
Chapter 4
Some Differential Geometry

Abstract The main objective of this chapter is to present a Clifford bundle
formalism for the formulation of the differential geometry of a manifold M,
equipped with metric fields g 2 sec T02M and g 2 sec T20M for the tangent and
cotangent bundles. We start by first recalling the standard formulation and main
concepts of the differential geometry of a differential manifold M. We introduce
in M the Cartan bundle of differential forms, define the exterior derivative, Lie
derivatives, and also briefly review concepts as chains, homology and cohomology
groups, de Rham periods, the integration of form fields and Stokes theorem. Next,
after introducing the metric fields g and g in M we introduce the Hodge bundle
presenting the Hodge star and the Hodge coderivative operators acting on sections
of this bundle. We moreover recall concepts as the pullback and the differential
of maps, connections and covariant derivatives, Cartan’s structure equations, the
exterior covariant differential of . p C q/-indexed r-forms, Bianchi identities and
the classification of geometries on M when it is equipped with a metric field and
a particular connection. The spacetime concept is rigorously defined. We introduce
and scrutinized the structure of the Clifford bundle of differential forms (C`.M;g/)
of M and introduce the fundamental concept of the Dirac operator (associated
to a given particular connection defined in M) acting on Clifford fields (sections
of C`.M;g/). We show that the square of the Dirac operator (associated to a
Levi-Civita connection in M) has two fundamental decompositions, one in terms
of the derivative and Hodge codifferential operators and other in terms of the
so-called Ricci and D’Alembertian operators. A so-called Einstein operator is also
introduced in this context. These decompositions of the square of the Dirac operator
are crucial for the formulation of important ideas concerning the construction of
gravitational theories as discussed in particular in Chaps. 9, 11, 15. The Dirac
operator associated to an arbitrary (metrical compatible) connection defined in M
and its relation with the Dirac operator associated to the Levi-Civita connection of
the pair .M; g/ is discussed in details and some important formulas are obtained.
The chapter also discuss some applications of the formalism, e.g., the formulation
of Maxwell equations in the Hodge and Clifford bundles and formulation of Einstein
equation in the Clifford bundle using the concept of the Ricci and Einstein operators.
A preliminary account of the crucial difference between the concepts of curvature
of a connection in M and the concept of bending of M as a hypersurface embedded
in a (pseudo)-Euclidean space of high dimension (a property characterized by
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108 4 Some Differential Geometry

the concept of the shape tensor, discussed in details in Chap. 5) is given by
analyzing a specific example, namely the one involving the Levi-Civita and the
Nunes connections defined in a punctured 2-dimensional sphere. The chapter ends
analyzing a statement referred in most physical textbooks as “tetrad postulate” and
shows how not properly defining concepts can produce a lot of misunderstanding
and invalid statements.

4.1 Differentiable Manifolds

In this section we briefly recall, in order to fix our notations, some results concerning
the theory of differentiable manifolds, that we shall need in the following.

Definition 4.1 A topological space is a pair .M;U/ where M is a set and U a
collection of subsets of M such that

(i) ¿;M 2 U .
(ii) U contains the union of each one of its subsystems.

(iii) U contains the intersection of each one of its finite subsystems.

We recall some more terminology.1 Each U˛ 2 U (˛ belongs to an index set
which eventually is infinite) is called an open set. Of course we can give many
different topologies to a given set by choosing different collections of open sets.
Given two topologies for M, i.e., the collections of subsets U1 and U2 if U1 � U2
we say that U1 is coarse than U2 and U2 is finer than U1. Given two coverings fU˛g
and fV˛g of M we say that fV˛g is a refinement of fU˛g if for each V˛ there exists
an U˛ such that V˛ � U˛ . A neighborhood of a point x 2 M is any subset of M
containing some (at least one) open set U˛ 2 U . A subset X � M is called closed
if its complement is open in the topology .M;U). A family fU˛g;U˛ 2 U is called
a covering of M if [˛U˛ D M. A topological space .M;U/ is said to be Hausdorff
(or separable) if for any distinct points x; x0 2 M there exists open neighborhoods U
and U0 of these points such that U \ U0 D ¿. Moreover, a topological space .M;U)
is said to be compact if for every open covering fU˛g;U˛ 2 U of M there exists a
finite subcovering, i.e., there exists a finite subset of indices, say ˛ D 1; 2; : : :m,
such that [m

˛D1U˛ D M. A Hausdorff space is said paracompact if there exists a
covering fV˛g of M such that every point of M is covered by a finite number of the
V˛, i.e., we say that every covering has a locally finite refinement.

Definition 4.2 A smooth differentiable manifold M is a set such that

(i) M is a Hausdorff topological space.
(ii) M is provided with a family of pairs .U˛; '˛/ called charts, where fU˛g is a

family of open sets covering M, i.e., [˛U˛ D M and being fV˛g a family

1In general we are not going to present proofs of the propositions, except for a few cases, which
may considered as exercises. If you need further details, consult e.g., [3, 11, 25].
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of open sets covering R
n, i.e., [˛V˛ D R

n, the '˛ W U˛ ! V˛ are
homeomorphisms. We say that any point x 2 M has a neighborhood which
is homeomorphic to R

n. The integer n is said the dimension of M, and we write
dim M D n.

(iii) Given any two charts .U; '/ and .U0; ' 0/ of the family described in (ii) such
that U \ U0 ¤ ¿ the mapping ˆ D ' ı '�1 W '.U \ U0/ ! '.U \ U0/ is
differentiable of class Cr.

The word smooth means that the integer r is large enough for all statements that
we shall done to be valid. For the applications we have in mind we will suppose that
M is also paracompact. The whole family of charts f.U˛; '˛/g is called an atlas.

The coordinate functions of a chart .U; '/ are the functions x i D ai ı ' W U !
R, i D 1; 2; : : : ; n where ai W R

n ! R are the usual coordinate functions of Rn

(see Fig. 4.1). We write x i.x/ D xi and call the set .x1; ::; xn/ (denoted fxig) the
coordinates of the points x 2 U in the chart .U; '/, or briefly, the coordinates.2 If
.U0; ' 0/ is another chart of the maximal atlas of M with coordinate functions x 0i
such that x 2 U \ U0 we write x 0i.x/ D x0i and

x 0j.x/ D f j.x1.x/; : : : ; xn.x//; (4.1)

and we use the short notation x0j D f j.xi/, i; j D 1; : : : ; n. Moreover, we often denote
the derivatives @f j=@xi by @x0j=@xi.

Let .U; '/ be a chart of the maximal atlas of M and h W M ! M, x 7! y D h.x/
a diffeomorphism such that x; y 2 U \ h.U/. Putting x i.x/ D xi and y j D x j.h.x//

Fig. 4.1 Coordinate chart .U; �/, coordinate functions x W U ! R and coordinates x i.x/ D xi

2We remark that some authors (see, e.g., [25]) call sometimes the coordinate function x i simply
by coordinate. Also, some authors (see, e.g., [11]) call sometimes fxig a coordinate system (for
U � M). We eventually also use these terminologies.
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we write the mappings hj W .x1; : : : ; xn/ 7! .y1; : : : ; yn/ as

y j D hj.xi/; (4.2)

and often denote the derivatives @hj=@xi of the functions hj by @y j=@xi.
Observe that in the chart .V; ~/, V � h.U/ with coordinate functions fy jg such

that x j D y j ı h, x j.x/ D xj D y j.y/ D y j and @y j=@xi D ıi
j .

4.1.1 Manifold with Boundary

In the definition of a n-dimensional (real) manifold we assumed that each coordinate
neighborhoods, U˛ 2 M is homeomorphic to an open set of Rn. We now give the

Definition 4.3 A n-dimensional (real) manifold M with boundary is a topological
space covered by a family of open sets fU˛g such that each one is homeomorphic to
an open set of RnC D f.x1; : : : ; xn/ 2 R

n j xn � 0g.

Definition 4.4 The boundary of M is the set @M of points of M that are mapped to
points in R

n with xn D 0.

Of course, the coordinates of @M are given by (x1; : : : ; xn�1; 0) and thus @M is a
.n � 1/-dimensional manifold. of the same class (Cr) as M.

4.1.2 Tangent Vectors

Let Cr.M; x/ be the set of all differentiable functions of class Cr (smooth functions)
which domain in some neighborhood of x 2 M. Given a curve in M, � W R � I !
M, t 7! �.t/ we can construct a linear function

��.t/ W Cr.M; x/ ! R; (4.3)

such that given any f 2 Cr.M; x/,

��.t/Œ f � D d

dt
Œ f ı ��.t/: (4.4)

Now, ��.t/ is a derivation, i.e., a linear function that satisfy the Leibniz’s rule:

��.t/Œ fg� D ��.t/Œ f �g C f��.t/Œg�; (4.5)

for any f ; g 2 Cr.M; x/:
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This linear mapping has all the properties that we would like to impose to the
tangent to � at �.t/ as a generalization of the concept of directional derivative of
the calculus on R

n. It can shown that to every linear derivation it is associated a
curve (indeed, an infinity of curves) as just described, i.e., curves �; � W R � I ! M
are equivalent at x0 D �.0/ D �.0/ provided d

dt Œ f ı ��.t/ˇˇ
tD0 D d

dt Œ f ı ��.t/ˇˇ
tD0

for any f 2 Cr.M; x0/. This suggests the

Definition 4.5 A tangent to M at the point x 2 M is a mapping vjx W Cr.M; x/ ! R

such that for any f ; g 2 Cr.M; x/, a; b 2 R,

(i) vjx Œaf C bg� D avxŒ f �C b vjx Œg�;
(ii) vjx Œ fg� D vjx Œ f �g C f vjx Œg�:

: (4.6)

As can be easily verified the tangents at x form a linear space over the real field.
For that reason a tangent at x is also called a tangent vector to M at x.

Definition 4.6 The set of all tangent vectors at x is denoted by TxM and called
the tangent space at x. The dual space of TxM is denoted by T�

x M and called the
cotangent space at x. Finally Tr

sxM is the space of r-contravariant and s-covariant
tensors at x.

Definition 4.7 Let fx ig be the coordinate functions of a chart .U; '/. The partial
derivative at x with respect to xi is the representative in the given chart of the tangent
vector denoted @

@xi

ˇ
ˇ
x

� @ijx such that

@

@xi

ˇ
ˇ
ˇ
ˇ
x

f WD @

@xi
Œ f ı '�1�

ˇ
ˇ
ˇ
ˇ
'.x/

;

D @ Mf
@xi
.xi/; (4.7)

with

f .x/ D f ı '�1.x1.x/; : : : ; xn/ D Mf .x1; : : : ; xn/: (4.8)

Remark 4.8 Eventually we should represent the tangent vector @
@xi

ˇ
ˇ
x

by a different

symbol, say @
@xi

ˇ
ˇ
x
. This would cause less misunderstandings. However, @

@xi

ˇ
ˇ
x
is

almost universal notation and we shall use it. We note moreover that other notations
and abuses of notations are widely used, in particular f ı '�1 is many times
denoted simply by f and then Mf .xi/ is denoted simply by f .xi/ and also we find
@
@xi

ˇ
ˇ
x
Œ f � � @f

@xi .x/, (or worse) @
@xi

ˇ
ˇ
x
Œ f � � @f

@xi . We shall use these (and other) sloppy
notations, which are simply to typewrite when no confusion arises, in particular we
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will use the sloppy notations @xj

@xi .x/ or @xj

@xi for @
@xi

ˇ
ˇ
x
Œx j�, i.e.

@

@xi

ˇ
ˇ
ˇ
ˇ
x

Œx j� � @xj

@xi
.x/ � @xj

@xi
D ı

j
i :

If fx ig are the coordinate functions of a chart .U; '/ and vjx 2 TxM, then we can
easily show that

vjx D vjx Œx i�
@

@xi

ˇ
ˇ
ˇ
ˇ
x

D vi @

@xi

ˇ
ˇ
ˇ
ˇ
x

; (4.9)

with vjx Œx i� D vi W U ! R.
As a trivial consequence we can verify that the set of tangent vectors

n
@
@xi

ˇ
ˇ
x
; i D 1; 2; : : : ; n

o

is linearly independent and so dim TxM D n.

Remark 4.9 Have always in mind that vjx D vi @
@xi

ˇ
ˇ
x

2 TxU and its representative

in T'.x/Rn is the tangent vector Lvj'.x/ DW Lvi @
@xi

ˇ
ˇ
'.x/

such that vi @
@xi

ˇ
ˇ
x

f D Lvj'.x/ Lf .

Definition 4.10 The tangent vector field to a curve � W R � I ! M is denoted by
��.t/ or d�

dt .

This means that ��.t/ D d�
dt .t/ is the tangent vector to the curve � at the point

�.t/. Note that ��.t/ has the expansion

��.t/ D vi.�.t//
@

@xi

ˇ
ˇ
ˇ
ˇ
xD�.t/

; (4.10)

where, of course,

vi.�.t// D ��.t/Œx i� D dx i ı �.t/
dt

D d� i.t/

dt
; (4.11)

with � i D x i ı� . We then see, that given any tangent vector vjx 2 TxM, the solution
of the differential equation, Eq. (4.11) permit us to find the components � i.t/ of
the curve to which vjx is tangent at x. Indeed, the theorem of existence of local
solutions of ordinary differential equations warrants the existence of such a curve.
More precisely, since the theorem holds only locally, the uniqueness of the solution
is warranted only in a neighborhood of the point x D �.t/ and in that way, we have
in general many curves through x to which vjx is tangent to the curve at x.
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4.1.3 Tensor Bundles

In what follows we denote respectively by TM D S

x2M TxM and T�M D
S

x2M T�
x M the tangent and cotangent bundles3 of M and more generally, we denote

by Tr
s M D S

x2M Tr
sxM the bundle of r-contracovariant and s-covariant tensors. A

tensor field t of type .r; s/ is a section of the Tr
s M bundle and we write4 t 2 sec Tr

s M.
Also, T00M � M � R is the module of real functions over M and T01M � TM,
Tr

s M D T�M.

4.1.4 Vector Fields and Integral Curves

Let � W I ! M a curve and v 2 sec TM a vector field which is tangent to each one of
the points of � . Then, taking into account Eq. (4.11) we can write that condition as

v.�.t// D d�.t/

dt
: (4.12)

Definition 4.11 A curve � W I ! M satisfying Eq. (4.12) is called an integral curve
of the vector field v:

4.1.5 Derivative and Pullback Mappings

Let M and N be two differentiable manifolds, dim M D m, dim N D n and � W M !
N a differentiable mapping of class Cr. � is a diffeomorphism of class Cr if � is a
bijection and if � and ��1 are of class Cr.

Definition 4.12 The reciprocal image or pullback of a function f W N ! R is the
function ��f W M ! R given by

��f D f ı �: (4.13)

Definition 4.13 Given a mapping � W M ! N, �.x/ D y and v 2 TxM, the image
of v under � is the vector w such that for any f W N ! R

wŒ f � D vŒ f ı ��: (4.14)

3In Appendix we list the main concepts concerning fiber bundle theory that we need for the
purposes of this book.
4See details in Notation A.6 in the Appendix.
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The mapping �� jx W sec TxM ! sec TyN is called the differential or derivative (or
pushforward) mapping of � at x. We write w D �� jx v .

Remark 4.14 When the point x 2 M is left unspecified (or is arbitrary), we
sometimes write �� instead of �� jx.

The image a vector field v 2 sec TM at an arbitrary point x 2 M is

�� vŒ f �.y/ D vŒ f ı ��.x/: (4.15)

Note that if �.x/ D y, and if � is invertible, i.e., x D ��1.y/ then Eq. (4.15) says
that or

�� vŒ f �.y/ D vŒ f ı ��.x/ D vŒ f ı ��.��1.y//: (4.16)

This suggests the

Definition 4.15 Let � W M ! N be invertible mapping. Let v 2 sec TM. The image
of v under � is the vector field ��v 2 sec TN such that for any f W N ! R

��vŒ f � D vŒ f ı �� D vŒ f ı �� ı ��1: (4.17)

In this case we call

�� W sec TM ! sec TN; (4.18)

the derivative mapping of �.

Remark 4.16 If v 2 sec TM is a differentiable field of class Cr over M and � is a
diffeomorphism of class CrC1, then �� v 2 sec TN is a differentiable vector field of
class Cr over N. Observe however, that if � is not invertible the image of v under
� is not in general a vector field on N [3]. If � is invertible, but not differentiable
the image is not differentiable. When the image of a vector field v under some
differentiable mapping � is a differentiable vector field, v is said to be projectable.
Also, v and ��v are said �-related.

Remark 4.17 We have denoted by ��.t/ the tangent vector to a curve � W I ! M. If
we look for the definition of that tangent vector and the definition of the derivative
mapping we see that the rigorous notation that should be used for that tangent vector
is ��jt Œ

d
dt �, which is really cumbersome, and thus avoided, unless some confusion

arises. We will also use sometimes the simplified notation �� to refer to the tangent
vector field to the curve � .
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Fig. 4.2 (a) The derivative mapping ��. (b) The pullback mapping ��

Definition 4.18 Given a mapping � W M ! N, the pullback mapping is the
mapping

�� W sec T�N ! sec T�M;

�?!.v/ D !.��v/ ı �; (4.19)

for any projectable vector field v 2 sec TM. Also, �?! 2 sec T�N is called the
pullback of ! (Fig. 4.2).

Remark 4.19 Note that differently from what happens for the image of vector fields,
the formula for the reciprocal image of a covector field does not use the inverse
mapping ��1. This shows that covector fields are more interesting than vector fields,
since �?! is always differentiable if ! and � are differentiable.

Remark 4.20 From now, we assume that � W M ! N is a diffeomorphism, unless
explicitly said the contrary and generalize the concepts of image and reciprocal
images defined for vector and covector fields for arbitrary tensor fields.
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Definition 4.21 The image of a function f W M ! R under a diffeomorphism
� W M ! N is the function �?f W N ! R such that

�?f D f ı ��1 (4.20)

The image of a covector field ˇ 2 sec T�M under a diffeomorphism � W M ! N is
the covector field ��ˇ such that for any projectable vector field v 2 sec TM; w D
��v 2 sec TN, we have ��ˇ.w/ D ˇ.��1� w/, or

��ˇ D .��1/�ˇ: (4.21)

For S 2 sec Tr
s M we define its image ��S 2 sec Tr

s N by

��S.��ˇ1; : : : ��ˇr; ��v1; : : : ; ��vs/ D S.ˇ1; : : : ˇr; v1; : : : ; vs/; (4.22)

for any projectable vector fields vi 2 sec TM, i D 1; 2; : : : ; s and covector fields
ˇj 2 sec T�M, j D 1; 2; : : : ; r.

If fe ig is any basis for TU, U � M and f� ig is the dual basis for T�U, then

S D Si1:::ir
j1:::js

� j1 ˝ � � � ˝ � js ˝ ei1 ˝ � � � ˝ eir (4.23)

and

��S D .Si1:::ir
j1:::js

ı ��1/��� j1 ˝ � � � ˝ ��� js ˝ ��ei1 ˝ � � � ˝ ��eir : (4.24)

Definition 4.22 Let S2 sec Tr
s N, and ˇ1; ˇ2; : : : ; ˇr 2 sec T�M and v1; : : : ; vs 2

sec TM be projectable vector fields:The reciprocal image (or pullback) of S is the
tensor field ��S 2 sec Tr

s M such that

��S.ˇ1; : : : ;ˇr; v1; : : : ;vs/ D S.��ˇ1; : : : ;��ˇr; ��v1; : : : ;��vs/; (4.25)

and

��S D .Si1:::ir
j1:::js

ı �/��� j1 ˝ � � � ˝ ��� js ˝ ��1� ei1 ˝ � � � ˝ ��1� eir : (4.26)

Let x i be the coordinate functions of the chart .U; '/ of U � M and
f@=@xjg; fdxig; i; j D 1; : : : ;m dual5 coordinate bases for TU and T�U, i.e.,
dxi.@=@xj/ D ıi

j . Let moreover y l be the coordinate functions of .V; �/, V � N
and f@=@ykg,fdylg, k; l D 1; : : : ; n dual bases for TV and T�V . Let x 2 M; y 2 N
with y D �.x/ and x i.x/ D xi; y l.y/ D yl. If Sk1:::kr

l1:::ls
.y1; : : : ; yn/ � Sk1:::kr

l1:::ls
.y j/ are the

5See Remark 4.41 for the reason of the notation dxi.
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components of S at the point y in the chart .V; �/, then the components S0 D ��S
in the chart .U; '/ at the point x are

S0i1:::ir
j1:::js

.xi/ D Sk1:::kr
l1:::ls

.y j.xi//
@yl1

@xj1
: : :

@yls

@xjs

@xi1

@yk1
� � � @xir

@ykr
;

S0i1:::ir
j1:::js

.xi/ D .h?S/0i1:::irj1:::js
.xi/: (4.27)

4.1.6 Diffeomorphisms, Pushforward and Pullback
when M D N

Definition 4.23 The set of all diffeomorphisms in a differentiable manifold M
define a group denoted by GM and called the manifold mapping group.

Let A;B � M. Let GM 3 h W M ! M be a diffeomorphism such that h W
A ! B; e 7! he. The diffeomorphism h induces two important mappings in the
tensor bundle T M D

M

r;sD0T
r
s M, the derivative mapping h�, in this case known

as pushforward, and the pullback mappings h�. The definitions of these mappings
are the ones given above.

