
Chapter 3
The Hidden Geometrical Nature of Spinors

Abstract This chapter reviews the classification of the real and complex Clifford
algebras and analyze the relationship between some particular algebras that are
important in physical applications, namely the quaternion algebra .R0;2/, Pauli
algebra .R3;0/, the spacetime algebra .R1;3/, the Majorana algebra .R3;1/ and
the Dirac algebra .R4;1/. A detailed and original theory disclosing the hidden
geometrical meaning of spinors is given through the introduction of the concepts
of algebraic, covariant and Dirac-Hestenes spinors. The relationship between these
kinds of spinors (that carry the same mathematical information) is elucidated
with special emphasis for cases of physical interest. We investigate also how to
reconstruct a spinor from their so-called bilinear invariants and present Lounesto’s
classification of spinors. Also, Majorana, Weyl spinors, the dotted and undotted
algebraic spinors are discussed with the Clifford algebra formalism.

3.1 Notes on the Representation Theory of Associative
Algebras

To achieve our goal mentioned in Chap. 1 of disclosing the real secret geometrical
meaning of Dirac spinors, we shall need to briefly recall some few results of the
theory of representations of associative algebras. Propositions are presented without
proofs and the interested reader may consult [3, 8, 12, 16, 20, 21] for details.

Let V be a finite dimensional linear space over K (a division ring). Suppose that
dimK V D n, where n 2 Z. We are interested in what follows in the cases where
K D R;C or H. In this case we also call V a vector space over K. When K D H it
is necessary to distinguish between right or left H-linear spaces and in this case V
will be called a right or left H-module. Recall that H is a division ring (sometimes
called a noncommutative field or a skew field) and since H has a natural vector space
structure over the real field, then H is also a division algebra.

Definition 3.1 Let V be a vector space over R and dimR V D 2m D n. A linear
mapping

J W V ! V (3.1)
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70 3 The Hidden Geometrical Nature of Spinors

such that

J2 D �IdV; (3.2)

s called a complex structure mapping.

Definition 3.2 Let V be as in the previous definition. The pair .V; J/ is called a
complex vector space structure and denote by VC if the following product holds.
Let C 3 z D a C ib (i D p�1) and let v 2 V. Then

zv D .a C ib/v D av C bJv: (3.3)

It is obvious that dimC D m
2

.

Definition 3.3 Let V be a vector space overR. A complexification of V is a complex
structure associated with the real vector space V ˚ V. The resulting complex vector
space is denoted by VC. Let v;w 2 V. Elements of VC are usually denoted by c D
v C iw, and if C 3 z D a C ib we have

zc D av � bw C i.aw C bv/: (3.4)

Of course, we have that dimC VC D dimR V.

Definition 3.4 A H-module is a real vector space S carrying three linear transfor-
mation, I, J and K each one of them satisfying

I2 D J2 D �IdS,

IJ D �JI D K; JK D �KJ D I; KI D �IK D J: (3.5a)

Exercise 3.5 Show that K2 D �IdS

In what follows A denotes an associative algebra on the commutative field
F D R or C and F �A.

Definition 3.6 Any subset I � A such that

a 2 I;8a 2 A; 8 2 I;

 C � 2 I;8 ; � 2 I (3.6)

is called a left ideal of A.

Remark 3.7 An analogous definition holds for right ideals where Eq. (3.6) reads
 a 2 I;8a 2 A;8 2 I, for bilateral ideals where in this case Eq. (3.6) reads
a b 2 I;8a; b 2 A;8 2 I.

Definition 3.8 An associative algebra A is simple if the only bilateral ideals are the
zero ideal and A itself.
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Not all algebras are simple and in particular semi-simple algebras are important
for our considerations. A definition of semi-simple algebras requires the intro-
duction of the concepts of nilpotent ideals and radicals. To define these concepts
adequately would lead us to a long incursion on the theory of associative algebras,
so we avoid to do that here. We only quote that semi-simple algebras are the direct
sum of simple algebras and of course simple algebras are semi simple. Then, for our
objectives in this chapter the study of semi-simple algebras is reduced to the study
of simple algebras.

