs a mention here, that though the nested paradigm approach may
work for a MA, from the perspective of generation it may lead to generation of
ungrammatical structures. Since these two modules are obtained from a single
morphological dictionary (depending on the direction they are read from–left
to right for analyzer and right to left for generator as given by [6], a different
resolution is needed to resolve this.

Therefore, based on discussion above we conclude that using nested para-
digms doesn’t seem to be the best option for the analysis of Oriya CV.

<sdef n="droot:khaaide" c="khaaide"/>

The third, and a very simple approach to resolve this issue of handling Oriya
CV in our MA, would be entering the derived roots of the CV in the morpholog-
ical dictionary, in the dictionary section. The morphological dictionary contains
the root or ‘lemma’, the part of the lemma which is common for all inflected
forms, that is ‘lemma cut’ and the paradigm name. We simply add the derived
root and the lemma cut of the derived root in the place where this information is
entered in the dictionary. This would save us the task and the effort of preparing
separate paradigms for the compound verbs.

For example, the dictionary entry for the CV ‘khaaidelaa’ (finished eating)
with the derived root ‘khaaide’ would be:

<e lm="khaaide"><i>khaaid</i>

<par n="d/e__v"/></e>

< par > in the entry indicates which paradigm from among the ones defined
in the < pardefs >, the derived root belongs to. Here, the derived root ‘kaaide’
falls under the paradigm for the root ‘de’, since the CV ‘khaaidelaa’ takes
the inflections of the secondary verb ‘de’. Thus reference to the ‘de’ paradigm
through the element <par> saves us the effort of listing all the inflected forms
of the derived root/lemma in the morphological dictionary entry.

The output our MA would give for the above example is:

^khaaide/khaaide<cat:v>

<gen:any><num:sg>

<per:m_h0><tam:imper>$

5 Conclusion and Future Work

In this paper we presented a paradigm based MA for Oriya using Lttoolbox
from the Apertium toolkit. It is based on the concept of morphological para-
digms. Currently it handles only inflectional morphology, and nouns, pronouns,

Oriya Morphological Analyzer Using Lttoolbox 25

adjectives, verbs, compound verbs and indeclinables have been included in its
morphological dictionary. Since the MA is currently in its preliminary stage,
addition of remaining categories and increasing the dictionary size for existing
categories will improve its performance and increase its coverage. Using the Oriya
MA for other NLP tools such as part of speech tagger, chunker, spell checker,
machine translation system for Oriya can also be created in future. These would
be a useful resource for the language.

References

1. Antony, P.J., Soman, K.P.: Computational morphology and natural language pars-
ing for Indian languages: a literature survey. Int. J. Comput. Sci. Eng. Technol.
136–146 (2012)

2. Bapat, M., Gune, H., Bhattacharyya, P.: A paradigm-based finite state morpho-
logical analyzer for Marathi. In: 23rd International Conference on Computational
Linguistics, pp. 26–34 (2010)

3. Bharati, A., Chaitanya, V., Sangal, R., Ramakrishnamacharyulu, K.: Natural Lan-
guage Processing: A Paninian Perspective. Prentice-Hall, India (1995)

4. Bharati, A., Sangal, R., Sharma, D.: SSF: Shakti standard format guide. Technical
report, IIIT Hyderabad (2007)

5. Butt, M.: The light verb jungle. In: Workshop on Multi-verb Constructions (2003)
6. Forcada, M., Bonev, B., Rojas, S., Ortiz, J., Sánchez, G., Mart́ınez, F., Armentano-

Oller, C., Montava, M., Tyers, F.: Documentation of the open-source shallow-
transfer machine translation platform apertium (2008)

7. Faridee, A.Z.M., Tyers, F.M., Others.: Development of a morphological analyser
for Bengali. Universidad de Alicante, Departamento de Lenguajes y Sistemas
Informáticos (2009)

8. Jena, I., Chaudhury, S., Chaudhry, H., Sharma, D.M.: Developing Oriya mor-
phological analyzer using Lt-toolbox. In: Singh, C., Singh Lehal, G., Sengupta, J.,
Sharma, D.V., Goyal, V. (eds.) ICISIL 2011. CCIS, vol. 139, pp. 124–129. Springer,
Heidelberg (2011)

9. Kar, K.C.: Taruna Sabdakosha, vol. 1. Grantha Mandir, Cuttack (2000)
10. Kulkarni, A., Shukla, D.: Sanskrit morphological analyzer: some issues. In:

Festschrift, B.K. (ed.) Volume by LSI (2009)
11. Lttoolbox. http://wiki.apertium.org/wiki/Lttoolbox
12. Mahapatra, B.P.: A Synchronic Grammar of Oriya. Udaya Narayana Singh, Central

Institute of Indian Languages, Mysore (2007)
13. Parameshwari, K.: An implementation of APERTIUM morphological analyzer and

generator for Tamil. In: Parsing in Indian Languages, p. 41 (2011)
14. Sahoo, K.: Oriya nominal forms: a finite state processing. In: TENCON 2003,

Conference on Convergent Technologies for Asia-Pacific Region, vol. 2, pp. 730–
734. IEEE (2003)

15. Shabadi, K.: Finite state morphological processing of Oriya verbal forms. In: Pro-
ceedings of EACL-2003 Workshop on Computational Linguistics for the Languages
of South Asia: Expanding Synergies with Europe, pp. 49–56 (2003)

16. Vaidya, A., Sharma, D.: Using paradigms for certain morphological phenomena
in Marathi. In: 7th International Conference on NLP (ICON-2009), pp. 132–139
(2009)

http://wiki.apertium.org/wiki/Lttoolbox

Exploiting Twitter for the Semantic Enrichment
of Telecommunication Alarms

Hugo Gonçalo Oliveira1(B), João Marques1, and Lúıs Cortesão2

1 CISUC, Department of Informatics Engineering,
University of Coimbra, Coimbra, Portugal

hroliv@dei.uc.pt, joliv@student.dei.uc.pt
2 Portugal Telecom Inovação e Sistemas, Aveiro, Portugal

luis-m-cortesao@telecom.pt

Abstract. Everyday, several different alarms are triggered in a telecom-
munications network. Inspired by works that mine useful information
from Twitter, we aim at exploiting this resource for semantically-
enriching those alarms. We assume that, during the alarms, Twitter users
would mention potential causes, and also that network customers would
tweet to complain about the quality of their service. For this purpose,
we explored a set of alarms and tweets from the same period of time and
came to the conclusion that tweets on potential causes of the alarms are
hard to find. The most significant findings are that, during an alarm,
there are more tweets related to rain events, or those swearing and thus
a sign of complaint.

Keywords: Information extraction · Event detection · Social network
mining · Twitter · Telecommunication alarms

1 Introduction

The increasing popularity of social networks such as Twitter or Facebook has
made social media a relevant part of people’s lives. These networks are highly
accessible and have hundreds of millions of users all over the world, who read,
post, and share real-time messages, in a fast pace. They have thus become rel-
evant sources of information, also suitable for exploitation by computational
tools that acquire precious knowledge, such as people’s opinion on certain sub-
jects [11], current trends, or general events [3].

Inspired by works that mine useful information from Twitter (see Sect. 2), our
project aims at exploiting this social network for semantically-enriching alarms
triggered by technical problems in a telecommunications network. Ideally, Twit-
ter would provide relevant information and contribute to a better understanding
of the alarm’s cause (e.g. natural disaster, accident, concentration of people),
thus leading to additional measures by the network managers, to minimize nega-
tive consequences. It could be further used for analysing the impact of the alarms
on the network customers (e.g. whether they lead to complaining tweets). To this
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 26–37, 2015.
DOI: 10.1007/978-3-319-27653-3 3

Exploiting Twitter for the Semantic Enrichment 27

end, we have used all the alarms triggered during an entire month, for the wired
and mobile networks of Portugal Telecom, one of the major telecommunication
operators in Portugal. For the same period of time, we collected all the tweets
we could obtain from Twitter’s public streaming API, published in Portugal and
written in Portuguese.

This paper reports on several experiments with the previous datasets,
explored in order to gather more insights on the data and assess the suitability
of Twitter for the task at our hands. These preliminary experiments involved the
combination of the alarm data with the Twitter data, to identify tweets posted
at the same time and from the same place of an alarm, as well as a shallow
analysis of the tweets text, for further exploitation. Though we do not see this
work as finished, the performed experiments have shown that we have a very
challenging goal. In fact, looking for useful tweets has revealed to be the same as
looking for a needle in a haystack. This might be due to the small population of
Portugal, or to the lower popularity of Twitter in our country, as compared to
other countries where experiments of this kind were quite successful. This adds
to the small size of the sample of tweets that we can get for free and to the long
term of some alarms. Despite all these issues, there is much to report, and we
strongly believe that some of the presented results might be relevant for other
researchers using Portuguese tweets for different purposes.

The remaining of the paper starts with an overview on information extrac-
tion from Twitter, with a focus on event detection. Following, we describe our
dataset of alarms and tweets. After this, we present the experiments performed
to investigate whether the alarms could be semantically enriched by Twitter,
including a manual classification of tweets published during alarms according
to their utility, searching for potentially relevant keywords, and classifying the
tweets automatically, according to mentioned events. We end by speculating on
possible reasons for the lack of useful tweets, and discuss future directions for
this research, which should move on to explore other available data sources.

2 Background and Related Work

Twitter is a microblogging social network, with ≈288M monthly active users and
500M messages (tweets) sent every day1. This overwhelming number of tweets,
available every second with fresh information, made Twitter an attractive media
for research on text mining and information extraction (IE). But Twitter holds
specific features that make it particular and increase complexity, resulting in
poor performance by traditional tools. Tweets use informal language, with many
abbreviations; they ignore some grammatical rules and conventions (e.g. they
rarely use capital letters); are limited to 140 characters; and they use hashtags
(#) to provide additional context. So, specific natural language processing (NLP)
tools had to be developed for IE from Twitter (e.g. named entity recognizers [8]),
used in tasks such as opinion mining [11] or event detection [3,12].

1 Numbers according to https://about.twitter.com/company.

https://about.twitter.com/company

28 H.G. Oliveira et al.

Close to our work, TwiCal [12] is a system that extracts event calendars from
Twitter, based on probabilistic latent variable models. Events are characterised
by their name, date, description, and type (e.g. sports, politics, meeting). TwiCal
assumes that the involved entities and the event date play an important role
(e.g. events in the same date tend to be of the same type). Based on similar
assumptions on the date, event summaries have been produced [4]. To make
tweets processing more efficient, there is also work on the summarization of
tweets [20]. Other approaches to event detection cluster tweets according to
their timestamp, location, hashtags and used text [3,19]. Clusters not related to
an event are discarded.

The topic of event detection from Twitter has been applied to a varied range
of more specific tasks, such as sub-event identification in football matches [1],
crime prediction [18], user vacation plans and revealing medical conditions
mining [10], disease rates and alcohol sales volumes [5], or to natural crisis
management. On the latter, Twitter has been used for tracking forest fires [9],
reporting [14], detecting [7] and assessing the damages [2] of earthquakes, or for
the early detection of tsunamis [21]. Those systems exploit the real-time nature
of Twitter and the fast spreading of information it provides. They also con-
sider space and time information for detecting natural disasters. Yet, although
the publication time is obtained in a straightforward manner, some researchers
report that it does not always match the real-word spread of the disaster [9].
Identifying the event location might be even more problematic because not all
tweets have explicit coordinates attached; their coordinates are not always very
accurate; and tweets are sometimes posted from a different location than the
disaster. This is why there is work on geo-tagging tweets with unavailable coor-
dinates, with applications to crisis management [6].

Despite a close relation to the described works, we are not aware of Twitter
mining for improving the description of alarms in a telecommunications network,
only for events in general news [17]. To some extent, this is a specific application
of using Twitter for gathering additional information on known events [4]. In our
case, alarms can be see as the events. Moreover, none of the previous approaches
targets Portuguese, so their adaptation would require the development of NLP
tools specifically for Portuguese tweets. We should still mention that Portuguese
tweets have been exploited for several tasks, such as topic detection [13], sen-
timent analysis [16], and even for hazard management, such as predicting flu
incidence [15].

3 Datasets Explored

Our main goal is to use Twitter to semantically-enrich alarms triggered in
the telecommunications network of Portugal Telecom (PT). Our hypothesis is
that Twitter users would tweet about the possible causes of the alarm, poten-
tially useful for network management. Alternatively, customers would complain
about their quality of service (e.g. slow/unavailable network). Before starting to
develop, we enrolled on an exploratory work, in order to become more famil-
iar with the domain of our problem and make a preliminary assessment on the

Exploiting Twitter for the Semantic Enrichment 29

suitability of Twitter for this purpose. For such, we explored two datasets: one
with all the alarms triggered during a month, and, for the same period, all the
tweets written in Portuguese and published in Portugal (within API limits). This
section describes both datasets, followed by information on their combination.

3.1 Description

The alarm dataset, provided by PT’s Alarmistics team, has a total of 873k
alarms, triggered between 30th September and 29th October 2014 by the Alarm
Manager system. Each alarm is characterised by the following properties: cre-
ation time (date), archive time (date), local code (according to a 3-level hier-
archy: network group, local network, station area), technology (e.g. 3G, 4G,
IPTV), entity and problem. The duration of an alarm is obtained by the dif-
ference between the archive and the creation times. The last two properties
were obfuscated due to privacy reasons. Moreover, we noticed that alarms in the
same place and during an overlapping period of time were common. Therefore,
we clustered them, such that alarms in the same cluster would share the local
code, entity and problem fields, and would occur in overlapping time periods.
After this procedure, we were left with 551,513 alarms.

For the same period of time, we collected 498,896 tweets, which, according to
Twitter, were written in Portuguese and published in Portugal. This was done
through Twitter’s public Streaming API2, a service that provides a continuous
stream of tweets, in real-time, corresponding to a random sample of all public
statuses, estimated to 1 % of all the published tweets. Each tweet is characterised
by the following relevant properties, among others: ID, timestamp, location,
coordinates, text, language.

To enable queries to the datasets, a relational database was created with a
table for the alarms and another for the tweets, both populated with their data.

3.2 Pairing Alarms and Tweets

In order to match tweets and potentially related alarms, each alarm was paired
with tweets published at the same time and location. As tweets have a location
property and location names can be extracted from the alarms local code, in
the presented experiments, we did not use the tweets coordinates We observed a
huge dispersion in the duration of an alarm, on average, 74 min, with a standard
deviation of 411 min. An alarm may last for only a few minutes, but can also
take several days. For instance, 188,082 alarms lasted for less than 5 min, and
353,867 for less than 10. At the other end, 5,708 alarms lasted for more than
one day, and 158 for more than one week. Since Twitter users might notice the
alarm cause before it is triggered, and they might keep talking about it after the
alarm has been archived, for each alarm, we also paired tweets published between
15 min before the alarm creation and 60 min after archive time. Also, since an
2 https://dev.twitter.com/streaming/public.

https://dev.twitter.com/streaming/public

30 H.G. Oliveira et al.

alarm could lead to denial of service, this has in mind that affected users may
only be able to use the Internet when the problem is solved.

Only tweets that matched either the second (local network) or the third
level (station area) of the alarms location hierarchy were considered. These are
typically the name of a city and the parish or city area. The top level (network
group) is typically the name of a district and was considered to be too general.
Figure 1 shows an alarm and some tweets matched this way.

Created Archived ... Technology LocalNetwork StationArea
2014-10-10 00:31:59 2014-10-11 13:09:22 ... TEC X LOC Y LOC Z

TwitterID Timestamp Location Text
520662632240783361 2014-10-11 13:09:22 LOC Z Adoro quando me ignoram
520680458729029635 2014-10-10 20:50:19 LOC Z Será que se eu ligar a televisão consigo ver?
520712340216758272 2014-10-10 22:01:09 LOC Z Vou tomar banho ??

Fig. 1. Alarm and tweets published from the alarm’s location, while it was on. Real
alarm location name and technology are not provided due to confidential reasons.

After this, 236,227 tweets were matched with alarms, based on their
timestamp and location name, which is about a 47 % of all the tweets in the
dataset. This is a little less surprising if we add that the 67,605 alarms from the
clustered dataset with at least one matching tweet lasted, on average, for about
28 h, with a standard deviation of 78 h. Most of the alarms without matching
tweets lasted for only a few minutes and were triggered for small locations.

As relevant tweets may be published from different locations than the alarm,
we also matched those published at the same time and mentioning the alarm
location. We did not use a named entity recogniser because we are not aware
of a such a system, available, and trained with Portuguese tweets. Given the
specificities of this kind of text, where location names and other entities are
frequently uncapitalized or abbreviated, we would get a noisy analysis either
way, and chose the simplest approach for exploration. Only 7,891 tweets were
matched this way, and most of the results using this subset are not significant.

4 Experimentation

This section reports on experiments performed to assess the suitability of Twitter
for semantically-enriching the telecommunication alarms. They should be seen
as exploratory experiments that aim to provide useful insights for the future of
this project and for other researchers willing to exploit Twitter.

4.1 Manual Labelling of Tweets

To have some clues on the kind of tweets we could expect during an alarm, we
generated two random samples of 200 tweets matching the time of an alarm
and: (a) one matching also the location; (b) another mentioning the name of the
location. For each sample, we manually tagged the tweets as follows: (a) mentions
an occurrence that could be the cause of the alarm; (b) complaints on the service
quality; (c) not relevant for our task.

Exploiting Twitter for the Semantic Enrichment 31

The majority of the tweets were not relevant at all for this task. None of the
samples contained a potential complaint. The first sample contained five tweets
mentioning a meteorological event, such as rain, and the second contained six
mentioning meteorological events or loss of electricity. Figures 2 and 3 display
those tweets and their rough translation. We further confirmed that the second
sample was noisy and some location names were matched by accident. There are
locations in Portugal named luz (light/electricity) and guia (drive), in Fig. 3,
among others, such as tomar (to take).

esta a chover, outra vez?
(it is raining, again?)

ta a trovejar bue, vou morrer aqui
(there is much thunder going on, I’m going to die here)

Ta um relâmpago
(there is a lightning)

Mandei um sms a minha mãe que esta no quarto ao lado a dizer que esta a chover
(I sent a sms to my mother who is in next door’s bedroom saying it is raining)

hoje apanhei uma chuva do crl
(today I caught heavy rain)

Fig. 2. Tweets published in the same location and at the same time as an alarm,
mentioning a meteorological event.

4.2 Keyword Search

For additional insights on the kind of tweets and possible relations to the alarms,
we queried our database for tweets with specific keywords, which could be some-
how related to potentially problematic events. Those included words related to:

– Bad weather: chuva (rain), chover (to rain), trovoada (thunder), cheia (flood),
vento (wind), ...;

– Networks: net (short for network), tv (tv), telefone (phone), telemóvel (mobile
phone), meo (short for PT’s network), luz (electricity), ...

– Generic problems: problema (problem), acidente (accident), ...
– Swearing: merda (shit), bosta (shit), ...

For each word, we compared the frequency of their mentions in tweets match-
ing the alarms location and time, in opposition to tweets not matched with any
alarm. Table 1 has a selection of those numbers, together with the results of a
Z test – statistically significant at the 95 % confidence level if Z > 1.96. This
showed that, although the proportion of several words is slightly higher during
the alarms, only the differences of the rain-related and the swearing words are
statistically significant. We may thus speculate that there are more alarms when
it is raining, and that people swear more during an alarm, possibly complaining
about their quality of service. We cannot draw additional conclusions.

32 H.G. Oliveira et al.

E o sol apareceu! #greenfest #figodaindia #icecream #sol FIARTIL (Feira de Arte-
sanato do Estoril) http://t.co/M9K8xGo8TB
(An the sun came out! #greenfest #figodaindia #icecream #sol FIARTIL (Feira de Artesanato
do Estoril) http://t.co/M9K8xGo8TB)

????????loszafesuoevohcesridicedaátseopmetO Sobral de Monte Agraço
http://t.co/RZlMUZsayi

oçargAetnoMedlarboS????????ynnussitirosniartirehtehwgnidicedsirehtaewehT(
http://t.co/RZlMUZsayi)

Em Oeiras alebéadiva,adaovortátse
(In Oeiras there is thunder, life is beauty)

Guia riasarapuedmen,asacarapietloveodacobmuálevit,aliehCadasacàéta
porque chuva
(Drive to Cheila’s, I was there for a bit and came back home, it wasn’t even possible to leave
because it was raining)

Eh pah! Ja e a 2da vez que falha a luz esta semana...
(Sheesh! It is the second time electricity fails this weak...)

Sou so eu que nao tenho luz?
(Is it just me who has no electricity?)

Fig. 3. Tweets published at the same time as an alarm, mentioning both the location
of the alarm and a possible cause of the alarm. Location names are in bold.

4.3 Case Study: Complaining About the Network Service

Although the difference was not significant, we manually labelled all the tweets
published during an alarm, and mentioning the word ‘net’, to check how many
were possible alarm causes and/or complaints. Since this word denotes only
the data network, we did not consider tweets matched to an alarm on the ip
television network (IPTV). From the 301 tweets labelled, 132 (≈43 %) were
possible complaints. Figure 4 shows some of them, starting with the only two
that additionally mention potential alarm causes: weather and electricity loss.

To check whether complaining in Twitter was a common practice, we selected
a random sample of 100 that did not match any alarm and contained the word
‘net’. This time, the percentage of complains was 31 % which is still high, but
significantly lower than 43 %. Here, we should recall that not all Twitter users
are PT customers, and their network providers might have problems at different
times. The name of the network operator is hard to identify because it is rarely
mentioned in the tweet – notice Table 1, which shows only 114 mentions of ‘meo’,
a short name for PT, in the full set tweets. In addition to this, there might
be problems that affect only the personal network of a specific customer and,
consequently, do not trigger any alarm.

4.4 Event Classification in Tweets

In a final experiment, we were inspired by some of the works referred in Sect. 2 on
event detection from Twitter. We used a set of text classifiers, developed in a previ-
ous project, for identifying types of events mentioned in tweets. Twelve classifiers

Exploiting Twitter for the Semantic Enrichment 33

Table 1. Some keywords and their occurrences in tweets matched with alarms by the
local name vs their occurrences in the full set of tweets.

Words Tweets vs Alarms Z Significance

Match No match

Prob # Prob Score @95 %

chuva 447 0.19 % 280 0.11 % 7.6390 Yes

bosta 65 0.03 % 67 0.03 % 0.4355 No

chover 335 0.14 % 219 0.08 % 6.1880 Yes

trovoada 123 0.05 % 70 0.03 % 4.5586 Yes

cheia 898 0.38 % 934 0.36 % 1.4321 No

vento 56 0.02 % 49 0.12 % 1.2281 No

luz 151 0.06 % 150 0.06 % 0.9788 Yes

meo 42 0.02 % 72 0.03 % −2.2473 No

net 525 0.22 % 590 0.22 % −0.1773 No

acidente 34 0.01 % 23 0.01 % 1.8599 Yes

problema 355 0.15 % 360 0.14 % 1.2328 No

tv 178 0.08 % 255 0.10 % −2.6023 No

telemóvel 655 0.28 % 743 0.28 % −0, 3729 No

telefone 57 0.02 % 113 0.02 % 1.8117 No

merda 3727 1.58 % 3818 1.45 % 3.5884 Yes

crl 2625 1.11 % 2660 1.01 % 3.3944 Yes

puta 1267 0.54 % 1276 0.49 % 2.5042 Yes

foda 656 0.28 % 627 0.24 % 2.7154 Yes

were used, each learned for the following event types: accident, celebration, cere-
mony, concert, exhibition, judicial, manifest, meeting, nature, political, show and
sports. Each classifier had been trained with 200 Portuguese tweets, half manu-
ally labelled as positive and another half as negative, for their event type. All the
training tweets were retrieved from Twitter during January and February 2014
and manually selected to fill the 50 % proportion of positive and negative exam-
ples for each event type. A single tweet could belong to one, more, or no type.
Labelled tweets were imported to the Mallet toolkit3, which converts input text
to features and includes several text classification algorithms out-of-the-box. In
this case, the Maximum Entropy algorithm was used, because it lead to the best
results in a 10-fold cross validation. For each event type, accuracy ranged from
76 % (show) and 78 % (celebration) to 88 % (sports) and 91 % (concert). Accident
and nature were both at 84 %.

Although the classifiers are quite rudimentary – they rely only in Mallet’s
black-box for identifying the features and learning from them – we used the
3 http://mallet.cs.umass.edu/.

http://mallet.cs.umass.edu/

34 H.G. Oliveira et al.

adremetnelavamU.arofálopmetoomocátsetenahnimA
(My net is like the weather outside. A real shit)

Fiquei sem luz e sem net assim de repente , q cena do mal
(I was without electricity and net out of a sudden, what a bad thing)

????ranoicnufoãnuidicedasacahnimmetenA
(The net in my house decided no to work ????)

A net está super lenta
(The net is super slow)

A net da OPERATOR X tem tado uma bela merda
(OPERATOR X’s net has been a real shit)

Ke nervos.. A net esteve 4 horas sem dar -.-
(So nervous.. The net was 4 hours without working -.-)

@im a mermaiid queriia ter vindo mais cedo mas a net num deu a tarde toda :c
(@im a mermaiid I wanted to have come earlier but the net did not work the entire afternoon :c)

a minha net é uma merda -.-
(my net is shit -.-)

Fig. 4. Tweets published in the same location and at the same time as an alarm, and
containing the word ‘net’ in a complaint on the quality of their network.

Table 2. Tweets classified automatically according to mentioned event types, during
and not during an alarm.

Event Tweets vs Alarms Z Significance

Match No match

Prob # Prob Score @95 %

accident 69 0.03 % 73 0.03 % 0.2963 No

celebration 332 0.14 % 361 0.14 % 0.2942 No

ceremony 163 0.07 % 187 0.07 % −0.2918 No

concert 413 0.17 % 515 0.20 % −1.7378 No

nature 332 0.14 % 302 0.11 % 2.5311 Yes

show 92 0.04 % 117 0.04 % −0.9646 No

sports 116 0.05 % 138 0.05 % −0.5369 No

results of the tweet classification to test whether there was any kind of event more
frequently mentioned during an alarm. Similarly to the keywords experiment,
this was achieved through querying our relational database. The obtained results
for the most relevant event types are presented in Table 2. They show that,
except for the nature type, all events are mentioned in the same proportion,
during and not during an alarm. Events of the type nature are more frequently
mentioned in tweets matched with alarms. According to a Z-test, the latter
result is also statistically significant. This is in agreement with the previous
experiments, where we noticed that rain-related words were used more frequently
during an alarm.

Exploiting Twitter for the Semantic Enrichment 35

5 Concluding Remarks

We have reported on an exploratory work towards the utilization of Twitter for
semantically-enriching alarms triggered in a Portuguese telecommunications net-
work. Preliminary experiments, presented in this paper, showed that, although
not very often, users tweet about the weather and complain about the quality
of their network connection. For other events or keywords, we failed to identify
strong correlations between tweets and alarms.

The main problem we faced is that useful tweets are always shuffled in a very
noisy set, which makes it harder to identify them. This suggests that Twitter
is not the most suitable means for achieving our purpose, at least in Portugal.
Despite its growing popularity, several reports one can find in the Web show that
Twitter has not had as much penetration in Portugal, when compared to other
countries4. Other facts that contribute to this negative result include the limited
number of tweets available through Twitter’s public streaming API, which are
just a sample of all the tweets, more precisely, an estimated 1 % (and we should
not ignore the small population of Portugal, as compared to other countries,
such as the United States of America); and the long duration of the matched
alarms (on average 28 h), which adds too much noise and increases the number
of irrelevant tweets matched.

These experiments were repeated more recently with different criteria for
pairing tweets and alarms. Those included different times before creation and
after archive (e.g. minimum alarm duration set to 5 s and maximum to 24 h),
and for a different time period (March 2015). Even though, due to the better
weather, rain-related tweets were much less in March, they were still statistically
more frequent during an alarm, which strengthens our main conclusion. On the
other hand, assumptions on the complaints were not confirmed.

In the near future, we will start to develop a prototype for our purpose,
which should involve training several new automatic classifiers, for which we
should consider using an alternative to Mallet, in order to have more control
over the used features. The set of event types should also be re-arranged and
new training datasets will be selected. And it would definitely be useful to train
an additional classifier for complaining tweets, in order to help PT measuring
the impact of their alarms in their customers satisfaction.

To come up with better conclusions, we will also repeat some of the previous
experiments, with focus both on the geographic information and still on the
time periods. On the former, we will try to match tweets according to their
coordinates, instead of just the location name. On the latter, we will test more
aggressive time windows. For instance, we might ignore alarms with less than
a few minutes, as they should have lower impact, or we might only pair tweets
4 Although we could not find a specific study on the usage of Twitter in Portugal,

our country is never listed in the top countries in terms of percentage of Twitter
users. Also, in the World Map in http://www.beevolve.com/twitter-statistics#b1
(retrieved on March 2015) Portugal had one of the lightest shades of blue, which
corresponds to the countries with less Twitter users.

http://www.beevolve.com/twitter-statistics#b1

36 H.G. Oliveira et al.

posted until 15 min after the alarm was triggered, to check if people tweet about
the event that triggering event. We might as well consider the technology that
triggered the alarm (mobile network or television).

Finally, to minimize the strong limitations of Twitter, additional information
sources will also be exploited. These should include news websites and others
that provide structured information on weather alerts and cultural events. When
compared to Twitter, news text should be less challenging to process with tradi-
tional NLP tools. On the other hand, we will have to deal with certain limitations.
For instance, the flow of news is not as fast as tweets, and there are many news
reporting to events occurring in the previous hours our days.

Acknowledgements. This work was developed in the scope of a project funded by
Portugal Telecom Inovação e Sistemas, under the cooperation and innovation pro-
gramme between PT and academic organisations.

References

1. Alonso, O., Shiells, K.: Timelines as summaries of popular scheduled events. In:
Proceedings of 22nd International Conference on World Wide Web Conference,
Companion, WWW 2013, pp. 1037–1044. WWW/ACM, Geneva (2013)

2. Avvenuti, M., Cresci, S., Marchetti, A., Meletti, C., Tesconi, M.: Ears (earthquake
alert and report system): a real time decision support system for earthquake crisis
management. In: Proceedings of 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2014 pp. 1749–1758. ACM, New
York (2014)

3. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event
identification on Twitter. In: Proceedings of 5th International Conference on
Weblogs and Social Media, ICWSM 2011. AAAI Press (2011)

4. Chua, F.C.T., Asur, S.: Automatic summarization of events from social media.
In: Proceedings of 7th International Conference on Weblogs and Social Media,
ICWSM 2013 (2013)

5. Culotta, A.: Lightweight methods to estimate influenza rates and alcohol sales
volume from Twitter messages. Lang. Resour. Eval. 47(1), 217–238 (2013)

6. Ghahremanlou, L., Sherchan, W., Thom, J.A.: Geotagging twitter messages in
crisis management. Comput. J. 58(9), 1937–1954 (2015). doi:10.1093/comjnl/
bxu034

7. Guy, M., Earle, P., Ostrum, C., Gruchalla, K., Horvath, S.: Integration and dis-
semination of citizen reported and seismically derived earthquake information via
social network technologies. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds.)
IDA 2010. LNCS, vol. 6065, pp. 42–53. Springer, Heidelberg (2010)

8. Li, C., Weng, J., He, Q., Yao, Y., Datta, A., Sun, A., Lee, B.S.: TwiNER: named
entity recognition in targeted Twitter stream. In: Proceedings of 35th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2012, pp. 721–730. ACM, New York (2012)

9. Longueville, B.D., Smith, R.S., Luraschi, G.: “OMG, from here, i can see the
flames!”: a use case of mining location based social networks to acquire spatio-
temporal data on forest fires. In: Zhou, X., Xie, X. (eds.) Proceedings of 2009
International Workshop on Location Based Social Networks (GIS-LBSN), pp.
73–80. ACM (2009)

http://dx.doi.org/10.1093/comjnl/bxu034
http://dx.doi.org/10.1093/comjnl/bxu034

Exploiting Twitter for the Semantic Enrichment 37

10. Mao, H., Shuai, X., Kapadia, A.: Loose tweets: an analysis of privacy leaks on
Twitter. In: Proceedings of 10th Annual ACM Workshop on Privacy in the Elec-
tronic Society, WPES 2011, pp. 1–12. ACM (2011)

11. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion
mining. In: Proceedings of 7th International Conference on Language Resources
and Evaluation, LREC 2010, ELRA, Valletta, Malta, May 2010

12. Ritter, A., Mausam, Etzioni, O., Clark, S.: Open domain event extraction from
Twitter. In: Proceedings of 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2012, pp. 1104–1112. ACM (2012)

13. Rosa, H., Carvalho, J.P., Batista, F.: Detecting a tweet’s topic within a large
number of Portuguese Twitter trends. In: Proceedings of 3rd Symposium on Lan-
guages. Applications and Technologies, pp. 185–199. OASICS, Schloss Dagstuhl,
June 2014

14. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: Proceedings of 19th International Conference
on World Wide Web, WWW 2010, pp. 851–860. ACM, New York (2010)

15. Santos, J.C., Matos, S.: Predicting flu incidence from Portuguese tweets. In:
Proceedings of International Work-Conference on Bioinformatics and Biomedical
Engineering, IWBBIO 2013, Copicentro Editorial, pp. 11–18 (2013)

16. Souza, M., Vieira, R.: Sentiment analysis on twitter data for Portuguese language.
In: Caseli, H., Villavicencio, A., Teixeira, A., Perdigão, F. (eds.) PROPOR 2012.
LNCS, vol. 7243, pp. 241–247. Springer, Heidelberg (2012)

17. Tanev, H., Ehrmann, M., Piskorski, J., Zavarella, V.: Enhancing event descrip-
tions through twitter mining. In: Breslin, J.G., Ellison, N.B., Shanahan, J.G.,
Tufekci, Z. (eds.) Proceedings of 6th International Conference on Weblogs and
Social Media, ICWSM 2012. AAAI Press (2012)

18. Wang, X., Gerber, M.S., Brown, D.E.: Automatic crime prediction using events
extracted from Twitter posts. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds.)
SBP 2012. LNCS, vol. 7227, pp. 231–238. Springer, Heidelberg (2012)

19. Wang, Y., Xie, L., Sundaram, H.: Social event detection with clustering and
filtering. In: Working Notes Proceedings of MediaEval 2011 Workshop, vol. 807.
CEUR-WS.org (2011)

20. Zhang, R., Li, W., Gao, D., You, O.: Automatic twitter topic summarization with
speech acts. IEEE Trans. Audio Speech Lang. Process. 21(3), 649–658 (2013)

21. Zielinski, A., Middleton, S.E., Tokarchuk, L.N., Wang, X.: Social media text min-
ing and network analysis for decision support in natural crisis management. In:
Proceedings of 10th International Conference on Information Systems for Crisis
Response and Management, ISCRAM 2013, Karlsruher Institut fur Technologie,
pp. 840–845 (2013)

Meaning Inference of Abbreviations
Appearing in Clinical Studies

Efthymios Chondrogiannis(&), Vassiliki Andronikou,
Efstathios Karanastasis, and Theodora Varvarigou

National Technical University of Athens,
9 Heroon Politechniou Str, 15773 Athens, Greece

{chondrog,vandro,ekaranas}@mail.ntua.gr,

dora@telecom.ntua.gr

Abstract. The number of publicly available clinical studies is constantly
increasing, formulating a rather promising corpus of documents for clinical
research purposes. However, the abbreviations used in these studies pose a
serious barrier to any text mining technique. This paper presents a study con-
ducted in the above domain, which used specifically developed tools and
mechanisms in order to process a number of randomly selected documents from
clinicaltrialsregister.eu. The analysis performed indicated that abbreviations
appear at a large scale without their long form (aka expansion). In order to assess
the abbreviations’ true meaning, it is necessary to utilize the appropriate corpus
of documents, apply innovative algorithms and techniques to detect their pos-
sible expansions, and accordingly select the appropriate ones. Furthermore, the
discrimination power of tokens has a distinctive role in abbreviations con-
struction, and hence, it can facilitate the detection of acronym-type abbrevia-
tions. Additionally, the expressions in which abbreviations appear, as well as the
preceding or following text are of primary importance for selecting the appro-
priate meaning.

Keywords: Abbreviations � Expansion � Clinical studies � Semantic analysis �
Corpus annotation

1 Introduction

Clinical studies provide the means for bringing new chemical products in the market or
collecting new evidence for existing interventions. The studies publicly available by the
EU Clinical Trials Register (EUCTR) [3] and ClinicalTrials.gov (CTGV) [5] sites
exceed 150 thousand with more than 20 thousand new studies being registered every
year. Due to the enormous size of the corpus of studies, which is constantly being
increased, it’s difficult or even impossible to manually process these documents.
Consequently, the application of innovative or state of the art text mining techniques is
necessary.

Abbreviations (ABR) comprise an important part of a clinical study. They intend to
provide short forms of often long texts (aka expansions) so that authors can efficiently use
them in the rest of the document. On the other hand, detecting the expansion (EXP) which

© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodríguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 38–48, 2015.
DOI: 10.1007/978-3-319-27653-3_4

an abbreviation stands for is essential for its comprehension. In general, ABRs have one
ormore meanings (aka senses) each of which can be expressedwith one or more EXPs. In
the context of this work, EXPs that are quite similar with one another, after the appli-
cation of state of the art string text processing techniques (e.g., Upper Limit of Normal
and Upper-Normal Limit), are considered identical. Consequently, there is often one to
one correspondence between the EXP and its sense, since the possible EXPs of each ABR
are composed of totally different words.

Detecting the meaning of ABRs mentioned in clinical studies is quite difficult for
humans and even more so for software agents, since they should be able to cope with
cases in which ABRs have been explicitly defined in the document (often following
specific patterns, i.e. abbreviation syntactic cues) as well as cases in which their EXP is
missing (i.e., not mentioned anywhere in the document). The work presented in this
paper focuses on the results of a conducted software-based analysis regarding the
correct meaning inference of ABRs contained in clinical studies documents.

The document is structured as follows. Section 2 summarizes related work in the
domain of ABR detection and EXP provision. Section 3 briefly describes the study
approach, methodology and involved tools. Section 4 analytically presents the main
study findings, while Sect. 5 expands this discussion to secondary findings and
parameters that could be taken into account and are to be probably covered in future
work. Finally, Sect. 6 provides a summary of the work’s key points.

2 Related Work

Biomedical ABRs have been extensively studied so far and various algorithms and
techniques have been proposed for detecting their EXP. Text alignment approaches
make an attempt to match ABRs with their corresponding EXPs based on the char-
acters used, such as the algorithm proposed by Schwartz and Hearst [2]. Park and Byrd
[17] have also proposed a rule-based approach for detecting ABR-EXP pairs based on
the patterns they belong to. The outcome of text alignment techniques can be further
improved if syntactic information is used [15]. Machine Learning approaches have also
been used for ABRs recognition, such as the supervised machine learning used for
creating an ABRs dictionary from MEDLINE [14].

Statistical approaches (e.g., ADAM [16]) can also be used for abbreviation
recognition purposes, on condition that the corresponding EXPs appear frequently
enough. Consequently, for providing valuable results, they demand a large number of
biomedical articles while they also need an adequate amount of computer resources and
time. In practice, they can complement acronym-type ABRs recognition techniques by
detecting those ABR-EXP pairs where there is no similarity among the characters being
used, as for example the MBA system presented in work [9].

In order to find the meaning of ABRs when their EXP missing, the simplest
solution is to assign to every instance of an “unknown” ABR the most commonly used
meaning [10]. Alternatively, for abbreviation sense disambiguation a supervised
machine learning system can be used, such as the one presented in work [11], using a
variety of parameters included but not limited to Mesh terms [6] and Concepts Unique
Identifiers [12].

Meaning Inference of Abbreviations Appearing in Clinical Studies 39

3 Study Methodology and Tools

For the analysis of the ABRs used in clinical studies, 141 documents from EUCTR
were randomly selected and accordingly the ABRs’ meaning was specified. Specifi-
cally, for creating a highly variable corpus of documents which adequately represents
the ABRs used in clinical studies, all available documents from the EUCTR web site
were downloaded by means of a developed software component and accordingly
classified into categories based on the number of different ABRs that they contained.
Then one or more documents from each category were randomly selected, taking into
account the percentage of documents they represent and the total number of documents
to be selected.

In order to precisely determine the meaning of ABRs with the least human effort
required, a web application was specifically developed (Fig. 1) which enables users to
interact with ABRs (highlighted with green color) and accordingly specify their
meaning as well as the specific part(s) of the documents in which the ABRs appear with
the meaning provided. In general, ABRs appear with the same sense throughout a
document [1]. However, the elements which the meaning provided refers to should be
precisely determined, in order to handle such exceptional cases (if any) in which an
ABR has different meanings depending on the document section it is being used in.
A characteristic example is the roman number IV which may also point to “intra-
venous” administration of a chemical substance in another sentence. Additionally, in
some cases, an ABR may appear in a phrase (e.g. HIV-positive or HIV-negative
contain the ABR HIV), and hence, it should be specified that the ABR retains its
meaning.

In Fig. 1 a screenshot from the web application developed is being presented. The
application directly provides the EXP of an ABR when specified in the document using
the Schwartz and Hearst algorithm; otherwise, it enables users to search in publicly
available sources for the EXP. When all ABRs have been specified, the tool auto-
matically generates an XML document which includes the provided user data and the
study details (i.e., ID, Title, URL, etc.) which the data came from.

Fig. 1. A screenshot from the application developed for ABR-EXP specification purposes
(Color figure online).

40 E. Chondrogiannis et al.

Throughout the ABRs’ definition process, the tool enables users to provide addi-
tional data for each ABR-EXP pair, such as whether the EXP has been specified in the
document or not and how confident they are for data they provided. The confidence
value is an essential parameter in order to correctly determine the ABRs’ meaning.
More precisely, all pairs of ABR-EXP with confidence value medium or low, including
those ABRs the meaning of which was unknown to biomedical experts, undergo a
review process in which one or more medical or clinical experts are contacted in order
for their meaning to be undoubtedly determined.

4 Results Analysis and Main Findings

(a) Expansion Availability. The software-based analysis of data provided indicated
that there were on average 13.53 distinct ABRs in every clinical study, from which the
27.25 % had been specified in the document whereas the remaining 72.75 % had been
provided without their EXP. From this analysis were deliberately excluded both
common Latin ABRs (e.g., i.e., etc.) and Units of measurement (mg, kg, etc.), which
often appear without their EXP, as well as the ABRs which appear in the title of each
section (e.g., MedDRA) and hence are common to all clinical studies.

Concerning specified ABRs, they often followed their EXP within parentheses or
brackets (94 %) or vice versa (4 %), while only 2 % of specified ABRs came from a
different syntactic cue. However, it should be noted that in 98 % of the cases where an
ABR was enclosed within parentheses or brackets the EXP was to be found in the
preceding text, while only in 55 % of the cases where the ABR was followed by text or
a phrase enclosed within parenthesis or brackets did that text contain the EXP.

In the case of ABRs provided without their EXP, the whole corpus of clinical
studies available at both the EUCTR and CTGV sites was subsequently downloaded
(exceeds a total of 200 thousand documents) and further processed by another com-
ponent. This analysis indicated that 70 % of the user inferred ABR-EXP had been
specified in another clinical study. For the remaining 30 % of user inferred pairs, a
subsequent analysis indicated that the majority of EXPs could be found in corre-
sponding PubMed [7] articles (i.e., documents in which the same abbreviation appeared
in either title or abstract). However, a small number of ABR-EXP pairs was not found
since they were clinical trial specific (e.g., LSLV: Last Subject, Last Visit), and hence
the corresponding ABRs could either not be found at all or were being used in the
PubMed articles with a different meaning.

(b) Pairs Classification. The correspondence between the ABR and EXP characters
usually plays an important role for detecting the EXP of acronym-type ABRs. In order
to evaluate this, the ABR-EXP pairs specified in all of the above cases were further
examined and classified in categories based on the correspondence between ABR
characters and EXP tokens (sequence of characters separated by one or more white
spaces). The analysis indicated that they can be divided in three categories, with a few
examples for each one presented in Table 1.

The first category encompasses those ABR-EXP pairs in which all EXP tokens have
contributed in the ABR construction. More precisely, the first character of the EXP’s

Meaning Inference of Abbreviations Appearing in Clinical Studies 41

token matches the corresponding ABR characters whereas the rest of ABR characters,
if any, do also appear in the EXP tokens with the same order (examples 1–5). The
second category encompasses those pairs in which at least one EXP token does not
participate (i.e., the first character) in the ABR construction. In general such tokens are
function words such as articles and prepositions which enable authors to form gram-
matically correct human language expressions, but they do not actually add meaning in
a phrase or sentence (examples 7 and 8). However, a considerable number of such
tokens do not belong in this category (examples 9–12).

Table 1. Classification of ABR-EXP along with an example for each one.

ID Abbrev. Expansion (in document) Description / Comments
1 CNS Central Nervous System The ABR consists of the first character of each

EXP token

T
ig

ht
ly

 L
in

ke
d

2 CrCl Creatinine Clearance The ABR consists of the first two characters of
each EXP token

3 CVA Cerebrovascular Accident The ABR consists of the first character of each
EXP token along with one additional character
from the first token

4 TZD Thiazolidinedione The first ABR-EXP characters matches, while
the rest ABR characters appear in the EXP token
with the same order

5 LTP2 Lactate Turnpoint 2 The ABR consists of the first character of the
EXP token including the number presented. The
ABR character “P” also appears in the 2nd token

6 SD1 Study Day one The Arabic number “1” matches with English
Word “one” while the rest ABR characters
matches with the first character of EXP tokens

7 ULN Upper Limit , of Normal Tokens “of” (stop word) and “,” (punctuation) do
not contribute in the ABR construction

L
oo

se
ly

 L
in

ke
d

8 LVLS Last Visit of the Last
Subject

Tokens “of” and “the” (stop words) do not
contribute in the ABR construction

9 PDE-5 Phosphodiesterase type 5 Token “type” do not contribute in the
abbreviation construction

10 DSM-IV Diagnostic and Statistical
manual of Mental disorders,
4th edition

Tokens “and”, “of” (stop words) , “manual,
“disorder” and “edition” do not contribute in the
abbreviation construction

11 ACDA Acid Citrate Dextrose
solution A

Token “solution” do not contribute in the
abbreviation construction

12 CABG Coronary Artery Bypass
Graft procedure

Token “procedure” do not contribute in the
abbreviation construction

13 EKG Electrocardiogram “EKG” stands for
“Elektrokardiogramm” (German)

Pa
rt

ia
ll

y
/ N

ot
 L

in
ke

d14 SUKL State Institute for Drug
Control

“SUKL” stands for
“Státní ústav pro kontrolu lé iv” (Chech)

15 DL Dazit “DL” stands for “Desloratadine”,
“Dazit” is a Trade Name

16 AZT Zidovudine “AZT” stands for “Azidothymidine”,
“Zidovudine” is the INN

17 MDX010 Ipilimumab “MDX-010” is the product code for
“Ipilimumab” (the INN)

18 C15 Blood and lymphatic
diseases

“C15” is the Mesh code for
“Hemic and lymphatic diseases”

42 E. Chondrogiannis et al.

The third category includes the pairs in which the ABR has partial or no similarity
with its EXP from a characters point of view, since it comes from another EXP rather
than the one provided in the document. For instance the EXP provided may be in English
whereas the ABR come from another phrase (being conceptually the same) expressed in
another language (examples 13 and 14). Also, a chemical product has several names
(i.e., chemical name, generic name/s, trade name/s) and hence the ABR may come from
another EXP than the one provided in the document (examples 15 and 16). A special
case comprises of codes which often are being arbitrarily assigned to concepts when
being introduced into a coding system. Such codes have been primarily designed for
referencing purposes or communication among software agents. However, they may still
be found in documents such as codes from widely used classifications systems (e.g.,
Mesh – example 18) and especially codes assigned to chemical products before entering
in the market (example 17).

Numbers have a distinctive role in the EXP detection process. In general (excluding
codes) they appear in both ABR and EXP. However, they may be in different forms,
including Roman and Arabic numbers, ordinal numbers, percentages as well as their
corresponding phrases in English language (example 6). In example 10 the Roman
number is being used in the ABR whereas the corresponding Arabic number in its
EXP. However, it should be noted that the sequence of characters “IV” is separated
from the rest of the ABR characters. The punctuation characters being used in the ABR
(e.g., white spaces or hyphen characters) as well as changes in the characters format
(from upper to lower case) or type (from letter to number) may point to groups of
abbreviation characters that should be examined together.

(c) Tokens Importance. Concerning the pairs of ABR-EXP that belong to the second
category, it was observed that an ABR can be “tightly” linked with its EXP if, apart
from punctuation characters and function words, one or more tokens are ignored. The
analysis of ignored tokens indicated that, in general, they are those words which are not
so important in comparison to the other EXP tokens. The importance of each token was
measured by taking into account the discrimination power of each one across the whole
corpus of documents (i.e., studies-count). More precisely, the number of studies each
token appeared in was counted (i.e., studies-token-exists) and accordingly its impor-
tance calculated, based on the expression (1). The more frequent a token appears the
less important it is. In order to overcome the morphological variants of tokens their
stem was used based on the Porter stemming algorithm [4]. Also, the importance of
tokens was normalized so that it would take values in the range from 0 (not important)
to 1 (very important).

Token - Importance ¼ Logarithm - 10 Studies - Count=Studies - Token - Existsð Þ
ð1Þ

In Fig. 2, the importance of tokens being ignored (blue) as well as the importance of
the remaining EXP tokens (red) is being presented. The 98 % of tokens being ignored
have importance in the range [0.0–0.6], with their average importance being close to
0.2. On the other hand, the importance of the remaining EXP tokens covers the whole
range. This, in turn, indicates that in the construction of an ABR, in many cases,

Meaning Inference of Abbreviations Appearing in Clinical Studies 43

participate tokens that are not so important or informative. However, in the 77 % of the
cases in which an omission was necessary, the average number of the importance of
tokens being ignored was lower than the average number of the importance of the
remaining EXP tokens, while in almost every case, the most important EXP token had
contributed with one or more characters in the construction of the ABR.

The above analysis clearly indicates that authors, when constructing an ABR, tend
to ignore the “non-important” tokens. This observation is further supported by the fact
that, in 95 % of the cases in which alignment is achieved after ignoring one or more
tokens, the number of ABR characters was 3 or more. In other words, if the authors had
not omitted such tokens, the length of the ABR would have been more than 4 or 5
characters, which in turn it would have been difficult to remember and use in the rest of
the document.

Another important observation is the fact that the importance of tokens ignored is
affected by the length of the ABR as well as the corresponding EXP. More precisely,
while their length is increased, the average number of ignored-tokens importance is
also increased (Fig. 3). Consequently, the authors in order to keep ABR length small,
omit words which in some other cases (e.g., when constructing the ABR of a shorter
phrase) would have not been ignored.

Fig. 2. Classification of the EXP tokens based on their importance.

Fig. 3. The average importance of EXP tokens being ignored for each group of ABR.

44 E. Chondrogiannis et al.

(d) Abbreviation Expressions. The analysis of documents indicated that ABRs may
appear in plural form while they may also participate in one or more expressions. More
precisely, an ABR may be used along with other words (e.g., HIV-positive) and/or
prefixes (e.g., post-PTA) to form compounds, the meaning of which is affected by the
non-ABR components. Based on the examined corpus of documents, 2.1 ABRs on
average participate in an ABR expression. Consequently, it’s essential to detect the
internal ones, which may or may not have been specified in the document. In the latter
case, their EXP should be sought in another source, but it’s more probable to find the
EXP of the internal ABR rather than the whole expression.

Table 2 summarizes the “dominant” ABR expressions detected along with a few
examples. In fact, the analysis of tokens highlighted this issue, which imposed the
analysis of the whole corpus of clinical studies through a semi-automatic process. More
precisely, the patterns automatically detected are presented in a descending order based
on their frequency of appearance, while for each one of them the specific abbreviation
from which they are stemming from was recorded. The combination of two or more
ABRs with “and”, “or” operators or their corresponding symbols was excluded from the
list. Also, the explanation of the ABRs expressions presented was left for our future work.

(e) Expansion Selection. In order to correctly detect the missing EXP of an ABR, the
possible EXPs should be found and accordingly the appropriate one be selected. As
already mentioned, the 70 % of ABRs inferred by the end user had been specified in
another clinical study with the meaning provided. The analysis of the whole corpus of
clinical studies indicates that the corresponding abbreviations are highly ambiguous
with the average number of possible EXPs being close to 7.0. However, the analysis of
the EXPs provided by the end users as well as the possible EXPs detected reveal that in
the 87 % of inferred ABR-EXP, the EXP is the dominant one, while in almost every
case the corresponding EXP has been used in more than one document. It should be
noted that the average of EXPs is reduced to 3.1 if the ones being used only in the
document provided are ignored.

For improving the percentage of correctly detected ABR-EXP pairs, the broader
domain in which each expansion is used was further examined, taking into account the
Mesh Terms assigned to each clinical study. More precisely, for each EXP, the cor-
responding documents were collected and accordingly a graph was created, based on
the Tree IDs of Mesh Terms assigned to each one as well as their hierarchy. Then, for

Table 2. Dominant ABR Expressions used in Clinical Studies.

Expression Example(s) Expression Example(s)

ABR-positive HIV-positive ABR-induced NRTI-induced
ABR-negative CRIM-negative ABR-specific YMSM-specific
ABR-related ATGL-related, ABR-score FLIE-score, MELD-score
ABR-associated CVC-associated anti-ABR anti-RET, anti-IFN
ABR-based MR-based post-ABR post-PTA, post-CRT
ABR-containing MPA-containing pre-ABR pre-GCRA, pre-TAVR
ABR-like LDL-like, BMS-like non-ABR non-LDL, non-TCC

Meaning Inference of Abbreviations Appearing in Clinical Studies 45

each ABR the Tree IDs based on the automatically detected Mesh Terms (e.g., from
study title) were retrieved and accordingly the corresponding Tree IDs graphs were
examined for finding the best matching EXP. The analysis indicated that only the 85 %
of EXPs was correctly detected - a little bit lower than in the previous case.

The terms presented in the close vicinity of each EXP were also examined. Fol-
lowing a similar process, the distinct tokens (i.e., their stem) that appeared in the same
sentence with an ABR were gathered, ignoring punctuation characters, stop words and
numbers. Then, the preceding and following tokens of the ABRs without EXP were
used in the annotated corpus of document for selecting the appropriate EXP. The EXP
selected for each ABR was the one for which the sum of the importance (finding c) of
tokens matches was the maximum. The outcome of this analysis indicated that the
88 % of ABR-EXP inferred were correctly detected. This approach also proved suc-
cessful at resolving the meaning of ABR “AR” (a highly ambiguous ABR with up to 10
different EXPs) to “Allergic rhinitis”, which was not possible to correctly detect
through any of the aforementioned techniques (the dominant EXP for “AR” was
“Androgen Receptor”).

5 Further Discussion and Future Steps

The ABR-EXP detection process is highly affected by errors or inconsistencies which
may appear in the documents in both ABR and EXP. For instance, the authors may use
an ABR, even in the same document, with a different form than the one specified (e.g.,
use SDI instead of SD1: Study Day 1). Also, the authors may introduce across the
document similar EXPs, which do not accurately match with each other, since they
may contain one or more additional punctuation characters (e.g., an additional space or
dash) or even have a grammatical error.

Concerning the ABRs mentioned in each document, they were classified in two
broad categories; those specified and those inferred. However, in some cases an ABR is
partially defined in a document, e.g. “HBO2: Hyperbaric O2”, where the ABR “O2”
stands for oxygen (derived from its molecular formula – not mentioned in the docu-
ment). Additionally, nested abbreviations’ definitions should be handled carefully, e.g.
“N-methyl-D-aspartate (NMDA) receptor (NMDAR)”.

The meaning of ABRs provided without their EXP can be adequately resolved by
selecting the dominant EXP for the corresponding ABR. However, the number of
correctly detected ABR-EXP pairs can be increased by also taking into account the text
that precedes or follows the ABR. The suggestions made can be further improved if not
only the tokens presented are taken into account, but also the semantic class which they
belong to, including their position towards abbreviation.

The ABR-annotated corpus of documents, that was an outcome of this work, is
available at the following link [13]. However, our intention is the specified ABRs to be
further examined and linked with their corresponding terms from widely used
nomenclatures, in order for their meaning to be precisely specified (e.g., different
semantically equivalent EXPs). Also, the development of a fully-automated system for

46 E. Chondrogiannis et al.

the analysis of the whole set of clinical studies is planned, with the scope to create a
repository of recorded EXPs for all ABRs, including the context that each one is being
used within.

6 Conclusion

The performed analysis of the ABR-annotated corpus of clinical studies indicated that
ABRs are widely used without their EXP. Specifying the appropriate meaning for each
one, presumes the analysis of a larger corpus of documents (not limited to clinical
studies) for detecting the possible EXPs and accordingly selecting the appropriate one.
Tokens have a significant role in the ABR-EXP detection process, since authors tend to
ignore the non-important words, in order to reduce the ABRs’ length. Also, the
expressions in which an ABR may participate as well as the text that proceeds and
follows have a distinctive role for selecting the appropriate meaning.

Acknowledgements. This work is being supported by the OpenScienceLink project [8] and has
been partially funded by the European Commission’s CIP-PSP under contract number 325101.
This paper expresses the opinions of the authors and not necessarily those of the European
Commission. The European Commission is not liable for any use that may be made of the
information contained in this paper.

References

1. Gale, W.A., Church, K.W., Yarowsky, D.: One sense per discourse. In: Proceedings of the
Workshop on Speech and Natural Language HLT 1991, pp. 233–237. New York (1992)

2. Schwartz, S.A., Hearst, A.M.: A Simple algorithm for identifying abbreviation definitions in
biomedical text. In: Proccedings of PSB, pp. 451–462 (2003)

3. EU Clinical Trials Register. www.clinicaltrialsregister.eu
4. Porter, M.F.: An algorithm for suffix stripping. Program 40(3), 211–218 (2006)
5. ClinicalTrials.gov. www.clinicaltrials.gov
6. Medical Subject Headings (MeSH). http://www.nlm.nih.gov/mesh/
7. PubMed. http://www.ncbi.nlm.nih.gov/pubmed
8. Karanastasis, E., Andronikou, V., Chondrogiannis, E., Tsatsaronis, G., Eisinger, D., Petrova,

A.: The OpenScienceLink architecture for novel services exploiting open access data in the
biomedical domain. In: Proceedings of PCI 2014, pp. 28:1–28:6. ACM, New York (2014)

9. Xu, Y., Wang, Z., Lei, Y., Zhao, Y., Xue, Y.: MBA: a literature mining system for
extracting biomedical abbreviations. BMC Bioinform. 10, 14 (2009)

10. McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Finding predominant word senses in
untagged text. In: Proceedings of ACL 2004, Stroudsburg, PA, USA, pp. 280–287 (2004)

11. Stevenson, M., Guo, Y., Amri, A.A., Gaizauskas, R.: Disambiguation of biomedical
abbreviations. In: Proceedings of BioNLP 2009, Boulder, Colorado, USA, pp. 71–79 (2009)

12. McInnes, B.T., Pedersen, T., Carlis, J.: Using UMLS concept unique identifiers (CUIs) for
word sense disambiguation in the biomedical domain. In: AMIA 2007, pp. 533–537 (2007)

13. CT abbreviations-annotated corpus. http://147.102.19.246:8080/AbbrAnnotatedCorpus/

Meaning Inference of Abbreviations Appearing in Clinical Studies 47

http://www.clinicaltrialsregister.eu
http://www.clinicaltrials.gov
http://www.nlm.nih.gov/mesh/
http://www.ncbi.nlm.nih.gov/pubmed
http://147.102.19.246:8080/AbbrAnnotatedCorpus/

14. Chang, J.T., Schütze, H., Altman, R.B.: Creating an online dictionary of abbreviations from
MEDLINE. J. Am. Med. Inform. Assoc. 9(6), 612–620 (2002)

15. Pustejovsky, J., Castaño, J., Cochran, B., Kotecki, M., Morrell, M.: Automatic extraction of
acronym-meaning pairs from MEDLINE databases. Stud. Health Tech. I. 84(1), 371–375
(2001)

16. Zhou, W., Torvik, V.I., Smalheiser, N.R.: ADAM: another database of abbreviations in
MEDLINE. Bioinformatics 22(22), 2813–2818 (2006)

17. Park, Y., Byrd, R.J.: Hybrid text mining for finding abbreviations and their definitions. In:
Proceedings of EMNLP 2001 Conference, pp. 126–133 (2001)

48 E. Chondrogiannis et al.

Experiments on Enlarging a Lexical Ontology

Alberto Simões1,2(B) and José João Almeida2

1 Centro de Estudos Humańısticos, Braga, Portugal
ambs@ilch.uminho.pt

2 Centro Algoritmi, Universidade do Minho, Braga, Portugal
jj@di.uminho.pt

Abstract. This paper presents two simple experiments performed in
order to enlarge the coverage of PULO, a Lexical Ontology, based and
aligned with the Princeton WordNet. The first experiment explores the
triangulation of the Galician, Catalan and Castillian wordnets, with
translation dictionaries from the Apertium project. The second, explores
Dicionário-Aberto entries, in order to extract synsets from its definitions.
Although similar approaches were already applied for different languages,
this document aims at documenting their results for the PULO case.

1 Introduction

Recently, a huge effort has been done to boost the development of wordnet clones
for different languages. Portuguese is not an exception. There are different initia-
tives to create lexical ontologies, linked or not with the original Princeton Word-
Net [9] (WordNet.Pr). Examples of such initiatives are Onto.PT [5], PAPEL [6],
TeP [8] or Open WordNet-PT [10]. Along with these, another initiative born
some months ago: the Portuguese Unified Lexical Ontology (PULO) [12]. It
aims at integrating different existing resources into a structure aligned with
WordNet.Pr. Recently a joint effort on comparing these projects’ history, goals
and statuses [4], lead some teams in the direction of cooperation. Nevertheless,
each project team continues their own initiatives, enriching and enlarging their
resources.

The same happens with PULO. This document describes two experiments
performed with the objective of enlarging the number of variants1. The kind of
experiments are, somehow, similar to some of the previous work, done in order
to bootstrap PULO [12] (as we also triangulated three different wordnets, but
using probabilistic translation dictionaries), to some of the approaches used to
expand GalNet [3], and to create Onto.PT [5]. Although the idea is not new,
the thorough description of the process and it’s brief evaluation is relevant for
future initiatives with other languages.

This short article includes two main sections: Sect. 2 describes the experiment
approaches and used resources, while Sect. 3 gives some measures on the quality
of the methods application. Finally, it concludes with some brief discussion of
the results and future work.
1 This article will use the term variant to refer to one of the synonyms of a synset.

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 49–56, 2015.
DOI: 10.1007/978-3-319-27653-3 5

50 A. Simões and J.J. Almeida

2 Experiments Description

Before running these experiments, PULO included a total of 18.689 variants,
distributed by 17.871 synsets (meaning most synsets include only one variant).
Table 1 shows how these variants are distributed by morphological category.

Table 1. Distribution of the 18.689 variants prior to the enlargement experiments.

Nouns Adjectives Verbs Adverbs Total

Variants 10.421 3.441 4.283 544 18.689

The next subsections describe the two experiments. The first one is based in
the triangulation of the Catalan, Galician and Castillian wordnets using trans-
lation dictionaries. The second one explores Dicionário-Aberto [11], an open and
free definitions dictionary.

2.1 Experiment I: Triangulating Iberian Wordnets

This first experiment uses the wordnets available through Multilingual Central
Repository [7], and some translation dictionaries obtained from the Apertium [2]
project. Given the reduced number of dictionaries including Portuguese, only the
Catalan, Galician and Castillian languages were used. Table 2 shows the sizes for
these three wordnets.

Table 2. Summary of sizes for the three used wordnets.