We now recall how to calculate, e.g., the pullback mapping of a tensor field in
this case.

Suppose now that A and h.A/ � B can be covered by a local charts .U; '/ and
.V; �/ of the maximal atlas of M (with A; h.A/ � U\V) with respective coordinate
functions fx�g and fy�g defined by6

x�.e/ D x�; x�.h.e// D y�; y�.e/ D y�: (4.28)

We then have the following coordinate transformation

y� D x�.h.e// D h�.x	/: (4.29)

Let f@=@x�g and f@=@y�g be a coordinate bases for T.U \ V/ and fdx�g and fdy�g
the corresponding dual basis for T�.U \ V/.

Then, if the local representation of S 2 sec Tr
s M � secT M in the coordinate

chart fy�g at any point of U \ V is LS 2 sec Tr
sR

n,

LS D S�1:::�r
	1::::	s

.y j/dy	1 ˝ : : :˝ dy	s ˝ @

@y�1
˝ : : :˝ @

@y�r
; (4.30)

6Note that in general y�.h.e// ¤ y�.
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we have that the representative of S0 D h�S in Tr
sR

nat any point e 2 U \ V is
given by

h� LS D S0�1:::�r

1::::
s

.xj/dx
1 ˝ : : :˝ dx
s ˝ @

@x�1
˝ : : :˝ @

@x�r

S0�1:::�r

1::::
s

.xj/ D S�1:::�r
	1::::	s

.yi.xj//
@y	1

@x
1
: : :

@y	s

@x
s

@x�1

@y�1
: : :

@x�r

@y�r
: (4.31)

Remark 4.24 Another important expression for the pullback mapping can be found
if we choice charts with the coordinate functions fx�g and fy�g defined by

x�.e/ D y�.h.e// (4.32)

Then writing

x�.e/ D x�; y�.h.e// D y�; (4.33)

we have the following coordinate transformation

y� D h�.x	/ D x�; (4.34)

from where it follows that in this case

S0�1:::�r

1::::
s

.xj/ D S�1:::�r
	1::::	s

.yi.xj//: (4.35)

4.1.7 Lie Derivatives

Definition 4.25 Let M be a differentiable manifold. We say that a mapping � W
M � R ! M is a one parameter group if

(i) � is differentiable,
(ii) �.x; 0/ D x, 8x 2 M,

(iii) �.�.x; s/; t/ D �.x; s C t/, 8x 2 M, 8s; t 2 R.

These conditions may be expressed in a more convenient way introducing the
mappings �t W M ! M such that

�t.x/ D �.x; t/: (4.36)

For each t 2 R, the mapping �t is differentiable, since �t D � ı lt, where lt W
M ! M � R is the differentiable mapping given by lt.x/ D .x; t/.
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Also, condition (ii) says that �0 D idM . Finally, condition (iii) implies, as can be
easily verified that

�t ı �s D �sCt: (4.37)

Observe also that if we take s D �t in Eq. (4.37) we get �t ı��t D idM . It follows
that for each t 2 R, the mapping �t is a diffeomorphism and .�t/

�1 D ��t:

Definition 4.26 We say that a family .�t; t 2 R/ of mappings �t W M ! M is a
one-parameter group of diffeomorphisms G1 of M.

Definition 4.27 Given a one-parameter group � W M � R ! M for each x 2 M, we
may construct the mapping

�x W R ! M;

�x .t/ D �.x; t/; (4.38)

which in view of condition (ii) is a curve in M, called the orbit (or trajectory) of x
generate by the group. Also, the set of all orbits for all points of M are the trajectories
of G1.

It is possible to show, using condition (iii) that for each point x 2 M pass one
and only one trajectory of the one-parameter group. As a consequence it is uniquely
determined by a vector field v 2 sec TM which is constructed by associating to each
point x 2 M the tangent vector to the orbit of the group in that point, i.e.,

v.�x .t// D d

dt
�x .t/ : (4.39)

Definition 4.28 The vector field v 2 sec TM determined by Eq. (4.39) is called
a Killing vector field relative to the one parameter group of diffeomorphisms
.�t; t 2 R/:

Remark 4.29 It is important to have in mind that in general, given a vector field
v 2 sec TM it does not define a group (even locally) of diffeomorphisms in M. In
truth, it will be only possible, in general, to find a local one-parameter pseudo-group
that induces v. A local one parameter pseudo-group means that �t is not defined for
all t 2 R, but for any x 2 M, there exists a neighborhood U.x/ of x, an interval
I.x/ D .�".x/; ".x// � R and a family .�t; t 2 I.x// of mappings �t W M ! M, such
that the properties (i)–(iii) in Definition 4.27 are valid, when jtj < ".x/, jsj < ".x/
and jt C sj < ".x/.
Definition 4.30 Taking into account the previous remark, the vector field v 2
sec TM is called the infinitesimal generator of the one parameter local pseudo-group
.�t; t 2 I.x// and the mapping � W M � I.x/!M is called the flow of the vector
field �.
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Fig. 4.3 The Lie derivative

Of course, given v 2 sec TM we obtain the one parameter local pseudo-group
that induces v by integration of the differential equation Eq. (4.39). From that, we
see that the trajectories of the group are also the integral lines of the vector field v.

Definition 4.31 Let .�t; t 2 I.x// a one-parameter local pseudo group of diffeomor-
phisms of M that induces the vector field v and let S 2 sec Tr

s M. The Lie derivative
of S in the direction of v is the mapping

£v W sec Tr
s M ! sec Tr

s M;

£vS D lim
t!0

��
t S � S

t
: (4.40)

Remark 4.32 It is possible to define the Lie derivative using the pushforward
mapping, the results that follows are the same. In this case we have £vS D
limt!0

S���tS
t (Fig. 4.3).

4.1.8 Properties of £v

(i) £v is a linear mapping and preserve contractions.
(ii) Leibniz’s rule. If S 2 sec Tr

s M, S0 2 sec Tr0

s0 M, we have

£v.S ˝ S0/ D £vS ˝ S0 C S ˝ £vS0: (4.41)

(iii) If f W M ! R, we have

£vf D v. f /: (4.42)

(iv) If v;w 2 sec TM, we have

£vw D Œv; v�; (4.43)

where Œv;w� is the commutator of the vector fields v and w, such that

Œv;w�. f / D v.w. f //� w.v. f //: (4.44)
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(v) If ! 2 sec T�M, we have

£v! D �

v.!k/C !iek.v
i/ � ci���jk!iv

j
�

� k; (4.45)

where vj and !i are the components of in the dual basis fejg and f� ig and the
ci���jk are called the structure coefficients of the frame fejg , and

Œej; ek� D ci���jkei: (4.46)

Exercise 4.33 Show that if v1; v2; v3 2 sec TM, then they satisfy Jacobi’s identity,
i.e.,

Œv1; Œv2; v3��C Œv2; Œv3; v1��C Œv3; Œv1; v2�� D 0: (4.47)

Exercise 4.34 Show that for u; v 2 sec TM

£Œu;v� D Œ£u; £v�: (4.48)

4.1.9 Invariance of a Tensor Field

The concept of Lie derivative is intimately associated to the notion of invariance of
a tensor field S 2 sec Tr

s M.

Definition 4.35 We say that S is invariant under a diffeomorphism h W M ! M, or
h is a symmetry of S, if and only if

h�Sjx D Sjx : (4.49)

We extend naturally this definition for the case in which we have a local one-
parameter pseudo-group �t of diffeomorphisms. Observe, that in this case, it follows
from the definition of Lie derivative, that if S is invariant under �t, then

£vS D 0 (4.50)

More properties of Lie derivatives of differential forms that we shall need in
future chapters, will be given at the appropriate places.

Remark 4.36 A correct concept for the Lie derivative of spinor fields is as yet a
research subject and will not be discussed in this book. A Clifford bundle approach
to the subject which we think worth to be known is presented in [22].
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4.2 Cartan Bundle, de Rham Periods and Stokes Theorem

In this section, we briefly discuss the processes of differentiation in the Cartan
bundle and the concept of de Rham periods and Stokes theorem.

4.2.1 Cartan Bundle

Definition 4.37 The Cartan bundle over the cotangent bundle of M is the set

^

T�M D
[

x2M

^

T�
x M D

[

x2M

nM

rD0

^r
T�

x M; (4.51)

where
V

T�
x M, x 2 M, is the exterior algebra of the vector space T�

x M. The sub-
bundle

Vr T�M � V
T�M given by:

^r
T�M D

[

x2M

^r
T�

x M (4.52)

is called the r-forms bundle .r D 0; : : : ; n/.

Definition 4.38 The exterior derivative is a mapping

d W sec
^

T�M ! sec
^

T�M;

satisfying:

(i) d.A C B/ D dA C dBI
(ii) d.A ^ B/ D dA ^ B C OA ^ dBI
(iii) df .v/ D v. f /I
(iv) d2 D 0;

(4.53)

for every A;B 2 sec
V

T�M, f 2 sec
V0 T�M and v 2 sec TM.

Exercise 4.39 Show that for A 2 sec
Vp T�M and v0; v1; : : : ; vp 2 sec TM;

dA.v0; v1; : : : ; vp/ D
p

X

iD1
.�1/ivi.A.v0; v1; : : : ; Lvi; : : : ; vp//

C
X

0�i<j�p

.�1/iCjA.Œvi; vj�v0; v1; : : : ; Lvi; : : : ; Lvj; : : : vp/:

(4.54)
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Remark 4.40 Note that due to property (ii) the exterior derivative does not satisfy
the Leibniz’s rule, and as such it is not a derivation. In fact the technical term is
antiderivation (see [3]).

Remark 4.41 Let x i be coordinate functions of a chart .U; '/ of an atlas of M. A
coordinate basis for TU in that chart is denoted f@=@xig. This means that for each
x 2 U, @=@xi

ˇ
ˇ
x

is a basis of TxU. As we already know, the dual (coordinate) basis for
T�U is denoted7 fdxjg. This means that dxj

ˇ
ˇ
x

is a basis for T�
x U. We have (indeed)

that

dxj.@=@xi/
ˇ
ˇ
x

D @xj=@xi
ˇ
ˇ
x

D ı
j
i : (4.55)

4.2.2 The Interior Product of Forms and Vector Fields

Another important antiderivation is the so called interior product (sometimes also
called inner product).

Definition 4.42 Given a vector field v 2 secTM we define the interior product
extensor of v with ˛ 2 sec

Vp T�M as the mapping

sec T�M � sec
^p

T�M ! sec
^p�1

T�M;

.v; ˛/ 7! iv˛; (4.56)

where iv W sec
Vp T�M ! sec

Vp�1 T�M satisfy

(i) For any ˛,ˇ 2 sec
V

T�M and a; b 2 R;

iv.a˛ C bˇ/ D aiv˛ C bivˇ: (4.57)

(ii) if f 2 sec
V0 T�M is a smooth function, then ivf D 0,

(iii) If feig is an arbitrary basis for TU, U � M, and f� ig its dual basis,

iek�
j1 ^ : : : : ^ � jp D

p
X

rD1
.�1/rC1ıjr

k �
j1 ^ : : : : L� jk ^ : : : ^ � jp ; (4.58)

where as usual L� jk means that the term � jk is missing in the expression.

7Eventually a more rigorously notation for a basis of T�U should be fdx ig:
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From Eq. (4.58) it follows that for Ap 2 sec
VpT�M and Bq 2 sec

VqT�M we
have

iv.Ap ^ Bq/ D ivAp ^ Bq C .�1/pqAp ^ ivBq (4.59)

and we usually say that iv is an antiderivation.

Exercise 4.43 If fx ig are coordinate functions of a local chart of M, and v D vi @
@xi ;

show that ivdxi D vi.

Exercise 4.44 Properties of iv . Show that

i2v D 0; (4.60)

div C ivd D £v; (4.61)

Œ£v; iw� D £viw � iw£v D iŒv;w�; (4.62)

£vd D d£v: (4.63)

Equation (4.61) is sometimes called Cartan’s magical formula. It is really, a
very important formula in the formulation of conservation laws, as we shall see
in Chap. 9.

4.2.3 Extensor Fields

Let f� ig be an arbitrary basis for sec T�U, U � M. Let � D �i�
i 2 sec

V1 T�M and
! D 1

rŠ!i1:::ir�
i1 ^ � � � ^ � ir 2 sec

Vr T�M , r D 1; 2; : : : ; n.

Definition 4.45 A .1; 1/-extensor field t W sec
V1 T�M ! sec

V1 T�M and its
extension t W sec

V1 T�M ! sec
V1 T�M are the linear operators given by

t.�/ D t.�i�
i/ D �it.�

i/;

t.!/ D t.
1

rŠ
!i1:::ir�

i1 ^ � � � ^ � ir / D 1

rŠ
!i1:::ir t.�

i1 / ^ � � � ^ t.� ir / (4.64)

for all � and !, r D 1; 2; : : : n. Moreover, if f 2 sec
V0T�M, we put t. f / D f .
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4.2.4 Exact and Closed Forms and Cohomology Groups

Definition 4.46 A r-form Gr 2 sec
Vr T�M is called closed (or a cocycle) if and

only if dGr D 0. A r-form Fr 2 sec
Vr T�M is called exact (or a coboundary) if

and only if Fr D dAr�1, with Ar�1 2 sec
Vr�1 T�M.

Definition 4.47 The space of closed r-forms is called the r-cocycle group and
denoted by Zr.M/. The space of exact r-forms is called the r-coboundary group
and denoted by Br.M/.

We recall that the sets Zr.M/ and Br.M/ have the structures of vector spaces over
the real field R. Since according to Eq. (4.53iv) d2 D 0 it follows that Br.M/ �
Zr.M/. Then if Fr D dAr�1 ) dFr D 0, but in general dGr D 0 » Gr D dCr�1,
with Cr�1 2 sec

Vr�1 T�M.

Definition 4.48 The space Hr.M/ D Zr.M/=Br.M/ is the r-de Rham cohomology
group of the manifold M. Obviously, the elements of Hr.M/ are equivalent classes
of closed forms, i.e., if Fr;F0

r 2 sec Hr.M/, then Fr � F0
r D dWr�1, Wr�1 2

sec
Vr�1 T�M.

As a vector space over the real field, Hr.M/ is called the r-de Rham vector space
group of the manifold M.

Definition 4.49 The dimension of the r-homology8 (respectively cohomology)
group is called the Betti number br (respectively br) of M.

A very important result is the

Proposition 4.50 (Poincaré Lemma) If U � M is diffeomorphic to R
n then any

closed r-form Fr 2 sec
Vr T�U (r � 1/ which is differentiable on U is also exact.

Proof For a proof see , e.g., [25].�

Note that if U � M is diffeomorphic to R
n then U is contractible to a point p 2 M.

Also, from Poincaré’s lemma it follows that the Betti numbers of U, br D 0; r D
1; 2; : : : ; r.

Any closed form is exact at least locally and the non triviality of de Rham
cohomology group is an obstruction to the global exactness of closed forms.

Remark 4.51 It is very important to observe that Poincaré’s lemma does not hold
if Fr 2 sec

Vr T�M is not differentiable at certain points of Rn, since in that case
the manifold where Fr is differentiable is not homeomorphic to R

n. The ‘classical’
example according to Spivack [43] is A 2 sec

V1 T�
R
2;

A D �ydx C xdy

x2 C y2
D d.arctan

y

x
/: (4.65)

8See Definition 4.65.
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Observe that A is differentiable on R
2 � f0g, but despite the third member of

Eq. (4.65) A is not exact on R
2, because arctan y

x is not a differentiable function
on R

2:

4.3 Integration of Forms

In what follows we briefly recall some concepts related to the integration of forms
on orientable manifolds. First we introduce the definition of the integral of a n-form
in an n-dimensional manifold M and next the integration of a r-form Ar 2 sec T�M
which is realized over a r-chain.

4.3.1 Orientation

Let M be an n-dimensional connected manifold and U˛;Uˇ � M, U˛ \ Uˇ ¤
¿. Let .U˛; '˛/, .Uˇ; 'ˇ/ be coordinate charts of the maximal atlas of M with
coordinate functions fx i

˛g and fx j
ˇg, i; j D 1; 2 : : : ; n. Let e 2 U˛ \ Uˇ . The natural

ordered bases f @
@xi
˛

ˇ
ˇ
ˇ
e
g and f @

@xi
ˇ

ˇ
ˇ
ˇ
ˇ
e

g of TeM are said to have the same orientation if

J D det

�

@xi
˛

@xi
ˇ

ˇ
ˇ
ˇ
ˇ
e

�

> 0. If J < 0 the bases are said to have opposite orientations.

An orientation at e 2 U˛ \ Uˇ is a choice of an ordered basis (not necessarily a
coordinate one) for TeM.

Now, suppose that the basis f @
@xi
˛

ˇ
ˇ
ˇ
e
g is declared positive (a right-handed basis).

A orientation in TeM induces naturally an orientation in T�
e M as follows. Let f� i

ˇ
ˇ
e
g

be an ordered basis of T�
e M. Let 
e D �1

ˇ
ˇ
e

^ � � � ^ �nje. Then,

�e.
@

@x1˛

ˇ
ˇ
ˇ
ˇ
e

; : : : ;
@

@xn
˛

ˇ
ˇ
ˇ
ˇ
e

/

D 1

nŠ
det

2

6
6
6
6
6
4

�1
ˇ
ˇ
e

�
@
@x1˛

ˇ
ˇ
ˇ
e

�

�1
ˇ
ˇ
e

�
@
@x2˛

ˇ
ˇ
ˇ
e

�

: : : �1
ˇ
ˇ
e

�
@
@xn
˛

ˇ
ˇ
ˇ
e

�

�2
ˇ
ˇ
e

�
@
@x1˛

ˇ
ˇ
ˇ
e

�

�2
ˇ
ˇ
e

�
@
@x2˛

ˇ
ˇ
ˇ
e

�

: : : �2
ˇ
ˇ
e

�
@
@xn
˛

ˇ
ˇ
ˇ
e

�

: : : : : : : : : : : :

�nje

�
@
@x1˛

ˇ
ˇ
ˇ
e

�

�nje

�
@
@x2˛

ˇ
ˇ
ˇ
e

�

: : : �nje

�
@
@xn
˛

ˇ
ˇ
ˇ
e

�

3

7
7
7
7
7
5

. (4.66)

If �e.
@
@x1˛

ˇ
ˇ
ˇ
e
; : : : ; @

@xn
˛

ˇ
ˇ
ˇ
e
/ > 0 we say that the ordered basis f� i

ˇ
ˇ
e
g of T�

e M is

positive. If �e.
@
@x1˛

ˇ
ˇ
ˇ
e
; : : : ; @

@xn
˛

ˇ
ˇ
ˇ
e
/ < 0 we say that the ordered basis f� i

ˇ
ˇ
e
g of T�

e M is

negative.
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Suppose that for all e 2 U˛ \ Uˇ we have J D det

�

@xi
˛

@xi
ˇ

�

> 0. In this case we

define that on U˛\Uˇ that the bases f @
@xi
˛
g and f @

@xi
ˇ

g of TU˛ and TUˇ have the same

orientation. If J D det

�

@xi
˛

@xi
ˇ

�

< 0 we say that the bases have opposite orientation on

U˛ \ Uˇ .

Definition 4.52 Let fU˛g be a covering for M, an n-dimensional connected mani-
fold. We say that M is orientable if for any two overlapping charts U˛ and Uˇ there

exist coordinate functions fx i
˛g, fx j

ˇg for U˛ and Uˇ such that det

�

@xi
˛

@xi
ˇ

�

> 0.

Remark 4.53 From what has been said above it is clear that if M is orientable, there
exists an n-form 
 2 sec

VnT�M called a volume element which is never null.

Thus, we have the alternative (equivalent) definition of an orientable manifold.

Definition 4.54 A connected n-dimensional manifold M is orientable if there exists
a non null global section of

VnT�M and 
; 
 0 2 sec
VnT�M define the same

orientation (respectively opposite orientation) if there exists a global function � 2
sec

V0T�M such that � > 0 (respectively � < 0) such that 
 0 D �
:

Remark 4.55 Of course, a given orientable manifold M admits two inequivalent
orientations, one is declared right-handed, and the other left-handed. It is quite
obvious that there are manifolds which are not orientable, the classical example is
the Möbius strip, which may be found in almost all books in differential geometry,
as, e.g., [3, 25].

4.3.2 Integration of a n-Form

In what follows we suppose that M is orientable.9 Let .U; '/ be a chart of the
maximal atlas of M and fxig the coordinate functions of the chart. Let h 2
sec

V0T�M be a Lebesgue integrable function and10 
 D dx1 ^ � � � ^ dxn 2
sec

VnT�M.

Definition 4.56 The integral of h
 2 sec
VnT�M in A � U � M is

Z

A

h
 WD
Z

'.A/

h ı '�1.xi/dx1 � � � dxn (4.67)

9In Chap. 6 we will learn that a spacetime manifold admitting spinor fields must necessarily be
orientable.
10Of course, we should write 
 D '�

˛ .dx1 ^ � � � ^ dxn/ since dxi are 1-forms in T'˛.U/R
n. So, ours

is a sloppy (universally used) notation.
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where in the second member of Eq. (4.67) is the ordinary multiple integral of a
Lebesgue integrable function h D h ı '�1.xi/ of n variables.