Definition 3.9 We say that e 2A is an idempotent element if e2 D e. An idempotent
is said to be primitive if it cannot be written as the sum of two non zero annihilating
(or orthogonal) idempotent, i.e., e¤e1 C e2, with e1e2 D e2e1 D 0 and e21 D e1;
e22 D e2.

We give without proofs the following theorems valid for semi-simple (and thus
simple) algebras A:

Theorem 3.10 All minimal left (respectively right) ideals of semi-simple A are of
the form J D Ae (respectively eA), where e is a primitive idempotent of A.

Theorem 3.11 Two minimal left ideals of a semi-simple algebra A, J D Ae and
J D Ae0 are isomorphic, if and only if, there exist a non null Y 0 2 J0 such that
J0 D JY 0.

Let A be an associative and simple algebra on the field F.R or C/, and let S be
a finite dimensional linear space over a division ring K � F and let E D EndKS D
HomK.S;S/ be the endomorphism algebra of S.1

Definition 3.12 A representation of A in S is a K algebra homomorphism2 � W
A ! E D EndKS which maps the unit element of A to IdE. The dimension K of S
is called the degree of the representation.

Definition 3.13 The addition in S together with the mapping A � S ! S, .a; x/ 7!
�.a/x turns S in a left A-module,3 called the left representation module.

Remark 3.14 It is important to recall that when K D H the usual recipe for
HomH.S;S/ to be a linear space over H fails and in general HomH.S;S/ is
considered as a linear space over R, which is the centre of H.

1Recall that HomK.V;W/ is the algebra of linear transformations of a finite dimensional vector
space V over K into a finite vector space W over K. When V D W the set EndKV DHomK.V;V/
is called the set of endomorphisms of V.
2We recall that a K-algebra homomorphism is a K-linear map � such that 8X; Y 2 A; �.XY/ D
�.X/�.Y/.
3We recall that there are left and right modules, so we can also define right modular representations
of A by defining the mapping S�A ! S, .x; a/ 7! x�.a/. This turns S in a right A-module, called
the right representation module.
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Remark 3.15 We also have that if A is an algebra on F and S is an A-module, then
S can always be considered as a vector space over F and if a 2 A, the mapping
� W a ! �a with �a.s/ D as; s 2 S, is a homomorphism A ! EndFS, and so it is a
representation of A in S. The study of A modules is then equivalent to the study of
the F representations of A.

Definition 3.16 A representation � is faithful if its kernel is zero, i.e., �.a/x D
0;8x 2 S ) a D 0. The kernel of � is also known as the annihilator of its module.

Definition 3.17 � is said to be simple or irreducible if the only invariant subspaces
of �.a/;8a 2 A, are S and f0g.

Then, the representation module is also simple. That means that it has no proper
submodules.

Definition 3.18 � is said to be semi-simple, if it is the direct sum of simple
modules, and in this case S is the direct sum of subspaces which are globally
invariant under �.a/;8a 2 A.

When no confusion arises �.a/x may be denoted by a � x or ax.

Definition 3.19 Two A-modules S and S0 (with the “exterior” multiplication being
denoted respectively by Þ and �) are isomorphic if there exists a bijection ' W
S ! S0 such that,

'.x C y/ D '.x/C '.y/; 8x; y 2 S;

'.a Þ x/ D a � '.x/; 8a 2 A; (3.7)

and we say that the representations � and �0 of A are equivalent if their modules are
isomorphic.

This implies the existence of a K-linear isomorphism ' W S ! S0 such that ' ı
�.a/ D �0.a/ ı';8a 2 A or �0.a/ D ' ı �.a/ ı'�1. If dim S D n, then dim S0 D n.

Definition 3.20 A complex representation of A is simply a real representation � W
A ! HomR.S;S/ for which

�.Y/ ı J D J ı �.Y/;8Y 2 A: (3.8)

This means that the image of � commutes with the subalgebra generated by
fIdS; Jg � C.
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Definition 3.21 A quaternionic representation of A is a representation � W A !
HomR.S;S/ such that

�.Y/ ı I D I ı �.Y/; �.Y/ ı J D Jı�.Y/; �.Y/ ı K D Kı�.Y/;8Y 2 A: (3.9)

This means that the representation � has a commuting subalgebra isomorphic to
the quaternion ring.