Nouns Adjectives Verbs Adverbs Total

Galician Synsets 18.850 5.092 1.541 349 25.832

Variants 25.205 8.050 4.145 420 37.820

Catalan Synsets 36.460 4.148 5.424 1 46.033

Variants 51.606 7.679 11.577 2 70.864

Castillian Synsets 26.594 5.180 6.251 677 38.702

Variants 39.142 6.967 10.829 1.051 57.989

Regarding the translation dictionaries, Table 3 summarizes their sizes. As can
be seen, these are quite small dictionaries. This fact was the main reason why the
bootstrapping approach [12] used probabilistic translation dictionaries that have
a broader coverage. Also, note that most entries in this dictionary have only one
translation, reducing the translation ambiguity (which is somewhat desired for
a machine translation dictionary, but reduces its applicability for other tasks).

The used algorithm is quite simple. For each synset in the database, that
includes at least one variant in any of the three languages, it:

1. Creates a multiset SL that includes all translations obtained by the transla-
tion of all variants for language L. Note that different variants can translate
to the same word in Portuguese, so, the multiset tracks the number of times
that word was obtained.

Experiments on Enlarging a Lexical Ontology 51

Table 3. Translation dictionaries sizes.

Lang. Pair Nr. Entries Max Nr. Trans. Avg. Nr. Trans.

GL–PT 11.003 4 1.07

CA–PT 6.510 7 1.11

ES–PT 12.742 6 1.07

2. Compute the multiset S = SGL ∪ SCA ∪ SES . This means that, if a Por-
tuguese word was obtained by translating just one variant for each of the
source languages, it would have a multiplicity of three. On the other hand, if
three variants for just one language generated a Portuguese word, that was
not obtained from any of the other languages, its multiplicity would be, as
well three. Not giving extra weight if the word was obtained from different
languages or every time from the same language was decided in order to keep
the algorithm simple.

3. Filter the multiset S, removing all Portuguese variants with a multiplicity
of just one. To define this cut line, each variant was checked against current
variants in PULO. Figure 1 shows this test. Bars at the left represent variants
found in PULO, while bars at the right represent new variants. Given the huge
amount of new variants with a multiplicity of 1, it was decided to ignore them
(trying to improve accuracy).

4. The bootstrapping approach for PULO used dictionaries obtained from
European Portuguese corpora with its old orthography2. The dictionaries
from Apertium used, essentially, Brazilian orthography that, curiously, is now
the correct form for European Portuguese. With that in mind, a simple tool
was used to remove variants written in the old orthography, and adding the
respective new orthography in case it was not yet present. This process was
performed using JSpell morphological analyzer [1].

Fig. 1. Number of candidate variants already existing in PULO (left bars) against the
new candidates (bars at the right), distributed by their multiplicity in multiset S.

2 Orthography prior to the 1990 agreement, that was officiated in 2008 by the
Portuguese Government, and still being, progressively, adopted in Portugal.

52 A. Simões and J.J. Almeida

This process created a total of 7.229 new variants, and removed 261 of existing
variants with the old orthography. Table 4 summarizes the distribution of PULO
variants by morphological category after this experiment.

Table 4. Distribution of the 25.657 variants after the first enlargement experiment.

Nouns Adjectives Verbs Adverbs Total

Variants 14.062 4.825 6.172 598 25.657

2.2 Experiment II: Synset Extraction from Definitions Dictionary

This second experiment was prepared already with the expectation of a big
amount of false positives. Nevertheless, there was interest on confirm that expec-
tation. The main idea was to use Dicionário-Aberto (DA) [11] definitions to
construct synsets. DA is partially encoded in TEI3.

DA definitions are stored in def XML elements, with the new line signaling
the change of sense4. Although XML should ignore spaces and new lines, this
decision was taken during the dictionary encoding process for simplicity. Each
sense line can include very different types of information. The most common is
a standard definition, explaining the concept. In other cases, there are exam-
ples, or see also references. But there is another kind of definition that is quite
interesting for the PULO enlargement process. Some lines include a set of syn-
onyms separated by a semicolon (see an example in Fig. 2). Thus, this second
experiment finds lines in DA that are only a sequence of terms separated by a
semicolon. For each of these sequences, the list of synonyms, together with the
entry head word, are stored.

Exploring the 128.521 entries in DA, 4.842 synsets were found. These synsets
have from 3 to 7 synonyms, with an average of 3.14 synonyms per synset. Follow
some examples of such synsets:

acobertar, encobrir, dissimular
açôfar, pechisbeque, latão
acordança, melodia, consonância
acôrdo, convenção, ajuste
acoroçoado, animado, incitado

In order to map these synsets to PULO synsets, a simple heuristic was used:
find an intersection between the synonyms from the two sources that includes, at
least, two variants. This means that for a synset obtained from DA 〈s1, s2, s3〉,
si will be suggested as a candidate if there is a synset S in PULO that contains
sj and sk with i �= j �= k.

Table 5 show some synsets from PULO (left column) and the aligned synset
from DA (right column). In italic are the terms that were used for the alignment.
3 Text Encoding Initiative XML schema, that includes notation to encode different

kind of resources from simple books to corpora or dictionaries.
4 This distinction is, of course, of the responsibility of the original lexicographer.

Experiments on Enlarging a Lexical Ontology 53

Fig. 2. Example of an entry from Dicionário Aberto with a line of synonyms.

Table 5. Synsets from PULO at the left, and aligned synset from DA at the right.

cima, cimeira, cimo, cumbre, cume vértice, cimo, cume, culminância

lista, relação tabela, relação, catálogo, lista

alegria, prazer prazer, alegria, jovialidade, satisfação, deĺıcia,
aprazimento, agrado

This process suggested 1.150 additions. Given this dictionary is quite noisy,
and includes a lot of words with old orthography (previous to the 1945 agree-
ment), these suggestions were not added automatically to PULO.

3 Experiments Evaluation

Both evaluations reported here were performed by sampling, given there is no
gold standard that can be used to evaluate these candidates, neither the manual
power needed to fully (manually) evaluate all candidates from both experiments.

For the second experiment, all suggestions need to be evaluated before being
added to PULO. Nevertheless, there was no time to complete that task yet.

3.1 Experiment I

For the first experiment, 200 of the added variants were chosen randomly. This
sample included 101 nouns, 39 adjectives, 2 adverbs and 58 verbs.

The evaluation divided these variants into three different categories:

– Correct Variants: 152 of the obtained variants were classified as correct.
This evaluation was performed looking to the word and the sense gloss. When
in doubt, a standard dictionary was used, in order to check if that specific
sense was present in the definition.
Follows some examples of variants evaluated in this class, together with its
gloss5:

• progredir — get better
5 In these and next examples, the authors decided not to translate the variant itself,

as a direct translation will lose part of the cultural/usage meaning.

54 A. Simões and J.J. Almeida

• corrupção — the state of being corrupt
• aguentar — hang on during a trial of endurance

– Incorrect Variants: 40 of the variant candidates were marked as incorrect.
Most of these were easy to spot, looking to the synset gloss. Examples of such
entries are:

• pegar — take away to an undisclosed location against their will and usually
in order to extract a ransom

• remeter — make less fast or intense
• bola — a statement that deviates from or perverts the truth

– Ambiguous Variants: There were 8 of the proposed variants that the authors
feel they are not incorrect, because there are some situations in which they can
be used to represent the synset concept. Nevertheless, as this decision might
not be consensual, the variants were classified as ambiguous. Some examples:

• desnudar — take away possessions from someone
• puro — spotlessly clean and fresh

Table 6 present these numbers distributed by morphological category, with an
accuracy (by sampling) of 76 %6.

Table 6. Distribution of correct, incorrect and ambiguous variants distributed by
morphologic category for first experiment.

Nouns Adjectives Verbs Adverbs Total

Correct 82 (81 %) 27 (69 %) 41 (71 %) 2 (100 %) 152 (76 %)

Incorrect 17 (17 %) 9 (23 %) 14 (24 %) 0 (0 %) 40 (20 %)

Ambiguous 2 (2 %) 3 (8 %) 3 (5 %) 0 (0 %) 8 (4 %)

Total 101 39 58 2 200

3.2 Experiment II

Again, for this second experiment, 200 of the candidate variants where chosen
randomly and classified in the three classes defined in the previous section. This
evaluation resulted in only 115 variant candidates marked for acceptance, while
74 were marked as wrong, and 11 as ambiguous. Table 7 shows the distribution
of these candidates by morphologic category. The accuracy7 on this experiment
was 58 %.

Follow some examples of entries obtained throw this experiment for each of
the three classes:

– Correct Variants
• constância — persistent determination

6 Given the obtained accuracy and the lack of human resources for a through valida-
tion, the authors decided to include the obtained variants without further analysis.

7 Given the low accuracy and the small number of proposed variants, the authors
decided to perform a manual validation prior to their incorporation into PULO.

Experiments on Enlarging a Lexical Ontology 55

• sólido — securely in position; not shaky
• truculento — very unpleasant

– Incorrect Variants
• carraceno — very small
• eduzir — make a subtraction
• sisudez — a solemn and dignified feeling

– Ambiguous Variants
• bom — to a complete degree or to the full or entire extent
• aquentar — spur on or encourage especially by cheers and shouts

Table 7. Distribution of correct, incorrect and ambiguous variants distributed by
morphologic category for second experiment.

Nouns Adjectives Verbs Adverbs Total

Correct 56 (62 %) 28 (56 %) 31 (52 %) 0 115 (58 %)

Incorrect 28 (31 %) 19 (38 %) 27 (45 %) 0 74 (37 %)

Ambiguous 6 (7 %) 3 (6 %) 2 (3 %) 0 11 (5 %)

Total 90 50 60 0 200

4 Conclusions

This article reports two experiments on expanding PULO coverage. Although the
used methods are not new, the experiments have shown that these methods can
get acceptable accuracy. Even the second method, that used a very noisy and old
dictionary (from 1913), could suggest a good set of new variants. Nevertheless,
when dealing with semantics, decisions are not consensual, and probably other
researchers would accept or reject different number of entries.

Acknowledgements. Thanks to Nuno Carvalho for the proofreading. This work has
been partially supported by FCT - Fundação para a Ciência e Tecnologia within the
Project Scope UID/CEC/00319/2013.

References

1. Almeida, J.J., Pinto, U.: Jspell - um módulo para análise léxica genérica de lin-
guagem natural. In: Actas do X Encontro da Associação Portuguesa de Lingúıstica.
pp. 1–15. Évora 1994 (1995)

2. Forcada, M.L.: Apertium: traducció automàtica de codi obert per a les llengües
romàniques. Linguamática 1(1), 13–23 (2009)

3. Gómez Guinovart, X., Clemente, X.M.G., Pereira, A.G., Lorenzo, V.T.: Galnet:
WordNet 3.0 do galego. Linguamática 3(1), 61–67 (2011)

4. Gonço Oliveira, H., de Paiva, V., Freitas, C., Rademaker, A., Real, L., Simões, A.:
As wordnets do Português. In: Simões, A., Barreiro, A., Santos, D., Sousa-Silva,
R., Tagnin, S. (eds.) Linguástica, Informática e Tradução: Mundos que se Cruzam,
vol. 7, pp. 397–424, March 2015

56 A. Simões and J.J. Almeida

5. Gonçalo Oliveira, H., Gomes, P.: ECO and Onto.PT: a flexible approach for cre-
ating a Portuguese wordnet automatically. Lang. Resour. Eval. J. 48(2), 373–393
(2014)

6. Oliveira, H.G., Santos, D., Gomes, P., Seco, N.: PAPEL: a dictionary-based lexi-
cal ontology for Portuguese. In: Teixeira, A., de Lima, V.L.S., de Oliveira, L.C.,
Quaresma, P. (eds.) PROPOR 2008. LNCS (LNAI), vol. 5190, pp. 31–40. Springer,
Heidelberg (2008)

7. Gonzalez-Agirre, A., Laparra, E., Rigau, G.: Multilingual central repository version
3.0. In: Proceedings of the 8th International Conference on Language Resources
and Evaluation (LREC 2012), pp. 2525–2529. ELRA (2012)

8. Maziero, E.G., Pardo, T.A.S., Felippo, A.D., Dias-da-Silva, B.C.: A base de Dados
Lexical e a interface web do TeP 2.0. In: VI Workshop em Tecnologia da Informação
e da Linguagem Humana, pp. 390–392 (2008)

9. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38, 39–41
(1995)

10. Rademaker, A., Paiva, V.D., de Melo, G., Coelho, L.M.R., Gatti, M.:
OpenWordNet-PT: a project report. In: Proceedings of the 7th Global WordNet
Conference, pp. 383–390 (2014)

11. Simões, A., Farinha, R.: Dicionário Aberto: um recurso para processamento de
linguagem natural. Vice-Versa 16, 159–171 (2011)

12. Simões, A., Guinovart, X.G.: Bootstrapping a Portuguese WordNet from
Galician, Spanish and English wordnets. In: Navarro Mesa, J.L., Ortega, A.,
Teixeira, A., Hernández Pérez, E., Quintana Morales, P., Ravelo Garćıa, A., Guerra
Moreno, I., Toledano, D.T. (eds.) IberSPEECH 2014. LNCS, vol. 8854, pp. 239–
248. Springer, Heidelberg (2014)

Using Unstructured Profile Information
for Gender Classification of Portuguese

and English Twitter Users

Marco Vicente1,2, Joao P. Carvalho1,3(B), and Fernando Batista1,2

1 INESC-ID, Lisboa, Portugal
joao.carvalho@inesc-id.pt

http://www.l2f.inesc-id.pt
2 ISCTE-IUL - Instituto Universitário de Lisboa, Lisboa, Portugal

3 Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Abstract. This paper reports experiments on automatically detecting
the gender of Twitter users, based on unstructured information found
on their Twitter profile. A set of features previously proposed is evalu-
ated on two datasets of English and Portuguese users, and their perfor-
mance is assessed using several supervised and unsupervised approaches,
including Naive Bayes variants, Logistic Regression, Support Vector
Machines, Fuzzy c-Means clustering, and k-means. Results show that
features perform well in both languages separately, but even best results
were achieved when combining both languages. Supervised approaches
reached 97.9 % accuracy, but Fuzzy c-Means also proved suitable for this
task achieving 96.4 % accuracy.

Keywords: Twitter users · Gender detection · Fuzzy c-Means · Super-
vised methods · Unsupervised methods

1 Introduction

The growth of social networks has produced massive amounts of data. This
user-generated information provides clues about users’ opinions, daily routines,
reaction to events, among other. Twitter, with about 500 million user-generated
tweets per day, provides an opportunity for social networking studies [4], and has
become the subject of studies seeking to understand public opinion [7]. Unlike
other social networks, a user name is the only required field when creating a
Twitter profile. There are not even specific fields to indicate information such as
gender or age. Nevertheless, the user profile includes optional text attributes that
can be used. Previous studies support the hypothesis that users tend to choose
real names more often than other forms [2] and, in fact, gender information
is most of the times provided either wittingly or unwittingly, for example, in
the screen name (e.g. “johndoe95” or “marianacruz”) or in the user name (e.g.
“John Doe the best :)” or “the macho man!!!”).

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 57–64, 2015.
DOI: 10.1007/978-3-319-27653-3 6

58 M. Vicente et al.

The natural language processing (NLP) problem of gender detection, i.e.,
deciding if the author of a text is male or female, has been previously applied to
Twitter. There are basically two major ways of addressing the problem of gender
detection in Twitter: (1) by looking for naming hints included in the unstruc-
tured textual profile information; (2) by analyzing the tweet contents. The first
approach is a priori simpler, but it is highly dependent on the fact that the user
must somehow hint its real name in the user name or screen name fields. On
the other hand, a single tweet is enough to perform a user’s gender detection.
The second approach does not need such information since it looks for gender
specific information (unwillingly) provided by a user when tweeting. However, it
needs each user past tweeting history, and can only give good results for users
that tweet a lot and produce enough text. Rao et al. [17] examined Tweets writ-
ten in English, using Support Vector Machines with character n-gram-features
and sociolinguistic features like emoticons use or alphabetic character repeti-
tions. They reported an accuracy of 72.3 % when combining n-gram-features with
sociolinguistic features. The state-of-the-art study reported by Burger et al. [6]
uses a large multilingual corpora, including approximately 184 k users labelled
with gender, 3.3 million tweets for training, and 418 k tweets for testing. They
used SVMs, Naive Bayes and Balanced Winnow2 with word and character n-
grams as features. Using tweet texts alone they achieved the accuracy of 75.5 %.
When combining tweet texts with profile information (description, user name
and screen name), they achieved 92 % of accuracy. A study on Dutch users,
using tokens and character n-grams, is reported by Halteren et al. [10]. Only
users with significant portions of produced tweets were studied, but using SVMs
and token unigrams the study reports 95.5 % accuracy. In this work we try
to improve automatic user gender detection in Twitter using the unstructured
information found on that user profile.

Using names to detect a user gender is, a priori, a rather trivial task. All that
is needed is a good dictionary of names and the will of a user to somehow provide
his/her name in the profile. E.g.: the user whose user name is John Gaines, should
be male. If the names appearing on the profile are not proper, e.g.: John75,
JooohnGaines, or J0hn G4ines, then it is possible to recover the user name (in
this case, John) using some simple text/NLP techniques. The problem is that
by using such techniques, lots of noisy information might arise. In the previous
example, form “John Gaines” we would obtain “John”, “Aine” and “Ines”. Since
both Aine and Ines are female names, we would obtain a conflicting gender info.
Nevertheless, using a dictionary of names and basic NLP process, the achieved
accuracy is almost 89 % when any form of a name is detected within the “User
name” or the “Screen name” fields. It is our contention that this number can be
improved by using additional features extracted from such fields.

This paper describes a set of features for gender classification proposed in
our previous study [18], which rely on the user’s profile unstructured textual
information. The main contributions are two-fold: Firstly, we assess the per-
formance of the features using several supervised and unsupervised methods
for a Portuguese dataset, in addition to the English dataset used in our previ-
ous study. Secondly, we show that the proposed features are compatible with

Using Unstructured Profile Information for Gender Classification 59

both languages, and that results are improved when merging both datasets. We
notice that using unsupervised methods, the increasing amount of data has pos-
itive impact on the results. The features can be used to extend gender labelled
datasets for researchers.

The paper is organized as follows: Sect. 2 characterizes the data, describes
the proposed features and describes our golden set of manually labelled data.
Section 3 describes experiments and reports the corresponding results. Section 4
presents the conclusions and prospects about the future work.

2 Data and Features

Experiments performed in this paper use an English and a Portuguese dataset
of Twitter users. The English dataset was extracted from one month of tweets
collected during December 2014, using the Twitter streaming/sample API.
The data has been restricted to English geolocated tweets, either from the
United States or from the United Kingdom, totaling 296506 unique users. The
Portuguese dataset is a subset of the data described in Brogueira et al. [5], and
corresponds to a database of Portuguese users, restricted by users that have
tweeted during October of 2014 in Portuguese language, and geolocated in the
Portuguese mainland.

2.1 Names Dictionaries

In order to automatically associate names that can be found in the user’s pro-
file with the corresponding gender, we have compiled a dictionary of English
names and a dictionary of Portuguese names. Both dictionaries contain gen-
der and number of occurrences for each of the names, and focus on names that
are exclusively male or female, since unisex names can be classified as male or
female. The English names dictionary contains about 8444 names. It was com-
piled using the list of the most used baby names from the United States Social
Security Administration. The dictionary is currently composed of 3304 male
names and 5140 female names. The Portuguese names dictionary contains 1659
names, extracted from Baptista et al. [1]. Their work is based on the extrac-
tion of names both from official institution lists and from previous corpora. The
dictionary is currently composed of 875 male names and 784 female names.

2.2 Feature Extraction

Our experiments use the features proposed in a previous work [18], which are
extracted with the dictionaries of names described previously. The profile infor-
mation is normalized for repeated vowels (e.g.: “eriiiiiiiiic” → “eric”) and “leet
speak” [9] (e.g.: “3ric” → “eric”). After finding one or more names in the user
name or screen name, we extract the applicable features from each name by
evaluating elements, such as “case”, “boundaries”, “separation” and “position”.
Each feature has a minimum size threshold (i.e.: the size of the name must have

60 M. Vicente et al.

Extract Names
from user name and

screen name

Dictionary of
Names

Has
Names?

yes Extract Features
from name

Has
features?

yes Add Features
applying threshold

Has more
Names?

yes

no

Save
Features

User FeaturesUser Features

Fig. 1. Feature extraction diagram.

at least a number of characters). Weak features have higher thresholds. If the
length of the extracted name is smaller than the threshold, the feature is dis-
carded. The final model uses 192 features. Each element increases the feature
granularity. Figure 1 illustrates the feature extraction process.

Consider the screen name “john gaines” as an example. Three names are
present in the dictionary of names and are extracted: “john”, “aine” and “ines”.
The name “aine” has no valid boundaries, since is preceded and succeeded by
alphabetic characters. The feature found is weak and the size of the name is lower
than the previously defined threshold. Consequently, the name is discarded. The
name “ines” has a valid end boundary, as it is not succeeded by alphabetic
characters. The feature for a name with correct end boundary has a threshold of
5 and the name is discarded (e.g.: in the case of the screen name “kingjames”,
the name “james” would not be discarded). Finally, the name “john” has a valid
end boundary and starts at the beginning of the screen name. The feature for
names with this boundary (valid end boundary) and this position (start of screen
name) is 3. The name “john” is selected along with its features.

About 243522 English users (82 %) and 15828 Portuguese users (58 %) trigger
at least one gender feature.

2.3 Labelled Data

In order to perform the evaluation, we manually labelled a randomly selection of
Portuguese users with gender information and used the existing labelled English
dataset [18]. The corresponding gender was assigned by manually analyzing and
validating users based on their user name/screen name, their profile picture
and checking if associated blogging websites corresponded in gender. All users
in our labelled datasets contain at least a sequence that matches a name in
our dictionary of names. The English labelled dataset has 748 users: 330 male
users and 418 female users. The Portuguese labelled dataset has 716 users: 249
male users and 467 female users. The majority of the users are female, which is
consistent with the work of Heil et al. [11] that performed a study of correlation
between name and gender, and estimates that 55 % of Twitter users are female.

Using Unstructured Profile Information for Gender Classification 61

Table 1. Features extracted from each profile and their properties.

English Portuguese

User name Screen name User name Screen name

Number of extracted features 3221 1925 1798 2404

Leet related features 291 208 17 15

Repeated vowels related features 20 48 4 122

Average name length (chars) 5.4 5.3 5.2 4.7

Percentage of rejected names 29 % 73 % 13 % 16 %

Table 1 shows the number of features that can be extracted from the manually
labelled subset as well as statistics for the extracted names in each one of the
profile attributes. For English we observe more occurrences of features in user
names (63 % against 37 % in screen names). The frequency of “Leet speak” is
consistent with the general features distribution. As expected, repeated vowels
occur more in screen names because they must be unique for all Twitter users,
unlike user names that impose no restrictions to their content. For Portuguese
we observe more occurrences of features in screen names (57 % vs 47 % in user
names). Repeated vowels related features occur more frequently in Portuguese
screen names. The English data reveals that names in screen name are more
unreliable. That is due to the screen name being a unique string without spaces,
which leads to a higher uncertainty when extracting possible names. Names in
screen name are more unreliable in English users than in Portuguese users (73 %
versus 16 %). A similar discrepancy can be found in Chen et al. [8], that achieved
better results with Portuguese and French than with English and German, when
identifying language origin of names using trigrams of letters.

3 Experiments and Results

This section describes the results obtained on the English and Portuguese
datasets, and the dataset containing both English and Portuguese users, when
applying supervised and unsupervised approaches based on the proposed fea-
tures. The supervised methods include: Multinomial Naive Bayes (MNB) [15], a
variant of Naive Bayes, Logistic Regression [13], and Support Vector Machines
(SVM) [12,16]. The unsupervised methods include Fuzzy c-Means clustering
(FCM) [3] and k-means [14]. The fuzzy logic module from the scikit-learn toolkit1

was used for implementing FCM, and all the other methods were applied through
Weka2, a collection of open source machine learning algorithms and a collection
of tools for data pre-processing and visualization.

While the supervised based methods use labelled data to build a model, that is
not the case of unsupervised methods, which group unlabelled data into clusters.
1 https://github.com/scikit-fuzzy/scikit-fuzzy.
2 Weka version 3-6-8. http://www.cs.waikato.ac.nz/ml/weka.

https://github.com/scikit-fuzzy/scikit-fuzzy
http://www.cs.waikato.ac.nz/ml/weka

62 M. Vicente et al.

Table 2. Gender classification results for supervised and unsupervised methods.

English Portuguese English + Portuguese

Accuracy kappa Accuracy kappa Accuracy kappa

Logistic regression 93.7 % 0.87 97.6 % 0.95 96.3 % 0.92

Multinomial naive bayes 97.2% 0.94 98.3% 0.96 97.9% 0.96

Support vector machines 96.4 % 0.93 97.8 % 0.95 97.4 % 0.95

k Means clustering 67.3 % 70.1 % 67.8 %

Fuzzy c-Means 96.0% 94.4% 96.4%

For that reason, we will first describe experiments using labelled data only, and
then will extend the analysis to all the data, but restricting the experiments
to unsupervised methods only. Experiments using supervised methods use the
labelled data for training and used a 5-fold cross-validation. Experiments using
unsupervised methods use all data for creating two different clusters, the labelled
data was used for validation, and each cluster was assigned to the class with more
elements from that cluster. In terms of setup, k-means was set to use the Euclidean
distance, centroids are computed as a mean, and the seed was set to 10. In order
to use the FCM clustering algorithm, the data has been converted into a matrix
of binary values, and we have used 1000 iterations, and the Euclidean distance.
All experiments consider binary features.

Results achieved with each one of the methods are summarized in Table 2.
The first 3 rows show the performance for supervised methods. Results from
the last two columns were achieved by combining both the English and the
Portuguese labelled subsets. MNB achieved the best performance for both lan-
guages, and achieves even better performance for the merged subset of users,
achieving about 98 % accuracy, proving that datasets can be combined and that
features are compatible with the two languages. The achieved performance sug-
gests that the proposed features can be suitable to discriminate the user’s gender
for both languages. The last two rows of the table summarizes the performance
for unsupervised methods. FCM obtains the correct gender for about 96.0 % of
the English users and about 94.4 % of the Portuguese users when all the data is
used. k-means achieves a much lower performance for both languages. The last
column of the table shows the results when English and Portuguese data are
combined. With such dataset, FCM achieves the best results so far, outperform-
ing individual results obtained for each language.

Our proposed features compare well with the performance achieved by other
state-of-the art research, despite being applied to only about 82 % of English users.
For example, Burger et al. [6] uses the winnow algorithm with n-grams extracted
from the user’s full name and obtain 89.1 % accuracy for gender detection.

We have performed additional experiments in order to assess the impact of
using increasing amounts of data. Figure 2 shows the impact of the amount of
data on the performance of FCM, revealing that it has positive impact until
reaching the 50 k users. Above that threshold, the accuracy tends to remain
stable, which may be due to our relatively restricted set of users.

Using Unstructured Profile Information for Gender Classification 63

Fig. 2. Impact of the amount of data on the performance, for Portuguese and English.

4 Conclusions and Future Work

We have described an approach to automatically detect the gender of Twitter
users, using unstructured profile information. A number of name related features
is evaluated on a dataset of about 244 K English users and a dataset of about 16 k
Portuguese users. Different supervised and unsupervised approaches are used to
assess the performance of the proposed features. The proposed features proved to
be good for discriminating the user’s gender in Twitter, achieving about 97.9 %
accuracy using a supervised approaches, and about 96.4 % accuracy using the
unsupervised approach based on Fuzzy c-Means, which also proved to be very
suitable for this task. Our features proved to be compatible between the English
and Portuguese datasets of Twitter users. Experiments show that by combin-
ing datasets of English and Portuguese users, the performance can be further
increased. The performance of Fuzzy c-Means significantly increased when more
data was used for learning the clusters. Above 50 k users, the performance sta-
bilizes, probably to the relatively small amount of labelled data. Fuzzy c-means
proved to be an excellent choice for the gender detection on Twitter since: (i) it
does not require labelled data, which is relevant when dealing with Twitter;
(ii) its performance increases as more data is provided; and (iii) it achieves a
performance almost similar (1.5 % lower) to the best supervised method.

Future work will encompass the creation of an extended labelled dataset
in a semi-automatic fashion, based on an automatic annotation provided by
our proposed features. Using such labelled dataset, we will associate the textual
content provided by the users with their gender and create gender models, purely
based on the text contents. In addiction, we will create age models for our Twitter
dataset.

Acknowledgements. This work was supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) under project PTDC/IVC-ESCT/4919/2012 and
funds with reference UID/CEC/50021/2013.

64 M. Vicente et al.

References

1. Baptista, J., Batista, F., Mamede, N.J., Mota, C.: Npro: um novo recurso para
o processamento computacional do portugus. In: XXI Encontro APL, December
2005

2. Bechar-Israeli, H.: From <bonehead> to <clonehead>: nicknames, play, and iden-
tity on internet relay chat. Comput.-Mediated Commun. 1(2) (1995)

3. Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: The fuzzy C-means clustering algorithm.
Comput. Geosci. 10(23), 191–203 (1984)

4. Brogueira, G., Batista, F., Carvalho, J.P., Moniz, H.: Portuguese geolocated tweets:
an overview. In: Proceedings of the International Conference on Information Sys-
tems and Design of Communication, ISDOC 2014, pp. 178–179. ACM, New York
(2014). http://doi.acm.org/10.1145/2618168.2618200

5. Brogueira, G., Batista, F., Carvalho, J.P., Moniz, H.: Expanding a database of
Portuguese tweets. In: 3rd Symposium on Languages, Applications and Technolo-
gies SLATE 2014. OpenAccess Series in Informatics (OASIcs), vol. 38, pp. 275–282
(2014)

6. Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating gender on twit-
ter. In: EMNLP 2011, pp. 1301–1309. ACL (2011)

7. Carvalho, J.P., Pedro, V., Batista, F.: Towards intelligent mining of public social
networks’ influence in society. In: IFSA World Congress and NAFIPS Annual Meet-
ing (IFSA/NAFIPS), pp. 478–483, Edmonton, Canada, June 2013

8. Chen, Y., You, J., Chu, M., Zhao, Y., Wang, J.: Identifying language origin of
person names with n-grams of different units. In: IEEE ICASSP 2006, vol. 1, p. I,
May 2006

9. Corney, M.W.: Analysing e-mail text authorship for forensic purposes. Ph.D. thesis,
Queensland University of Technology (2003)

10. van Halteren, H., Speerstra, N.: Gender recognition on dutch tweets. Comput.
Linguist. Neth. J. 4, 171–190 (2014)

11. Heil, B., Piskorski, M.: New twitter research: men follow men and nobody tweets.
Harvard Bus. Rev. 1, 2009 (2009)

12. Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to platt’s
SMO algorithm for SVM classifier design. Neural Comput. 13(3), 637–649 (2001)

13. Le Cessie, S., Van Houwelingen, J.C.: Ridge estimators in logistic regression. Appl.
Stat. 41(1), 191–201 (1992)

14. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations (1967). http://projecteuclid.org/euclid.bsmsp/1200512992

15. McCallum, A., Nigam, K., et al.: A comparison of event models for naive bayes
text classification. In: AAAI-98 Workshop on Learning for Text Categorization,
vol. 752, pp. 41–48 (1998)

16. Platt, J., et al.: Fast training of support vector machines using sequential minimal
optimization. In: Advances in Kernel Methods—Supports Vector Learning 3 (1999)

17. Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attributes
in twitter. In: Proceedings of the 2nd International Workshop on Search and Mining
User-Generated Contents, pp. 37–44. ACM (2010)

18. Vicente, M., Batista, F., Carvalho, J.P.: Twitter gender classification using user
unstructured information. In: FUZZ-IEEE 2015, IEEE International Conference
on Fuzzy Systems. IEEE Xplorer, Istanbul, Turkey (Accepted)

http://doi.acm.org/10.1145/2618168.2618200
http://projecteuclid.org/euclid.bsmsp/1200512992

Yet Another Suite of Multilingual NLP Tools

Marcos Garcia(B) and Pablo Gamallo

Centro Singular de Investigación en Tecnolox́ıas da Información (CiTIUS),
Universidade de Santiago de Compostela, Santiago de Compostela, Spain

{marcos.garcia.gonzalez,pablo.gamallo}@usc.es

Abstract. This paper presents the current development of a multilin-
gual suite for Natural Language Processing. It consists of a sentence
chunker, a tokenizer, a PoS-tagger, a dictionary-based lemmatizer and
a Named Entity Recognizer (both for enamex and numex expressions).
The architecture of the pipeline and the main resources used for its devel-
opment are described. Besides, the PoS-tagger and the Named Entity
Recognizer are evaluated against several state-of-the-art systems. The
experiments performed in Portuguese and English show that, in spite of
its simplicity, our system competes with some well known tools for NLP.
It is entirely written in Perl and distributed under a GPL license.

Keywords: Natural language processing · Pos-tagging · Named entity
recognition · Portuguese · English

1 Introduction

This paper presents CitiusTools, a multilingual suite for Natural Language
Processing (NLP) which performs the following tasks: sentence chunking, tok-
enization, PoS-tagging, lemmatization and Named Entity Recognition (NER).
The suite is entirely written in Perl and distributed under a GPL license.1

The paper presents the architecture of the pipeline as well as its adaptation
to Portuguese and English (the Spanish version was introduced in [6]). It is
also presented a set of experiments aimed at knowing the performance of the
PoS-tagger and the NE classifier modules. The results sho w that, in spite of its
simplicity, our system behaves quite well when compared to some state-of-the-art
suites such as Stanford CoreNLP or FreeLing. Besides, it performs notoriously
better than the models provided by other systems such as OpenNLP.

Section 2 introduces some related work. Then, the architecture of the system
is presented in Sect. 3. Section 4 shows the external resources used for its adap-
tation to Portuguese and English, while Sect. 5 contains the performed experi-
ments. Finally, Sect. 6 describes the main conclusions of this paper.

1 http://proxectos.citius.usc.es/hpcpln/index.php.

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 65–75, 2015.
DOI: 10.1007/978-3-319-27653-3 7

http://proxectos.citius.usc.es/hpcpln/index.php

66 M. Garcia and P. Gamallo

2 Related Work

In the last years, several open-source NLP suites have been published, being
available to the users. Some of them provide models for languages such as
Portuguese and English (evaluated in this paper), while others include analyzers
for other varieties such as Spanish, Chinese, German or Arabic.

Stanford CoreNLP [11] is one of the best known suites, including modules like
tokenizers, PoS-taggers, named entity recognizers, coreference resolution systems
and syntactic parsers. It is written in Java and has been developed mainly for
English, but recently there have been published models for languages such as
Spanish, Chinese, German or Arabic.

FreeLing [12] is a suite of language analyzers (written in C++) which includes
similar modules than the Stanford system, and also has tools for other tasks
such as phonetic encoding. Most of FreeLing modules analyze data in Catalan,
Spanish, Portuguese, English, or French (among others).

Another toolkit for NLP analysis written in Java is OpenNLP,2 which per-
forms most common NLP tasks. There are available models for several language
for this system, including English, Spanish or German.

Finally, IXA pipes [1] (a modular set also written in Java) performs tokeniza-
tion, PoS-tagging, NER and parsing. Among the languages covered by this tool
(depending on the module) are Spanish, English, Basque, Italian or Galician.

The system presented in this paper is, to the best of our knowledge, the first
one written entirely in Perl. It provides a simple, efficient and ready to use set
of NLP tools with a performance close to the state-of-the-art.

3 Architecture

Our system consists of five modules that can be applied in a pipeline in order to
perform NLP tasks. The current version contains the following tools:

3.1 Sentence Chunker

This module is composed of a language-dependent list of abbreviations and a
set of Finite State Automata (FST) aimed at identifying sentence boundaries.

The automata detect entities such as urls, e-mail addresses, and other ele-
ments containing dots that are not in sentence-ending position. Also, abbrevia-
tions ending in a dot character (e.g., Dr., corp., etc.) are not marked as sentence
boundaries (except if their context is covered by a FST).

The output of this module is the input text with one sentence per line.

3.2 Tokenizer

The next module of the suite splits each identified sentence into its tokens. It is
a rule-based tokenizer enriched with few language-dependent adaptations.

2 http://opennlp.apache.org/.

http://opennlp.apache.org/

Yet Another Suite of Multilingual NLP Tools 67

First, the tokenizer identifies compound punctuation (such as ellipsis) and
other punctuation inside numerical expressions. After that, a simple blank-space
tokenizer is applied (which also splits the punctuation which do not belong to
larger expressions).

Then, a battery of language-dependent rules is applied in order to split contrac-
tions (e.g. don’t > do/not, in English), verb+pronoun forms (e.g., mantém-se >
mantém/se, in Portuguese) and other elements which are useful for further NLP
analysis. Note that some forms can be ambiguous between a contracted and a non-
contracted element: desse, in Portuguese, could be a single token form of the verb
dar (to give), or a contracted form of a preposition and a demonstrative (de/esse).
As the decision for splitting these forms depends on their PoS-tag, the tokenizer
does not split them. Thus, as in other works [8], these forms are analyzed by the
PoS-tagger,whichwill split them (or not), according to the selectedPoS-tag.Those
cases where an element of the contraction may represent two different tokens (with
a different PoS-tag, e.g., I’d > I would or I had, in English) are also splitted in this
step, but the lemma will be provided by the disambiguation of the PoS-tagger.

The output of this module is a vector of tokens representing each previously
identified sentence.

3.3 PoS-Tagger

The PoS-tagger assigns a morphosyntactic tag (from a set of predefined tags,
the tagset) to each token.

This module is a bayesian classifier based on bigrams of tokens. It uses addi-
tive smoothing, which is commonly a component of bayesian classifiers. In order
to label a token, the classifier calculates the probability of each tag (ti) linked
to the token, taking into account a set of contextual features Ai...An:

P (ti | A1, ...An) = P (ti)
N∏

i=0

P (Ai | ti) (1)

The best set of features, selected in preliminary tests, was the following:

– ti−1: the PoS-tag of the previous token.
– ti+1: the PoS-tag of the next token.
– (ki, ti−1): the cooccurrence of the ambiguous token ki together with the tag

of the previous token.
– (ki, ti+1): the coccurrecence of the ambiguous token ki together with the tag

of the next token.

The model needs to be trained with a labeled corpus and a dictionary with
the possible PoS-tags for each known token. The algorithm disambiguates the
tokens from left to right, so the left context of an ambiguous token is an already
labeled one. Thus, the features concerning the tag of the next token (ti+1) include
the probabilities of the different tags that could be associated with this token.

This strategy is similar to the Hidden Markom Models (HMM) algorithm
proposed in [2]. The main difference is that our system handles the PoS-tagging

68 M. Garcia and P. Gamallo

as an individual classification problem (token by token), instead of searching for
the best sequence of PoS-tags. Its computational efficiency is the main reason
for the use of this simple approach.

The tagsets of the PoS-taggers follow the EAGLES guidelines [10]. For
Portuguese, it has been used a tagset with 193 elements. The English tagset
has 27 tags. Both of them have 9 extra tags for punctuation. The difference
between these tagsets come from the complex verbal conjugation and nominal
inflection of Portuguese. However, note that the classifier does not use the 193
elements in Portuguese: it just uses 21 tags for disambiguating the morphosyntac-
tic category (e.g., noun, adjective) of each word. The other information (gender,
number, tense, etc.) is then taken from the labeled dictionary.

The output of the PoS-tagger is the input vector enriched with a morphosyn-
tactic label for each token.

3.4 Named Entity Identifier

The next module of the pipeline is a FST identifier of numex and enamex (named
entities) expressions.

Before starting the identification process, this module takes advantage of a
lemmatized dictionary (see Sect. 4) in order to assign a lemma for each token. It
also uses the predicted PoS-tag for disambiguating tokens with different lemmas
depending on their morphosyntactic category.

For identifying numex expressions (in our system: dates, currencies, numbers,
measures and quantities), it is applied a set of language-dependent FSTs that
cover the most common forms of representing these elements in each language.

The named entities (enamex expressions) are identified taking into account
both their capitalization and possible functional words inside them (e.g., Banco
de Portugal). In order to better identify the boundaries of the enamex expres-
sions, this module also needs a list of words which can be both common words at
sentence beginning position and the first element of a named entity (e.g., Neves,
which can be a capitalized noun and a proper noun —surname or location—
in Portuguese). These ambiguous forms are obtained semi-automatically using
dictionaries and lists of gazetteers.

The output of this module is the input vector enriched with the identification
of the numex and enamex expressions, as well as with the lemmas provided by
the dictionary.

3.5 Named Entity Classifier

The named entity classifier module assigns each enamex one of the following
labels: person, organization, location or misc (miscellaneous).

In order to classify an entity, this module uses large lists of encyclopedic
gazetteers together with a set of rules for semantic disambiguation.

Yet Another Suite of Multilingual NLP Tools 69

The gazetteers were automatically extracted from structured resources such
as Freebase3 and DBpedia,4 and enriched with semi-structured knowledge
obtained from the infoboxes and category trees of Wikipedia.5 The gazetteers
consist in four lists of entities (one for each semantic category). Besides, the sys-
tem also uses small lists of trigger words, which are nouns that can subclassify
an entity (e.g., “singer” for the class person or “company” for organization).
The trigger words were also automatically extracted from the category trees of
Wikipedia. Finally, a list of the most frequent personal names for each language
(which are not common nouns) is used.

Concerning the disambiguation rules, they are applied using the following
strategy for each named entity:

1. If the entity appears only in one of the gazetteers lists, it is classified with
the class it belongs to.

2. If the entity appears in several lists (or if it does not appear in any), the
context is analyzed. This context includes two windows (before and after)
of three tokens each. If a trigger word is found in the context, the entity is
classified as belonging to the trigger word class (with some restrictions such
as trigger words in preposition phrases. “Caixa Geral” will not be labeled as
person even if the trigger word “president” occurs in the context: president
of Caixa Geral).

3. If the entity starts (or is) a frequent personal name present in the list, it is
classified as person.

4. If the entity is ambiguous (it appears in more than one list or contains trigger
words from different classes) and it cannot be disambiguated by its context,
it is selected the most probable class (prior probability), by computing the
distribution of the gazetteers in the Wikipedia.

5. If the context is not enough to disambiguate the entity, a rule verifies whether
it contains a trigger word or the first token of a gazetteer inside. If there are
more than one option, the gazetteers are preferred over the trigger words,
and in case of ambiguity the prior probability is also computed.

6. If the previous rules cannot classify the entity, it is labeled as misc.

Note that the rules are mainly language-independent. In our case, only one
rule had to be changed when adapting the system for English: a trigger word
inside an entity appears in final position, instead of in the beginning, as in
Portuguese (National Museum versus Museu Nacional).

Even though the performance of this module depends on the quality and
persistence of the gazetteers, the use of contextual features together with the
combination of rules that analyze the internal form of each entity allow the
system to keep reasonable accuracy even in unknown forms.

3 http://www.freebase.com.
4 http://www.dbpedia.org.
5 http://www.wikipedia.org.

http://www.freebase.com
http://www.dbpedia.org
http://www.wikipedia.org

70 M. Garcia and P. Gamallo

Table 1. Summary of the size of the resources: dictionaries, PoS-tagger training cor-
pora, NER testing corpora and total number of gazetters.

Language Dictionary PoS-tagger (train) NER (test) Gazetteers

Portuguese 1.250 M 130 k 75 k 100 k

English 350 k 1 M 524 k 1.5 M

4 Resources

This section briefly describes the external resources used by the different NLP
modules of our system. Table 1 includes a summary of these data.

4.1 Portuguese

For training the PoS-tagger for Portuguese (and also for extracting some lists
described above), we used the dictionary of FreeLing based on the Label-Lex lex-
icon [4]. It consists of ≈ 1.250 million pairs token-tag from about 120 k lemmas.

For training the PoS-tagging we used a subset of the CoNLL version of the
Bosque 8.0, with about 130 k tokens.6 For testing, we used a different subset of
the Bosque and three small corpora of European Portuguese (EP) news, Brazilian
Portuguese (BP) news and a Wikipedia articles.

For testing the named entity classification, there were used both a subset of
the labeled version of the Bosque (≈ 20 k tokens) and the Corpus-Web (with
about 55 k tokens of different varieties of Portuguese) [9].

In order to build the gazetteers, the Portuguese version of the Wikipedia was
used for extracting entity names. Apart from that, large lists of countries and
cities were also merged, together with the most common names and surnames
in Portuguese an other lists of gazetteers freely available (such as the FreeLing
data), generating the following lists: 59, 421 person entities, 14, 197 organizations,
34, 590 locations and 838 for misc gazetteers.

4.2 English

For English, the morph english dict.v1.4 was used, with about 350 k token-tag
pairs from ≈ 77.5 k lemmas.7 For training and testing the PoS-tagger we used
the Brown corpus, with ≈ 1.2 million tokens:8 ≈ 1 million tokens were randomly
selected for training, while the tests were carried out with the other 200 k tokens.
Both the dictionary and the corpora had to be adapted and converted to the
same tagset.

The classification of named entities was evaluated using two corpora: the
IEER,9 with 68, 402 tokens and classification of person, location and organization
6 http://www.linguateca.pt/floresta/CoNLL-X/.
7 ftp://ftp.cis.upenn.edu/pub/xtag/morph-1.5/morph-1.5.tar.gz.
8 http://clu.uni.no/icame/brown/bcm.html.
9 http://www.itl.nist.gov/iad/894.01/tests/ie-er/er 99/er 99.htm.

http://www.linguateca.pt/floresta/CoNLL-X/
ftp://ftp.cis.upenn.edu/pub/xtag/morph-1.5/morph-1.5.tar.gz
http://clu.uni.no/icame/brown/bcm.html
http://www.itl.nist.gov/iad/894.01/tests/ie-er/er_99/er_99.htm

Yet Another Suite of Multilingual NLP Tools 71

entities (not misc), and the SemCor Corpus,10 with a size of 455, 597 tokens and
annotation of the four enamex classes. The PoS-tags of this last corpus had been
predicted (not manually revised).

The English gazetteers were extracted from Freebase and DBpedia, enriched
with lists of countries and capitals and the most common names and surnames
in this language. The final versions had the following size: 922, 767 for person,
126, 334 for organization, 351, 151 for location and 94, 525 for misc.

5 Evaluation

This section describes the evaluation experiments performed on the two main
modules of the system: the PoS-tagger (CitiusTagger) and the NE classifier
(CitiusNEC). The experiments were carried out in Portuguese and English,
using three NLP suites for comparison: FreeLing (for Portuguese), and Apache
OpenNLP and Stanford CoreNLP (for English).11

It is important to note that some results are not strictly comparable, since
we used the models provided by each software. On the one hand, these models
were trained with different resources (corpora, lexicons, gazetteers. . .), having
also different tagsets (quickly adapted for doing the experiments). On the other
hand, the alignment between the gold-standard and the test files also involved
variation on the results (as it is shown below).

So, the objective of this evaluation is not to know what is the best system for
PoS-tagging and NE classifying texts in Portuguese and English, but to have a
decent comparison of our system analyzing the same data as other NLP suites.

5.1 PoS-Tagger

The first set of experiments compared the performance of the PoS-tagger in
Portuguese and English.

Table 2. PoS-tagging results (precision) for Portuguese.

Corpus Size CitiusTagger FreeLing

Bosque 80,881 96.07 96.62

EP News 13,964 96.70 97.76

BP News 11,476 95.73 96.99

Wikipedia 17,149 95.76 96.13

Macro-average — 96.06 96.88

Micro-average — 96.06 96.72

10 http://www.gabormelli.com/RKB/SemCor Corpus.
11 The output of each system as well as the gold-standard files can be obtained in the

following url: http://gramatica.usc.es/∼marcos/slate15.zip.

http://www.gabormelli.com/RKB/SemCor_Corpus
http://gramatica.usc.es/~marcos/slate15.zip

72 M. Garcia and P. Gamallo

Table 2 contains the results for Portuguese. Our bayesian PoS-tagger were
compared to the HMM model of FreeLing [8,12], analyzing the four mentioned
corpora (see Sect. 4). The results include the precision (true positives/true posi-
tives + false negatives) on each corpora as well as the macro and micro-average
values (macro-average is the harmonic mean of the results from each corpus
while micro-average values are computed from the sum of all the true and false
positives and negatives from each corpora).

When compared to the HMM model, our system behaves quite similar in
every corpora (with a maximum difference of −1.2 in BP News), with average
results of 96 % precision. Note that this comparison is strict, since both the gold-
standard and the testing corpora were perfectly aligned. Besides, the tagset of
our system and the FreeLing one were almost identical.

In English, the bayesian PoS-tagger was compared to three different models
(in one corpus): the maximum entropy and perceptron classifiers of OpenNLP
(1 and 2, respectively) and the Stanford POS Tagger (maximum entropy) [13].

The output of the external systems (OpenNLP and Stanford) were automat-
ically converted to the same tagset of the gold-standard.

Table 3. PoS-tagging results (precision) for English. OpenNLP 1 is a maximum
entropy model, while OpenNLP 2 is a perceptron classifier. Test corpus has a size
of 209, 406 tokens.

CitiusTagger OpenNLP 1 OpenNLP 2 Stanford

93.55 91.72 90.93 91.12

The results (Table 3) show that our PoS-tagger behaves as good as the max-
imum entropy and perceptron models. Actually, the precision of the bayesian
model is almost 2 % higher, but the evaluation cannot be strict: some minority
tags (e.g. FW for foreign words) appeared in the gold-standard but not in the
tagsets of these taggers (and vice versa).

However, these experiments (together with the Portuguese ones) suggest that
the bayesian model achieves a high performance despite its simplicity.

5.2 Named Entity Classifier

Concerning NE classification, the Portuguese system was also compared to the
FreeLing AdaBoost classifier [3,7] in two corpora: Bosque and Corpus-Web.

Table 4 shows the results of these two classifiers in the referred corpora. In
Bosque, our system achieved slightly better results than the AdaBoost classifier,
while in Corpus-Web, the FreeLing module had better results.

Again, the average results show that a simple system (based on resources
and rules) has similar performance than a supervised classifier.

Yet Another Suite of Multilingual NLP Tools 73

Table 4. Named entity classification results (f-score) for Portuguese. NEs refers to the
number of full enamex entities (not tokens) in each corpus.

Corpus Tokens NEs CitiusNEC FreeLing

Bosque 19,579 1,027 90.07 88,89

Corpus-Web 55,305 3,666 73.76 75.31

Micro-average — — 81.92 82.10

Macro-average — — 77.33 78.22

Table 5. Named entity classification results (f-score) for English.

Corpus Tokens NEs CitiusNEC OpenNLP Stanford

IEER 68,402 3,384 75.95 52.77 75.86

SemCor 455,597 9,696 58.81 44.85 65.57

Macro-average — — 63.38 48.90 70.72

Micro-average — — 63.23 47.10 68.63

In English, the resource-based method was compared to the OpenNLP (Name
Finder models)12 and to the Stanford NER (CRF with distributional similarity
features in an IOB2 classifier)13 [5].

The output of these systems were automatically converted to the CoNLL
IOB format (used in both versions of the IEER and SemCor corpora).

The results of the named entity classifiers (Table 5) show that in the IEER
corpus, our system behaves as good as the Stanford model, while in SemCor, the
former increased our performance in more than 7%. In average, our resource-
based classifier had much better performance (≈ 5%) than the OpenNLP sys-
tem, while the Stanford one increased our results in 5% − 7% f-score.

Finally, it was carried out a test aimed at knowing the processing speed of
the evaluated systems. They were used for labelling a Spanish corpus of 100,000
tokens (in an Intel Core 2 2.5 GHz processor with 4 gb of RAM running Debian
Jessie). The systems needed the following time for applying the pipeline (sen-
tence chunker, tokenizer, PoS-tagger and NER): OpenNLP (only NER): 1 m 48 s;
FreeLing: 2 m 27 s; CitiusTools: 2 m 38 s and Stanford CoreNLP: 11 m 25 s.

In sum, the evaluations performed with the two main modules of our
pipeline—CitiusTagger and CitiusNEC—suggest that they achieve very good
results (some of them comparable to state-of-the-art systems) despite their sim-
plicity and their quick adaptation to Portuguese and English. This is in accor-
dance with the results obtained for Spanish, such as it was described in [6].

12 http://opennlp.sourceforge.net/models/english/namefind/.
13 http://nlp.stanford.edu/software/conll.distsim.iob2.crf.ser.gz.

http://opennlp.sourceforge.net/models/english/namefind/
http://nlp.stanford.edu/software/conll.distsim.iob2.crf.ser.gz

74 M. Garcia and P. Gamallo

6 Conclusions and Further Work

This paper presented the current version of CitiusTools, a multilingual suite for
NLP which includes modules for the most common tasks of this field.

The modules, written in Perl, combine some rule-based and supervised mod-
els which take advantage of external resources such as lexicons, labeled corpora
or large lists of gazetteers.

Two different modules (PoS-tagger and NER) were evaluated in Portuguese
and English, compared to some of the best NLP tools available for these lan-
guages. The results showed that the performance of our system is similar than
the state-of-the-art, even if it has been quickly adapted to these languages.

In current work, we are adapting all the modules in the suite to two new
languages (Galician and French), and we expect to include (in further work) a
deterministic module for coreference resolution.

References

1. Agerri, R., Bermudez, J., Rigau, G.: IXA pipeline: efficient and ready to use multi-
lingual NLP tools. In: Proceedings of the 9th Language Resources and Evaluation
Conference (LREC 2014), Reykjavik (2014)

2. Brants, T.: TnT - a statistical part-of-speech tagger. In: Proceedings of the 6th
Conference on Applied Natural Language Processing (ANLP). Association for
Computational Linguistics (2000)

3. Carreras, X., Màrquez, Ll., Padró, Ll.: A simple named entity extractor using
adaboost. In: Proceedings of the Conference on Natural Language Learning
(CoNLL 2003) Shared Task. Edmonton (2003)

4. Eleutério, S., Ranchhod, E., Mota, C., Carvalho, P.: Dicionários electrónicos do
Português. Caracteŕısticas e Aplicações. In: Actas del VIII Simposio Internacional
de Comunicación Social, pp. 636–642, Santiago de Cuba (2003)

5. Finkel, J., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp.
363–370 (2005)

6. Gamallo, P., Pichel, J.C., Garcia, M., Abúın, J.M., Pena, T.F.: Análisis morfos-
intáctico y clasificación de entidades nombradas en un entorno big data. Proce-
samiento Lenguaje Nat. 53, 17–24 (2014)

7. Garcia, M.: Extracção de Relações Semânticas. Recursos, Ferramentas e
Estratégias. Ph.D. thesis, University of Santiago de Compostela (2014)

8. Garcia, M., Gamallo, P.: Análise Morfossintáctica para Português Europeu e
Galego: Problemas, Soluções e Avaliação. LinguaMÁTICA 2(2), 59–67 (2010)

9. Garcia, M., Gamallo, P.: Multilingual corpora with coreferential annotation of
person entities. In: Proceedings of the 9th edition of the Language Resources and
Evaluation Conference (LREC 2014), pp. 3229–3233, Reykjavik (2014)

10. Leach, G., Wilson, A.: Recommendations for the morphosyntactic annotation of
corpora. Expert Advisory Group on Language Engineering Standard, Techincal
report, EAGLES (1996)

Yet Another Suite of Multilingual NLP Tools 75

11. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The
stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics (ACL 2014):
System Demonstrations, pp. 55–60 (2014)

12. Padró, L.I.: Analizadores multilingües en freeling. LinguaMÁTICA 3(2), 13–20
(2011)

13. Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-Rich Part-of-Speech
tagging with a cyclic dependency network. In: Proceedings of the Human Language
Technology and the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL 2003), pp. 252–259, Edmonton (2003)

Human-Computer Languages

Towards a DSL for Educational Data Mining

Alfonso de la Vega, Diego Garćıa-Saiz, Marta Zorrilla, and Pablo Sánchez(B)

Dpto. Ingenieŕıa Informática y Electrónica,
Universidad de Cantabria, Santander, Spain

{alfonso.delavega,diego.garcia,marta.zorrilla,p.sanchez}@unican.es

Abstract. Nowadays, most companies and organizations rely on com-
puter systems to run their work processes. Therefore, the analysis of
how these systems are used can be an important source of information
to improve these work processes. In the era of Big Data, this is perfectly
feasible with current state-of-art data analysis tools. Nevertheless, these
data analysis tools cannot be used by general users, as they require a deep
and sound knowledge of the algorithms and techniques they implement.
In other areas of computer science, domain-specific languages have been
created to abstract users from low level details of complex technologies.
Therefore, we believe the same solution could be applied for data analysis
tools. This article explores this hypothesis by creating a Domain-Specific
Language (DSL) for the educational domain.

Keywords: Domain-specific languages · Big data · Educational data
mining

1 Introduction

Nowadays, most work processes in companies and organizations are supported
by software systems. Thus, the way in which people interact with these systems
reflects somehow how these processes are actually executed. Therefore, a careful
analysis of this interaction can help to find out flaws of these processes that
might be removed [4].

For instance, let us suppose a company which wants to reduce the number
of products that are returned after having been shipped. In this scenario, the
company managers might be interested in getting answers for questions such as:
“What features share those products that are returned by customers?”; or “What
is the profile of the unsatisfied customers?”. Decision makers need to know these
answers before adopting corrective actions.

Currently, it is feasible to perform this data analysis by using Big Data
technologies [3]. For instance, the profiles of the unsatisfied customers can be
computed using clustering techniques [8]. These techniques require a sound
knowledge of the algorithms and mathematical foundations they use. Never-
theless, average decisions makers do not have this knowledge.

For example, to execute a clustering, the user should know how a cluster-
ing algorithm like K-means [1] works, how its parameters must be configured,
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 79–90, 2015.
DOI: 10.1007/978-3-319-27653-3 8

80 A. de la Vega et al.

or what are the advantages of K-means as compared to other clustering algo-
rithms, such as X-means [13]. Since decision makers lack of this knowledge, they
need to rely on third-parties to carry out these data analysis processes, which
leads to a costs increment and a productivity reduction.

In other areas of software development, Domain Specific Languages (DSLs)
[9,18] have been created in order to allow users without expertise in a certain tech-
nology to use it. This is achieved by abstracting low level details of the underlying
technology and by using a syntax and a terminology familiar to the end-user.

Therefore, we propose to build DSLs for data analysis. These DSLs would
allow decision makers to formulate queries about the performance of a business
process using a syntax and terminology familiar to them. Then, these queries
would be automatically transformed into invocations of specific algorithms for
data analysis. The DSL syntax should hide all the details associated with data
analysis techniques to the end-user, who might remain unaware of how these
techniques are used.

This article explores the feasibility of this idea by showing how a DSL with
these characteristics can be developed for the e-learning domain. The objective
of this DSL is to analyze the performance of a course hosted on an e-learning
platform, such as Moodle, by using data, like the students’ activity, gathered via
this kind of platform. The final users of the DSL will be teachers and instructors,
so it must use a syntax and a terminology familiar to them. Similar DSLs might
be created for other domains following the process described in this article.

For the development of the DSL, we will make use of modern model-driven
engineering techniques. More specifically, we will follow the development process
proposed by Kleppe [9].

After this introduction, this article is structured as follows: Sect. 2 describes
the domain our DSL targets. Section 3 comments on related work. Sections 4
and 5 explain how a DSL for the educational domain has been developed. Finally,
Sect. 6 discusses the benefits of this work and concludes this article.

2 Educational Data Mining

The first step to develop a DSL, according to [12], is to know for what purpose
the DSL will be used and obtain a sound knowledge of the domain it will target.
In our case, this domain will be the educational domain, and we are mainly
interested in knowing for what kind of questions decision makers would like
to get an answer. Moreover, we are also interested in discovering what data is
available to compute these answers. The domain information has been obtained
using our own experience in the educational data mining domain as well as
the assistance of several external teachers and instructors. In the following, the
Educational Data Mining domain is described briefly.

Data Mining is the process of discovering interesting patterns and knowledge
from large amounts of data [8]. In the last few years, it has been applied to the
educational domain, what is known as Educational Data Mining (EDM) [17].
Educational Data Mining aims to take advantage of the data gathered by e-
learning platforms, such as BlackBoard [16] or Moodle [15], which store data

Towards a DSL for Educational Data Mining 81

related to the activity carried out by the students of their courses. Educational
Data Mining is defined as “an emerging discipline, concerned with developing
methods for exploring the unique types of data that come from educational set-
tings, and using those methods to better understand students, and the settings
which they learn in.” [17]. The discovered information could be useful for teach-
ers and instructors in order to improve the performance of their teaching-learning
processes.

For instance, at the beginning of a course, a teacher might be interested in
what kind of students’ profiles exist. Based on the obtained information, the
teacher might adapt the course before it starts in order to tune it for these
students. Thus, at the beginning of the course, the teacher could ask: “What
are the profiles of my students?”. This information can be computed by using
clustering techniques [8] on the students’ demographic and activity data.

When the course finishes, teachers are usually worried about the students
that have not passed the course. Therefore, they would like to refine the previous
question and ask: “What are the profiles of the students who have not passed?”.
As before, this information can be computed using clustering techniques on the
students’ data, but removing those students that have passed from this dataset.
Moreover, teachers are obviously interested in asking “What are the reasons why
my students failed?”. This might be partially answered by applying classification
techniques [8] on the students’ data, by analysing the student activity logs to
find out these reasons.

Obviously, most teachers know nothing about clustering and classification
rules, so they cannot use these techniques directly by themselves. This is the
reason behind the aim of hiding these details to the end-user.

Next section analyses whether this objective can be achieved using current
state-of-art techniques.

3 Related Work

To the best of our knowledge, there is little work done about how to make data
analysis techniques more usable by decision makers. The approaches which tackle
this issue can be grouped in two sets.

The first group aims to assist decision makers in the process of defining a
data analysis process. For instance, [5] defines a method where end-users are
prompted with different questions, which guide them in the definition of a data
mining process that fits in with their needs.

For example, a question could be if the decision maker is interested in com-
puting the profiles of a certain dataset. If so, the user is asked for more detailed
information that is required to execute this task. Some of these questions might
result confusing. As an example, the user should be able to answer about how a
certain data is represented, if as a string label or as a numerical value. An aver-
age decision maker might not know these technical details. Moreover, answering
these questions can be a large and tedious process, which could lead to build
wrong mining models or to stop using the tool.

82 A. de la Vega et al.

In [2], a query-by-example based language is defined. In basic query-by-
example, the decision maker constructs a prototype of an answer for the ques-
tion he or she would like to ask. This prototype is a table, where each column
represents an attribute of the desired answer. These columns can be constrained
to certain values, which are used to select the desired results. The system depicted
in [2] enhances this table with specific columns to execute data mining processes.
Again, the information we need to supply in these columns requires some knowl-
edge of the underlying data analysis technique to be applied, so the user is not
completely unaware of these techniques. Moreover, the construction of these pro-
totypes is based on data warehouse concepts, such as OLAP (On-Line Analytical
Processing) [20]. Average decision makers also often lack of this kind of knowledge.

In the second group, there are software applications with prebuilt data min-
ing processes which can be directly executed by decision makers. An example
of this strategy is E-learning Web-Miner (ElWM) [21]. ElWM is a web-based
application whose objective is to allow instructors to analyse the performance
of a course hosted in an e-learning platform. At the time of writing this article,
ElWM offers instructors answers to three different queries: (1) what kinds of
resources are frequently used together (e.g., forum, mail) in each learning ses-
sion; (2) what are the profiles of the different sessions carried out by students;
and (3) what are the profiles of the students enrolled in a course.

In this case, the main limitation is that the set of queries is fixed and they
cannot be refined without modifying the application. For instance, if we wanted
to compute the profiles of assignments which students have failed; or the profiles
of students that do not pass the course, we would need to update the application
to allow this more specific filtering.

By developing DSLs for data analysis, we expect to overcome these shortcom-
ings. Next sections describe how this task is accomplished for the educational
domain.