Let be A � U \ V and .V;  / another chart of the maximal atlas of M with

coordinate functions fx 0jg and suppose that J D det
h
@xi

@x0j

i

> 0 on U \ V: Then we

can write that

h
 D h ı  �1.x0i/Jdx01 ^ � � � ^ dx0n D h ı  �1.x0i/ jJj dx01 ^ � � � ^ dx0n (4.68)

and
Z

A

h
 D
Z

 .A/

h ı  �1.x0i// jJj dx01 � � � dx0n; (4.69)

which corresponds to the classical formula for a change of variables in a multiple
integral.

Now, if M is paracompact, i.e., there is an open covering fU˛g of M such that
each e 2 M is covered by a finite number of the U˛ a partition of the unity associated
to the covering fU˛g is a family of differentiable functions p˛ W M ! R such that:
(a) 0 	 p˛ 	 1; (b) p˛.e/ D 0 for all e … U˛; (c) If k is the finite number of U˛

covering e then for any e 2 M we have that
Xk

˛D1p˛.e/ D 1. It is obvious that we
can write

h.e/ D
Xk

˛D1p˛.e/h.e/ D
Xk

˛D1h˛.e/: (4.70)

We then have the

Definition 4.57 The integral of h
 2 sec
VnT�M in M is

Z

M

h
 WD
X

˛

Z

U˛

h˛
 D
X

˛

Z

'˛.U˛/

h˛ ı '�1
˛ .xi/dx1 � � � dxn (4.71)

We may verify that the definition is independent of the choice of atlas used for M
(and thus of the partition of the unity used) if the new atlas has the same orientation
as the previous one.

4.3.3 Chains and Homology Groups

Orientation of Subspaces

Let .u1; : : : ; un/ be a right handed coordinate system for R
n. For any R

r �
R

n .u1; : : : ; ur/ is a naturally right handed coordinate system for R
r, which is

supposed to be coherently oriented with R
n.



4.3 Integration of Forms 129

Definition 4.58 A r-rectangle Pr in R
r � R

n is a naturally positive oriented subset
of Rr such that ai 	 ui 	 bi, i D 1; : : : ; r. The boundary of the rectangle Pr is the
set @Prof 2r rectangles Pr�1 2 R

r�1 defined by the faces ui D ai and ui D bi of Pr.
We suppose that the boundary @Pr is coherently oriented with Pr. That means that
any face has the orientation .u1; : : : Lui; : : : ur/ if ui D ai; i is even and ui D bi; i is
odd and the opposite orientation if ui D ai; i is odd and ui D bi; i is even.

Next we introduce the concept of elementary chain in M.

Definition 4.59 An elementary r-chain or cr in a n-dimensional connected
manifold M is a pair .Pr; f /, with f W R

r 
 U ! M a differentiable mapping. The
image of the Pr rectangle is denoted by suppcr. When f is a diffeomorphism suppcr

is called an elementary r-domain of integration.

Definition 4.60 The boundary of an elementary r-chain is the image of @Pr .

Definition 4.61 A r-chain on M is a formal linear combination of elementary r-
chains crj with real coefficients Cr D P

j ajcrj. The space of r-chains in M forms a
vector space over the real field. It is denoted by Cr.M/ and called the r-chain group.

Remark 4.62 We are in general interested in formal locally finite linear combina-
tions with aj D ˙1, in which case Cr is said a domain of integration on M: More
generally, in algebraic topology the coefficients aj are in many applications elements
of a finite group. In that case Cr.M/ is a group, but it is not a vector space. That is
the reason why Cr.M/ has been called the r-chain group.

Definition 4.63 The boundary operator @ is a mapping

@ W Cr.M/ ! Cr�1.M/ (4.72)

such that for any r-chain Cr D P

j ajcrj

@Cr D
X

j
aj@crj; (4.73)

where @crj is the image under f of an elementary Pr
j -rectangle.

The boundary operator @ has the fundamental property

@2 D 0; (4.74)

a formula that will be proved below.

Definition 4.64 A finite r-chain Cr is said to be a cycle if and only if @Cr D 0. The
space of cycles is denoted Zr.M/. Also, a finite r-chain Cr is said to be a boundary
if and only if Cr D @Cr�1and the space of boundaries is denoted by Br.M/.

Since @2 D 0 it follows that Br.M/ � Zr.M/. We then have

Definition 4.65 The quotient set Hr.M/ D Zr.M/=Br.M/ is called the r-homology
group of M.
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Remark 4.66 Recall that the dimension of the r-homology group is called the Betti
number br of M.

In what follows we use the standard convention that Z0.M/ is the space of
differentiable functions h such that dh D 0. Also, we agree that B0.M/ D ¿. Finally,
we agree that Z0.M/ D C0.M/ and that B0.M/ D ¿.

4.3.4 Integration of a r-Form

Definition 4.67 The integration of Fr 2 sec
Vr T�M over suppCr is

Z

Cr

Fr D
X

j
aj

Z

crj

Fr D
X

j
aj

Z

Pr
j

f �Fr; (4.75)

where f � is the pullback mapping induced by f .

When Fr is continuous and Cr is finite the integral is always defined. The integral
is also always defined if Fr has compact support and Cr is locally finite. In what
follows we suppose that this is the case. Definition 4.67 shows very clearly that it is
bilinear in Fr and Cr and suggests the definition of a non degenerated inner product
hi W Cr.M/ � sec

Vr M ! R given

hCr;Fri D
Z

Cr

Fr: (4.76)

With the aid of that definition we can say that two chains Cr and Cr
0 are

equal if and only if hCr;Fri D hC0
r;Fri. This observation is important because the

decomposition of a chain into elementary chains is not unique.
Recall that given a manifold, say M with boundary, its boundary is denoted by

@M. The manifold M is called triangulable if it can be decomposed as a union of
adjacent n-domains of integration with orientation compatible with the orientation
of M:

4.3.5 Stokes Theorem

Theorem 4.68 (Stokes) For any Fr 2 sec
Vr T�M and Cr 2 Cr.M/ it holds

Z

Cr

dFr D
Z

@Cr

Fr: (4.77)

Proof For a proof, see, e.g., [25].�
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Stokes formula can be written in the suggestive way

hCr; dFri D h@Cr;Fri (4.78a)

Proposition 4.69 The boundary operator @ has the fundamental property

@2 D 0: (4.79)

Proof It follows directly from the fact that d2 D 0 and Stokes theorem. Indeed,

h@2Cr;Fri D h@Cr; dFri D hCr; d
2Fri D 0;

which proves the proposition.�

4.3.6 Integration of Closed Forms and de Rham Periods

We now investigate integration in the case when Gr 2 sec
Vr T�M is closed. The

inner product introduced by Eq. (4.76) permit us to define a mapping from the space
of closed (cocycles) forms Zr.M/ into the (dual) space of cycles Zr.M/, by

I W Zr.M/ ! Zr.M/; (4.80)

such that for any Gr 2 sec
Vr T�M and zr 2 Zr.M/;

I.Gr/.zr/ D hzr;Gri: (4.81)

Note now that

hzr C @c;Gri D hzr;Gri C h@c;Gri D hzr;Gri C hc; dGri D hzr;Gri; (4.82)

because Gr is closed. This implies that I.Gr/ can be considered as a linear function
on the equivalent class of zr modulus Br.M/, i.e., it defines a mapping

I W Zr.M/ ! Hr.M/: (4.83)

Also, I.Gr C dGr�1/ � I.Gr/, so it is obvious that I really defines a linear
transformation

I W Hr.M/ ! Hr.M/: (4.84)

Theorem 4.70 (de Rham 1) The mapping I W Hr.M/ ! Hr.M/ is an isomorphism.
If Hr.M/ is finite dimensional as when M is compact and if z.1/r ; : : : z.b/r (with b D
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the r-Betti number) is a r-cycle basis of Hr.M/ and if �1; : : : ; �r 2 R are arbitrary
numbers then there is a closed r-form Gr 2 Zr.M/ such that

hz.i/r ;Gri D �i, i D 1; : : : ; r: (4.85)

Proof See, e.g., [25].�
Definition 4.71 The number �r in Eq. (4.85) is called the period of the form Gr on
the cycle z.i/r .

Corollary 4.72 (de Rham 2) If for a closed form Gr 2 sec
Vr T�M and for any

z.i/r 2 Hr.M/ we have hz.i/r ;Gri D 0 then Gr is exact, i.e., Gr D dGr�1 for some form
Gr�1 2 sec

Vr T�M:

Note also, that when M is compact the spaces Hr.M/ and Hr.M/ are finite
dimensional and dim Hr.M/ D bp. Thus de Rham theorem justifies writing

Hr.M/ D .Hr.M//
�; (4.86)

and the nomenclature: homology and cohomology groups for Hr.M/ and Hr.M/.

4.4 Differential Geometry in the Hodge Bundle

4.4.1 Riemannian and Lorentzian Structures on M

Next we introduce on M a smooth metric field g 2 sec T02M and gives the

Definition 4.73 A pair .M; g/, dim M D n is a n-dimensional Riemann structure
(or Riemann manifold) if g 2 sec T02M is a smooth metric of signature .n; 0/. If g
has signature . p; q/ with p C q D n, p ¤ n or q ¤ n then the pair .M; g/ is called
a pseudo Riemannian manifold. When g has signature .1; n � 1/ the pair .M; g/ is
called an hyperbolic manifold. When dim M D 4 and g has signature .1; 3/ the pair
.M; g/ is called a Lorentzian manifold.11

We already defined the concept of oriented manifold. Thus, we say that a Rieman-
nian (or pseudo Riemannian or Lorentzian) manifold is orientable if and only if it
admits a continuous metric volume element field 
g 2 sec

Vn T�M given in local
coordinate functions fx ig covering U � M by


g D
p

jdet gjdx1 ^ : : : ^ dxn; (4.87)

11When Lorentzian manifolds serve as models of spacetimes it is also imposed that M is
noncompact. See Sect. 4.7.1.
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where

det g D det

�

g.
@

@xi
;
@

@xj
/

�

: (4.88)

Proposition 4.74 Any Cr manifold M, dim M D n admits a Cr�1 Riemannian
metric g (signature .n; 0/) if and only if it is paracompact.

Proof For a proof see, e.g., [3].�

Let us consider now a smooth oriented metric manifold M D .M; g; 
g/,
dim M D n, where g is a smooth metric field of signature . p; q/ and 
g 2
sec

Vn T�M. We denote by g 2 sec T20M the metric tensor of the cotangent bundle.
Also we denote the scalar product induced on

V
T�M by the metric tensor g

2 sec T20M by12 �
g

W sec
V

T�M�sec
V

T�M ! sec
V0 T�M. If A;B 2 sec

^p
T�M

we have (recall Eq. (2.123))

.A �
g

B/
g D A ^ ?
g
B (4.89)

4.4.2 Hodge Bundle

Definition 4.75 The Hodge bundle of the structure M is the triple

^

.M/ D .
^

T�M; �
g
; 
g/: (4.90)

The importance of the Hodge bundle is that besides the exterior derivative
operator, we can now introduce a new differential operator called the Hodge
codifferential. Equipped with these two operators we can write, e.g., Maxwell
equations (with currents) in a diffeomorphism invariant way13 (see Sect. 4.9.1). This
is a very important fact, which is often not well known as it should be.

12When there is no chance of confusion we eventually used the symbol � instead of the symbol �
g

in

order to simplify the notation.
13For the exact meaning of the concept of diffeomorphism invariance of a spacetime physical
theory (as used in this text) see Sect. 6.6.3.
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Definition 4.76 The Hodge codifferential operator in the Hodge bundle of
V
.M/

is the mapping ı
g

W sec
V

T�M ! sec
V

T�M, given, for homogeneous multi-

forms, by:

ı
g

D .�1/r?
g

�1d?
g
; (4.91)

where ?
g

is the Hodge star operator associated to the scalar product �
g
.

Definition 4.77 The Hodge Laplacian operator is the mapping

Þ
g

W sec
^

T�M ! sec
^

T�M

given by:

Þ
g

D �.dı
g

C ı
g
d/: (4.92)

The exterior derivative, the Hodge codifferential and the Hodge Laplacian satisfy
the relations:

dd D ı
g
ı
g

D 0I Þ
g

D .d � ı
g
/2I

dÞ
g

D Þ
g

dI ı
g
Þ
g

D Þ
g
ı
g
I

ı
g
?
g

D .�1/rC1?
g
dI ?

g
ı
g

D .�1/rd?
g
I

dı
g
?
g

D ?
g
ı
g
dI ?

g
dı

g
D ı

g
d?

g
I ?

g
Þ
g

D Þ
g
?
g
:

(4.93)

Remark 4.78 When it is clear from the context which metric field is involved we
use the symbols ?, ı and Þ in place of the symbols ?

g
, ı

g
and Þ

g
in order to simplify

the writing of equations.

4.4.3 The Global Inner Product of p-Forms

Definition 4.79 Let A;B 2 sec
^p

T�M and suppose that the support of A or B is
compact. The global inner product of these p-forms is

hA;Bi D
Z

M

A ^ ?B: (4.94)
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Definition 4.80 Let T W sec
^p

T�M ! sec
^q

T�M be a . p; q/ extensor field

acting on the sections of
^p

T�M of compact support. We define the metric
transpose of T as the the (q; p/ extensor field Tt such that

hTA;Bi D hA;TtBi (4.95)

Exercise 4.81 Show that d and ı are metric transposes of each other i.e.,

hdA;Bi D hA; ıBi;
hıA;Bi D hA; dBi (4.96)

Are the formulas given in Eq. (4.96) true for a compact manifold with boundary?

4.5 Pullbacks and the Differential

Proposition 4.82 Let �� W M ! N be a differentiable mapping and let h� be the
pullback mapping. Let A;B 2 sec

V
T�M. Then

��.A ^ B/ D ��A ^ ��B: (4.97)

Proof It is a simple algebraic manipulation.�

Proposition 4.83 Let � W M ! N be a differentiable mapping and let �� be the
pullback mapping. Let A 2 sec

V
T�M. Then,

��dA D d.��A/ (4.98)

Proof Since an arbitrary form is a finite sum of exterior products of functions and
differential of functions, we see that it is only necessary to prove the theorem for a
0-form and an exact 1-form ˛. The first case is true because,

��dg D d.g ı �/
D d.��g/ (4.99)

where we used the definition of reciprocal image. Now, if ˛ D dg, i.e., ˛ is exact,
we have

��d˛ D ��ddg D 0:
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Also,

d.��˛/ D d.��dg/ D dŒd.��g/� D d2��g D 0; (4.100)

and the proposition is proved.�

Proposition 4.83 is also very much important in proving the invariance of some
exterior differential system of equations under diffeomorphisms.

4.6 Structure Equations I

Let us now endow the metric manifold .M; g/, with an arbitrary linear connection
r obtaining the structure .M; g;r/.
Definition 4.84 The torsion and curvature operations and the torsion and curvature
tensors of a connection r, are respectively the mappings14:

� W sec.TM � TM/ ! sec TM;

� W sec.TM � TM/ ! EndTM

�.u;v/ D ruv � rvu � Œu;v�; (4.101)

�.u; v/ D rurv � rvru � rŒu;v� (4.102)

and

‚.˛;u;v/ D ˛ .�.u;v// ; (4.103)

R.˛;w;u;v/ D ˛.�.u;v/w/; (4.104)

for every u;v;w 2 sec TM and ˛ 2 sec
V1 T�M.

Exercise 4.85 Show that for any differentiable functions f ; g and h we have

�.gu;hv/ D gh�.u;v/;

�.gu;hv/f w D ghf �.u;v/: (4.105)

14EndTM means the set of endomorphisms TM ! TM.
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Given an arbitrary moving frame fe˛g on TM, let f�
g be the dual frame of fe˛g
(i.e., �
.e˛/ D ı



˛ ). We write:

Œe˛;eˇ� D c
��
�˛ˇe
;

re˛eˇ D L
��
�˛ˇe
;

(4.106)

where c
��
�˛ˇ are the structure coefficients of the frame fe˛g and L
��

�˛ˇ are the connection
coefficients in this frame. Then, the components of the torsion and curvature tensors
are given, respectively, by:

Œc�rclT
��
�˛ˇ WD ‚.�
; e˛;eˇ/ D L
��

�˛ˇ � L
��
�ˇ˛ � c
��

�˛ˇ;

R
���
��˛ˇ WD R.�
; e�; e˛;eˇ/

D e˛.L

��
�ˇ�/� eˇ.L
���˛�/C L
���˛�L� ���ˇ� � L
��

ˇ�L� ��
˛� � c� ��˛ˇL
�����:

(4.107)

We also have:

d�
 D � 1
2
c
��

�˛ˇ�˛ ^ �ˇ;
re˛ �


 D �L
��
�˛ˇ�ˇ;

(4.108)

where !
�
�ˇ 2 sec

V1 T�M are the connection 1-forms, ‚
 2 sec
V2 T�M are the

torsion 2-forms and R
�
�ˇ 2 sec

V2 T�Mare the curvature 2-forms, given by:

!

�
�ˇ WD L
��

�˛ˇ�
˛;

‚
 WD 1

2
T
��

�˛ˇ�
˛ ^ �ˇ; (4.109)

R
��� WD 1

2
R
���

��˛ˇ�
˛ ^ �ˇ:

Multiplying Eqs. (4.107) by 1
2
�˛ ^ �ˇ and using Eqs. (4.108) and (4.109), we get

the Cartan’s structure equations:

d�
 C !

�
�ˇ ^ �ˇ D ‚
;

d!
��� C !

�
�ˇ ^ !ˇ��� D R
���:

(4.110)

Exercise 4.86 Show that the torsion tensor can be written as

‚ D e˛ ˝‚˛ (4.111)



138 4 Some Differential Geometry

Exercise 4.87 Put �a1:::ar D �a1 ^ � � �^�ar and ?
g
�a1:::ar D ?

g
.�a1 ^ � � �^�ar /. Show

that when ‚a D 0 we have

d�a1:::ar D �!a1 ��b ^ �b:::ar � � � � � !
ar ��b ^ �a1:::b; (4.112)

d ?
g
�a1:::ar D �!a1 ��b ^ ?

g
�b:::ar � � � � � !ar �

�b ^ ?
g
�a1:::b: (4.113)

4.6.1 Exterior Covariant Differential of . p C q/-Indexed
r-Form Fields

Definition 4.88 Suppose that X 2 sec TrCq
p M and let

X
�1::::�p
	1::::	q .v1 : : : ; vr/ 2 sec

^r
T�M; (4.114)

such that

X
�1::::�p
	1::::	q .v1 : : : ; vr/ D X.v1 : : : ; vr; e	1; : : : :e	q ; �

�1 ; : : : ; ��p/: (4.115)

for v1 : : : ; vr 2 sec TM. The X
�1::::�p
	1::::	q are called . p C q/-indexed r-forms.

Definition 4.89 The exterior covariant differential15 D of X
�1::::�p
	1::::	q on a manifold

with a general connection r is the mapping:

D W sec
^r

T�M ! sec
^rC1

T�M, 0 	 r 	 4; (4.116)

such that16

.r C 1/DX
�1::::�p
	1::::	q .v0; v1 : : : ; vr/

D
rX

	D0
.�1/	re	X.v0; v1 : : : ; Lv	; : : : vr; e	1 ; : : : : e	q ; �

�1 ; : : : ; ��p/

�
X

0�	;& �r

.�1/	C&X.�.v	; v& /; v0; v1 : : : ; Lv	; : : : ; v& ; : : : ; er;

e	1 ; : : : :e	q ; �
�1 ; : : : ; ��p/: (4.117)

15Sometimes also called exterior covariant derivative.
16As usual the inverted hat over a symbol (in Eq. (4.117)) means that the corresponding symbol is
missing in the expression.
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Then, we may verify that

DX
�1::::�p
	1::::	q D dX

�1::::�p
	1::::	q C !�1�s

^ X
�s::::�p
	1::::	q C � � � C !�1�s

^ X
�1::::�p
	1::::	q (4.118)

� !	s
	1

^ X
�1::::�p
	s::::	q � � � � � !�1�s

^ X
�1::::�p
	1::::	s :

Remark 4.90 Sometimes, Eqs. (4.110) are written by some authors [45] as:

D�
 WD ‚
;

“D!
��� WD R
���:” (4.119)

and D W sec
V

T�M ! sec
V

T�M is said to be the exterior covariant derivative
related to the connection r. Whereas the equation D�
 WD ‚
 is well defined, we
see that the equation “D!
��� WD R
���:” is an equivocated one. Indeed if Eq. (4.118)
is applied on the connection 1-forms !���	 we would get D!���	 D d!���	 C !

���˛ ^
!˛��	 � !˛��	 ^ !

���˛ . So, we see that the symbol D!���	 given by the second formula in
Eq. (4.119), supposedly defining the curvature 2-forms is to be avoided. The reason
for the failure of Eq. (4.118) in that case is that there do not exist a tensor field
! 2 sec T21M which satisfy the corresponding Eq. (4.115). More details on this
issue may be found in Appendix A.3.