The following theorem is crucial:

Theorem 3.22 (Wedderburn). If A is simple algebra over F then A is isomorphic
to D.m/, where D.m/ is a matrix algebra with entries in D (a division algebra), and
m and D are unique (modulo isomorphisms).

3.2 Real and Complex Clifford Algebras and Their
Classification

Now, it is time to specialize the previous results to the Clifford algebras on the field
F D R or C. We are particularly interested in the case of real Clifford algebras.
In what follows we take V D R

n. We denote as in the previous chapter by R
p;q

(n D p C q) the real vector space R
n endowed with a nondegenerate metric g W

R
n � R

n ! R. Let fEig ; .i D 1; 2; : : : ; n/ be an orthonormal basis of Rp;q,

g.Ei;Ej/ D gij D gji D
8
<

:

C1; i D j D 1; 2; : : : p;
�1; i D j D p C 1; : : : ; p C q D n;
0; i ¤ j:

(3.10)

We recall (Definition 2.37 that the Clifford algebra Rp;q D C`.Rp;q/ is the
Clifford algebra over R, generated by 1 and the fEig ; .i D 1; 2; : : : ; n/ such that
E2i D g.Ei;Ei/, EiEj D �EjEi.i ¤ j/, and E1E2 : : :En ¤ ˙1.

Rp;q is obviously of dimension 2n and as a vector space it is the direct sum of
vector spaces

Vk
R

n of dimensions
�n

k

�
; 0 � k � n. The canonical basis of

Vk
R

n

is given by the elements eA D E˛1 	 	 	 E˛k ; 1 � ˛1 < : : : < ˛k � n. The element
eJ D E1 	 	 	 En 2 Vn

R
n ,! Rp;q commutes (n odd) or anticommutes (n even) with

all vectors E1; : : : ;En 2 V1
R

n 
 R
n. The center Rp;q is

V0
R

n 
 R if n is even
and it is the direct sum

V0
R

n ˚V0
R

n if n is odd.4

All Clifford algebras are semi-simple. If p C q D n is even, Rp;q is simple and if
p C q D n is odd we have the following possibilities:

(a) Rp;q is simple $ e2J D �1 $ p�q ¤ 1 (mod 4) $ center of Rp;q is isomorphic
to C;

(b) Rp;q is not simple (but is a direct sum of two simple algebras) $ e2J D C1 $
p � q D 1 (mod 4) $ center of Rp;q is isomorphic to R ˚ R.

4For a proof see [20].
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Now, for Rp;q the division algebras D are the division rings R, C or H. The
explicit isomorphism can be discovered with some hard but not difficult work. It is
possible to give a general classification of all real (and also the complex) Clifford
algebras and a classification table can be found, e.g., in [20]. One convenient table
is the following one (where � D Œn=2� means the integer part of n=2).

We denoted by R
0
p;q the even subalgebra of Rp;q and by R

1
p;q the set of odd

elements of Rp;q. The following very important result holds true

Proposition 3.23 R
0
p;q ' Rp;q�1 and also R

0
p;q ' Rq;p�1:

Now, to complete the classification we need the following theorem:

Theorem 3.24 (Periodicity)5 We have

RnC8 D Rn;0 ˝ R8;0 R0;nC8 D R0;n ˝ R0;8

RpC8;q D Rp;q ˝ R8;0 Rp;qC8 D Rp;q ˝ R0;8:
(3.11)

Remark 3.25 We emphasize here that since the general results concerning the
representations of simple algebras over a field F applies to the Clifford algebras
Rp;q we can talk about real, complex or quaternionic representation of a given
Clifford algebra, even if the natural matrix identification is not a matrix algebra
over one of these fields. A case that we shall need is that R1;3 ' H.2/. But it is
clear that R1;3 has a complex representation, for any quaternionic representation of
Rp;q is automatically complex, once we restrict C � H and of course, the complex
dimension of any H-module must be even. Also, any complex representation of Rp;q

extends automatically to a representation of C ˝ Rp;q.