4 Grammar Specification

As previously commented, we will follow the process proposed by Kleppe [9] for
the development of the DSL. According to this process, the first step to imple-
ment a DSL, once the knowledge about the target domain has been collected, is
to specify its grammar. Next subsections describe how this step is accomplished.

The definition of a grammar for a DSL, following a model-driven perspective,
implies the definition of an abstract syntax and a concrete syntax. The abstract
syntax specifies the grammar of a language independently of how this model is
represented. The concrete syntax is a specific rendering, either textual or visual,
for the abstract syntax. We describe both elements below.

4.1 Abstract Syntax

Abstract syntaxes are usually specified by using metamodels [11]. A metamodel
can be considered as a model of the syntax of a language. For the construction of

Towards a DSL for Educational Data Mining 83

Fig. 1. Abstract syntax of our DSL

this metamodel, we have used Ecore [19], which is the de-facto standard language
for metamodeling. Figure 1 shows the metamodel for our DSL syntax.

According to this metamodel, our language allows us to write queries. AQuery
has a QueryClause. In the figure, two query clauses are depicted: ShowProfile and
FindReasonsFor. A query clause can be viewed as a command that hides a data
mining technique. Moreover, each query has an associated DataSet, which must
be available in a well-defined location.

Moreover, a data source can have an associated filter. A filter is a boolean
expression that selects the subset of instances of a data source which satisfies
such expression. The abstract syntax for boolean expressions are not shown in
this article for the sake of simplicity and brevity, as this syntax is probably
known by the reader.

Filters are used to apply a query clause to a specific subset of a data source.
For instance, an instructor might be interested in selecting students that: (1) do
not pass a course; (2) drop out; or (3) are above or below a certain age, among
other options. Obviously, these filters must be written using the attributes of
the data source. For instance, if students’ age is not stored in the database, it
could not be used in a filter.

In the case of the FindReasonsFor clause, an additional condition is required
because the goal of this query is to compute the reason why certain instances of
the data source satisfy a certain condition. As before, this condition is a boolean
expression.

After developing the abstract syntax of our DSL, the next step is to specify
its concrete syntax, which is described in the following subsection.

4.2 Concrete Syntax

We have opted for developing a textual syntax for our DSL. However, this issue
needs to be further investigated, as some decision makers might prefer a graphical
notation.

84 A. de la Vega et al.

Fig. 2. Textual concrete syntax for our DSL

For the definition of the textual concrete syntax, we have used Xtext [6],
which allows DSL developers to define a textual syntax from a Ecore meta-
model. Using Xtext, a grammar is defined following a notation similar to EBNF
(Extended Backus–Naur Form), but where the production rules are enhanced
with constructions to create instances of metaclasses from the metamodel as the
grammar is parsed.

Figure 2 shows the concrete syntax for our DSL. Lines 00–03 specify: (1) the
namespace and name for the grammar; (2) include a convenience package called
Terminals, provided by Xtext ; and, (3) specifies that the grammar will be based
on the Ecore and the EdDataMiningMetamodel metamodel, which corresponds
to the abstract syntax depicted in Fig. 1.

Then, Lines 04–05 specify Query as the entry point of our grammar. A Query
is composed of a QueryClause, followed by the of keyword and the specification
of a Dataset. Both lines are equivalent to the EBNF rule Query :: = QueryClause
“of” DataSet.

Moreover, in Line 04, the return Query clause specifies that an instance of
the Query metaclass (see Fig. 1) must be created when this production rule is
executed. Furthermore, the results of executing the DataSet and QueryClause
production rules must be assigned to the queryClause and dataSet attributes of
the Query metaclass, respectively.

Similarly, a QueryClause can be either a ShowProfile or a FindReasonsFor
(Lines 06–07) clause. In the first case, the query clause is simply written using
the show profile keyword (Lines 08–09). In the second case, after the keyword
find reasons for, a boolean expression that serves as condition for evaluating the
query is required (Lines 10–11).

Towards a DSL for Educational Data Mining 85

Fig. 3. Queries written using the DSL

Finally, a Dataset is simply represented by an identifier plus an optional filter
definition (Lines 12–13). This identifier must correspond to an available dataset.
This constraint is checked by means of external rules.

Once the grammar has been specified, a full editor for our grammar, with
syntax colouring, helpers and automatic formatting, as well as parsing, type-
checking and validation capabilities can be automatically generated by Xtext.
Using this editor, queries as shown in Fig. 3 can be written.

Thus, instructors can now write queries to analyse course performance by
using a terminology that is familiar to them. The next step is to provide exe-
cution capabilities to these queries, which is achieved by translating them into
Java code.

5 Query Execution

To compute the result of a query, data mining techniques are used. For instance,
to identify profiles in a dataset, clustering techniques must be chosen. Therefore,
the strategy to execute a query is to transform it into a Java code snippet which
invokes a prebuilt implementation of the corresponding data mining algorithm.
In our case, these prebuilt implementations are provided by Weka [7], a widely
used data mining tool suite.

It should be taken into account that most data mining algorithms require
the specification of a set of input parameters, which are necessary for tuning the
algorithm. For instance, most clustering techniques require the specification of
the number of clusters to be built. Obviously, if the ultimate goal of the DSL
is to abstract the end user from data mining techniques, it cannot be expected
that the end-user provides the values for these parameters.

Therefore, these parameters have to be self-computed. Currently, there is a
research area inside the data mining field, known as parameter-less data mining,
that aims to build self-configuring data-mining algorithms. Thus, these tech-
niques will be used whenever possible.

To illustrate how this code generation process works, we describe how the
Show Profile queries are transformed into Java code. The query show profile of
Students with courseOutcome=fail; will be used as an example.

The code generation process has been implemented using templates. More
specifically, we have used EGL (Epsilon Generation Language) [10], which is a
language that allows code generation from Ecore-based models.

86 A. de la Vega et al.

Fig. 4. General clustering template

Fig. 5. Filter for equality comparisons

As a first step, a template is selected based on the query clause. A fragment of
the template applied for the Show Profile queries can be seen in Fig. 4, whereas
the code generated by this template for our example query is shown in Fig. 6.
The code generation process based on this template works as follows:

1. First, the dataset to be analysed is loaded, using the corresponding Weka
helper classes. In this case, Lines 00–01 of Fig. 4 are in charge of generating
Lines 04–05 of Fig. 6. The name of the dataset is obtained from the attribute
name of the Dataset metaclass (Fig. 4, Line 00). As previously indicated, the
parser must have checked that a dataset with that name exists.

2. In case the dataset has an associated filter, the code to perform this filter-
ing must be generated. Consequently, the boolean expression which defines
the filter must be transformed into the corresponding Weka code to filter a
dataset according to the values of certain attributes. Figure 4, Lines 03–08

Towards a DSL for Educational Data Mining 87

Fig. 6. Code generated after processing the example query

show the template code which processes the constraints of the boolean expres-
sion and converts them to Java code. For each constraint, the toFilter method
is invoked. The implementation of this method is different for each kind of
constraint. In our example, an equality comparison is used to filter those
students whose courseOutcome is fail. Therefore, the toFilter method corre-
sponding to equality comparisons is invoked. The code generation template
corresponding to this operation is shown in Fig. 5. This template makes use
of the existent Weka filter RemoveWithValues to achieve this goal. Figure 6,
Lines 07–14 show the resulting code for our concrete example.

3. Then, the code for executing the clustering algorithm on the loaded dataset is
generated (Fig. 4, Lines 09–12, Fig. 6, Lines 15–18). In our case, the X-means
algorithm [13] is selected to perform the clustering. The advantage of this
algorithm is that it can estimate the number of clusters that should be created
for a particular dataset. X-means only requires that this number is bound to
a certain range. Therefore, if the lower and upper bounds of this range are
set to proper values, the X-means algorithm can be used as a self-configuring
algorithm. Since teachers expect to find at least two different students groups,
2 is a reasonable lower bound in this case. For a normal course, 20 is a number
of clusters high enough to be considered as infinite, thus it is a reasonable
upper bound for our algorithm. Therefore, the responsibility of determining

88 A. de la Vega et al.

the number of clusters to be created is delegated into the X-means algorithm,
which automatically calculates it.

4. Finally, Fig. 6, Line 13 shows how the result of the X-means algorithm is
placed in an output file, which is read by a visualization tool in order to
adequately render the results in a user-friendly way.

The code generation process for the FindReasonsFor queries would be sim-
ilar, but in this case, a classification algorithm would be invoked, precisely, the
J48 implementation provided by Weka of the C4.5 decision tree algorithm [14].
Therefore, a different EGL template would be used in this case.

With this last step, the development of our DSL for Educational Data Mining
is finished. DSLs for applying data mining techniques in other domains might be
developed following a similar process. Several excerpts of the DSL are agnostic
of the target domain, thus they could be reused and, consequently, a remarkable
reduction in the cost and development effort of a new DSL could be achieved.

Next section discusses whether this DSL satisfies the objectives of this work
and concludes this article.

6 Conclusions

This article has shown how a Domain-Specific Language for Educational Data
Mining can be developed. This DSL allows teacher and instructors of courses
hosted in e-learning platforms to analyse the performance of their teaching-
learning processes by means of applying data mining techniques on the data
contained in such a platform. The DSL approach provides two benefits as com-
pared to current state-of-art techniques.

First, the DSL abstracts low level-details of data analysis techniques, so it
can be used by instructors without any knowledge of these techniques. Thus,
our approach offers a solution to bridge the gap between data analysis tools
and decision makers. The DSL syntax only contains high-level keywords and
references to entities and attributes of the target domain data model. Thus, the
DSL contains a terminology that should be known by the decision makers, who
would be instructors and teachers in the case of the educational domain.

Secondly, the DSL is flexible enough to support the elaboration of arbitrary
complex new queries. This is an advantage as compared to approaches that
develop tools able to compute concrete tasks. ElWM [21] is an example of such
a tool. As commented in Sect. 3, using ElWM students’ profiles of a course
can be computed. However, the profiles of students above a certain age cannot
be computed without modifying the application. Similarly, we cannot calculate
profiles of other entities, such as assignments, without updating the tool. This
is, each time we want to modify a query, the application must be updated to
support it.

Oppositely, the DSL offers a more flexible interaction. There exists limi-
tations, as decision makers cannot ask any arbitrary question and they must
adhere to the available query clauses. Thus, the included set of clauses should

Towards a DSL for Educational Data Mining 89

cover the potential questions decision makers are interested in asking. Moreover,
the queries must be written following the syntactic rules of the grammar, as the
necessity to parse them with a computer prevents the usage of most informal
natural language expressions.

As future work, we expect to add more query options to the DSL for the
educational domain, as well as to develop DSLs for other domains. More specifi-
cally, we are interested in developing DSLs for the performance analysis of work
processes in the public administration.

Acknowledgements. This work has been partially funded by the Government of
Cantabria (Spain) under the doctoral studentship program from the University of
Cantabria, and the Spanish Government and FEDER funder under grant TIN2011-
28567-C03-02 (HI-PARTES).

References

1. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1027–1035, New Orleans (Louisiana, USA), January 2007

2. Azevedo, A., Santos, M.: Binding data mining to final business users of business
intelligence systems. In: 1st International Conference on Intelligent Systems and
Applications (Intelli), pp. 7–12, April–May 2012

3. Baesens, B.: Analytics in a Big Data World: The Essential Guide to Data Science
and Its Application. Wiley, New York (2014)

4. Bughin, J., Chui, M., Manyika, J.: Clouds, big data and smart assets: ten tech-
enabled business trendsto watch. McKinsey Q. 56, 1–14 (2010)

5. Espinosa, R., Garćıa-Saiz, D., Zorrilla, M., Zubcoff, J.J., Mazón, J.-N.: Enabling
non-expert users to apply data mining for bridging the big data divide. In:
Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) SIMPDA 2013. LNBIP, vol.
203, pp. 65–86. Springer, Heidelberg (2015)

6. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Companion to the 25th Annual Conference on Object-Oriented
Programming, Systems, Languages, and Applications (SPLASH/OOPSLA), pp.
307–309, Reno/Tahoe (Nevada, USA), October 2010

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

8. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann, USA (2005)
9. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages

using Metamodels. Addison-Wesley Professional, Reading (2008)
10. Kolovos, D.S., Paige, R.F., Rose, L.M., Williams, J.: Integrated model manage-

ment with epsilon. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.)
ECMFA 2011. LNCS, vol. 6698, pp. 391–392. Springer, Heidelberg (2011)

11. Kühne, T.: Matters of (meta-)modeling. Softw. Syst. Model. 5(4), 369–385 (2006)
12. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific

languages. ACM Comput. Surv. 37(4), 316–344 (2005)
13. Pelleg, D., Moore, A.: X-means: extending K-means with efficient estimation of

the number of clusters. In: Proceedings of the 17th International Conference on
Machine Learning, pp. 727–734. Morgan Kaufmann (2000)

90 A. de la Vega et al.

14. Quinla, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco (1993)

15. Rice, W.: Moodle E-Learning Course Development. Packt Publishing, Birmingham
(2006)

16. Rice, W.: Blackboard Essentials for Teachers. Packt Publishing, Birmingham
(2012)

17. Romero, C., Ventura, S.: Data mining in education. Wiley Interdisc. Rev.: Data
Mining Knowl. Discov. 3(1), 12–27 (2013)

18. Sierra, J.L.: Language-driven software development (invited talk). In: Pereira,
M.J.V., Leal, J.P., Simões, A. (eds.) 3rd Symposium on Languages, Applications
and Technologies. OpenAccess Series in Informatics (OASIcs), vol. 38, pp. 3–12
(2014)

19. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, vol. 2. Addison-Wesley Professional, Reading (2008)

20. Wrembel, R., Koncilia, C.: Data Warehouses and Olap: Concepts, Architectures
and Solutions. IRM Press, London (2006)

21. Zorrilla, M., Garćıa-Saiz, D.: A service-oriented architecture to provide data mining
services for non-expert data miners. Decis. Support Syst. 55(1), 399–411 (2013)

WSDLUD: A Metric to Measure
the Understanding Degree of WSDL

Descriptions

Mario Marcelo Berón1(B), Hernán Bernardis1, Enrique Alfredo Miranda1,
Daniel Edgardo Riesco1, Maria João Varanda Pereira2,

and Pedro Rangel Henriques3

1 Department of Computer Science,
Universidad Nacional de San Luis, San Luis, Argentina
{mberon,hbernardis,eamiranda,driesco}@unsl.edu.ar

2 Centro Algoritmi, Universidade do Minho,
Instituto Politécnico de Bragança, Bragança, Portugal

mjoao@ipb.pt
3 Department of Computer Science/Centro Algoritmi,

University of Minho, Campus de Gualtar, Braga, Portugal
prh@di.uminho.pt

Abstract. In this article, WSDL Understanding Degree (WSDLUD)
a metric aimed at measuring a priori the understandability of WSDL
(Web Services Description Language) descriptions is presented. In order
to compute WSDLUD, all the static information available in a WSDL
description is collected. This information is submitted to an evaluation
process based on a method named LSP (Logic Scoring of Preference).
This evaluation process outputs a Global Preference value that indicates
the satisfaction level of the WSDL description regarding the evaluation
focus, in this case, the understanding degree.

Keywords: WSDL · Web services comprehension · LSP

1 Introduction

Nowadays the Web Services (WS) are fundamental software artifacts for build-
ing service oriented applications. According to World Wide Web Consortium
(W3C, for details see http://www.w3.org/), a WS is: a software application
identified by a URI, whose interfaces and bindings are capable of being defined,
described, and discovered as XML artifacts. A WS supports direct interactions
with other software agents using XML-based messages exchanged via Internet-
based protocols. The organizations, increasingly, produce web services which are
used by other organizations to produce new software systems aimed at solving
business demands. Web services have associated a description which specifies
the data types used, the operations provided, inputs and output, the technology
used to accomplish the communications between other high level and low level
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 91–100, 2015.
DOI: 10.1007/978-3-319-27653-3 9

http://www.w3.org/

92 M.M. Berón et al.

of software elements. These descriptions are published in the internet and the
organizations can retrieve them and decide if some of those services are useful
for building the software they need [12]. Web Services are software packages and
therefore they must be comprehend for maintenance tasks (bug fixing, adapta-
tion, evolution, etc.). The primary information source to accomplish this task is
the respective WSDL (Web Service Description Language, http://www.w3.org/
TR/wsdl20/) description. Although, there are several resources from which it is
possible to collect information about the Web Service, the WSDL description
is the first that the user employs for analysing its usefulness for his purposes.
Furthermore, the web service descriptions are interesting because they provide
a high level abstraction data which can be very useful to simplify the under-
standing of the web services. As said above, a standard language used to write
web service descriptions is WSDL. This language is a dialect of XML with well
defined rules to specify each component. Being a XML based language it is fas-
tidious to read such a description, and therefore a tool is needed to assist the
software engineer in this task. In this context, many tools can be found that
are oriented to facilitate the inspection of WSDL descriptions, transform to a
different WSDL version, compute several metrics, produce user-friendly visual-
izations, etc. However, at the best of our knowledge, only a few are oriented to
help their understanding. Taking this into consideration, in this article WSD-
LUD (Web Service Understanding Degree) is presented. WSDLUD is a met-
ric aimed at providing, a priori, a measurement about the WSDL description
understanding complexity. For calculating WSDLUD, Logic Scoring of Prefer-
ence Method (LSP) [7,14] is used. LSP is a multi-criteria evaluation method;
it requires a Criteria Tree, an Aggregation Structure and a set of Elementary
Criteria Functions to be defined. Combining systematically such elements, this
method produces a satisfaction level that indicates, in this case, the under-
standing degree of a WSDL description. In order to apply LSP and compute
WSDLUD, the WSDL description must be statically analysed and all the infor-
mation available must be retrieved. This information is submitted to different
evaluation procedures in order to obtain satisfaction values (values in [0,1] or
[0,100]). To perform these processes, the use of both compilation and natural
language processing techniques are required. The first is used to retrieve formal
elements from WSDL source code. The second is employed to gather semantic
information from unstructured information sources.

The article is organized as follow. Section 2 describes the work tightly related
with the research topics here presented. Section 3 defines the WSDLUD evaluation
structures. Section 4 presents the case studies where it is possible to observe the
results obtained through the application of WSDLUD to some test cases available
in W3C. Section 5 closes the paper with some conclusions and future work.

2 Related Work

The WSDL description analysis is based on static and behavioral information.
The traditional approaches are oriented to compute metrics to compare and
evaluate a set of program parameters [2,13,15].

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/

A Metric to Measure the Understanding Degree of WSDL Descriptions 93

Considering static information, authors [13] have defined metrics for organi-
zation security. In this context, the authors affirm that the easier to understand
a WSDL description the easier will be to carry out fraudulent actions against
the organization. On account of that, the authors compute the understanding
level of WSDL description and if it is high they define approaches to diminish
its readability.

The second, based on behavioral information, is concerned with measuring
the WSDL description considering the complexity of the operations and messages
involved. The more complex the operations and messages are, the more complex
will be to understand the WSDL description [9].

It is also possible to find works that use ad-hoc approaches. They are based
on traditional object oriented metrics to measure quality attributes of WSDL
descriptions [5,6].

WSDLUD metric, defined in this article, is different from those found in the
literature in several aspects. First, all formal elements of the WSDL description
(types, port types, bindings, services) are considered and for each one of them
the understanding degree is measured.

Second, the WSDL description’s understandability can be simplified if the
informal information (those provided by the identifiers and documentation) gives
useful semantic information about the description’s domain. For this reason,
several metrics to measure the quality of the identifiers and documentation of
the description, are defined and calculated.

Third, the value of our metric is produced by the combination of other metrics
(those mentioned before) which consider both formal and informal information.
We used these metrics to measure WSDL descriptions and obtain a final value
for each of them. This final value is computed by using a multi criteria method.
This method is parameterizable allowing to reflect the engineer experience in
the evaluation mechanism. Finally, as a side effect, the process used to compute
WSDLUD can also be used for: (i) To provide a ranking of WSDL descrip-
tions understandability, (ii) To build visualizations based in charts, and allow
to analyse the results and to discover the possibilities to improve the WSDL
description understanding.

To finish this section, it is important to notice that, at best of our knowl-
edge, a metric with the characteristics mentioned above was not described in the
literature. So, we believe that the work here reported is a valid contribution for
the comprehension of WSDL specifications.

3 WSDLUD

In this section, all the concepts and processes involved in the definition and
measurement of WSDLUD are described in detail.

3.1 WSDL Description Criteria Tree

The criteria tree of a WSDL description (these characteristics were extracted
from a WSDL specification provided by W3C.) is composed by the following

94 M.M. Berón et al.

characteristics: (i) Type Understanding Degree, (ii) Message Understanding
Degree, (iii) Port Type Understanding Degree, (iv) Binding Understanding
Degree and (v) Service Understanding Degree. Each characteristic has an asso-
ciated sub criteria tree which takes into consideration the proper properties of
the evaluated element.

In the next paragraphs the characteristics mentioned above will be developed,
for each of them, the Criteria Tree will be explained.

Type Understanding Degree. This characteristic is composed by the follow-
ing attributes: Number of Primitive Types, Number of Complex Types, Documen-
tation Quality, Type Name Quality and Number of Fields. Clearly, a primitive
type (a primitive type is a type provided by the language), for example: text,
integer, real, boolean, etc. will be easier to understand than a complex type (a
complex type is a type defined by the user). A primitive type can be deduced from
its identifier and the explanations provided by the language manual. A complex
type is more difficult of perceiving because it is composed by several identifiers,
which are susceptible to do many analysis and the explanations exposed in the
language manual are not enough. In this context, if the documentation provided
is bad or null, the comprehension will be even more difficult.

Message Understanding Degree. This characteristic can be evaluated tak-
ing into consideration the following attributes: Message Documentation Quality,
Message Name Quality and Part Understanding Degree. Concerning the first
two elements, it is possible to say that they will provide relevant information
when some semantic information can be extracted. For that the following com-
ponents are considered: name, element name and type. The sub-characteristic
named Part Understanding Degree which can be divided in Part Name Quality,
Part Element Name Quality and Part Type Understanding Degree attributes.
All these attributes must also be considered when the message understandabil-
ity needs to be measured.

Port Type Understanding Degree. This characteristic has the following
attributes: Port Type Name Quality, Port Type Documentation Quality and Port
Operation Understanding Degree.

The first two are important because they provide semantic information when
they are well defined. Semantic information can also be extracted from Port
Operation Understanding Degree measuring the Port Type Operation Under-
standing Degree.

The definition of this characteristic follows the same approach that mes-
sage part, in other words to each simple operation element we consider some
attributes like name, documentation, parameters, etc. (more details about the
disaggregation of this sub-characteristic can be found in [3]).

A Metric to Measure the Understanding Degree of WSDL Descriptions 95

Binding Understanding Degree. This characteristic is composed by the fol-
lowing attributes: Binding Name Quality, Binding Documentation Quality, Bind-
ing Type Understanding Degree and Binding Operation Understanding Degree.

Once more the name quality and the documentation quality are important
characteristics to measure using the attributes: Binding Name Quality and Bind-
ing Documentation Quality. The other two attributes are already defined in
others characteristics. Binding Type Understanding Degree is defined in Type
Understanding Degree and Binding Operation Understanding Degree is defined
in Port Type Understanding Degree. For this reason, during evaluation process
we re-use the values obtained in previous computation.

Service Understanding Degree. A service is made available by a WSDL
description. A service has a name and documentation and it is composed by
ports. For analyzing the Service Understanding Degree it is necessary to mea-
sure Service Name Quality, Service Documentation Quality and Service Port
Understanding Degree in a Service context.

3.2 Aggregation Structure

As LSP method states [14], the satisfaction values that result from the appli-
cation of the Elementary Criteria Functions to the measurable attributes, must
be aggregated in order to obtain the Global Preference. This Global Preference
represents the satisfaction of the object under evaluation. As could be seen in
Subsect. 3.1, we propose a Criteria Tree for each WSDL element (type, message,
port, etc.). For each of these Criteria Trees, we developed a specific Aggregation
Structure. To illustrate the approach and to save space, in Fig. 1 we only show
the Aggregation Structure for the characteristic Message Understanding Degree.

We used a partial absorption LSP function (compound by operator A (arith-
metic mean) and SQU (square mean) — all the LSP operators are better explained
in [8]) to aggregate Message Documentation Quality and Message Name Quality.
This kind of asymentric compound operators are used when some input values
could be zero (non-mandatory input). It is necessary because in many cases, mes-
sages do not have a good documentation (sometimes do not have at all). A medium
conjunctive operator (CA) is used to compute the Message Understanding Degree
Global Preference. This kind of operator is employed when the input requirements
are mandatory. Thus if one of the input values is zero, the operation result will be
zero. The weights are used to express the relative importance of input preference.
As message documentation and name provides more significant semantic informa-
tion, its weight is 70 %, as opposed to Part Understanding Degree which provides
less semantic information (its weight is 30 %).

3.3 Information Extraction Techniques and Elementary Criteria
Functions

The information extraction techniques and the Elementary Criteria Functions
are the most important features for the evaluation process that will be described.

96 M.M. Berón et al.

Message Documentation Quality

Message Name Quality

Part Understanding degree

70

30

60

40
A

70

30

SQU

CA

Fig. 1. Message understanding degree Aggregation Structure.

The former allows to obtain the information and perform all the analysis to
get each attribute value for the Criteria Tree. The latter maps each of these
in a satisfaction level, i.e., a value in the interval [0,1] (or [0,100]). This value
represents the satisfaction degree of the attribute for the object under evaluation
according to the sensibility and experience of the authors.

Information Extraction Techniques. The approach used to extract infor-
mation from a WSDL description combines compilation techniques, natural lan-
guage processing algorithms and strategies to compute indicators [4]. The first
are implemented using DOM (Domain Object Model) a parser for XML lan-
guage which explicitly builds an internal representation of the analysed XML
source code. Several traversals are applied through this internal representation
for gathering the desired information. The identifiers and the documentation are
extracted by using compilation techniques. In order to retrieve semantic infor-
mation IdA (Identifier Analysis) [1] is used. IdA is a tool aimed at applying
algorithms to divide, expand and find a meaning for the identifiers of a pro-
gram. Finally, with the goal to provide a measure about of the understanding
degree of a WSDL description, NESSy [11] was used. NESSy is a tool to evaluate
software based on LSP method.

For attributes like Type Name Quality (see in Algorithm 1 the computation
process of the satisfaction level of Type Name Quality Criterion), Message Name
Quality or Binding Name Quality we use identifier analysis techniques.

The purpose of this analysis is to discover the relation between the names
and the concepts of the problem domain. The name quality is higher when its
related words are meaningful. The result of the techniques is a percentage which
indicates the satisfaction level for a particular name quality.

For attributes like Type Documentation Quality, Message Documentation
Quality, Binding Documentation Quality, etc., we use documentation analysis
techniques. This kind of attributes has as main goal to measure the usefulness
level of the information provided by the element’s documentation (IdA also is
used to carry out this task). The analysis techniques gathers documentation
and returns a percentage which represents the satisfaction level for the attribute
under study. In first place the documentation is divided by words, then the
irrelevant words are deleted. The next step consists of analysing each word and

A Metric to Measure the Understanding Degree of WSDL Descriptions 97

count those that have a useful meaning. The result is obtained carrying out the
following computation: Number of Word with Mean

Number of Words .

Algorithm 1. Satisfaction Level of Type Name Quality Criterion
input : typeName a string which represents a type name.
output: Satisfaction Level, a percentage that indicates the

satisfaction level of the criterion Type Name
Quality.

Data: wordSet,stopWords a set of words.
Data: pal a string which represent a word extracted from a

type name.
Data: wordsWithMeans an integer variable which counts the

number of words extracted from a type name which have
meaning.

wordSet←division(typeName);
stopWords←extractStopWords(wordSet);
wordSet←wordSet-stopWords;
wordsWithMean←0;
foreach w in wordSet do

pal←expand(w);
if hasMean(pal) then

wordsWithMean←wordsWithMeans + 1;

end
return (wordsWithMeans

|wordSet|);

Elementary Criteria Functions. In this evaluation process, the majority of
Elementary Criterion Function are direct mappings, since most of the attributes
values are computed by extraction techniques. They take as input the strings to
be analysed and return a percentage value that could directly be mapped to a
satisfaction value.

4 Case Study

This section presents the evaluation of five WSDL descriptions using LSP and
the structures defined in Sect. 3 [10]. All descriptions belong to web services
frequently used by information systems:

(i) Google Web APIs (https://code.google.com/p/dic/downloads/detail?
name=GoogleSearch.wsdl), provides operations to do Google searchs,
(ii) Create Queue (Amazon) (http://queue.amazonaws.com/doc/2009-02-01/
QueueService.wsdl), offers a reliable, highly scalable hosted queue for stor-
ing messages as they travel between computers, (iii) Airport (http://www.
webservicex.com/airport.asmx?wsdl), provides useful information of all world
airports (e.g. airport codes, names, countries, countries code, latitude, longi-
tude, etc.) (iv) Global Weather (http://wsf.cdyne.com/WeatherWS/Weather.
asmx?WSDL), gets weather report for all major cities around the world, and

https://code.google.com/p/dic/downloads/detail?name=GoogleSearch.wsdl
https://code.google.com/p/dic/downloads/detail?name=GoogleSearch.wsdl
http://queue.amazonaws.com/doc/2009-02-01/QueueService.wsdl
http://queue.amazonaws.com/doc/2009-02-01/QueueService.wsdl
http://www.webservicex.com/airport.asmx?wsdl
http://www.webservicex.com/airport.asmx?wsdl
http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL
http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL

98 M.M. Berón et al.

(v) OFAC (http://www.webservicex.net/OFACSDN.asmx?WSDL) aids banks
in meeting the requirements of the US Treasury Department’s Office of Foreign
Asset Control (OFAC).

Table 1. Partial and global evaluation of WSDL

High-Level characteristic Google Weather Amazon Airport OFAC

Types U. D 60,2665 71,5131 68,8148 72,2303 40,5846

Messages U. D 69,1173 83,3624 79,753 77,4924 58,8801

Port Types U. D 75,7194 81,4166 82,1289 81,8902 45,3519

Bindings U. D 75,5258 79,3457 82,2505 79,5241 42,755

Services U. D 78,9946 79,6724 89,4138 79,7011 42,0794

Final Scores 71,5594 77,0112 80,1496 78,0884 45,4495

Table 1 shows the global understanding degree for each WSDL description.
Each Global Preference was computed aggregating all the characteristic prefer-
ences with the logical operator CA (this function simulates simultaneity) and
the weight equally distributed among the characteristics (20 % for each one).
The choice of this operator is due to the fact that all WSDL components (type,
message, port type, etc.) must be understandable. If one of these is incompre-
hensible, the whole WSDL will be difficult to understand.

As can be seen in Table 1, almost all WSDL are very similar taking into
account understanding degree, except for OFAC WSDL description. This is
because that description has numerous identifiers with acronyms which decreases
the satisfaction levels.

Weather and Airport define each type using a few primitive and complex
types. Furthermore they specify explicit and unambiguos identifiers. On the
other hand, Google uses a number of primitive and complex types that exceed the
established thresholds. The majority of messages’s parts of Weather WSDL uses
primitive types and this fact rise its Messages Understanding Degree satisfaction
value.

In general, Amazon WSLD presents more documentation than others in dif-
ferent parts, like messages, types, port types and services. This makes this WSDL
the most understandable of the case study.

From another point of view, this set of metrics was proposed to measure
each component individually inside a WSDL. In this sense, we could compare,
for example, all elements of a kind that a WSDL contains (e.g. types, messages or
services), in order to analyze it individually. This is could be useful for maintain-
ability or re-structuring purposes. In this context, we measure three messages
that presents Create Queue (Amazon) WSDL description. In this context, we
measure the quality of three different messages of the Create Queue (Amazon)
WSDL description and the results can be seen in Table 2.

As can be seen, RemovePermissionRequest (RPR) message is the most under-
standable of these three messages and SendMessageResponse (SMR) the worst.
This is basically due to Message Part Understanding Degree satisfaction values.

http://www.webservicex.net/OFACSDN.asmx?WSDL

A Metric to Measure the Understanding Degree of WSDL Descriptions 99

Table 2. Messages individual measurement of Create Queue (Amazon) WSDL descrip-
tion.

Sub-characteristic SendMessage
Response

RemovePermission
Request

DeleteMessage
Response

M. Doc. Quality 0 0 0

M. Name Quality 100 100 100

M. Parts U. D 60,9759 93,6933 73,1726

Final Scores 73,17 83,5379 77,6729

This is a comparative analyse that allows to identify the most critical parts
of the description. If we want to analyse the results individually we would say
that a score less than 50 % represents a candidate description for improvement.

5 Conclusion and Future Work

In this article WSDLUD a metric, to measure the understanding degree of WSDL
description, was defined. In order to compute WSDLUD other metrics were also
specified. These metrics have as main goal to provide an estimation about the
understanding degree of each description part. Each part is associated with an
importance level specified by the engineer. Both values (understanding degree
and importance level) are used by LSP (a multi criteria evaluation method) to
produce a global value which represents the desired WSDL description under-
standing degree.

We believe that our approach is novel because it makes possible to analyse
each part of a particular WSDL description as well as the global understanding
degree. Yet more important, all the engineer’s experience can be included in
the evaluation process in order to get more significant results. All the detailed
information provided by our system can be used to identify the most critical
parts of the description and the chances for quality improvement. In some cases,
the description can be simplified or made more readable. But, in other cases, the
complexity of the description is full dependent on the domain complexity and
there is not chance for improvement.

As future work we intend to:

(i) Improve the Criteria Tree (CT) and Aggregation Structure (AS);
(ii) Extend the work presented in this paper to WSDL 2.0;
(iii) Apply a similar analysis to study business processes specified with BPEL

(Business Process Execution Language).

Acknowledgements. This work has been supported by FCT–Fundação para a
Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.

100 M.M. Berón et al.

References

1. Azcurra, J., Berón, M., Montenjano, G., Farnese, A., Henriques, P., Pereira, M.:
AId: Uma Ferramenta para Análise de Identificadores de Programas Java. In: Con-
greso Nacional de Ingenieŕıa Informática/Sistemas de Información, pp. 880–892,
Noviembre 2014

2. Bernardis, H., Beron, M., Riesco, D., Henriques, P.R.: Extracción de información
y cálculo de métricas en WSDL 1.1 y 2.0. In: Congreso Nacional de Ingenieŕıa
Informática/Sistemas de Información, pp. 963–974, Noviembre 2014

3. Beron, M., Henriques, P.R., Riesco, D., Pereira, M.J.V.: On the Comprehension
of WSBPEL Programs. Technical report, Universidad Nacional de San Luis - Uni-
versidade do Minho (2015)

4. Carvalho, N.R.: An Ontology Toolkit for Problem Domain Concept Loction in Pro-
gram Comprehension. Ph.D. thesis, Escola de Engenaria, Universidade do Minho
(2014)

5. Coscia, L.O., Crasso, M., Mateos, C., Zunino, A.: Estimating Web Service inter-
face quality through conventional object-oriented metrics. CLEI Electron. J. 16(1)
(2013)

6. Coscia, L.O., Mateos, C., Crasso, M., Zunino, A.: Refactoring code-first Web Ser-
vices for early avoiding WSDL anti-patterns: approach and comprehensive assess-
ment. Sci. Comput. Program. 89, 374–407 (2014)

7. Dujmovic, J.: Continuous preference logic for system evaluation. IEEE Trans.
Fuzzy Syst. 15(6), 1082–1099 (2007)

8. Dujmovic, J.: Characteristic forms of generalized conjunction/disjunction. In:
IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008, (IEEE World
Congress on Computational Intelligence), pp. 1075–1080. IEEE (2008)

9. Kumar, R., Indraveni, K., Goel, A.K.: Automation of detection of security vulnera-
bilities in Web Services using dynamic analysis. In: 9th International Conference on
Internet Technology and Secured Transactions (ICITST), pp. 334–336, December
2014

10. Liu, L., Sun, T., Fang, W., Liu, N.: Usability evaluation of the subway train dis-
patching system. In: 2011 International Conference on Information Science and
Technology (ICIST), pp. 1123–1128, March 2011

11. Miranda, E., Berón, M., Montejano, G., Pereira, M.J.V., Henriques, P.R.: NESSy: a
New Evaluator for Software Development Tools. In: 2nd Symposium on Languages,
Applications and Technologies, SLATE 2013, Porto, Portugal, pp. 21–37, 20–21
June 2013

12. Newcomer, E.: Understanding Web Services: XML, WSDL, SOAP, and UDDI.
Addison-Wesley Professional, New York (2002)

13. Sripairojthikoon, P., Senivongse, T.: Concept-based readability measurement and
adjustment for web services descriptions. In: 16th International Conference on
Advanced Communication Technology (ICACT), pp. 378–388, February 2014

14. Su, S., Dujmovic, J., Batory, D.S., Navathe, S.B., Elnicki, R.: A cost-benefit deci-
sion model: analysis, comparison and selection of data management. ACM Trans.
Database Syst. 12(3), 472–520 (1987)

15. Tibermacine, O., Tibermacine, C., Cherif, F.: A Practical Approach to the Mea-
surement of Similarity between WSDL-basedWeb Services. RNTI: Revue des Nou-
velles Technologies de l’Information, Special Issue CAL 2013 (RNTI-L-7): 03–18
(2014)

Combining Processing with Racket

Hugo Correia and António Menezes Leitão(B)

INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Rua Alves Redol 9, Lisboa, Portugal

{hugo.f.correia,antonio.menezes.leitao}@tecnico.ulisboa.pt

Abstract. Processing is a programming language created to teach pro-
gramming in a visual context. Despite its success, Processing remains a
niche language with limited applicability in the architectural field, as no
Computer-Aided Design (CAD) application supports Processing. This
work presents an implementation of Processing for the Racket platform,
that transforms Processing code into semantically equivalent Racket
code. Our Processing implementation is developed as a Racket module
language for interoperability with Racket and other module languages
of Racket’s language ecosystem. Our implementation allows us to take
advantage of Rosetta, a Racket library that provides access to several
CAD back-ends (e.g. AutoCAD, Rhinoceros, SketchUp). As a result,
architects and designers can take advantage of our implementation to
use Processing with their favourite CAD application.

Keywords: Processing · Racket · Compilers · Interoperability

1 Introduction

Processing [1] is a programming language and development environment created
to teach programming in a visual context. The language has grown over the
years, creating a community where users can share their artistic works. Many
examples and educational materials are available to newcomers, reducing their
effort to learn the language. Moreover, Processing offers a wide range of 2D
and 3D drawing primitives, as well as an Integrated Development Environment
(IDE) that provides tools to programmatically create innovative designs.

Nonetheless, Processing is a niche programming language with limited
applicability in the architectural field, as architects depend on traditional heavy-
weight CAD applications (e.g. AutoCAD, Rhinoceros 3D, etc.), that provide
APIs tailored for that specific CAD tool. Unfortunately, no CAD application
allows users to write scripts in Processing. As a result, architects that have learnt
Processing cannot use the language or any of the publicly available examples to
program in the context of their favourite CAD tool. This problem is addressed
in this paper, showing how our solution combines Processing with the Racket
programming language.

Racket [2] is a descendent of Scheme, which encourages developers to tailor
their environment to project-specific needs, offering an ecosystem that allows
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 101–112, 2015.
DOI: 10.1007/978-3-319-27653-3 10

102 H. Correia and A.M. Leitão

the creation of new languages which have direct interoperability with other
Racket libraries. For instance, Rosetta [3] is a Generative Design tool built on
top of Racket, that encompasses Racket’s philosophy of using different languages.
Rosetta allows programmers to generate 2D and 3D geometry in a variety of CAD
applications, namely AutoCAD, Rhinoceros3D, SketchUp, and Revit, using sev-
eral programming languages, such as JavaScript, AutoLISP, Racket, and Python.
Furthermore, Racket offers a pedagogic IDE, DrRacket, which can be adapted
to support new module languages of the Racket ecosystem.

Our solution is to implement a source-to-source compiler that translates
Processing code to semantically equivalent Racket code, enabling architects to
prototype designs using Processing in a CAD tool. Moreover, as Racket encour-
ages developers to use and create different languages within the Racket ecosystem
[4], we have developed an interoperability mechanism to access Racket libraries
and to combine Processing with scripts written in other languages of the Racket
ecosystem, such as Python [5] or Typed Racket [6].

2 Processing

Processing was developed at MIT media labs and was heavily inspired by the
Design by Numbers [7] project. The language was created to teach computer sci-
ence to artists and designers with no previous programming experience. Process-
ing has grown over the years with the support of a large community, which has
written several educational materials, demonstrating how programming can be
used in the visual arts.

Processing can be considered a dialect of the Java programming language,
that significantly simplifies the original language. For instance, in Java, develop-
ers have to implement a large set of steps to develop simple examples, namely
a public class that implements public methods and a static main method.
These constructs bring an initial overhead and verbosity for novice program-
mers, which are cumbersome for beginners that want to quickly try out new
ideas. To solve this problem, Processing allows users to write simple scripts (i.e.
simple sequences of statements) that do not have the verbosity of Java, thus
enabling them to quickly create new designs.

The Processing language introduces the notion of a sketch, which is used
to organize source code. A sketch can operate in one of two distinct modes:
Static or Active. Static mode supports simple Processing scripts, such as simple
statements and expressions. Active mode allows users to implement their sketches
using more advanced features of the language. If a function or method definition
is present, the sketch is considered to be in Active mode. Within each sketch,
Processing users can define two functions to aid their design process: setup
and draw. On one hand, the setup function is called once when the program
starts. In setup the user can define initial environment properties and execute
initialization routines needed to create the design. On the other hand, the draw
function runs after setup and executes the code to draw the design. The control
flow is simple: first setup is executed, setting-up the environment; followed by
draw called in a loop, rendering the sketch until it is stopped by the user.

Combining Processing with Racket 103

Moreover, Processing offers users a set of tools that are specially tailored for
visual artists. For instance, 2D and 3D drawing primitives are made available,
rendering designs in different 2D and 3D rendering environments. Processing also
offers a simple but effective development environment called the PDE (Process-
ing Development Environment), where users can develop their programs using a
tabbed editor with IDE services such as syntax highlighting and automatic code
formatting.

3 Related Work

The following section presents different approaches that influenced our work,
and an analysis of their main features.

3.1 Processing.js

Processing.js [8] is a JavaScript implementation of Processing for the Web that
enables developers to create scripts in Processing or JavaScript. Using Process-
ing.js, developers can use Processing’s approach to design 2D and 3D geometry
in a HTML5 compatible browser. Processing.js uses a custom-purpose JavaScript
parser, that parses both Processing and JavaScript code, translating Processing
code to JavaScript while leaving JavaScript code unmodified. Moreover, Process-
ing.js implements Processing drawing primitives and built-in classes directly
in JavaScript, allowing for greater interoperability between both languages, as
Processing code is seamlessly integrated with JavaScript. To render Processing
scripts in a browser, Processing.js uses the HTML canvas element to provide
2D geometry, and WebGL to implement 3D geometry. Processing.js encourages
users to develop their scripts in Processing’s development environment, and then
render them in a web browser. Additionally, Sketchpad [9] is an alternative online
IDE for Processing.js, where users can create and test their design ideas online
and share them with the community.

3.2 Processing.py and Ruby-Processing

Ruby-Processing [10] and Processing.py [11] produce Processing/Java as target
code. Both Ruby and Python have language implementations for the JVM, allow-
ing them to directly use Processing’s drawing primitives. Processing.py takes
advantage of Jython to translate Python code to Java, while Ruby-Processing
uses JRuby to provide a Ruby wrapper for Processing. Processing.py is fully
integrated within Processing’s development environment as a language mode,
and therefore provides an identical development experience to users. On the
other hand, Ruby-Processing is lacking in this aspect, by not having a custom
IDE. However, Ruby-Processing offers sketch watching (code is automatically
executed when new changes are saved) and live coding, which are functionalities
that are not present in any other implementation.

104 H. Correia and A.M. Leitão

3.3 ProfessorJ

ProfessorJ [12,13] was developed to be a language extension for DrScheme [14].
ProfessorJ implements a traditional compiler pipeline, that starts with lexing
and parsing phases, producing an intermediate representation in Scheme. Sub-
sequently, the translated code is analysed, generating target Scheme code by
using custom defined functions and macro transformations. ProfessorJ imple-
ments several strategies to map Java code to Scheme. For instance, Java classes
are translated into Scheme classes with certain caveats, such as implementing
static methods as Scheme procedures or by changing Scheme’s object creation
to appropriately handle Java constructors. Also, Java has multiple namespaces
while Scheme has a single namespace, hence name mangling techniques were
implemented to correctly support multiple namespaces. Moreover, Java’s built-
in primitive types and some classes are directly implemented in Scheme, while
remaining classes are implemented in Java. Strings, Arrays, and Exceptions are
mapped directly into Scheme forms. Implementing them in Scheme is possible
(with some constraints) due to similarities in both languages which, in turn,
allow for a high level of interoperability. Finally, ProfessorJ is fully integrated
with DrScheme, providing a development environment that offers syntax high-
lighting, syntax checking, and error highlighting for Java code.

4 Compilation Process

Observing all previous implementations, it is clear that an IDE is an impor-
tant feature to have in any implementation of the Processing language (as only
Ruby-Processing is lacking one). Regarding the runtime system, Processing.js
and ProfessorJ implement it in the target language to achieve greater inter-
operability; while, Ruby-Processing and Processing.py take advantage of JVM
language implementations to provide Processing’s runtime.

Finally, we observe that none of the presented approaches offers a solution
that allow us to explore Processing in the context of a CAD environment. Neither
Processing.js, Processing.py, or Ruby-Processing allow designs to be visualized in
a CAD tool. Alternatively, other external Processing libraries could be explored
to connect Processing with CAD applications. For instance, OBJExport [15] is
a Processing library to export coloured meshes from Processing as OBJ or X3D
files. These files can then be imported into some CAD applications. However,
using this approach, we lose the interactivity of programming directly in a CAD
application, as users have to generate and import the OBJ file each time the
Processing script is changed, creating a cumbersome workflow. Moreover, as
shapes are transformed to meshes of triangles and points, there is a considerable
loss of information, as the semantic notion of the shapes is lost.

Our proposed solution was to develop Processing as a new Racket language
module, using Rosetta for Processing’s visual needs, and integrating Processing
with DrRacket’s IDE services. We chose Racket, firstly, because it simplifies the
development of new languages, providing libraries to implement the lexical and
syntactic definitions of the Processing language, as well as offering mechanisms

Combining Processing with Racket 105

to generate semantically equivalent Processing code. Secondly, Racket’s capa-
bilities enable us to easily adapt our Processing implementation to work with
DrRacket (Racket’s educational IDE), providing an IDE to its users. Moreover,
after analysing ProfessorJ, we concluded that many parts of the lexical and syn-
tactical definitions, and type-checking procedures could be adapted, due to the
similarities between Java’s and Processing’s language definitions. Finally, our
implementation allows us to take advantage of Rosetta to augment Processing
with capabilities that make the language suitable for architectural work.

Our Processing implementation follows the traditional compiler pipeline app-
roach (illustrated in Fig. 1), composed by three separated phases, namely pars-
ing, code analysis, and code generation.

4.1 Parsing Phase

The compilation process starts with the parsing phase, which is divided in two
main steps. First, Processing source code is read and transformed into tokens.
Secondly, tokens are given to an LALR parser, building an abstract syntax tree
(AST) of Racket objects which will be analysed in subsequent phases. To imple-
ment the lexer and parser specifications, we used Racket’s parser-tools [16]
library, adapting parts of ProfessorJ’s lexer and grammar specification to fit
Processing’s needs.

4.2 Code Analysis

Following the parsing phase, an analysis of the AST must be made, due to
differences between Processing’s and Racket’s language definitions. For instance,
Processing has static type-checking and different namespaces for methods, fields,
and classes, while Racket is dynamically typed and has a single namespace. As
a result, custom tailored mechanisms were needed to correctly type-check the
AST and support Processing’s scoping rules.

Firstly, the AST is traversed passing scope information to child nodes. When
a new definition is created, be it a function, variable, or class, the newly defined
binding is added to the current node’s scope along with its type information.
Each time a new scope is created in Processing, a new custom scope is created to
represent it, referring to the current scope as its parent. These mechanisms are
needed to implement Processing scoping and type-checking rules. For example,
the information of the return type, arity, and argument types are needed to
type-check a function call.

Fig. 1. Overall compilation pipeline

106 H. Correia and A.M. Leitão

Secondly, the type-checking procedure runs over the AST starting topmost
AST node. As before, it repeatedly calls the type-checker on child nodes until the
full AST is traversed, using previously saved bindings in the current scope to find
out the types of each binding. During the type-checking procedures, each node
is tested for type correctness and, in some cases, promoting types if necessary.
In the event that types do not match, a type error is produced, signalling where
the type error occurred.

4.3 Code Generation

After the AST is fully analysed and type-checked, semantically equivalent Racket
code can be generated. To achieve this, every AST node generates Racket code
by using custom defined macros and functions. Afterwards, Racket will expand
the defined macros and load the generated code into Racket’s VM. By using
macros we can create boilerplate Racket code that can be constantly modified
and tested by the developer

Racket and Processing follow the same evaluation order on their programs,
thus most of Processing’s statements and expressions are directly mapped into
Racket forms. However, other statements such as return, break, or continue
need a different handling, as they use control flow jumps. To implement this
behaviour, we used Racket’s escape continuations [17] in the form of let/ec.

Furthermore, Processing has multiple namespaces, which required an addi-
tional effort to translate bindings to Racket’s single namespace. To support mul-
tiple namespaces in Racket, binding names were mangled with custom tags. For
instance, a fn tag is appended to functions, so function foo internally would be
foo-fn. The use of ’-’ as a separator allows us to solve the problem of name
clashing with user defined bindings, as Processing does not allow ’-’ in names.
Also, as we have function overloading in Processing, we append specific tags that
represent the argument’s types to the function’s name. For instance, the following
function definition: int foo(float x, float y){ ... } would be translated
to (define (foo-FF-fn x y) ...).

To correctly support Processing’s distinctions between Active and Static
mode, we used the following strategy. We added a custom check in the parser
that signals if the code is in Active mode, i.e. if a function or method is defined.
In this mode, global statements are restricted, thus when generating code for
global statements we check if the code is in Active mode, if so we signal an error
indicating the invalid statement.

5 Runtime

Our runtime is implemented directly in Racket, allowing for greater interop-
erability with Racket libraries, namely Rosetta. However, this presents some
important issues. First, as Racket is a dynamically typed language, the type-
checker, at compile time, cannot know the types of Racket bindings. To solve

Combining Processing with Racket 107

this problem, we introduced a new type in the type hierarchy, which the type-
checker ignores when type checking these bindings. Furthermore, as Processing
primitives and built-in classes are implemented in Racket, we also have the prob-
lem of associating type information for these bindings. Therefore, we created a
simple macro that allows us to associate type information to Racket definitions,
by adding them to the global environment, thus the type-checker can correctly
verify if types are compatible.

Moreover, Processing’s drawing paradigm closely resembles OpenGL’s tradi-
tional push & pop matrix style. To provide rendering capabilities in our system,
we use Rosetta, as it provides design abstractions that not only let us gen-
erate designs in an OpenGL render, but also give us access to several CAD
back-ends. Custom interface adjustments are needed to implement Processing’s
drawing primitives in Racket, as not every Processing primitive maps directly
into Rosetta’s. Furthermore, Rosetta also enables us to provide with additional
drawing primitives that are unavailable in the original Processing environment.

6 Interoperability

One of the advantages of developing a source-to-source compiler is the possi-
bility of combining libraries that are written in different languages. The Racket
platform encourages the use and development of different languages to fulfil pro-
grammers’ needs, offering a set of extension mechanisms that can be applied
to many of the language’s features. The combination of Racket’s language mod-
ules [6] and powerful hygienic macro system [18] enables users to extend the base
Racket environment with new syntax and semantics that can be easily composed
with modules written in different dialects.

To achieve interoperability with Racket, we developed Processing’s compila-
tion units as a Racket language module, adding Processing to Racket’s language
set. Nonetheless, compatibility issues between languages arise when accessing
exported bindings from a Racket module. First, a new require keyword was
introduced to specifically import bindings from other modules. This require
maps directly to Racket’s require form, receiving the location of the import-
ing module. By using Racket’s require we have access to all of Racket’s require
semantics, enabling the programmer to select, exclude, or rename imported bind-
ing from the required module.

Furthermore, Racket and Processing have different naming rules. For
instance, function foo-bar! is a valid identifier in Racket but not in Process-
ing, thus we cannot reference the foo-bar! function in our Processing code.
To solve this issue, we use a translation procedure that takes a Racket identi-
fier and transforms it into a valid Processing identifier. For example, foo-bar!
would be translated to fooBarBang. Therefore, for each provided binding of a
required module, we apply the translation procedure on each binding, making
it available to the requiring module. By providing an automatic translation, the
developer’s effort is reduced, as he can quickly use any Racket module with his
Processing code. Notwithstanding, as developers may not be satisfied with our

108 H. Correia and A.M. Leitão

#lang racket

(provide foo-bar)

(define (foo-bar foo)

...)

Fig. 2. The foo-bar module in Racket

#lang processing

require "foo -bar.rkt";

void checkFoo(String s) {

println(fooBar(s));

}

Fig. 3. checkFoo in Processing

automatic translation procedure, they can develop their custom mappings in a
Racket module adhering to Processing identifier’s rules.

Another issue that arises by importing foreign bindings, is making them
accessible to our custom environment and type-checker, as they are needed dur-
ing the code analysis phase. To solve this issue, we dynamically load the required
module, saving exported bindings along with their arity. As Racket is dynami-
cally typed, we use a special type for arguments and return types that the type-
checker skips. As a result, when using bindings with this type, typing errors will
only be observed when these bindings are executed at runtime. To illustrate the
interoperability mechanism consider the foo-bar module Fig. 2, which provides
the foo-bar function, and the Processing code illustrated in Fig. 3.

As illustrated in Fig. 3, the function checkFoo uses the foo-bar procedure
from foo-bar.rkt. Note that our automatic translation procedure has been
applied to provided bindings from the foo-bar.rkt modules. So in checkFoo,
we use the automatically translated fooBar identifier to refer to foo-bar.

To understand how this is accomplished, our require uses a custom macro
that receives the module’s path (i.e. the location of the required module), as well
as a list of pairs that map the original bindings of the module into their man-
gled form. To compute this list, we used Racket’s module->exports primitive to
provide the list of exported bindings. However, this information does not suffice,
as we need to know the arity of each exported binding. This is information is
needed to produce a compatible biding (i.e. a mangled binding) with our gener-
ated code. Therefore, we analysed each exported binding by module->exports,
and retrieved its arity using the procedure-arity primitive. This way we can
correctly perform the translation of external bindings to valid Processing identi-
fiers and generate bindings that work with our code generation process. Lastly,
when generating Racket code, our custom macro expands to Racket’s require
form, making each mangled binding available in the requiring module.

7 Example

Developing a source-to-source compiler has the advantage of allowing us to
explore libraries written in another language. We provide an example of our
implementation, showing how Processing code can take advantage of libraries

Combining Processing with Racket 109

require "fib.rkt"; require "draw.rkt";

void echo(int n, Object pos , float ang , float r) {

if (n == 1) {

fullArc(pos , r, ang , HALF_PI , 20);

} else {

fullArc(pos , r / fib(n), ang , HALF_PI , 20);

echo(n-1, pos , ang , r);

}

}

void mosaics(float l, int size) {

for(int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {

echo(10, xyz(i*l, j*l, 0), 0, l);

echo(10, xyz(i*l+l, j*l, 0), HALF_PI , l);

echo(10, xyz(i*l+l, j*l+l, 0), PI, l);

echo(10, xyz(i*l, j*l+l, 0), 3/2 * PI, l);

}

}

frame(xyz(0,0,0), size * l, 20);

}

Fig. 4. Processing code to generate mosaics

that were previously built for 3D modelling. This is still a work in progress, thus
the compilation results are likely to change.

Consider the Processing code presented in Fig. 4. The mosaics procedure
generates a grid of mosaics given the length of each mosaic and the total size
of the grid. This function uses echo to generate the interior pattern of each
mosaic, progressively generating smaller arcs from each corner of the mosaic.
After generating the interior pattern, the frame generates the full outer boundary
of the grid.

This example illustrates the use of two external Racket libraries. First, we
require the fib.rkt module to use fib to compute the reducing factor of
arches size. This illustrates how we can use simple Racket code with Processing.
Secondly, we require draw.rkt, which allows us to access fullArc and frame.
These functions enable us to generate the arcs and produce the enclosing bound-
ary, showing how we can use previously created Racket drawing libraries with our
Processing implementation. Moreover, observe the use of xyz primitive. Rosetta
provides custom mechanisms to abstract coordinate systems, namely cartesian
(xyz), polar (pol), and cylindrical (cyl) which can be used and combined inter-
changeably. As a result, we made these abstractions (xyz, pol, and cyl) available
in our system, so that users can take advantage of them in their designs. Figure 5
illustrates an execution of the mosaics function in AutoCAD.

Observe the generated Racket code for echo displayed in Fig. 6. The first
point that is immediately visible is that function identifiers are renamed to sup-
port multiple namespaces. We can see that the echo identifier is translated to

110 H. Correia and A.M. Leitão

Fig. 5. Mosaics generated in AutoCAD

echo-IOFF-fn. Theses tags indicate the argument types of the function, where F,
O, and I, represent the types float, Object, and int. Also note that imported
bindings full-arc use the type O for their arguments, enabling the type-checker
to correctly deal with these imported bindings. Functions and macros such as
p-div, p-sub, or p-call are used to implement Processing’s language primi-
tives. Function are defined within a let/ec form, to support return semantics
in functions. However, let/ec is not always needed and can be removed, for
instance, in the case of unnecessary tail returns or when functions have return
type void.

(p-function (echo-IOFF-fn n p a r)

(let/ec return

(p-block

(p-if (p-eq n 1)

(p-block (p-call fullArc-OOOOO-fn p r ang HALF_PI h))

(p-block (p-call fullArc-OOOOO-fn p (p-div r (p-call

fib-O-fn n)) a HALF_PI h)

(p-call echo-IOFF-fn (p-sub n 1) p a r))))))

Fig. 6. Generated Racket code for echo

We demonstrate another example (shown in Fig. 7) of our Processing imple-
mentation using libraries that are written in another language and renders
designs in AutoCAD and Rhinoceros 3D. To produce this example, our Process-
ing code requires "elliptic-torus.rkt", a library written in the Racket lan-
guage that is capable of generating highly parametric elliptic torus. Using this
library, we can specify in Processing, the domain range, the thickness of the
surface, the size of the surfaces’ holes, etc.

The possibility of accessing libraries written in different languages of the
Racket ecosystem enables Processing users to take advantage of the capabilities

Combining Processing with Racket 111

require "elliptic -torus.rkt";

float aMin = QUARTER_PI , aMax = 7 * aMin , h = .005;

ellipticTorus(xyz(0,0,0), h, .03, .5, aMin , aMax , 0, TWO_PI);

Fig. 7. Elliptic torus generated in AutoCAD and Rhinoceros 3D

of these libraries in their artistic endeavours. Moreover, these examples demon-
strate that users can effortlessly migrate to our system and directly use libraries
that were previously developed in Racket.

8 Conclusion

Translating a high-level language to another enables the possibility of access-
ing libraries that are written in different languages. Combining Processing with
Racket, allows users to access libraries written in any language of the Racket
ecosystem. One particularly important library is Rosetta, a portable Genera-
tive Design library that allows architects to use Processing to generate designs
in a CAD application, thus providing a motivating reason for the architecture
community to use our system.

Our implementation follows the common compiler pipeline architecture, gen-
erating semantically equivalent Racket code and loading it into Racket’s VM.
Our approach was to develop the parts of the language that Processing users
most need, that empower them to write simple scripts. In future, our goal is
to further develop our existing work, progressively introducing more advanced
mechanisms, such as implementing Processing’s class system and exception han-
dling.

Acknowledgements. This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/ 2013,
and by the Rosetta project under contract PTDC/ATP-AQI/5224/2012.

112 H. Correia and A.M. Leitão

References

1. Reas, C., Fry, B.: Processing: programming for the media arts. AI Soc. 20(4),
526–538 (2006)

2. Flatt, M., Findler, R.B.: The racket guide (2011). http://docs.racket-lang.org/
guide/. Accessed 02 May 2014

3. Lopes, J., Leitão, A.: Portable generative design for CAD applications. In: Pro-
ceedings of the 31st Annual Conference of the Association for Computer Aided
Design in Architecture, pp. 196–203 (2011)

4. Flatt, M.: Creating languages in racket. Commun. ACM 55(1), 48–56 (2012)
5. Ramos, P.P., Leitão, A.M.: An implementation of python for racket. In: 7th Euro-

pean Lisp Symposium, p. 72 (2014)
6. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Lan-

guages as libraries. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 132–141. ACM (2011)

7. Maeda, J.: Design by Numbers. MIT Press, Cambridge (1999)
8. Resig, J., Fry, B., Reas, C.: Processing. js (2008)
9. Bader-Natal, A.: Sketchpad (2011). http://sketchpad.cc/. Accessed 28 April 2015

10. Ashkenas, J.: Ruby-processing (2015). https://github.com/jashkenas/
ruby-processing. Accessed 28 April 2015

11. Feinberg, J., Gilles, J., Alkov, B.: Python for processing (2014). http://py.
processing.org/. Accessed 28 April 2015

12. Gray, K.E., Flatt, M.: Compiling java to PLT scheme. In: Proceedings of 5th
Workshop on Scheme and Functional Programming, pp. 53–61 (2004)

13. Gray, K.E., Flatt, M.: ProfessorJ: a gradual introduction to java through lan-
guage levels. In: Companion of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pp. 170–
177. ACM (2003)

14. Findler, R.B., Flanagan, C., Flatt, M., Krishnamurthi, S., Felleisen, M.:
DrScheme: a pedagogic programming environment for scheme. In: Glaser, H.,
Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 369–388. Springer,
Heidelberg (1997)

15. Louis-Rosenberg, J.: Objexport (2013). http://n-e-r-v-o-u-s.com/tools/obj/.
Accessed 29 April 2015

16. Owens, S.: Parser tools: lex and yacc-style parsing (2011). http://docs.racket-lang.
org/parser-tools/. Accessed 22 September 2014

17. Flatt, M, Findler, R.B.:. The racket guide, chapter 10.3 continuations (2011).
http://docs.racket-lang.org/guide/conts.html?q=continuations. Accessed 05 May
2014

18. Flatt, M.: Composable and compilable macros: you want it when? SIGPLAN Not.
37(9), 72–83 (2002)

http://docs.racket-lang.org/guide/
http://docs.racket-lang.org/guide/
http://sketchpad.cc/
https://github.com/jashkenas/ruby-processing
https://github.com/jashkenas/ruby-processing
http://py.processing.org/
http://py.processing.org/
http://n-e-r-v-o-u-s.com/tools/obj/
http://docs.racket-lang.org/parser-tools/
http://docs.racket-lang.org/parser-tools/
http://docs.racket-lang.org/guide/conts.html?q=continuations

Batched Evaluation of Full-Sharing
Multithreaded Tabling

Miguel Areias(B) and Ricardo Rocha

Faculty of Sciences, CRACS & INESC TEC, University of Porto,
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

{miguel-areias,ricroc}@dcc.fc.up.pt

Abstract. Tabling is a technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations
and recursion. When tabling is combined with multithreading, we have
the best of both worlds, since we can exploit the combination of higher
declarative semantics with higher procedural control. To support this
combination, the Yap Prolog system has, at engine level, multiple designs
that vary from a No-Sharing design, where each thread allocates fully
private tables, to a Full-Sharing (FS) design, where threads share the
complete table space. In this work, we propose an extension to the
table space data structures, which we named Private Answer Chain-
ing (PAC), as way to support batched scheduling evaluation with the FS
design. Batched scheduling is one of the most successful tabling schedul-
ing strategies, known to be useful when a tabled logic program requires
an eager propagation of answers and/or do not requires the complete set
of answers to be found. Experimental results show that PAC is a good
first approach, since with it the FS design remains quite competitive.