Exercise 4.91 Show that if XJ 2 sec
Vr T�M and YK 2 sec

Vs T�M are sets of
indexed forms,17 then

D.XJ ^ YK/ D DXJ ^ YK C .�1/rsXJ ^ DYK : (4.120)

Exercise 4.92 Show that if X�1::::�p 2 sec
Vr T�M then

DDX�1::::�p D dX�1::::�p C R�1���s
^ X�s::::�p C � � �R�p �

��s ^ X�1::::�s : (4.121)

Exercise 4.93 Show that for any metric-compatible connection r if g D g�	�� ˝
�	 then,

Dg�	 D 0: (4.122)

Since we are dealing with a metric manifold, we must complete Cartan’s structure
equations with the equations stating the relation between the connection and the
metric. For this, following the usual nomenclature [1, 40, 47] we give the

17Multi indices are here represented by J and K.
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Definition 4.94 The nonmetricity tensor field of the structures .M; g;r/ is the
tensor field Q 2 sec T03M with components18 in the basis f�˛g given by

Q�˛ˇ WD �r�g˛ˇ D �e�.gˇ˛/C g�˛L� ����ˇ C gˇ�L� ����˛: (4.123)

Correspondingly, we introduce the nonmetricity 2-forms, by:

Q
 WD 1

2
Q
��

�Œ˛ˇ��
˛ ^ �ˇ; (4.124)

where Q
��
�Œ˛ˇ� D g
�.Q˛ˇ� � Qˇ˛�/. Multiplying Eq. (4.123) by �˛ ^ �ˇ and using

Eq. (4.110a), we get:

D�� � d�� � !ˇ��� ^ �ˇ D ˆ�; (4.125)

where f��g is the reciprocal frame of f�	g is the (i.e., �� D g�	�	) and

ˆ� D ‚� � Q�:

Equation (4.125) can be used as the complement of Cartan’s structure equations for
the case of a metric manifold.

4.6.2 Bianchi Identities

Differentiating Eq. (4.110) and Eq. (4.125) we obtain the Bianchi identities19:

(a) D‚
 D d‚
 C !

�
�ˇ ^‚ˇ D R
�

�ˇ ^ �ˇ;
(b) DR
��� D dR
��� � R
�

�ˇ ^ !ˇ�
v� C !


�
�ˇ ^ Rˇ��� D 0; (4.126)

(c) Dˆ� D dˆ� � !ˇ��� ^ ˆˇ D �Rˇ��� ^ �ˇ:

4.6.3 Induced Connections Under Diffeomorphisms

Let M and N be two differentiable manifolds, dim M D m, dim N D n.

18We use the notation r� t�:::	::: � .re� t/�:::	::: � .rt/�:::�	::: for the components of the covariant
derivative of a tensor field t. This is not to be confused with re� t�:::	::: � e� .t

�:::
	::: /, the derivative

of the components of t in the direction of e� .
19To our knowledge, Eqs. (4.125) and (4.126c) are not found anywhere in the literature, although
they appear to be the most natural extension of the structure equations for metric manifolds.
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Definition 4.95 Let r be a connection on N and X;Y 2 sec TN and T 2 sec Tr
s N,

f W N ! R and h:M ! N a diffeomorphism. The induced connection h�r on M
is defined by

h�rh�1
�

Xh
�T D h�.rXT/: (4.127)

Example 4.96 Let f W N ! R and Y 2 sec TN. Then,

h�rh�1
�

Xh
�Y D h�.rXY/;

from where it follows (taking into account that for any vector field V 2 sec TN,
h�N D h�1� N) that

h�rh�1
�

Xh
�Y

ˇ
ˇ
ˇ
e

f ı h D h�.rXY/je f ı h D rXYjh.e/ f ; 8e 2 M:

Remark 4.97 Now, suppose that M D N and hW M ! M a diffeomorphism.
Suppose that D is the Levi-Civita connection of g, then h�D D D0 is the Levi-Civita
connection of h�g D g0 since using Eq. (4.127) we infer that

h�Dh�1
�

Xh
�g

ˇ
ˇ
ˇ
e

D D0
h�1

�
X
h�g

ˇ
ˇ
ˇ
e

D h�.DX g/je , 8e 2 M: (4.128)

Taking into account that20 h�ŒX;Y� D Œh�X;h�Y� we have for X;Y 2 sec TM;

h�.DXY � DYX � ŒX;Y�/ D 0: (4.129)

Remark 4.98 Equation (4.127) applied to the case M D N also implies, as the
reader may verify the important fact that the curvature tensor of h�D will be null if
the curvature tensor of D is null.

4.7 Classification of Geometries on M and Spacetimes

Definition 4.99 Given a triple .M; g;r/W
(a) it is called a Riemann-Cartan geometry21 if and only if

rg D 0 and ‚Œr� ¤ 0: (4.130)

20See, e.g., [3, p. 135].
21Or Riemann space.
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(b) it is called Weyl geometry if and only if

rg ¤ 0 and ‚Œr� D 0: (4.131)

(c) it is called a Riemann geometry if and only if

rg D 0 and ‚Œr� D 0; (4.132)

and in that case the pair .r; g/ is called Riemannian structure.
(d) it is called Riemann-Cartan-Weyl geometry if and only if

rg ¤ 0 and ‚Œr� ¤ 0: (4.133)

(e) it is called a (Riemann) flat geometry if and only if

rg D 0 and RŒr� D 0;

(f) it is called teleparallel geometry if and only if

rg D 0; ‚Œr� ¤ 0 and RŒr� D 0: (4.134)

For each metric tensor defined on the manifold M there exists one and only one
connection in the conditions of Eq. (4.132). It is called Levi-Civita connection of
the metric considered, and is denoted by D. If in a given context it is necessary to
distinguish between the Levi-Civita connections of two different metric tensors Vg
and g on the same manifold, we write VD, D.

Remark 4.100 When dim M D 4 and the metric g has signature .1; 3/ we
sometimes substitute the word Riemann by the word Lorentzian in the previous
definitions.

4.7.1 Spacetimes

From nowhere besides the constraints already imposed (Hausdorff and paracom-
pact) on M, we suppose also that it is connected and noncompact [14, 38]. We
now introduce the concept of time orientability on an oriented Lorentzian manifold
structure (M; g; 
g/, which plays a key role in physical theories.

Definition 4.101 Let .M; g/ be a Lorentzian manifold, TM D S

e2M TeM its
tangent bundle and � W TM ! M the canonical projection (see Appendix). The
causal character of .e; v/ 2 TM is the causal character of v (Definition 2.62).

Definition 4.102 A line element at x 2 M is a one-dimensional subspace of TxM:
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Proposition 4.103 Let M be a C1paracompact and Hausdorff manifold,
dim M D 4. Then the existence of a continuous line element field on M is equivalent
to the existence of a Lorentzian structure on M.

Proof For a proof see [3].�

Proposition 4.104 The set T � TM of timelike points is an open manifold and it
has either one (connected) component or two.

Proof A proof of this important result can be found in [38].�

Definition 4.105 A connected Lorentzian manifold .M; g/ is said to be time
orientable if and only if T has two components and one of the components is labeled
the future TC and the other component T� is labelled the past. We denote by " the
time orientability of a Lorentzian manifold.

Definition 4.106 A spacetime is a pentuple .M; g;r; 
g;"/ where .M; g/ is a
Lorentzian oriented and time oriented manifold and r is an arbitrary covariant
derivative operator on M:

Definition 4.107 When .M; g;r; 
g;"/ is a spacetime and r D D is the Levi-
Civita connection of g the spacetime is said to be Lorentzian. When rg D 0 and
‚.r/ ¤ 0 we call the structure M D .M; g;r; 
g;"/ a Riemann-Cartan spacetime.
The particular Riemann-Cartan spacetime for which R.D/ D 0, ‚Œr� ¤ 0 is called
a teleparallel spacetime (also called Weintzenböck spacetime according to [26]).

Definition 4.108 A Lorentzian spacetime structure M D .M;�;D; 
�;"/ is said to
be Minkowski spacetime if and only if M ' R

4 and R.D/ D 0.

Remark 4.109 We just establish that any Lorentzian manifold admits a continuous
element field. If it is also time orientable, we can choose a direction for the
continuous element field, and say that it is a timelike vector field pointing to the
future. This is a nontrivial result and very important for our discussion of the
Principle of Relativity (Chap. 6).

4.8 Differential Geometry in the Clifford Bundle

It is well known [28] that the natural operations on metric vector spaces, such as,
e.g., direct sum, tensor product, exterior power, etc., carry over canonically to vector
bundles with metric tensors. Then we give the

Definition 4.110 The Clifford bundleof differential forms of the metric manifold
.M; g/ is:

C`.M;g/ D T M

Jg
D

[

x2M

C`.T�
x M;gx/; (4.135)
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where T M denotes the (covariant) tensor bundle of M, Jg � T M is the bilateral
ideal of T M generated by the elements of the form ˛˝ˇCˇ˝˛� 2g.˛; ˇ/, with
˛; ˇ 2 sec T�M � T M and C`.T�

x M;gx/ is the Clifford algebra of the metric vector
space structure .T�

x M;gx/.

It will be shown in Chap. 7 that the Clifford bundle C`.M;g/ (as defined by
Eq. (4.135)) is a vector bundle associated to the principal bundle of orthonormal
frames PSOep;q, i.e.,

C`.M;g/ D PSOep;q �Ad Rp;q: (4.136)

In Eq. (4.136) Ad is the adjoint representation of Spine
p;q, i.e., Ad W SOe

p;q !
Aut.Rp;q/, u 7! Adu, with AduA D A u�1, 8u 2 SOe

p;q, 8A 2 Rp;q ' C`.T�
x M;gx/.

Details on these groups may be found in Chap. 3. In Chap. 7 we scrutinize the vector
bundle structure of the Clifford bundle of differential forms over a general Riemann-
Cartan manifold modelling spacetime.

4.8.1 Clifford Fields as Sums of Nonhomogeneous Differential
Forms

Definition 4.111 Sections of C`.M;g/ are called Clifford fields.

We recall some notations and conventions. By F.U/ we denote the frame bundle
(see Appendix A.3) of U � M. A section of F.U/ will be denoted by fe˛g 2
sec F.U/: The dual frame of a frame fe˛g will be denoted by f�˛g, where �˛ 2
sec T�U � T�M. When fe˛g is a coordinate frame associated to the coordinate
functions fx�g of a local chart covering U we use instead of e˛ the notation e˛ D @˛
and in this case �˛ D dx˛. When fe˛g refers to an orthonormal frame we use instead
of e˛ the notation ea and instead of �˛ the notation �a.

Recall that as a vector space over R, C`.T�
x M; gx/ is isomorphic to the exterior

algebra
V

T�
x M of the cotangent space and

^

T�
x M D

Mn

kD0
^

kT�
x M; (4.137)

where
Vk T�

x M is the
�n

k

�

-dimensional space of k-forms. Then, there is a natural
embedding 22

V
T�M ,! C`.M;g/ [21] and sections of C`.M;g/—Clifford fields

(Definition 4.111)—can be represented as a sum of non homogeneous differential
forms. Let feag be an orthonormal basis for TU � TM, i.e., g.ea; eb/ D �ab; where
the matrix with entries �ab is the diagonal matrix, diag.1; 1; : : : :: � 1; : : : ;�1/ and
.a;b; i; j; : : : D 1; 2; : : : ; n). Moreover, let f�ag 2 sec

V1 T�M ,! sec C̀ .M;g/

22Recall again that the symbol A ,! B means that A is embedded in B and A � B.
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such that the set f�ag is the dual basis of fe ag. We denote by f�ig be the reciprocal
basis of f� ig, i.e., �i �

g
� j D ı

j
i .

For the particular case of a 4-dimensional spacetime, of course, the range of the
bold labels are a;b; i; :: D 0; 1; 2; 3. Recall that the fundamental Clifford product is
generated by

� i� j C � j� i D 2�ij: (4.138)

If C 2 sec C̀ .M;g/ is a Clifford field, we have:

C D s C vi�
i C 1

2Š
bij�

i� j C 1

3Š
tijk�

i� j�k C p�5 ; (4.139)

where �5 D �0�1�2�3 is the volume element and

s; vi; bij; tijk; p 2 sec
^0

T�M ,! sec C`.M;g/: (4.140)

4.8.2 Pullbacks and Relation Between Hodge Star Operators

Let M be a n-dimensional manifold and Vg, g 2 sec T02M two metrics of the same
signature with corresponding metrics (for the cotangent bundle) Vg;g 2 sec T20M.
Let Vg and g be the extensor fields associated to Vg and g.Let h: M ! M be a
diffeomorphism such that

g D h� Vg: (4.141)

From the algebraic results of Sect. 2.8 we easily infer that there exists a metric
gauge extensor field h such that

g.a/ �
Vg

b D h.a/ �
Vg

h.b/ (4.142)

for any a; b 2 sec
V1T�M and we write g D h�h. Then, as in the purely algebraic

case discussed in Sect. 2.8 we can also show that we have the following relation
between the Hodge star operators associated to Vg and g

?
g

D h�1 ?
Vg

h: (4.143)

Remark 4.112 In this case we say that the metric gauge extensor h is related to the
pullback mapping h� and describes an elastic distortion. However, keep in mind



146 4 Some Differential Geometry

that in general given a h it does not implies the existence of h� such that Eq. (4.141)
holds. In this case h is said to generate a plastic distortion. More details in [9].

We now show the

Proposition 4.113 Let h W M ! M a diffeomorphism. Let Vg, g 2 sec T02M two
metrics of the same signature. Then for any ! 2 sec

VpT�M we have

?
g
h�! D h� ?

Vg
! (4.144)

Proof As in Remark 4.24 take two charts .U; '/ and .V; �/, U, h.U/;� V with
coordinate functions x i and y i such that and x i.e/ D y i.h.e//, i.e., calling x i.e/ D
xi, y i.h.e// D yi we have @yi=@xj D ıi

j , dxi D dyi. Let also Vg.@=@yk; @=@yk/ D
Vgkl.y j/. Then it follows that gkl.xi/ D Vgkl.y j.xi// D Vgkl.xi/ and det g D det Vg. Now, if
! D 1

pŠ!i1:::ip

�

xi
�

dxi1 ^: : :^dxip ;we can write (taking into account that
VpT�M ,!

C`.M;g/ and also
VpT�M ,! C`.M; Vg/)

?
g
h�! D eh�!y

g

g D eh�!
g

D 1

pŠ
!i1:::ip

�

yi.xj
�

/Gdxi1 ^ : : : ^ dxip
p

j det gjdx1 ^ : : : ^ dxn

D 1

pŠ
!i1:::ip.y

i.xj//Gdyi1 ^ : : : ^ dyip

q

j det Vgjdy1 ^ : : : ^ dyn

D 1

pŠ
!i1:::ip

�

yi
�
Gdyi1 ^ : : : ^ dyipy

Vg

q

j det Vgjdy1 ^ : : : ^ dyn

D h� ?
Vg
!;

and the proposition is proved.�

Remark 4.114 When g D h� Vg , there exists an associated metric gauge extensor
field h such satisfying Eq. (4.142), i.e., g D h�h. The relation ?

g
h�! D h� ?

Vg
! and

?
g

D h�1 ?
Vg

h permit us to write the suggestive operator identity

?
Vg

hh�! D hh� ?
Vg
!: (4.145)

Exercise 4.115 Consider any diffeomorphism h W M ! M; and two metrics Vg and
g such that g D h� Vg. Show that

?
g

d ?
g
h�! D h� ?

Vg
d ?

Vg
!; (4.146)

for any ! 2 V
T�M:
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Solution The first member of Eq. (4.146) can be writing successively using
Eq. (4.144) as

?
g
d ?

g
h�! D ?

g
dh� ?

Vg
!

D ?
g
h�d ?

Vg
!

D h� ?
Vg

d ?
Vg
!:

4.8.3 Dirac Operators

We now equip the Riemannian (pseudo Riemannian, or Lorentzian) manifold .M; Vg/
with a standard structure .M; Vg; VD/, where VD is the Levi-Civita connection of Vg.

We are going to introduce in the Clifford bundle of differential forms C`.M; Vg/
a differential operator @j, called the standard Dirac operator,23 which is associated to
the Levi-Civita connection of the structure .M; Vg; VD/ and we study the properties of
that operator. Next we define new Dirac-like operators associated with a connection
different from the Levi-Civita one, i.e., to connections r defining a general
Riemann-Cartan-Weyl geometry .M; Vg;r/. Moreover, making use of the results
developed in Sect. 2.7, we show that it is possible to introduce infinitely many
others Dirac-like operators, one for each bilinear form field defined on the manifold
M of the structure .M; Vg; VD/. These constructions enable us to formulate the
geometry of a Riemann-Cartan-Weyl space in the Clifford bundle C`.M; Vg/. Some
interesting geometrical concepts, like the Dirac commutator and anticommutator,
are introduced. Moreover, we show a new decomposition of a general linear
connection, identifying some new relevant tensors which are important for a clear
understanding of any formulation of the gravitational theory in flat Minkowski
spacetime (Chap. 11) and other related subjects appearing in the literature.

The Standard Dirac Operator

Given u 2 sec TM and A 2 sec
VrT�M ,! sec C`.M; Vg/ consider the tensorial

mapping A 7! VDuA 2 sec
VrT�M ,! sec C`.M; Vg/. Since VDuJ Vg � J Vg, where J Vg

is the ideal used in the definition of C`.M; Vg/, we see immediately that the notion
of covariant derivative (related to the Levi-Civita connection24) pass to the quotient

23It is crucial to distinguish the Dirac operators introduced in this chapter and which act on sections
of Clifford bundles with the spin Dirac operator introduced in Chap. 7 and which act on sections
of spin-Clifford bundles.
24And more generally, to any metric compatible connection.
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bundle C`.M; Vg/, i.e., given A;B 2 sec
VrT�M ,! sec C`.M; Vg/ we have taking

into account the fact that VDu Vg D 0 D VDu Vg that

VDu.AB/ D VDuŒ
1

2
.A ˝ B � B ˝ A/C Vg.A;B/�

D VDuŒ
1

2
.A ˝ B � B ˝ A/�C . VDu Vg/.A;B/C Vg. VDuA;B/C Vg.A; VDuB/

D VDu.A/B C A VDu.B/: (4.147)

Before continuing we agree that the scalar and contracted products induced by Vg
will be denoted simply by the symbols � and y instead of the symbol �

Vg
and y

Vg
.

Definition 4.116 The standard Dirac operatoracting on sections of C`.M; Vg/ is the
first order differential operator

@j D �˛ VDe˛ : (4.148)

For A 2 sec C`.M; Vg/,

@j A D �˛. VDe˛A/ D �˛y. VDe˛A/C �˛ ^ VDe˛A/

and then we define:

@jyA D �˛y. VDe˛A/;

@j ^A D �˛ ^ . VDe˛A/;

in order to have:

@j D @jy C @j ^. (4.149)

Remark 4.117 Note moreover that for A 2 sec
V1 T�M ,! sec C`.M; Vg/ we can

also write

@jyA D @j �A: (4.150)

Exercise 4.118 Verify that the operators @jy and @j ^ satisfy the following identities:

(a) @j ^.A ^ B/ D .@j ^A/ ^ B C OA ^ .@j ^B/;
(b) @jy.AryBs/ D .@j ^Ar/yBs C OAry.@jyBs/I r C 1 	 s;
(c) @jy? D .�1/r? @j ^ I ? @jy D .�1/rC1 @j ^ :

(4.151)

In addition to these identities, we have the important result [24, 32].
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Proposition 4.119 The standard Dirac derivative @j is related to the exterior
derivative d and to the Hodge codifferential ı by:

@j D d � ı; (4.152)

that is, we have @j ^ D d and @jy D �ı.
Proof If f is a function, @j ^f D �˛ ^ VDe˛ f D e˛. f /�˛ D df and @jyf D �˛y VDe˛ f D
�˛ � VDe˛ f D 0. For the 1-form fields �
 of a moving frame on T�M, we have @j ^�
 D
�˛ ^ VDe˛ �


 D � V�
��
�˛ˇ�˛ ^ �ˇ D � O!
ˇ ^ �ˇ D d�
.