Remark 3.26 C ˝ Rp;q is isomorphic to the complex Clifford algebra C`pCq. The
algebras C and Rp;q are subalgebras of C`pCq

3.2.1 Pauli, Spacetime, Majorana and Dirac Algebras

For the purposes of our book we shall need to have in mind that:

R0;1 ' C;

R0;2 ' H;

R3;0 ' C.2/;

R1;3 ' H.2/;

R3;1 ' R.4/;

R4;1 ' C.4/:

(3.12)

5See [20].
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R3;0 is called the Pauli algebra, R1;3 is called the spacetime algebra, R3;1 is called
Majorana algebra andR4;1 is called the Dirac algebra. Also, the following particular
results, which can be easily proved, will be used many times in what follows:

R
0
1;3 ' R

0
3;1 D R3;0; R

0
4;1 ' R1;3; R

0
1;4 ' R1;3;

R4;1 ' C ˝ R3;1; R4;1 ' C ˝ R3;1: (3.13)

In words: the even subalgebras of both the spacetime and Majorana algebras is the
Pauli algebra. The even subalgebra of the Dirac algebra is the spacetime algebra and
finally the Dirac algebra is the complexification of the spacetime algebra or of the
Majorana algebra.

Equation (3.13) show moreover, in view of Remark 3.26 that the spacetime
algebra has also a matrix representation in C.4/. Obtaining such a representation
is very important for the introduction of the concept of a Dirac-Hestenes spinor, an
important ingredient of the present work.

3.3 The Algebraic, Covariant and Dirac-Hestenes Spinors

3.3.1 Minimal Lateral Ideals of Rp;q

We now give some results concerning the minimal lateral ideals of Rp;q.

Theorem 3.27 The maximum number of pairwise orthogonal idempotents in K.m/
(where K D R, C or H) is m .

The decomposition of Rp;q into minimal ideals is then characterized by a spectral
set {epq;j} of idempotents elements of Rp;q such that:

(a)
nP

iD1
epq;j D 1;

(b) epq;jepq;k D ıjkepq;j;
(c) the rank of epq;j is minimal and non zero, i.e., is primitive.

By rank of epq;j we mean the rank of the
V

R
p;q morphism, epq;j W � 7�! �epq;j.

Conversely, any � 2 Ipq;j can be characterized by an idempotent epq;j of minimal
rank ¤ 0, with � D �epq;j.

We now need to know the following theorem [13]:

Theorem 3.28 A minimal left ideal of Rp;q is of the type

Ipq D Rp;qepq; (3.14)

where

epq D 1

2
.1C e˛1/ 	 	 	 1

2
.1C e˛k/ (3.15)
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is a primitive idempotent of Rp;q and where e˛1 ; : : : ; e˛k are commuting elements in
the canonical basis of Rp;q (generated in the standard way through the elements of
a basis .E1;:::;Ep;EpC1; : : :EpCq/ of Rp;q) such that .e˛i/

2 D 1; .i D 1; 2; : : : ; k/
generate a group of order 2k, k D q � rq�p and ri are the Radon-Hurwitz numbers,
defined by the recurrence formula riC8 D ri C 4 and

i 0 1 2 3 4 5 6 7

ri 0 1 2 2 3 3 3 3
: (3.16)

Recall that Rp;q is a ring and the minimal lateral ideals are modules over the ring
Rp;q. They are representation modules of Rp;q, and indeed we have (recall the above
table) the following theorem [13]:

Theorem 3.29 If p C q is even or odd with p � q ¤ 1.mod 4/, then

Rp;q D HomK.Ipq; Ipq/ ' K.m/; (3.17)

where (as we already know) K D R, C or H. Also,

dimK.Ipq/ D m; (3.18)

and

K ' eK.m/e; (3.19)

where e is the representation of epq in K.m/.
If p C q D n is odd, with p � q D 1 .mod 4/, then

Rp;q D HomK.Ipq; Ipq/ ' K.m/˚ K.m/; (3.20)

with

dimK.Ipq/ D m (3.21)

and

eK.m/e ' R ˚ R

or (3.22)

eK.m/e ' H ˚ H:

With the above isomorphisms we can immediately identify the minimal left
ideals of Rp;q with the column matrices of K.m/.
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Table 3.1 Representation of the Clifford algebras Rp;q as matrix algebras

p � q

mod 8 0 1 2 3 4 5 6 7

Rp;q R.2�/ R.2�/
˚

R.2�/

R.2�/ C.2�/ H.2��1/ H.2��1/
˚

H.2��1/

H.2��1/ C.2�/

3.3.2 Algorithm for Finding Primitive Idempotents of Rp;q

With the ideas introduced above it is now a simple exercise to find primitive
idempotents of Rp;q. First we look at Table 3.1 and find the matrix algebra to which
our particular Clifford algebra Rp;q is isomorphic. Suppose Rp;q is simple.6 Let
Rp;q ' K.m/ for a particular K and m. Next we take an element e˛1 2 feAg from the
canonical basis feAg of Rp;q such that

e2˛1 D 1: (3.23)

Next we construct the idempotent epq D .1 C e˛1/=2 and the ideal Ipq D Rp;qepq

and calculate dimK.Ipq/. If dimK.Ipq/ D m, then epq is primitive. If dimK.Ipq/ ¤ m,
we choose e˛2 2 feAg such that e˛2 commutes with e˛1 and e2˛2 D 1 and construct
the idempotent e0

pq D .1C e˛1/.1C e˛2/=4. If dimK.I0
pq/ D m, then e0

pq is primitive.
Otherwise we repeat the procedure. According to Theorem 3.28 the procedure is
finite.

3.3.3 R
?
p;q, Clifford, Pinor and Spinor Groups

The set of the invertible elements of Rp;q constitutes a non-abelian group which we
denote by R

?
p;q. It acts naturally on Rp;q as an algebra homomorphism through its

twisted adjoint representation ( OAd) or adjoint representation (Ad)

OAd W R?p;q ! Aut.Rp;q/I u 7! Adu; with Adu.x/ D uxOu�1; (3.24)

Ad W R?p;q ! Aut.Rp;q/I u 7! Adu; with Adu.x/ D uxu�1 (3.25)

6Once we know the algorithm for a simple Clifford algebra it is straightforward to devise an
algorithm for the semi-simple Clifford algebras.
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Definition 3.30 The Clifford-Lipschitz group is the set

�p;q D ˚
u 2 R

?
p;q

ˇ
ˇ 8x 2 R

p;q; uxOu�1 2 R
p;q
�
; (3.26a)

or

�p;q D ˚
u 2 R

?.0/
p;q [ R

?.1/
p;q

ˇ
ˇ 8x 2 R

p;q; uxu�1 2 R
p;q
�
; (3.26b)

Note in Eq. (3.26b) the restriction to the even (R?.0/p;q ) and odd .R?.1/p;q ) parts of
R
?
p;q.

Definition 3.31 The set �0p;q D �p;q \ R
0
p;q is called special Clifford-Lipschitz

group.

Definition 3.32 The Pinor group Pinp:q is the subgroup of �p;q such that

Pinp;q D ˚
u 2 �p;q jN.u/ D ˙1� ; (3.27)

where

N W Rp;q ! Rp;q;N.x/ D hNxxi0: (3.28)

Definition 3.33 The Spin group Spinp;q is the set

Spinp;q D ˚
u 2 �0p;qjN.u/ D ˙1� : (3.29)

It is easy to see that Spinp;q is not connected.

Definition 3.34 The Special Spin Group Spine
p;q is the set

Spine
p;q D ˚

u 2 Spinp;qjN.u/ D C1� : (3.30)

The superscript e, means that Spine
p;q is the connected component to the identity.

We can prove that Spine
p;q is connected for all pairs .p; q/ with the exception of

Spine.1; 0/ ' Spine.0; 1/.
We recall now some classical results [17] associated with the pseudo-orthogonal

groups Op;q of a vector space Rp;q (n D pCq) and its subgroups. Let G be a diagonal
n � n matrix whose elements are Gij

G D ŒGij� D diag.1; 1; : : : ;�1;�1; : : : � 1/; (3.31)

with p positive and q negative numbers.



3.3 The Algebraic, Covariant and Dirac-Hestenes Spinors 79

Definition 3.35 Op;q is the set of n � n real matrices L such that

LGLT D G; det L2 D 1: (3.32)

Equation (3.32) shows that Op;q is not connected.