Keywords: Logic programming · Multithreading · Tabling · Scheduling

1 Introduction

Tabling [5] is a technique that overcomes some limitations of traditional Pro-
log systems in dealing with redundant sub-computations and recursion. Tabling
consists in storing intermediate answers for subgoals in a proper data struc-
ture, called the table space, so that they can be reused when a repeated subgoal
appears during the resolution process. Tabling has become a popular and suc-
cessful technique thanks to the ground-breaking work in the XSB Prolog system
and in particular in the SLG-WAM engine [10], the most successful engine of
XSB. Implementations of tabling are now widely available in systems like Yap
Prolog, B-Prolog, ALS-Prolog, Mercury, Ciao Prolog and more recently Picat.

Multithreading in Prolog is the ability to concurrently perform computa-
tions, in which each computation runs independently but shares the program
clauses. When multithreading is combined with tabling, we have the best of
both worlds, since we can exploit the combination of higher procedural con-
trol with higher declarative semantics. To the best of our knowledge, XSB [8]
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 113–124, 2015.
DOI: 10.1007/978-3-319-27653-3 11

114 M. Areias and R. Rocha

and Yap [2] are the only Prolog systems that support the combination of mul-
tithreading with tabling. In this work, we will focus on Yap’s implementation,
which follows a SWI-Prolog compatible multithreading library [11]. For tabled
evaluation, a thread views its tables as private but, at the engine level, Yap has
three designs [2], which vary from a No-Sharing (NS) design, where each thread
allocates private tables for each new tabled subgoal call, to a Full-Sharing (FS)
design, where threads share the complete table space.

The decision about the evaluation flow is determined by the scheduling strat-
egy. Different strategies may have a significant impact on performance, and may
lead to a different ordering of solutions to the query goal. Arguably, the two most
successful tabling scheduling strategies are local scheduling and batched schedul-
ing [6]. Local scheduling tries to complete subgoals as soon as possible. When
new answers are found, they are added to the table space and the evaluation
fails. Local scheduling has the advantage of minimizing the size of clusters of
dependent subgoals, however it delays propagation of answers and requires the
complete evaluation of the search space.

Batched scheduling favors forward execution first, backtracking next, and
consuming answers or completion last. It thus tries to delay the need to move
around the search tree by batching the return of answers to repeated subgoals.
When new answers are found for a particular tabled subgoal, they are added
to the table space and the evaluation continues. Batched scheduling can be an
useful strategy in tabled logic programs that require an eager propagation of
answers and/or do not require the complete set of answers to be found.

With the FS design, all tables are shared. Thus, since several threads can
be inserting answers in the same table, when an answer already exists, it is not
possible to determine if the answer is new or repeated for a particular thread
without further support. For local scheduling, this is not a problem since, for
repeated and new answers, local scheduling always fails. The problem is with
batched scheduling that requires that only the repeated answers should fail.
Threads have then to detect, during batched evaluation, whether an answer is
new and must be propagated or whether an answer is repeated and the evaluation
should fail.

In this work, we propose an extension to the table space data structures,
which we named Private Answer Chaining (PAC), as a way to keep track, per
thread and subgoal call, of the answers that were already found and propagated.
We discuss in detail our proposal for extending the FS design with batched
scheduling and we present a performance analysis comparison between local
and batched scheduling. Experimental results show that, despite the extra PAC
data structures required to support batched scheduling with the FS design, the
execution time of the combination is still quite competitive.

The remainder of the paper is organized as follows. First, we briefly intro-
duce some background and related work. Then, we describe our PAC approach
and we discuss the most important implementation details. Finally, we present
experimental results and we end by outlining some conclusions.

Batched Evaluation of Full-Sharing Multithreaded Tabling 115

2 Background

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Repeated calls1 to tabled subgoals are not re-evaluated against the
program clauses, instead they are resolved by consuming the answers already
stored in their table entries. During this process, as further new answers are
found, they are stored in their tables and later returned to all repeated calls.

Fig. 1. Table space organization

Figure 1 shows Yap’s table space organi-
zation. At the entry point we have the table
entry data structure. This structure is allo-
cated when a tabled predicate is being com-
piled, so that a pointer to the table entry can
be included in its compiled code. This guar-
antees that further calls to the predicate will
access the table space starting from the same
point. Below the table entry, we have the
subgoal trie structure. Each different tabled
subgoal call to the predicate at hand corre-
sponds to a unique path through the subgoal
trie structure, always starting from the table
entry, passing by several subgoal trie data
units, the subgoal trie nodes, and reaching a
leaf data structure, the subgoal frame. The
subgoal frame stores additional information about the subgoal and acts like an
entry point to the answer trie structure. Each unique path through the answer
trie data units, the answer trie nodes, corresponds to a different answer to the
entry subgoal.

2.1 Yap’s Multithreaded Tabling Support

In Yap, a thread views its tables as private but, at the engine level, it imple-
ments three designs for concurrent tabling support that vary from a No-Sharing
(NS) design, where each thread allocates fully private tables, to a Full-Sharing
(FS) design, where threads share the complete table space. Figure 2 shows Yap’s
multithreaded table space organization for the NS and FS designs, where an
interface layer abstracts the design being used at the engine level. The figure
illustrates the main differences between the two designs for a situation where
several threads are evaluating the same tabled subgoal call call i.

When using the NS design, one can observe that the table entry data struc-
ture still stores the common information for the predicate (such as the arity or
the scheduling strategy), and then each thread t has its own cell Tt inside a
bucket array which points to the private data structures.
1 We are considering variant-based tabling [9]. Two tabled subgoals A and B are vari-

ants if they can be made identical by variable renaming. For example, p(X,1,Y) and
p(Y,1,Z) are variants because both can be transformed into p(VAR0, 1,VAR1).

116 M. Areias and R. Rocha

Fig. 2. Yap’s multithreaded table space organization for the NS and FS designs

When using the FS design, the subgoal and answer trie structures and part of
the subgoal frame (the subgoal entry data structure in Fig. 2) are shared among
all threads. The previous subgoal frame data structure was split in two: the
subgoal entry stores common information for the subgoal call (such as the pointer
to the shared answer trie structure); the remaining information is kept private
to each thread in the subgoal frame data structure. To support concurrency
within the subgoal/answer tries, the FS design supports lock-based and lock-
free approaches. A comparison between both approaches can be found in [3].

2.2 Scheduling Strategies

Local scheduling evaluates a tabled logic program in a breath-first manner. It
favors backtracking first with completion instead of forward execution, leav-
ing the consumption of answers for last. Local scheduling only allows a Clus-
ter of Dependent Subgoals (CDS) to return answers after a fix-point has been
reached [6]. In other words, local scheduling tries to keep a CDS as minimal
as possible, thus creating less complex dependencies between subgoals, which
causes a sooner completion of subgoals.

On the other hand, batched scheduling evaluates a tabled logic program in
a depth-first manner. It favors forward execution first instead of backtracking,
leaving the consumption of answers and completion for last. It thus tries to delay
the need to move around the search tree by batching the return of answers. When
new answers are found for a particular tabled subgoal, they are added to the

Batched Evaluation of Full-Sharing Multithreaded Tabling 117

table space and the execution continues. For some situations, this results in
creating dependencies to older subgoals, therefore enlarging the current CDS
and delaying the fix-point that guarantees that all dependent subgoals in a CDS
are completely evaluated [10]. Batched scheduling can be an useful strategy in
tabled logic programs that require an eager propagation of answers and/or do
not require the complete set of answers to be found.

3 Extending Full-Sharing with Batched Scheduling

Fig. 3. PAC overview

In this section, we describe our pro-
posal to support the combination of
batched scheduling with the FS design.
In the original FS design, answer prop-
agation and answer representation are
both stored in the answer trie data
structure, thus threads are unable to
distinguish whether they have or not
have propagated an answer already
stored in the table space. To solve that,
we propose an extension to the table
space data structures, which we named
Private Answer Chaining (PAC), as
a way to keep track, per thread and
subgoal call, of the answers that were
already found and propagated to the
thread’s repeated calls. Figure 3 illus-
trates PAC’s key idea. In a nutshell,
PAC splits answer propagation from
answer representation, and allows the first to be privately stored in the sub-
goal frame data structure of each thread, and the second to be kept publicly
shared among threads in the answer trie data structure.

3.1 Our Approach

The PAC procedure works at the subgoal frame level. The key idea is to extend
subgoal frames with an auxiliary private chaining of answers for each subgoal
call, in order to keep track of the answers already found for the call. Later, if a
thread completes a subgoal’s evaluation, i.e., if the subgoal’s table is marked as
complete, its PAC is made public, so that from that point on all threads can use
that chain in complete (only reading) mode. Figure 4 illustrates the new data
structures involved in the implementation of our PAC’s proposal for a situation
where different threads are evaluating the same tabled subgoal call call i.

Figure 4(a) shows then a situation where two threads, T1 and Tk−2, are shar-
ing the same subgoal entry for a call call i still under evaluation, i.e., still not
yet completed. The current state of the evaluation shows an answer trie with

118 M. Areias and R. Rocha

Fig. 4. PAC’s data structures for (a) private and (b) public chaining

3 answers found for call i. For the sake of simplicity, we are omitting the internal
answer trie nodes and we are only showing the leaf nodes LN1, LN2 and LN3

of each answer.
With PAC support, the leaf nodes are not chained in the answer trie data

structure, as usual. Now, the chaining process is done privately, and for that, we
use the subgoal frame structure of each thread. On the subgoal frame structure
we added a new field, called Answers, to store the answers found within the
execution of the thread. In order to minimize PAC’s impact, each answer node in
the private chaining has only two fields: (i) an entry pointer, which points to the
corresponding leaf node in the answer trie data structure; and (ii) a next pointer
to chain the nodes in the private chaining. To maintain good performance, when

Batched Evaluation of Full-Sharing Multithreaded Tabling 119

the number of answer nodes exceeds a certain threshold, we use a hash trie
mechanism design similar to the one presented in [4], but without concurrency
support, since this mechanism is private to each thread.

PAC’s data structures in Fig. 4(a) represent then two different situations.
Thread T1 has only found one answer and it is using a direct answer chaining
to access the leaf node LN1. Thread Tk−2 was already found three answers for
call i and it is using the hash trie mechanism within its private chaining. In
the hash trie mechanism, the answer nodes are still chained between themselves,
thus that repeated calls belonging to thread Tk−2 can consume the answers as
in the original mechanism.

Figure 4(b) shows the state of the subgoal call after completion. When a
thread T completes a subgoal call, it frees its private consumer structures, but
before doing that, it checks whether another thread as already marked the sub-
goal as completed. If no other thread has done that, then thread T not only
follows its private chaining mechanism, as it would for freeing its private nodes,
but also follows the pointers to the answer trie leaf nodes in order to create a
chain inside the answer trie. Since this procedure is done inside a critical region,
no more than one thread can be doing this chaining process. Thus, in Fig. 4(b),
we are showing the situation where the subgoal call call i is completed and both
threads T1 and Tk−2 have already chained the leaf nodes inside the answer trie
and removed their private chaining structures.

3.2 Implementations Details

The major difference between local and batched scheduling, at the engine level,
is in the tabled new answer operation, where we decide what to do when a
new answer is found during the evaluation. This operation checks whether a
newly found answer is already in the corresponding answer trie structure and, if
not, inserts it. For local scheduling, it then fails and, for batched scheduling, it
proceeds with forward execution. Algorithm1 shows how we have extended this
operation to support the FS design with batched scheduling.

The algorithm receives two arguments: the newly found answer during the
evaluation (ANS) and the subgoal frame which corresponds to the call at hand
(SF). The algorithm begins by checking/inserting the given ANS into the answer
trie structure, which will return the leaf node for the path representing ANS (line
1). Then, it checks/inserts the given leaf node into the private chaining for the
current thread, which will return the corresponding answer chain node (line 2).
Next in line 3, it tests whether the answer chain node already existed in the
chain, i.e., if it was inserted or not by the current check/insert operation in
order to return failure (line 4), or it proceeds with marking the answer ANS has
found (line 6). At the end (lines 7 to 10), it returns failure, if local scheduling
is active (line 8), otherwise, batched scheduling is active, and it proceeds by
propagating the answer ANS to the current execution environment (line 10).

120 M. Areias and R. Rocha

Algorithm 1. tabled new answer(answer ANS, subgoal frame SF)
1: leaf ← check insert answer trie(ANS, SF)
2: chain ← check insert consumer chain(leaf, SF)
3: if is answer marked as found(chain) then
4: return failure
5: else {the answer is new}
6: mark answer as found(chain)
7: if local scheduling mode(SF) then
8: return failure
9: else {batched scheduling mode}

10: return proceed

4 Experimental Results

We now present experimental results about the usage of PAC in the FS design with
batched scheduling. The environment for our experiments was a machine with 32-
Core AMD Opteron (TM) Processor 6274 (2 sockets with 16 cores each)
with 32 GB of main memory, running the Linux kernel 3.16.7-200.fc20.x86 64 with
Yap Prolog 6.3.

4.1 Benchmark Programs

For the experiments, we used the TabMalloc memory allocator [1] and five sets
of benchmarks that create worst case scenarios, where we are able to show the
lowest bounds of performance that each design might achieve when applied/used
in other real world applications/programs. The Large Joins and WordNet sets
were obtained from the OpenRuleBench project [7]; the Model Checking set
includes three different specifications and transition relation graphs usually used
in model checking applications; the Path Left and Path Right sets implement
two recursive definitions of the well-known path/2 predicate, that computes the
transitive closure in a graph, using several different configurations of edge/2 facts
(Fig. 5 shows an example for each configuration). We experimented the BTree
configuration with depth 17, the Pyramid and Cycle configurations with depth
2000 and the Grid configuration with depth 35.

In order to have a deeper insight on the behavior of each benchmark, and
therefore clarify some of the results that are presented next, we first characterize
the benchmarks. The columns in Table 1 have the following meaning:

– calls: is the number of different calls to tabled subgoals. It corresponds to the
number of paths in the subgoal tries.

– trie nodes: is the total number of trie nodes allocated in the corresponding
subgoal/answer trie structures.

– trie depth: is the minimum/average/maximum number of trie nodes required
to represent a path in the corresponding subgoal/answer trie structures. Trie
structures with smaller average depth values are more amenable to higher
contention.

Batched Evaluation of Full-Sharing Multithreaded Tabling 121

Fig. 5. Edge configurations for the path benchmarks

– unique: is the number of different tabled answers found. It corresponds to
the number of paths in the answer tries.

– repeated: is the number of redundant tabled answers found.

By observing Table 1, the Mondial benchmark, from the Large Joins set, and
the three Model Checking benchmarks seem to be the benchmarks least amenable
to contention since they are the ones that find less unique answers and that have
the deepest trie structures. In this regard, the Path Left and Path Right sets
correspond to the opposite case. They find a huge number of answers and have
very shallow trie structures. On the other hand, the WordNet and Path Right
sets have the benchmarks with the largest number of different subgoal calls,
which can reduce the probability of contention because answers can be found for
different subgoal calls and therefore be inserted with minimum overlap. On the
opposite side are the Join2 benchmark, from the Large Joins set, and the Path
Left benchmarks, which have only a single tabled subgoal call.

4.2 Performance Analysis

We present now the performance analysis about the usage of PAC in the FS
design with batched scheduling. To support concurrency within the subgoal/
answer tries, the FS design is using the lock-free hash trie design presented
in [3]. Since without PAC the FS design would not be able to be used with
batched scheduling, to put PAC’s results in perspective, we will be showing also
the results for local scheduling and for the NS design.

Table 2 shows the overhead ratios for the five sets of benchmarks, when com-
paring against the NS design with 1 thread (running with local scheduling and
without TabMalloc), for the NS and FS designs with 1, 8, 16, 24 and 32 threads,
using local scheduling (column Local) and batched scheduling (column Batched)
strategies with TabMalloc. In order to give a fair weight to each benchmark,
the overhead ratio is calculated as follows. We begin by running 10 times each
benchmark B for each design D with T threads. Then, we calculate the average
of those ten runs and use that value (DBT) to put it in perspective against the
base time, which is the average of 10 runs of the NS design with 1 thread (NSB1).
For that, we use the following formula for the overhead ODBT = DBT /NSB1.

122 M. Areias and R. Rocha

Table 1. Characteristics of the benchmark programs

Bench Tabled subgoals Tabled answers

calls trie nodes trie depth unique repeated trie nodes trie depth

Large Joins

Join2 1 6 5/5/5 2,476,099 0 2,613,660 5/5/5

Mondial 35 42 3/4/4 2,664 2,452,890 14,334 6/7/7

WordNet

Clusters 117,659 235,319 2/2/2 166,877 161,853 284,536 1/1/1

Hypo 117,657 117,659 2/2/2 698,472 20,341 816,129 1/1/1

Holo 117,657 235,315 2/2/2 74,838 54 192,495 1/1/1

Hyper 117,657 235,315 2/2/2 698,472 8,658 816,129 1/1/1

Tropo 117,657 235,315 2/2/2 472 0 118,129 1/1/1

Mero 117,657 117,659 2/2/2 74,838 13 192,495 1/1/1

Model Checking

IProto 1 6 5/5/5 134,361 385,423 1,554,896 4/51/67

Leader 1 5 4/4/4 1,728 574,786 41,788 15/80/97

Sieve 1 7 6/6/6 380 1,386,181 8,624 21/53/58

Path Left

BTree 1 3 2/2/2 1,966,082 0 2,031,618 2/2/2

Pyramid 1 3 2/2/2 3,374,250 1,124,250 3,377,250 2/2/2

Cycle 1 3 2/2/2 4,000,000 2,000 4,002,001 2/2/2

Grid 1 3 2/2/2 1,500,625 4,335,135 1,501,851 2/2/2

Path Right

BTree 131,071 262,143 2/2/2 3,801,094 0 3,997,700 1/2/2

Pyramid 3,000 6,001 2/2/2 6,745,501 2,247,001 6,751,500 1/2/2

Cycle 2,001 4,003 2/2/2 8,000,000 4,000 8,004,001 1/2/2

Grid 1,226 2,453 2/2/2 3,001,250 8,670,270 3,003,701 1/2/2

After calculating all the overheads ODBT for a certain design D and number of
threads T corresponding to the several benchmarks B, we calculate the respec-
tive minimum, average, maximum and standard deviation overhead ratios (rows
Min, Avg, Max and StD in Table 2).

By observing Table 2, we can see that batched scheduling always achieves the
best minimum overhead ratio in the FS design but, for the average and maximum
overhead ratios, the best strategy is always local scheduling. For the average and
maximum overhead ratios, the difference between local and batched scheduling
in the FS design is slightly higher than in the NS design, which can be read as an
indication of the overhead that PAC introduces into the FS design. Recall that
whenever an answer is found during the evaluation, PAC requires that threads
traverse their private consumer data structures to check if the answer was already
found (and propagated).

Batched Evaluation of Full-Sharing Multithreaded Tabling 123

Table 2. Overhead ratios, when compared with the NS design with 1 thread (running
with local scheduling and without TabMalloc) for the NS and FS designs (with Tab-
Malloc) when running 1, 8, 16, 24 and 32 threads with local and batched scheduling
(best ratios by row and design for the Minimum, Average and Maximum are in bold)

Threads NS FS

Local Batched Local Batched

1 Min 0.53 0.55 1.01 0.95

Avg 0.78 0.82 1.30 1.46

Max 1.06 1.05 1.76 2.33

StD 0.15 0.14 0.22 0.44

8 Min 0.66 0.63 1.16 0.99

Avg 0.85 0.88 1.88 1.95

Max 1.12 1.14 2.82 3.49

StD 0.13 0.14 0.60 0.79

16 Min 0.85 0.75 1.17 1.06

Avg 0.98 1.00 1.97 2.08

Max 1.16 1.31 3.14 3.69

StD 0.09 0.17 0.65 0.83

24 Min 0.91 0.93 1.16 1.09

Avg 1.15 1.16 2.06 2.19

Max 1.72 1.60 3.49 4.08

StD 0.20 0.21 0.70 0.91

32 Min 1.05 1.04 1.33 1.26

Avg 1.51 1.49 2.24 2.41

Max 2.52 2.63 3.71 4.51

StD 0.45 0.45 0.74 1.02

As we increase the number of threads, for the NS design, both scheduling
strategies show very close minimum, average and maximum overhead ratios.
For the FS design, the differences are slightly higher. However, for the average
overhead ratio, the results between both strategies are quite close, with batched
scheduling being around 10 % slower than local scheduling for the FS design.
In summary, our experimental results show that, on average, the PAC strategy
does not seem to have a big impact in the performance, however it still leaves
room for further improvements, since the difference between local and batched
scheduling is higher in the FS design than in the NS design.

5 Conclusions and Further Work

Local and batched scheduling are arguably two of the most well-known tabling
scheduling strategies. The major difference between both is that local scheduling

124 M. Areias and R. Rocha

propagates answers only after all answers are found, while batched scheduling
propagates answers immediately after they are found. Batched scheduling is a
useful strategy in tabled logic programs that require an eager propagation of
answers and/or do not require the complete set of answers to be found. In this
work, we have presented the PAC strategy, which is a simple and novel approach
for combining the FS design with batched scheduling. PAC splits answer rep-
resentation from answer propagation, and allows the first to be publicly shared
among threads while the second to be private to each thread.

Experimental results in worst-case scenarios showed that, on average, the
PAC strategy does not seem to have a big impact in the performance, however
it still leaves room for further improvements specially in the extra structures
required to control the propagated answers. Further work will include the usage
of time-stamped tries to minimize the search for the propagated answers and new
real-world problems that will allow us to improve and consolidate our framework.

Acknowledgments. This work is partially funded by the North Portugal Regional
Operational Programme (ON.2 - O Novo Norte) and by the National Strategic Refer-
ence Framework (NSRF), through the European Regional Development Fund (ERDF)
and the Portuguese Foundation for Science and Technology (FCT), within projects
NORTE-07-0124-FEDER-000059 and UID/EEA/50014/2013.

References

1. Areias, M., Rocha, R.: An efficient and scalable memory allocator for multithreaded
tabled evaluation of logic programs. In: International Conference on Parallel and
Distributed Systems, pp. 636–643. IEEE Computer Society (2012)

2. Areias, M., Rocha, R.: Towards multi-threaded local tabling using a common table
space. J. Theory Pract. Logic Program. 12(4 & 5), 427–443 (2012)

3. Areias, M., Rocha, R.: A simple and efficient lock-free hash trie design for con-
current tabling. In: Technical Communications of the International Conference on
Logic Programming (2014)

4. Areias, M., Rocha, R.: A lock-free hash trie design for concurrent tabled logic
programs. Int. J. Parallel Program. 1–21 (2015)

5. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. J. ACM 43(1), 20–74 (1996)

6. Freire, J., Swift, T., Warren, D.S.: Beyond depth-first: improving tabled logic pro-
grams through alternative scheduling strategies. In: Kuchen, H., Swierstra, S.D.
(eds.) PLILP 1996. LNCS, vol. 1140, pp. 243–258. Springer, Heidelberg (1996)

7. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: an analysis of the perfor-
mance of rule engines. In: International World Wide Web Conference, pp. 601–610.
ACM (2009)

8. Marques, R., Swift, T.: Concurrent and local evaluation of normal programs. In:
Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 206–
222. Springer, Heidelberg (2008)

9. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient access
mechanisms for tabled logic programs. J. Logic Program. 38(1), 31–54 (1999)

10. Sagonas, K., Swift, T.: An abstract machine for tabled execution of fixed-order
stratified logic programs. ACM Trans. Program. Lang. Syst. 20(3), 586–634 (1998)

11. Wielemaker, J.: Native preemptive threads in SWI-prolog. In: Palamidessi, C. (ed.)
ICLP 2003. LNCS, vol. 2916, pp. 331–345. Springer, Heidelberg (2003)

Browsing the Parse Space

Daniel Rodríguez-Cerezo and José-Luis Sierra(&)

Fac. Informática, Universidad Complutense de Madrid, Madrid, Spain
{drcerezo,jlsierra}@fdi.ucm.es

Abstract. Ambiguous context-free grammars can generate many (even infinite)
parse trees for each input sentence. We will refer to all these parse trees as the
parse space of the sentence. Thus, in many settings (computational linguistics,
education in compiler construction, etc.) the need for browsing this parse space
(i.e., for examining different trees in a systematic and ordered way) arises. In this
paper we describe a browsing approach that works for arbitrary (even infinitely
ambiguous) grammars. The approach, which is based on the well-known Ear-
ley’s algorithm, sorts the parse space according to structural complexity of the
parse trees, lets users inspect a particular tree, and then to jump to the previous
and/or the next tree. This approach has been implemented in EvDebugger, an
educational system for the learning of the attribute grammar formalism.

Keywords: Parsing � Earley algorithm � Parse trees � Grammar debugging
technique

1 Introduction

Nowadays context-free grammars are keystone artifacts for specifying the syntax of
both natural and artificial languages [11]. Using context-free grammars, language
engineers can describe the structural concepts of a language, establishing in this way
the basic skeleton in which to base all the subsequent processing activities. In addition,
they can use standard grammar analysis algorithms to check desired properties of the
proposed grammar (e.g., whether the grammar is proper –i.e., whether all the symbols
are accessible from the initial symbol as well as productive) [1]. Unfortunately, due to
their expressive power, many interesting properties become undecidable [4]. One of
these properties is ambiguity, i.e., whether the grammar is able to impose several, more
than one, alternative structures (i.e., parse trees) to a sentence.

Ambiguity is a typical phenomenon to avoid when modeling artificial languages.
For this purpose, ambiguity sources must be clearly detected and fixed. These sources
can be due to some formalization leak (in this case, they can be solved by changing the
grammar), or they can be rooted in the primary conception of the language itself (in this
case, it is the language conception that must be changed). A way of avoiding ambiguity
is to circumscribe the class of allowable grammars to one for which unambiguity can be
ensured (e.g., LL or LR grammars). However, the membership tests for these classes
provide little information on the ambiguity sources (on the contrary, they identify
sources of non-determinism in the associated parsing algorithms, which may or may
not be related to ambiguity). Thus, when analyzing ambiguity language engineers can

© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodríguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 125–136, 2015.
DOI: 10.1007/978-3-319-27653-3_12

take benefit of a more empirical approach, by selecting representative sentences and by
examining the parse spaces of these sentences (i.e., the set of the sentences’ parse trees
–see Fig. 1, a grammar that corresponds to a real case concerning a typical misleading
among compiler construction students at UCM: the aim was to model optional
sequences of items, e.g., instructions; a common trend among students was to make the
items optional instead the whole sequence). This approach can be particularly valuable
for educational purposes by letting students of compiler construction courses visualize
the ambiguity phenomenon and identify the potential sources of ambiguity (for
instance, the trees in Fig. 1 make apparent how the source of ambiguity is the afore-
mentioned misleading of making individual items optional instead the sequence itself).
In addition, the ability of visualizing and inspecting ambiguity can be also very
valuable in natural language settings, where ambiguity is not a phenomenon to avoid
but an intrinsic feature of natural languages [9].

In order to support the aforementioned empirical approach, in this paper we
describe a strategy for systematically browsing the parse space of a sentence according
to an arbitrary context-free grammar (even infinitely ambiguous: for instance, the
grammar in Fig. 1(a) is infinitely ambiguous, since the parse space in Fig. 1(b) for the
sentence iii contains infinitely many trees; dealing with this kind of grammars leaves
out naif approaches, such as generating a list with all the possible parse trees as a
previous step to browsing). The strategy uses the well-known Earley’s algorithm [10]
to recognize the input sentence, and then it exploits the Earley’s list produced by the
algorithm to lazily enumerate all the possible trees. In this enumeration, simpler trees
are generated first. Generated trees are backed up for letting users move to previous
trees. This strategy has been successfully implemented in EvDebugger [13], an edu-
cational system focused on the attribute grammar formalism, in order to let students
browse the parse space of the input sentence and examine the attribute evaluation
process on each visited tree.

L L I | I
I i |

(a) (b)
L

I

L

L I

I

i

i

I

L

L I

I

i

i

i

λ

L

L

I

I

L

L I

I

i

i

λ

i

L

L

I

...
i

Fig. 1. (a) An ambiguous context-free grammar; (b) parse space associated with the sentence
iii with respect to the grammar in (a)

126 D. Rodríguez-Cerezo and J.-L. Sierra

The rest of the paper is organized as follows: Sect. 2 motivates the work by
showing how EvDebugger deals with ambiguous grammars. Section 3 describes how
parse trees can be constructed form Earley’s parse lists. Section 4 describes the
browsing engine. Section 5 outlines some related work. Finally, Sect. 6 presents some
conclusions and outlines some lines of future work.

(a)

(b)

Fig. 2. Browsing the parse space with EvDebugger

Browsing the Parse Space 127

2 Motivation: EvDebugger

EvDebugger is a software tool for the specification of language processors. The tool is
able to process attribute grammar-based specifications, described using a suitable
specification notation, and to generate a language processor for the language described.
Also, the tool provides a visual debugger for the debugging of the language processors
defined, which is able to animate the semantic evaluation process on the representations
of syntax trees.

The initial version of the tool, presented in [13], was not able to deal with attribute
grammars that present ambiguity in their underlying context-free grammars. As we
discussed in the previous section, although ambiguity is not desirable in the specifi-
cation of artificial languages, from an educational point of view, it is interesting that
students of Compiler Constructions courses are able to experiment with this phe-
nomenon in order to be able to identify it, to examine their consequences (e.g., different
meanings assigned to the same sentence), and to cope with it. This is the main reason
why we developed our browsing parse space strategy, to provide EvDebugger with the
possibility to deal with ambiguous attribute grammars and be able to perform the
debugging process for each of the possible trees that result of processing sentences
according to this kind of grammars.

Thus, the current EvDebugger’s visual debugger, with the inclusion of the
browsing engine that will be explained in Sect. 4, makes it possible to browse all the
possible syntax trees from a selected grammar registered in the tool and a sentence
generated by this grammar (i.e., the parse space for this sentence). In addition, for each
tree visited, the semantic evaluation process can be animated by the debugger.

Figure 2 shows screenshots of the transition from the first syntax tree of a particular
parse space (Fig. 2a) to the next syntax tree from this space (Fig. 2b). Next sections
detail the internals of how this process is actually implemented in EvDebugger.

3 Constructing Parse Trees from Earley’s Parse Lists

This section presents the concepts of Earley’s parsing relevant for our work. The
foundations of Earley’s algorithm are revised in Subsect. 3.1. Subsection 3.2 shows
how parse trees can be retrieved from Earley’s parse lists.

3.1 Earley’s Recognizer

Earley’s algorithm can be though as a way of computing, for an input sentence w, a set
of items of the form <i,j, A → α • β >, where i and j are natural numbers, and A→αβ is
a syntax rule1. The intended meaning of these items is: (i) the input fragment w[j… i-1]
can be derived from α, (ii) it may be followed by another fragment y that can be derived
from β, and thus (iii) w[j … i-1]y may be derived from A.

1 In the Earley’s original work lookahead symbols were also added to items, although later on it was
shown that it does not substantially affect to algorithm performance.

128 D. Rodríguez-Cerezo and J.-L. Sierra

The calculus in Fig. 3 characterizes the Earley’s item set associated with a sentence
w with respect to a grammar. Earley’s algorithm implements this recognition calculus
by grouping items by their first component, and by disposing these groups in a parse
list. There will be |w|+1 groups, in such as way w is accepted by the algorithm when
the group |w|+1 contains an item of the form <1,|w|+1, S’→ S •> (S’→S, where S is the
grammar’s initial symbol and S’ is a new fresh initial symbol, is a convenience rule
added to facilitate acceptance recognition as well as the collection of parse trees). In
addition, when constructing the parse list, it is possible to add, to each item, infor-
mation on the rules in Fig. 3 that generated it (in case of ambiguous grammars, an item

Fig. 3. Earley’s recognition calculus (by <i,j,A→α•β> we denote an item in the itemset, by
A→α a syntax rule, by S the grammar initial symbol, and by S’ the initial symbol of the
augmented grammar)

Fig. 4. Earley’s parse list for sentence iii and grammar in Fig. 1a. Each item has a unique
number assigned, as well as the set of rules generating it (i stands for the init rule, p for predict
rule, c for completer and s for scanner; the items involved in the application of each rule are
indicated as arguments –e.g, c(23,19) stands for the application of the completer rule on items 23
and 19)

Browsing the Parse Space 129

could be generated by more than a rule in the recognition calculus). This information
will be subsequently useful for recovering parse trees. As an example, Fig. 4 shows the
Earley’s parse list corresponding to the grammar and the sentence in Fig. 1.

3.2 The Tree Construction Calculus

Earley’s parse list contains enough information for recovering any parse tree for the
input sentence. Indeed, the recovering process can be characterized by a tree con-
struction calculus like the shown in Fig. 5. This calculus models how to associate
subtree sequences with Earley’s items. For this purpose, it comprises judgements of the
form i˫τ, with i an Earley’s item and τ a sequence of parse subtrees. The calculus itself
can be derived in a straightforward way by examining the scanner and completer rules
in the recognition calculus.

The tree construction calculus plays a primary role in our browsing approach.
Indeed, proof trees in this calculus (tree construction proof trees) show how parse trees
can be effectively constructed. Figure 6 shows an example of tree construction proof
tree for the iii sentence and the grammar in Fig. 1.

Notice that tree construction proof trees can be built in two steps:

• First rules are applied in a top-down way to determine the judgement antecedents in
the proof tree (i.e., the i part in a judgment i˫τ). We will call to such a skeleton of
tree construction proof tree a tree construction plan. Notice that by adding infor-
mation about the application of the completer and scanner rules to the Earley’s
items (see Fig. 4), the Earley’s parse lists will encode all the possible tree con-
struction plans in a compact way.

• Then, judgment consequents (i.e, the τ part) are synthetized in a bottom-up way.

4 The Browsing Engine

The browsing engine lets users explore the parse spaces for arbitrary context-free
grammars and input sentences. For this purpose, the engine organizes the parse spaces
as a lazily-generated double-linked list of parse trees ordered by number of nodes.

Fig. 5. Tree construction calculus

130 D. Rodríguez-Cerezo and J.-L. Sierra

For this purpose, and based on the tree construction calculus described in the previous
section, the engine maintains a set of partial tree construction plans. When it completes
one of these plans, it uses such a plan to synthetize the corresponding parse tree. Next
subsections describe the details of this engine. The architecture and the browsing
strategy is described in Subsect. 4.1. Subsection 4.2 describes how the engine com-
pletes the next tree construction plan. Finally, Subsect. 4.3 described how it synthetizes
parse trees from tree construction plans.

4.1 Browser Architecture and Browsing Strategy

The browsing engine maintains two different buffers (see Fig. 7):

• A Tree Buffer. This buffer keeps a double-linked list with the parse trees already
generated by the browsing process.

• A Tree Construction Plan (TCP) Buffer. This buffer indexes the partially-generated
tree construction plans. This is initialized with the index elements corresponding to
the item <1,|w|+1,S’→S•>.

Fig. 6. Example of a tree construction proof tree (rule names are omitted by the sake of
simplicity; instead they can be inferred from the number of child nodes. In addition, sequences of
subtrees are represented as sequences of node numbers in the final parse tree –this parse tree
appears inside the box).

Browsing the Parse Space 131

In addition, the engine maintains a cursor pointing to the currently visited tree.
When this cursor goes beyond the end of the tree buffer, the engine operates on the
TCP Buffer in order to complete the tree construction plan for the next parse tree. In
order to ensure, on one hand, completeness of the generation strategy, and, on another
hand, a parse tree as simplest as possible, this plan will add as few nodes as possible to
the resulting parse tree. Thus, once the tree construction plan is available, the engine
synthetizes the associated parse tree.

4.2 Getting the Next Tree Construction Plan

The generation of the next tree construction plan is performed using a breath-first
generation strategy. For this purpose, the TCP buffer contains index elements of the
form <n, Os, Ls>, where:

• n is the number of nodes added by the partial tree construction plan to the final parse
tree.

• Os is the set of yet unexpanded Earley items in this plan.
• Ls is the set of nodes generated by the end or by the end-λ rule.

These elements are ordered by the number of nodes in increasing order. Thus, in
order to get the next tree construction plan:

• The engine extracts the first element <n, Os, Ls> of the TCP buffer.
• If Os is empty, it stops (the extracted element indexes the desired tree construction

plan).
• Otherwise, it extract one item from Os, applies all the possible tree construction

rules on it (this step is speeded-up by the information on the generating rules stored
with the Earley’s items), construct new indexing elements with the result, and
inserts these elements in the TCP buffer (these elements are inserted in the
appropriate positions to maintain the elements in this buffer ordered by the number
of nodes).

Tree buffer
Syntax tree

TCP buffer

Partial TCP

Fig. 7. Architecture of the browsing engine.

132 D. Rodríguez-Cerezo and J.-L. Sierra

This behavior is detailed by the pseudo-code of Fig. 8. Notice that partial tree
construction plans are represented with the arcs reversed (i.e., from children to parents).

4.3 Synthetizing the Parse Tree

As indicated in Sect. 4.1, once the tree construction plan is available, it is possible to
synthetize the corresponding parse tree. Since the browsing engine represents plans
with reversed arcs, it can be meaningfully addressed as a data-driven attribute evalu-
ation process (see, for instance, [12]). For this purpose:

• Each completer* rule node has a pointer to its first visited antecedent.
• To compute the subtree sequence of the parent on one of these nodes (the rule

consequent), this pointer must be set when the node is visited.

The process itself is initiated by the Ls elements in the plan index <n,∅,Ls> (the
leaves of the plan) returned by the procedure described in the previous subsection, and
it ends when the plan’s root is reached. Since plans can share structure, it also takes
care of restarting the completer* rule first visited antecedent pointers when those nodes
are fired. The strategy itself is formalized by the pseudo-code of Fig. 9.

5 Related Work

The typical way of dealing with parse spaces is by constructing parse forests (i.e.,
compact representations of all the possible parse trees of a sentence) [7]. The original
work of Earley [10] suggested a way of building parse forests from the references

Fig. 8. Pseudo-code for getting the next complete parse tree construction plan.

Browsing the Parse Space 133

associated to the items in the parse lists. However, Tomita in [17] notices that Earley’s
method could be incorrect. The Tomita’s parse method, as well as their successors in
the GLR parse branch, incorporates parse forest construction as an essential feature.
The works in [14, 15] shows how to adapt the Earley’s parsing style to produce parse
forests of the input sentences in a correct way. On the contrary to these approaches,
ours does not attempt to build compact representations of parse spaces, but to browse
these spaces. The browsing strategy presented in this paper could be adapted to work
on parse forests instead of on parse lists, however, without substantial modifications.
Nevertheless, it could introduce an unnecessary intermediate step, so we find our
solution, based on the tree construction calculus, more natural and straightforward.

One of the potential applications of our approach is as a tool for helping language
engineers to understand grammar ambiguity. Regardless its undecidable nature,
ambiguity analysis is amenable of being addressed by approximation strategies. In [6]
parse forests are analyzed for detecting typical causes of ambiguity. In [18] a
non-exhaustive breath-first search strategy on the sentences generated by the grammar
is used. The work in [8] uses regular approximations of the grammars under study to
turn the problem of ambiguity detection in a decidable one. In [5] a usability analysis of
the techniques involved in ambiguity detection is carried out. While all these tech-
niques are oriented to automatize ambiguity detection and/or diagnose, our approach is
more agnostic and user-centered, providing users with a tool that can be used for
browsing the parse space, and which can be useful to diagnose the possible causes of
ambiguity of a given grammar construction.

Finally, our approach can be useful in educational settings, in order to help students
to better appreciate and understand the ambiguity phenomenon. For this purpose, it
differs from other visualization-based comprehension approaches to parsing (e.g., [2, 3]),

Fig. 9. Pseudo-code for the synthesis of parse trees from tree construction plans.

134 D. Rodríguez-Cerezo and J.-L. Sierra

since these approaches are usually focused to visualize/animate the construction of single
parse trees, instead of being focused on whole parse spaces. A preliminary version of our
approach was implemented in PAG (Prototyping with Attribute Grammars) [16].
However, this preliminary implementation failed to work with infinitely ambiguous
grammars. As aforementioned, the approach in its current form has been recently
implemented in the EvDebugger system [13].

6 Conclusions and Future Work

In this paper, we have presented a strategy that allows the navigation of the parse space
imposed by a grammar on a sentence. The strategy is built on the well-known Earley’s
algorithm and works for arbitrary (even infinitely ambiguous) context-free grammars.
The approach sorts parse tree by structural complexity (first the simpler ones), and it is
based on a breath-first construction of the proof trees for a parse tree construction
calculus derived from the Earley’s parsing calculus. This strategy has been imple-
mented in EvDebugger, an educational IDE for language processor generation based on
attribute grammars enriched with a visual debugger, in order to provide the capabilities
needed to deal with the ambiguity of underlying context-free grammars.

Currently we are planning to carry out an empirical evaluation of the approach with
students of a compiler construction course, in order to assess its usability as well as its
efficacy as a tool for comprehending the ambiguity phenomenon and for diagnosing
causes of ambiguity. We are also planning to carry out an in-depth analysis of effi-
ciency criteria concerning the browsing approach and also to explore alternative
construction strategies (e.g., using iterative deepening in connection with the tree
construction calculus).

Acknowledgements. This work has been partially supported by the BBVA Foundation (re-
search grant HUM14_251), by the Spanish R&D&I Plan (research grant TIN2014-52010-R), by
Santander-UCM GR3/14 (group number 962022) and by the grant EDU/3445/201.

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling, vol I: Parsing.
Prentice-Hall, Inc, Englewood Cliffs (1972)

2. Almeida-Martınez, F.J., Urquiza-Fuentes, J., Velázquez-Iturbide, J.: Visualization of syntax
trees for language processing courses. J. Univ. Comput. Sci. 15(7), 1546–1561 (2009)

3. Almeida-Martínez, F.J., Urquiza-Fuentes, J., Velázquez-Iturbide, J.Á. VAST: visualization
of abstract syntax trees within language processors courses. In: Proceedings of the 4th ACM
Symposium on Software Visualization, pp. 209–210. ACM. (2008)

4. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase structure
grammars. STUF-Lang. Typology Univ. 14(1–4), 143–172 (1961)

5. Basten, H.J.: The usability of ambiguity detection methods for context-free grammars.
Electron. Notes Theor. Comput. Sci. 238(5), 35–46 (2009)

Browsing the Parse Space 135

6. Basten, H.J., Vinju, J.J.: Parse forest diagnostics with Dr. Ambiguity. In: Sloane, A.,
Aßmann, U. (eds.) SLE 2011. LNCS, vol. 6940, pp. 283–302. Springer, Heidelberg (2012)

7. Billot, S., Lang, B.: The structure of shared forests in ambiguous parsing. In: Proceedings of
the 27th Annual Meeting on Association for Computational Linguistics, pp. 143–151.
Association for Computational Linguistics (1989)

8. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free grammars. Sci.
Comput. Program. 75(3), 176–191 (2010)

9. Clark, A., Fox, C., Lappin, S. (eds.): The Handbook of Computational Linguistics and
Natural Language Processing. Wiley, Malden (2013)

10. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–102 (1970)
11. Grune, D., Jacobs, C.: Parsing Techniques, a Practical Guide. Monographs in Computer

Science, 2nd edn. Springer, New York (2007)
12. Kennedy, K., Ramanathan, J.: A Deterministic Attribute Grammar Evaluator Based on

Dynamic Sequencing. ACM Trans. Program. Lang. Syst. 1(1), 142–160 (1979)
13. Rodriguez-Cerezo, D., Henriques, P.R., Sierra, J.L.: Attribute grammars made easier:

EvDebugger a visual debugger for attribute grammars. In: 2014 International Symposium on
Computers in Education (SIIE), pp. 23–28. IEEE (2014)

14. Scott, E.: SPPF-style parsing from earley recognisers. Electron. Notes Theor. Comput. Sci.
203(2), 53–67 (2008)

15. Scott, E., Johnstone, A.: Recognition is not parsing—SPPF-style parsing from cubic
recognisers. Sci. Comput. Program. 75(1), 55–70 (2010)

16. Sierra, J.L., Fernández-Pampillon, A.M., Fernández-Valmayor, A.: An environment for
supporting active learning in courses on language processing. ACM SIGCSE Bull. 40(3),
128–132 (2008)

17. Tomita, M.: Efficient Parsing for Natural Language. Kluwer Academic, Boston (1986)
18. Vasudevan, N., Tratt, L.: Detecting ambiguity in programming language grammars. In:

Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 157–176.
Springer, Heidelberg (2013)

136 D. Rodríguez-Cerezo and J.-L. Sierra

Assessing Attribute Grammars’ Quality:
Metrics and a Tool

João Cruz1, Pedro Rangel Henriques1(B), and Daniela da Cruz2

1 Dpt.Informatica/Centro Algoritmi, Universidade do Minho, Braga, Portugal
pedrorangelhenriques@gmail.com

2 Centro Algoritmi, IPCA, Barcelos, Portugal

Abstract. The definition of metrics and their evaluation process is an
activity intrinsic to each engineering branch and it has to do with the
need to reason quantitatively about the quality of the developed prod-
ucts. Years ago software engineers working on the field of formal lan-
guages and grammars came out with the idea of measuring grammars.
However no much progress was done in this trend; there is a clear lack
for tools to automatize the computation of some grammar metrics gram-
mars. In this paper we will introduce a tool, GQE, aimed at evaluating a
new set of simple metrics for attribute grammars (AG) in order to help
on the assessment of AGs quality.

Keywords: Grammar quality · Grammar metrics · Language quality

1 Introduction

Grammar Engineering [1,4,7,8] is a field in software engineering that involves the
application of well studied software techniques and methods to grammars, just as
they are applied on another software products. Such techniques include version
control, static analysis, unit testing, software metrics and evolution, refactoring,
among others. Through their implementation, in today’s process of developing
and maintaining large grammars, better results can be achieved in terms of
quality, increasing their efficiency and usability. The objective of this paper is
to introduce a software tool, GQE–Grammar Quality Evaluator, that helps on the
assessment of grammar quality by performing the automatic evaluation of a
large set of metrics. Based on the metrics computed, any Grammar Engineer
will easily be able to reason about the quality of its grammar and to improve
it. Although there exist some tools similar to the one here described, such as
SynQ by Power and Malloy [9] and gMetrics tools [3], the proposed GQE system
is different because it is extended to deal with AGs (not only GFGs). Despite
using similar procedures, it will produce different results because new metrics
will be considered for the assessment (notice that besides the traditional size
metrics, we contribute with a new set of style and lexicographical metrics).

In this paper, before introducing the tool, Sect. 4, we discuss our proposal
for factors that define the quality of an AG and characteristics that impact on
them, Sect. 2, and introduce the metrics that we intended to evaluate aimed at
quantifying the quality, Sect. 3.
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 137–144, 2015.
DOI: 10.1007/978-3-319-27653-3 13

138 J. Cruz et al.

2 Grammar Quality

As a grammar is a two fold formalism used to define (generate) a language, and
guide the recognition of that language, Henriques proposed in [5] a set of factors
that shall be considered to assess the grammar quality: (while language genera-
tor) Usability of the grammar as a tool for sentences derivation: ease of under-
standing(learning); ease of derivation(writing); ease of maintenance. (while
program generator) Efficiency of the grammar as a tool for language processors
derivation, considering both the efficient parsing of the language sentences
(obviously the main concern), and the efficient generation of the language
processors.

Usability in general measures the level of satisfiability of the user following
the grammar to use/understand the language. The understanding easiness is
related to: the identifiers chosen for the non-terminal and terminal symbols and
for the attributes; the use of unit productions; the length of the productions right
side (RHS); the notation employed to write the grammar rules (pure or extended
BNF); the type of recursion used in the derivation rules (right or left, direct or
indirect recursion). Concerning the derivation, its easiness depends on: the
number of non-terminals and keywords; the number of productions; the use of a
consistent notation for the productions as well as a regular recursive schema; the
use of clear identifiers. Regarding maintenance, besides all the factors exposed
above, two more elements are important: modularity (a monolithic version is
different of one based on the imported components); complexity, as it reflects
the way symbols depend on each other.

The Efficiency in Recognition is measured in terms of: Parsing time; size
and complexity of the Parsing Tables. The Efficiency in automatic Gen-
eration of the processor is measured in terms of: the generation time; the
size of the intermediate data structures used for storing and transforming the
grammar. The Efficiency of the generated processor (the parser), or of the gen-
eration process, is affected by factors external to the grammar (like the methods,
techniques and algorithms used), but it also depends on the size of the grammar
and on its writing style.

After proposing the factors that determine the quality of a grammar, it is
crucial to identify the grammar characteristics that have impact on those factors.
For the sake of space we just sum up our research listing the grammar charac-
teristics (able to be measured), which we strongly believe that have a directly
influence on the grammar quality: the Identifiers of Symbols or Attributes;
the number of Symbols or Attributes, of Productions1 and Unit Productions; the
length of the RHS2; the Notation and the Recursion schema used to write the
Productions; the Attribute Types and simplicity of the Semantic Operators;
the number of Semantic Rules (attribute evaluation rules, contextual condi-
tions, and translation rules); the Attributive schema (purely synthesized, or
mixed (inherited and synthesized)); the Syntatic/Semantic Complexity (Sym-
bol/Attribute Dependencies); the Modularity.

1 Or Derivation Rules.
2 Right-Hand Side.

Assessing Attribute Grammars’ Quality 139

3 Grammar Metrics

Once identified a list of characteristics3 that should be taken into account to
appraise the quality of a grammar, and considering the proposals by other
authors cited in the Introduction, we defined a set of parameters (metrics) that
can be measured in a objective and systematic way. Below we just list (without
rigorous definitions4) the metrics so far identified that are evaluated by GQE,
separating those that are extracted from the CFG (concerned with the syntax)
from those that are related to the semantics, extracted from the AG.

3.1 CFG Metrics

Assuming G is a well-formed5 Context-Free Grammar, and SDG is the respec-
tive Symbol Dependency Graph, we define below the metrics to assess the quality
of G, dividing them into 3 groups:

– Size Metrics:
• (SM1) Grammar size
• (SM2) Grammar syntax complexity
• (SM3) Parser size

– Style Metrics
• (FM1) form of Recursion
• (FM2) type of Recursion
• (FM3) notation

– Lexicographical Metrics
• (LM1) clear identifiers for terminal and non-terminal symbols
• (LM2) clear reserved-words and signs from the language defined by G
• (LM3) flexibility of terminal-classes
• (LM4) comment types

Notice that the evaluation of the above described lexicographic metrics (as
well as those that will be introduced in the next subsection for attribute identi-
fiers) rely upon the notion of Identifier Derivation from a Concept name.
We say that an identifier6 derives from a multi-term concept name (for instance,
the identifier DestAddrLst derives from the concept name Destination Address
List) if, after applying to it the traditional techniques for identifiers split and
expansion (for complete definition and details on that topic, please see [2]) one
can get a correct concept name in the domain of application of the grammar
under analysis.

3 That, at the best of our knowledge, is novel.
4 Please refer to [6] to find details.
5 For each N exists at least one derivation rule with that symbol on the LHS, and
there are not unreachable N .

6 For a Terminal, a Non-Terminal, an Attribute or an Attributive Operation.

140 J. Cruz et al.

3.2 AG Metrics

Assuming AG is a well-formed Attribute Grammar and keeping all metrics intro-
duced before for the assessment of the underlying Context-Free Grammar, we
present below the 3 groups of metrics to appraise the quality of an AG:

– Size Metrics:
• (ASM1) Attribute Grammar size
• (ASM2) Grammar semantic complexity

– Style Metrics
• (AFM1) attributes complexity
• (AFM2) complexity of the attributive operations
• (AFM3) evaluation scheme for writing CRs
• (AFM4) semantic restriction scheme for writing CCs
• (AFM5) translation scheme for writing TRs
• (AFM6) style of the language to write the attributive operations
• (AFM7) language specificity to write the attributive operations

– Lexicographical Metrics
• (ALM1) clear identifiers for attributes
• (ALM2) clear identifiers for attributive operators.

4 A Tool for Metric Evaluation

GQE - Grammar Quality Evaluator is an attribute grammar compiler (processor)
written in Java, and generated by AnTLR from the meta-grammar originally
designed by Sam Harwell and Terence Parr, and afterwards extended by us with
the necessary attributes and semantic rules to perform the computations of the
size, style and lexicographic metrics we need. So the tool will accept as input
CF grammars and Attribute grammars, in the ANTLR version 4.5 format and,
as output, will return a list of evaluated grammar metrics. In the future we aim
at produce a more elaborated output, providing a grammar quality report, as
discussed below.

Concerning metrics evaluation, we can say that: most of the Size metrics
are evaluated by direct measuring, with the exception of syntax and semantic
complexity that are calculated by building both the Local Dependency and the
Symbols Dependency Graphs; the computation of Style metrics require a higher
degree of complexity because it is necessary to work on the internal data struc-
tures used to represent the production set in order to detect definition patterns;
regarding the Lexicographic metrics some external Natural Language Processing
tools, such as IdSplitter and WordNet (among others) were used to analyze the
clarity of identifiers.

Some of the metrics (concerned with the grammar style and language style
and specificity) can, at a first insight, appear to be useless for grammars written
in AnTLR format, but in the future, when GQE is adapted to accept other
kind of grammar formats, such metrics will give useful information regarding
the grammar quality.

Assessing Attribute Grammars’ Quality 141

4.1 GQE Results

At this point we are already able to show some results of our evaluation sys-
tem. It was tested with small, medium and large size grammars (for example,
the C Language Context-Free Grammar that has 239 productions) and had a
good performance, producing the expected output metrics. In this paper, first,
we will present the output evaluated by GQE for a small CFG designed to spec-
ify the Lisp language (Fig. 1), and next the same grammar but improved with
Attributes, so we will cover all the produced results while explaining some of
the metrics implementation and why some metrics are impossible to evaluate in
the AnTLR grammar format. Other details on GQE, input and output formats,
results, etc., can be seen at http://www.di.uminho.pt/∼gepl/GQE.

Fig. 1. Context-Free Grammar of the
Lisp language, written in AnTLR format.

Fig. 2. Size Metrics outputted by
GQE for the Lisp grammar of Fig. 1

All the size metrics shown in (Fig. 2) were computed by GQE, even the most
complex such as FanIn/FanOut(Grammar Syntax Complexity) and those regard-
ing the Parser Size. The same can be said about all the style metrics presented
in (Fig. 3) which involve complex pattern matching algorithms. Concerning lex-
icographic metrics, they were also evaluated automatically with the help of the
IdSplitter, Identifier Splitter Expander tool that is able to identify clear identi-
fiers and comment types. The other two metrics: clear reserved-words and signs
and terminal-classes flexibility can not be evaluated automatically for obvious
reasons (Fig. 4).

http://www.di.uminho.pt/~gepl/GQE

142 J. Cruz et al.

Fig. 3. Style Metrics results from GQE for the input lisp grammar of Fig. 1

Fig. 4. Lexicographic Metrics results from GQE for the input lisp grammar of Fig. 1

Fig. 5. Size Metrics outputted by GQE
for the input Lisp AG.

Fig. 6. Style Metrics outputted by
GQE for the input Lisp AG.

Now, to show the tool results for attribute grammars, we used the grammar
of Fig. 1, and add some attributes and some semantic information, the source
file of that grammar can be seen at the link refereed before.

To be possible to produce those results for AGs, the proposed metrics imple-
mentation complexity is bigger. Size metrics are shown in (Fig. 5), it is important
to say that for AGs written in AnTLR format it is impossible to evaluate the
number of Transition Rules and Context-Conditions, because they are not spec-
ified explicitly, in Anltr.

The same argument works for the metrics Semantic Restriction Scheme and
Translation Scheme that belong to the set of style metrics in Fig. 6; for the Eval-
uation Scheme and Attributive Operation Complexity metrics, they are being
implemented and need some more work and test.

Assessing Attribute Grammars’ Quality 143

Fig. 7. Lexicographic Metrics outputted by GQE for the Lisp grammar.

Finally, for the lexicographic metrics (Fig. 7), once more the Splitter
Expander helps to identify clear attribute identifiers; attributive operator iden-
tifier metrics require some more human opinion, our idea is that the grammar
engineer works together with GQE.

5 Conclusion

We have introduced GQE, a tool to support the user in assessing Attribute Gram-
mars. The motivation to start this research project was given in the Introduction;
it mainly arose from the need to assess the quality of software products and spec-
ifications using quantitative measurements. GQE computes a set of fine grain
metrics, built upon the traditional metrics for CFGs and extended with new
metrics that consider the writing style (syntactic recursive schemas, attribute
evaluation schemas, notation, etc.) and also the understandability inherent to
the identifers. The tool (developed in Java with the help of AnTLR) reads any
AnTLR Grammar (this is, any AG written in the AnTLR metalanguage) and
outputs the value for each one of the metrics under consideration. The user (for
sure a Grammar Engineer) will analyze the values provided and will be able to
come up with an assessment. Easily he will be able to transform his original
grammar and submit the new one for re-evaluation to understand the even-
tual improvements. We strongly believe that this approach will help the user in
designing equivalent grammar versions (i.e., different grammars that generate
precisely the same language) with different quality levels according to differ-
ent perspectives (enhancing the grammar’s usability or its efficiency). Instead
of producing a final figure quantifying (or grading) the grammar’s quality, we
intend to create a database (a kind of CBR system) to collect grammars, metric
values computed, and the expert’s grading, in order to use machine learning
algorithms to infer the grading in future cases. This will enable us to provide
a more elaborated report on the grammar quality and suggest a set of possible
transformations to improve the grammar (according to different perspectives).

As future work we also plan to related the grammar with the generated
language in order to understand until which point is it possible to discuss also
the language quality.

Acknowledgment. This work is co-funded by the North Portugal Regional Opera-
tional Programme, under the National Strategic Reference Framework (NSFR), through

144 J. Cruz et al.

the European Regional Development Fund (ERDF), within project GreenSSCM -
NORTE-07-02-FEDER-038973.

References

1. Alves, T.L., Visser, J.: A case study in grammar engineering. In: Gašević, D.,
Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 285–304. Springer,
Heidelberg (2009)

2. Carvalho, N.R., Almeida, J.J., Henriques, P.R., Pereira, M.J.V.: From source code
identifiers to natural language terms. J. Syst. Softw. 100, 117–128 (2015). http://dx.
doi.org/10.1016/j.jss.2014.10.013

3. Crepinsek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R., Roussel, G.: On
automata and language based grammar metrics. Comput. Sci. Inf. Syst. 7(2), 309–
329 (2010). http://dx.doi.org/10.2298/CSIS1002309C

4. Erbach, G.: Tools for grammar engineering. In: Proceedings of the Third Conference
on Applied Natural Language Processing, ANLC 1992, pp. 243–244. Association for
Computational Linguistics, Stroudsburg (1992)

5. Henriques, P.R.: Brincando às Linguagens com Rigor: Engenharia Gramatical. Tech-
nical report, Dep. de Informática, E.Engenharia da Universidade do Minho, October
2011. habilitation monography presented and discussed in a public session held in
April 2012

6. Cruz, J.: An Attribute Grammar based System to assess Grammars Quality
(PreThesis) (2015)

7. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14(3), 331–380 (2005). http://doi.acm.
org/10.1145/1072997.1073000

8. Lämmel, R.: Grammar testing. In: Hussmann, H. (ed.) FASE 2001. LNCS,
vol. 2029, pp. 201–216. Springer, Heidelberg (2001). http://dx.doi.org/10.1007/3-
540-45314-815

9. Power, J.F., Malloy, B.A.: A metrics suite for grammar-based software. J. Softw.
Maintenance 16(6), 405–426 (2004). http://dx.doi.org/10.1002/smr.293

http://dx.doi.org/10.1016/j.jss.2014.10.013
http://dx.doi.org/10.1016/j.jss.2014.10.013
http://dx.doi.org/10.2298/CSIS1002309C
http://doi.acm.org/10.1145/1072997.1073000
http://doi.acm.org/10.1145/1072997.1073000
http://dx.doi.org/10.1007/3-540-45314-8 15
http://dx.doi.org/10.1007/3-540-45314-8 15
http://dx.doi.org/10.1002/smr.293

A Syntax-Directed Model Transformation
Framework Based on Attribute Grammars

Antonio Sarasa-Cabezuelo and José-Luis Sierra(&)

Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
{asarasa,jlsierra}@fdi.ucm.es

Abstract. Model transformation is a key aspect of model-driven software
development because it enables the automatic derivation of different interpreta-
tions of a system model. In many scenarios (e.g., design of domain-specific
languages), models usually have implicit identifiable primary tree-like syntactic
structures, on which additional secondary relationships are imposed to yield the
final model graphs. Therefore, in these scenarios it seems natural to address the
processing of these models on the basis of their underlying syntactic structure. For
this purpose, we have developed AGT, an experimental transformation frame-
work based on attribute grammars, which takes full advantage of the underlying
syntactic structure of source models. For models in which this structure is clearly
identifiable, the approach could result more natural and easier to use and maintain
than other more conventional model transformation approaches (e.g., those based
on more standard model transformation languages).

Keywords: Attribute grammar � Model-driven development � Model
transformation

1 Introduction

A key aspect of model-driven software development is model transformation, i.e. the
translation of models conforming a particular meta-model (source meta-model) into
models conforming another meta-model (target meta-model).

This paper focuses on formal grammars for model transformation, specifically
attribute grammars [3]. For this purpose it describes a Java framework for model
transformations called AGT (Attribute Grammar Transformer), which enables speci-
fications based on attribute grammars to describe model to model transformations in a
declarative style. Contrarily to the main trend in the grammar-based approach, the use
of graph grammars [2], attribute grammars enable syntax-directed transformation
processes organized around the tree-like primary structure of the model, while graph
grammars adopt a template-based approach, in which subgraphs are matched and
transformations applied on the matched subgraphs. Therefore, attribute grammars can
be more appropriate for models with a well-distinguished hierarchical structure (e.g.,
models arising in the modelling of domain-specific languages). In addition, contrarily
to other works of using attribute grammars for model transformation, like [1], the
proposal described in this paper is not based on canonical textual encodings of the
models, but it adapts the attribute grammar formalism to work directly on object

© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodríguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 145–152, 2015.
DOI: 10.1007/978-3-319-27653-3_14

networks (and, therefore, on the in-memory representation of models). By doing it so,
the hierarchical primary structure of models is fully exploited to guiding the trans-
formation process in a syntax-directed fashion.

The rest of the paper is structured as follows. Section 2 briefly introduces attribute
grammars. Section 3 gives an overview of AGT. Section 4 describes AGTL, the
transformation specification language included in AGT. Finally, Sect. 5 outlines some
conclusions and lines of future work.

2 Attribute Grammars

Attribute grammars is a formalism that allows the description of the syntax and the
translational semantics of programming languages [3]. The syntax is described using
context-free grammars and the semantics are described using semantic attributes
associated with the grammar symbols and semantic equations associated to each
grammar rule.

Semantic attributes can be synthesized or inherited, and they take values in the
nodes of the parse trees associated to the sentences of the language. Each equation
describes relations between attributes that indicate how the values of the synthesized
attributes in the rule LHS and the inherited attributes in the rule RHS are computed by
applying semantic functions on the attributes used in this calculation.

A key property of the attribute grammars concerns the order of application of the
semantic equations. In this sense, it is not necessary to explicitly specify such an order
i.e., the evaluation order of the attributes, because it is derivable from the dependencies
among attributes imposed by the equations. It makes of attribute grammars a more
declarative and high-level formalism than other approaches to syntax-directed trans-
lation specification (e.g., translation schemata).

3 The AGT Framework

AGT (Attribute Grammar Transformer) is a model transformation framework based on
attribute grammars implemented and tightly integrated with the Java language. Indeed,
the framework is oriented to transform (or, more generally, to process) models encoded
as Java object networks (in this way, meta-models are mirrored on sets of Java classes).
This framework specializes Java by providing the following main components:
(i) AGLT (Attribute Grammar Transformation Language), a declarative specification
language for attribute grammar-based model transformations, (ii) AGT transformer, a
transformation engine that implements the operational semantics of AGTL, and
(iii) AGLT runtime, a set of Java utility classes that can be used during transformation.