Now, for a r-forms field ! D 1
rŠ!˛1:::˛r�

˛1 ^ : : :^�˛r , we get, using Eq. (4.151a),

@j ^! D 1

rŠ
.d!˛1:::˛r ^ �˛1 ^ � � � ^ �˛r C !˛1:::˛r d�

˛1 ^ �˛2 ^ � � � ^ �˛r

C � � � C .�1/rC1!˛1:::˛r�
˛1 ^ � � � ^ �˛r�1 ^ d�˛r/

D d!:

Finally, using Eqs. (4.93c) and (4.151c), we get @jy! D �ı!.�

Note also that given an arbitrary coordinate moving frame f�� D dx�g on M
(x
 W U ! R, U � M, are coordinate functions), we have the following interesting
relations:

(a) @jy�
 � @j ��
 D �Vg˛ˇ V�
��
�˛ˇ D

p

j.det Vg/j@�.
p

j.det Vg/�1jVg
� /
(b) @jy�� � @j ��� D V�
���
� D

p

j.det Vg/j@�.
p

j.det Vg/�1j/; (4.153)

where f@� � @=@x�g is the dual frame of f��g. Note that det Vg D .det Vg/�1.
Exercise 4.120 Verify that if ˛; ˇ 2 sec

V1 T�M ,! sec C`.M; Vg/ then

@j.˛ � ˇ/ D .˛ � @j/ˇ C .ˇ � @j/˛ � ˛y.@j ^ˇ/ � ˇy.@j ^˛/: (4.154)

4.8.4 Standard Dirac Commutator and Dirac Anticommutator

Definition 4.121 Given the 1-form fields ˛; ˇ 2 V1 T�M ,! sec C`.M; Vg/ and @j,
the standard Dirac operator of the manifold, the operators ŒŒ; �� and f; g given by

ŒŒ˛; ˇ�� D .˛ � @j/ˇ � .ˇ � @j/˛
f˛; ˇg D .˛ � @j/ˇ C .ˇ � @j/˛; (4.155)

are called, respectively, the Standard Dirac commutator (or Lie bracket) and the
Standard Dirac anticommutator of the 1-form fields ˛ and ˇ.
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We have the identities:

ŒŒ˛; ˇ�� D @jy.˛ ^ ˇ/ � �

.@j �˛/ ^ ˇ � ˛ ^ .@j �ˇ/	
f˛; ˇg D @j ^.˛ � ˇ/ � �

.@j ^˛/xˇ � ˛y.@j ^ˇ/	 : (4.156)

The algebraic meaning of these equations is clear: they state that the Dirac
commutator and the Dirac anticommutator measure the amount by which the
operators @jy D �ı and @j ^ D d fail to satisfy the Leibniz’s rule when applied,
respectively, to the exterior and to the dot product of 1-form fields.

Now, let fe�g be an arbitrary moving frame on TM, f��g its dual frame on T�M
and f�˛g the reciprocal frame of f��g. From Eqs. (4.155) we obtain, respectively:

ŒŒ�˛; �ˇ�� D VDe˛ �ˇ � VDeˇ �˛

D . V�
��
�˛ˇ � V�
��

�ˇ˛/�


D c
��
�˛ˇ�
; (4.157)

and

f�˛; �ˇg D VDe˛ �ˇ C VDeˇ�˛;

D . V�
��
�˛ˇ C V�
��

�ˇ˛/�


D b
��
�˛ˇ�
; (4.158)

where V�
��
�˛ˇ are the components of the Levi-Civita connection VD of Vg, c
��

�˛ˇ are the

structure coefficients of the frame fe�g and where we introduce the notation b
��
�˛ˇ D

V�
��
�˛ˇ C V�
��

�ˇ˛ . The meaning of these coefficients will be discussed below.
Clearly, Eq. (4.157) states that the Dirac commutator is the analogous of the Lie

bracket of vector fields. These operations have similar properties. In particular, the
Dirac commutator satisfies the Jacobi identity:

ŒŒ˛; ŒŒˇ; !����C ŒŒˇ; ŒŒ!; ˛����C ŒŒ!; ŒŒ˛; ˇ���� D 0; (4.159)

˛; ˇ; ! 2 V1 T�M ,! sec C`.M; Vg/. Therefore it gives to the cotangent bundle of
M the structure of a local Lie algebra.

4.8.5 Geometrical Meanings of the Commutator
and Anticommutator

The geometrical meanings of the Dirac commutator and the Dirac anticommutator
are easily discovered from Eqs. (4.157) and (4.158). Indeed, Eq. (4.157) means that
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Fig. 4.4 Geometrical interpretation of the: (a) Standard commutator ŒŒ�˛; �ˇ�� and (b) Standard
anticommutator f�˛; �ˇg

the Dirac commutator measures the amount by which the vector fields ea D Vg.�˛; /
and eb D Vg.�ˇ; / and their infinitesimal lifts .e0

a D Vg.� 0̨ ; /, e0̌ D Vg..� 0̌ ; // along
their integral lines fail to form a parallelogram. By its turn, Eq. (4.158) means that
the Dirac anticommutator measures the rate of deformation of the frame f�˛g, i.e.,
f�˛; �˛g gives the rate of dilation of the vector field Vg.�˛; / under dislocations along
its own integral lines, while f�˛; �ˇg, ˛ ¤ ˇ, gives the rate of variation of the
angle between Vg.�˛; / and Vg.�ˇ; / under dislocations in the direction of each other
(Fig. 4.4).

We state now another interesting result:

Proposition 4.122 The coefficients b
��
�˛ˇ of the Dirac anticommutator of a moving

frame f�˛g are given by:

b
��
�˛ˇ D �.£e
g/˛ˇ; (4.160)

where £e
 denotes the Lie derivative in the direction of the vector field e
 and fe
g
is the dual frame of f�˛g.

Proof The coefficients V�
��
�˛ˇ of the Levi-Civita connection of g are given by:

(e.g.,[3])

V�
��
�˛ˇ D 1

2
Vg
� �

e˛.Vgˇ�/C eˇ.Vg�˛/ � e� .Vg˛ˇ/
	

C 1

2
Vg
�

h

Vg�˛c���
��ˇ C Vg�ˇc�����˛ � Vg��c���

�˛ˇ
i

: (4.161)
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Hence,

b
��
�˛ˇ D Vg
�

h

eˇ.Vg˛�/C e˛.Vg�ˇ/� e� .Vgˇ˛/ � Vg�˛c���
�ˇ� � Vg�ˇc����˛�

i

(4.162)

and the r.h.s. of Eq. (4.162) is just the negative of the components of the Lie
derivative of the metric tensor in the direction of e
 D Vg
�e� .�

Killing Coefficients

In view of the result stated by Eq. (4.160), the attempt to find (if existing) a moving
frame for which b
��

�˛ˇ D 0 is equivalent to solve, locally, the Killing equations for
the manifold. Because of this we shall refer to these coefficients as the Killing
coefficients of the frame. Of course, since the solutions of the Killing equations are
restricted by the structure of the metric as well as by the topology of the manifold,
it will not be possible, in the more general case, to find any moving frame for which
these coefficients are all null.

4.8.6 Associated Dirac Operators

Besides the standard Dirac operator we have just analyzed, we can also introduce in
the Clifford bundle C`.M; Vg/ infinitely many other Dirac-like operators, one for each
nondegenerate symmetric bilinear form field that can be defined on the structure
.M; Vg; VD/.

Let g 2 sec T02M be an arbitrary nondegenerate positive symmetric bilinear form
field on M. To g corresponds g2 sec T20M as already introduced. We denoted by
g W sec T�M ! sec T�M the associated extensor field to g and by h W sec T�M !
sec T�M the field of linear transformations which induces g, i.e., have:

g.˛; ˇ/ D ˛ � g.ˇ/ D h.˛/ � h.ˇ/

D g.h.˛/; h.ˇ// (4.163)

for every ˛; ˇ 2 sec
V1 T�M ,! sec C`.M; Vg/.

We also denote by _ �
g

W C`.M; Vg/ � C`.M; Vg/ ! C`.M; Vg/ the “Clifford

product” induced on C`.M; Vg/ by the bilinear form field g and by � � �
g

W C`.M; Vg/�
C`.M; Vg/ ! C`.M; Vg/ the “dot product” associated to the new Clifford product “_.”
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Definition 4.123 Let f�˛g be a moving frame on T�M, dual to the moving frame
fe˛g on TM. We call Dirac operator associated to the bilinear form g 2 sec T20M the
operator:

_
@j � @j _ D .�˛

g
VDe˛ / � .�˛ _ VDe˛ /: (4.164)

We also define

_
@jy

g
D �˛y

g
VDe˛ ; (4.165)

where y
g

is the contracted product with respect to g.Then,

_
@j D

_
@jy

g
C

_
@j^ D

_
@jy

g
C @j ^; (4.166)

because the exterior part of the operator
_
@j coincides with the exterior part of the

operator @j.
Of course, the properties of the operator

_
@j differ from those of the standard Dirac

operator @j. It is enough to state the properties of the operator
_
@jy

g
, which are obtained

from the following proposition:

Proposition 4.124 The operators
_
@jy

g
and @jy are related by:

_
@j y

g
! D @jy L! C sy L!; (4.167)

for every ! 2 sec C`.M; Vg/, where s D g
� VD
g���� 2 sec T�M ,! sec C`.M; Vg/ is
called the dilation 1-form of the bilinear form g.

Proof Given a r-forms field ! D 1
rŠ!˛1:::˛r�

˛1 ^ � � � ^ �˛r 2 sec C`.M; Vg/, we have

VDe
! D 1

rŠ
.D
!˛1:::˛r /�

˛1 ^ � � � ^ �˛r ;

with

VD
!˛1:::˛r D e
.!˛1:::˛r/� V��
˛1!�˛2:::˛r � � � � � V��
˛r
!˛1:::˛r�1�: (4.168)
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Then,

�
y
g

VDe
! D 1

rŠ
D
!˛1:::˛r�


y
g
.�˛1 ^ � � � ^ �˛r /

D 1

rŠ
VD
!˛1:::˛r .g


˛1�˛2 ^ � � � ^ �˛r C � � �

C .�1/rC1g
˛r�˛1 ^ � � � ^ �˛r�1 /;

or

_
@j y

g
! D 1

.r � 1/Š
g
� VD
!�˛2:::˛r�

˛2 ^ � � � ^ �˛r : (4.169)

Now, taking into account that

g
� VD
!�˛2:::˛r D VD
.g

�!�˛2:::˛r/ � . VD
g


� /!�˛2:::˛r ;

g�� VD
g

� D �g
� VD
g��;

and recalling also that g
� D g
� Vg��, we conclude that

_
@j y

g
! D 1

.r � 1/Š Vg

� . VD
 Vg��!�˛2:::˛r /�

˛2 ^ � � � ^ �˛r

C 1

.r � 1/Š Vg

� .g˛ˇ VD̨ gˇ
/Vg��!�˛2:::˛r�

˛2 ^ � � � ^ �˛r :

Thus, writing L!�˛2:::˛r D Vg��!�˛2:::˛r and s
 D g˛ˇ VD̨ gˇ
, we finally obtain the
Eq. (4.167).�

4.8.7 The Dirac Operator in Riemann-Cartan-Weyl Spaces

We now consider the structure .M; Vg;r/ where r is an arbitrary linear connection.
In this case, the notion of covariant derivative does not pass to the quotient bundle
C`.M; Vg/ [4]. Despite this fact, it is still a well defined operation and in analogy
with the earlier section, we can associate to it, acting on the sections of C`.M; Vg/,
the operator:

@ D �˛re˛ ;

where f�˛g is a moving frame on T�M, dual to the moving frame fe˛g on TM.
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Definition 4.125 The operator @ is called the Dirac operator (or Dirac derivative,
or sometimes gradient).

We also define:

@yA D �˛y.re˛A/;
@ ^ A D �˛ ^ .re˛A/;

(4.170)

for every A 2 sec C`.M; Vg/, so that:

@ D @y C @^ . (4.171)

The operator @^ satisfies, for every A;B 2 sec C`.M; Vg/:

@ ^ .A ^ B/ D .@ ^ A/ ^ B C OA ^ .@ ^ B/; (4.172)

what generalizes Eq. (4.151a). By its turn, Eq.( 4.151c) is generalized according to
the following proposition:

Proposition 4.126 Let Q
 be the nonmetricity 2-forms associated with the connec-
tion r in an arbitrary moving frame f�
g and re˛eˇ D L
��

�˛ˇe
. Then we have, for
homogeneous multiforms,

(a) .�1/r?�1@y? D @^ C Q
 ^ i
;
(b) .�1/rC1?�1@^? D @y � Q
yj
;

(4.173)

where i
A D �
yA and j
A D �
 ^ A, for every A 2 sec C`.M; Vg/.
Proof Let ! D 1

rŠ!˛1:::˛r�
˛1 ^ � � �^ �˛r 2 sec

Vr T�M ,! sec C`.M; Vg/ be a r-form
field on M. We have .�ˇ1 ^ � � � ^ �ˇr / ^ 
! D ..�ˇ1 ^ � � � ^ �ˇr/ � !/
Vg D !ˇ1:::ˇr
Vg
and it follows that re˛ ..�ˇ1 ^ � � � ^ �ˇr / ^ 
!/ D e˛.!ˇ1:::ˇr /
g. But on the other
hand, we also have

re˛ .�ˇ1 ^ � � � ^ �ˇr / ^ ?! D �ˇ1 ^ v ^ �ˇr ^ re˛ ? !

C .L
��
��ˇ1!
ˇ2:::ˇr C � � � C L
��

��ˇr
!ˇ1:::ˇr�1
/
Vg

� .Q
��
��ˇ1!
ˇ2:::ˇr C � � � C Q
��

��ˇr
!ˇ1:::ˇr�1
/
Vg

and therefore we get, after some algebraic manipulation:

re˛ ? ! D ?re˛! C Q��	 ? .�
� ^ .�	y!//; (4.174)

from which Eqs. (4.173) follow immediately.�

Taking into account the result stated in the above proposition and the definition of
the Hodge codifferential (Eq. (4.91)), we are motivated to introduce in the Clifford
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bundle the Dirac coderivative operator, given, for homogeneous multiforms, by:

�
@ D .�1/r ?�1 @ ? . (4.175)

Of course, we have:

�
@ D .�1/r ?�1 @y ? C .�1/r ?�1 @ ^ ? (4.176)

and we can, then, define:

�
@y WD .�1/r ?�1 @^? D �@y C Q
yj

�
@^ WD .�1/r ?�1 @y ? @ ^ C Q
 ^ i
;

(4.177)

so that:

�
@ D

�
@ ^ C

�
@y . (4.178)

The following identities are trivially established:

@ D .�1/rC1 ?�1 �
@?

?@ D .�1/rC1�
@?I ?

�
@ D .�1/r@?

@
�
@? D ?

�
@@I ?@

�
@ D

�
@@?

?
�
@

2

D �.
�
@/2?I ?.

�
@/2 D �@2 ? .

(4.179)

In addition, we note that the Dirac coderivative permit us to generalize Eq. (4.151b)
in a very elegant way. In fact, in consequence of Proposition 4.126 we have:

Corollary 4.127 For Ar 2 sec
Vr T�M ,! sec C`.M; Vg/, Bs 2 sec

Vs T�M ,!
sec C`.M; Vg/, with r C 1 	 s, it holds:

@y.AryBs/ D .
�
@ ^ Ar/yBs C .�1/rAry.

�
@yBs/: (4.180)

Proof Given a 1-form field ˛ 2 V1 T�M and a s-form field ! 2 sec
Vs T�M, we

have, from Eq. (4.174), that re� ?.˛y!/ D ?re� .˛y!CQ��	 ?Œ�
�^ .�	y.˛y!//�.

We also have that

re� ? .˛y!/ D .�1/sC1re� .˛ ^ ?!/
D ?Œ.re� ˛/y! C ˛y.re� ! C Q��	.�

� ^ .�	y!//�;
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where we have used Eq. (4.174) once again. It follows that:

re� .˛y!/ D .re� ˛/y! C ˛y.re� !/C Q��	˛
��	y!: (4.181)

Then, recalling that .˛1 ^ : : : ^ ˛r/y! D ˛1y : : :y˛ry!, with ˛1; : : : ; ˛r 2
sec T�M; ! 2 sec

Vs T�M; r 	 s C 1, and applying Eq. (4.181) successively in
this expression, we get Eq. (4.180).�

Another very important consequence of Proposition 4.126 states the relation
between the operators @ and @j:
Proposition 4.128 Let ˆ
 D ‚
 � Q
, where ‚
 and Q
 denote, respectively, the
torsion and the nonmetricity 2-forms of the connection r in an arbitrary moving
frame f�˛g. Then:

(a) @^ D @j ^ �‚
 ^ i
 ;
(b) @y D @jy �ˆ
yj
 .

(4.182)

Proof If f is a function, @ ^ f D �˛ ^ re˛ f D e˛. f /�˛ D df and @yf D �˛yre˛ f D
0. For the 1-form field �
 of a moving frame on T�M, we have @ ^ �
 D �˛ ^
re˛ �


 D �L
˛ˇ�
˛ ^ �ˇ D �!
ˇ ^ �ˇ D d�
 �‚
.

Now, for a r-form field ! D 1
rŠ!˛1:::˛r�

˛1 ^ : : : ^ �˛r , we get

@ ^ ! D 1

rŠ
.d!˛1:::˛r ^ �˛1 ^ � � � ^ �˛r C !˛1:::˛r d�

˛1 ^ �˛2 ^ � � � ^ �˛r

C � � � C .�1/rC1!˛1:::˛r�
˛1 ^ � � � ^ �˛r�1 ^ d�˛r/

� 1

rŠ
.!˛1:::˛r‚

˛1 ^ �˛2 ^ � � � ^ �˛r C � � �

C .�1/rC1!˛1:::˛r�
˛1 ^ � � � ^ �˛r�1 ^‚˛r/

D d! � 1

rŠ
‚
 ^ .!
˛2:::˛r�

˛2 ^ � � � ^ �˛r C � � �

C .�1/rC1!˛1:::˛r�1
�
˛1 ^ � � � ^ �˛r�1 /

D d! �‚
 ^ i
!

and Eq. (4.182a) is proved.
Finally, from Eqs. (4.173b) and (4.182a) we obtain

@ ^ ?! D .�1/rC1?@y! � .�1/rC1?Q
yj
!

D @ ^ ?! �‚
 ^ ?!
D .�1/rC1? @jy! � .�1/rC1 ? ‚
yj
!:

Therefore, @y! D @jy! �ˆ
yj
!, and Eq. (4.182b) is proved.�
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From Eqs. (4.182) we obtain the expressions of
�
@y and

�
@^ in terms of @jy and @j ^:

�
@y D � @jy C‚
yj

�
@^ D @j ^ �ˆ
 ^ i
:

(4.183)

Obviously, the Dirac coderivative associated to the standard Dirac operator is
given by:

�
@ D @j ^ � @jy D d C ı: (4.184)

We observe finally that we can still introduce another Dirac operator, obtained
by combining the arbitrary affine connection r with the algebraic structure induced
by the generic bilinear form field g 2 sec T20M. With respect to an arbitrary moving
frame f�˛g on T�M, this operator has the expression:

@_ D �˛ _ re� : (4.185)

It is clear that in the particular case where r D D is the Levi-Civita connection of g,
the operator @—which in this case is the standard Dirac operator associated to g—
will satisfy the properties of Sect. 4.8.3, with the usual Clifford product exchanged
by the new Clifford product “_.” In addition, for a more general connection we can
apply the results of Sect. 4.8.6, once again with all the occurrences of Vg replaced
by g. (In particular, the standard Dirac operator associated to Vg is replaced by that
associated with g.)

4.8.8 Torsion, Strain, Shear and Dilation of a Connection

In analogy with the introduction of the Dirac commutator and the Dirac anticom-
mutator, let us define the operations:

Definition 4.129 Given ˛; ˇ 2 sec
V1 T�M the Dirac commutator and anticom-

mutator of these 1-form fields are

(a)
(b)

ŒŒŒ˛; ˇ��� D .˛ � @/ˇ � .ˇ � @/˛ � ŒŒ˛; ˇ��

ff˛; ˇgg D .˛ � @/ˇ C .ˇ � @/˛ � f˛; ˇg: (4.186)

We have subtracted the Dirac commutator and the Dirac anticommutator in the r.h.s.
of these expressions in order to have objects which are independent of the structure
of the fields on which they are applied.
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If f�˛g is the reciprocal of an arbitrary moving frame f�˛g on T�M, we get, from
Eq. (4.186a):

ŒŒŒ�˛; �ˇ��� D .T
��
�˛ˇ � Q
��

�Œ˛ˇ�/�
; (4.187)

where T
˛ˇ are the components of the usual torsion tensor (Eq. (4.107)). Note from
this last equation that the operation defined through Eq. (4.186a) does not satisfy the
Jacobi identity. Indeed we have:

X

Œ˛ˇ��

ŒŒŒŒŒŒ�˛; �ˇ���; �� ��� D
X

Œ˛ˇ��

.T
���˛� � Q
��
�Œ˛��/.T

���
�ˇ� � Q���

�Œˇ��/�
; (4.188)

where the summation in this equation is to be performed on the cyclic permutations
of the indices ˛; ˇ and � .