Transformations according to AGT actually integrate two well-differentiated parts:
(i) on one hand, a syntax-directed specification provided as an AGTL attribute gram-
mar, and (ii) on another hand, additional Java code implementing the specific
machinery required to carry out the implementation.

The connection between the two parts is given by a semantic class, which
implements the semantic functions used in the AGLT specification in terms of the

146 A. Sarasa-Cabezuelo and J.-L. Sierra

additional Java machinery provided. This organization is analogous to that followed in
other syntax-directed approaches to information processing developed in our group
(e.g., XLOP for XML processing [5] or JLOP [4] for JSON processing).

4 AGTL: The AGT Specification Language

The core component of AGT is AGTL (Attribute Grammar Transformation Lan-
guage), a specification language for attribute grammar-based model transformations.
This section summarize the AGTL concrete syntax (Subsect. 4.1), the AGTL abstract
syntax (Subsect. 4.2) and the AGTL operational semantics (Subsect. 4.3), and it gives a
small example of using AGTL (Subsect. 4.4).

4.1 AGLT Concrete Syntax

A specification in AGTL is composed by (see Fig. 1): (i) a declaration of non-terminal
symbols and their associated attributes, and (ii) a specification of the attribute grammar
rules. Each rule includes a context-free part connecting non-terminals with classes of
the source model, and semantic equations specifying how to compute the required
attributes in the rule context.

Each non-terminal has associated rules in the AGTL grammar. AGTL distinguishes
between three different types of rules:

• Class rules. Rules applicable to objects of a given class. A class rule specifies such a
class of objects to which the rule can be applied, a field specification (see below),
and, in addition to the set of first visit equations, a set of cut equations.

• Null rules. Rules applicable to null values.

Fig. 1. Textual syntax of the AGTL language

A Syntax-Directed Model Transformation Framework 147

• Bridge rules. Rules used to forward the processing of an object to a more specific
rule depending on its class. Thus, these rules are a simple but yet effective way of
dealing with inheritance in the source model. The forwarding is carried out by
providing a non-terminal name.

Concerning field specifications in class rules, each field specification makes it
possible to select the rule to be applied in order to analyze a field of the matched object.
The rule to apply is selected by providing a non-terminal name.

Concerning semantic equations, more representative AGTL rules include two dif-
ferent types of equations:

• First-visit equations. These equations are used the first time the rule is applied to an
object.

• Cut equations. These equations are used when the rule is applied to an
already-analyzed object.

This organization of semantic equations in first-visit and cut packages is necessary
to enable the application of AGLT to arbitrary object graphs.

Concerning semantic expressions used in semantic equations, AGTL allows two
types of basic expressions: (i) references to attributes in the rule, and (ii) field value
extraction expression, which make it possible to query the values of fields in objects to
which the rules are applied (the operator @ is used on field names). In this way, it
makes apparent how semantic attributes in AGLT do not correspond to class fields, but
they represent placeholders in which to store transformation results, as it is usual with
attribute grammars.

Finally, compound expressions are formed by applying semantic functions to
simpler expressions.

4.2 AGTL Abstract Syntax

The AGTL abstract syntax is given by a set of classes that represent the different
concepts of the language. Figure 2 summarizes this abstract syntax.

The Grammar class represents whole AGLT specifications. The NonTermi-
nalDescription class represents descriptions of non-terminals. synAttributes
and inhAttributes lists in NonTerminalDescription allows for the
description of synthetized and inherited attributes.

The Rule abstract class represents AGLT rules. The non-terminal to which the rule
is associated is given by the lhs field. In addition, the firstVisitEquations list
represents the list of conventional first-visit semantic equations associated to the rule.
This class is, in its turn, specialized by one concrete class for each type of rule
envisioned by AGLT:

• Class rules are modeled by the ClassRule class. The class of objects to which the
rule can be applied is given by theClass field. The field specification is modelled
by the FieldSpecification class (field gives the name of the field and
nonTerminalName the name of the non-terminal used to index the rule to apply).
Finally, the cutEquations list represents the list of cut equations associated to
the class rule.

148 A. Sarasa-Cabezuelo and J.-L. Sierra

• Null rules are modeled by the NullRule class.
• Bridge rules are modelled by the BridgeRule class. Here theclass identifies

the class of objects to which the rule is applied and the nonTerminalName binds
to the non-terminal used to forward the processing.

Semantic equations are modelled by the Equation class. In this class lhs rep-
resents the equation’s left-hand side, and rhs the equation’s right-hand side.

Attribute references are modelled by the AttributeReference class (the name
of the attribute is given by attributeName, the name of the non-terminal by
nonTerminalName, and the occurrence number of the non-terminal in the rule by
index).

Finally, semantic expressions are modelled by the SemanticExpression class.
The FieldExtraction class models field value extraction expressions, and the
Function class models compound expressions (the semantic function applied is
represented by the functionName field).

4.3 AGTL Operational Semantics

With respect to operational semantics, AGTL follows a syntax-directed translation
model. More particularly, transformation is organized in two different stages:

• During the first stage, the analysis stage, syntax rules are applied in order to make
the syntactic structure of the source model explicit. This structure is represented as a

Fig. 2. AGTL abstract syntax

A Syntax-Directed Model Transformation Framework 149

parse tree that covers the objects from the source models. The nodes of this tree are
labelled with non-terminals and they are linked with the corresponding objects in
the source model. Its arcs are labelled with field names of those objects.

• During the second stage the semantic equations are used to find the values of the
attributes for the nodes of the parse tree. As usual, the order in which these values
are obtained must be consistent with a topological order of the corresponding
dependency graph.

In AGT these operational semantics are implemented by the aforementioned AGT
transformer.

4.4 An Example

In order to illustrate the use of AGTL, we will address the AGLT specification of the
classic example of a simple mapping of class models into relational database schemata.
Figure 3 shows the structure of the source and target meta-models.

The transformation will map each class in the class model into a table in the
relational schema. The table name will match the class name. Columns names will
match attribute names in the classes. The types of the columns will depend on the type
of attributes, so the type of the column will be the type of the attribute if it is a primitive
type (boolean, integer, char) or “fk “(foreign key) followed by the class name if
the type of the attribute is another class.

Figure 4 shows the transformation specified in AGTL. In the specification, the
inherited attribute itables is intended to contain the set of tables already con-
structed, and the synthetized attribute tables the overall set of tables. The class
com.agt.core.Array is a utility class of the AGT runtime that is useful in order to
deal with collections (the AGT transformer automatically wraps collections using this
utility class). Objects of this class exhibits two fields (first: the first element of the
collection, butfirst: a collection made of the rest of fields). The implementation of
the semantic functions used must be provided to the AGT transformer as a plain Java
class (the semantic class of this transformation) In addition, it is also needed to indicate

(a) (b)

Fig. 3. (a) Source metamodel; (b) Target metamodel

150 A. Sarasa-Cabezuelo and J.-L. Sierra

to this transformer: (i) a root object in the source model, and (ii) a root non-terminal in
the grammar. Then, the transformation will proceed according the AGTL operational
semantics outlined in the previous subsection.

5 Conclusions and Future Work

This paper has presented a model transformation framework based on attribute
grammars, which is highly integrated in Java. The aim of the framework is similar to
the presented in [1], but differs in that attribute grammars operate on object networks
instead of on textual encodings of the source models. It makes it possible to exploit the
primary hierarchical structure of models in a more natural way. Indeed, the approach

Fig. 4. Example of transformation in AGTL

A Syntax-Directed Model Transformation Framework 151

can be particularly well-suited for source models with well-distinguished primary
tree-like structures (like those arising, for instance, when modeling domain-specific
languages).

We are currently working on the static typing of AGLT specifications. As future
lines of work we envision the integration of AGT with standard metamodeling pro-
posals (e.g., MOF or Ecore), the creation of an IDE for AGT, the efficiency analysis of
the AGT transformer, and an in-depth empirical evaluation of our proposal. This
evaluation will include a comparison with other proposals on a representative work-
bench of examples, as well as an empirical study concerning usability and efficacy with
developers.

Acknowledgements. We would like to thank Juan-Pablo Gracia-Benitez by contributing to a
preliminary implementation of the framework. This work has been partially supported by the
BBVA Foundation (research grant HUM14_251), by the Spanish R&D&I Plan (research grant
TIN2014-52010-R), and by Santander-UCM GR3/14 (group number 962022).

References

1. Dehayni, M., Féraud, L.: An approach of model transformation based on attribute grammars.
In: Masood, A., Léonard, M., Pigneur, Y., Patel, S. (eds.) OOIS 2003. LNCS, vol. 2817,
pp. 412–423. Springer, Heidelberg (2003)

2. Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph transformation:
volume I. foundations. World Scientific Publishing Co., River Edge (1997)

3. Paakki, J.: Attribute grammar paradigms - a high-level methodology in language imple-
mentation. ACM Comput. Surv. 27(2), 196–255 (1995)

4. Sarasa-Cabezuelo, A., Sierra, J.L.: Grammar-driven development of JSON processing
applications. In: FedCSIS 2013, pp. 1545–1552 (2013)

5. Sarasa-Cabezuelo, A., Sierra, J.L.: The grammatical approach: a syntax-directed declarative
specification method for XML processing tasks. Comput. Stand. Interfaces 35(1), 114–131
(2013)

152 A. Sarasa-Cabezuelo and J.-L. Sierra

An AST-based Tool, Spector, for Plagiarism
Detection: The Approach, Functionality,

and Implementation

Vı́tor T. Martins, Pedro Rangel Henriques(B), and Daniela da Cruz

Departamento de Informática/Centro Algoritmi,
Universidade do Minho, 4710-057 Braga, Portugal

{vtiagovm,pedrorangelhenriques,danieladacruz}@gmail.com
http://www.di.uminho.pt/eng/

Abstract. We propose a methodology using abstract syntax trees for the
detection of plagiarism in source code, within an academic environment.

We show the architecture and decisions that came before we produce
our own solution (Spector), after conducting a study of the methods and
tools in existence. An example is then shown, which goes through and
explains each of the algorithms steps.

Finally, conclusions are drawn noting that such a system, while not
the most efficient, produces accurate results.

Keywords: Software · Plagiarism · Detection · Comparison · Test

1 Introduction

In our previous work [3], we discuss the results of our search for source code
plagiarism detection methodologies and tools. We found several candidates but,
after testing their accuracy by using files modified to hide plagiarism, we saw
that most solutions had trouble with some cases.

Given the desire to make detections upon programs and our experience in
language engineering, we were motivated to use a compilation aproach. After
some research and discussion, we chose to use Abstract Syntax Trees (ASTs)
since, by abstracting source code, we can analyze its functionality. Such tools
exist and were said to be accurate [1,2] but were not available for download or
use. To counteract that lack, our contribution will be the development of one
such tool and make it openly available.

2 Approach

Figure 1 shows the representation of an AST generated from a source code. We
can see that the original source code defines a function (sum) that adds two
integers and uses it to print an equation that adds 4 to 7.

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 153–159, 2015.
DOI: 10.1007/978-3-319-27653-3 15

154 V.T. Martins et al.

Fig. 1. An AST generated from a source code

Knowing that this representation gives us an ordered network of nodes, while
retaining the information about their type and contents, it is easy to see that it
provides enough information for source code comparison.

In order to facilitate the generation of ASTs, we have chosen to use ANTLR1

[4] which allows us to generate parsers from grammar files, which can translate
source code into an AST automatically.

2.1 Target Characteristics

As previously said, by using an intermediate abstraction, we can easily ignore
specific characteristics. So we will focus on those that can be modified without
altering the source code functionality. Namely Identifiers (the names of classes,
variables, etc.), Expression elements (for ex.: x,>, 1), Conditionals (like if and
while) and Blocks (a group of statements enclosed between {}).

This means we will ignore other characteristics like comments, as we are
focusing on the source codes functionality. For example, if we wanted to compare
Identifiers we do not need to check their scope or type, we can simply see if they
are used in the same places and have similar behaviors.
1 ANother Tool for Language Recognition.

An AST-based Tool, Spector, for Plagiarism Detection 155

2.2 Architecture

After making our decisions on how our system would work, we gave it the name
of Spector (Source insPECTOR). We also produced a diagram (in Fig. 2) that
shows the various parts and how they relate.

Fig. 2. A diagram of the interaction between the systems parts

In Fig. 2 we can observe that given a Grammar G, we can produce a
Parser+TreeBuilder TB, using ANTLR. This TB can then be used to trans-
late a Program P into an AST. Given a pair of Programs (let us say P1 and
P2), a TB will be used to produce AST1 and AST2. These ASTs will then
be delivered to an Inspector which will produce measures and send them to a
Presenter which will output the results. To support a new language, we would
simply replace G and generate a new TB.

3 Functionality

The functionality is split into 5 algorithms that each produce a measure, along
with a final one that calculates the global measure.

Given source codes S1 and S2, we first check if they are not exact copies by
comparing: the number of nodes, the number of nodes by category2 and finally,
the contents of every node. When all those comparisons match, we return a
measure of 100 %, which avoids using the other algorithms.

For other cases, we have algorithms for each target (listed in Sect. 2.1). While
these algorithms work in different ways, they follow a base functionality:

1. Build a map per source, associating elements to their occurrences (M1,M2),
2. Calculate the highest number of items between both Ms (A),
3. For each pair of items between M1 and M2,

(a) If their number of occurrences is similar,

2 In grammatical terms, these categories are the terminals that were assigned to inte-
gers by ANTLR (in a ṫokens file).

156 V.T. Martins et al.

i. Add the pair to a map (Candidates),
4. Calculate the size of the Candidates map (B),
5. Measure += (B/A) ∗ W1,
6. For each pair in the Candidates map,

(a) If their number of occurrences by category is similar,
i. Add the pair to a map (Suspects),

7. Calculate the size of the Suspects map (C),
8. Measure += (C/B) ∗ W2,
9. For each pair in the Suspects map,

(a) If they have a similar behavior (specific to each algorithm),
i. Add the pair to a map (Equivalences),

10. Calculate the size of the Equivalences map (D),
11. Measure += (D/C) ∗ W3,
12. For each pair of identifier names in the Equivalences map,

(a) If their contents are the same,
i. Add the pair to a map (Copies),

13. Calculate the size of the Copies map (E),
14. Measure += (E/D) ∗ W4,
15. Return Measure.

The Wi variables indicate weight constants and were given a value of 0.18,
0.42, 0.38 and 0.02, respectively. We chose these values based on a few tests.
However, they must be adjusted through the use of further tests.

Of course, each algorithm is targeting something different, so they have the
following differences:

Algorithm that detects Identifiers: The map (M) associates an Identifier name to
its Occurrence nodes (IOM), which is similar if their parent nodes have the same
category and the (non-identifier) neighbors3 have the same contents.

Algorithm that detects Expression elements: The map (M) associates an Expression
element to its Occurrence nodes (EOM), which is similar to those whose (non-
identifier) neighbors contents are equal.

Algorithm that detects Conditionals: The map (M) associates a Conditional to
its Condition node (CCM), which is similar to those whose condition has (non-
identifier) nodes with the same contents.

Algorithm that detects Blocks: In this case, two maps are created: one associates
a Block node to a Name4 (BNM) and the other associates each Block node to
all of its Children (BCM). The children are: every node inside the block along
with the nodes from called blocks. This is done by checking if nodes are calls to
internal methods, in which case the contents of the called block are added.
3 The other children of this nodes parent.
4 This name is the identifier of the parent block, in other words, “mainblock” has a

block with “main” as its name.

An AST-based Tool, Spector, for Plagiarism Detection 157

Main Algorithm: This algorithm calculates a final measure from those produced
by the previous algorithms. That final measure is a similarity measure of a pair
of Suspects.

Let us consider that each algorithm was implemented in a method Methodi,
where i is a number from 1 to 5. With Method1 being the one which determines
if two source codes are exact copies. The algorithm works as follows:

1. X = Array with 5 elements,
2. for each method i,

(a) X[i] = Methodi(SA, SB),
3. If X[1] is different from 0,

(a) Return X[1].
4. Otherwise

(a) Calculate the number of Xs from 2 to 5 that are not 0 (A),
(b) Measure =

(
X[2]+X[3]+X[4]+X[5]

A

)
∗ 100,

(c) Return Measure.

As we can see, the algorithm either returns the X[1] measure (which is either
0 % or 100 %) or the average computation done using the other results (X[2] to
X[5]) that were not 0 %.

Threshold. Since the algorithms match the number of occurrences when check-
ing if the elements should be added to a Candidates map, the comparisons will
be limited to cases with an equal number of occurrences. Which led us to the
addition of a similarity threshold, which specifies the strictness of the compar-
isons. As an example: If we were comparing the number of nodes within two
blocks and the first had 10 nodes, a threshold of 20 % means that the second
AST must have between 8 and 12 nodes to be considered similar.

4 Implementation

To keep Spector modular, we split its functionality into two packages. A lang
package which contains a Suspect class that will have the input generated from a
source code and, for each language: The Parser+TreeBuilder classes and a Nexus
class which interfaces with them. Along with a spector package that contains
the main classes (Spector, Inspector and Presenter) along with their auxiliary
classes (FileHandler and Comparison).

4.1 Features

We list below the main features provided by our tool:

1. Can output summary and/or detailed results,
2. Accepts submissions as groups of files,
3. Works offline,
4. Available as Open Source.

It is important to note that, the first two are relevant for any plagiarism detector
and the other two are crucial since we want the tool to be available for integration
into other systems.

158 V.T. Martins et al.

5 Example

A complete example comparing 2 similar files (AllIn1 and AllIn2), from a
semantic point of view, can be found with a detailed description at the follow-
ing website: http://www.di.uminho.pt/∼gepl/Spector/paper/slate15/examples/
algorithms.pdf

Notice that the example finishes with the following computation:
(

0.941 + 0.941 + 0.98 + 0
3

)
∗ 100 = 95.4%

This gives us a similarity measure of 95.4 %, which indicates that the source
codes are very similar. If we use the tool, produced following our methodology,
to compare this test, we would read a different result in the HTML summary
outputed and reproduced in Fig. 3.

Fig. 3. The HTML produced, showing the similarity measure.

As we can see, instead of being close to the expected 95.4 %, the result is
instead 72.242 %. Detailed results show that the calculation was instead:

(
92.45 + 94.017 + 98 + 4.5

4

)
= 72.242%

This was due to the last algorithm returning a 4.5 as its similarity measure. The
algorithms details show that the tool mistakingly associated the AllIn1 to the
main block in the Candidates map, due to them having the same number of
child nodes. This shows us the importance of the weights in the algorithms since
we want to avoid such false negatives as well as false positives.

6 Conclusion

In this paper, we have discussed our approach on building a tool that will detect
plagiarism in source code named Spector. We have defined its structure and the
decisions that were behind it. We have also seen the algorithms that will drive
the comparisons and how they are used together to produce similarity measures.
Seeing as we focused on detecting similarity between source code structures, the
resulting tool is a source code similarity detector and is likely to report false-
positives when faced with smaller code.

http://www.di.uminho.pt/~gepl/Spector/paper/slate15/examples/algorithms.pdf
http://www.di.uminho.pt/~gepl/Spector/paper/slate15/examples/algorithms.pdf

An AST-based Tool, Spector, for Plagiarism Detection 159

As future work we have the improvement of the results in terms of infor-
mation about the associations established. Along with the upgrade of the Java
grammar, to support the latest version of the Java language and the extension
with grammars to cope with other languages.

The next step will be to perfect the tools implementation and test it against
bigger test cases so that an optimal threshold and weights may be determined.

Acknowledgments. This work is co-funded by the North Portugal Regional Oper-
ational Programme, under the National Strategic Reference Framework (NSFR),
through the European Regional Development Fund (ERDF), within project
GreenSSCM - NORTE-07-02-FEDER-038973.

References

1. Bahtiyar, M.Y.: JClone: syntax tree based clone detection for Java. Master’s thesis,
Linnæus University (2010)

2. Cui, B., Li, J., Guo, T., Wang, J., Ma, D.: Code comparison system based on
abstract syntax tree. In: 2010 3rd IEEE International Conference on Broadband
Network and Multimedia Technology (IC-BNMT), pp. 668–673 (2010)

3. Martins, V.T., Fonte, D., Henriques, P.R., da Cruz, D.: Plagiarism detection: a
tool survey and comparison. In: Pereira, M.J.V., Leal, J.P., Simões, A. (eds.)
3rd SLATE. OASIcs, vol. 38, pp. 143–158. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2014). http://drops.dagstuhl.de/opus/volltexte/
2014/4566

4. Parr, T.J., Quong, R.W.: ANTLR: a predicated-LL(k) parser generator. Softw.-
Pract. Experience 25(7), 789–810 (1995). http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.15.70

http://drops.dagstuhl.de/opus/volltexte/2014/4566
http://drops.dagstuhl.de/opus/volltexte/2014/4566
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.70
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.70

Towards the Generation of Graphical Modelling
Environments Aided by Patterns

Antonio Garmendia(B), Ana Pescador, Esther Guerra, and Juan de Lara

Modelling and Software Engineering Research Group,
Computer Science Department, Universidad Autónoma de Madrid, Madrid, Spain

antonio.garmendia@uam.es

http://miso.es

Abstract. Model-Driven Engineering (MDE) promotes the use of mod-
els to conduct all phases of software development in an automated way.
Such models are described using Domain Specific Modelling Languages
(DSMLs). While the definition of DSMLs and their supporting environ-
ments are recurring activities in MDE, they are mostly developed ad-hoc
from scratch. This paper proposes the use of patterns to describe the
abstract and concrete graphical syntax of DSMLs, and to automate the
generation of a graphical modelling environment for them.

Keywords: Model-Driven Engineering · Domain specific languages ·
Patterns · Graphical modelling environments

1 Introduction

Model-Driven Engineering (MDE) promotes a model-centric approach for soft-
ware development, where models are used to specify, design, test, simulate and
generate code for applications. While models can be described using general-
purpose modelling languages, like UML, it is frequent the use of Domain Specific
Modelling Languages (DSMLs) focussed on the particularities of a domain [8].

Hence, the creation of DSMLs is recurrent in MDE, for which one needs to
describe their abstract and concrete syntax, their semantics, and developing a
suitable modelling environment for them. Although there are software frame-
works to ease the development of textual and graphical environments [8,10,12],
the creation of DSMLs is mostly an ad-hoc process lacking the ability to build
on existing knowledge coming from the construction of similar DSMLs.

To simplify the creation of DSMLs, we propose their assisted construction
by means of patterns. In particular, domain patterns describe recurring concepts
common to a domain, and concrete syntax patterns gather standard representa-
tion options for DSMLs and enable the synthesis of modelling environments. As
a proof of concept, we show a prototype implementation for Eclipse.

The remaining of the paper is organized as follows. First, Sect. 2 introduces
our approach. Then, Sect. 3 explains how to build graphical DSMLs with pat-
terns. Next, Sect. 4 reviews related works, and finally, Sect. 5 concludes.
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 160–168, 2015.
DOI: 10.1007/978-3-319-27653-3 16

Towards the Generation of Graphical Modelling Environments Aided 161

NodeElement

GraphicElement

color: String
paletteName: String
paletteIcon: String

IconElement

filePath: String

radius: float width: float
height: float

width: float
height: float

Rhombus

@abstractelements

0..*

target
source

0..*

0..*

link
*

0..*

Container Element
@abstract

0..*

0..*

Root

EdgeElement

0..*

Circle Rectangle0..*0..*

label:String
StateMachine

StateVertex

*states

name: String

Transition

name: String

*
source

target

outgoing

incoming

*
*

Simple
State

Final
State Event

trigger 0..1
Initial
State

transitions

0..1 0..1
0..1

state-machine domain pattern 0..1

contains

graph-based concrete syntax pattern

Fig. 1. Domain pattern (left). Graph-based concrete syntax pattern (right).

2 Overview

The design of a DSML encompasses several aspects, including abstract syntax,
concrete syntax, and semantics. In addition, editing DSML models is usually
performed using a dedicated environment providing services like model persis-
tence, conformance checking, and others more advanced. We propose the use of
patterns to address all these aspects, in order to facilitate and speed up their
definition. By lack of space, we focus on patterns dealing with the abstract and
concrete syntax, as well as the generation of modelling environments from them.

To deal with the abstract syntax, we propose domain patterns, gathering typ-
ical requirements of similar languages within a domain, and documenting their
variability. Here, there may be patterns for workflow languages, arithmetical or
logical expressions, variants of state machines, query languages, and component-
based architectural languages, among others. A DSML may use several domain
patterns, customized for a given need, and extended with other domain-specific
concepts. These patterns may help to build a DSML more quickly and trust-
worthily, in a constructive way. As an example, Fig. 1 (left) shows a simplified
domain pattern for state machines. Pattern elements have a cardinality, which
governs how many times they can be instantiated (1 if no cardinality is speci-
fied). For instance, any application of the state-machine pattern should have one
SimpleState, while it may lack InitialState and FinalState.

On the other side, concrete syntax patterns characterize families of similar
representations [2], like textual, graphical, tabular or form-based. In the case
of a graphical syntax, aspects like layouting or zooming may be configured.
Moreover, concrete syntax patterns can be used to automate the generation of
editors supporting the defined syntax (which otherwise should be implemented
by hand), and can be attached to domain patterns in order to define different
default visualization options for them. As an example, Fig. 1 (right) shows a
simplified pattern for graph-based representation. This pattern permits assigning
graphical elements (Circles, Rectangles, etc.) to elements in the DSML meta-model.

162 A. Garmendia et al.

Altogether, in order to define DSMLs, we propose a reutilization-based,
pattern-centric approach, which we have implemented in our prototype tool
DSL-tao (http://jdelara.github.io/DSL-tao/). DSL-tao enables the construction of
meta-models, where some meta-model parts can be defined through the applica-
tion of existing patterns in a repository. Basic pattern application is performed
in three steps. First, a pattern is selected and a wizard guides the designer
in its application (see window 1 in Fig. 2 for the wizard of the state-machine
pattern). In this step, variants and attached patterns can also be selected (see
next section). Then, the designer can bind meta-model elements to pattern ele-
ments. Finally, the unbound pattern elements are automatically created new in
the meta-model, annotated with their participant role in the pattern (window 2
in Fig. 2).

The next section presents two ways to describe and generate graphical envi-
ronments for DSMLs using patterns.

3 Defining Graphical DSMLs Through Patterns

We propose two ways to describe the graphical syntax of a DSML. In the first
one, domain patterns have attached a default visualization, which the DSML
designer just reuses. This option profits from commonly agreed means to rep-
resent domain patterns (e.g., state machines, or component-based systems). In
the second option, a dedicated wizard is used to apply a graphical pattern over
the elements of the DSML meta-model. This approach is to be used when the
DSML needs a non-predefined, or special syntax. Next, we present these two
possibilities, as well as the environments generated through their use.

3.1 Using the Visual Syntax Attached to Domain Patterns

Domain patterns may have attached concrete syntaxes, accounting for typical
representations of the domain concepts. For instance, Fig. 2 shows the applica-
tion of the state-machine pattern. The pattern has three concrete syntax patterns
attached: one for the standard graph-based representation, another for its repre-
sentation as tables, and another using forms. Designers can select one of them.
In this way, when the domain pattern is applied, the concrete syntax pattern will
be automatically instantiated as well. Thus, this approach permits predefining a
set of concrete visualizations, which can be reused “as is” by DSML designers.

3.2 Using the Dedicated Custom Wizard

Sometimes, the designer requires a fine grained control of the concrete syn-
tax for the DSML, or he has not used domain patterns with attached concrete
syntax. In such cases, the designer can still use a concrete syntax pattern to
automate the generation of a modelling environment, for which he needs to map
meta-model elements to concrete representations in the selected concrete syntax
pattern. Since the application of concrete syntax patterns has many specificities

http://jdelara.github.io/DSL-tao/

Towards the Generation of Graphical Modelling Environments Aided 163

Fig. 2. The wizard for pattern application (1). Applied pattern (2).

(like selecting figures for nodes and decorations for edges), patterns may provide
dedicated wizards for their application. For instance, the graph-based concrete
syntax pattern has a customized wizard that implements heuristics to decide
which classes will be represented as nodes, which ones as edges, the attributes
to display, and the nodes that are containers of other nodes. Then, the designer
can refine the inferred concrete syntax and fine-tune the visual representation
for nodes and edges.

Figure 3 shows the wizard to customize the following heuristics:

– Root strategies: These are alternatives to select the root class to be used in
diagrams. The root class is usually a class that contains all elements of the
model, directly or indirectly. The strategy Contains more classes counts how
many classes contain each class, and selects the one that contains more. The
strategy Class with no parents suggests classes that are not contained in other
classes. Both strategies are based on the tree of containment references defined
in the meta-model. The last strategy (Modularity pattern) selects as root the
meta-model classes annotated as Unit by a modularity pattern [5] (not shown
in this paper) that allows organizing models in a modular way.

– Label selection: These heuristics are used to decide the data that node-like
classes will display close to the node representation. The strategy First string
attribute displays the first string attribute of the class, and Identifier of the

164 A. Garmendia et al.

Fig. 3. Dedicated wizard for assigning a graph-based concrete syntax. Step 1: selection
of heuristics.

class its identifier. The strategy Parameter string attribute receives several
input strings, and selects the attribute whose name contains some of them.

– Arc strategies: They are used to select edge-like classes. In this case, we select
the classes that define two non-containment references with lower bound 0 or
1, and upper bound 1. These two references will be mapped to the source and
target of the edge representation for the class. While the first strategy (Sim-
ple direction arc strategy) selects the source and target references randomly,
the second one (Parameter direction arc strategy) takes into account possible
naming conventions (e.g., source or src for the source reference).

– Link & compartment & affixed selection strategies: These strategies identify
the references that will be displayed graphically as edges, compartments or
affixes. If the strategy Containment references as links is selected, all con-
tainment references will be represented as links. If the selected strategy is
Containment references as compartments, they will be displayed as contain-
ers for the objects conformant to the type of the reference. Finally, if the
chosen strategy is Containment references as affixed, the nodes will be placed
on the border of another element.

The wizard uses the heuristics to infer the optimal concrete representation of
meta-model elements, which are proposed to the designer in a second step (see
Fig. 4). The, the designer is allowed to modify the inferred syntax, as well as

Towards the Generation of Graphical Modelling Environments Aided 165

Fig. 4. Dedicated wizard for assigning a graph-based concrete syntax. Step 2: cus-
tomization of inferred concrete syntax.

Fig. 5. Dedicated wizard for assigning a graph-based concrete syntax. Step 3: cus-
tomization of appearance of nodes and edges (Color figure online).

fine-tune the concrete visualization for nodes and edges to customize the deco-
rations for the start and end of edges, the types of figures for nodes, their size
and colour. This last step is shown in Fig. 5.

166 A. Garmendia et al.

Fig. 6. Generated graphical modelling environment.

Finally, although we have presented the wizard for the graph-based concrete
syntax pattern, the same idea could be used to implement further strategies
for this or other concrete syntax patterns. Currently, we support tabular and
form-based representations, in addition to graph-based ones.

3.3 The Generated Graphical Environment

The modelling environment for a DSML can be synthesized from its meta-model.
For this purpose, DSL-tao invokes the code generators of the services associated
to the applied patterns. For graphical concrete syntax patterns, the generator
creates an Eclipse plugin that uses the Sirius graphical framework [10] as back-
end. Thus, once the meta-model is annotated with the concrete syntax pattern, a
Sirius .odesign model is generated. This model describes the shapes for nodes, the
style for edges, the mappings of graphical elements to meta-model elements, the
elements in the palette, and the actions to be performed when palette elements
are invoked. Technically, this model is created using a model transformation.
Then, the Sirius model is packaged in a plugin, which is contributed to the
modelling environment of the DSML.

Towards the Generation of Graphical Modelling Environments Aided 167

Figure 6 shows the generated graphical environment for the meta-model
shown at the bottom of Fig. 2, which was created by instantiating the default
concrete syntax pattern attached to the domain pattern for state machines.

4 Related Work

There are many tools to develop graphical modelling environments for different
applications, like meta-CASE tools [8], diagram sketching [3] or multi-formalism
modelling and simulation [4]. The advent of Eclipse has promoted frameworks
to construct visual editors as plugins, like Tiger [1], GMF [6], Eugenia [9],
Spray [11], Graphiti [7], or Sirius [10]. All these tools are model-based, except
Graphiti which provides a Java API for coding. Some generate artefacts for other
lower-level approaches, like Eugenia which is built atop GMF, and Spray atop
Graphiti. In our case, DSL-tao produces graphical editors based on Sirius. All
frameworks use code generation except Sirius, which is interpreted. The way
of specifying the concrete syntax varies: Eugenia requires annotating the meta-
model elements, Spray uses a textual DSL, GMF and Sirius require building
models that describe the concrete syntax, and Graphiti requires programming.
Our approach is closer to Eugenia, as our pattern applications result in meta-
model annotations. However, our domain patterns can attach concrete syntax
styles, which speeds up the generation of graphical environments. This feature
is unique among the mentioned tools.

5 Conclusions and Future Work

We have presented a pattern-based approach to the development of graphical
DSMLs. The approach is supported by a tool that permits applying patterns
from a repository and the automatic generation of a modelling environment. We
are currently working on defining new patterns, and developing further services
for graphical environments like support for layers and abstractions.

Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity (TIN2011-24139 and TIN2014-52129-R), the R&D programme of
the Madrid Region (S2013/ICE-3006), and the EU commission (FP7-ICT-2013-10,
#611125).

References

1. Biermann, E., Ehrig, K., Ermel, C., Taentzer, G.: Generating eclipse editor plug-
ins using tiger. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088, pp. 583–584. Springer, Heidelberg (2008)

2. Bottoni, P., Grau, A.: A suite of metamodels as a basis for a classification of visual
languages. In: VL/HCC, pp. 83–90 (2004)

3. Brieler, F., Minas, M.: A model-based recognition engine for sketched diagrams. J.
Vis. Lang. Comput. 21(2), 81–97 (2010)

168 A. Garmendia et al.

4. de Lara, J., Vangheluwe, H.: AToM3: a tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

5. Garmendia, A., Guerra, E., Kolovos, D.S., de Lara, J.: EMF splitter: a structured
approach to EMF modularity. In: XM@MoDELS, vol. 1239 of CEUR, pp. 22–31
(2014). CEUR-WS.org

6. GMF. https://wiki.eclipse.org/Graphical Modeling Framework
7. Graphiti. http://eclipse.org/graphiti/
8. Kelly, S., Tolvanen, J.: Domain-Specific Modeling - Enabling Full Code Generation.

Wiley, Hoboken (2008)
9. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck,

G.: Taming EMF and GMF using model transformation. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 211–225.
Springer, Heidelberg (2010)

10. Sirius. https://eclipse.org/sirius/
11. Spray. https://code.google.com/a/eclipselabs.org/p/spray/
12. Xtext. http://www.eclipse.org/Xtext/

https://wiki.eclipse.org/Graphical_Modeling_Framework
http://eclipse.org/graphiti/
https://eclipse.org/sirius/
https://code.google.com/a/eclipselabs.org/p/spray/
http://www.eclipse.org/Xtext/

Computer-Computer Languages

Tree String Path Subsequences Automaton
and Its Use for Indexing XML Documents

Elǐska Šestáková(B) and Jan Janoušek

Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Thákurova 9, 160 00 Prague 6, Czech Republic

{Eliska.Sestakova,Jan.Janousek}@fit.cvut.cz

Abstract. The theory of indexing texts is well-researched, which does
not hold for indexing other data structures, such as trees for example.
In this paper a simple method of indexing a tree for subsequences of
string paths in the tree by finite automaton is presented. The use of the
index is shown on indexing XML documents for XPath descendant-or-
self axis inspired queries. Given a subject tree T with n nodes, the tree is
preprocessed and an index, which is a directed acyclic subsequence graph
for a set of strings, is constructed. The searching phase uses the index,
reads an input string path subsequence Q inspired by the specific XPath
query of size m and computes the list of positions of all occurrences of
Q in the tree T . The searching is performed in time O(m) and does not
depend on n. Although the number of distinct valid queries is O(2n),
the size of the index is O(hk), where h is the height of the tree T and
k is the number of its leaves. Moreover, we discuss that in the case of
indexing a common XML document the size of the index is even smaller
O(h · 2k).

1 Introduction

Indexing a data subject preprocesses the subject and constructs an index that
allows to efficiently answer queries related to the contents of the subject. For
example, occurrences of input patterns in the subject can be located repeatedly
and quickly, in time typically not depending on the size of the subject.

The theory of text indexing, which is a result of Stringology research [5,7],
is well-researched and uses many sophisticated data structures: suffix tree and
suffix array are most widely used structures for text indexing for substrings, pro-
viding efficient solutions for a wide range of applications. The Directed Acyclic
Word Graph [2], also known as suffix (or factor) automaton, is another elegant
structure. An index of a text for subsequences is represented by a subsequence
automaton [1], which is also referred as Directed Acyclic Subsequence Graph.

Indexing other data structures, such as trees for example, have not been
developed in so many details and for so many indexing problems as in the case

J. Janoušek—This research has been partially supported by the Czech Science Foun-
dation (GAČR) as project No. GA-13-03253S and by Technology Agency of the
Czech Republic (TAČR) as project No. TA03010964 in α programme.

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 171–181, 2015.
DOI: 10.1007/978-3-319-27653-3 17

172 E. Šestáková and J. Janoušek

of indexing texts, although many practical applications serving as indexes of trees
exist. Among others, a theory of indexing a data structure allows to understand
the problem better, to find efficient solutions for particular indexing problems
and to combine various indexes for the construction of indexes for unions, inter-
sections, concatenations and other operations. In this last aspect, especially the
use of the theory of formal languages and automata is very helpful.

An XML document represents a tree hierarchical structure. To be able to
retrieve the data from XML documents efficiently, various query languages, such
as XPath, XPointer and XLink, have been designed. Indexing the structure of
XML data is an effective way to accelerate XML query processing. Therefore,
several XML documents indexes have been introduced and we can divide them
into the following four categories:

1. Graph-based methods construct a structural path summary that can be used
to improve query efficiency, especially for single path queries. To this category
we can classify following methods: DataGuides [9], 1-Index [17], PP-Index
[20], F&B-Index [12] or MTree [18].

2. Sequence-based methods transform both the source data and query into
sequences. Therefore, querying XML data is equivalent to finding subse-
quence matches. To this category we can classify following methods: ViST
[22], PRIX [19].

3. Node coding methods apply certain coding strategy to design codes for each
node in order that the relationship among nodes can be evaluated by compu-
tation. To this category we can classify, for example, XISS [13] method.

4. Adaptive methods can adapt their structure to suit the query workload.
Therefore, adaptive methods index only the frequently used queries. To this
category we can classify APEX Index [4], for example.

Each of these methods has its own advantages and disadvantages, however,
shortcomings do exist: graph-based methods often possess a lack of support-
ing complex queries; sequence-based methods are likely to generate approximate
solutions, thus requiring a great deal of validation; node coding methods are
very difficult to be applied to ever changing data source and adaptive methods
perform low efficiency on non-frequent queries.

In this paper we show that automata can be used efficiently for the purpose
of indexing XML documents. Here, we consider to support only linear XPath
queries. However, the techniques described here are relevant to the general XPath
processing problem, for two reasons. First, processing linear expressions is a sub-
problem in processing more complex queries as we can decompose them into
linear fragments. Second, this can be seen as a building block for more power-
ful processors, such as pushdown automata, that are able to process branching
queries [14]. Moreover, it is easy to combine the index presented in this paper
with our linear index of a tree for tree patterns, which represent connected sub-
graphs in a tree [11].

We introduce Tree String Path Subsequences Automaton that accepts and
indexes all linear XPath queries using descendant-or-self axis (//), i.e., all sub-
sequences of string paths in the tree. The searching phase uses the index, reads

Automaton and Its Use for Indexing XML Documents 173

an input string path subsequence Q inspired by the specific XPath query of size
m and computes the list of positions of all occurrences of Q in the tree T . The
searching is performed in time O(m) and does not depend on n. Although the
number of distinct queries is O(2n), the size of the index is O(hk), where h is
the height of the tree T and k in the number of its leaves. Moreover, we discuss
that in the case of indexing a common XML document the size of the index is
even smaller O(h · 2k).

2 Tree String Path Subsequences Automaton

We model an XML document as an ordered labelled tree where nodes correspond
to elements, and edges represent element inclusion relationships. Hence, we only
consider the structure of XML documents, and, therefore, will ignore attributes
and the text in leaves.

A node in an XML tree model is represented by a pair (label, id), where
label and id represent tag name and identifier, respectively. Without loss of
generality, we have chosen to use a preorder numbering scheme to uniquely
assign an identifier to each of the tree nodes.

Example 1. Consider following XML document D. Figure 1 shows its correspond-
ing XML tree model T .

<HOUSES>
<HOUSE name="Stark">

<LORD>Eddard Stark</LORD>
<SIGIL>Direwolf</SIGIL>
<SEAT>Winterfell</SEAT>
<VASSALS>

<HOUSE name="Karstark">
<LORD>Rickard Karstark</LORD>
<SEAT>Karhold</SEAT>

</HOUSE>
</VASSALS>

</HOUSE>
<HOUSE name="Targaryen">

<LORD>Daenerys Targaryen</LORD>
<SIGIL>Dragon</SIGIL>

</HOUSE>
</HOUSES>

As stated in the Introduction the Tree String Path Subsequences Automaton
(TSPSA) efficiently evaluates all linear XPath queries over an XML document,
where just node name test and descendant-or-self axis (//) are used. To sim-
plify description of this XPath fragment we denote such class of queries by
XP {//,name test}.

174 E. Šestáková and J. Janoušek

HOUSES,1

HOUSE,2

LORD,3 SIGIL,4 SEAT,5 VASSALS,6

HOUSE,7

LORD,8 SEAT,9

HOUSE,10

LORD,11 SIGIL,12

Fig. 1. XML tree model T of an XML document D from Example 1. Nodes in T are
represented by pairs (label, id), where label and id represent element name and preorder
identifier, respectively.

Definition 1 (XML Alphabet). Let D be an XML document. An XML alpha-
bet A of D, denoted A(D), is an alphabet where each symbol represents a label
of an XML element of D.

Example 2. Let D be the XML document from Example 1. The correspond-
ing XML alphabet A of D is A(D) = {HOUSES, HOUSE, LORD, SIGIL, SEAT,
VASSALS}.

Definition 2 (XPath Class of Queries). Let D be an XML document. By
XP {//,name test} we denote the language XPath class of queries over D generated
by the following context–free grammar:

G = ({S},A(D) ∪ {//}, {S → SS} ∪ {S → //a : a ∈ A(D)}, S)

Example 3. Let D be the XML document from Example 1 and A(D) be its
XML alphabet as stated in Example 2. Consider following two XPath queries:
Q1 = //HOUSE//VASSALS//LORD, Q2 = /HOUSES//*. The first query Q1 belongs
to XP {//,name test} class of queries over D, whereas the second query Q2 does
not, since it contains syntax constructs out of the given class (i.e., / and *).

For an XML document of size n, the automaton processes a query of size m
in time linear in m and not depending on n. The most similar approaches from
XML indexing techniques are graph-based methods constructing a structural
path summary [9,20], which usually need further tree traversal to support queries
containing // axis. Furthermore, our index is based on the idea of automata,
which makes it well understandable.

Definition 3 (Subsequence of a String). Let X = x1x2 . . . x|X| be a string.
A subsequence of X is any sequence of symbols xi obtainable by deleting zero or
more symbols from X.

Automaton and Its Use for Indexing XML Documents 175

Example 4. Assume X = HOUSES HOUSE LORD to be a string over an alpha-
bet A = {HOUSES, HOUSE, LORD}. There are 7 non-empty subsequences of
the string X: HOUSES HOUSE LORD, HOUSES HOUSE, HOUSES LORD, HOUSE LORD,
HOUSES, HOUSE, LORD.

As we attempt to index linear queries only, we can omit the branching struc-
ture and describe the XML tree model by means of its linear fragments, called
string paths. To satisfy queries with // axis we are interested in (non-empty)
subsequences of string paths.

Definition 4 (String Path). Let T be an XML tree model with height h. A
string path P = n1n2 . . . n|P |, where |P | ≤ h, of T is a linear path leading
from the root r = n1 to a leaf n|P |. Each ni of the path is associated with an
identifier and label, denoted by id(ni) and label(ni), respectively. The identifier
corresponds to a preorder number of the element.

Definition 5 (String Path Alphabet). Let P be a string path. A string path
alphabet A of P , denoted A(P), is an alphabet where each symbol represents a
label of a node in the path P .

Definition 6 (String Paths Set). Let D and T be an XML document and its
XML tree model, respectively. A set of all string paths over T is called a string
paths set, denoted by PT = {P1, P2 . . . Pk}, where k is the number of leaves in
the tree T .

Example 5. Consider the XML tree model T in Fig. 1. We show its corresponding
string paths set PT below. Each node ni in string paths is represented by its
label (i.e., label(ni)) and identifier (i.e., id(ni)) in parenthesis.

PT = {HOUSES(1) HOUSE(2) LORD(3),
HOUSES(1) HOUSE(2) SIGIL(4),
HOUSES(1) HOUSE(2) SEAT(5),
HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) LORD(8),
HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) SEAT(9),
HOUSES(1) HOUSE(10) LORD(11),
HOUSES(1) HOUSE(10) SIGIL(12)}

Definition 7 (The Longest Query of a String Path). Let P = n1n2 . . . n|P |
be a string path and X = //label(n1)//label(n2) . . . //label(n|P |) be a string over
the alphabet {//a : a ∈ A(P)} obtained from the path P . The string X is the
longest XP {//,name test} query of the string path P , denoted by maxq(P).

Tree String Path Subsequences Automaton is a subsequence automaton [1]
for a string paths set of an XML tree model representing the XML document
being indexed. The automaton solving the problem of subsequences for both sin-
gle and multiple strings is also referred as Directed Acyclic Subsequence Graph
(DASG) and is further studied in [8,10]. Therefore, we propose an XML index
problem to be another application area of DASG.

176 E. Šestáková and J. Janoušek

There are available three building algorithms for DASG for a set of strings:
right-to-left [1], left-to-right [6] and on-line [10]. However, none of them is based
on a subset construction, which gives a set of positions as answers of queries.

Therefore, we propose a construction of the Tree String Path Subsequences
Automaton consisting of two steps. First, deterministic subsequence automata
are constructed using subset construction, each accepting all non-empty subse-
quences of the longest query of a string path in PT . Second, the Tree String
Path Subsequences Automaton is built using product construction.

To build a deterministic subsequence automaton, we propose two build-
ing algorithms: Algorithm 1 (construction using nondeterministic subsequence
automaton with ε−transitions) and Algorithm 2 (direct subset construction of
deterministic subsequence automaton). Resulting automata are used to build
the Tree String Path Subsequences Automaton by Algorithm 3.

Data: A string path P = n1n2 . . . n|P |.
Result: A deterministic finite automaton M = (Q, A, δ, 0, F) accepting all

non-empty subsequences of a string maxq(P).
1. Construct a deterministic finite automaton M1 = (Q1, A, δ1, 0, F1) accepting all

prefixes of a string maxq(P):
(a) Q1 ← {0, id(n1), id(n2), . . . , id(n|P |)},
(b) A = {//a : a ∈ A(P)},
(c) δ1(0, //label(n1)) ← id(n1) and

δ1(id(ni), //label(ni+1)) ← id(ni+1), ∀i = 1, 2, . . . , |P | − 1,
(d) F1 ← {id(n1), id(n2), . . . , id(n|P |)}.

2. Insert ε-transitions into the automaton M1 leading from each state to its next
state. Resulting automaton M2 = (Q2, A, δ2, 0, F2), where
(a) Q2 ← Q1, F2 ← F1,
(b) δ2 ← δ1 ∪ δ′ and δ′(0, ε) ← id(n1),

δ′(id(ni), ε) ← id(ni+1), ∀i ← 1, 2, . . . , |P | − 1.
3. Eliminate all ε-transitions. The resulting automaton is M3.
4. Construct a deterministic finite automaton M equivalent to M3 using standard

determinisation algorithm based on a subset construction.

Algorithm 1. Construction of a deterministic subsequence automaton for a
single string path using finite automaton with ε−transitions.

Example 6. Consider the XML tree model T illustrated in Fig. 1 and one of its
string paths P = HOUSES(1) HOUSE(2) SIGIL(4). Transition diagram of the
subsequence automaton with ε−transitions for P constructed by Algorithm 1 is
shown in Fig. 2. The resulting deterministic automaton is illustrated in Fig. 3.

We now introduce definitions of a set of occurrences of an element in a string
path and function ButF irst(), which we need to refer to in the algorithm for
direct subset construction of deterministic subsequence automaton presented
afterwards.

Automaton and Its Use for Indexing XML Documents 177

0start 1 2 4
//HOUSES

ε

//HOUSE

ε

//SIGIL

ε

Fig. 2. Subsequence automaton with ε−transitions for a string path P = HOUSES(1)

HOUSE(2) SIGIL(4) from Example 6

0start 1 2 4
//HOUSES

//HOUSE

//SIGIL

//HOUSE

//SIGIL

//SIGIL

Fig. 3. Deterministic subsequence automaton for a string path P = HOUSES(1)

HOUSE(2) SIGIL(4) from Example 6

Definition 8 (Set of Occurrences of An Element in a String Path).
Let P = n1n2 . . . n|P | be a string path and e be an element node with label
occurring at several positions in P (i.e., label(ni) = label(e) for some i). A set
of occurrences of the element e in P is a totally ordered set OP (e) = {o | o =
id(ni) ∧ label(ni) = label(e), i = 1, 2, . . . , |P |}. The ordering is equal to ordering
of element prefix identifiers as natural numbers.

Definition 9 (ButFirst). Let P and OP (e) = {o1, o2, . . . , o|OP (e)|} be a string
path and a set of occurrences of an element e in the string path P , respectively.
Then we define a function ButF irst(OP (e)) = {o2, . . . , o|OP (e)|}.

Data: A string path P = n1n2 . . . n|P |.
Result: A deterministic finite automaton M = (Q, A, δ, q0, F) accepting all

non-empty subsequences of a string maxq(P).
1. ∀ni ∈ P compute OP (ni).
2. Build finite automaton M = (Q, A, δ, q0, F) accepting all prefixes of maxq(P):

(a) Q ← {q0, q1, . . . , q|P |}, A ← {//a : a ∈ A(P)}, F ← {q1, q2, . . . , q|P |},
(b) q0 ← {0} and

∀ni, where i ← 1, 2, . . . , |P |:
i. set state qi ← OP (ni),
ii. add δ(qi−1, //label(ni)) ← qi,
iii. OP (ni) ← ButF irst(OP (ni)).

3. Insert additional transitions into the automaton M :
(a) ∀i ∈ {0, 1, . . . , |P | − 1} ∀l ∈ A(P):

i. add δ(qi, //l) ← qs, if there exists such s > i where
δ(qs−1, //l) = qs ∧ ¬∃r < s : δ(qr−1, //l) = qr

ii. δ(qi, //l) ← ∅ otherwise.

Algorithm 2. A direct subset construction of a subsequence automaton for a
single string path.

178 E. Šestáková and J. Janoušek

Definition 10 Let D be an XML document. A Tree String Path Subsequence
Automaton accepts all XP {//,name test} queries of D.

Data: A string paths set PT = {P1, P2, . . . , Pk}, where k is the number of
leaves in corresponding XML tree model T .

Result: A deterministic finite automaton M = (Q, {//a : a ∈ A(D)}, δ, 0, F)
accepting all XP {//,name test} queries of XML document D with XML
tree model T .

1. Construct finite automata Mi = (Qi, Ai, δi, 0, Fi), each accepting a set of
non-empty subsequences of a string maxq(Pi) using Algorithm 2.

2. Construct deterministic Tree String Path Subsequences Automaton
M = (Q, {//a : a ∈ A(D)}, δ, 0, F) accepting a set of non-empty subsequences
of each string maxq(Pi) using product construction.

Algorithm 3. Construction of a Tree String Path Subsequence Automaton
for an XML document D and its corresponding XML tree model T .

Example 7. Let D and T be an XML document and XML tree model from
Example 1 and Fig. 1, respectively. The corresponding Tree String Path Subse-
quences Automaton accepting all XP {//,name test} queries of D, constructed by
Algorithm 3, is shown in Fig. 4.

0

start

1 2, 7, 10

3, 8, 11

5, 9

4, 12

6 7 8

9

//HOUSES

//HOUSE

//VASSALS

//LORD

//SEAT

//SIGIL

//HOUSE

//VASSALS

//LORD

//SEAT

//SIGIL

//VASSALS

//LORD

//SEAT

//SIGIL

//HOUSE

//HOUSE

//LORD

//SEAT

//LORD

//SEAT

Fig. 4. Deterministic tree string path subsequences automaton

Automaton and Its Use for Indexing XML Documents 179

3 Evaluation of an Input Query

This section describes searching phase using the index. To compute positions of
all occurrences of an input query Q in the XML tree model T of given XML
document D, we simply run the Tree String Path Subsequences Automaton on
the input query. Eventually, the answer for the input query is given by the subset
contained in the terminal state of the automaton. If there is no transition that
matches the input symbol, the automaton stops and rejects the input. Therefore,
there are no elements in the XML document satisfying the query.

Example 8. Consider the XML document D and XML tree model T from Exam-
ple 1 and Fig. 1, respectively. Suppose we want to evaluate following XPath
query Q1 = //HOUSE//SEAT using Tree String Path Subsequences Automaton
constructed by Algorithm 3. The transition diagram of the automaton for the
document D is illustrated in Fig. 4.

Starting in the initial state, the automaton follows the transition for the first
symbol of the input (i.e., //HOUSE) and goes to the state (2, 7, 10). Next, the
automaton continues reading the second symbol (i.e., //SEAT) and goes from
the state (2, 7, 10) to the state (5, 9). Since the whole input is read and the
automaton is in a final state, it returns positions 5, 9 as the answer for the input
query Q1.

4 Time and Space Complexities

TSPSA effectively supports the evaluation of all XP {//,name test} queries of an
XML document D. The number of such queries is clearly exponential in the
number of nodes of the XML tree model T of D. Each state of TSPSA corre-
sponds to an answer of a single query or a collection of queries. Although the
number of different queries accepted by TSPSA is exponential, usually a lot of
the queries are equivalent (i.e., their result sets of elements are equal).

Therefore, the equivalence problem of queries is closely related to the problem
of determination the number of states of TSPSA. That is, if we know the number
of unique query answers, we can construct a deterministic automaton answering
all queries using exactly this number of states. On the other hand, we can obvi-
ously use the TSPSA to decide equivalence of two queries and even determine
equivalence classes. The containment and equivalence problems for a fragment of
the XPath query language was studied in [15,16]. For XP {//,name test} a PTIME
containment algorithm was provided by Buneman et al. in [3].

From another point of view, we can examine the number of states of TSPSA
as the size of DASG for a set of strings. For k strings of length h, the number of
states can be trivially bounded by O(hk) (size of a product of k automata with
O(h) states). The running time for a query of length m becomes O(m). The
lower bound for k > 2 texts in not known, while Crochemore and Tronicek in [8]
showed that Ω(h2) states are required for k = 2 at the worst case. Considering
an XML index problem, k is a number of leaves in an XML tree model and h is
its tree height.

180 E. Šestáková and J. Janoušek

Even, for a common XML document, in which the same nodes can only
appear at the same level of the document, the size of the index is even smaller
O(h · 2k) (Proof. In [21]). This is the asymptotic upper bound and we note that
the size of the index is much smaller for many XML documents according to our
experimental results [21].

5 Conclusion and Future Work

A simple method of indexing a tree for subsequences of string paths in the tree
by finite automaton called Tree String Path Subsequences Automaton has been
presented. This automaton is suitable for indexing XML documents for XPath
descendant-or-self axis inspired queries and for easily combining the automaton
with other tree indexes based on the automata theory. Given a subject tree T
with n nodes, the tree is preprocessed and an index, which is a directed acyclic
subsequence graph for a set of strings, is constructed.

The searching phase uses the index, reads an input string path subsequence Q
inspired by the specific XPath query of size m and computes the list of positions
of all occurrences of Q in the tree T . The searching is performed in time O(m)
and does not depend on n. Although the number of distinct queries is O(2n),
the size of the index is O(hk), where h is the height of the tree T and k is
the number of its leaves. Moreover, we discussed that in the case of indexing a
common XML document the size of the index is even smaller O(h · 2k).

There is a number of topics for future work:

– developing incremental building algorithm for TSPSA to efficiently adapt its
structure to ever changing XML data source,

– proposing an indexing method able to support multiple XML documents,
– studying simulation techniques of nondeterministic finite automata and devel-

oping efficient simulation of TSPSA or its implementation using dynamic pro-
gramming,

– extending our method to support more complex queries (e.g., including
attributes, wildcards, branching etc.),

– creating a version of our index for cases when an XML document is so large
that the index cannot be placed in the internal computer memory and there-
fore also an efficient use of external memory is needed.

References

1. Baeza-Yates, R.A.: Searching subsequences. Theoret. Comput. Sci. 78(2), 363–376
(1991)

2. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.I.:
The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci.
40, 31–55 (1985)

3. Buneman, P., Davidson, S.B., Fan, W., Hara, C., Tan, W.-C.: Reasoning about
Keys for XML. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp.
133–148. Springer, Heidelberg (2002)

Automaton and Its Use for Indexing XML Documents 181

4. Chung, C.-W., Min, J.-K., Shim, K.: Apex: an adaptive path index for xml data. In:
Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2002, pp. 121–132. ACM, New York (2002)

5. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge
University Press, Cambridge (2007)

6. Crochemore, M., Melichar, B., Tronicek, Z.: Directed acyclic subsequence graph–
Overview. J. Discrete Algorithms 1(3–4), 255–280 (2003)

7. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford
(1994)

8. Crochemore, M., Trońıček, Z.: On the size of DASG for multiple texts. In:
Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 58–64.
Springer, Heidelberg (2002)

9. Goldman, R., Widom, J.: Dataguides: enabling query formulation and optimization
in semistructured databases (1997)

10. Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: Online construction of
subsequence automata for multiple texts. In: Seventh International Sympo-
sium on String Processing and Information Retrieval, SPIRE 2000. Proceedings,
pp. 146–152 (2000)

11. Janoušek, J., Melichar, B., Polách, R., Poliak, M., Trávńıček, J.: A full and linear
index of a tree for tree patterns. In: Jürgensen, H., Karhumäki, J., Okhotin, A.
(eds.) DCFS 2014. LNCS, vol. 8614, pp. 198–209. Springer, Heidelberg (2014)

12. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for
branching path queries. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2002, pp. 133–144. ACM, New York
(2002)

13. Li, Q., Moon, B.: Indexing and querying xml data for regular path expressions.
In: Proceedings of the 27th International Conference on Very Large Data Bases,
VLDB 2001, pp. 361–370. Morgan Kaufmann Publishers Inc., San Francisco (2001)

14. Melichar, B., Janoušek, J., Flouri, T.: Arbology: trees and pushdown automata.
Kybernetika 48(3), 402–428 (2012)

15. Miklau, G., Suciu, D.: Containment and equivalence for an xpath fragment. In:
Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2002, pp. 65–76. ACM, New York (2002)

16. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of xpath. J.
ACM 51(1), 2–45 (2004)

17. Milo, T.: Index structures for path expressions. In: Beeri, C., Bruneman, P. (eds.)
ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1998)

18. Mark Pettovello, P., Fotouhi, F.: Mtree: an xml xpath graph index. In: Proceedings
of the 2006 ACM Symposium on Applied Computing, SAC 2006, pp. 474–481.
ACM, New York (2006)

19. Rao, P., Moon, B.: Prix: indexing and querying xml using prufer sequences. In:
20th International Conference on Data Engineering, 2004. Proceedings, pp. 288–
299, March 2004

20. Tang, N., Yu, J.X., Ozsu, M.T., Wong, K.-F.: Hierarchical indexing approach to
support xpath queries. In: IEEE 24th International Conference on Data Engineer-
ing, ICDE 2008, pp. 1510–1512, April 2008

21. Šestáková, E.: Indexing XML documents. Master’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, Prague (2015)

22. Wang, H., Park, S., Fan, W., Yu, P.S.: Vist: a dynamic index method for querying
xml data by tree structures. In: Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2003, pp. 110–121. ACM,
New York (2003)

A Structural Approach to Assess
Graph-Based Exercises

Rúben Sousa(B) and José Paulo Leal

CRACS and INESC-Porto LA, Faculty of Sciences,
University of Porto, Porto, Portugal

up201001961@fc.up.pt, zp@dcc.fc.up.pt

Abstract. This paper proposes a structure driven approach to assess
graph-based exercises. Given two graphs, a solution and an attempt of
a student, this approach computes a mapping between the node sets of
both graphs that maximizes the student’s grade, as well as a descrip-
tion of the differences between the two graph. The proposed algorithm
uses heuristics to test the most promising mappings first and prune the
remaining when it is sure that a better mapping cannot be computed.

The proposed algorithm is applicable to any type of document that
can be parsed into its graph-inspired data model. This data model is
able to accommodate diagram languages, such as UML or ER diagrams,
for which this kind of assessment is typically used. However, the motiva-
tion for developing this algorithm is to combine it with other assessment
models, such as the test case model used for programming language
assessment.

The proposed algorithm was validated with thousands of graphs with
different features produced by a synthetic data generator. Several exper-
iments were designed to analyse the impact of different features such as
graph size, and amount of difference between solution and attempt.

Keywords: Automatic assessment · Graph comparison · Graph-based
exercises

1 Introduction

Graphs are mathematical structures that model relationships among objects.
They can be used in a wide range of domains such as network topology, soft-
ware architecture, digital circuit design, just to mention a few. Diagrams are an
apt example of a document type with a graph-based representation that requires
automatic assessment. However, graphs can be used for assessing exercises where
the relationship among parts is important but not determinant. Finite Deter-
ministic Automata (FDA) and even programming languages are examples of this
kind of assessment.

The assessment of an FDA should be twofold [2], based on the recognized
strings and on the structure of the state automaton. If an FDA recognizes all the
strings it should, and only those, then it must be correct. Otherwise, examples
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 182–193, 2015.
DOI: 10.1007/978-3-319-27653-3 18

A Structural Approach to Assess Graph-Based Exercises 183

of strings that should be recognized but are not, and vice versa, can be auto-
matically generated. However, these examples seldom contribute to overcome
the error. An helpful feedback must pinpoint what is wrong. For instance, what
nodes are missing or what transitions must be removed. This can be achieved
using graph assessment since the structure of an FDA can be represented by a
state automaton [2].

Programming language assessment would also benefit from a similar app-
roach. The standard way of assessing a program [4] is to compile it and then
execute it with a set of test cases. A program is considered correct if it com-
piles without errors and the output of each execution is what is expected. If
it is incorrect then the most this approach can provide are examples of input
that generates wrong output. It cannot pinpoint the errors in the code of the
program. An attempt to make this kind of assessment should be based on the
structure of the program, specifically on its abstract semantic graph.

The ultimate goal of the research presented in this paper is to define a general
methodology for assessing graph-based exercises, applicable to a wide range of
domains including FDAs, programming languages but also diagrams. The objec-
tive of this paper is to propose a graph assessment algorithm and to evaluate its
efficiency for graphs with the size typically used in automated assessment.

The proposed assessment algorithm is based on the graph structure. This
means that it actually computes the mapping between the node sets of both
graphs that best preserves their edges. To avoid checking a large number of
mappings it iterates over them testing the most promising first. The mappings
are iterated in an order that allows the algorithm to prune the majority of
them, when it is ensured that the remaining mappings cannot produce a better
mapping. The iteration order is driven by the types and properties of nodes.

The remainder of this paper is organized as follows. Section 2 surveys the
existing literature on assessment of graph-based exercises. Section 3 describes the
proposed algorithm, including the definition of the data structures to represent
graph based exercises and their assessment. This approach is validated in Sect. 4
using a graph generator to test the applicability of the proposed algorithm.
Finally, Sect. 5 highlights both the main contributions of this paper and the
work ahead to apply this form of assessment in different scenarios.

2 Related Work

This section surveys the existing literature on automatic diagram assessment.
To the best of the authors’ knowledge, no general algorithm for the assessment
of graph-based documents has yet been proposed. The existing proposals are
targeted solely to diagrams, and focus mostly their labels rather than their
structure.

Most of the available automatic diagram assessment systems were designed
for a specific diagram type. Examples of these single diagram types addressed
by existing systems are deterministic finite automata (DFA) [2,6], UML class
diagrams [1,7], UML use case diagrams [10], Entity-Relationship diagrams [3],
among others.

184 R. Sousa and J.P. Leal

All these systems determine a mapping between nodes of solution graph and
nodes the student’s answer. The easiest approach is to use a fix set of labels in
both graphs. For instance, the exercise descriptions used in assessment system
proposed by Soler [7] for UML class diagrams requires fixing the class names
used by students. Finding a mapping between the node sets of both graph is
thus straightforward. A variant of this approach is the assessment in stages that
Ali et al. [1] proposed. This system will not advance to the next stage until
the current one is completely correct, otherwise it reports feedback on what
is wrong or missing. The considered stages are: structural analysis, verification
process and a language checking. The first stage compares the number of nodes,
attributes and operation, and their types. The second stage checks if connections
have the correct source and target type. Knowing that the graph structure is
correct (by the two stages above), the system checks if the labels in nodes and
attributes are nouns and in the operations are verbs.

The automata-base graph analyser of Shukur and Mohamed [6] works in
a way that is similar to that presented above. The system does two types of
evaluation: static and dynamic. The static analysis is made by comparing the
global number of states, the number of initial and final states and the number
of connections. The dynamic analysis is made by testing two sets of strings. One
of the sets is composed by strings that the model should accept. If any of it is
rejected, the graph is not correct. The second set is composed by strings that
should be rejected by the system. So, by opposition, if any string is accepted the
graph is not correct.

Thomas, Smith and Waugh [8,9] propose a system with similarities with
the approach presented in this paper. It is a generic system able to handle
different diagram types. Elements can be represented as boxes or circles and each
connections as lines. The system tries to match those elements from students’
answer to the elements of the solution. For each pair of nodes and edges is
computed a similarity measure and with that value the system can assume what
is (or not) a valid match. If the similarity is high, the system assumes it as
correct. On the other hand, if the similarity is low the system is marked as not
correct. The assessment algorithm described in the next section proposes a way
to find the best match without these assumptions.

3 Graph Assessment Algorithm

The objective of the algorithm described in this section is to assess an exercise
represented as an extended graph, by comparing it with a standard solution,
represented also as an extended graph. The assessment consists in determining
a set of differences between both extended graphs. These differences can be
summarized in a grade, a numerical value within a fixed range (e.g. 0 to 100).
If the set of differences is empty then the attempt of the student reaches the
maximum grade; otherwise each difference introduces a penalty according to its
type. For instance, a missing node may have a higher impact on the grade than
a missing edge. Wrong types, missing or wrong properties have also their own
penalties, depending on the graph-based language being assessed.

A Structural Approach to Assess Graph-Based Exercises 185

The basic approach is to determine the mapping between the node sets
of both extended graphs that maximizes the grade. This can be solved by a
simple generate and test strategy. If one generates all the possible mappings
between both extended graphs, for each mapping one can determine the differ-
ences between both graphs and compute a grade. After iterating through all
possible mappings one can select the one that produces the highest grade.

A solution and an attempt with equal sizes, i.e. with an equal number of
nodes, is a particular case. In general these graphs have different sizes since the
student may have omitted nodes or edges, or introduced unneeded ones. In this
case the approach is to reduce the number of nodes in one graph until both have
the same size; edges connecting the removed nodes are also removed.

Fig. 1. Graph assessment activities

The graph assessment activities, depicted in Fig. 1, can be organized in three
stages: language, mapping and comparing. The language stage depends on the
actual graph language and needs to be configured for each case. The mapping
stage produces all mappings connecting the nodes of both graphs. The graph
comparison uses each mapping to computes a grade and a set of differences.

The process starts in the language stage when two files are converted into
graphs, according to their type. Then all solution and attempt nodes are com-
pared, and a list of ordered alternatives is created. This data is used for gen-
erating in a precise order the mappings in which graph comparison is based.
The order in which mappings are generated is crucial for pruning the iteration

186 R. Sousa and J.P. Leal

over this collection of mappings. For each generated mapping a grade and a set
of differences is computed. This process is repeated until the pruning condition
is met. The computed grade and set of differences are further processed in the
language layer in order to produce an adequate feedback for the graph language
in question.

This section details several parts of the proposed algorithm. Subsection 3.1
introduces the definitions of extended graph and graphs differences, and defines
the computation of a grade from a set of graph differences. Subsection 3.2
explains how node mappings are generated and pruned to enable an efficient
assessment.

3.1 Data Structures

The proposed algorithm processes two extended graphs, a standard solution and
a student attempt. A simple graph G = (N,E) is defined by a set of nodes and a
set of edges, where an edge is a pair of nodes. In an extended graph both nodes
and edges have a type and a set of properties. An extended graph is a multigraph,
in the sense that a pair of nodes may have more than a one edge, possible with
different types.

Node and edge types capture the essential features of a graph-based lan-
guage. Take UML diagrams for instance. Each kind of diagram combines nodes
and edges of particular kinds. A use case diagram has as node types actor and
use case, and as edge types associations, dependencies and generalizations. The
features that are not captured by types are encoded as properties. Properties
are simply name value-pairs. Consider an association in an UML class diagram;
it may have a navigability, multiplicities, roles and other kinds of properties.

The assessment of an extended graph against another is a set of differences.
The most relevant differences are detected when both graphs are made of the
same size, such as insertion and deletion of nodes. The rest of the differences
are computed based on a mapping between the nodes set of extended graphs
with equal size. Consider a mapping m : N → N ′ and the nodes a ∈ N from
the extended graph used as solution. If a and m(a) are indistinguishable then
not difference is added to the set. Otherwise, a differences of a certain kind is
signaled: if the types of a and m(a) differ, m(a) has a wrong type; if a property
of a and m(a) differs, a property insertion, deletion or wrong value is signaled.

The assessment restricted to nodes plays an important role in the proposed
algorithm, since it is quicker to compute and is used in heuristics. However,
a complete assessment must also consider edges. When nodes are removed to
force both graphs to have the same size, the deletion of arcs connecting then is
also marked. The rest of the arcs depends on the mapping. For each (a, b) ∈ E
is expected an (m(a),m(b)) ∈ E′ and vice-versa. Otherwise edge insertions,
omissions, wrong type, as well as edge property differences, are also marked.

Given a set of differences it is possible to compute a grade. The empty dif-
ference set has the maximum grade (e.g. 100). Each kind of difference has a
certain penalty and a grade is computed by subtracting these penalties to the
maximum grade. Penalties depend on their kind and the size of the graph. In

A Structural Approach to Assess Graph-Based Exercises 187

general a difference in a node should have a higher impact that a difference on
a edge, but ultimately this depends on the graph-based language. There are a
number of weights that have to be tuned for a particular language, based on
actual grades given by expert teachers as benchmark. The same penalty has
different impacts according to the solution graph size. For instance, a missing
node will have higher impact on a small graph than on a large graph.

Grades computed from a set of differences are much more than just the final
output of the assessment algorithm. They are essential to control it, in particular
the node contribution to the grade, as is explained in the next subsection.

3.2 Node Mappings

The general strategy of assessing an extended graph against another is to deter-
mine a mapping between then that produces the higher grade. Due to the large
number of possible mappings it is important to have heuristics to consider the
most promising first and to have a criteria to prune most of them.

The node component of the assessment outweighs the edge component,
although its computational complexity is much smaller. If both graphs have
n nodes, there are n2 pairs or nodes, although these can be combined in n!
mappings. If one iterates over the set or mappings by decreasing order of their
node contributions to the grade (i.e. with increasing penalties), then the first
mappings have higher chance of being the best than those appearing afterwards.

The first step for generating these mappings is to compute the contribution
for the grade of individual node mappings. The initial mapping candidate is
constructed from the individual mappings with best grade (less differences) for
each node in the standard node set. In the example on Table 1 those individual
mappings are represented in bold.

Table 1. Individual node comparison example

Attempt A’ B’ C’

Solution

A 12 8 11

B 8 15 7

C 10 7 11

The mapping candidate shown in Table 2 may actually be invalid if two dif-
ferent nodes are mapped in the same node. The rest of the individual mappings
is generated by decreasing order of their contributions to grade.

It should be noted that the mappings are not created an then sorted, other-
wise all the n! mapping would have to generated. Instead, the successive map-
pings are generated by decreasing order or their contribution to the node grade
from a list of node-to-node mapping. This list has only n2 node-to-node map-
pings that are the building blocks of the mappings. This list is actually sorted in

188 R. Sousa and J.P. Leal

Table 2. Best map found by comparing nodes on Table 1

Match(A,A’,12) Match(B,B’,15) Match(C,C’,11)

decreasing order of their contribution to the node grade and it is used for finding
replacements to the initial mapping.

New mappings are generated by replacing individual node mappings with
an alternative. To ensure that the node contribution of the mapping decreases
monotonously a sequence of target differences is explored in increasing order.
The first grade difference to be explored is zero. That is, all sets of alternatives
with a cumulative difference of zero to the best node grade are tested before
all others. Then sets of alternatives with a cumulative difference of 1, 2, and so
forth until all possible sets of alternatives are explored. The fact that grades are
integer values is fundamental to this approach.

The number of mappings generated in this way is actually more than n!
(where n is the number of nodes of the graphs) since some of the mappings are
invalid and are discarded. A mapping is invalid if it is not a bijective function.
Hence, this process of generating mappings is only worthwhile if it can be pruned
early and thus avoid generating most of the mappings.

After a number of iterations, the best mapping produces a grade gbest. The
current mapping’s grade is g = gnodes+gedges. If gnodes+gmax edges < gbest then
it is sure that a better grade cannot be achieved with the remaining mappings
since they all have a node contribution smaller than gnodes.

Figure 2 shows the evolution of grades through successive iterations where
gnodes are represented in blue and gedges in red. Solid rectangles represent com-
ponents that contribute to the grade, while open rectangles represent the oppo-
site. It should be noted that the total number of rectangles is constant, although
the number of solid ones – the grade – oscillates; but the number of solid red
rectangles – the gnodes contribution to the grade – decreases monotonically.
The grade computed in iteration 2 is better than the grade of iteration 1, due
to an increased gedges contribution, although with a smaller gnodes contribution.
This grade is not surpassed in iteration 3, but it cannot yet be declared the best.
At iteration 4, even if contribution of gedges reached its maximum, combined
with the contribution of gnodes it is less than the grade of iteration 2. Since the
remaining mappings have a smaller or equal contribution of gnodes to the grade,
mapping generation can be pruned and the execution ended.

The node mappings generation process described above assumes that both
graphs have equal sizes, which in general is not the case. If one graph has n nodes
and the other has m nodes, with n > m, then there are n!/m! different ways to
make them equal. Again, the approach is to delete first the nodes that are least
expected in the mapping, and pruning the tail of the node deletion list once it is
certain that those alternatives cannot contribute to determine a mapping better
than the one determined so far.

A Structural Approach to Assess Graph-Based Exercises 189

Fig. 2. Chart representing the evolution of grades (Color figure online)

The individual mappings are also used for selecting the order in which nodes
are removed. For instance, if a single node has to be removed then the first
attempt goes with the node that produces the worst contribution when mapped
with any other, followed by the nodes with increasing contribution. Is a pair of
nodes has to be removed then a similar approach is taken and is considered the
combined contribution of these nodes. Since the groups of nodes to be removed
are selected in the increasing order of their contribution to the grade, a similar
pruning condition is used also in the graph reducing procedure.

4 Validation

The graph assessment algorithm described in the previous section was imple-
mented in Java 1.8. This implementation was used in a number of experiments
to validate the applicability of the proposed approach in the assessment of exer-
cises on graph-based languages.

The validation was conducted using synthetic graphs. This approach
contrasts with the validations described in the existing literature on diagram
assessment systems, surveyed in Sect. 2. Most of the referred authors use actual
exercises and student attempts, or a corpus with a large number of diagrams.

The reason for choosing synthetic data to validate this approach is twofold.
Firstly, it is not intended for a specific graph-based language and should be
adjustable to any graph-based languages that fits in the extended graph data
model. Hence, its is important to test it with a wide range of settings, varying
the number of types and properties, as will happen with different graph-based
languages. Secondly, it is important to test the limits of the proposed approach,
in terms of graph sizes and amount of difference between and attempt graphs,
for which a large number of graphs pairs is required.

190 R. Sousa and J.P. Leal

4.1 Graph Generator

The graph generator is a component that produces synthetic graphs for testing
and validating the proposed graph assessment algorithm. This component is
used to generate both a solution graph and attempts near a given solution. The
attempt graph cannot be another random graph, it must be close enough to the
solution to be able to produce a meaningful assessment.

The graph generator follows the builder design pattern. It has a number of
settings that control of the minimum and maximum number of nodes, types and
properties. The number of edges for a graph with n nodes ranges between n− 1
and n(n+ 1)/2 since these are the minimum and maximum number of edges for
a connected graph with n nodes. When a new graph is requested, its nodes and
arcs with respective types and properties are randomly generated within these
boundaries.

Graphs used in graph-based languages are typically connected graphs. Thus,
the generator ensures that generated graphs are connected. It computes the con-
nected components of the graph and, while it has more then one, it replaces a
redundant edge in one component with an edge to a node in a different compo-
nent. A redundant edge in a connected component is one that can be removed
without breaking connectivity.

As explained above, the graph generator can also be used to produce graphs
within the vicinity of a given graph, i.e. with a given number of variations, in
number of nodes, edges, types and parameters. Within these boundaries the
generator: inserts or removes nodes; changes types; inserts, removes or changes
properties. Since the graphs produced this way are modelling student attempts,
they may be disconnected graphs.

When producing a graph variant to model a student attempt, the genera-
tor produces also a set of differences. This set of differences uses the same type
of data structure returned by the assessment method. Hence it is straightfor-
ward to compare the differences detected by the assessment method with those
produced by the generator. This comparison validates the algorithm and its
implementation.

Not all student attempts are wrong. Some may be equivalent to the standard
solution, and this situation must also be tested. Nevertheless, it would be highly
improbable for the two graphs to have nodes and arcs exactly in the same order.
Comparing two exactly equal graphs could have an influence of the performance
of the algorithm. Thus, the nodes and arcs of variant graphs are always shuffled,
even if some differences were actually introduced.

4.2 Experiments

The implementation of the proposed graph assessment algorithm and synthetic
graph generator described in the previous subsection were used in a series of
experiments designed to answer the following questions.

Up to what graph size can this algorithm be used? The complexity of
the graph homeomorphism problem is an NP problem neither known to be

A Structural Approach to Assess Graph-Based Exercises 191

solvable in polynomial time nor to be NP-complete [5], but most likely the
complexity is high enough to prevent the use of this approach on graphs
above a certain size.

Do heuristics have a significant impact on performance? The heuristics
were designed to explore the most promising mappings first, but they have
an initial cost and depend of the effectiveness of the pruning criteria.

What is the impact of weights in performance? The algorithm is driven
by grades and heuristics rely on the contribution of nodes to grades. The
balance between the weight of node and edge grades is bound to influence
performance.

What is the impact of domain specific data? The algorithm was designed
to take advantage of the types and properties assigned to nodes and edges.
This data makes node and edge easier to identify and the algorithm should
perform better as more of it is available.

How dissimilar can solutions and attempts be? If the attempt and the
solution are completely dissimilar then it makes no sense to compute differ-
ences between then and the grade should be zero. However, the assessment
algorithm should perform well for attempts within a certain range of the
solution.

The experiments that answered to these questions ran on a 4 cores computer
with 8 i7-3630QM CPUs at 2.40 GHz, with 8 GByte of RAM. For each setting
the experiment was repeated with 100 different random pairs of graphs. On
most cases the assessment of a pair of graphs was executed well bellow 1/2 a
second. Occasionally some pairs of graphs take a longer time hence a timeout of
2 s. In these case the assessment was considered incomplete, although the result
obtained within the allotted time is correct in more than 50 % of the cases.

The first experiment addressed the size of the graphs that can be assessed
with the proposed algorithm. Alur et al. argue that graphs in used exercises are
usually smaller, with less than 10 nodes [2] and thus this complexity is not a
serious problem. This appears to be the case in DFA, the domain they studied,
and also many other domains, such as UML class and use case diagrams. How-
ever, an Entity-Relationship exercise to model a simple database may have more
than 20 nodes, for instance. The results obtained with hundreds of equivalent
graphs pairs show that the proposed algorithms deals with orders of up to 30.

Another experiment addressed the impact of pruning. For that purpose a
variant of the mapping iterator was implemented. This iterator returns all the
possibles mappings, without the initial overhead required by the iterator of the
proposed algorithm. The rest of the algorithm was maintained unchanged. This
algorithm was tested with equivalent graphs but could only complete the assess-
ment of graphs of grade 6 or lower. Pairs of graphs with a larger number of
nodes produce always an incomplete assessment. This compares with the use of
the optimized iterator that can assess most graph pairs up to order 30.

The third experiment addressed the impact of weights, in particular the bal-
ance between the node and edge contribution to assessment. Since the heuristics
rely on the node contributions to perform pruning, a larger contribution of edges

192 R. Sousa and J.P. Leal

decreases efficiency. It should be noted that the actual weights will depend of the
specific graph-based language and on particular grading criteria defined by the
teacher. In any event, it is expected that nodes contribute at least with half of
the grade and in general with more than that. In fact, an equal weight of nodes
and edges produces an assessment in less than 200 ms for graph pairs with up to
28 nodes, and the results improve as the weight of nodes is higher, as expected.
The percentage of incomplete assessments is always less than 5 % and lowers as
the weight of edges lowers.

The impact of domain specific data, i.e. the information provided by types
and properties was also tested. Although the proposed algorithm is based on
structure of the graphs, their nodes and edges, the heuristics use types and prop-
erties to distinguish them and improve efficiency. However, it should be noted
that the number of types and properties depends on the graph-based language
and cannot be controlled by the algorithm. As expected, the worst results were
obtained with just one or two different types (a single type is equivalent to no
types). With three to five types graph pairs of up to an order of 30 are assessed
in 50 ms. The incomplete assessments reached 8 % for graphs with order 28 with
3 types, but was less than 2 % for all orders up to 30 with 4 or 5 types.

The experiments described above were performed with pairs of equivalent
graphs to determine the impact of features. In these experiments it was checked
that the algorithm found no differences between the graphs. The rest of the
experiments were performed with different graphs and it was validated that the
algorithm recovers the differences introduced by the generator. The algorithm
was tested with solutions graphs with sizes up to 30 and attempt graphs with a
size variation of up to 8 nodes. The execution time in these assessments is bellow
40 ms, with a tendency to increase with larger size differences. The number of
incomplete assessments is bellow 5 % for solution graphs with up to 25 nodes
and a different in number of nodes of less than 7.

5 Conclusions and Future Work

The main contribution of this paper is an algorithm for assessing graphs driven
by their structure. It computes both a grade an explanation, a data object that
can be serialized into a natural language text, or used as input for other systems.
The assessment algorithm determines the best mapping between nodes in a
solution graph and nodes in attempt graph. The mapping is the best in the
sense that it maximizes the student’s grade.

The algorithm validation ensured its efficiency for connected graphs with
up to 30 nodes, which should cover the needs of exercise assessment. It suggests
that automatic assessment systems for diagrams can be easily implemented based
on this algorithm.

The next step is to validate assessment systems, rather than just the assess-
ment algorithm, by using them with actual graph-based languages and actual
students. An experiment is already scheduled for the last month of the current

A Structural Approach to Assess Graph-Based Exercises 193

school year with students of a software architecture course. A parser of XML
documents produced by the DIA diagram editor1 is already in development.

The motivation for this assessment methodology is to blend it with other
assessment methodologies, notably the test based assessment used with pro-
gramming languages. This will require the study of the existing document type
definitions for abstract semantic graphs of programming languages used in intro-
ductory programing courses such as Java, C/C++, Python and C#, and the
existing tools for extracting abstract semantic graphs.

Acknowledgments. Project “NORTE-07-0124-FEDER-000059” is financed by the
North Portugal Regional Operational Programme (ON.2 O Novo Norte), under the
National Strategic Reference Framework (NSRF), through the European Regional
Development Fund (ERDF), and by national funds, through the Portuguese funding
agency, Fundao para a Cincia e a Tecnologia (FCT).

References

1. Ali, N.H., Shukur, Z., Idris, S.: A design of an assessment system for UML class
diagram. In: International Conference on Computational Science and its Applica-
tions, 2007, ICCSA 2007, pp. 539–546. IEEE (2007)

2. Alur, R., D’Antoni, L., Gulwani, S., Kini, D., Viswanathan, M.: Automated grading
of DFA constructions. In: Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, pp. 1976–1982. AAAI Press (2013)

3. Batmaz, F., Hinde, C.J.: A diagram drawing tool for semi-automatic assessment
of conceptual database diagrams (2006)

4. Douce, C., Livingstone, D., Orwell, J.: Automatic test-based assessment of pro-
gramming: a review. J. Educ. Resour. Comput. (JERIC) 5(3), 4 (2005)

5. Hell, P., Nesetril, J.: Graphs and Homomorphisms. Oxford University Press, Oxford
(2004)

6. Shukur, Z., Mohamed, N.F.: The design of adat: a tool for assessing automata-
based assignments. J. Comput. Sci. 4(5), 415 (2008)

7. Soler, J., Boada, I., Prados, F., Poch, J., Fabregat, R.: A web-based e-learning
tool for UML class diagrams. In: 2010 IEEE Education Engineering (EDUCON),
pp. 973–979. IEEE (2010)

8. Thomas, P., Smith, N., Waugh, K.: Automatically assessing diagrams. In: Proceed-
ings of the IADIS International Conference on e-Learning, vol. 2009 (2009)

9. Thomas, P., Waugh, K., Smith, N.: Automatically assessing free-form diagrams in
e-assessment systems. In: 1st HEA Aiming for Excellence in STEM Learning and
Teaching Annual Conference, Imperial College London (2012)

10. Vachharajani, V., Pareek, J.: A proposed architecture for automated assessment of
use case diagrams. Int. J. Comput. Appl. 108(4), 35–40 (2014). full text available

1 http://dia-installer.de/.

http://dia-installer.de/

Odin: A Service for Gamification of Learning
Activities

José Carlos Paiva1(B), José Paulo Leal1, and Ricardo Queirós2

1 Faculty of Sciences, CRACS & INESC-Porto LA,
University of Porto, Porto, Portugal

up201200272@alunos.dcc.fc.up.pt, zp@dcc.fc.up.pt
2 CRACS & INESC-Porto LA & DI/ESEIG/IPP, Porto, Portugal

ricardoqueiros@eseig.ipp.pt

Abstract. Existing gamification services have features that preclude
their use by e-learning tools. Odin is a gamification service that mim-
ics the API of state-of-the-art services without these limitations. This
paper describes Odin, its role in an e-learning system architecture requir-
ing gamification, and details its implementation. The validation of Odin
involved the creation of a small e-learning game, integrated in a Learning
Management System (LMS) using the Learning Tools Interoperability
(LTI) specification.

Keywords: Gamification · e-Learning · Game services ·
Interoperability

1 Introduction

The use of game concepts and mechanics in non-game contexts is an effective way
to engage users. Gamification is currently a word of order in different domains,
from marketing to e-learning [2]. The massive use of this approach led to the con-
cept of gamification as a service, provided by major players such as Google1 and
Microsoft2. These services leverage on their large user base to provide support
for game progress mechanics such as points, leaderboards and badges, without
requiring a specific authentication from the client application.

Gamification services are a great advantage to small web and tablet based
applications, in particular to games. The game progress mechanics features pro-
vided by these services are also relevant in e-learning. However, e-learning sys-
tems are typically deployed in environments with a single sign-on managed by
an academic institution. It would be unacceptable to require students to have
an account with a third party such as Google, for instance.

The purpose of the Odin service is to provide a gamification service similar
to the state of the art, without requiring registration of the end users. Its API

1 https://developers.google.com/games/services.
2 http://azure.microsoft.com/en-us/documentation/services/mobile-services/.

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 194–204, 2015.
DOI: 10.1007/978-3-319-27653-3 19

https://developers.google.com/games/services
http://azure.microsoft.com/en-us/documentation/services/mobile-services/

Odin: A Service for Gamification of Learning Activities 195

is inspired in the Google Play Game Service (GPGS) with minor adjustments
regarding user identification.

The remainder of this paper is organized as follows. Section 2 reviews the state
of the art in game services. Section 3 introduces the Odin service, its design and
implementation. Section 4 describes its evaluation using a small serious game as
case study. Finally, Sect. 5 summarizes the contributions of this research.

2 Game Services

The video game industry is one of the fastest growing sectors in the worldwide
economy [8]. According to the research company Gartner, global video game sales
will reach $111.1 billion in 2015, due in part to the growth in mobile game play
and the recent release of the new generation of game consoles. In order to increase
engagement and player retention, video games include several common features
such as leaderboards and achievements. The massive use of this approach and
the impressive growth of players led to the concept of gamification as a service,
later materialized in Game Backend as a Service (GBaaS). The approach is
simple. Instead of replicating the implementation of the game features in each
version of the game for various platforms, GBaaS adhere to a service oriented
architecture providing cross-platform game services that lets you easily integrate
popular gaming features such as achievements, leaderboards, remote storage and
real-time multiplayer in mobile games.

While the concept of “winners and losers” can hinder the motivation of
students [7], gamification is currently being applied with relative success in
e-learning [1,6]. The integration of game concepts in learning environments helps
students to remain focused and to fulfill their course goals. However, the imple-
mentation of gamification in these domains is often trapped in ad-hoc solutions
or supported by specific platforms (for instance, the badges in Moodle), instead
of using approaches such as those provided by GBaaS.

In the following subsections we briefly summarize the main common game
features that can be applied to the teaching-learning process. Then, we compare
six GBaaS regarding social and technical features. This study is part of an effort
to select an GBaaS on which to base the development of a service for gamification
of learning activities.

2.1 Game Concepts

Games are more interesting when players are able to achieve goals and compete
against other players. These features foster retention and competitiveness, and
are applicable also in the gamification of e-learning activities. The following list
enumerates the most common game concepts:

Leaderboards are databases that keep scores. They allow users to post their
scores in a game and compare themselves with other players’ scores. They
measure the success of a player in a game.

196 J.C. Paiva et al.

Achievements are goals/challenges set in a game that players managed to
accomplish. Achievements give players a motivation to keep playing, to earn
as many as possible, and a way to compare themselves with other players.
The fulfilment of a goal may enhance the status of the player or unlock access
to other levels, for instance.

Multiplayer is a play mode that allows several players to simultaneously coop-
erate or compete in a game. This feature supports a range of other sub-
features, such as challenges, where players compete each other on either a
score challenge or an achievement challenge, and matchmaking games in real-
time, turn-based, or self-hosted matches.

Saved games allow the remote storage (in the cloud) of game data, for instance,
the state and the players’ progress in the game.

Quests are periodic game challenges that players can complete to earn rewards.
This way, developers can launch periodic challenges to their gaming commu-
nities.

Gifts allow players to send/request game resources or items to/from friends (for
instance, in their Google+ circles).

Matchmaking automatically sets up game matches and finds opponents based
on parameters set by the game developer. Usually only a specific number of
players can be matched at the same time.

2.2 Game Backend Services

A Backend-as-a-service (BaaS) is a cloud computing service model acting as
a middleware component that allows developers to connect their Web and mobile
applications to cloud services via application programming interfaces (API) and
software developers’ kits (SDK). BaaS features include cloud storage, push noti-
fications, server code, user and file management, social networking integration,
location services, and user management as well as many other backend services.
These services have their own API, allowing them to be integrated into applica-
tions in fairly simple way [3].

A Game-Backend-as-a-Service (GBaaS) is a subset of a BaaS that
includes cross-platform solutions for the typical game concepts identified in the
previous subsection. During the development process of a game (or a generic
application) developers must choose between building their own back-end ser-
vices or using an available game back-end platform. This last option is usu-
ally preferred since GBaaS include several services specifically tailored for game
development. These services allow developers to focus on the game logic by free-
ing them from implementing boiler plate features.

The following subsections compare several GBaaS according to their social
and technical features. Given the number of GBaaS found (32) it would be
impracticable to study them all. Therefore, six GBaaS were chosen: Google Play
Game Services, Yahoo Bakend Game Service, GameUp, GameSparks, Fresvii
and Photon. These features are summarized in Table 1.

Odin: A Service for Gamification of Learning Activities 197

Social Game Features. The studied GBaaS provide developers with social
game services accessed through cross-platform API. These features make the
gameplay more competitive and collaborative, and improve social engagement.

Analysing Table 1 one concludes that almost all GBaaS supports leader-
boards, multiplayer game mode and cloud storage. Other features such as quests
and matchmaking are not yet widely supported, probably due to their novelty.

Technical Game Features. The studied GBaaS offer cloud services through
API and SDK to various platforms. Regarding authentication almost all GBaaS
use the same strategy. Before the game can make any calls to the game services,
it must first establish an asynchronous connection with the backend servers and
authenticate within the game services. Some GBaaS requires that the players
have an account on specific backends (GPGS requires that users have a Google
account). Others, such as GameSparks, provides a simple mechanism that allows
games to implement social login without any additional code, allowing gamers,
for instance, to sign in using a Facebook or Twitter account, and start playing.

The majority of the GBaaS provides a HTTP RESTful API. The format of
the data in all HTTP store operations (PUT and POST) is required to be valid
JSON. All response data from the GBaaS comes back also in JSON format.
Regarding the REST API reference, the authors’ opinion is that GPGS is the
most complete and best documented API.

In complement to the REST API most GBaaS support also mobiles. There
are examples of SDKs for Android, iOS, and even FirefoxOS (GameUp) mobile

198 J.C. Paiva et al.

native apps. Game engines are also supported and most GBaaS offer SDKs for
major game engines such as Unity, and also for cross-platform game development
tools such as Marmalade and Cocos2D.

3 Odin

This section describes Odin, a gamification RESTful Web Service to be used
by educational institutions. It provides (1) score submissions, (2) leaderboards
listing, (3) quests for players, (4) awards to players for in-game accomplishments
as well as some minor services to manage institutions, players, leaderboards,
quests and achievements.

Odin is based on a standard gamification API but has a different approach
regarding authentication. Institutions, rather than end-users, are the ones that
require authentication. Once an institution is authenticated, Odin grants it per-
mission to manage scores, quests and achievements in its users.

The next subsections present the architecture of Odin and its main compo-
nents, and describe its data model and service API.

3.1 Architecture

Odin is a RESTful Web Service that allows institutions to consume gamification
resources from their web applications. The web applications initialize sessions
in Odin through authentication built on top of OAuth2 authorization protocol3.
Then they request particular actions to the server identified by a specific URI
and an HTTP method such as POST, GET, PUT or DELETE.

Fig. 1. Sequence diagram representing a common request to Odin

Figure 1 presents a sequence diagram that summarizes the interactions of
Odin with other systems when a request is made by the client. Firstly, the
3 http://oauth.net/2/.

http://oauth.net/2/

Odin: A Service for Gamification of Learning Activities 199

HTTP request made by the client is subject to a security filter that checks if the
institution is authenticated. If the institution is not authenticated or authorized
to access Odin resources it is redirected to the authorization server where it will
authenticate and approve the release of a token with the authorization proof.
The generated token (with expiration time) is sent to the client and it (client)
presents the access token to Odin.

When the client is authenticated and authorized, it is passed to the JAX-RS
REST interface implemented using Jersey (described in the next subsection) and
forwarded to the mapped resource. From the resource layer it is forwarded to
the service layer, passing through a security layer which intercepts it to check
authorization and roles, ensuring that only authorized institutions have access
to the services.

The service layer responds to the request with the data persisted on Redis
(described in the next subsection) through the Jedis client (using REdis Serial-
ization Protocol) and Ohm library implementation for Java. The response sent to
the client is a JSON object representing the resource type modified or requested
by it (each resource type may have one or more data representations). Whenever
a fresh token is needed, the client can request it from the Authorization Server.

3.2 Frameworks and Tools

Odin uses Jersey4, an open-source framework that is the reference implemen-
tation of the Java API for RESTful Web Services, extending it with additional
features and utilities to further simplify RESTful service. Among other features,
Jersey provides a Core Server to build RESTful services based on annotations,
support for JSON and to the Java Architecture for XML Binding, as well as a
Core Client to easily create a client that can communicate with REST services.

Data storage relies upon Redis NoSQL database5 that provides an open-
source and advanced key-value storage and cache solution. It is an high perfor-
mance alternative to the traditional Relational Database Management Systems
(RDBMS) [5] to store and access large amount of data. Redis is sometimes
described as a data structure server since keys can contain strings, hashes, lists,
sets and sorted sets. As a NoSQL database it focus on performance and scala-
bility rather than in guaranteeing the atomicity, consistency, isolation and dura-
bility (ACID) properties. Redis was selected for backend due to its hability to
store large amounts of non critical data very efficiently.

In order to integrate Redis in Odin the data layer resorts to the Jedis client6,
as well as of an object-hash mapping library, named JOhm7, to store and retrieve
objects from Redis with an higher level of abstraction and thus simplicity. JOhm
is the Java implementation of the well-known Ohm library8 and aims to be

4 https://jersey.java.net/.
5 http://redis.io/.
6 https://github.com/xetorthio/jedis.
7 https://github.com/agrison/johm a fork from https://github.com/xetorthio/johm.
8 http://ohm.keyvalue.org/.

https://jersey.java.net/
http://redis.io/
https://github.com/xetorthio/jedis
https://github.com/agrison/johm
https://github.com/xetorthio/johm
http://ohm.keyvalue.org/

200 J.C. Paiva et al.

minimally-invasive, relying only on reflection aided by annotation hooks for per-
sistence.

3.3 Data Model

The data model of Odin consists of seven main entities: institution, player,
leaderboard, score, quest, achievement and session, related as denoted in the
UML class diagram of Fig. 2.

Fig. 2. Class diagram of the data model of Odin

An institution is the entity that manages games and all related data, and so
it is the one which needs authentication and/or authorization. Thus, it needs to
store an id and password to authenticate, and also a token to check the validity
of the session. Whenever an institution authenticates a session is created and
linked to it (through the institutionId). This session contains the creation time,
last access time and a state indicator (active or inactive).

The institution needs to represent its students. As this is a gamification
model they are abstracted to players, and so they will have a playerId that
identifies them to the institution, a displayName that is the name to show on
the leaderboard, a full name and a representation of his experience info with
level, points acquired and needed points to level up.

As the player progresses in the game, (s)he will possibly win achievements.
An achievement has a number of required steps and a state (hidden, revealed
or unlocked). When a player reveals one, he receives the number of experience
points associated.

Odin: A Service for Gamification of Learning Activities 201

A player can also accept and fulfill quests. A quest is characterized by a name,
a description, a state (upcoming, open, accepted, completed, failed, expired or
deleted) and a start and end date.

One of the most important parts of this model is the leaderboard. It contains
more than a list of sorted scores, it contains data related to a game, such as a list
of info on the levels available in the game/leaderboard. These parts are joined
since it is required a single leaderboard to each game, and they depend on the
existence of each other.

Scores related to a leaderboard and a player, are also stored. Each score has
a floating point value, a timespan (daily, weekly or all time score), a timestamp
and a rank (its position on the leaderboard).

3.4 Service API

The integration of Odin with other systems relies on REST calls to set and
retrieve data. It follows the Google Web API Reference9 for achievements, leader-
boards, players, quests and scores resources. The only differences are that all
these resources’ URI paths are relative to gamify/institutions/institutionId.
Also when an authenticated player is referenced in a function, it is replaced
by a sub-path of the form /players/playerId right after institutionId in the
resource path URI.

The institution resource is added to the set of resources. It contains the
functions shown in Table 2.

Table 2. Institutions resource API reference. URIs are relative to/gamify

Function HTTP request

insert POST/institutions

get GET/institutions/institutionId

The insert function inserts the institution given in the request body. The get
function retrieves the institution resource given its id.

4 Evaluation

For validation of the gamification service described in the previous section, a
simple multiplication game was created. This game – MathGamify – can be used
by primary school children to learn multiplication tables. MathGamify generates
two random numbers. The first number between 1 and the current game level
and the second number between 1 and 10. Then the student/player has the
opportunity to answer the multiplication value of the two numbers. The score is

202 J.C. Paiva et al.

Fig. 3. MathGamify component diagram

accumulated in the ratio of the player’s level until player misses, in which case
the score is reset to zero.

Figure 3 presents the component diagram of MathGamify. MathGamify acts
as a tool provider to a Learning Management System (LMS). The integration of
MathGamify with the LMS relies on the Learning Tools Interoperability (LTI)
specification. When the LMS launches MathGamify the LTI parameters are sent
as part of the HTTP POST request. On request reception MathGamify uses the
LTI Wrapper [4] package to process LTI communication and extract user id,
name and level. The last is a custom parameter defined on the external tool
configuration of the LMS.

MathGamify consumes two types of resources from Odin: score submission
and listing of scores. Once the player answers a question, MathGamify commu-
nicates the score to Odin, using Jersey Client to issue the REST call, and the
grade to the LMS using LTI. This grade is a value between 0 and 1, calculated
by the following way: if there is a custom parameter custom max score then it
is the score divided by custom max score, otherwise it is the number of correct
answers divided by the total number of tries. When MathGamify initializes its
GUI, and every time a score is submitted, the score listing is updated with the
data returned from Odin.

One of the key components is the LTI Wrapper that implements both sides
of the LTI communication. This component receives LTI requests from LMS and
issues LTI requests to LMS.

The GUI component of MathGamify was developed using Google Web Toolkit
(GWT), an open source Java software development framework that allows a fast
development of AJAX applications in Java. The GWT code is organized in two
main packages, the server and the client. The server package includes all the
service implementations triggered by the user interface. These implementations
are responsible of (1) the logic of the game, (2) communication with Odin and
(3) communication with LMS through LTI wrapper. The selected LMS was Moo-
dle 2.810.

The implementation of MathGamify demonstrates the efficacy of the
proposed approach in coping with the extra requirements of a serious game

9 https://developers.google.com/games/services/web/api/index.
10 https://moodle.org/.

https://developers.google.com/games/services/web/api/index
https://moodle.org/

Odin: A Service for Gamification of Learning Activities 203

integrated in a typical e-learning ecosystem, where authentication is provided
by an LMS. To complement its validation, Odin was also tested regarding its
efficiency.

The latency of the Odin service was tested in two of its functions: (1) submit
a single score and (2) list all scores in a leaderboard. Each test consisted of 1000
samples of calls to the same function, and all numbers stated below are averages
per sample.

Initially the tests were run locally on the same machine as the Odin server,
using Grizzly Test Container provided by Jersey, so it had no network latency.
The average time to (2) was around 40 ms (leaderboard had 6 scores when the
test was running). In the worst case it took 461 ms. The test (1) spent an average
time of 22 ms and the worst case took 385 ms.

The same tests were repeated on an external server. During these tests an
average network latency of 23 ms was observed. In this setting test (1) consumed
an average time of 67 ms. The average time to (2) was 587 ms (the leaderboard
had 1000 scores).

The tool used to measure time spent was ContiPerf11, a lightweight testing
utility that allows the user to easily turn JUnit 4 test cases to performance tests.
It is based on annotations as the JUnit 4’s test configuration.

5 Conclusions

Game concepts and mechanics are an useful way to engage students in e-learning
activities. These kind of features are already provided by game backend services
that can leverage on their authentication services and massive user base. How-
ever, gamification services that rely on external authentication are not adequate
for e-learning systems that already operate on a single sign-on ecosystem.

Odin is a gamification service developed for requirements of e-learning sys-
tems. It was designed to authenticate clients rather than end-users and thus
can be integrated with the e-learning systems typically found in educational
institutions.

The MathGamify system is a proof of concept, that illustrates how serious
games acting as tool providers for an LMS interact with the services of Odin.
The authors plan to integrate Odin in an e-learning tool for formative assessment
in online and hybrid courses. This tool will interface with Odin to support the
creation of leaderboards, introduce timed challenges, reward students for their
achievements, among others.

Odin itself will be subject to improvements. The current version provides web
services for exposing the gamification service to clients. The next version will
provide also a web interface to register institutions and allow them to manage
their resources. A Reference API documentation for Odin will also be created.

Acknowledgments. Project “NORTE-07-0124-FEDER-000059” is financed by the
North Portugal Regional Operational Programme (ON.2 O Novo Norte), under the

11 http://databene.org/contiperf.

http://databene.org/contiperf

204 J.C. Paiva et al.

National Strategic Reference Framework (NSRF), through the European Regional
Development Fund (ERDF), and by national funds, through the Portuguese funding
agency, Fundação para a Ciência e a Tecnologia (FCT).

References

1. Burguillo, J.C.: Using game theory and competition-based learning to stimu-
late student motivation and performance. Comput. Educ. 55(2), 566–575 (2010).
http://dx.doi.org/10.1016/j.compedu.2010.02.018

2. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work? – a literature review
of empirical studies on gamification. In: 2014 47th Hawaii International Conference
on System Sciences (HICSS), pp. 3025–3034. IEEE (2014)

3. Janssen, C.: Backend-as-a-service (baas). Technical report, Techopedia (2014).
http://www.techopedia.com/definition/29428/backend-as-a-service-baas

4. Queirós, R., Leal, J.P., Campos, J.: Sequencing educational resources with seqins.
Comput. Sci. Inf. Syst. 11(4), 1479–1497 (2014)

5. Seeger, M., Ultra-Large-Sites, S.: Key-Value Stores: A Practical Overview. Com-
puter Science and Media, Stuttgart (2009)

6. Siddiqui, A., Khan, M., Akhtar, S.: Supply chain simulator: a scenario-based edu-
cational tool to enhance student learning. Comput. Educ. 51(1), 252–261 (2008).
http://dx.doi.org/10.1016/j.compedu.2007.05.008

7. Vansteenkiste, M., Deci, E.L.: Competitively contingent rewards and intrinsic moti-
vation: can losers remain motivated? Motiv. Emot. 27, 273–299 (2003). doi:10.1023/
A:1026259005264. http://dx.doi.org/10.1023/A:1026259005264

8. Zackariasson, P., Wilson, T.: The Video Game Industry: Formation, Present State,
and Future. Taylor & Francis, New York (2012). http://books.google.pt/books?
id=lgiQNdc-DOwC

http://dx.doi.org/10.1016/j.compedu.2010.02.018
http://www.techopedia.com/definition/29428/backend-as-a-service-baas
http://dx.doi.org/10.1016/j.compedu.2007.05.008
http://dx.doi.org/10.1023/A:1026259005264
http://dx.doi.org/10.1023/A:1026259005264
http://dx.doi.org/10.1023/A:1026259005264
http://books.google.pt/books?id=lgiQNdc-DOwC
http://books.google.pt/books?id=lgiQNdc-DOwC

SplineAPI: A REST API for NLP Services

Nuno Vieira1, Alberto Simões1,2(B), and Nuno Ramos Carvalho1

1 Centro Algoritmi, Universidade do Minho, Braga, Portugal
nunovieira220@gmail.com, ambs@ilch.uminho.pt, narcarvalho@di.uminho.pt

2 Centro de Estudos Humańısticos, Universidade do Minho, Braga, Portugal

Abstract. Modern applications often use Natural Language Process-
ing (NLP) techniques and algorithms to provide sets of rich features.
Researchers, who come up with these algorithms, often implement them
for case studies, evaluation or as proof of concepts. These implementa-
tions are, in most cases, freely available for download and use.

Nevertheless, these implementations do not comprise final software
packages, with extensive installation instructions and detailed usage
guides. Most lack a proper installation mechanism and library depen-
dency tracking. The programming interfaces are, usually, limited to their
usage through command line, or with just a few programming languages
support.

To overcome these shortcomings, this work aims to develop a new web
platform to make available a set of common operations to third party
applications that can be used to quickly access NLP based processes.
Of course this platform still relies on the same tools mentioned before,
as a base support to specific requests. Nevertheless, the end user will
not need to install and learn their specific Application Programming
Interfaces (API). For this to be possible, the architectural solution is to
implement a RESTful API that hides all the tool details in a simple API
that is common or, at least, coherent, across the different tools.

Keywords: Natural language processing · REST API · Web service ·
DSL

1 Introduction

Natural Language Processing (NLP) techniques are being used in very different
types of applications.

Some companies are mining social communities to find out what their cus-
tomers think about their products or services [3]. Others are making their infor-
mation available in different languages by using machine translation techniques
[9]. Newspapers and other news agencies, are using NLP techniques to summarise
news and cluster them by specific areas, or based on their similarities [5].

Any one of these applications require a stack of NLP tools to work. This stack
can be very different from tool to tool, but might include common tasks like:
language identification, text segmentation, sentence tokenization, part of speech

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 205–215, 2015.
DOI: 10.1007/978-3-319-27653-3 20

206 N. Vieira et al.

tagging, dependency parsing, probabilistic translation, dictionaries querying, or
named entity detection, just to mention some [6].

Although there are some NLP toolkits that include a good number of tools
for most of these tasks [1,4], developers are likely to need other tools that are
not directly available. This leads to the installation of different tools. If the
developers need to support a wide range of languages, this list of tools is prone
to grow, as some tools are not language independent or because they do not
include training data for some of the required languages.

These requirements lead to the need of installing a variety of tools to have a
complete NLP stack. Unfortunately, most of these installations are not as simple
as they should be, as most of their developers are more interested in using the
tools and adding new features than to document their usage and installation,
or to provide good installation procedures. This leads to the need of dealing
with different kinds of installation problems, and to learn each tool application
programming interface (API).

Although our NLP team is small, we have been dealing with this problem for
some time, and therefore, we are proposing a tool and a service to hide all these
details from the end-user, making these libraries available as web services based
in the REST philosophy. Of course that, if the web services are, themselves, using
those same tools, someone will need to deal with the installation procedure, and
will need to learn its usage. But if this process could be done only once, and the
installed tools are available as a simple web service, application development is
faster, and application deployment gets easier.

As a side benefit, having a different server running some tools, helps in dis-
tribution. Even if at the moment we have the system working on a single server,
it is simple to distribute the tools between different machines.

Nevertheless, the process of making these tools available through a web ser-
vice is not straightforward, as one needs to deal with timely processes, that can
not be served easily using a single HTTP request, given timeouts; problems on
service abuse; problems on load distribution, and others.

In this paper we present SplineAPI, that is both a service, that we are making
available for free, and a platform, for anyone to replicate this kind of service in
their own servers. Section 2 will compare our proposal with other services already
available on the Web. Section 3 includes a presentation of our design goals as
well as the SplineAPI architecture and implementation. Section 4 concludes with
future work.

2 Related Work

The idea to make APIs available through web services is not new. There are
several platforms that make NLP processes available online, each with its own
characteristics and targeting different kinds of users. They range from simple
tools that allow a single kind of task to be performed, to fully featured sites
with a diverse set of functionalities.

SplineAPI: A REST API for NLP Services 207

In this section we compare our main goals with some of the tools already
available. We focused mainly on tools that have more similarities with our app-
roach. Therefore, we are looking mainly to tools that include more than one
kind of task and targeting more than one type of user. Then, we looked up their
popularity.

The main differences from the analysed platforms and our main goals are:

– some of the platforms are not NLP specific, like Mashape. They just work like
a proxy that hides some of the web-services requirements (like user authenti-
cation and quota management). Nevertheless, there is no information about
how the real service is implemented, and if its architecture is generic enough
to be configured for other requirements;

– other platforms, like Text-Processing, although allow different types of ser-
vices, all of them are based on one single tool (in this case, NLTK). Again, no
information is given on the system implementation and how it can be adapted
to other tools, and in specific, for functionalities not available in NLTK.

– and finally, mono-application services. Some are available together in a similar
place, like CORE API by TextAlytics but there is no integration or homo-
geneity between the different offered services.

During the development of SplineAPI our main goal is to have an extensive
system, to be used by anyone interested in offering Web Services, that can be
easily configured and monitored.

3 Design Goals and Architecture Details

The main goal is to create a solution that minimizes the challenges develop-
ers face, when trying to take advantage from a large set of NLP tools already
available.

In today’s connected world, applications are no longer running only on the
client machine. Also, they are no longer running only server-side. They are dis-
tributed, both on the client machine, server machine and others that might help
in the process.

Therefore, our goal is to help the conversion of NLP tools into web services.
Although the tool installation may be a challenge, the administrator of these
services needs to deal with it, we intend to make the API construction easy,
recurring to a set of Domain Specific Languages (DSL).

With the idea of creating a web API, it was necessary to think what is the
best implementable architecture to develop this idea. The easiest and the cleanest
method, to make available all the NLP tools, is to build a web service. Inside
the web service world, there are various options of architectures, depending on
how do we want to provide the service. The most popular are: Simple Object
Access Protocol (SOAP) and Representational State Transfer (REST), each one
with its own advantages and disadvantages depending on the objective in mind.
When it comes to SplineAPI, the obvious choice was REST [2,8].

208 N. Vieira et al.

REST is more and more popular, and the best benefit it offers, is the opti-
mization for stateless interactions that, in this case, is an essential feature,
because the platform handles specific requests and responses based on text data,
and that, does not require a connection status. To the users, REST is the sim-
plest way to query a service because it is less verbose and easy to understand,
as it bases its interaction with the clients in well known HTTP commands.

With the platform’s architecture decided, it was then fundamental to inves-
tigate the best way of developing all the connections between the tools and the
service, and the software technologies needed to make everything work.

3.1 Spline Architecture

Figure 1 shows our solution architecture. The server is composed of three main
components: the Spline REST server, the NLP tools and their interface defini-
tions, and a quota database.

NLP
Tool

Tool

File

Quota

Spline
REST
Server

Internet

Client

Client

Client

Client

Fig. 1. Spline architecture.

NLP Tools and Definition Files. Different NLP tools communicate in differ-
ent ways with the user. Some tools are command line applications that read infor-
mation from a file, or from the standard input, and produce results in another
file, or into the standard output. Some other are library-based, meaning that
they expose an API that can be used in order to process information and obtain
a desired output.

In order to be able to tackle with these different aspects of tools, each tool
interface is described in an XML file.

This XML file is processed and a Perl module is created. This Perl module
is responsible for the interaction with the Spline REST server, as is detailed in
Sect. 3.2.

SplineAPI: A REST API for NLP Services 209

Listing 1.1. XML example for the Tokenization Service based on FreeLing Perl library.

The XML structure follows a proper XML Schema that allows the validation
of the XML file. It also defines the domain of specific elements and attributes,
which allow easy verification on the XML semantics.

Listing 1.1 presents an example of an XML definition file. It describes the
interface for a tokenization service based on FreeLing [7] library.

The XML file is composed by three main parts:

– The meta-data for the service includes its name, the back-end tool and the
service route (basically, the path used for the service URL). It also includes
a brief explanation of the service goals, the service usage cost (if applicable)
as well as which parameters should be used in order to request an operation.
Each parameter is described in terms of its name, requiredness, data type
(text, number, file and others) and default values. Note that, when a service
receives file parameters, it request needs to be performed using the POST
HTTP method, with multipart form data.

210 N. Vieira et al.

The file also includes documentation, adding a brief explanation of each para-
meter meaning.

– A description of how the parameters supplied by the users will be used to com-
pute a result. At the moment this is done using Perl code or Bash commands.
In the first case, there are two sections, one describing the Perl packages that
need to be loaded, and another with the code that is executed. For Bash
commands, only the executed code section should be used.
We are aware that for different tools our generator will have different needs,
and therefore this section of the XML definition file might need further options
in the future.

– It includes a set of tests that allow the service programmer or the server
administrator to test if all services are working properly. These tests include
an input for the service and a set of assertions over the obtained output.
Again, at the moment these tests are being written directly in Perl, but we
have been working into incorporate a JSON querying language like JsonPath1

or JSONiq2.
– Finally, the file adds the possibility to document the service as a module. It

divides the information by headers (like chapters) and each one has its own
proper description. It is simply a way to maintain the system’s organization
as well as explain everything in more detail.

The structure of the Perl module generated from these XML definition files
is presented later, in Sect. 3.2.

Quota Database. Although our service is designed to be stateless, meaning
that the service is connection-oriented, we want to record information on service
usage, in order to track users, most used services, and if possible, distribute
different services by different servers, so that highly used services are hosted in
different hardware.

In one hand, each service defines how much a request to it costs. This cost can
be a constant or defined accordingly with the amount of data to be processed.
On the other hand, each client has an amount of quota to be used based on a
cost limit. This quota can differ accordingly with the status of the client or, who
knows, accordingly with a paid plan. Of course there is also the possibility to
turn off quota management completely.

For this to be possible it was created a coin strategy. Each user has a daily
limited amount of coins he can use freely. All the functionalities are different in
their processing time but have a text-based parameter that can be small or big
and, based on that, we stipulated a whole panoply of cost indicators that differ
with the length of the text and the functionality itself. For that to happen, it
was obviously fundamental to create a stateless authentication process to identify
and manage all the users and their requests.
1 A XPath like language for JSON, available from: http://goessner.net/articles/

JsonPath/ (Last visited: 15-04-2015).
2 A very complete and expresssive query language for JSON, available from: http://

www.jsoniq.org/ (Last visited: 15-04-2015).

http://goessner.net/articles/JsonPath/
http://goessner.net/articles/JsonPath/
http://www.jsoniq.org/
http://www.jsoniq.org/

SplineAPI: A REST API for NLP Services 211

Spline REST Server. Considering that Perl is a programming language ade-
quate to process textual data, with a great set of interfaces to other programming
languages, it was the chosen language for the back-end server implementation.

The server is implemented in Perl, using the Dancer2 Web Framework [10].
The interaction with the NLP tools is done using Perl modules generated auto-
matically from the already mentioned XML Definition Files. These modules are
loaded automatically by the server, making all services available.

The server is responsible for querying the quota database and update it
accordingly with the user requests. When called using the standard HTTP pro-
tocol, it presents common web pages documenting the services that are available
(accordingly with the loaded modules) and their interfaces.

This strategy allows the easy creation of new services, just by creating an
XML definition file, converting it into a Perl Module (and in some cases, some
edition of the generated module) and restarting the web server. The new module
will be loaded and its description and documentation will be made available in
the website automatically.

3.2 Perl Module Generation

As already mentioned, the XML definition file is processed and “compiled” into
a Perl module. The Perl module includes information about the service itself
(namely, the meta section of the XML definition file) and a set of methods that
are used both for configuring the service, and to perform the required operations
to provide the service.

The module generation is template based. The meta-information is converted
into an associative array (hash, in Perl terminology), and the Perl code is embed-
ded in a subroutine.

The generated Perl module can be edited manually, to perform any special
tweaks or improvements that might be necessary.

Listing 1.2 shows the relevant portions of the generated Perl module. Each
module should implement a programming interface (called Roles, in Perl world),
making available functions to access some of the needed data. Some of these
functions have default behaviour, and as such, the code generator creates stub
functions that can be then edited by the user. This means that the XML descrip-
tion can be used just for the module bootstrap.

The Perl module should also include a main function that will receive the
request in a dictionary, and should return an answer as a Perl structure. This
structure will be then converted into JSON and sent to the client.

In the Perl community a Perl module is, usually, shipped together with a set
of tests. Therefore, the test information available in the XML definition file is
used to generate such tests, like the one presented in Listing 1.3.

These tests can be used both for testing the Perl module locally, as well as
to test the production service (in order to guarantee all the services are running
correctly).

212 N. Vieira et al.

Listing 1.2. Module generated by the XML example.

SplineAPI: A REST API for NLP Services 213

Listing 1.3. Tests generated by the XML example.

use s t r i c t ;

use warnings ;

use HTTP: : Tiny ;

use JSON;

use Test : : More t e s t s => 2 ;

my $host = $ENV{SPLINE HOST} | | ’ l o c a l ho s t ’ ;

my $port = $ENV{SPLINE PORT} | | 8080 ;

my %params = () ;

$params{ ap i token } = ’ a token ’ ;

$params{ t ex t } = ’ I w i l l be token i zed . ’ ;

my $got = HTTP: : Tiny−>new−>post form (” http : / / ” . $host . ” : ” . $port . ”/

t ok en i z e r ” , \%params) ;

my $ r e s u l t = decode j son ($got−>{content }) ;

ok ($ r e su l t −>[0] eq ’ I ’ , ”Test the f i r s t word”) ;

ok ((s c a l a r @{ $ r e s u l t }) == 5 , ”Test the r e s u l t l ength ”) ;

3.3 Lengthy Requests

The previously presented architecture works great when the processes can be run
on the fly. Unfortunately, a lot of Natural Language Processing tasks are slow,
that would fire HTTP timeouts easily. Also, if concurrent users try to perform
such tasks, the system will overload and be even slower (if not failing at once).

With a big range of lengthy services in the NLP area, a solution to deal with
this kind of tasks was needed. It was, then, necessary to delineate a way to close
the connection to the user and, after the desired process is complete, return the
results.

The solution was the development a system daemon, that processes requests
from a queue, and make the results available to the end-user. The algorithm is
based on the following outline:

1. The REST server receives the request and detects if it is a lengthy one.
2. For lengthy requests, the server answers with a JSON that includes the URL

where the answer, when ready, will reside. At the same time, it creates a task
in the daemon queue, and a JSON file, accessible to the user, describing that
the task is running.

3. At this point, the first HTTP connection is already closed.
4. When possible, the daemon unqueues the task and executes it, placing the

resulting files in the folder created by the REST server for that effect.
5. The end-user will request, periodically, the JSON file, checking if its content

changed. If so, check the URL where the results are, and fetch them. This

214 N. Vieira et al.

process might be a problem if the users check for the JSON file changes too
often. Nevertheless, a simple GET request should be faster and lighter than
having the processes running at the same time.

To differentiate these services from the common ones, the XML file describing
the process accepts an extra attribute. This type of modules need to follow the
outline above.

To make the daemon work there are four main folders, the first two private,
the second two, public:

– The logs folder is used by the daemon to save information on each processed
request. It allows the administrator to track the daemon activities, and debug
them.

– The queue folder store files describing each process in the queue. They are
organised by time, therefore allowing its use as a queue.

– The json folder save the JSON files with the information to be delivered to
the user. When the process is running, these files show that the process is not
complete. When it ends, its content changes to include the URL for the final
resources.

– Finally, the results folder will store the output files, that are kept for a couple
of days, to allow the user to collect them.

Periodically the json and results folders are cleaned for too old files.

4 Conclusions

In this document we present the architecture for a module-based server for REST
services. The motivation for its development is the need to make NLP related
operations available easily, without all the problems that comprise their usual
configuration and installation.

Although the whole framework is ready and some services are already avail-
able (http://spline.di-um.org/) we are aware that different tools will dictate
different problems to manage. In fact, we are already aware of some of the chal-
lenges we will face:

– At the moment, the lengthy services code part is not generic and it is manda-
tory that the admin manage a big part of the process. To improve this issue, it
will be added an output section to the XML generation schema. This sections
will contain all the URLs to the result files and it will be kept in the Perl
Module to use when the final JSON file is created. With this feature, the user
knows where to find the desired information before the request is completed
(although it maintains a flag that informs the process is still running) and the
admin does not have to deal with that.

– Turn the platform even more user friendly. There are some things that can
be improved like error responses, interface organisation and styling and some
specific features.

http://spline.di-um.org/

SplineAPI: A REST API for NLP Services 215

Other than these developing challenges we intend to implement in Spline, we
will face other problems as soon as the server starts to be widely used, namely
computational weight and server balancing.

Acknowledgements. This work has been partly supported by FCT - Fundação para
a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013.

References

1. Cunningham, H., Maynard, D., Bontcheva, K.: Text Processing with GATE. Gate-
way Press, California (2011)

2. Fielding, R.T.: Representational State Transfer (REST). Ph.D. thesis, University
of California, Irvine (2000). https://www.ics.uci.edu/fielding/pubs/dissertation/
fielding dissertation.pdf

3. Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cam-
bridge University Press, New York (2015)

4. Loper, E., Bird, S.: Nltk: the natural language toolkit. In: Proceedings of the ACL-
02 Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics, ETMTNLP 2002, vol. 1, pp. 63–70.
Association for Computational Linguistics (2002)

5. Mani, I., Maybury, M.T.: Advances in Automatic Text Summarization, vol. 293.
MIT Press, Cambridge (1999)

6. Martin, J., Jurafsky, D.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
2nd edn. Prentice Hall, Upper Saddle River (2009)

7. Padró, L.: Analizadores multilingües en freeling. Linguamática 3(2), 13–20 (2011)
8. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big’web

services: making the right architectural decision. In: Proceedings of the 17th Inter-
national Conference on World Wide Web, pp. 805–814. ACM (2008)

9. Rychtyckyj, N.: Machine translation for manufacturing: a case study at ford motor-
company. In: Proceedings of the 18th Conference on Innovative Applications of
Artificial Intelligence, IAAI 2006, vol. 2, pp. 1728–1735. AAAI Press (2006). http://
dl.acm.org/citation.cfm?id=1597122.1597130

10. Sukrieh, A.: Dancer2: Manual - A gentle introduction to Dancer2 (2013). http://
search.cpan.org/sukria/Dancer2-0.10/lib/Dancer2/Manual.pod

https://www.ics.uci.edu/fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/fielding/pubs/dissertation/fielding_dissertation.pdf
http://dl.acm.org/citation.cfm?id=1597122.1597130
http://dl.acm.org/citation.cfm?id=1597122.1597130
http://search.cpan.org/sukria/Dancer2-0.10/lib/Dancer2/Manual.pod
http://search.cpan.org/sukria/Dancer2-0.10/lib/Dancer2/Manual.pod

Engaging Researchers in Data Management
with LabTablet, an Electronic

Laboratory Notebook

Ricardo Carvalho Amorim(B), João Aguiar Castro, João Rocha da Silva,
and Cristina Ribeiro

INESC TEC–Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
{ricardo.amorim3,joaoaguiarcastro,joaorosilva}@gmail.com, mcr@fe.up.pt

Abstract. Dealing with research data management can be a complex
task, and recent guidelines prompt researchers to actively participate in
this activity. Emergent research data platforms are proposing workflows
to motivate researchers to take an active role in the management of their
data. Other tools, such as electronic laboratory notebooks, can be embed-
ded in the laboratory environment to ease the collection of valuable data
and metadata as soon as it is available. This paper reports an extension
of the previously developed LabTablet application to gather data and
metadata for different research domains. Along with this extension, we
present a case study from the social sciences, concerning the identifi-
cation of the data description requirements for one of its domains. We
argue that the LabTablet can be crucial to engage researchers in data
organization and description. After starting the process, researchers can
then manage their data in Dendro, a staging platform with stronger, col-
laborative management capabilities, which allows them to export their
annotated datasets to selected research data repositories.

1 Introduction

With increasing amounts of research data being produced every year [3], institu-
tions tend to implement guidelines and workflows to preserve them, in a similar
way to what it is already the current practice with publications [6]. Neverthe-
less, this approach can pose some barriers to the dissemination and reuse of
such datasets, as a consequence of the lack of metadata that is essential for
other researchers to understand the production context of a specific dataset [12].
Likewise, gathering domain-level metadata at the deposit stage can be a very
demanding—and time consuming—task for curators, often responsible for more
than one research domain. At the same time, researchers play a key role in their
data description [7], as they have the best knowledge of their production envi-
ronment, and can add metadata to their data from the early stages. Existing
platforms for research data management, such as Figshare1 or Zenodo2, already
1 http://figshare.com/.
2 http://zenodo.org/.