From Eq. (4.186b), we get:

ff�˛; �ˇgg D .S
��
�˛ˇ � Q
��

�.˛ˇ//�
;

where Q
��
�.˛ˇ/ WD g
� .Q˛ˇ� C Qˇ˛� / and we have written:

S
��
�˛ˇ D L
��

�˛ˇ C L
��
�ˇ˛ � b
��

�˛ˇ: (4.189)

It can be easily shown that the object having these components is also a tensor.
Using the nomenclature of the theories of continuum media [39, 42] we will call it
the strain tensor of the connection. Note that it can be further decomposed into:

S
��
�˛ˇ D MS
��

�˛ˇ C 2

n
s
 Vg˛ˇ (4.190)

where MS
��
�˛ˇ is its traceless part, which will be called the shear of the connection, and

s
 D 1

2
Vg�	S
����	 (4.191)

is its trace part, which will be called the dilation of the connection.
It is trivially established that:

L
��
�˛ˇ D V�
��

�˛ˇ C 1

2
T
��

�˛ˇ C 1

2
S
��

�˛ˇ: (4.192)
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where V�
��
�˛ˇ D 1

2
.b
��

�˛ˇ C c
��
�˛ˇ/ are the components of the Levi-Civita connection

of Vg.25

Equation (4.192) can be used to relate the covariant derivatives with respect to
the connections VD and r of any tensor field on the manifold. In particular, recalling
that VD̨ Vgˇ� D e˛.Vgˇ� / � Vg�� V����

�˛ˇ � Vgˇ� V�����˛� D 0, we get the expression of the
nonmetricity tensor of r in terms of the torsion and the strain, namely,

Q˛ˇ� D 1

2
.Vg��T���

�˛ˇ C Vgˇ�T����˛� /C 1

2
.Vg��S���

�˛ˇ C Vgˇ�S����˛� /: (4.193)

Equation (4.193) can be inverted to yield the expression of the strain in terms of the
torsion and the nonmetricity. We get:

S
��
�˛ˇ D Vg
� .Q˛ˇ� C Qˇ�˛ � Q�˛ˇ/� Vg
� .Vgˇ�T����˛� C Vg��T���

�ˇ˛/: (4.194)

From Eqs. (4.193) and (4.194) it is clear that nonmetricity and strain can be used
interchangeably in the description of the geometry of a Riemann-Cartan-Weyl
space. In particular, we have the relation:

Q˛ˇ� C Q�˛ˇ C Qˇ�˛ D S˛ˇ� C S�˛ˇ C Sˇ�˛; (4.195)

where S�˛ˇ D Vg
�S
��
�˛ˇ . Thus, the strain tensor of a Weyl geometry satisfies the

relation:

S˛ˇ� C S�˛ˇ C Sˇ�˛ D 0:

In order to simplify our next equations, let us introduce the notation:

K
��
�˛ˇ D L
��

�˛ˇ � V�
��
�˛ˇ D 1

2
.T
��

�˛ˇ C S
��
�˛ˇ/: (4.196)

From Eq. (4.194) it follows that:

K
��
�˛ˇ D �1

2
Vg
� .r˛ Vgˇ� C rˇ Vg�˛ � r� Vg˛ˇ/

� 1

2
Vg
� .Vg�˛T���

��ˇ C Vg�ˇT�����˛ � Vg��T��
�˛ˇ/; (4.197)

25We note that the possibility of decomposing the connection coefficients into rotation (torsion),
shear and dilation has already been suggested in a Physics paper by Baekler et al. [1] but in their
work they do not arrive at the identification of a tensor-like quantity associated to these last two
objects. The idea of the decompositions already appeared in [40].
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where we have used that Q˛ˇ� D �r˛ Vgˇ� . Note the similarity of this equation with
that which gives the coefficients of a Riemannian connection (Eq. (4.161)). Note
also that for r Vg D 0, K
��

�˛ˇ is the so-called contorsion tensor.26

Returning to Eq. (4.192), we obtain now the relation between the curvature tensor
R
���

��˛ˇ associated with the connection r and the Riemann curvature tensor VR
���
��˛ˇ of

the Levi-Civita connection D associated with the metric Vg. We get, by a simple
calculation:

R
���
��˛ˇ D VR
���

��˛ˇ C J
���
��Œ˛ˇ�; (4.198)

where:

J
���
��˛ˇ D VD˛K
��

�ˇ� � K
��
�ˇ�K� ���˛� D r˛K
��

�ˇ� � K
���˛�K� ��ˇ� C K� ���˛ˇK
����� : (4.199)

Multiplying both sides of Eq. (4.198) by 1
2
�˛ ^ �ˇ we get:

R
��� D VR
��� C J
���; (4.200)

where we have written:

J
��� D 1

2
J
���

��Œ˛ˇ��
˛ ^ �ˇ: (4.201)

From Eq. (4.198) we also get the relation between the Ricci tensors of the
connections r and VD. We define the Ricci tensor by

Ricci D R�˛dx� ˝ dx˛;

R�˛ WD R
�����˛
 : (4.202)

Then, we have

R�˛ D VR�˛ C J�˛; (4.203)

with

J�˛ D VD˛K
���
� � VD
K

���˛� C K
���˛�K� ���
� � K
���
�K� ���˛�

D r˛K
���
� � r
K

���˛� � K
����˛K� ���
� C K
���
�K� ���˛� : (4.204)

26Equations (4.196) and (4.197) have appeared in the literature in two different contexts: with
r Vg D 0, they have been used in the formulations of the theory of the spinor fields in Riemann-
Cartan spaces [15, 46] and with ‚Œr� D 0 they have been used in the formulations of the
gravitational theory in a space endowed with a background metric [8, 13, 23, 35, 36].
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Observe that since the connection r is arbitrary, its Ricci tensor will be not

be symmetric in general. Then, since the Ricci tensor VR�˛ of VD is necessarily
symmetric, we can split Eq. (4.203) into:

RŒ�˛� D JŒ�˛�;

R.�˛/ D VR�˛ C J.�˛/:

(4.205)

Now we specialize the above results for the case where the general connection
r D D is the Levi-Civita connection of a bilinear form field g 2 sec T02M, i.e.,
‚ D 0 and rg D 0. The results that we show next generalize and clear up those
found in the formulations of the gravitational theory in a background metric space
[13, 23, 35, 36].

First of all, note that the connection VD plays with respect to the tensor field Vg a
role analogous to that played by the connection r with respect to the metric tensor
g and in consequence we shall have similar equations relating these two pairs of
objects. In particular, the strain of VD with respect to g equals the negative of the
strain of r with respect to Vg, since we have:

S
��
�˛ˇ D L
��

�˛ˇ C L
��
�ˇ˛ � b
��

�˛ˇ D �. V�
��
�˛ˇ C V�
��

�ˇ˛ � d
��
�˛ˇ/ D S
��

�ˇ˛;

where b
��
�˛ˇ D V�
��

�˛ˇ C V�
��
�ˇ˛ and d
��

�˛ˇ D L
��
�˛ˇ C L
��

�ˇ˛ denote the Killing coefficients of

the frame with respect to the tensors Vg and g respectively. Furthermore, in view of
Eq. (4.197), we can write K
��

�˛ˇ D 1
2
S
��

�˛ˇ as:

K
��
�˛ˇ D �1

2
Vg
� .r˛ Vgˇ� C rˇ Vg˛� � r� Vg˛ˇ/

D 1

2
g
� . VD˛gˇ� C VDˇg˛� � VD�g˛ˇ/: (4.206)

Introducing the notation:

~ D
s

det g

det Vg ; (4.207)

we have the following relations:

K
���
� D �1
2

Vg˛ˇr� Vg˛ˇ D 1

2
g˛ˇ VD�g˛ˇ D 1

~
e� .~/;

g˛ˇK
��
�˛ˇ D � 1

~
VD� .~g
� /; (4.208)

Vg˛ˇK
��
�˛ˇ D 1

~�1r� .~
�1 Vg
� /:
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Another important consequence of the assumption that r is a Levi-Civita
connection is that its Ricci tensor will then be symmetric. In view of Eqs. (4.205),
this will be achieved, if and only if, the following equivalent conditions hold:

VD˛K
��

ˇ D VDˇK
���
˛;

r˛K
�
ˇ D rˇK
��
˛:
(4.209)

4.8.9 Structure Equations II

With the results stated above, we can write down the structure equations of the
RCWS structure defined by the connection r in terms of the Riemannian structure
defined by the metric Vg. For this, let us write Eq. (4.192) in the form:

!

�
�ˇ D O!
�

�ˇ C w
�
�ˇ D O!
�

�ˇ C 


�
�ˇ C �


�
�ˇ ; (4.210)

with !
�
�ˇ D L
��

�˛ˇ�˛ , O!
�
�ˇ D V�
��

�˛ˇ�˛ , w
�
�ˇ D K
��

�˛ˇ�˛, 

�
�ˇ D 1

2
T
��

�˛ˇ�˛ and �
�
�ˇ D

1
2
S
��

�˛ˇ�˛ . Then, recalling Eq. (4.200) and the structure equations for both the RCWS
and the Riemannian structures, we easily conclude that:

w
�
�ˇ ^ �ˇ D ‚
;

wˇ��� ^ �ˇ D �ˆ�;
VDw
��� C w
�

�ˇ ^ wˇ��� D J

���;

(4.211)

where VD is the exterior covariant differential (of indexed form fields) associated to
the Levi-Civita connection VD of Vg. The third of these equations can also be written
as:

Dw
��� � w
�
�ˇ ^ wˇ��� D J
���; (4.212)

where D is the exterior covariant differential (of indexed form fields) associated to
the connection r.

Now, the Bianchi identities for the RCWS structure are easily obtained by
differentiating the above equations. We get:

(a) VD‚
 D J

�
�ˇ ^ �ˇ � w
�

�ˇ ^‚ˇ;

(b) VDˆ� D J
ˇ��� ^ �ˇ C wˇ��� ^ˆˇ;

(c) VDJ

��� D R
�

�ˇ ^ wˇ�� � w
�
�ˇ ^ Rˇ���;

(4.213)
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or equivalently,

D‚
 D J

�
�ˇ ^ �ˇ;

Dˆ� D J
ˇ��� ^ �ˇ;

DJ


� D VR
�

�ˇ ^ wˇ��� � w
�
�ˇ ^ VRˇ��� :

(4.214)

4.8.10 D’Alembertian, Ricci and Einstein Operators

As we have seen in the Sect. 4.8.3 given the structure .M; VD; Vg/ we can construct the
Clifford algebra C`.M; Vg/ and the standard Dirac operator @j given by (Eq. (4.152))

@j D d � ı: (4.215)

We investigate now the square of the standard Dirac operator. We shall see
that this operator can be separated in some interesting parts that are related to the
D’Alembertian, Ricci and Einstein operators of .M; VD; Vg/.
Definition 4.130 The square of standard Dirac operator @j is the operator, @j2 D @j @j W
sec

Vp T�M ,! sec C`.M; Vg/ ! sec
Vp T�M ,! sec C`.M; Vg/ given by:

@j 2 D .d � ı/.d � ı/ D �.dı C ıd/: (4.216)

We recognize that @j2 � Þ is the Hodge Laplacian of the manifold introduced
by (Eq. (4.92)). On the other hand, remembering also that Eq. (4.148)

@j D �˛ VDe˛ ;

where f�˛g is an arbitrary reference frame on the manifold and VD is the Levi-Civita
connection of the metric Vg, we have:

@j 2 D .�˛ VDe˛ /.�
ˇ VDeˇ / D �˛.�ˇ VDe˛

VDeˇ C . VDe˛ �
ˇ/ VDeˇ /

D Vg˛ˇ. VDe˛
VDeˇ � V�
��

�˛ˇ VDe
 /C �˛ ^ �ˇ. VDe˛
VDeˇ � V�
��

�˛ˇ VDe
 /:

Then defining the operators:

(a)
(b)

@j � @j D Vg˛ˇ. VDe˛
VDeˇ � V�
��

�˛ˇ VDe
 /;

@j ^ @j D �˛ ^ �ˇ. VDe˛
VDeˇ � V�
��

�˛ˇ VDe
 /;
(4.217)
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we can write:

Þ D @j 2 D @j � @j C @j ^ @j (4.218)

or,

@j 2 D .@jy C @j ^/.@jy C @j ^/
D @jy @j ^ C @j ^ @jy : (4.219)

Remark 4.131 It is important to observe that the operators @j � @j and @j ^ @j do not have
anything analogous in the formulation of the differential geometry in the Cartan and
Hodge bundles.

Remark 4.132 Moreover we write for! 2 sec
Vr T�M ,! sec C`.M;g/, @j � @j! and

@j ^ @j! to mean respectively .@j � @j/! and .@j ^ @j/!. The parenthesis will be included
in a formula only if there is a risk of confusion.

The operator @j � @j can also be written as:

@j � @j D 1

2
Vg˛ˇ

h VDe˛
VDeˇ C VDeˇ

VDe˛ � b
��
�˛ˇ VDe


i

: (4.220)

Applying this operator to the 1-forms of the frame f�˛g, we get:

@j � @j �� D �1
2

Vg˛ˇ VM����
�
˛ˇ�


; (4.221)

where:

VM����
�
˛ˇ D e˛. V����

�ˇ
/C eˇ. V�����˛
/� V�����˛� V�� ���ˇ
 � V����
�ˇ� V�� ���˛
 � b� ���˛ˇ V������
: (4.222)

The proof that an object with these components is a tensor is a consequence of the
following proposition:

Proposition 4.133 For every r-form field ! 2 sec
Vr T�M, ! D 1

rŠ!˛1:::˛r�
˛1 ^

: : : ^ �˛r , we have:

@j � @j! D 1

rŠ
Vg˛ˇ VD˛

VDˇ!˛1:::˛r�
˛1 ^ � � � ^ �˛r : (4.223)

Proof We have VDeˇ! D 1
rŠ

VDˇ!˛1:::˛r�
˛1 ^ : : : ^ �˛r , with

VDˇ!˛1:::˛r D eˇ.!˛1:::˛r /� V�� ���ˇ˛1!�˛2:::˛r � � � � � V�� ���ˇ˛r
!˛1:::˛r�1� :
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Observe moreover that we have

VD˛
VDˇ!˛1:::˛r D e˛. VDˇ!˛1:::˛r/ � V�� ���ˇ˛1 VD�!�˛2:::˛r

� V�� ���˛˛1 VDˇ!�˛2:::˛r � : : : V�� ���˛˛r
VDˇ!˛1:::˛r�1�

but

De˛Deˇ! D De˛ .
1

rŠ
VDˇ!˛1:::˛r�

˛1 ^ � � � ^ �˛r /

1

rŠ
.e˛. VDˇ!˛1:::˛r/� V��˛˛1 VDˇ!�˛2:::˛r � � � �

� V�� ���˛˛r
VDˇ!˛1:::˛r�1� /�

˛1 ^ � � � ^ �˛r :

Thus we conclude that:

. VDe˛
VDeˇ � V�
��

�˛ˇ VDe
 /! D 1

rŠ
VD˛

VDˇ!˛1:::˛r�
˛1 ^ � � � ^ �˛r :

Finally, multiplying this equation by Vg˛ˇ and using the Eq. (4.217a), we get the
Eq. (4.223).�

In view of Eq. (4.223), we give the

Definition 4.134 The operator � D @j � @j is called (covariant) D’Alembertian.

Note that the D’Alembertian of the 1-forms �� can also be written as:

@j � @j �� D Vg˛ˇ VD˛
VDˇı

�

 �


 D 1

2
Vg˛ˇ. VD˛

VDˇı
�

 C VDˇ

VD˛ı
�

 /�




and therefore, taking into account the Eq. (4.221), we conclude that:

VM����
�
˛ˇ D �. VD˛

VDˇı
�

 C VDˇ

VD˛ı
�

 /; (4.224)

what proves our assertion that VM����
�
˛ˇ are the components of a tensor.

By its turn, the operator @j ^ @j can also be written as:

@j ^ @j D 1

2
�˛ ^ �ˇ

h VDe˛
VDeˇ � VDeˇ

VDe˛ � c
��
�˛ˇ VDe


i

: (4.225)

Applying this operator to the 1-forms of the frame f��g, we get

@j ^ @j �� D �1
2

VR����
�
˛ˇ.�

˛ ^ �ˇ/�
 D � VR
��
; (4.226)
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where VR����
�
˛ˇ are the components of the curvature tensor of the connection VD. From

Eq. (2.46), we get:

VR���
 �
 D VR���
 x�
 C VR���
 ^ �
:

The second term in the r.h.s. of this equation is identically null because of the
Bianchi identity given by Eq.( 4.213a) for the particular case of a symmetric
connection (‚� D 0). Using Eqs. (2.35) and (2.37) we can write the first term in the
r.h.s. as:

VR
�x�
 D 1

2
VR
���

��˛ˇ.�
˛ ^ �ˇ/x�


D �1
2

VR
���
��˛ˇ�
y.�

˛ ^ �ˇ/

D �1
2

VR
���
��˛ˇ.ı

˛

 �

ˇ � ı˛ˇ�˛/

D � VR˛���
��˛ˇ�

ˇ D VR��
�ˇ�

ˇ; (4.227)

where VR��
�ˇ are the components of the Ricci tensor of the Levi-Civita connection VD

of Vg. Thus we have:

@j ^ @j �� D VR�; (4.228)

where VR� D VR��
�ˇ�ˇ are the Ricci 1-forms of the manifold. Because of this relation,

we give the

Definition 4.135 The operator @j ^ @j is called the Ricci operator of the manifold
associated to the Levi-Civita connection VD of Vg.

The proposition below shows that the Ricci operator can be written in a purely
algebraic way:

Proposition 4.136 The Ricci operator @j ^ @j satisfies the relation:

@j ^ @j D VR� ^ i� C VR
� ^ i
i� ; (4.229)

where (keep in mind) VR
� WD Vg�� VR
��� D 1
2
Vg�� VR
� ��

��˛ˇ�˛ ^ �ˇ .

Proof The Hodge Laplacian of an arbitrary r-form field ! D 1
rŠ!˛1:::˛r�

˛1 ^: : :^�˛r

is given by: (e.g., [3]—recall that our definition differs by a sign from that given
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there) Þ! D @j2 ! D 1
rŠ .@j2 !/˛1:::˛r�

˛1 ^ : : : ^ �˛r , with:

.Þ!/˛1:::˛r D Vg˛ˇ VD˛
VDˇ!˛1:::˛r

�
X

p

.�1/p VR�::˛p
!�˛1::: L̨p :::˛r

� 2
X

p;q
p<q

.�1/pCq VR
� ����˛q˛p
!
�˛1::: L̨p ::: L̨q:::˛r ; (4.230)

where the notation L̨ means that the index ˛ was exclude of the sequence.
The first term in the r.h.s. of this expression are the components of the

D’Alembertian of the field !.
Now, recalling that i�! D ��y!, we obtain:

VR� ^ i�! D � 1

rŠ

"
X

p

.�1/p VR� ��˛p
!�˛1::: L̨p:::˛r

#

�˛1 ^ � � � ^ �˛r

and also,

VR
� ^ i
i�! D � 2

rŠ

2

6
4

X

p;q
p<q

.�1/pCq VR
� ����˛q˛p
!
�˛1::: L̨p ::: L̨q:::˛r

3

7
5 �

˛1 ^ � � � ^ �˛r :

Hence, taking into account Eq. (4.218), we conclude that:

.@j ^ @j/! D VR� ^ i�! C VR
� ^ i
i�!;

for every r-form field !.�

Observe that applying the operator given by the second term in the r.h.s. of
Eq. (4.229) to the dual of the 1-forms ��, we get:

VR
� ^ i
i� ? �� D VR
� ? �

y.��y��//

D � VR
� ^ ?.�
 ^ ����/ (4.231)

D ?. VR
�y.�
 ^ �� ^ ��//;

where we have used the Eq. (2.77). Then, recalling the definition of the curvature
forms and using the Eq. (2.36), we conclude that:

VR
� ^ �
y��y ? �� D �2 ? . VR� � 1

2
VR��/ D �2 ? VG�; (4.232)
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where VR is the scalar curvature of the manifold and the VG� may be called the Einstein
1-form fields. That observation motivate us to give the

Definition 4.137 The Einstein operator of the Levi-Civita connection VD of Vg on the
manifold M is the mapping � W sec C`.M; Vg/ ! sec C`.M; Vg/ given by:

� D �1
2
?�1 . VR
� ^ i
i� / ? : (4.233)

Obviously, we have:

��� D VG� D VR� � 1

2
VR��: (4.234)

In addition, it is easy to verify that ?�1.@j ^ @j/? D � @j ^ @j and ?�1. VR� ^ i� /? D
VR�yj� . Thus we can also write the Einstein operator as:

� D 1

2
.@j ^ @j � VR�yj�/: (4.235)

Another important result is given by the following proposition:

Proposition 4.138 Let V!���
 be the Levi-Civita connection 1-forms fields in an

arbitrary moving frame f��g on .M; VD; Vg/. Then:

(a)
(b)

@j � @j �� D �.@j � V!���
 � V!�
 � V!���� /�

@j ^ @j �� D �.@j ^ V!���
 � V!� ��
 ^ V!���� /�
;

(4.236)

that is,

@j 2�� D �.@j V!���
 � V!� ��
 V!���� /�
: (4.237)

Proof We have

@j � V!�
 D �˛ � VDe˛ .
V����

�ˇ
�
ˇ/

D �˛ � .e˛. V����
�ˇ
/�

ˇ � V������
 V�� ���˛ˇ�ˇ/

D Vg˛ˇ.e˛. V��ˇ
/ � V���
 V��˛ˇ/

and V!� ��
 � V!���� D . V�� ���ˇ
�ˇ/ � . V�����˛��˛/ D Vgˇ˛ V�����˛� V�� ���ˇ
. Then,

� .@j � V!���
 � V!� ��
 � V!��
v� /�




D Vg˛ˇ.e˛. V����
�ˇ
/ � V�����˛� V�� ���ˇ
 � V�� ���˛ˇ V������
/�




170 4 Some Differential Geometry

D �1
2

Vg˛ˇ.e˛. V����
�ˇ
/C eˇ. V�����˛
/� V�����˛� V�� ���ˇ
 � V����

�ˇ� V�� ���˛
 � b� ���˛ˇ V������
/�


D @j � @j ��:

Equation (4.236b) is proved analogously.�

Exercise 4.139 Show that �.�
 ^ ��/y VR
� D VR.�
 ^ ��/ � VR
� D VR; where VR is
the curvature scalar.

4.8.11 The Square of a General Dirac Operator

Consider the structure .M;r; Vg/, where r is an arbitrary Riemann-Cartan-Weyl
connection and the Clifford algebra C`.M; Vg/. Let us now compute the square of
the (general) Dirac operator @ D tr.uru/. As in the earlier section, we have, by one
side,

@2 D .@y C @^/.@y C @^/
D @y@y C @y@^ C @^@y C @@^@^

and we write @y@y � @2y, @ ^ @^ � @2^ and

LC D @y@ ^ C@ ^ @y; (4.238)

so that:

@2 D @2y@ C LC@ C @2 ^ . (4.239)

The operator LC when applied to scalar functions corresponds, for the case of a
Riemann-Cartan space, to the wave operator introduced in [30]. Obviously, for the
case of the standard Dirac operator,LC reduces to the usual Hodge Laplacian of the
manifold, which preserve graduation of forms.

Now, a similar calculation for the product @
�
@ of the Dirac derivative and the

Dirac coderivative yields:

@
�
@ D @

�
y@y C L� C @ ^

�
@^; (4.240)

with

L� D @y
�
@ ^ C@ ^

�
�@y . (4.241)
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On the other hand, we have also:

� D .�˛re˛ /.�
ˇreˇ / D �˛.�ˇre˛reˇ C .re˛ �

ˇ/reˇ /

D Vg˛ˇ.re˛reˇ � L
��
�˛ˇre
 /C �˛ ^ �ˇ.re˛reˇ � L
��

�˛ˇre
 /

and we can then define:

@ � @ D Vg˛ˇ.re˛reˇ � L
��
�˛ˇre
 /

@ ^ @ D �˛ ^ �ˇ.re˛reˇ � L
��
�˛ˇre
 /

(4.242)

in order to have:

@2D @@ D @ � @ C @ ^ @ . (4.243)

The operator @ � @ can also be written as:

@ � @ D 1

2
�˛ � �ˇ.re˛reˇ � L
��

�˛ˇre
 /C 1

2
�ˇ � �˛.reˇre˛ � L
��

�ˇ˛re
 /

D 1

2
Vg˛ˇŒre˛reˇ C reˇre˛ � .L
��

�˛ˇ C L
��
�ˇ˛/re
 �

or,

@ � @ D 1

2
Vg˛ˇ.re˛reˇ C reˇre˛ � b
��

�˛ˇre
 / � s
re
 ; (4.244)

where s
 has been defined in Eq. (4.191).
By its turn, the operator @ ^ @ can also be written as:

@ ^ @ D 1

2
�˛ ^ �ˇ.re˛reˇ � L
��

�˛ˇre
 /C 1

2
�ˇ ^ �˛.reˇre˛ � L
��

�ˇ˛re
 /

(4.245)

D 1

2
�˛ ^ �ˇŒre˛reˇ � reˇre˛ � .L
��

�˛ˇ � L
��
�ˇ˛/re
 �

or,

@ ^ @ D 1

2
�˛ ^ �ˇ.re˛reˇ � reˇre˛ � c
��

�˛ˇre
 /�‚
re
 : (4.246)

Exercise 4.140 Prove that the Ricci and Einstein operators are .1; 1/-extensor fields
on a Lorentzian spacetime, i.e., for any A 2 sec

V1 T�M ,! sec C`.M;g/ we have

@ ^ @ A D @ ^ @ .A��
�/ D A�@ ^ @��; (4.247)

�A D �.A���/ D A����:
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Solution We prove the first formula, since after proving it the second one is
obvious. We choose for simplicity an orthonormal cobasis f�ag for T�M dual to
the basis feag for TM, such that Œea; eb� D cd���abed. Let r be a connection on a
Riemann-Cartan-Weyl spacetime, such that rea eb D Ld���abed. Recalling (Eq. (4.245))
we have

@ ^ @ A D 1

2
�a ^ �bfŒea; eb�.Ak/� Ld���abed.Ak/� Ld���baed.Ak/g�kg C Ak@ ^ @�k

D 1

2
�a ^ �bfcd���ab � Ld���ab � Ld���bag�k C Ak@ ^ @�k

D 1

2
Td���ab�

a ^ �b C Ak@ ^ @�k D Ak@ ^ @�k;

since for a Lorentzian spacetime the torsion tensor (with components Td���ab) is null.

Exercise 4.141 Show that for any A 2 sec
V1 T�M ,! sec C`.M;g/ we have

@ ^ @ A D @j ^ @j A C J˛ � �˛ LA; (4.248)

where LA WD LA��� , LA� WD Vgˇ�gˇ�A� and J˛ WD Vg˛ˇJˇ��� , where Jˇ� is given by

4.9 Some Applications

4.9.1 Maxwell Equations in the Hodge Bundle

The system of Maxwell equations has many faces.27 Here we show how to express
that system of equations in the Hodge bundle and then in the Clifford bundle. To
start, let .M; g; 
g/ be an oriented Lorentzian manifold.

Maxwell equations on .M; g; 
g/ refers to an exterior system of differential
equations given by a closed 2-form F 2 sec

V2 T�M and a exact 3-form Je 2
sec

V3 T�M. Then there exists G 2 sec
V2 T�M such that

dF D 0 and dG D �Je: (4.249)

It is postulated that in vacuum there is a relation between G and F (said
constitutive relation) given by

G D ?F: (4.250)

27Besides the ones presented in this chapter, others will be exhibited in Chap. 13.
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In that case putting Je D ?Je, Je 2 sec
V1 T�M and taking into account

Eq. (4.91) we can write the system (4.249) as28

dF D 0 and ıF D �Je: (4.251)

F is called the Faraday field and Je is called the electric current.

4.9.2 Charge Conservation

Of course, ıJe D 0, which means that charge is conserved. Indeed, let C3 be a three
dimensional volume contained in a space slice, i.e., in a spacelike surface. Then the
electric flux contained in C2 D @C3 is

Q D
Z

C3

?Je D �
Z

C3

dG D �
Z

@C3

?F: (4.252)

It is an empirical fact that all observable free charges are integer multiple of the
electron charge. This phenomenon is called charge quantization. On the other hand
consider a 4-volume C4 with boundary given by @C4 D C.2/

3 � C.1/
3 C S where

with the condition JejS D 0 and where C.2/
3 and C.1/

3 are three dimensional volumes
contained in two different space slices. Then,

Z

@C4

?Je D
Z

@C4

dG D
Z

C4

d2G D 0; (4.253)

from where it follows that
Z

C
.1/
3

?Je D
Z

C
.2/
3

?Je: (4.254)

We postulate that F is closed but it may be (eventually) not exact. In that case it
may have period integrals according to de Rham theorem, i.e.,

Z

z
.i/
2

F D g.i/; (4.255)

where z.i/2 2 H2.M/ are cycles. It seems to be an empirical fact that all g.i/ D 0,
at least for cycles in the region of the universe where men already did experiments.
This means that F is exact, i.e., it is possible to define globally a differentiable

28Thirring [44] said that the two equations in Eq. (4.251) is the twentieth Century presentation of
Maxwell equations.
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potential A 2 sec
V1 T�M such that F D dA. This also means that there are no

magnetic monopoles in nature.29 Indeed, if z2 is a cycle (a closed surface) then we
have

Z

z2

F D
Z

z2

dA D h@z2;Ai D h0;Ai D 0: (4.256)

4.9.3 Flux Conservation

Of course, A is only defined modulus a gauge, i.e., A C A0, with A0 2 sec
V1 T�M a

closed form. The period integrals of A0 according to de Rham theorem are

Z

z
.i/
i

A0 D ˆ.i/: (4.257)

Now, it is an empirical fact that ˆ.i/ is quantized in some (but not all) physical
systems, like, e.g., in superconductors [16]. The phenomenon is then called flux
quantization. In appropriate units

Z

z1

A0 D nh=2e; (4.258)

where n is an integer and h is Planck constant and e is the electron charge.
Note also that from Je D �dG in Eq. (4.249) it follows that G is defined also only

modulus a closed form G0. The period integrals of G0 may eventually correspond to
topological charges. Another possibility of having ‘charge without charge’ coming
from statistical distributions of quantized flux loops has been investigated in [18,
19]. We shall not discuss these interesting issues in this book.

4.9.4 Quantization of Action

Finally we mention the following. As we shall see in Chap. 7 the Lagrangian density
of the electromagnetic field in free space is given by

L.A/ D �1
2

F ^ ?F: (4.259)

29See however the news in [31] where it is claimed that magnetic monopoles have been observed
in a synthetic magnetic field.
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Calling K D A ^ ?F, we can write

L.A/ D �1
2

dK: (4.260)

Now, it seems an empirical fact that action is quantized, i.e., we have

a D
Z

C4

L.A/

D
Z

C3D@C4

K D nh: (4.261)

Remark 4.142 We observe that
R

C3D@C4
K has been introduced by Kiehn (see [20]).

However he called A ^ ?F the topological spin, which is not a good name (and
identification of observable) in our opinion. The reason is that according to the
Lagrangian formalism (see Chap. 8, Eq. (8.124))30 the spin density is proportional
to A ^ F. This result and the other period integrals discussed above suggests that
quantization may be linked to topology in a way not suspected by contemporary
physicists. On this issue, see also [29].

4.9.5 A Comment on the Use of de Rham Pseudo-Forms
and Electromagnetism

Besides the forms we have been working until now, in a famous book, de Rham
[6] introduces also the concept of impair forms31 in a n-dimensional manifold M,
which is essential for the formulation of a theory of integration in a non orientable
manifold.

Definition 4.143 An impair p-form in M is a pair of p-forms such that if its
representative in a given A � M in a cobasis f� ig for T�U .U 
 A/ is declared
as being

!jU D 1

pŠ
!i1:::ip�

i1 ^ � � � ^ � ip 2 sec
^p

T�M

30See also [7].
31Also called by some authors pseudo forms.
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then its representative !jV in A � V � M in a cobasis f N� ig, N� i D ƒi
j�

j; for T�V .V\
U 
 A/ is

!jV D 1

pŠ
N!j1:::jp

N� i1 ^ � � � ^ N� ip 2 sec
^p

T�M; (4.262)

with

N!j1:::jp D
det

h

ƒi
j

i

ˇ
ˇ
ˇdet

h

ƒi
j

iˇ
ˇ
ˇ

!i1:::ipƒ
i1
j1

� � �ƒi1
j1
: (4.263)

The introduction of impair forms leads to the question of exterior (and interior)
multiplication of forms of different parities (i.e., even and odd). The rule introduced
by de Rham [6] is that the product of two forms of the same parity is a form, whereas
the product of two forms of different parities is an impair form. Also de Rham
introduces the rule that application of the differential operator d to a form preserves
its parity.

We can verify that if we denote by
V

impairT
�M D

nX

pD0

Vp
impairT

�M the real

vector space of the pseudo forms we can give a structure of associative algebra to
the (exterior) direct sum

V
T�M ˚ V

impairT
�M equipped with the exterior product

satisfying the de Rham rules mentioned above.
Having introduced the concept of de Rham pseudo forms we call the reader’s

attention to the following remarks.

Remark 4.144 In our brief presentation above of Maxwell equations we introduced
the electromagnetic current as Je D ?�1Je, Je 2 sec

V1 T�M. Since until that point
we have not introduced the concept of impair forms its is clear that we supposed
that Je is 3-form. This certainly means that the theory as presented presupposes that
we use always bases with the same orientation in order to calculate the charge in a
certain three dimensional volume contained in a given space slice (Eq. (4.253)). The
use of bases with the same orientation presupposes that spacetime is an orientable
manifold. As will be discussed in Chap. 7 orientability of a spacetime manifold is a
necessary condition for the existence of spinor fields. Since these objects seems to
be an essential tool for the understanding of the world we live in, we restrict all our
considerations to orientable manifolds. Eventually, if is discovered some of these
days that our universe cannot be represented by an orientable manifold, then it will
be necessary to study deeply the theory of impair forms.

Remark 4.145 If the spacetime manifold is orientable we do not need to consider,
as some authors claim (e.g., [20, 29]) that Je and G must be considered as pseudo
forms. A thoughtful discussion of this issue may be found in [5].
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4.9.6 Maxwell Equation in the Clifford Bundle

Let now, .M; g;D; 
g;"/ be a Lorentzian spacetime and let C`.M;g/ be the Clifford
bundle of differential forms. Since D is the Levi-Civita connection of g we know
(Eq. (4.152)) that the action of the Dirac operator @ on any P 2 sec

Vp T�M ,!
C`.M;g/ is @P D .d � ı/P. So, let us suppose that the Faraday field and the electric
current are sections of the Clifford bundle, i.e., F 2 sec

V2 T�M ,! C`.M;g/,
Je 2 sec

V1 T�M ,! C`.M;g/. In that case, it is licit two sum the equations
dF D 0 and ıF D �Je, which according to Eq. (4.251) represent the system of
Maxwell equations in the Hodge bundle. We get, of course, the single equation

@F D Je; (4.264)

which we be call Maxwell equation. Parodying Thirring [44] we may say that
Eq. (4.264) the twenty-first century representation of Maxwell system of equations.

Exercise 4.146 Show that in Minkowski spacetime .M;�;D; 
�;"/ (Defini-
tion 4.108) Eq. (4.264) is equivalent to the standard vector form of Maxwell
equations, that appears in elementary electrodynamics textbooks.

Solution We recall (see Table 3.1 in Chap. 3) that for any x 2 M, C`.T�
x M; �x/ '

R1;3 ' H.2/, is the so called spacetime algebra. The even elements of R1;3 close a
subalgebra called the Pauli algebra. That subalgebra is denoted by R

0
1;3 ' R3;0 '

C.2/. Also, H.2/ is the algebra of the 2 � 2 quaternionic matrices and C.2/ is the
algebra of the 2 � 2 complex matrices. As in Sect. 3.9.1 a convenient isomorphism
R
0
1;3 � R3;0 is easily exhibited. Choose a global orthonormal tetrad coframe f��g,

�� D dx�, � D 0; 1; 2; 3, and let f��g be the reciprocal tetrad of f��g, i.e., �	 ��� D
ı
�
	 . Now, put

�i D �i�0; i D ��0�1�2�3 D ��5: (4.265)

Observe that i commutes with bivectors and thus acts like the imaginary unity i Dp�1 in the subbundle C`0.M; �/ D S

x2M C`0.T�
x M; �x/ ,! C`.M; �/, which we

call Pauli bundle. Now, the electromagnetic field is represented in C`.M; �/ by F D
1
2
F�	�� ^ �	 2 sec

V2T�M ,! sec C`.M; �// with

F�	 D

0

B
B
@

0 �E1 �E2 �E3
E1 0 �B3 B2
E2 B3 0 �B1
E3 �B2 B1 0

1

C
C
A
; (4.266)

where (E1;E2;E3) and (B1;B2;B3) are the usual Cartesian components of the
electric and magnetic fields. Then, as it is easy to verify we can write

F D EE C iEB; (4.267)

with , EE D P3
iD1 Ei�i, EB D P3

iD1 Bi�i.
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For the electric current density Je D 
�0 C Ji�i we can write

�0Je D 
 �Ej D 
 � Ji�i: (4.268)

For the Dirac operator we have

�0@ D @

@x0
C

3X

iD1
�i@i D @

@t
C r: (4.269)

Multiplying both members of Eq. (4.264) on the left by �0 we obtain

�0@F D �0Je;

.
@

@t
C r/.EE C iEB/ D 
 �Ej (4.270)

From Eq. (4.270) we obtain

@0 EE C i@0EB C r � EE C r ^ EE C ir � EB C ir ^ EB D 
 �Ej: (4.271)

For any ‘vector field’ EA 2 C̀ 0.M; �/ ,! C̀ .M; �/ we define the rotational
operator r� by

r � EA D �ir ^ EA: (4.272)

This relation follows once we realize that the usual vector product of two vectors
Ea D P3

iD1 ai�i and Eb D P3
iD1 bi�i can be identified with the dual of the bivector

Ea ^ Eb through the formula Ea � Eb D �iEa ^ Eb. Finally we obtain from Eq. (4.271) by
equating terms with the same grades (in the Pauli subbundle )

(a) r � EE D 
; (b) r � EB � @0 EE D Ej;
(c) r � EE C @0 EB D 0; (d) r � EB D 0;

(4.273)

which we recognize as the system of Maxwell equations in the usual vector
notation.

We just exhibit three equivalent presentations of Maxwell systems of equations,
namely Eqs. (4.251), (4.264), and (4.273). They are some of the many faces of
Maxwell equations. Other faces exist as we shall see in Chap. 11.
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4.9.7 Einstein Equations and the Field Equations for the �a

As, it is the case of Maxwell equations, also Einstein equations have many faces.
Here we exhibit an interesting one which is possible once we have at our disposal the
Clifford bundle formalism. So, let now .M; g;D; 
g;"/ be a Lorentzian spacetime
(Definition 4.107) modelling a gravitational field in the general theory of Relativity
[38]. Let feag be an arbitrary orthonormal basis of TU (a tetrad32) and f�bg of T�M
its dual basis (a cotetrad), with a;b D 0; 1; 2; 3. We recall that Einstein’s equations
relating the distribution of matter energy represented by the energy-momentum
tensor T D Ta

b�
b ˝ ea2 sec T11U � sec T11M can be written (in appropriated units)

Ra
b � 1

2
ıa

bR D �Ta
b ; (4.274)

where Ra
b is the Ricci tensor and R is the scalar curvature. Multiplying both members

of Eq. (4.274) by �b and taking into account Eq. (4.228) defining the Ricci 1-forms
in terms of the Ricci operator @^@ (with @ D �aDea ) we can write after some trivial
algebra

@ ^ @ �a C T

2
�a D �Ta; (4.275)

where33 Ta D Ta
b�

b 2 sec
V1 T�M ,! sec C`.M; g/ are the energy-momentum

1-form fields and T D Ta
a .

Now, taking into account Eqs. (4.218) and (4.219) we can write

� @ � @ �a C @ ^ .@ � �a/C @y.@ ^ �a/C 1

2
T�a D �Ta: (4.276)

Now, let fx�g be the coordinate functions of a local chart of the maximal atlas
of M covering U � M. When �a is an exact differential, and in that case we write
�a 7! �� D dx� and if the coordinate functions are harmonic [10], i.e., ı�� D
�@y�� D g˛ˇ����

�˛ˇ D 0, Eq. (4.276) becomes

��� � 1

2
R�� D T�; (4.277)

where � is the covariant D’Alembertian operator (Definition 4.134).

32We shall see in Chap. 6 that any Lorentzian spacetime admitting spinor fields must have a global
tetrad.
33Sometimes in the written of some formulas in the next chapters it is convenient to use the notation
T a D �Ta .
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4.9.8 Curvature of a Connection and Bending. The Nunes
Connection of VS2

Consider the manifold VS2 D fS2nnorth pole + south poleg � R
3, it is an sphere of

radius R D 1 excluding the north and south poles. Let g 2 sec T02 VS2 be a metric

field for VS2, which is the pullback on it of the metric of the ambient space R3. Now,
consider two different connections on VS2, D—the Levi-Civita connection— and r c,
a connection—here called the Nunes34 (or navigator) connection35— defined by the
following parallel transport rule: a vector is parallel transported along a curve, if at
any x 2 S2 the angle between the vector and the vector tangent to the latitude line
passing through that point is constant during the transport (see Fig. 4.5).

Exercise 4.147 (i) Show that the structure .VS2; g;D/ is a Riemann geometry of
constant curvature and;

(ii) that the structure .VS2; g;r c/ is a teleparallel geometry, with zero Riemann
curvature tensor, but non zero tensor.

Solution The first part of the exercise is a standard one and can be found in many
good textbooks on differential geometry. Here, we only show (ii). We clearly see
from Fig. 4.5a that if we transport a vector along the infinitesimal quadrilateral
pqrs composed of latitudes and longitudes, first starting from p along pqr and then
starting from p along psr the parallel transported vectors that result in both cases
will coincide. Using the definition of the Riemann curvature tensor, we see that it is
null. So, we see that VS2 considered as part of the structure .VS2; g;rc/ is flat!

34Pedro Salacience Nunes (1502–1578) was one of the leading mathematicians and cosmographers
of Portugal during the Age of Discoveries. He is well known for his studies in Cosmography,
Spherical Geometry, Astronomic Navigation, and Algebra, and particularly known for his discov-
ery of loxodromic curves and the nonius. Loxodromic curves, also called rhumb lines, are spirals
that converge to the poles. They are lines that maintain a fixed angle with the meridians. In other
words, loxodromic curves directly related to the construction of the Nunes connection. A ship
following a fixed compass direction travels along a loxodromic, this being the reason why Nunes
connection is also known as navigator connection. Nunes discovered the loxodromic lines and
advocated the drawing of maps in which loxodromic spirals would appear as straight lines. This led
to the celebrated Mercator projection, constructed along these recommendations. Nunes invented
also the Nonius scales which allow a more precise reading of the height of stars on a quadrant. The
device was used and perfected at the time by several people, including Tycho Brahe, Jacob Kurtz,
Christopher Clavius and further by Pierre Vernier who in 1630 constructed a practical device for
navigation. For some centuries, this device was called nonius. During the nineteenth century, many
countries, most notably France, started to call it vernier. More details in http://www.mlahanas.de/
Stamps/Data/Mathematician/N.htm.
35Some authors call the Columbus connection the Nunes connection. Such name is clearly
unappropriated.

http://www.mlahanas.de/Stamps/Data/Mathematician/N.htm
http://www.mlahanas.de/Stamps/Data/Mathematician/N.htm
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Fig. 4.5 Characterization of the Nunes connection

Let .x1; x2/ D .#; '/ 0 < # < � , 0 < ' < 2� , be the standard spherical

coordinates of a VS2 or unitary radius, which covers all the open set U which is VS2
with the exclusion of a semi-circle uniting the north and south poles.