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 216–223, 2015.
DOI: 10.1007/978-3-319-27653-3 21

http://figshare.com/
http://zenodo.org/

Engaging Researchers in Data Management with LabTablet 217

support simple descriptive metadata, but the barrier between them and the
researchers’ working environment is still high. It is therefore recognized that
important data and metadata are still temporarily stored in frail locations such
as personal computers and laboratory notebooks [10]. Ultimately, even with
guidelines for data management in place, some of these resources never reach
the deposit stage as they are susceptible to neglect.

In this paper, we present LabTablet as an application to help researchers
gather data and metadata during experimental runs or field trips, and directly
export them to a staging repository—in our case Dendro [5]—responsible for
creating a collaborative, description-oriented approach to research data man-
agement. With this approach, we can provide a better handling of research data
and provide conditions for capturing metadata as soon as it becomes available.
At the end of a research project, Dendro is capable of creating and exporting the
dataset package to existing platforms for data preservation, that can also take
advantage of the included metadata to improve the visibility of the dataset.

2 Research Data Management

Amid the research activities, researchers produce both raw and processed data
that support their conclusions towards the project goals. These resources are
sometimes neglected after the publication of the results, weakening the link
between project results and the data that supported them.

Managing research data has evolved to include tasks besides storage and
preservation, ensuring a proper handling of research outputs to facilitate their
retrieval and long-term preservation. Furthermore, similarly to what happens
with research publications, the deposit of research assets in repositories has
to be accompanied by a comprehensive description—also known as metadata
records—to facilitate their retrieval and interpretation. Ideally, when a dataset is
provided with sufficient metadata, others will be able to reuse it [12]. An equally
measurable result is the credit that researchers get from publications citing their
data, with side effects related, among others, with the possible reduction of costs
inherent to the research activity.

2.1 Data Description

Datasets and publications have different requirements concerning their descrip-
tion [11]. Considering the diverse scenarios in which datasets are produced, we
can identify sets of possible metadata descriptors that can be directly related to
each specific research domain, and at the same time extend the basic, high level
ones, used to describe publications. For each research domain, the description
possibilities vary, and thus, the data repositories are evolving to comply with
this required flexibility [2].

Well-known metadata schemas, such as Dublin Core, have been considered
fit to a broad scope of applications and allowed the emergence of protocols for

218 R.C. Amorim et al.

exchanging metadata and enhancing publications visibility [9]. The OAI-PMH3

is the best known, and is widely used to index different repositories, allowing
their resources to be presented in publications search engines. Basic descrip-
tors, such as title, description and author, can be added by a designated cura-
tor and provide the link between data and publications, but when considering
the broad possibilities for description in each of the domains, this task has to
include researchers. Actively involving researchers in the description of their data
faces some limitations, as the platforms created for this purpose must also take
into account usability requirements and offer features that meet their goals as
researchers, such as receiving credit for their data and sharing them with their
peers.

2.2 Researchers’ Engagement in Data Management

In the course of research activities, researchers often resort to personal computers
to store collected data and to their laboratory notebooks to record any observa-
tions or context. With the increasing amounts of research data, these approaches
pose some risks in terms of data preservation, which can later constrain data’s
availability.

In the past few years, several platforms emerged to integrate the research
environment, with some of them being actively used by several communities [2].
These platforms aim to implement established protocols for data preservation
and dissemination, while featuring easy to use interfaces along with collaborative
environments. The assessment of several existing platforms showed that issues
such as data ownership, dataset description and dissemination are already a
concern, although these platforms are still considered as a final location for
dataset deposit [2]. Staging platforms such as Dendro, on the other hand, aim
at creating management tools closer to the researchers’ daily routines and offer
a place where they can collaboratively store and describe data. It is important
to stress out that, for these platforms, all the managed data are private and
unaccessible from the external community, as it can involve sensitive data that
have to be adjusted prior to its disclosure. Only then they can be cited and
reused. At the end of the research activity researchers can export the resulting
resources to the final repositories, often aimed at long-term preservation.

3 Electronic Laboratory Notebooks

We have previously highlighted the importance of data management repositories,
both as staging environments and as research data preservation solutions. As
several researchers resort to field trips or experimental runs to gather data—
often a typical approach to data production—there is still a gap between data
production and their deposit in the mentioned platforms. Electronic laboratory
notebooks can fill this gap, allowing researchers to record and directly deposit

3 https://www.openarchives.org/pmh/.

https://www.openarchives.org/pmh/

Engaging Researchers in Data Management with LabTablet 219

data, while mitigating the risk of loosing such records during the process [8].
Nevertheless, the existing solutions tend to focus on a particular domain or offer
limited functionality, not taking advantage of some of the available sources of
metadata, and excluding prospective users from other domains.

3.1 LabTablet

Taking advantage of the growing popularity of handheld devices, LabTablet was
developed as an electronic laboratory notebook to help researchers describe
their data as soon as the project starts. Besides having an easy to use inter-
face, the underlying representation for each metadata record follows established
standards, ensuring a streamlined curation process before the final deposit in a
repository. The first version of this project was focused on gathering metadata
in the field, relying on previously built application profiles, and therefore using
a set of descriptors for that specific domain. In any of the versions, LabTablet is
capable of uploading each dataset to Dendro, or any other staging platform, from
which it can later be included in preservation solutions. This approach allows
curators to have standards-compliant metadata records upon deposit but, more
importantly, domain-level metadata that would otherwise be lost is properly
maintained.

Fig. 1. View of a project with the gathered metadata.

Figure 1 the application’s interface regarding an opened project, with the
correspondent gathered descriptions that can later be exported to a designated
platform. After preliminary evaluation with researchers from the biodiversity
domain [1], a new approach was developed, extending the metadata capabili-
ties of this application and including mechanisms to also gather opportunity
data—observations collected by chance while performing some other activity.
Opportunity data can be directly linked to the researchers’ field trips and be

220 R.C. Amorim et al.

enriched by the use of the tablet’s built-in sensors to gather metadata from the
available sources such as camera, GPS or accelerometer. In addition to those,
LabTablet also allows voice recordings, sketches, and tracking a field trip, and
is able to export the results to a compliant format4. Furthermore, researchers
can also import other types of data (namely spreadsheets) from their computers,
merging them into the workflow. To take advantage of the device’s capabilities,
and considering a wider set of research domains, additional input modes were
also implemented, namely forms, used in surveys. Forms can be custom-designed
and filled directly in the application. The workflow for such process relies on the
researcher to create a model, and to instantiate it whenever a subject is inter-
viewed. The same applies for other activities that require some kind of form
or survey such as routine evaluations and observations. The gathered data is
then exported to files that are compatible with common statistical analysis tools
such as Excel or SPSS5. At this stage, the development of new LabTablet fea-
tures is mainly dependent on the integration of existing workflows, as well as
the inclusion of standards that are already in use among the research workgroup
or possible direct connection between the application and the researcher’s tools
(LabView6 or SPSS, for instance).

At the end of each field trip (or when the researcher finds it convenient to
do so), the application can sync the collected resources with a repository where
researchers are able to share them with their team or the community. This
ensures that data are stored in the appropriate location, under their institutions
supervision. Additionally, as with metadata records, the created package can
follow any guidelines, namely the structure of a Submission Information Package
(SIP), from the Open Archival Information System model7, provided the correct
integration is done.

4 Social Sciences: A Case Study

As a part of an ongoing partnership, a researcher from the social sciences domain
was interviewed to assess the different data management needs for this specific
domain8. Initially, a set of questions was proposed to address metadata needs or
possible constraints on data sharing. As the interview went on, several impor-
tant aspects related to the workgroup’s current practices allowed us to tailor the
existing workflow to their needs. Previous work with researchers in engineering
domains [4] showed that usually researchers deal with systematic data produc-
tion which has features that are common to several domains: experimental data,
for instance, tends to deal directly with the experimental setup and the physical

4 A KML-based representation (https://developers.google.com/kml/), containing a
set of connected coordinates, for instance.

5 http://www-01.ibm.com/software/analytics/spss/.
6 http://www.ni.com/labview/pt/.
7 http://www.iso.org/iso/catalogue detail.htm?csnumber=57284.
8 The survey for this evaluation was based on the Data Curation Toolkit, available at

http://datacurationprofiles.org/.

https://developers.google.com/kml/
http://www-01.ibm.com/software/analytics/spss/
http://www.ni.com/labview/pt/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=57284
http://datacurationprofiles.org/

Engaging Researchers in Data Management with LabTablet 221

properties of samples or compounds. In the social science domains, on the other
hand, workflows are centered on temporal or spatial coverages, having their main
focus on social traits that can differ greatly. As a result we have high heterogene-
ity of dataset structures and description needs across different research groups,
that are highly dependent on the researcher’s view of the event.

4.1 The Social Sciences Domain

Our interview revealed the researcher’s awareness of the recent evolution of data
management guidelines on this area. However, these had never been put into
practice. Studies in this group are mainly focused on evaluating phenomena
in different social groups, directly interacting with them either through field
observations, structured or unstructured interviews, or content analysis. During
these activities, the produced data is mainly of qualitative nature, with a small
portion of quantitative data as well. Qualitative data is, for this group, mostly
related with observations or notes which contents are fully dependent on the
producer, whereas quantitative data results from surveys and questionnaires.

Concerning the publication of research data, the researcher highlighted some
limitations, as some projects are not expected to disclose data and some datasets
are of a sensitive nature and need to follow ethical recommendations, or need
to be anonymized before their disclosure, if applicable. Still, for some projects,
pursuing data disclosure would benefit both parts, as they would be able to
cite datasets in publications and their peers could access and reuse such data in
subsequent analysis.

LabTablet proved to be capable of handling all these needs in terms of
data production, as well as helping researchers identify some equally important
descriptors that could be added to provide extra context. During the course of
this interview, a set of basic Dublin Core elements revealed to be satisfactory for
the description needs in this domain9. Nevertheless, for a deeper data descrip-
tion, other schemas should also be included to achieve an extensive metadata
record.

4.2 Preparing for Data Description

After identifying the basic description needs and suggesting an initial profile for
this purpose, we proceeded to identify other domain-level descriptors. In this
field, the Data Documentation Initiative (DDI)10 proved to have a suitable set
of descriptors for social sciences domains, namely11:

• Data Collection Methodology—to specify which methodology was used to
collect the samples or questionnaires. This revealed to be a recurrent scenario
as researchers often worked with a small set of methodologies;

9 These consist of the base Dublin Core elements profile, namely abstract, contributor,
creator, subject, title, description, publisher, date, type, and others, as specified in
http://dublincore.org/documents/usageguide/elements.shtml.

10 http://www.ddialliance.org/.
11 Not all the descriptors are depicted here.

http://dublincore.org/documents/usageguide/elements.shtml
http://www.ddialliance.org/

222 R.C. Amorim et al.

• Data Source—to identify the source of the collected data, including the asso-
ciated project. As some of the projects could include partnerships with other
data providers, this descriptor was chosen to support such specification;

• Sample Size—to state the dimension of the sample or the number of inter-
viewees during a field session;

• External Aid—a reference to any support given during the experiment, such
as text cards or multimedia support;

• Kind of data—a specification of the dataset’s content type. This allows
researchers to specify whether the packaged data is of a qualitative, quan-
titative or mixed type;

• Universe—a description of the referenced population, if applicable. This can
include informations related to age, gender or income classifications.

The selected descriptors allow a better understanding of the dataset in ques-
tion. A clear description of the population will, for instance, enable other
researchers to search for datasets that were obtained from specific social com-
munities, and the same happens for the other descriptors such as the Sample
Size. According to the researchers, identifying the methodology was consid-
ered to be a key item in the description process. This identification was often
extensively done and it was a common item to be mentioned in each project.
According to the schema specification, this item is expected to mainly consist
of a brief description of the involved methodology, but in this case—and con-
sidering related work in this area—this field can sometimes be very extensive,
which led the researcher to suggest that other descriptors should also be present
to promote a structured representation of this information.

After this selection of descriptors, we proceeded to create the ontology for this
domain. Along with the descriptors from the Data Documentation Initiative, we
included high level descriptors from the Dublin Core profile as well. This ontology
can be loaded at any time into the LabTablet application and be used to describe
data in this area. The same is true for Dendro, our staging repository.

5 Conclusions

By analyzing different research domains, we can identify many differences con-
cerning data management practices. While some groups have data management
procedures already in place, most are still far from addressing the issue, mostly
due to the nature of their data rather their motivation.

The researcher from our case study recognized the added value in automati-
cally exporting the daily produced data to a centralized location, where it could
be properly handled and edited. Additionally, some specialists in the field advise
against using any kind of note taking tools during the interviews, not to influ-
ence the interviewee; however, the researcher considered very important to be
able to record or transcribe the interviews in the background.

We are testing the collection of metadata throughout the entire research
workflow with several research teams. It is clear by now that devices and tools

Engaging Researchers in Data Management with LabTablet 223

to make the process easier on the researchers can make the difference between a
process regarded as an extra burden on researchers and one where they perceive
the benefits and get involved.

Acknowledgements. Project SIBILA-Towards Smart Interacting Blocks that
Improve Learned Advice, reference NORTE-07-0124-FEDER000059, funded by the
North Portugal Regional Operational Programme (ON.2-O Novo Norte), under the
National Strategic Reference Framework (NSRF), through the European Regional
Development Fund (ERDF), and by national funds, through the Portuguese fund-
ing agency, Fundação para a Ciência e a Tecnologia (FCT). João Rocha da Silva is
also supported by research grant SFRH/BD/77092/2011, provided by the Portuguese
funding agency, Fundação para a Ciência e a Tecnologia (FCT).

References

1. Amorim, R.C., Castro, J.A., da Silva, J.R., Ribeiro, C.: LabTablet: semantic meta-
data collection on a multi-domain laboratory notebook. In: Closs, S., Studer, R.,
Garoufallou, E., Sicilia, M.-A. (eds.) MTSR 2014. CCIS, vol. 478, pp. 193–205.
Springer, Heidelberg (2014)

2. Amorim, R.C., Castro, J.A., Silva, J.R., Ribeiro, C.: A comparative study of plat-
forms for research data management: interoperability, metadata capabilities and
integration potential. In: Rocha, A., Correia, A.M., Costanzo, S., Reis, L.P. (eds.)
New Contributions in Information Systems and Technologies. AISC, vol. 353, pp.
101–111. Springer, Heidelberg (2015)

3. Borgman, C.L.: Advances in information science: the conundrum of sharing
research data. J. Am. Soc. Inf. Sci. Technol. 63(6), 1059–1078 (2011)

4. Castro, J.A., da Silva, J.R., Ribeiro, C.: Creating lightweight ontologies for dataset
description. Practical applications in a cross-domain research data management
workflow. In: IEEE/ACM Joint Conference on Digital Libraries (JCDL), pp. 313–
316, London (2014)

5. da Silva, J.R., Castro, J.A., Ribeiro, C., Lopes, J.C.: The Dendro research data
management platform: applying ontologies to long-term preservation in a collabo-
rative environment. In: Proceedings of the iPres 2014 Conference (2014)

6. Lynch, C.A.: Institutional repositories: essential infrastructure for scholarship in
the digital age. Association for Research Lybraries. Bimonthly Report no.226
(2003)

7. Lyon, L.: Dealing with data: roles, rights, responsibilities and relationships. Con-
sultancy Report, UKOLN, pp. 1–65, June 2007

8. Jason, T.: Nickla and Matthew B Boehm. Proper laboratory notebook practices:
protecting your intellectual property. J. Neuroimmune Pharmacol. 6(1), 4–9 (2011)

9. Rice, R.: Applying DC to institutional data repositories. In: Proceedings of the Inter-
national Conference on Dublin Core and Metadata Applications, pp. 212-212 (2008)

10. Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A.U., Wu, L., Read, E., Manoff,
M., Frame, M.: Data sharing by scientists: practices and perceptions. PLoS ONE
6(6), e21101 (2011)

11. Treloar, A., Wilkinson, R.: Rethinking metadata creation and management in a
data-driven research world. In: IEEE Fourth International Conference on eScience,
pp. 782–789 (2008)

12. Willis, C., Greenberg, J., White, H.: Analysis and synthesis of metadata goals. J.
Am. Soc. Inf. Sci. Technol. 63(8), 1505–1520 (2012)

OFR: An Efficient Representation
of RDF Datasets

Jakub Swacha1(B) and Szymon Grabowski2

1 Institute of Information Technology in Management, University of Szczecin,
Mickiewicza 64, 71-101 Szczecin, Poland

jakubs@uoo.univ.szczecin.pl
2 Institute of Applied Computer Science, Lodz University of Technology,

Al. Politechniki 11, 90-924 �Lódź, Poland
sgrabow@kis.p.lodz.pl

Abstract. The constant growth of structured data, often in the form
of RDF, demands for efficient compression methods, to facilitate their
storage and transmission. We propose an RDF compression algorithm
that produces a succinct representation of RDF datasets. It consists of
two stages. The first splits the input triples into multiple streams, and
applies tailored compaction techniques for each stream. In the second,
a general-purpose compression is applied. We experimentally show on a
number of datasets that the proposed algorithm achieves compression
ratios significantly better than the RDF compressors known from the
literature.

1 Introduction

The Resource Description Framework (RDF) is a family of W3C specifications
used for modeling information on the Web. RDF is a vital part of the Seman-
tic Web vision in which ultimately all information on the Internet is machine-
processable, shifting the (still dominating) document-centric perspective to the
data-centric one. Although still in infancy, large RDF datasets appear and grow
at a fast pace, currently containing in total over 25 billion triples (http://www4.
wiwiss.fu-berlin.de/lodcloud/).

RDF statements have a subject, a predicate (also known as a property) and
an object term. The domain of subjects and objects are typically partially shared.
Note that an RDF dataset may be perceived as a directed labeled graph, with
possibly more than a single label (or labeled edge) between a subject and an
object.

Some RDF domains have been adopted, for example, in life sciences
(e.g., Uniprot), geography (e.g., Geonames), sensor data from weather sta-
tions (LinkedSensorData) and open government (e.g., U.S. data.gov, U.S. Cen-
sus data). The result of a notable effort is also DBpedia, a dataset containing
extracted data from Wikipedia, with about 2.6 M concepts described by 247 M
triples.

c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 224–235, 2015.
DOI: 10.1007/978-3-319-27653-3 22

http://www4.wiwiss.fu-berlin.de/lodcloud/
http://www4.wiwiss.fu-berlin.de/lodcloud/

OFR: An Efficient Representation of RDF Datasets 225

This growth raises challenges and requires a succinct representation of the
RDF repositories, with two goals in mind: possibly small compressed size for
distribution and exchange, and possibly small representation supporting queries.
Originally (in 1999) XML syntax for RDF data model was recommended but
other serialization choices are also in use and even gain popularity. One of these
alternatives is N-Triples (http://www.w3.org/2001/sw/RDFCore/ntriples/), a
line-based plain-text format.

The outline of this article is as follows. In the next section we give a brief
outline of the RDF compression area. Section 3 presents our algorithm, and its
experimental results are shown in Sect. 4. The last section concludes.

2 Related Work

RDF compression is a relatively young research topic. Early approaches map
RDF to a relational database. This can be achieved basically using one of three
possibilities. The simplest and most natural is just to store all triples in a single
3-attribute table [5], an approach known under the name of a triple-store and
used in the RDF storage systems Jena, Oracle, Sesame and 3store. Since URIs
and literals tend to reoccur, and are relatively long, many such solutions do not
store entire strings in the table, substituting them with their shorter versions
or mapping them to numerical IDs. Still, in [1] it was shown that triple-stores
hardly scale if the number of triples exceeds 50 millions.

An alternative, known for faster data access, are property tables. There are
two variants of this approach. In the clustered property tables variant, several
tables are built and the attributes (columns) in each are properties common
to the triples stored in those tables. The left-over triples are stored in a triple
table. In a second variant, a property-class table, the type property of subjects
is used to cluster similar sets of subjects. Property tables can reduce subject-
subject self-joins of the triples tables, yet if a query requires combining data
from several tables, they become problematic [1,19]. Abadi et al. [1] point out
other issues with property tables: many NULL values in the tables (since real
RDFs are not very structured or complete) and the (surprising) abundance of
multi-valued attributes, even some that seemingly should be single-valued (title
of a book). The former deteriorates the performance, the latter requires storing
multi-valued properties as e.g. lists (together with other attributes in the same
table), which complicates query handling.

Yet another RDBMS-based approach, called vertical partitioning, is to have
one table per one property [1]. In other words, its idea is to group triples by
predicate and thus to obtain many 2-attribute tables, one for each predicate
value (in many cases the number of used predicates is indeed small, e.g. less
than 200).

Other works should also be mentioned: Hexastore [18] and RDF-3X [15] sys-
tems create indexes for all six element ordering combinations. RDF-3X addition-
ally applies gap compression in leaves of the underlying B+-tree, to make the
indexes more compact. BitMap [3] also applies gap compression, for 2D matrices:
SO and OS for each predicate, PO for each subject and PS for each subject.

http://www.w3.org/2001/sw/RDFCore/ntriples/

226 J. Swacha and S. Grabowski

All the mentioned schemes are not particularly succinct. Much better results
have been achieved in two works from the same team. In [8] a compression scheme
without random access to data (although with some random access friendly
helper structures) was presented, grouping triples with the common subject to
adjacency lists, and storing ordered object IDs for each property value bounded
with that particular subject. The obtained sequences are then encoded statis-
tically (with Huffman encoding as a major component) and the dictionary of
strings (for S, P , and O values) is encoded with PPMd1.

Finally, in [2] a scheme offering both good compression and fast query han-
dling was proposed. This is based on the k2-tree [4] data structure, being a
pointerless variant of the well-known quad-tree. In the RDF case, for each
property value a single k2-tree is kept, representing a binary matrix of size
|SO|+ |S−SO|× |SO|+ |O−SO|, where SO is the set of common subjects and
objects. Note that this matrix is rectangular (rather than square) but because
of the partitioning nature of the k2-tree, along both dimensions 0-cells will be
padded, to the nearest power of k.

As the graph structure and the dictionary of strings are completely different
components, no wonder that works focusing on a single aspect of RDF com-
pression also exist. Mart́ınez-Prieto et al. [14] consider efficient RDF dictionary
compression. They consider several variants, more compression or more access
time oriented, and utilize algorithmic techniques like hashing, front coding and
FM-indexing, to name a few. Other researchers in this area focus on scalable
parallel solutions [6,17], e.g. using the MapReduce paradigm.

Considering the graph structures, recent years also brought a few novel con-
cepts. Joshi et al. [12] managed to losslessly prune over 50 % of the original
triples for several popular datasets, using the idea of inferring triples from
a set of logical rules derived from the given dataset. To give a toy exam-
ple, if the dataset contains the triples 〈A, fatherOf,B〉, 〈B, fatherOf,C〉 and
〈A, grandfatherOf,C〉, the last of them may be inferred from the previous two,
given an ontology explaining the connection between the relations “fatherOf”
and “grandfatherOf”.

A similar approach was taken by Pan et al. [16], who replace a frequently
occurring graph pattern with a generalized triple. To give an example, if the
pattern 〈?x, a, foaf : Person〉, 〈?x, a, dbp : Person〉 appears often (as it actually
happens in the DBpedia dataset), a type T may be introduced, along with a
rule to expand T to foaf: Person and dbp: Person. In this way, the single triple
〈?x, a, T 〉 would represent the pattern above.

Jiang et al. [11] proposed two algorithms. In one, they label each object
and subject in the RDF graph with “type” and reduce the number of nodes by
combining those with the same type and related neighborhoods. In the other
variant, they contract the graph by removing nodes having only one neighbor
after passing the information about the node to remove to its neighbor.

1 http://www.compression.ru/ds/ppmdj1.rar (PPMd, var. J rev. 1, May 10, 2006, by
D. Shkarin).

http://www.compression.ru/ds/ppmdj1.rar

OFR: An Efficient Representation of RDF Datasets 227

Hernández-Illera et al. [10] exploit the so-called predicate families, i.e., pos-
sible pairs of predicates and subjects. As in real datasets their number is much
less than the combinatorial product of all existing values, there is a clear redun-
dancy which may be removed. Similarly, there exists a redundancy in pairs of
predicates and objects. The proposed algorithm, HDT++, produces archives for
large datasets by 10–13 % smaller than the k2-triples compressor [2].

A good survey to graph compression, including RDF compression, was
recently published by Maneth and Peternek [13].

3 The Proposed Algorithm

The proposed algorithm is aimed at semantically lossless compression of RDF
datasets. Our only goal was to improve compression efficiency, which would
help to distribute large RDF datasets. Therefore, we do not aim at providing
the capability of search without decompression, however most of the solutions
presented here could also be applied to a search-capable compression scheme,
and investigating this opportunity will be our future work.

3.1 The General Approach

The following list sums up the key characterics of our approach.

1. Separation of semantic and statistical encoding. The RDF-specialized trans-
formations are performed as the first stage, whose output is compressed in
the second stage with a general-purpose compression algorithm.

2. Separation of graph and dictionary compression. The graph contains only
numeric identificators, which can be translated to the actual subjects, pred-
icates, and objects using dictionaries. It was chosen to reduce the design
complexity of the algorithm.

3. Splitting the content. The RDF dataset components that are of a distinct
semantic type (e.g., subjects vs. objects) or consist of similar values (e.g.,
unmatched string fragments vs. match lengths) are put into separate streams.
This helps to obtain more skewed distributions and allows patterns to form,
which can be exploited by the second-stage algorithm, which compresses the
separate streams, and outputs a single distributable file.

4. Reordering the content. The aim is to form a pattern that could be effec-
tively encoded. The primary examples are: sorting the triples (so that at least
the first triple component forms a non-decreasing sequence, thus becomes
extremely prone to delta encoding), putting the triples in (object, subject,
predicate) order (so that the highest entropy component becomes the one to
be most effectively compressed after sorting with delta/run-length encoding),
moving the numbers to the end of string (so that longer matches can be found
as the numbers are often the most randomized part of strings).

5. Effective number encoding. The numbers represented in input formats as text
are encoded in binary form, using all bits available in every byte.

228 J. Swacha and S. Grabowski

6. Exploiting local redundancy. As similar values tend to appear next to each
other in respective streams, we apply delta and run-length encoding to remove
this redundancy or make it more prone to second-stage compression.

We called our approach Objects-First Representation (OFR), because of the
order of triple elements.

3.2 Phases of the Algorithm

As noted above, the proposed algorithm consists of two stages: (1) semantic
encoding of the RDF dataset content, and (2) statistical encoding and merging
of the stage 1 output. As stage 2 simply involves the use of a general-purpose
compression algorithm, below we shall only describe the phases of stage 1.

Parsing Input RDF Dataset. The first phase decodes the RDF dataset from
its input representation. For every input line, first it checks its correctness. It
is not a strict check, however errors that would cause failure of the subsequent
compression phases are detected. Minor errors (e.g., unescaped UNICODE char-
acters) are corrected, lines containing major errors (e.g., missing URI closing
bracket) are put into separate errorlines output stream. Also, lines that do not
contain triples (notably prefix definitions and comments) are put into sepa-
rate streams. The lines considered correct are parsed into subject, predicate
and object parts. The numbers are found and moved to the end of string, with
their original places of occurence marked with zeros. The language and datatype
information (sometimes appended to object literals) is extracted and replaced
with a numerical identifier, with the original moved to a respective dictionary.
The triple elements are then classified depending on their content type (defined
name, URI, or literal), and queried in a respective dictionary (there are nine
combinations of element and content types, but only six are valid in RDF, hence
there are six main dictionaries; the two additional ones are for languages and
datatypes). If an element is not found in a given dictionary, it is added, and has
a new unique ID assigned. The three elements’ IDs form a triple of numbers,
which is appended to a list.

Sorting. All the main dictionaries are sorted lexicographically. New IDs are
assigned to every dictionary item that (i) reflect the sorted order and (ii) ensure
that the IDs for every element type are unique (e.g., no object literal has the
same ID as any object URI). The triple list is updated by replacing all the old
IDs with the new ones. Then, the triple list is sorted in the increasing order
determined by object ID, then subject ID, then predicate ID.

Encoding Triples. The object ID’s are encoded as run-lengths of series of
zeros (denoting a number of triples referring to the same object) or ones (denot-
ing a number of different objects). This is all that is needed for decoding, as
the triples are sorted by object ID, therefore the consecutive objects in the

OFR: An Efficient Representation of RDF Datasets 229

triple list can only differ by having an ID increased by one. The subject IDs are
encoded differently, depending on whether it is a first encountered subject for
a given object (leading subject), or not (consecutive subject), to better exploit
the non-decreasing order of the consecutive subjects introduced by sorting. Each
but the very first leading subject ID is compared to the preceding one. If the
difference is small, it is encoded using a single byte to the subjects.hi stream,
otherwise, a range identifier is encoded using a single byte to the subjects.hi
stream, whereas the remaining bits (pointing to the position within the range)
are encoded to the subjects.lo stream. The consecutive subject IDs are delta- and
run-length-encoded into three streams (subjects.delta for prefixes, subjects.rle for
run-length subranges, subjects.lo for remainders). The predicate IDs are simply
put to the predicates stream using a minimum possible number of bytes (taking
into consideration the maximum predicate ID). Delta and run-length encoding
was also tried with the predicates stream, and although it considerably reduced
its size, the final effect, after applying second-stage compression, was found to
be negative on test datasets.

Encoding Dictionaries. Each of the six main dictionaries is encoded in the
following steps:

1. A dictionary element is matched to the preceding one. The match length is
delta-encoded and put to the matchlens stream.

2. The unmatched part (including number markers but not including the num-
bers themselves) is put to the dict stream.

3. The number buckets (see steps 4 and 5) that were kept for offsets within
the unmatched part are closed, with their content flushed into the deltas.hi
and deltas.lo streams. Note that this grouping of numbers and delaying their
output until a sequence is finished helps patterns to form and increases local
redundancy, which is to be exploited by the second-stage compression.

4. The numbers that were encountered in the unmatched part (leading numbers)
are separated into prefix (range identifier) and remainder (range position)
parts, and put, respectively into the nums.hi and nums.lo streams. There are
special prefix ranges reserved for numbers around 2000 and digits preceded
by a single zero (e.g. 01), aimed at encoding months, hours, and popular
years in a single byte. Moreover, encountering a number causes a new bucket
to be initialized. The bucket will contain numbers encountered at the same
offset in subsequent matches (see step 5).

5. The numbers that were encountered in the matched part (consecutive num-
bers) are delta- and run-length-encoded into a respective bucket of numbers,
again with prefix and remainder separated. There are special prefix ranges
reserved for 1000 and further powers of 10, so that such incrementals can be
encoded in a single byte.

Because of their rather negligible size, the additional dictionaries (languages and
datatypes) are passed to the second-stage compressor in their original format.

Decompression is a much simpler procedure. First, the additional dictionaries
are read. Then, one after another, the main dictionaries are decompressed in

230 J. Swacha and S. Grabowski

three steps: (1) strings (without numbers) are reproduced using the content
of the matchlens and dict streams, as well as the additional dictionaries; (2)
the strings are analyzed to obtain number bucket sizes; (3) the numbers are
decoded and inserted into places held by markers. Next, the triple element lists
are decoded: (1) the object ID list; (2) the subject ID list; (3) the predicate ID
list. Then, the lines that did not contain triples are copied to the beginning of
the output (decompressed) file. Finally, the original triples are reconstructed by
replacing the IDs with respective dictionary items, and appended at the end of
the output file. Note that the order of triples is not preserved, which is not a
problem, as the order of lines in the N-Triples format is irrelevant. This is why
we called our scheme semantically lossless.

Figure 1 depicts, in a simplified way, splitting of RDF data into different
streams, whereas Fig. 2 shows handling of exemplary RDF data.

3.3 Implementation Details

A proof-of-concept implementation of the proposed algorithm has been devel-
oped in C++ with the following design decisions:

1. The openhash of Zilong Tan’s ulib library2 was used to implement the main
and additional dictionaries. This solution was found experimentally to handle
large dictionaries much faster than the hash map of the Standard Template
Library.

2. The Standard Template Library’s sort has been used for sorting both the
triples and the dictionaries.

3. The object encoder uses the following range widths: 80 for prefixes of run-
lengths of zeros, 32 for prefixes of run-lengths of ones, 16 for prefixes of
run-lengths of (zero, one) pairs, and 128 for the remainders.

4. The consecutive subject encoder uses the following range widths: 32 for pre-
fixes of run-lengths of zeros, 16 for prefixes of run-lengths of ones, 15 for small
numbers (no remainder), 128 for numbers with a remainder one byte long,
64 for numbers with a remainder two bytes long.

5. The leading subject encoder uses ranges dependent on the number of subjects.
The width of the range for prefixes is the minimum number that allows to
encode the remainder with a static length code using a minimum number of
bytes (multiples of 8 bits). The remaining codespace is used for delta coding
(half for small numbers, the other half for prefixes of larger numbers, with a
remainder one byte long).

6. Match length delta encoder writes them as bytes using (repetitions of) one
special value (255) to encode values larger than 254.

7. The leading numbers encoder uses the following range widths: 112 for small
numbers (no remainder), 40 for numbers with a remainder one byte long, 31
for numbers with a remainder two bytes long, 6 for numbers with a remainder

2 Z. Tan, ulib. An efficient library for developing high-performance and scalable sys-
tems in C and C++, 2012, http://code.google.com/p/ulib/.

http://code.google.com/p/ulib/

OFR: An Efficient Representation of RDF Datasets 231

Fig. 1. General scheme of splitting RDF data by the OFR algorithm

232 J. Swacha and S. Grabowski

Input triples:
<http://example/s1> <http://example/p> "o3_5"^^<http://example/dt> .

<http://example/s2> <http://example/p> "o7_7z"@en .

Dictionaries:
Datatypes (1): <http://example/dt>
Languages (1): en

Subject URIs:
Items (2): "http://example/s0",""
Match lengths (2): 0, 17
Numbers (1): 1
Deltas (1): 1 (as 2 − 1 = 1)

Predicates:
Items (1): "http://example/p"
Match lengths (1): 0

Object literals:
Items (2): "o0^0", "z@0"
Match lengths (2): 0, 2
Numbers (1): 3, 5
Deltas (1): 4 (as 7 − 3 = 4), 2 (as 7 − 5 = 2)

Triples:
Objects: 0, 1 (as 1 − 0 = 1)
Subjects: 0, 1 (as 1 − 0 = 1)
Predicates: 0, 0

Fig. 2. An example of triple processing by the OFR algorithm

three bytes long, 2 for larger numbers, 10 for digits preceded by a single zero,
52 for numbers from the range 1969–2020, 2 for run-length encoding of leading
zeros. Thus, e.g., 2004 can be encoded using just one byte, 10005 using just
two bytes (in total), 2000007 just three, and 100000009 just four.

8. The consecutive numbers encoder uses the following range widths: 128 for
small numbers (no remainder), 47 for numbers with a remainder one byte
long, 31 for numbers with a remainder two bytes long, 6 for numbers with
a remainder three bytes long, 17 for prefixes of run-lengths of zeros, 17 for
prefixes of run-lengths of other numbers, 5 for the consecutive powers of 10,
starting with 1000, the remaining 5 for other purposes (e.g. larger numbers
and marking change in the number of leading zeros).

9. At most 48 streams are produced at the end of stage one, and passed to the
stage-two compressor. Note, though, that real-life RDF datasets hardly ever
contain all the possible types of content, therefore, the number of output
streams is smaller in practice.

OFR: An Efficient Representation of RDF Datasets 233

4 Experimental Results

We tested our C++ implementation of the proposed compression scheme (OFR)
on a number of datasets in N-Triples serialization format. Table 1 presents com-
pression ratios (in per cent) of several compressors. Results for both HDT and
our OFR implementation were obtained experimentally with two backend com-
pression algorithms: Deflate (as implemented in zip, using mode -9: max. com-
pression) and LZMA (the default compression algorithm used in the 7z archiver,
http://www.7-zip.org), the results of other prominent RDF compressors were
copied from the available literature. As Table 1 shows, the proposed OFR algo-
rithm achieves clearly best compression ratios across all test datasets.

Table 1. Compression ratio comparison. The results are given in per cent of the original
dataset size. The results of HDT on the Mix dataset, marked with a prime symbol (’),
are over-optimistic, since the compressor missed about 5 % of the triples. The column
“best other” denotes the best, to our knowledge, compression ratio from other programs
reported in the literature.

No. triples Inp.
size

HDT HDT Best OFR OFR

(MB) +zip +7z other +zip +7z

AEMET-1 1,018,815 139.2 0.55 0.41 0.8c 0.26 0.24

AEMET-2 2,788,429 517.8 0.70 0.30 1.1b,c 0.09 0.08

CN 137,484 18.8 0.95 0.80 0.78d 0.34 0.22

Events-Wikipedia 359,028 34.2 5.03 — — 3.43 3.07

Jamendo 1,047,950 151.2 3.44 2.58 3.19d 2.58 2.02

LinkedMbd 6,147,996 891.6 1.88 1.50 1.01a 0.90 0.79

Mix 93,048 12.3 3.03’ 2.65’ 4.9b 2.18 1.93

Petrol 3,356,616 508.9 1.83 1.62 2.6c 1.86 1.62
a is from the k2-triples result, copied from [10]
b is from the algorithm RDSZ [9], as reported in [7]
c is from ERI-4k-Nodict [7], as reported in the same work
d is the JHD [12] result, with bzip2 backend compression

On the test machine, the average measured compression and decompression
speeds were, respectively, 47 and 62 MB/s (including both OFR and second-stage
processing), which can be considered as satisfactory for practical purposes. The
compression speed ranged between 24 and 77 MB/s, with slowest compression
measured for datasets containing large amounts of numbers, which is reasonable
as they are handled in a sophisticated way, whereas decompression speed, ranging
between 22 and 103 MB/s, seemed to depend primarily on the dataset size,
with the smaller datasets being decompressed slower (presumably due to larger
initialization overhead). A comparison of measured processing times of OFR and
HDT is presented in Table 2. The OFR implementation is clearly faster, yet one

http://www.7-zip.org

234 J. Swacha and S. Grabowski

should notice that the HDT implementation was written in Java, which may be
somewhat slower than equivalent C++ code.

Table 2. Compression and decompression times (s). The test machine was running
64-bit Windows 7 and was equipped with an AMD Phenom II x6 3.0 GHz CPU and
8 GB of RAM.

Compression time Decompression time

HDT HDT OFR OFR HDT HDT OFR OFR

+zip +7z +zip +7z +zip +7z +zip +7z

AEMET-1 3.81 3.96 1.74 1.81 4.76 4.79 1.33 1.35

AEMET-2 14.87 16.95 7.28 7.71 15.72 15.79 5.99 5.93

CN 1.18 1.18 0.30 0.32 1.08 1.08 0.42 0.43

Events-Wikipedia 2.73 2.92 0.96 1.30 2.23 2.28 1.05 1.05

Jamendo 9.05 11.69 3.79 6.40 8.29 8.42 2.30 2.38

LinkedMbd 50.74 54.47 15.66 19.17 31.36 31.84 11.44 11.65

Mix 1.14 1.18 0.30 0.37 1.21 1.20 0.52 0.55

Petrol 16.34 23.77 8.32 12.26 23.10 23.47 7.47 7.77

5 Conclusion

We presented an RDF compression scheme surpassing the existing ones in com-
pression ratio. This was achieved thanks to careful parsing of the RDF con-
tent, reordering it, distributing into multiple streams, and encoding each stream
using, first, the most adequate specialized techniques, and then, an efficient
general-purpose compression algorithm, such as LZMA. Our proof-of-concept
implementation was also found to be relatively fast, regarding both compression
and decompression. The future work will be to develop a query-supporting RDF
compressed representation, based on the presented solution.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic web data
management using vertical partitioning. In: Proceedings of the 33rd International
Conference on Very Large Data Bases, pp. 411–422. ACM (2007)

2. Álvarez-Garćıa, S., Brisaboa, N.R., Fernández, J.D., Mart́ınez-Prieto, M.A.: Com-
pressed k2-triples for full-in-memory RDF engines. In: A Renaissance of Infor-
mation Technology for Sustainability and Global Competitiveness. 17th Americas
Conference on Information Systems. Association for Information Systems (2011)

3. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix “bit” loaded: a scalable
lightweight join query processor for RDF data. In: Proceedings of the 19th Inter-
national Conference on World Wide Web, WWW 2010, Raleigh, North Carolina,
USA, 26–30 April 2010, pp. 41–50. ACM (2010)

OFR: An Efficient Representation of RDF Datasets 235

4. Brisaboa, N., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Inf. Syst. 39(1), 152–174 (2014)

5. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for
storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

6. Cheng, L., Malik, A., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Scalable RDF
data compression using X10. CoRR, abs/1403.2404 (2014)

7. Fernández, J.D., Llaves, A., Corcho, O.: Efficient RDF interchange (ERI) format
for RDF data streams. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C.,
Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.)
ISWC 2014, Part II. LNCS, vol. 8797, pp. 244–259. Springer, Heidelberg (2014)

8. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutierrez, C.: Compact representation of
large RDF data sets for publishing and exchange. In: Patel-Schneider, P.F., Pan,
Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC
2010, Part I. LNCS, vol. 6496, pp. 193–208. Springer, Heidelberg (2010)

9. Fernández, N., Arias, J., Sánchez, L., Fuentes-Lorenzo, D., Corcho, Ó.: RDSZ:
an approach for lossless RDF stream compression. In: Presutti, V., d’Amato, C.,
Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol.
8465, pp. 52–67. Springer, Heidelberg (2014)

10. Hernández-Illera, A., Mart́ınez-Prieto, M.A., Fernández, J.D.: Serializing RDF in
compressed space. In: Data Compression Conference (DCC) (2015)

11. Jiang, X., Zhang, X., Gao, F., Pu, C., Wang, P.: Graph compression strategies for
instance-focused semantic mining. In: Qi, G., Tang, J., Du, J., Pan, J.Z., Yu, Y.
(eds.) CSWS 2013. CCIS, vol. 406, pp. 50–61. Springer, Heidelberg (2013)

12. Joshi, A.K., Hitzler, P., Dong, G.: Logical linked data compression. In: Cimiano,
P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS,
vol. 7882, pp. 170–184. Springer, Heidelberg (2013)

13. Maneth, S., Peternek, F.: A survey on methods and systems for graph compression.
CoRR, abs/1504.00616 (2015)

14. Mart́ınez-Prieto, M.A., Fernández, J.D., Cánovas, R.: Compression of RDF dic-
tionaries. In: 27th ACM International Symposium on Applied Computing (SAC
2012) - Track The Semantic Web and Applications (SWA), pp. 1841–1848. ACM
(2012)

15. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB J. 19(1), 91–113 (2010)

16. Pan, J.Z., Pérez, J.M.G., Ren, Y., Wu, H., Wang, H., Zhu, M.: Graph pattern based
RDF data compression. In: Supnithi, T., Yamaguchi, T., Pan, J.Z., Wuwongse,
V., Buranarach, M. (eds.) JIST 2014. LNCS, vol. 8943, pp. 239–256. Springer,
Heidelberg (2015)

17. Urbani, J., Maassen, J., Drost, N., Seinstra, F.J., Bal, H.E.: Scalable RDF data
compression with MapReduce. Concurrency Comput. Pract. Experience 25(1), 24–
39 (2013)

18. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. PVLDB 1(1), 1008–1019 (2008)

19. Wilkinson, K.: Jena property table implementation. In: SSWS (2006)

Reducing Large Semantic Graphs to Improve
Semantic Relatedness

Teresa Costa(B) and José Paulo Leal

Faculty of Sciences, CRACS and INESC-Porto LA,
University of Porto, Porto, Portugal
{teresa.costa,zp}@dcc.fc.up.pt

Abstract. In the previous research the authors developed a family of
semantic measures that are adaptable to any semantic graph, being auto-
matically tuned with a set of parameters. The research presented in this
paper extends this approach by also tuning the graph. This graph reduc-
tion procedure starts with a disconnected graph and incrementally adds
edge types, until the quality of the semantic measure cannot be further
improved. The validation performed used the three most recent versions
of WordNet and, in most cases, this approach improves the quality of
the semantic measure.

Keywords: Semantic similarity · Linked data · Semantic graph

1 Introduction

This paper is part of an ongoing research [6,12,13] aiming at the development of a
methodology for creating semantic measures taking as source any given semantic
graph. This methodology, called SemArachne, does not require any particular
knowledge of the semantic graph and is based on the notion of proximity rather
than distance. It considers virtually all paths connecting two terms with weights
depending on edge types. SemArachne automatically tunes these weights for
a given semantic graph. The validation of this process was performed using
WordNet 2.1 [8] with WordSimilarity 353 [9] data set with results better than
those in the literature [13].

WordNet 2.1 has a smaller graph when compared with the recent versions
of it or even other semantic sources, such as DBpedia or Freebase. Not only the
number of nodes and edge types increases as the number of graph arcs expands
enabling them to relate semantically a large number of terms, making graphs
not only larger but also denser. Compute proximity in these conditions comes
with a price. Since SemArachne considers all the paths, the number of paths to
process tends to increase.

A rough measure of graph density is the maximum degree of all its nodes.
However, consider it can be misleading since there may be a special node where
all the edge types are applied. The real challenge is then the graph average node
degree. SemArachne computes all paths connecting a pair of terms up tp a given
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 236–245, 2015.
DOI: 10.1007/978-3-319-27653-3 23

Reducing Large Semantic Graphs to Improve Semantic Relatedness 237

length. The node degree is the branching factor for the paths crossing that node.
Hence, a high average node degree reduces the efficiency of the SemArachne
measure.

The alternative explored in this paper to reduce graph density is to reduce
the number of edge types while keeping all nodes, thus preserving the potential
to relate a larger set of terms. The approach is to incrementally build a subgraph
of the original semantic graph. This process starts with a full disconnected graph
containing all the nodes. At each iteration, a new edge type is added until the
semantic measure quality stops to improve. The result of this process is a sub-
graph where the semantic quality is maximized. The semantic measure used by
SemArachne [12] had also some minor adjustments.

The rest of the paper is organized as follows. The next section surveys the
state of the art on semantic relatedness. Section 3 summarizes previously pub-
lished work and Sect. 4 details the approach followed to measure semantic relat-
edness is larger graphs. The experimental results and their analysis can be found
in Sect. 5. Finally, Sect. 6 summarizes what was accomplished so far and identifies
opportunities for further research.

2 Related Work

Semantic measures are widely used today to measure the strength of the semantic
relationship between terms. This evaluation is based on the analysis of informa-
tion describing the elements extracted from semantic sources.

There are two different types of semantic sources. The first one are unstruc-
tured and semi-structured texts, such as plain text or dictionaries. Texts have
evidences of semantic relationships and it is possible to measure those relation-
ships using simple assumptions regarding the distribution of words. This source
type is mainly used by distributional approaches.

The second type of semantic sources is more general and includes a large
range of computer understandable resources where the knowledge about elements
is explicitly structured and modeled. Semantic measures based on this type of
source rely on techniques to take advantage of semantic graphs or higher formal
knowledge representations. This source type is mainly used by knowledge-based
approaches.

Distributional approaches rely on the distributional hypothesis [11] that states
that words in a similar context are surrounded by the same words and are likely
to be semantically similar. There are several methods following this approach,
such as the Spatial/Geometric methods [10], the Set-based methods [5], and the
Probabilistic methods [7].

The knowledge-base approaches rely on any form of knowledge representation,
namely semantic graphs, since they are structured data from which semantic rela-
tionships can be extracted. They consider the properties of the graph and elements
are compared by analysing their interconnections and the semantics of those rela-
tionships. Several methods have been defined to compare elements in single and
multiple knowledge bases, such as Structural methods [14,15,22,24], Feature-
based methods [4,23,27] and Shannon’s Information Theory methods [16,19–21].

238 T. Costa and J.P. Leal

Knowledge-based approaches have the advantage of controlling which edge
types should be considered when comparing pairs of elements in the graph. They
are also easier to implement than distributional methods and have a lower com-
plexity. However they require a knowledge representation containing all the ele-
ments to compare. On the other hand, using large knowledge sources to compare
elements is also an issue due of high computational complexity.

There are also hybrid approaches [2,3,18,24] that mix the knowledge-based
and the distributional approaches. They take advantage of both texts and knowl-
edge representations to estimate the semantic measure.

3 Previous Work

This section summarizes previously published work [12,13] that is the core of
SemArachne and relevant for the graph reduction process described in the next
section. The first subsection details on the semantic measure and the following
subsection on the quality measure. The last subsection details on the fine tune
process.

3.1 Semantic Measure

A semantic graph can be defined as G = (V,E, T,W) where V is the set of
nodes, E is the set of edges connecting the graph nodes, T is the set of edge
types and W is a mapping of edge types to weight values. Each edge in E is a
triplet (u, v, t) where u, v ∈ V and t ∈ T .

The set W defines a mapping w : T �→ Z. The bound of the absolute weight
values1 for all edge types is defined by

Ω(G) ≡ maxti∈T | w(ti) |

To measure the proximity between a pair of terms it is necessary to build a
set of distinct paths that connects them by walking through the graph. A path
p of size n ∈ N

+ is a sequence of unrepeated nodes u0 . . . un∀0≤i,j≤nui �= uj ,
linked by typed edges. It must have at least one edge and cannot have loops.
A path p is denoted as follows:

p = u0
t1−→ u1

t2−→ u2 . . . un−1
tn−→ un

The weight of an edge depends on its type. The weight of a path p is the sum
of weights of each edge, ω(p) = w(t1) + w(t2) + . . . + w(tn). The set of all paths
of size n connecting the pair of concepts is defined as follows and its weight is
the sum of all its sub paths.

Pn
u,v = {u0

t1−→ u1 . . . un−1
tn−→ un : u = uo ∧ v = un ∧ ∀0≤i,j≤n ui �= uj}

1 This semantic measure accepts negative weights for some types of edges.

Reducing Large Semantic Graphs to Improve Semantic Relatedness 239

The semantic measure is based on the previous definition and also considers
the path length. Δ is the degree of each node in each path. The proximity
function r is defined by the following formula.

r(u, v) =

⎧
⎪⎨
⎪⎩

1 ← u = v

1
Ω(G)

∞∑
n=1

1
2n.n.Δ(G)n

∑
p∈Pn

u,v

ω(p) ← u �= v (1)

Given a graph with a set of nodes V , where r : V ×V �→ [−1, 1], the proximity
function r takes a pair of terms and returns a “percentage” of proximity between
them. The proximity of related terms must be close to 1 and the proximity of
unrelated terms must be close to –1.

This definition of proximity depends on weights of transitions. The use of
domain knowledge to define them has been proved a näıve approach since an
“informed opinion” frequently has no evidence to support it and sometimes is
plainly wrong. Also, applying this methodology to a large ontology with several
domains can be hard. To be of practical use, the weights of a proximity based
semantic relatedness measure must be automatically tuned. To achieve it, it
is necessary to estimate the quality of a semantic measure for a given set of
parameters.

3.2 Quality Measure

The purpose of the quality measure is to compute the quality of a semantic
measure defined by (1) for a particular set of parameters. In order to simplify
and optimize the quality measure, it is necessary to factor out weights from the
semantic measure definition. Thus its quality may be defined as function of a set
of weight assignment.

The first step is to express the semantic measure in terms of weights of edge
types. Consider the set of all edge types T with �T = m and the weight of its
elements w(t),∀t ∈ T . The second branch of (1) can be rewritten as follows,
where ci(a, b), i ∈ {1..m} are the coefficients of each edge type.

r(a, b) = α

∞∑
n1

β
∑
Pj∈P

∑
t∈Pj

w(t) =
m∑

i=1

ci(a, b) · w(ti)

Edge type weights are independent of the arguments of r but the coefficients
that are factored out depend of these arguments. It is possible to represent
both the weights of edges and their coefficients, (w(t1), w(t2), . . . , w(tk)) = w
and (c1(a, b), c2(a, b), . . . , cm(a, b) = c(a, b)) respectively, by defining a standard
order on the elements of T . This way the previous definition of r may take as
parameter the weight vector, as follows

w(a, b) = c(a, b) · w
The method commonly used to estimate the quality of a semantic relatedness

algorithm is to compare it with a benchmark data set containing pairs of words

240 T. Costa and J.P. Leal

and their relatedness. The Spearman’s rank order correlation is widely used to
make this comparison.

Consider a benchmark data set with the pairs of words (ai, bi) for 1 ≤ i ≤ k,
with a proximity xi. Given the relatedness function rw : S ×S �→ � let us define
yi = rw (ai, bi). In order to use the Spearman’s rank order coefficient both xi

and yi must be converted to the ranks x′
i and y′

i.
The Spearman’s rank order coefficient is defined in terms of xi and yi,

where xi are constants from the benchmark data set. To use this coefficient
as a quality measure it must be expressed as a function of w . Considering that
y = (rw (ai, bi), . . . , rw (an, bn)) then y = Cw , where matrix C is a n×m matrix
and where each line contains the coefficients for a pair of concepts and each
column contains coefficients of a single edge type. Vector w is a m × 1 matrix
with the weights assigned to each edge type. The product of these matrices is
the relatedness measure of a set of concept pairs.

Considering ρ(x ,y) as the Spearman’s rank order of x and y , the quality
function q : �n �→ � using the benchmark data set x can be defined as

qx (w) = ρ(x , Cw) (2)

The next step in the SemArachne methodology is to determine a w that
maximizes this quality function.

3.3 Fine Tuning Process

Genetic algorithms are a family of computational models that mimic the process
of natural selection in the evolution of species. This type of algorithms uses
concepts of variation, differential reproduction and heredity to guide the co-
evolution of a set of problem solutions. This algorithm family is frequently used
to improve solutions of optimization problems [29].

In the SemArachne the candidate solution – individual – is a weight values
vector. Consider a sequence of weights (the genes), w(t1), w(t2), . . . , w(tk), taking
integer values in a certain range, in a standard order of edge types. Two possible
solutions are the vectors v = (v1, v2, . . . , vk) and t = (t1, t2, . . . , tn). Using
crossover, it is easy to recombine the “genes” of both “parents” resulting in
u = (v1, t2, . . . , tn−1, vk).

This is a closer representation of the domain than the typical binary one. It
can also be processed more efficiently with large number of weights. In this tuning
process the genetic algorithm only have a single kind of mutation: randomly
selecting a new value for a given “gene”.

The fitness function plays a decisive role in the selection of the new generation
of individuals. In this case, individuals are the vector of weight values w , hence
the fitness function is in fact the quality function previously defined in (2).

4 Graph Reduction Procedure

The previous section explained how to tune the weights of a semantic measure
by using a genetic algorithm with an appropriate quality function. This section

Reducing Large Semantic Graphs to Improve Semantic Relatedness 241

Fig. 1. Semantic graph reduction procedure

introduces a procedure for selecting a subgraph of the original semantic source
with a reduced density by repeatedly applying that procedure.

Figure 1 depicts the overall strategy. It starts with a fully disconnected graph
by omitting all the edges. The small graph on the left in Fig. 1 shows the arcs
as dotted lines to denote the original connections. When a single property (edge
type) is added to this graph a number of paths is created. If the original graph
has n property types then one can create n different subgraphs. The quality of
these graphs can be measured using the approach described in the last section.
The best of these candidates is the selected graph for the first iteration. This
process continues until the quality of the candidate graphs cannot be further
improved.

More formally, consider a semantic graph G = (V,E, T,W) where V is the
set of nodes, E is the set of edges connecting the graph nodes, T is the set of
edge types and W is a mapping of edge types to weight values. The initial graph
of this incremental algorithm is G0 = (V, ∅, ∅, ∅). This is a totally disconnected
graph just containing the nodes from the original graph, i.e., edges, types and
weights are all the empty set.

Each iteration builds a new graph Gk+1 = (V,Ek+1, Tk+1,Wk+1) based on
Gk = (V,Ek, Tk,WK). The new set of types Tk+1 has all the types in Tk. In fact,
several candidate Gi

k can be considered, depending on the types in T − Tk that
are added to Tk+1. The arcs of Ei

k+1 are those in E whose type is in T i
k+1. The

general idea is to select the Gi
k+1 that produces an higher increment on semantic

measure quality. This algorithm stops when no candidate is able to improve it.
In general, computing the semantic measure quality of Gi

k+1 is a time con-
suming task. However, there are some ways to make it more efficient. As shown
in Fig. 1, if Gi

k+1 is not a connected graph then the quality measure cannot be

242 T. Costa and J.P. Leal

computed. This means that for the first iteration many G1
k+1 can be trivially

discarded. Moreover, if Ei
k+1 = Ei

k then the semantic quality measure is the
same. This insight can be used to speedup the iterative process. The paths con-
necting pairs of concepts using arcs in Ek+1 are basically the same that used Ek.
The new paths must appear on the nodes of previous paths and can only have
arcs of types in Tk+1. This insight can be used to compute the quality of Gi

k+1

incrementally based on the computation of Gi
k.

The generation of the sets T i
k+1 is a potential issue. Ideally T i

k+1 would
have just one element more than T i

k. However this may not always be possible2.
Consider T i

1, the candidate sets of types for the first iteration. In most cases
they will produce a disconnected graph, hence with a null semantic measure
quality. They will only produce a connected graph if the selected type creates a
taxonomy. In many cases this involves 2 types of arcs: one linking an instance
to a class, another linking a class to its super-class. To deal with this issue the
incremental algorithm attempts first to generate T i

k+1 such that �T i
k+1 = �T i

k +1,
where � stands for set cardinality. In none of these improve the semantic measure
quality then it attempts to generate T i

k+1 such that �T i
k+1 = �T i

k+2, and so forth.

5 Validation

The validation of SemArachne was performed using the semantic graphs of dif-
ferent versions of WordNet along with three different data sets.

WordNet3 [8] is a widely used lexical knowledge base of English words. It
groups nouns, verbs, adjectives and adverbs into synsets – a set of cognitive syn-
onyms – that expresses distinct concepts. These synsets are linked by conceptual
and lexical relationships. The validation process used three different data sets:
WordSimilarity-3534 [9] Rubenstein & Goodenough [25] (RG65) and Miller &
Charles [17] (MC30).

Table 1 compares the performance of SemArachne against the state of the
art for methods using the same knowledge-based approach. For WordNet 2.1,
SemArachne achieves a better result than those in the literature when using
WordSim-353 data set. Using WordNet 3.1 as semantic graph, SemArachne pro-
duces also a better semantic quality than those in the literature. Although results
are not the best in the WordNet 3.0, despite the data set used, they have the
same order of magnitude.

The quality of the semantic measure produced with graph reduction was vali-
dated against several approaches in the literature. An advantage of this method-
ology is the ability of measure the semantic relatedness regardless the semantic
graph used and produce comparable results for each semantic graph and data
set. It is also scalable, since it handles gradually larger graphs.

2 However, so far this situation has not yet occurred in validation.
3 http://wordnet.princeton.edu/.
4 http://www.cs.technion.ac.il/∼gabr/resources/data/wordsim353/wordsim353.html.

http://wordnet.princeton.edu/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html

Reducing Large Semantic Graphs to Improve Semantic Relatedness 243

Table 1. Spearman correlation of SemArachne compared with literature

Graph Data set Edges
selected

SemArachne
correlation

Literature
correlation

Author

WordNet 2.1
(26 edge types)

MC30 14 0.81 0.82 Strube et al. [28]
2006

RG65 8 0.60 0.86

WS-353 21 0.45 0.36

WordNet 3.0
(47 edge types)

MC30 16 0.80 N/A Agirre et al. [1]
2009

RG65 9 0.63 0.78

WS-353 20 0.48 0.56

WordNet 3.1
(64 edge types)

MC30 14 0.97 0.87 Siblini et al. [26]
2013

RG65 8 0.94 0.92

WS-353 24 0.54 0.50

6 Conclusion

As semantic graphs evolve they become larger. Since larger graphs relate more
terms this improves their potential as semantic sources for relatedness measures.
However, these larger graphs are also a challenge, in particular to semantic mea-
sures that consider virtually all paths connecting two nodes, as is the case of
SemArachne.

The major contribution of this paper is an incremental approach to select a
subgraph with a reduced number of edge types (arcs) but with the same num-
ber of entities (nodes). This approach starts with a totally disconnected graph,
at each iteration adds an arc type that increases the quality of the semantic
measure, and stops when no improvement is possible.

These contributions were validated with different versions of WordNet, a
medium size graph typically used as semantic source for relatedness measures.
Although this is not the kind of large semantic graphs to which this approach is
targeted, it is convenient for initial tests due to its relatively small size.

In the WordNet graph the reduction of properties is not so expressive, since
the total number of properties is comparatively small. The obtained subgraphs
do not always improve the quality of the SemArachne measure, but produce a
result that is similar, and in most cases better, than best method described in
the literature for that particular graph.

The immediate objective of the SemArachne project is to extend the valida-
tion presented in this paper to other data sets and, most of all, to other graphs.
Massive graphs with very high density, such as Freebase, are bound to create new
and interesting challenges. Another important consequence of this graph reduc-
tion procedure is that it decouples the original graph from the actual semantic
source. Thus SemArachne can be extended to process multiple semantic graphs
(with shared labels) and create an unified semantic measure combining their
semantic power.

244 T. Costa and J.P. Leal

Acknowledgments. Project “NORTE-07-0124-FEDER-000059” is financed by the
North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the
National Strategic Reference Framework (NSRF), through the European Regional
Development Fund (ERDF), and by national funds, through the Portuguese funding
agency, Fundação para a Ciência e a Tecnologia (FCT).

References

1. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study
on similarity and relatedness using distributional and wordnet-based approaches.
In: Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pp. 19–27. Association for Computational Linguistics (2009)

2. Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambigua-
tion using wordnet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp.
136–145. Springer, Heidelberg (2002)

3. Banerjee, S., Pedersen, T.: Extended gloss overlaps as a measure of semantic relat-
edness. IJCAI 3, 805–810 (2003)

4. Bodenreider, O., Aubry, M., Burgun, A.: Non-lexical approaches to identifying
associative relations in the gene ontology. In: Pacific Symposium on Biocomputing,
p. 91. NIH Public Access (2005)

5. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between
words using web search engines. In: Proceedings of the 16th International Confer-
ence on World Wide Web 2007, pp. 757–766 (2007)

6. Costa, T., Leal, J.P.: Challenges in computing semantic relatedness for large seman-
tic graphs. In: Proceedings of the 18th International Database Engineering and
Applications Symposium, pp. 376–377. ACM (2014)

7. Dagan, I., Lee, L., Pereira, F.C.: Similarity-based models of word cooccurrence
probabilities. Mach. Learn. 34(1–3), 43–69 (1999)

8. Fellbaum, C.: WordNet. Wiley Online Library, New York (1999)
9. Gabrilovich, E.: The WordSimilarity-353 test collection. http://www.cs.technion.

ac.il/gabr/resources/data/wordsim353/
10. Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain struc-

ture to compute similarity. ACM Trans. Inf. Syst. (TOIS) 21(1), 64–93 (2003)
11. Harris, Z.S.: Distributional structure. In: Hiż, H. (ed.) Papers on syntax, pp. 3–22.

Springer, The Netherlands (1981)
12. Leal, J.P.: Using proximity to compute semantic relatedness in RDF graphs. Com-

put. Sci. Inf. Syst. 10(4), 1727–1746 (2013)
13. Leal, J.P., Costa, T.: Multiscale parameter tuning of a semantic relatedness algo-

rithm. In: 3rd Symposium on Languages, Applications and Technologies, SLATE,
pp. 201–213 (2014)

14. Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity
between words using multiple information sources. IEEE Trans. Knowl. Data Eng.
15(4), 871–882 (2003)

15. Li, Y., McLean, D., Bandar, Z.A., O’shea, J.D., Crockett, K.: Sentence similarity
based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8),
1138–1150 (2006)

16. Lin, D.: An information-theoretic definition of similarity. ICML 98, 296–304 (1998)
17. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang.