Introduce first the coordinate bases

f@� D @=@x�g; f�� D dx�g (4.278)

for TU and T�U.
Introduce next the orthonormal bases feag; f�ag for TU and T�U with

e1 D @1, e2 D 1

sin x1
@2; (4.279)

�1 D dx1;�2 D sin x1dx2: (4.280)

Then,

Œei; ej� D ck���ij ek; (4.281)

c2���12 D �c2���21 D � cot x1;

and

g D dx1 ˝ dx1 C sin2 x1dx2 ˝ dx2

D �1 ˝ �1 C �2 ˝ �2: (4.282)
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Now, it is obvious from what has been said above that our teleparallel connection
is characterized by

r c
ej

ei D 0: (4.283)

Then taking into account the definition of the curvature operator (defini-
tion (4.104)), we have

R.�a; ek; ei; ej/ D �a
�h

r c
ei
r c

ej
� r c

ej
r c

ei
� r c

Œei;ej�

i

ek

�

D 0: (4.284)

Also, taking into account the definition of the torsion operation (defini-
tion (4.103)) we have

�.ei; ej/ D r c
ejei � r c

eiej � Œei; ej�

D Œei; ej�; (4.285)

and T2���21 D �T2���12 D cot# .
If you still need more details, concerning this last result, consider Fig. 4.5b

which shows the standard parametrization of the points p; q; r; s in terms of the
spherical coordinates introduced above. According to the geometrical meaning of
torsion, we determine its value at a given point by calculating the difference between
the (infinitesimal)36 segments (vectors) pr1and pr2 determined as follows. If we
transport the vector pq along ps we get (recalling that R D 1) the vector Ev D sr1

such that
ˇ
ˇg.Ev; Ev/ˇˇ 12 D sin#4'. On the other hand, if we transport the vector ps

along pr we get the vector qr2 D qr. Let Ew D sr. Then,

ˇ
ˇg.Ew; Ew/ˇˇ D sin.# � 4#/4' ' sin#4' � cos#4#4'; (4.286)

Also,

Eu D r1r2 D �u.
1

sin#

@

@'
/;u D ˇ

ˇg.Eu; Eu/ˇˇ D cos#4#4' (4.287)

Then, the (Riemann-Cartan) connection r c of the structure .VS2; g;r c; 
g/ has a non
null torsion tensor ‚. Indeed, the component of Eu D r1r2 in the direction @=@' is
precisely T'#'4#4'. So, we get (recalling that r c

@j@i D �k���ji @k/

T'��
�#' D

�

�
'��
�#' � �

'��
�'#

�

D � cot �: (4.288)

36This wording, of course, means that this vectors are identified as elements of the appropriate
tangent spaces.
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To complete the exercise we must show that r cg D 0. We have,

0 D r c
ec

g.ei; ej/ D .r c
ec

g/.ei; ej/C g.r c
ec

ei; ej/C g.ei;r c
ec

ej/

D .r c
ec

g/.ei; ej/: (4.289)

Remark 4.148 This exercise, shows clearly that we cannot mislead the Riemann
curvature tensor of a connection with the fact that the manifold where that
connection is defined may be bend as a surface in an Euclidean manifold where it is
embedded. Bending is characterized by the shape operator37 (a fundamental concept
in differential geometry that will be presented in Chap. 5 using the Clifford bundle
formalism). Neglecting this fact may generate a lot of wishful thinking. Taking it
into account may suggest new formulations of the gravitational field theory as we
will show in Chap. 11.

4.9.9 “Tetrad” Postulate? On the Necessity of Precise
Notations

Given a differentiable manifold M, let X; Y 2 sec TM be vector fields and C 2
sec T�M a covector field. Let T M D L1

r;sD0 Tr
s M be the tensor bundle of M and P 2

sec T M a general tensor field. We already introduced in M a rule for differentiation
of tensor fields, namely the Lie derivative. Taking into account Appendix A.4 we
introduce three covariant derivatives operators, rC;r� and r , defined as follows:

rC W sec TM � sec TM ! sec TM;

.X; Y/ 7! rC
X Y; (4.290)

r� W sec TM � sec T�M ! sec TM;

.X;C/ 7! r�
X C; (4.291)

r W sec TM � sec �M ! sec TM;

.X;P/ 7! rXP; (4.292)

Each one of the covariant derivative operators introduced above satisfy the
following properties: Given, differentiable functions f ; g W M ! R, vector fields

37See, e.g., [17, 27, 34, 41] for details.



184 4 Some Differential Geometry

X;Y 2 sec TM and P;Q 2 sec T M we have

r f XCgYP D frXP C grYP;

rX.P C Q/ D rXP C rXQ;

rX. f P/ D frX.P/CX. f /P;

rX.P ˝ Q/ D rXP ˝ Q C P ˝ rXQ: (4.293)

The absolute differential of P 2 sec Tr
s M is given by the mapping

r W sec Tr
s M ! sec Tr

sC1M;

rP.X;X1; : : : ;Xs; ˛1; : : : ; ˛r/ D rXP.X1; : : : ;Xs; ˛1; : : : ; ˛r/;

X1; : : : ; Xs 2 sec TM; ˛1; : : : ˛r 2 sec T�M: (4.294)

To continue we must give the relationship between rC;r� and r . Let U � M
and consider a chart of the maximal atlas of M covering U coordinate functions
fx�g. Let g 2 sec T02M be a metric field for TM and g 2 sec T20M the corresponding
metric for TM (as introduced previously). Let f@�g be a basis for TU, U � M and
let f�� D dx�g be the dual basis of f@�g. The reciprocal basis of f��g is denoted
f��g, and we have g.��; �	/ D ı

�
	 . Introduce next a set of differentiable functions

ha
�; h

	
b W U ! R such that:

h�a qb
� D ıb

a ; h�a ha
	 D ı�	 : (4.295)

Define

eb D h	b@	

where the set feag is an orthonormal basis38 for TU, i.e., g.ea;eb/ D �ab. The
reciprocal basis of feag is feag and g.ea

; eb/ D ıa
b The dual basis of TU is f�ag,

with �a D ha
�dx� and g.�a;�b/ D �ab. Also, f�bg is the reciprocal basis of f�ag,

i.e. g.�a;�b/ D ıa
b. It is trivial to verify the formulas

g�	 D ha
�hb

	�ab; g�	 D h�a h	b�
ab;

�ab D h�a h	bg�	; �ab D ha
�hb

	g
�	: (4.296)

38PSOe
1;3
.M/ is the orthonormal frame bundle (see Appendix A.1.2).
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The connection coefficients associated to the respective covariant derivatives in
the respective bases are denoted as:

rC
@�
@	 D �
����	@
; r�

@�
@� D �������˛@˛; (4.297)

rC
ea

eb D !c���abec; rC
ea

eb D �!b���ac ec; rC
@�

eb D !c����bec; (4.298)

r�
@�

dx	 D ��	����˛dx˛; r�
@�
�	 D �
����	�
; (4.299)

r�
ea

�b D �!b���ac�
c; r�

@�
�b D �!b����a�a; (4.300)

r�
ea

�b D �!cab�c; (4.301)

!abc D �ad!
d���bc D �!cba; !

b�c�a� D �bk!kal�
cl; !b�c�a� D �!c�b�a� (4.302)

etc. . . (4.303)

To understood how r works, consider its action, e.g., on the sections of T11M D
TM ˝ T�M. For that case, if X 2 sec TM, C 2 sec T�M, we have that

r D rC ˝ IdT�M C IdTM ˝ r�; (4.304)

and

r .X ˝ C/ D .rCX/˝ C C X ˝ r�C: (4.305)

The general case, of r acting on sections of T M is an obvious generalization of
the previous one, and details are left to the reader.

For every vector field V 2 sec TU and a covector field C 2 sec T�U we have

rC
@�

V D rC
@�
.V˛@˛/; r�

@�
C D r�

@�
.C˛�

˛/ (4.306)

and using the properties of a covariant derivative operator introduced above, rC
@�

V
can be written as:

rC
@�

V D rC
@�
.V˛@˛/ D .rC

@�
V/˛@˛

D .@�V˛/@˛ C V˛rC
@�
@˛

D


@V˛

@x�
C V
�˛����


�

@˛ WD .rC
� V˛/@˛; (4.307)

where it is to be kept in mind that the symbol rC
� V˛ is a short notation for

rC
� V˛ WD .rC

@�
V/˛: (4.308)
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Also, we have

r�
@�

C D r�
@�
.C˛�

˛/ D .r�
@�

C/˛�
˛

D


@C˛
@x�

� Cˇ�
ˇ����˛

�

�˛;

WD .r�
�C˛/�

˛; (4.309)

where it is to be kept in mind that39 that the symbol r�
�C˛ is a short notation for

r�
�C˛ WD .r�

@�
C/˛: (4.310)

Remark 4.149 When there is no possibility of confusion, we shall use only the
symbol r to denote any one of the covariant derivatives introduced above. However,
the standard practice of many Physics textbooks of representing, rC

� V˛ and

rC
� V˛ by r�V˛ should be avoided whenever possible in order to not produce

misunderstandings (see Exercise below).

Exercise 4.150 Calculate r�
�ha

	 WD .r�
@�
�a/	 D .r�

@�
ha
˛@
˛/	 and rC

� ha
	 WD

.rC
@�
@	/

a D .rC
@�

hb
	eb/

a. Show that in general r�
�ha

	 ¤ rC
� ha

	 ¤ 0 and that

@�ha
	 C !a����bhb

	 � �a����bhb
	 D 0: (4.311)

Exercise 4.151 Define the object

e D ea ˝ �a D ha
�@� ˝ dx� 2 sec T11M; (4.312)

which is clearly the identity endomorphism acting on sections of TU. Show that

r�ha
	 WD .r@�e/a	 D @�ha

	 C !a����bhb
	 � �a����bhb

	 D 0: (4.313)

Remark 4.152 Equation (4.313) is presented in many textbooks (see., e.g., [2, 12,
37]) under the name ‘tetrad postulate’. In that books, since authors do not distinguish
clearly the derivative operators rC;r� and r , Eq. (4.313) becomes sometimes
misunderstood as meaning r�

�ha
	 or rC

� ha
	 , thus generating a big confusion. For

a discussion of this issue see [33].

39Recall that other authors prefer the notations .r @�V/˛ WD V˛
W� and .r @�C/˛ WD C˛W�. What is

important is always to have in mind the meaning of the symbols.



References 187

References

1. Baekler, P., Hehl, F.W., Mielke, E.W.: Nonmetricity and Torsion: Facts and Fancies in Gauge
Approaches to Gravity. In: Ruffini, R. (ed.) Proceedings of 4th Marcel Grossmann Meeting on
General Relativity, pp. 277–316. North-Holland, Amsterdam (1986)

2. Carroll, S.M.: Lecture Notes in Relativity [gr-qc/9712019] (1997)
3. Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics,

revisited edn. North Holland, Amsterdam (1982)
4. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras. Kluwer Academic, Dordrecht

(1990)
5. da Rocha, R., Rodrigues, W.A. Jr., Pair and impair, even and odd form fields and electromag-

netism. Ann. Phys. 19, 6–34 (2010). arXiv:0811.1713v7 [math-ph]
6. De Rham, G.: Variétés Différentiables. Hermann, Paris (1960)
7. de Vries, H.: On the electromagnetic Chern Simons spin density as hidden variable and EPR

correlations. http://physics-quest.org/ChernSimonsSpinDensity.pdf
8. Drechsler, W.: Poincaré gauge field theory and gravitation. Ann. Inst. H. Poincaré 37, 155–184

(1982)
9. Fernández, V.V., Rodrigues, W.A. Jr., Gravitation as Plastic Distortion of the Lorentz Vacuum,

Fundamental Theories of Physics. vol. 168. Springer, Heidelberg (2010). Errata for the book at
http://www.ime.unicamp.br/~walrod/errataplastic

10. Fock, V.: The Theory of Space, Time and Gravitation, 2nd revised edn. Pergamon Press, Oxford
(1964)

11. Frankel, T.: The Geometry of Physics. Cambridge University Press, Cambridge (1997)
12. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, vol. 2. Cambridge University

Press, Cambridge (1987)
13. Grishchuk, L.P., Petrov, A.N., Popova, A.D.: Exact theory of the (Einstein) gravitational field

in an arbitrary background spacetime. Comm. Math. Phys. 94, 379–396 (1984)
14. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University

Press, Cambridge (1973)
15. Hehl, F.W., Datta, B.K.: Nonlinear spinor equation and asymmetric connection in general

relativity. J. Math. Phys. 12, 1334–1339 (1971)
16. Hehl, F.W., Obukhov, Y.N.: Foundations of Classical Electrodynamics. Birkhäuser, Boston

(2003)
17. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel, Dordrecht

(1984)
18. Jehle, H.: Relationship of flux quantization to charge quantization and the electromagnetic

coupling constant. Phys. Rev. D. 3, 306–345 (1971)
19. Jehle, H.: Flux quantization and particle physics. Phys. Rev. D 6, 441–457 (1972)
20. Kiehn, R.M.: Non-equilibrium and irreversible thermodynamics-from a topological perspec-

tive. Adventures in Applied Topology, vol. 1. Lulu Enterprises, Inc., Morrisville (2003). http://
lulu.com.kiehn

21. Lawson, H.B. Jr., Michelson, M.L.: Spin Geometry. Princeton University Press, Princeton
(1989)

22. Leão, R.F., Rodrigues, W.A. Jr., Wainer, S.A.: Concept of Lie derivative of spinor fields. A
Clifford bundle approach. Adv. Appl. Clifford Algebras (2015) doi:10.1007/s00006-015-0560-
y. arXiv:1411.7845v2 [math-ph]

23. Logunov, A.A., Loskutov, Yu.M., Mestvirishvili, M.A.: Relativistic theory of gravity. Int. J.
Mod. Phys. A 3, 2067–2099 (1988)

24. Maia, A. Jr., Recami, E., Rosa, M.A.F., Rodrigues, W.A. Jr.: Magnetic monopoles without
string in the Kähler-Clifford algebra bundle. J. Math. Phys. 31, 502–505 (1990)

25. Nakahara, M.: Geometry, Topology and Physics. Institute of Physics Publications, Bristol and
Philadelphia (1990)

26. Nester, J.M., Yo, H.-J.: Symmetric teleparallel general relativity. Chin. J. Phys. 37, 113–117
(1999). arXiv:gr-qc/909049v2

http://physics-quest.org/ChernSimonsSpinDensity.pdf
http://www.ime.unicamp.br/~walrod/errataplastic
http://lulu.com.kiehn
http://lulu.com.kiehn


188 4 Some Differential Geometry

27. O’Neill, B.: Elementary Differential Geometry. Academic Press, New York (1966)
28. Osborn, H.: Vector Bundles, vol. I. Academic Press, New York (1982)
29. Post, J.E.: Quantum Reprogramming. Kluwer Academic, Dordrecht (1995)
30. Rapoport, D.C.: Riemann-Cartan-Weyl Quantum Geometry I. Laplacians and Supersymmetric

Systems. Int. J. Theor. Phys. 35, 287–309 (1996)
31. Ray, M.W., Ruokoloski, E., Kandel, S., Möttönen, M., Hall, D.S.: Observation of dirac

monopoles in a synthetic magnetic field. Nature 550, 657–666 (2014)
32. Rodrigues, W.A. Jr., de Oliveira, E.C.: Maxwell and Dirac equations in the Clifford and spin-

Clifford bundles. Int. J. Theor. Phys. 29, 397–412 (1990)
33. Rodrigues, W.A. Jr., Souza, Q.A.G.: An ambiguous statement called ‘tetrad postulate’ and the

correct field equations satisfied by the tetrad fields. Int. J. Mod. Phys. D 14, 2095–2150, (2005).
arXiv.org/math-ph/041110

34. Rodrigues, W.A. Jr., Wainer, S.: A Clifford bundle approach to the differential geometry of
branes. Adv. Appl. Clifford Algebras 24, 817–847 (2014). arXiv:1309.4007 [math-ph]

35. Rosen, N.: A bimetric theory of gravitation. Gen. Rel. Gravit. 4, 435–447(1973)
36. Rosen, N.: Some Schwarzschild solutions and their singularities. Found. Phys. 15, 517–529

(1985). arXiv:1109.5272v3 [math-ph]
37. Rovelli, C.: Loop Gravity. Cambridge University Press, Cambridge (2004). http://www.cpt.

univ-mrs.fr/\char126\relaxrovelli/book.pdf
38. Sachs, R.K., Wu, H.: General Relativity for Mathematicians. Springer, New York (1977)
39. Sédov, L.: Mécanique des Milleus Continus. Mir, Moscow (1975)
40. Schouten, J.A.: Ricci Calculus. Springer, Berlin (1954)
41. Sobczyk, G.: Conformal mappings in geometrical algebra. Not. Am. Math. Soc. 59, 264–273

(2012) Ann. Fond. L. de Broglie 27, 303–328 (2002)
42. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1971)
43. Spivack, M.: Calculus on Manifolds. W.A. Benjamin, New York (1965)
44. Thirring, W.: Classical Field Theory, vol. 2. Springer, New York (1980)
45. Thirring, W., Wallner, R.P.: The Use of Exterior forms in Einstein’s gravitational theory. Braz.

J. Phys. 8, 686–723 (1978)
46. Wallner, R.P.: Exact solutions in U4 Gravity. I. The ansatz for self double dual curvature. Gen.

Rel. Grav. 23, 623–629 (1991)
47. Zorawski, M.: Théorie Mathématiques des Dislocations. Dunod, Paris (1967)

http://www.cpt.univ-mrs.fr/char 126
elax rovelli/book.pdf
http://www.cpt.univ-mrs.fr/char 126
elax rovelli/book.pdf

	4 Some Differential Geometry
	4.1 Differentiable Manifolds
	4.1.1 Manifold with Boundary
	4.1.2 Tangent Vectors
	4.1.3 Tensor Bundles
	4.1.4 Vector Fields and Integral Curves
	4.1.5 Derivative and Pullback Mappings
	4.1.6 Diffeomorphisms, Pushforward and Pullback when M=N
	4.1.7 Lie Derivatives
	4.1.8 Properties of £v
	4.1.9 Invariance of a Tensor Field

	4.2 Cartan Bundle, de Rham Periods and Stokes Theorem
	4.2.1 Cartan Bundle
	4.2.2 The Interior Product of Forms and Vector Fields
	4.2.3 Extensor Fields
	4.2.4 Exact and Closed Forms and Cohomology Groups

	4.3 Integration of Forms
	4.3.1 Orientation
	4.3.2 Integration of a n-Form
	4.3.3 Chains and Homology Groups
	Orientation of Subspaces

	4.3.4 Integration of a r-Form
	4.3.5 Stokes Theorem
	4.3.6 Integration of Closed Forms and de Rham Periods

	4.4 Differential Geometry in the Hodge Bundle
	4.4.1 Riemannian and Lorentzian Structures on M
	4.4.2 Hodge Bundle
	4.4.3 The Global Inner Product of p-Forms

	4.5 Pullbacks and the Differential
	4.6 Structure Equations I
	4.6.1 Exterior Covariant Differential of (p+q)-Indexed r-Form Fields
	4.6.2 Bianchi Identities
	4.6.3 Induced Connections Under Diffeomorphisms

	4.7 Classification of Geometries on M and Spacetimes
	4.7.1 Spacetimes

	4.8 Differential Geometry in the Clifford Bundle
	4.8.1 Clifford Fields as Sums of Nonhomogeneous Differential Forms
	4.8.2 Pullbacks and Relation Between Hodge StarOperators
	4.8.3 Dirac Operators
	The Standard Dirac Operator

	4.8.4 Standard Dirac Commutator and DiracAnticommutator
	4.8.5 Geometrical Meanings of the Commutator and Anticommutator
	Killing Coefficients

	4.8.6 Associated Dirac Operators
	4.8.7 The Dirac Operator in Riemann-Cartan-Weyl Spaces
	4.8.8 Torsion, Strain, Shear and Dilation of a Connection
	4.8.9 Structure Equations II
	4.8.10 D'Alembertian, Ricci and Einstein Operators
	4.8.11 The Square of a General Dirac Operator

	4.9 Some Applications
	4.9.1 Maxwell Equations in the Hodge Bundle
	4.9.2 Charge Conservation 
	4.9.3 Flux Conservation
	4.9.4 Quantization of Action
	4.9.5 A Comment on the Use of de Rham Pseudo-Forms and Electromagnetism
	4.9.6 Maxwell Equation in the Clifford Bundle
	4.9.7 Einstein Equations and the Field Equations for the θa
	4.9.8 Curvature of a Connection and Bending. The Nunes Connection of 2
	4.9.9 ``Tetrad'' Postulate? On the Necessity of Precise Notations

	References