Cogn. Process. 6(1), 1–28 (1991)

http://www.cs.technion.ac.il/gabr/resources/data/wordsim353/
http://www.cs.technion.ac.il/gabr/resources/data/wordsim353/

Reducing Large Semantic Graphs to Improve Semantic Relatedness 245

18. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness
for word sense disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol.
2588, pp. 241–257. Springer, Heidelberg (2003)

19. Pirró, G.: A semantic similarity metric combining features and intrinsic information
content. Data Knowl. Eng. 68(11), 1289–1308 (2009)

20. Pirró, G., Euzenat, J.: A feature and information theoretic framework for semantic
similarity and relatedness. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010, Part
I. LNCS, vol. 6496, pp. 615–630. Springer, Heidelberg (2010)

21. Pirró, G., Seco, N.: Design, implementation and evaluation of a new semantic sim-
ilarity metric combining features and intrinsic information content. In: Meersman,
R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1271–1288. Springer,
Heidelberg (2008)

22. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a
metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)

23. Ranwez, S., Ranwez, V., Villerd, J., Crampes, M.: Ontological distance measures
for information visualisation on conceptual maps. In: Meersman, R., Tari, Z., Her-
rero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1050–1061. Springer,
Heidelberg (2006)

24. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: IJCAI, pp. 448–453 (1995)

25. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun.
ACM 8(10), 627–633 (1965)

26. Siblini, R., Kosseim, L.: Using a weighted semantic network for lexical semantic
relatedness. In: RANLP, pp. 610–618 (2013)

27. Stojanovic, N., Maedche, A., Staab, S., Studer, R., Sure, Y.: SEAL: a framework for
developing SEmantic portALs. In: Proceedings of the 1st International Conference
on Knowledge Capture, pp. 155–162. ACM (2001)

28. Strube, M., Ponzetto, S.P.: Wikirelate! Computing semantic relatedness using
wikipedia. AAAI 6, 1419–1424 (2006)

29. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

A Mixed Approach for the Representation
of Nutritional Information Through

XML-to-OWL Mappings

Vanesa Espín(&), Manuel Noguera, and María V. Hurtado

Departamento de Lenguajes y Sistemas Informáticos, University of Granada,
E.T.S.I.I.T., c/Daniel Saucedo Aranda s/n, 18071 Granada, Spain

{vespin,mnoguera,mhurtado}@ugr.es

Abstract. Semantic Web technologies (SWTs), such as XML and OWL
ontologies are increasingly being used to represent information in different
domains. However, these capabilities are not indistinctly provided by each
SWT. XML, although not being considered a SWT in itself, stands at the
syntactic level of the Semantic Web stack, and is more suitable for efficient
information structure and retrieval in interactive software applications. OWL
language, on the other hand, is more suitable for background reasoning and
consistency checking purposes. In this paper, we introduce a mixed approach for
the information representation and knowledge sharing in the nutritional domain,
aiming to explode XML and OWL benefits. This approach is included in
NutElCare (a nutritional recommender system). In it, diets are represented
through XML documents contained in an XML repository and the knowledge
base is composed of several OWL ontologies which interact to provide rec-
ommendations. In this design, XSLT transformations play an important role,
allowing the mappings from XML diets to the OWL ontologies, so that ele-
vating the syntactic representation of the XML documents to the semantic level
of OWL ontologies. Altogether, they configure a system architecture that keeps
the system timely responsive through a seamless linkage between XML and
OWL representations.

Keywords: OWL ontology � Ontology enrichment � Ontology population �
Ontology reasoning � Semantic recommender systems � XML � XSLT

1 Introduction

Several reasons stimulate the rapid increase of the application of Semantic Web
Technologies (SWTs) in the representation of information and knowledge in different
software related fields in the last years. Some of these motivations are the abilities of
reasoning to extract meaningful conclusions from encoded knowledge and the
exchange, linkage and reuse of this knowledge from different systems, processes and
applications [14]. XML (EXtensible Markup Language) was designed for describing
data in the World Wide Web. Although it is not considered a SWT in itself, it stands at
the syntactic level of the Semantic Web stack. It is platform and software independent
and allows the representation, storage and exchange of data when a common syntax has

© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodríguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 246–257, 2015.
DOI: 10.1007/978-3-319-27653-3_24

been agreed. XML it is not suitable for consistency checking or conceptual interrela-
tionship from a semantic standpoint, even in the same domain of knowledge. OWL
(Web Ontology Language), currently in OWL 2 version [15], is a formal language based
on Description Logics [1]. In contrast to XML, it supports the representation of the
domain knowledge through classes, properties and instances to be used in a distributed
environment such as the World Wide Web [3]. Ontologies are one of the main com-
ponents of the Semantic Web. They provide universal semantics, easy knowledge
sharing and unambiguous interpretation of concepts by means of formal model-theoretic
semantics. Ontologies represented in OWL can make use of the automated reasoning
capabilities that Description Logics provide, allowing the support of this reasoning to
infer new knowledge. However, the use of an OWL ontology to represent a big amount
of structured data in which only a small part of this information is demanded at a
required moment for inference purposes, could result in inefficient reasoning. In this
case, a repository of XML documents for the efficient management, storage and rep-
resentation of information can be designed, and instead retrieve and bind this infor-
mation on-demand, only when it is required. Ontologies are also used in information
retrieval for indexing documents, providing a semantic classification for the information
of the documents [11]. Nevertheless, the process of linkage between XML documents or
repositories and OWL ontologies needs some operations, such as enrichment and
population of the ontology. Ontology enrichment is the task of extending an existing
ontology with additional concepts and semantic relations and placing them at the correct
position in the ontology [17]. It can be considered a sub-discipline of ontology learning
and its application is typically motivated by one of the two following goals. One goal
consists in the discovery of new knowledge through the analysis of an existing ontology
or knowledge base, applying automated inference techniques. The axioms of the
inferred knowledge are added to the ontology. The other motivation is the completion of
the ontology with new information about the same domain [4]. Ontology population is
the task of adding new instances or individuals to the ontology, which can be later
unpopulated, i.e. removed from the ontology. These operations need the use of mediator
technologies for its procedure, such as XSL (EXtensible Stylesheet Language) trans-
formations, XSLT, which are able to transform XML documents into other formats.

NutElCare (Nutrition for Elder Care) [7] is a recommender system which allows
elderly people to set up their own healthy diet plans according their needs due to aging
and considering their food preferences, as well as possible allergies or contraindications
and previous ingestions, i.e., what they have eaten in the past. In the system, diets are
represented as XML documents and stored in an XML server repository. These doc-
uments are classified using indexes as instances of concepts in an ontology for being
retrieved only when they are required for reasoning in the recommendation processes.

In this paper we introduce the design of the information, knowledge and software
architectures of NutElCare focusing in the XML diets representation, and the enrich-
ment of the ontology to manage the model contained in the XML Schema. We explain
as well, the processes of information retrieval using on-demand binding and population
which allow the knowledge base to make more efficient reasoning over the contents of
the diets. In our approach, these processes are based in XSLT transformations from the
syntactic level of the XML diet model definition to a semantic level supplied by an
OWL diet model definition.

A Mixed Approach for the Representation 247

The remaining of this paper is organised as follows. Section 2 introduces some
work related to ontology enrichment and population. In Sect. 3, we explain the different
NutElCare recommendations and the ontologies contained in the system’s knowledge
base, outlining the techniques for diets classification and indexation in the nutritional
ontology. In Sect. 4, the representation of diets and the processes of ontology
enrichment and population are explained. Finally, in Sect. 5, the conclusions of our
work are presented.

2 Related Work

Nowadays, researchers are still working in the automatic ontologies enrichment from
different information sources. Often the ontology enrichment operations need some
previous preparation of the data by hand, and even, some adjustments after the process.
Thus, most of ontology enrichments are semi-automatic processes where efforts are
focused in the minimization of hand working. One widespread approach is the use of
generic XSL style sheets to perform XSLT transformations from the source information
representation language to the target ontology language, generally OWL. Other
approaches define their own XSL files for performing the transformations. This is the
case of [2], in which XML patent documents are converted into OWL by means of
XSL files and an XSLT processor. When the information to be imported for enriching
an ontology is formatted into XML, the elements of the corresponding XML Schema,
contained in an XSD document, are typically used to create the linkage between them.
This connection is established through the definition of mapping rules from the
structure and elements of the XML Schema to the OWL vocabulary. Some methods to
generate OWL model documents from XSD documents have been presented in several
works. In [9], authors propose a method based in a set of predefined mapping rules
between XML Schema and OWL, and supply a Java toolkit that implements the
mapping process. A similar approach is introduced in [3], but with different mapping
rules; in this case, the authors provide an online tool, XML2OWL-XSLT, for trans-
forming uploaded XSD documents. X2OWL tool [10], improves previous works
addressing complex cases in mapping processes that arise from the reuse of global
types and elements. However, this approach is based in the generation of an OWL
ontology from scratch and does not deal with the mapping to an existing ontology,
neither with references and imports to external ontologies in the Schema. A very good
survey of the current tools that support the generation of OWL representations from
XML documents with enrichment purposes is presented in [12]. In our work, the
transformations from XML diet documents to OWL language use the XML Schema
documents to keep the syntactic model of the diets in the system and XML validation
purposes. Although the use of generic available online tools for these transformations,
such as [3, 9, 19], seemed promising, we decided the definition of our own XSLT
transformations and mapping rules, since some problems raised when trying these tools
with our XML Schema, such as different OWL syntax, version or specie than expected.
In other cases, those requirements were met, but the generated document needed some
hand arrangements to be opened in the ontology editor, or to fit the expected model.

248 V. Espín et al.

Other problems were the handling of annotations or namespaces from different
ontologies importation. Finally, in some cases the mapping rules had to be redefined.

In contrast to the enrichment process, the population of an ontology can be fully
achieved automatically. However, when the instances to populate the ontology come
from heterogeneous sources, this process may become more complex and require
different techniques to mediate, such as instance matching, validating and grouping
[5, 17]. In our work, the automatic population of a retrieved XML diet from the
repository is possible once the enrichment process has been performed using the
generated indexes classified in the ontology as instances. A simple XSL style sheet
binds each instanced element to its correspondent added concept in the ontology.
Unlike other strategies for retrieving information in the population process, in our
approach, this process is only carried out when an instantiation of one diet from the
repository is required and unpopulated when it is no longer needed for the system
operation, enhancing responsiveness and interactivity in the recommender system.

3 NutElCare

NutElCare is a semantic nutritional recommender system to provide healthy diet plans
to the elderly based on their nutritional needs and preferences. In this section, we
describe the different types of recommendations carried out by the system and the
ontologies that comprise the knowledge base. We also present the classification and
indexation of diets in the nutritional ontology.

3.1 Nutritional Recommendations

Recommendations in NutElCare are based on two different techniques:

– Knowledge-based techniques, which use knowledge about users and items to
generate a recommendation by reasoning about what items meet the user’s
requirements. These techniques are used to obtain a healthy diet to fit the nutritional
requirements identified from the user profile.

– Content-based techniques, where the recommendation process consists in learning
from the user’s alimentary behaviour and recommending items that are similar to
their top rated meals or dishes. The content-based recommendation allows the users
to make variations on the selected diet to fit their taste preferences, or availability of
ingredients taking into account their allergenic contraindications and what food has
already been ingested during the week, offering alternatives to the original diet plan
based on these factors. These recommendations are always nutrient guided, pro-
viding alternative suggestions of similar conditions, to continue meeting the initial
healthy requirements of the diet. The system learns from the user selections to
improve further recommendations with user inferred preferences.

A Mixed Approach for the Representation 249

3.2 Knowledge Base

The knowledge base of NutElCare is represented as an OWL ontology resulting from
the merge operation of three different ontologies: NUSPro, Food Ontology and
Nutritional Ontology. The manual edition and visualization of the ontologies is carried
out in Protégé1 and the management of the ontologies performed by the NutElCare
system is made through the OWL-API Java library [16], and the reasoner used is Pellet
[18]. Next, we briefly describe the aforementioned ontologies and their role in the
knowledge base in order to provide recommendations.

– The Nutritional User Profile Ontology (NUSPro) has been designed as an extension
of GUMO (General User Model Ontology) [13] for representing users in nutritional
domains.

– The Food Ontology has been obtained from the Food Products branch of the
Agrovoc FAO Thesaurus [6] of the United Nations. It has been extended with
nutritional properties of food, new food classifications and new food instances.

– The Nutritional Ontology establishes the concepts related to nutritional restrictions
and requirements for user profiles. The central concept of the ontology is the Diet
class whose descendant concepts –or subclasses– are used to classify the different
existing diets in the system. This classification has been formerly agreed by the
nutritional experts that supervise this project. When a new diet is being introduced in
the system through the user interface, it must be classified according to the taxonomy
already established in the ontology. This can be achieved through a simple XSLT
transformation, using the Java XML library, from the Diets OWL Class to a form
JSP page, which users fill for the classification of the diet. Once the form is filled an
URL with a new Id of diet is generated and inserted into the ontology as a subclass of
the terms of the classification selected by the user. This Id is an index from the
ontology to the document in XML repository. Figure 1 outlines this process. In it, the
user classifies the diet as elderly diet and vegan diet, so, when the new instance is
created, a new index is generated, Diet25, and it is added to the OWL ontology as:

Having the diets indexed in the nutritional ontology, the system is able to perform a
knowledge-based recommendation of one diet which fits the user profile, but it is not able
to personalize it with the preferences of the specific user, i.e., it cannot achieve the
content-based recommendation required to allow the selection of alternatives over
the food items contained in the diet. Consequently, the representation of the diets and the
corresponding components must be likewise handled by the nutritional ontology.

The next section explains the representation of diets in the NutElCare system
architecture and how this representation provides support to the content-based rec-
ommendation reasoning.

1 Protégé, OWL Ontology Editor. http://protege.stanford.edu.

250 V. Espín et al.

http://protege.stanford.edu

4 Diets Model Design and Information Retrieval

In order to perform recommendations over the contents of one diet, those contents must
be represented in the ontology in the form of concepts, relations and individuals. The
representation of a diet comprises the representation of each daily ingestion which in
turn contains from three to five intakes (at least breakfast, lunch and dinner), and each
intake holds several dishes with several meals, food ingredients and preparations.
However, maintaining all this information over time in the ontology, for being used
only a small part of this time, can affect to the system efficiency. Hence, the data
representation of diets was carried out through XML documents based on a previously
agreed syntactic structure and terminology defined in an XML Schema, which con-
stitutes the syntactic model of the diets located in the XML repository.

4.1 Ontology Enrichment

The first step in order to allow the system reasoning over the contents of one diet is
ontology enrichment for transferring the diet model of the XML Schema into the
nutritional ontology. In this way, we build a semantic model of the diet from the
syntactic one. The ontology enrichment process followed in our approach is depicted in
Fig. 2. In it, an XSD document with the syntactic model of the XML diets is obtained.
Next, the mapping rules between XSD and OWL have to be established and applied
through XSLT transformations, generating an OWL model of the diet. Finally, the
nutritional ontology is enriched by adding the generated diet OWL model at the cor-

Fig. 1. Diets classification and indexation from the XML diets repository through XLST.

A Mixed Approach for the Representation 251

responding target concept. Although in the Figure, only one target root is depicted,
several target root nodes can be established and also, new links between the original
ontology and the added nodes may arise.

The mapping between the XML Schema nodes and the OWL concepts is estab-
lished through an XSLT transformation using an XSL style sheet following the rules
summarized in Table 1. Note that these rules are defined only for our diet model and
some of them differ from the defined in other works.

The annotation of diets to be stored in the repository is made through the NutElCare
user interface using a different XSL style sheet and parsed with the XML Schema
automatically, which minimize the introduction of annotation errors.

A graphical representation of the XSL Schema model of diets is displayed in Fig. 3.
It is important to point out that in the figure, FoodItem references an individual

Fig. 2. Ontology enrichment process from the XML repository of diets.

Table 1. Mapping Rules between our XSD diet model to OWL diet model.

XSD Nodes OWL Concepts

xsd:element, with nested elements
or at least one attribute

owl:Class + owl:ObjectProperty

other xsd:element owl:ObjectProperty
named xs:complexType owl:Class
named xs:simpleType owl:DatatypeProperty
xs:minOccurs, xs:maxOccurs owl:minCardinality, owl:maxCardinality
xs:choice owl:unionOf
xs:sequence owl:intersectionOf

252 V. Espín et al.

from the food ontology and it is linked to the ontology trough the attribute
ref=“&nutelcare:FoodItem” and its corresponding namespace. This way, the
food items of the diets are linked to the food ontology concepts.

An example of the transformation is the result of the application of the mapping
rules over the Meal node obtaining the following OWL Meal model is shown next.

Once the ontology is enriched with the new OWL diet model concepts and rela-
tions, it is able to support reasoning with the contents of an XML diet. In the next
section, the ontology population and subsequent reasoning processes are introduced.

Fig. 3. Graphical model of a diet from its XML Schema generated with XSDDiagram (http://
regis.cosnier.free.fr/?page=XSDDiagram).

A Mixed Approach for the Representation 253

http://regis.cosnier.free.fr/?page=XSDDiagram
http://regis.cosnier.free.fr/?page=XSDDiagram

4.2 On-Demand Population and Reasoning

Populate an ontology is the addition of new individuals to the ontology as descendants
of the existing concepts. In our system, when the information about a diet in an XML
document is required by the recommender system, this information is automatically
loaded into the ontology until it is no longer necessary. This process of population
consists in the instantiation of the OWL diet model with the contents of the selected
diet by the knowledge-based recommendation. This operation is carried out at runtime
using Java OWL-API, maintaining the diet instantiation in memory throughout the
recommendation stage and releasing it from memory when is no longer needed.
We have called unpopulation to the process of removing all the instances generated by
the population process including the subsequent operations that take place. For
instance, in the unpopulation process of the ontology, a copy of the XML diet with the
user food variations is stored in the repository for next retrievals. This copy represents
the current diet for the user, which is different from the original one, because it is
personalized with user special requirements and preferences. This is the diet used in the
next population process for the recommendations to the same user. Also, a log-copy is
generated and stored weekly, containing the ingested food in the week, for the avail-
ability of the historical nutritional records for each user.

Reasoning over the ontology allows the system to offer nutrient-guided variations
over the food that the instantiated diet contains, in order to personalize diets adjusting
to user needs and preferences. This is achieved through semantic similarity metrics
with the individuals of the food ontology and the application of the general and
nutritional restrictions taking into account the food already ingested by the user in the
same week. The process of reasoning over the food ontology using semantic similarity
in NutElCare is explained in [8]. For instance, if a user decides changing the meal
“Grilled Salmon”, the system calculate the possible variations and offers a healthy list
of alternatives. This calculation is computed on the basis of the just-mentioned simi-
larity. Let’s assume that the user selects “Grilled Tuna” instead. Then, the system
checks the future ingestions of the diet performing new reasoning to check whether it
needs to adjust the diet plan for the remaining days of the week, to keep meeting the
nutritional requirements. For instance, our system only allows recommending the same
fish a maximum of 2 times a week. Suppose the user has already consumed tuna on
Monday and in the diet tuna appears again in Saturday. But today is Thursday, and the
user decides to change the “Grilled Salmon” by “Grilled Tuna”. At this time, the
system checks the rest of the diet detecting an ontology inconsistency of type “repeated
food.” In order to resolve this inconsistency, the system must perform a calculation of
semantic similarity for substituting the tuna meal for Saturday by a different one but
nutritionally similar in which tuna is not contained.

Also, reasoning over the ontology with the instantiation of diets allows many other
knowledge inferences, for instance, for monitoring purposes. One example is the cal-
culation of the daily nutritional properties, as the total consumed calories in one day,
checking also whether this value fits the user nutritional daily requirements and sending
notifications if it detects lacks or excesses.

254 V. Espín et al.

5 Conclusions and Future Work

OWL and XML can work together to further exploit the each other benefits and
overcome their weaknesses. The use of an OWL ontology to represent a big amount of
structured data in which only a small part of this information is demanded at a required
moment can lead to inefficient responsiveness regarding to end users. In order to
lighten the ontology of unnecessary data in the reasoning process, a repository of XML
documents can be used for storing this information and retrieve a document
on-demand, only when it is required.

NutElCare is a semantic nutritional recommender system whose recommendations
are accomplished through several reasoning processes over the ontologies of its
knowledge base. For the purpose of keeping efficiency in the involved reasonings, an
XML diets repository is used for storing the diets information. When a new diet is
incorporated to the system through the system’s user interface, it is automatically
annotated in an XML document and classified in the ontology for indexing in further
retrievals. In this work, we have explained the information representation, indexation
and retrieval of XML diets in our recommender system for being used in nutritional
recommendations. We have introduced the concepts of ontology enrichment and
population and the main motivations for its use in this project. We have presented the
process by which our nutritional ontology is enriched with the concepts of the XML
Schema diet model through an XSLT transformation to the OWL diet model. In this
process the XSLT transformation and mapping rules were designed from scratch
because none of the available tools fulfilled our requirements. The ontology is popu-
lated on-demand with the contents of a single diet, being unpopulated when it is no
longer needed, storing the personalized diets as new XML documents in the repository.
The inclusion of the diets and their components into the ontology through the
enrichment and population processes elevates the syntactic level of the XML diets
representation to the semantic level of the OWL ontologies allowing the reasoning over
the contents of the diet in the knowledge base for performing the nutritional recom-
mendations. The configuration of the NutElCare architecture, connecting this XML diet
repository through a seamless and lightweight linkage to the ontologies of the
knowledge base keeps the system timely responsive.

As future work, and because the number of diets in the system is growing sig-
nificantly, we plan to improve the indexation of diets by taking advantage of the
semantic classification in the ontology, in order to build more efficient indexes. Also,
further work is required for the explicit mapping with accepted vocabularies containing
concepts of the nutritional domain in the Linked Open Data.

Acknowledgements. This work was partially funded by the Innovation Office from the
Andalusian Government under project TIN-6600 Virtra-el and by the ‘Programa de Fortalec-
imiento de I+D+i’ de la Universidad de Granada 2014–2015.

A Mixed Approach for the Representation 255

References

1. Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the
semantic web. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning.
LNCS (LNAI), vol. 2605, pp. 228–248. Springer, Heidelberg (2005)

2. Bermudez-Edo, M., Hurtado, M.V., Noguera, M., Hurtado-Torres, N.: Managing
technological knowledge of patents: HCOntology, a semantic approach. Comput. Ind.
(2015)

3. Bohring, H., Auer, S.: Mapping XML to OWL ontologies. In: Leipziger Informatik-Tage,
vol. 72, pp.147–156 (2005)

4. Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases.
In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A.,
Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 57–71.
Springer, Heidelberg (2012)

5. Buitelaar, P., Cimiano, P. (eds.): Ontology learning and population: bridging the gap
between text and knowledge, vol. 167. Ios Press, Amsterdam (2008)

6. Caracciolo, C., Stellato, A., Morshed, A., Johannsen, G., Rajbhandari, S., Jaques, Y., Keizer,
J.: The Agrovoc linked dataset. Semant. Web 4(3), 341–348 (2013)

7. Espín, V., Hurtado, M.V., Noguera, M.: Towards holistic support of active aging through
cognitive stimulation, exercise and assisted nutrition. In: Pecchia, L., Chen, L.L., Nugent, C.,
Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 312–319. Springer, Heidelberg (2014)

8. Espín, V., Hurtado, M.V., Noguera, M., Benghazi, K.: Semantic-based recommendation of
nutrition diets for the elderly from agroalimentary thesauri. In: Larsen, H.L.,
Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013.
LNCS, vol. 8132, pp. 471–482. Springer, Heidelberg (2013)

9. Ferdinand, M., Zirpins, C., Trastour, D.: Lifting XML schema to OWL. In: Koch, N.,
Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp. 354–358. Springer,
Heidelberg (2004)

10. Fernández, M., Cantador, I., López, V., Vallet, D., Castells, P., Motta, E.: Semantically
enhanced information retrieval: an ontology-based approach. Web Semant. Sci. Serv. Agents
World Wide Web 9(4), 434–452 (2011)

11. Ghawi, R., Cullot, N.: Building ontologies from XML data sources. In: DEXA Workshops,
pp. 480–484 (2009)

12. Hacherouf, M., Bahloul, S.N., Cruz, C.: Transforming XML documents to OWL ontologies:
A survey. J. Inf. Sci. 41(2), 242–259 (2015)

13. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff,
M.: Gumo–the general user model ontology. In: Ardissono, L., Brna, P., Mitrovic, A. (eds.)
User modeling 2005. LNCS, vol. 3538, pp. 428–432. Springer, Heidelberg (2005)

14. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. CRC
Press (2011)

15. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web
ontology language primer. W3C Recommendation, 27 October 2009. http://www.w3.org/
TR/owl2-primer/

16. Horridge, M., Bechhofer, S.: The OWL API: a java API for OWL ontologies. Semant. Web
2(1), 11–21 (2011)

256 V. Espín et al.

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/

17. Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology population
and enrichment: state of the art. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.)
Knowledge-Driven Multimedia Information Extraction and Ontology Evolution. LNCS, vol.
6050, pp. 134–166. Springer, Heidelberg (2004)

18. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical owl-dl reasoner.
Web Semant. Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007)

19. XSD2OWL. http://rhizomik.net/html/redefer/#XSD2OWL

A Mixed Approach for the Representation 257

http://rhizomik.net/html/redefer/%23XSD2OWL

Automatic Generation of CVs from Online
Social Networks

Sergio Maia Dias1, Alda Lopes Gancarski2(B), and Pedro Rangel Henriques1

1 Department of Computer Science, CCTC, University of Minho,
Campus de Gualtar, Braga, Portugal

pg25338@alunos.uminho.pt, prh@di.uminho.pt
2 Institut Telecom, Telecom SudParis, CNRS SAMOVAR,

9 rue Charles Fourier, 91011 Évry, France
Alda.Gancarski@telecom-sudparis.eu

Abstract. Since the explosion of Social Media use, users information
being dessiminated and dynamically updated, Curriculum Vitae (CV)
documents started to be automatically generated, compiling that infor-
mation and returning it to the user usually in PDF file format. However,
existing CV generation tools do not use a standard CV structure for-
mat, which should be generic enough for common user needs, but also
with domain specific components for certain work environnements, like
academic and research. Another difficulty on using most of existing tools
is that they return CV in a printable file format, not easily editable. In
this paper, we introduce CVGenie, a system to automatically generate
CV from information available in Online Social Networks. The system
uses the EuroPass CV standard, extended with domain specific compo-
nents. The CV file format is the XML dialect of EuroPass, because not
only it is editable, but also it allows for the interoperability with other
applications.

1 Introduction

In a professional environment, individuals need a way to expose their employ-
ment history, qualifications and education, to prove their worth in a competitive
marketplace. In an academic environment, individuals also have this require-
ment, although it is tailored to the nature of the individuals’ work, i.e., more
focused in their research and teaching.

Previously, this requirement was satisfied by a curriculum vitae (CV), which
is a document that contains an overview of the aforementioned aspects of an
individual’s career. With the emergence of the web, those aspects started to be
exposed in personal or institutional web pages.

As such, with the popularity of social media, professional-oriented Online
Social Networks (OSN) started to emerge, and became essential for personal
promotion in the labor market. In these social networks, users share their pro-
fessional experience and the projects (thematics and collaborators) they were or
are involved with. An example of these OSN is LinkedIn [4], where users enu-
merate the companies or institutions that they have worked in the past, they list
c© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodŕıguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 258–263, 2015.
DOI: 10.1007/978-3-319-27653-3 25

Automatic Generation of CVs from Online Social Networks 259

the projects that they have been involved in and they describe their education
and create an explicit network of past or present collaborators. Other examples,
in a more academic focused social networks, are Academia [1] and ResearchGate
[5], where the users’ publications and projects are displayed.

Nonetheless, this method of self-marketing is insufficient for some processes;
to apply for a position at a company it is usually required for the candidate to
present his professional experience in a succinct manner, ordinarily in a docu-
ment for that effect, i.e., a CV. It is thus clear that there is a need to utilize
the information available in these new forms of professional exposure for the
automatic generation of CV.

This paper describes an ongoing work which entails the creation of CVGenie,
a tool that, using the information available online on specific social networking
platforms, like LinkedIn [4] or Academia [1], generates CVs for the end user,
who can then use them at need.

This paper is organised as follows: Sect. 2 introduces existing CV formats.
Existing systems that perform CV generation are analysed in Sect. 3. Section 4
describes the proposed system, showing its main features and architecture. We
finish the paper with a conclusion and the planned future work.

2 Curriculum Vitae Standard Formats

Nowadays, several CV formats exist, defined by different institutions or coun-
tries. Despites there is not a standard globally accepted, the EuroPass format
[3] comes close: it is an initiative by the Directorate-General for Education and
Culture of the European Union to standardize CV documents, and is widely
accepted in several countries of the European Union, like Portugal and Spain.
Other CV formats are more focused on specific areas of expertise, such as the
academic format of The Career Center of the University of Washington (UW’s
Academic CV) [2], or the College Art Association’s Visual Artist Format (CAA’s
Artist CV) [6]. Since these formats are tailor made for specific individuals or a
specific situation, they are not universally accepted. Moreover, they are also not
very strict, since they do not define a clear set of rules that a CV must comply
with, delegating that responsibility to the individual writing the document.

CV formats vary according to the individuals’ context (geographical location,
area of expertise) and the needed detail level. However, a core set of information
is common among most formats, as shown in Table 1.

UW’s Academic CV and CAA’s Artist CV are examples of formats dedicated
to a specific work domain. In its turn, EuroPass is a popular generic-purpose
format used by individuals in a wide range of areas of expertise, this is why it is
our system’s CV format. Domain specific content and the desired level of detail
will be integrated in EuroPass through adequate extensions.

260 S.M. Dias et al.

Table 1. Common information for existing formats

EuroPass UW’s Academic CV CAA’s Artist CV

Name Yes Yes Yes

Gender Yes, optional No No

Date of birth Yes, optional No Yes, optional

Addresses Yes, optional Yes Yes, optional

Contacts Yes Yes Yes

Education Yes Yes Yes

Work experience Yes Yes Yes

Skill set Yes Yes Yes

Affiliations Yes, optional Yes, optional Yes, optional

Seminars Yes, optional Yes, optional Yes, optional

Publications Yes, optional Yes Yes

References Yes, optional Yes, optional Yes, optional

3 Existing Solutions for CV Generation
from Online Social Networks

Several applications (software packages) exist for CV generation from OSN, like
Yevgeniy Brikman’s Resume Builder [12], DoYouBuzz.com [9], VisualCV [13],
Create-CV.com [7] and EGrabber’s ResumeGrabber Suite [11].

These applications are capable of extracting information from OSN, being
LinkedIn the most common source of data. Some, like Create-CV.com, even
support other social networking and messaging services, like Facebook, Twitter,
Skype, etc., although most of them are either poor sources of professional infor-
mation or require extensive mechanisms for extracting data, which makes them
not feasible.

The main objective of some of these applications is to collect the information
and make it available online with a structure commonly associated with CV, with
the option of further editing it with the integrated tools, and possibly export it
as a file ready for printing. This is the case of Resume Builder, DoYouBuzz.com
and VisualCV. Create-CV.com simply allows to export the end result as a file,
and doesn’t allow displaying it online. These solutions focus on being complete
and self-sufficient, once the information as been retrieved from the data sources.
In doing so they become less useful, because they do not interoperate with other
systems, not being able to integrate different complementar functionalities. In
addition, generated files by those solutions cannot be reused by other systems
easily. For example, none of these tools generates files in a file format that is
easily editable externally, or that follows a standard like Europass (which uses
an XML based format) and therefore can be integrated with other systems.

EGrabber’s ResumeGrabber Suite is a substantially different solution, since it
is not focused on the individual described in the CV as the end user, but is a tool

Automatic Generation of CVs from Online Social Networks 261

Table 2. Comparison of features of the identified CV generation systems

to be used in the context of an organization for integration of CV information
of the organization’s collaborators or job applicants.

Table 2 depicts the features of each tool, establishing a comparison and iden-
tifying the main issues that were detected. From Table 2, we see that the main
objective of these systems is to collect the individual’s data, allow for it to be eas-
ily edited inside the system and easily share it online, or export it as a read-only
format. The biggest flaws in these systems are:

– In general, they do not allow exporting the CV in an editable format.
– In general, they only import information from the most popular source of

professional data, i.e., LinkedIn.
– They just include in the CV the core set of information identified in Table 1;

more specific one, like detailed academic information, is not considered.

These aspects are considered in the proposed CVGenie system.

4 CVGenie System: Requirements and Architecture

The system projected will be designed towards users that want to generate their
own CVs, from the information about themselves available online. The features
that shall be provided by that system are the following:

262 S.M. Dias et al.

Fig. 1. The proposed system architecture

– Import Information from OSN: The information required for the CV will
be obtained from the selected online social networks (LinkedIn, Academia,
ResearchGate and Behance). The latter will be used mainly for information
for the academic and artistic sections of the CV.

– Import Information from Files: The system will be able to import infor-
mation from files in the standard EuroPass XML format as well as LaTEXfiles
that use the EuropeCV [8] package.

– Export CV in an Editable Format: The system will be able to export CV
documents in the EuroPass XML format, making it possible to later import
these documents in EuroPass compatible systems.

– Export CV in a Read-only Format: The system will be able to export
CV documents as PDF files or simple HTML websites.

– Include Information for Specific Areas of Expertise: Extensions to
EuroPass will be proposed to support specific formats like UW’s Academic
CV and CAA’s Artist CV.

The proposed CVGenie architecture, presented in Fig. 1, is similar to the
OAIS model [10]; it will provide the same standard features, like information
ingestion, data management and storage, and knowledge dissemination.

The sources of data for the our CVGenie tool will be offline media, which
includes both EuroPass XML documents and LaTEX documents using the
EuropeCV package, and online media from user profiles in various online social
networks such as LinkedIn, Behance, Academia and Research Gate.

This information will be ingested by the system: it will be interpreted and
stored.

Afterwards, the user can then export the information in an editable format,
which will be the EuroPass XML format, or in a read-only format, which will
include both PDF documents and simple HTML websites.

5 Conclusion and Future Work

The system we propose in this paper is dedicated to automatic CV genera-
tion using user’s information from OSN. Our system is intended to extract

Automatic Generation of CVs from Online Social Networks 263

information from the most popular OSN, while returning the CV information in
a generic standard format that can support domain specific extensions if needed.
The standard CV structure adopted is EuroPass, in its XML format, but other
file formats can be produced, like PDF or HTML.

Currently it is possible to import and export CVs in the EuroPass XML
format. It is also possible to import CV data from LinkedIn, taking into account
both the existing data on the user’s CV as well as the available data on LinkedIn.

When importing data from LinkedIn, a comparison is performed, and if con-
flicting data is found, the user’s intervention is requested: a page is displayed,
listing the fields in conflict, and the user can choose, field by field, which data
should be kept on his CV. This mechanism will be featured when importing data
from other OSNs in future implementations. Data available to be imported from
LinkedIn is most basic information, including: first and last name, location and
last active job position. More detailed information is not available due to limited
access to the LinkedIn API.

As future work, we intend to perform the following tasks:

– Formally define extensions to the EuroPass format dedicated to specific
domains.

– Make large and rigorous system validation and evaluation with users from
different interest domains having accounts on different OSN.

Acknowledgment. This work is co-funded by the North Portugal Regional Oper-
ational Programme, under the National Strategic Reference Framework (NSFR),
through the European Regional Development Fund (ERDF), within project
GreenSSCM - NORTE-07-02-FEDER-038973.

References

1. Academia.edu - Share research (2014). www.academia.edu
2. Academic Careers Curriculum Vitae - The Career Center of the University of

Washington (2014). http://careers.washington.edu/ifiles/all/files/docs/grad
students/pdfs/AcademicCareers-Curriculum Vitae 07-08.pdf

3. Europass: Curriculum Vitae (2014). http://europass.cedefop.europa.eu/en/
documents/curriculum-vitae

4. LinkedIn: World’s Largest Professional Network (2014). www.linkedin.com
5. ResearchGate (2014). www.researchgate.net
6. Standards and Guidelines — College Art Association — CAA (2014). http://www.

collegeart.org/guidelines/visartcv
7. Create my CV online for free (2015). Create-CV.com
8. CTAN: Package europecv (2015). http://www.ctan.org/pkg/europecv
9. DoYouBuzz: Your best resume (2015). DoYouBuzz.com

10. ISO 14721:2012 - Space data and information transfer systems – Open archival
information system (OAIS) – Reference model (2015). http://www.iso.org/iso/
home/store/catalogue ics/catalogue detail ics.htm?csnumber=57284

11. Software to Import Resumes (2015). www.egrabber.com/resumegrabbersuite
12. Turn your LinkedIn Profile into a Resume — Resume Builder (2015).

resume.linkedinlabs.com
13. VisualCV - Online CV Builder and Professional Resume CV Maker (2015).

VisualCV.com

www.academia.edu
http://careers.washington.edu/ifiles/all/files/docs/gradstudents/pdfs/AcademicCareers-Curriculum_Vitae_07-08.pdf
http://careers.washington.edu/ifiles/all/files/docs/gradstudents/pdfs/AcademicCareers-Curriculum_Vitae_07-08.pdf
http://europass.cedefop.europa.eu/en/documents/curriculum-vitae
http://europass.cedefop.europa.eu/en/documents/curriculum-vitae
www.linkedin.com
www.researchgate.net
http://www.collegeart.org/guidelines/visartcv
http://www.collegeart.org/guidelines/visartcv
http://Create-CV.com
http://www.ctan.org/pkg/europecv
http://www.DoYouBuzz.com
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=57284
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=57284
www.egrabber.com/resumegrabbersuite
http://www.resume.linkedinlabs.com
http://www.VisualCV.com

Knowledge Identification from Requirements
Specification

Eduardo Barra(&) and Jorge Morato

Universidad Carlos III de Madrid,
Avda. Universidad 30, 28911 Leganés, Madrid, Spain

ebarra@kr.inf.uc3m.es, jmorato@inf.uc3m.es

Abstract. One of the main artifacts in Requirements Engineering is the
Requirements Specification (RS). Throughout the life cycle of the RS arises the
need of extracting knowledge in order to facilitate communication with stake-
holders. However, this process is not usually efficient. In the different proposals for
the representation of an RS conflicts often arise, due to coupling and redundancy
of requirements. The Aspect-Oriented paradigm provides principles to address a
multidimensional modeling to avoid these conflicts. Knowledge-Engineering is
proposed to provide a model of the knowledge needed to allow an efficient
extraction of knowledge from the requirements by ontologies. An experimental
study has been developed to assess its efficiency when compared with classical
methods.

Keywords: Requirements Engineering � Requirements Specification �
Aspect-Oriented � Knowledge-Engineering � Ontology � Knowledge extraction

1 Introduction

The most important artefact to be used to transmit knowledge effectively between the
different activities of any process of Requirements Engineering (RE) is the Technical
Specification Document (TSD). This document is written in natural language, and is
often supplemented with graphical models for its better understanding. The Require-
ments Specification (RS) is the section of a TSD that contains the knowledge speci-
fication of a software product.

The internal organization of an RS is aimed at reducing the complexity of its
semantics and improving the global understanding of the requirements for the effective
transmission of knowledge. However, there is wide agreement on organizing require-
ments in a simplistic way. In fact, they are frequently classified in just two types:
functional and non-functional. In this convention the group of functional requirements is
accepted by most analysts, however, the organizing of non-functional requirements is
ambiguous and subjective. Different researchers claim that, in fact, they impose
restrictions on the functional requirements [1]. Therefore, they should be viewed as
properties of future software products [2] or as requirements that indicate quality [3]. We
think that the paradigm Aspect-Oriented (AO) [4] provides the resources to develop
these models that allow a multidimensional organization without compromising the
integrity of its semantics. Therefore, the representation of an RS with this paradigm

© Springer International Publishing Switzerland 2015
J.-L. Sierra-Rodríguez et al. (Eds.): SLATE 2015, CCIS 563, pp. 264–270, 2015.
DOI: 10.1007/978-3-319-27653-3_26

reduces the conflicts, couplings and redundancy between requirements. This reduction
in the complexity of a software product facilitates the extraction of knowledge, its reuse
and management.

The discipline Ontology Engineering is often applied to Knowledge Engineering
(KE). Ontologies allow to create an explicit and formal specification of knowledge-
managed through computers that provide reusability and shareability [5, 6]. Therefore,
our hypothesis is that the representation of an RS through ontologies is an important
factor to obtain an efficient representation of knowledge. With this background, this
research proposes guidelines according to the AO paradigm based on principles of KE
applied to Requirements Engineering (RE) for the development of an RS. OE provides
a multidimensional semantic model with a well-founded organization that facilitates the
extraction of knowledge.

In accordance with these ideas, the rest of the paper is structured as follows.
Section 2 briefly discusses related work for the modeling of an RS based on the para-
digm AO and OE. In Sect. 3, some guidelines for the modeling of an RS are proposed
and exemplified. In Sect. 4, an evaluation is developed to demonstrate that the repre-
sentation with the guidelines is effective and efficient in the extracting of knowledge
from RS. Finally, Sect. 5 presents the conclusions and future work.

2 Related Work

Our study is focused on the early stages of the software development process (SDP).
SDP is usually split into different stages. In the AO paradigm, we can talk about early,
middle and late aspects, where the early aspects comprise the requirement specification
and the architectonic logical representation. Late aspects deal with the low codification
level, and finally, middle aspects are located between these stages (Table 1).

In recent years, many studies have shown the potential of the AO paradigm focused
on the early stages of software development. These proposals are grouped under the
term Aspect-Oriented Requirement Engineering (AORE) [7, 8]. The first step in this
research has been to study the most representative approaches in AORE, in order to
find out well-founded approaches to include in our work.

In 2003, Rashid et al. proposed using XML language to index the description of the
requirements for the management of concerns [9]. In another proposal, “Multi-
Dimensional Separation of Concerns in Requirements Engineering” [10], the suggested
solution for RE is the separation of concerns into multidimensional categories, in order

Table 1. Stages in different software development proposals

Activity USDP MDA AO

Specification Requirements CIM Early aspects
Analysis

Development Design PIM
PSM Middle aspects

Implementation Late aspects

Knowledge Identification from Requirements Specification 265

to provide a categorization modeled from different points of view. In Yu and Prado’s
work is [11] proposed aspect-orientation techniques to manage objectives. It suggests
mechanisms to avoid conflicts between requirements. Another proposal, that combines
aspect-oriented analysis and design [12], highlights the need to decompose the
requirements into more elementary parts. Finally, the research carried out by Jacobson
and Ng shows that when the concepts of the AO paradigm are related to “use cases” the
positive influence for identifying concerns can be observed [13].

In these proposals, not only did we find different contributions to be considered, but
also different problems. These approaches only consider the modelling of requirements
in descriptions of natural language, where a requirement may belong to different
aspects.

The modelling of requirements in these proposals lacks a clear technique for the
modelling of knowledge, generating conflict, coupling and semantic redundancy.
AORE proposals are aimed at the identification, separation and composition of con-
cerns but they are not oriented to the representation of knowledge in an efficient way.

Additionally, different ontology-driven approaches to support RE have been ana-
lyzed [14–17]. Although modeling the knowledge of the domain through ontologies
addresses an obvious need, there is a lack of well-established natural language tech-
niques to represent these internal semantic relationships among requirements. Besides,
the need of developing organizational structures to represent the Requirements Spec-
ification (RS) is usually overlooked.

3 Guidelines for the Semantic Modeling of an RS

The first stage of the guidelines proposed in this work focused on the importance of a
sound and adequately substantiated organization in the development of an RS. In this
case, we propose the creation of a structure to specify the requirement. This structure is
designed in accordance with different viewpoints. The main goal is to provide a way for
the development of an RS that improves the understanding of the requirements as a
whole. In this regard, we have proposed the use of an Architecture Viewpoint
(AVP) that provides a schema for developing the RS. The AVP is modeled on a
domain ontology that provides a guide for modelling responsibilities. The aim is to
identify the viewpoints that will group both the dominant concerns and the related
viewpoints in crosscutting concerns. The high-level viewpoints proposed in the AVP
will act as containers of viewpoints of lower level in a recursive nesting to reach the last
level viewpoint.

In the second stage, the early concerns of a software product are modeled according
to the AVP base, in an organized knowledge representation. The goal of these
guidelines is to model the early knowledge using ontologies, and leaving as a sec-
ondary activity elaborating a description in natural language, in order to facilitate the
understanding by non-expert stakeholders. The modelling of concerns through the
Ontology Engineering has its major support in the Ontology Web Language (OWL).
This is a recommendation introduced in 2004 by the W3C for building the Semantic
Web, which is the most popular language for the semantic description of ontologies.
Accordingly, OWL has been the language selected in these guidelines for the

266 E. Barra and J. Morato

modelling of an RS. The application of the guidelines involves modeling of knowledge
of the Requirements, typical of an RS with the specification of the properties between
concerns. There are two main types of properties that OWL represents as relationships:
“Object Properties” and “Data Properties”. The most important relationships in these
guidelines are the “Object Properties” to model the semantic relationships. The mod-
elling of early knowledge of a software product assisted by these guidelines involves
the use of natural language in order to allow the developer a richer description of the
concerns, in the same way that it is done with typical requirements. This information is
added to the “Annotation Properties”.

An efficient representation of a specification requires split its components in ele-
ments like concerns, information entities, roles, conditions, and so on. Usually speci-
fications are expressed in natural language (NL). Unfortunately NL is complex and
prone to ambiguities. An example may explain some of these difficulties of modeling
processes in an RS. In Fig. 1 the decomposition of concern expressed in a NL is shown.
A multidimensional modeling to split its components in a well-grounded way is nec-
essary to avoid non-atomic and overlapped requirements.

4 Evaluation

In order to show the efficiency of the guidelines for the RS creation, we developed an
experiment to compare our guidelines with a classical development. The case study
proposed was to develop an application to manage a “stadium for athletics events”.

At the step 1 of the experiment, a solution was developed with the method
described (hereafter referred to as specification B). In addition, we gave to 32 teams a
description of the case study. The project was given to students in Software Engi-
neering in the final year of the degree in computer science. Each team was comprised of
5 members. The teams had to specify the TSD of a software product under a classical
development process. Teams were allowed to base their solution on IEEE 830 or ESA
PSS-05 standards.

Fig. 1. Constraints related to the concern “Incidence Data Register”

Knowledge Identification from Requirements Specification 267

The specifications developed under a classical methodology were analyzed by five
researcher teachers, all of them experts in RE. The experts selected the two best ones,
which we call specifications A and C for short.

The second step of the experiment involved to extract shared crosscutting-concerns,
dominant-concerns and common information entities from the different solutions. Due
to its importance in this proposal, the classification of crosscutting concerns is focused
on the type of query. The category “information entity” comprises the name of classes
and view points, while information related to information entities refers to class
properties and its values. Thus, the concerns were identified for the experiment referee
on every of the three solutions developed.

At third step, we asked to six software analysis experts from different software
factories to manage the three specifications when facing a major update in the software.
Therefore they were required to obtain the same knowledge from the three specifica-
tions. In order to avoid a biased result due to the learning of the domain, the specifi-
cations were given to the expert in a specific order. In so doing, the first specification
given is not at a disadvantage in terms of effectiveness of change when comparing with
the other specifications. The first specification given was developed with the classical
methodology, named as A. When the update was finished, the specification B, made
with the guidelines, was given to the experts, and finally the specification C. In the part
of the experiment about the extraction of knowledge of the specifications developed
under the classical development A and C, every expert analyst received the Technical
Specification Document (TSD) with its corresponding digital archive of the RS to be

Fig. 2. Percentage of correct concerns identified according its type

268 E. Barra and J. Morato

used in a management of requirements. In the part of the experiment about the
extraction of knowledge of the specifications developed under our guidelines, the six
expert analysts received an OWL archive. Tools for ontologies, such as editors, rea-
soners and a search engine were provided to the experts to carry out the update. The
time to work in every specification was limited to 30 min.

At the step 4, results have been compared and analyzed. The evaluation was made
quantifying the concerns to update correctly identified by the experts analysts from the
total knowledge proposed in each specification.

The result is shown in Fig. 2. We can clearly see that the specification of a software
product on the early stages developed with the guidelines allows the knowledge
extraction more efficiently.

5 Conclusions and Future Works

The first proposal of the presented approach is to use the AO paradigm concepts to get
a multidimensional modeling. This step allows us to avoid conflicts, such as couplings
and redundancy in representing RS. These conflicts appear in a recurrent way in
modelling RS under classical methodologies. An additional goal is to prevent problems
due to ambiguities when representing in natural language RS. In this sense, the KE
concepts allow to solve the problem about the knowledge representation in the early
stages of a software product.

Several approaches exist for RS modeling on AO and KE. They typically lack
knowledge organization and structure. Therefore, they are neither efficient nor effective
in defining the knowledge that different stakeholders require.

One of the contributions of our approach is the proposal of guidelines that improve
the RE process, creating an RS model that facilitates the knowledge extraction. The
guidelines are based on the improvement of the semantic representation of the
requirements, with a multidimensional knowledge organization.

In this methodology, regular updates are properly incorporated thanks to the way
we split the requirements and user stories. For this reason, the proposal is well-suited to
work with agile methods for managing product development.

We developed an experiment with the proposed guidelines to study the effective-
ness of the approach. The result of this evaluation proved that the innovative solution
proposed by this work improves substantially the knowledge extraction in the early
stages avoiding investing many resources trying it.

As a future work we are developing guidelines for the creation of the AVP in a
systematic way, which allows us to structure and organize those aspects that support
the evolution of a software product. In this regard, the automation of the guidelines will
provide the support for the creation of the AVP needed by the software factories, where
the resultant AVP could be reused in the same line product. To complement this work,
we intend to create a tool to manage concerns. This tool must provide the resources that
a typical tool offers to manage requirements, but respecting the concepts of the con-
ceptual AO model in a clear way. That is, support will be given through a virtual guide
to describe the requirements, but also modelling the attributes with the necessary
concerns that describe their knowledge.

Knowledge Identification from Requirements Specification 269

References

1. Sommerville, I.: Software Engineering. Pearson Education, Boston (2005)
2. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.

Addison-Wesley, Reading (1999)
3. Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-functional requirements in

industry – three case studies adopting and experience-based NFR method. In: Proceedings of
the 13th IEEE International Conference on Requirements Engineering, pp. 373–382. IEEE,
New York (2005)

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.-V., Irwin, J.:
Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241. Springer, Heidelberg (1997)

5. Berners-Lee, T., Hendller, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 29–37 (2001)
6. Brewster, C., O’Hara, K.: Knowledge representation with ontologies: the present and future.

IEEE Intell. Syst. 19(1), 72–81 (2004)
7. Grundy, J.: Aspect-oriented requirements engineering for component-based software

systems. In: IEEE International Conference on Requirements Engineering, p. 84. IEEE,
New York (1999)

8. Rashid, A., Sawyer, P., Moreira, A.M.D., Araújo, J.: Early aspects: a model for
aspect-oriented requirements engineering. In: Proceedings International Conference on
Requirements Engineering, pp. 199–202. IEEE, New York (2002)

9. Rashid, A., Moreira, A., Araújo, J.: Modularisation and composition of aspectual
requirements. In: Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development, pp. 11–20. ACM, Boston (2003)

10. Moreira, A., Rashid, A., Araujo, J.: Multi-dimensional separation of concerns in
requirements engineering. In: 13th IEEE International Conference on Requirements
Engineering, pp. 285–296. IEEE, New York (2005)

11. Yu, Y., do Prado Leite, J.C.S., Mylopoulos, J.: From goals to aspects: discovering aspects
from requirements goal models. In: 12th IEEE International Requirements Engineering
Conference, pp. 38–47. IEEE, New York (2004)

12. Baniassad, E., Clarke, S.: Theme: an approach for aspect-oriented analysis and design. In:
Proceedings of the ICSE 2004, pp. 158–167. IEEE, Washington (2004)

13. Jacobson, I., Ng, P.-W.: Aspect-Oriented Software Development with Use Cases.
Addison-Wesley, New Jersey (2005)

14. Kaiya, H., Saeki, M.: Using domain ontology as domain knowledge for requirements
elicitation. In: 14th IEEE International Requirements Engineering, pp. 189–198. IEEE, Los
Alamitos (2006)

15. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in
requirements engineering. In: 16th IEEE International Requirements Engineering, RE 2008,
pp. 71–80. IEEE, Los Alamitos (2008)

16. Velasco, J.L., Valencia-Garcia, R., Fernandez-Breis, J.T., Toval, A.: Modelling reusable
security requirements based on an ontology framework. J. Res. Pract. Inf. Technol. 41(2),
119–133 (2009)

17. Souag, A., Salinesi, C., Wattiau, I., Mouratidis, H.: Using security and domain ontologies
for security requirements analysis. In: Computer Software and Applications Conference
Workshops (COMPSACW), 2013 IEEE 37th Annual, pp. 101–107. IEEE, Los Alamitos
(2013)

270 E. Barra and J. Morato

Author Index

Aguiar, Ana 3
Almeida, José João 49
Amorim, Ricardo Carvalho 216
Andronikou, Vassiliki 38
Areias, Miguel 113

Barra, Eduardo 264
Batista, Fernando 3, 57
Bernardis, Hernán 91
Berón, Mario Marcelo 91

Carvalho, Joao P. 57
Carvalho, Nuno Ramos 205
Castro, João Aguiar 216
Chaudhry, Himani 15
Chondrogiannis, Efthymios 38
Correia, Hugo 101
Cortesão, Luís 26
Costa, Teresa 236
Cruz, João 137

da Cruz, Daniela 137, 153
da Silva, João Rocha 216
de la Vega, Alfonso 79
de Lara, Juan 160
Dias, Sergio Maia 258

Espín, Vanesa 246

Gamallo, Pablo 65
Gancarski, Alda Lopes 258
Garcia, Marcos 65
García-Saiz, Diego 79
Garmendia, Antonio 160
Gonçalo Oliveira, Hugo 26
Grabowski, Szymon 224
Guerra, Esther 160

Henriques, Pedro Rangel 91, 137, 153, 258
Hurtado, María V. 246

Janoušek, Jan 171
Jena, Itisree 15
Julião, Mariana 3

Karanastasis, Efstathios 38

Leal, José Paulo 182, 194, 236
Leitão, António Menezes 101

Marques, João 26
Martins, Vítor T. 153
Miranda, Enrique Alfredo 91
Moniz, Helena 3
Morato, Jorge 264

Noguera, Manuel 246

Paiva, José Carlos 194
Pereira, Maria João Varanda 91
Pescador, Ana 160

Queirós, Ricardo 194

Ribeiro, Cristina 216
Riesco, Daniel Edgardo 91
Rocha, Ricardo 113
Rodríguez-Cerezo, Daniel 125

Sánchez, Pablo 79
Sarasa-Cabezuelo, Antonio 145
Šestáková, Eliška 171
Sharma, Dipti Misra 15
Sierra, José-Luis 125, 145
Silva, Jorge 3
Simões, Alberto 49, 205
Sousa, Rúben 182
Swacha, Jakub 224

Varvarigou, Theodora 38
Vicente, Marco 57
Vieira, Nuno 205

Zorrilla, Marta 79

	Preface
	Organization
	Contents
	Human-Human Languages
	Speech Features for Discriminating Stress Using Branch and Bound Wrapper Search
	1 Introduction
	2 Related Work
	3 Speech Corpus and Data Annotation
	4 Methodology
	4.1 Acoustic-Prosodic Features
	4.2 Teager Energy Operator Features

	5 Searching for the Best Feature Sets
	5.1 Filter: Mutual Information
	5.2 Wrapper

	6 Results
	7 Discussion
	8 Conclusions
	References

	Oriya Morphological Analyzer Using Lttoolbox
	1 Introduction
	1.1 Related Work

	2 Current Work
	2.1 Approach
	2.2 Resources Used
	2.3 Data Development for Oriya Morph Analyzer

	3 Evaluation and Result
	3.1 Evaluation I
	3.2 Results and Error Analysis
	3.3 Evaluation II
	3.4 Evaluation III

	4 Challenges and Limitations
	4.1 Foreign Words
	4.2 Analyzing Oriya Compound Verbs

	5 Conclusion and Future Work
	References

	Exploiting Twitter for the Semantic Enrichment of Telecommunication Alarms
	1 Introduction
	2 Background and Related Work
	3 Datasets Explored
	3.1 Description
	3.2 Pairing Alarms and Tweets

	4 Experimentation
	4.1 Manual Labelling of Tweets
	4.2 Keyword Search
	4.3 Case Study: Complaining About the Network Service
	4.4 Event Classification in Tweets

	5 Concluding Remarks
	References

	Meaning Inference of Abbreviations Appearing in Clinical Studies
	Abstract
	1 Introduction
	2 Related Work
	3 Study Methodology and Tools
	4 Results Analysis and Main Findings
	5 Further Discussion and Future Steps
	6 Conclusion
	Acknowledgements
	References

	Experiments on Enlarging a Lexical Ontology
	1 Introduction
	2 Experiments Description
	2.1 Experiment I: Triangulating Iberian Wordnets
	2.2 Experiment II: Synset Extraction from Definitions Dictionary

	3 Experiments Evaluation
	3.1 Experiment I
	3.2 Experiment II

	4 Conclusions
	References

	Using Unstructured Profile Information for Gender Classification of Portuguese and English Twitter Users
	1 Introduction
	2 Data and Features
	2.1 Names Dictionaries
	2.2 Feature Extraction
	2.3 Labelled Data

	3 Experiments and Results
	4 Conclusions and Future Work
	References

	Yet Another Suite of Multilingual NLP Tools
	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Sentence Chunker
	3.2 Tokenizer
	3.3 PoS-Tagger
	3.4 Named Entity Identifier
	3.5 Named Entity Classifier

	4 Resources
	4.1 Portuguese
	4.2 English

	5 Evaluation
	5.1 PoS-Tagger
	5.2 Named Entity Classifier

	6 Conclusions and Further Work
	References

	Human-Computer Languages
	Towards a DSL for Educational Data Mining
	1 Introduction
	2 Educational Data Mining
	3 Related Work
	4 Grammar Specification
	4.1 Abstract Syntax
	4.2 Concrete Syntax

	5 Query Execution
	6 Conclusions
	References

	WSDLUD: A Metric to Measure the Understanding Degree of WSDL Descriptions
	1 Introduction
	2 Related Work
	3 WSDLUD
	3.1 WSDL Description Criteria Tree
	3.2 Aggregation Structure
	3.3 Information Extraction Techniques and Elementary Criteria Functions

	4 Case Study
	5 Conclusion and Future Work
	References

	Combining Processing with Racket
	1 Introduction
	2 Processing
	3 Related Work
	3.1 Processing.js
	3.2 Processing.py and Ruby-Processing
	3.3 ProfessorJ

	4 Compilation Process
	4.1 Parsing Phase
	4.2 Code Analysis
	4.3 Code Generation

	5 Runtime
	6 Interoperability
	7 Example
	8 Conclusion
	References

	Batched Evaluation of Full-Sharing Multithreaded Tabling
	1 Introduction
	2 Background
	2.1 Yap's Multithreaded Tabling Support
	2.2 Scheduling Strategies

	3 Extending Full-Sharing with Batched Scheduling
	3.1 Our Approach
	3.2 Implementations Details

	4 Experimental Results
	4.1 Benchmark Programs
	4.2 Performance Analysis

	5 Conclusions and Further Work
	References

	Browsing the Parse Space
	Abstract
	1 Introduction
	2 Motivation: EvDebugger
	3 Constructing Parse Trees from Earley's Parse Lists
	3.1 Earley's Recognizer
	3.2 The Tree Construction Calculus

	4 The Browsing Engine
	4.1 Browser Architecture and Browsing Strategy
	4.2 Getting the Next Tree Construction Plan
	4.3 Synthetizing the Parse Tree

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgements
	References

	Assessing Attribute Grammars' Quality: Metrics and a Tool
	1 Introduction
	2 Grammar Quality
	3 Grammar Metrics
	3.1 CFG Metrics
	3.2 AG Metrics

	4 A Tool for Metric Evaluation
	4.1 GQE Results

	5 Conclusion
	References

	A Syntax-Directed Model Transformation Framework Based on Attribute Grammars
	Abstract
	1 Introduction
	2 Attribute Grammars
	3 The AGT Framework
	4 AGTL: The AGT Specification Language
	4.1 AGLT Concrete Syntax
	4.2 AGTL Abstract Syntax
	4.3 AGTL Operational Semantics
	4.4 An Example

	5 Conclusions and Future Work
	Acknowledgements
	References

	An AST-based Tool, Spector, for Plagiarism Detection: The Approach, Functionality, and Implementation
	1 Introduction
	2 Approach
	2.1 Target Characteristics
	2.2 Architecture

	3 Functionality
	4 Implementation
	4.1 Features

	5 Example
	6 Conclusion
	References

	Towards the Generation of Graphical Modelling Environments Aided by Patterns
	1 Introduction
	2 Overview
	3 Defining Graphical DSMLs Through Patterns
	3.1 Using the Visual Syntax Attached to Domain Patterns
	3.2 Using the Dedicated Custom Wizard
	3.3 The Generated Graphical Environment

	4 Related Work
	5 Conclusions and Future Work
	References

	Computer-Computer Languages
	Tree String Path Subsequences Automaton and Its Use for Indexing XML Documents
	1 Introduction
	2 Tree String Path Subsequences Automaton
	3 Evaluation of an Input Query
	4 Time and Space Complexities
	5 Conclusion and Future Work
	References

	A Structural Approach to Assess Graph-Based Exercises
	1 Introduction
	2 Related Work
	3 Graph Assessment Algorithm
	3.1 Data Structures
	3.2 Node Mappings

	4 Validation
	4.1 Graph Generator
	4.2 Experiments

	5 Conclusions and Future Work
	References

	Odin: A Service for Gamification of Learning Activities
	1 Introduction
	2 Game Services
	2.1 Game Concepts
	2.2 Game Backend Services

	3 Odin
	3.1 Architecture
	3.2 Frameworks and Tools
	3.3 Data Model
	3.4 Service API

	4 Evaluation
	5 Conclusions
	References

	SplineAPI: A REST API for NLP Services
	1 Introduction
	2 Related Work
	3 Design Goals and Architecture Details
	3.1 Spline Architecture
	3.2 Perl Module Generation
	3.3 Lengthy Requests

	4 Conclusions
	References

	Engaging Researchers in Data Management with LabTablet, an Electronic Laboratory Notebook
	1 Introduction
	2 Research Data Management
	2.1 Data Description
	2.2 Researchers' Engagement in Data Management

	3 Electronic Laboratory Notebooks
	3.1 LabTablet

	4 Social Sciences: A Case Study
	4.1 The Social Sciences Domain
	4.2 Preparing for Data Description

	5 Conclusions
	References

	OFR: An Efficient Representation of RDF Datasets
	1 Introduction
	2 Related Work
	3 The Proposed Algorithm
	3.1 The General Approach
	3.2 Phases of the Algorithm
	3.3 Implementation Details

	4 Experimental Results
	5 Conclusion
	References

	Reducing Large Semantic Graphs to Improve Semantic Relatedness
	1 Introduction
	2 Related Work
	3 Previous Work
	3.1 Semantic Measure
	3.2 Quality Measure
	3.3 Fine Tuning Process

	4 Graph Reduction Procedure
	5 Validation
	6 Conclusion
	References

	A Mixed Approach for the Representation of Nutritional Information Through XML-to-OWL Mappings
	Abstract
	1 Introduction
	2 Related Work
	3 NutElCare
	3.1 Nutritional Recommendations
	3.2 Knowledge Base

	4 Diets Model Design and Information Retrieval
	4.1 Ontology Enrichment
	4.2 On-Demand Population and Reasoning

	5 Conclusions and Future Work
	Acknowledgements
	References

	Automatic Generation of CVs from Online Social Networks
	1 Introduction
	2 Curriculum Vitae Standard Formats
	3 Existing Solutions for CV Generation from Online Social Networks
	4 CVGenie System: Requirements and Architecture
	5 Conclusion and Future Work
	References

	Knowledge Identification from Requirements Specification
	Abstract
	1 Introduction
	2 Related Work
	3 Guidelines for the Semantic Modeling of an RS
	4 Evaluation
	5 Conclusions and Future Works
	References

	Author Index