Definition 3.36 SOp;q, the special (proper) pseudo orthogonal group is the set of
n � n real matrices L such that

LGLT D G; det L D 1: (3.33)

When p D 0 (q D 0) SOp;q is connected. However, SOp;q (for, p; q ¤ 0) is not
connected and has two connected components for p; q � 1.

Definition 3.37 The group SOe
p;q, the connected component to the identity of SOp;q

will be called the special orthochronous pseudo-orthogonal group.7

Theorem 3.38 AdjPinp;q
W Pinp;q ! Op;q is onto with kernel Z2.

AdjSpinp;q
W Spinp;q ! SOp;q is onto with kernel Z2. AdjSpine

p;q
W Spine

p;q ! SOe
p;q

is onto with kernel Z2.
We have,

Op;q D Pinp;q

Z2
; SOp;q D Spinp;q

Z2
; SOe

p;q D Spine
p;q

Z2
: (3.34)

The group homomorphism between Spine
p;q and SOe.p; q/ will be denoted by

L W Spine
p;q ! SOe

p;q: (3.35)

The following theorem that first appears in [20] is very important.

Exercise 3.39 (Porteous). Show that for p C q � 4, Spine.p; q/ D fu 2 Rp;qjuQu D
1g.

Solution We must show that for any u 2 R
0
p;q, N.u/ D ˙1 and x 2 R

p;q we have

that OAdu.x/ 2 R
p;q. But when u 2 R

0
p;q, OAdu.x/ D uxu�1. We must then show that

y D uxu�1 2 R
p;q.

7This nomenclature comes from the fact that SOe.1; 3/ D L"

C is the special (proper) orthochronous
Lorentz group. In this case the set is easily defined by the condition L00 � C1. For the general case
see [17].
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Since u 2 R
0
p;q we have that y 2 R

1
p;q. Let ei; i D 1; 2; 3; 4 an orthonormal basis

of Rp;q, p C q D 4. Now, Ny D .uyu�1/^~ D �uxu�1 D �y. Writing

y D yiei C 1

3Š
yijkeiejek,

yi; yijk 2 R;

we get

Ny D �yiei;

from which follows that y 2 R
p;q.

3.3.4 Lie Algebra of Spine
1;3

It can be shown [14, 16, 23] that for each u 2 Spine
1;3 it holds u D ˙eF;F 2

V2
R
1;3 ,! R1;3 and F can be chosen in such a way to have a positive sign in

Eq. (3.33), except in the particular case F2 D 0 when u D �eF. From Eq. (3.33)
it follows immediately that the Lie algebra of Spine

1;3 is generated by the bivectors

F 2 V2
R
1;3 ,! R1;3 through the commutator product.

Exercise 3.40 Show that when F2 D 0 we must have u D �eF.

3.4 Spinor Representations of R4;1;R
0
4;1

and R1;3

We investigate now some spinor representations of R4;1;R04;1 and R1;3 which will
permit us to introduce the concepts algebraic, Dirac and Dirac-Hestenes spinors in
the next section.

Let b0 D fe0; e1; e2; e3g be an orthogonal basis of R
1;3 ,! R1;3, such that

e�e�Ce�e� D 2	�� , with 	
� D diag.C1;�1;�1;�1/. Now, with the results of the
previous section we can verify without difficulties that the elements e, e0; e00 2 R1;3

e D 1

2
.1C e0/ (3.36)

e0 D 1

2
.1C e3e0/ (3.37)

e00 D 1

2
.1C e1e2e3/ (3.38)
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are primitive idempotents of R1;3. The minimal left ideals,8 I D R1;3e, I0 D R1;3e0,
I00 D R1;3e00 are right two dimension linear spaces over the quaternion field (He D
eH D eR1;3e).

An elements ˆ 2 R1;3
1
2
.1 C e0/ has been called by Lounesto [15] a mother

spinor.9 Let us see the justice of this denomination. First recall from the general

result of the previous section that Pin1;3
Z2

' O1;3,
Spin1;3
Z2

' SO1;3,
Spine

1;3

Z2
' SOe

1;3,

and Spine
1;3 ' Sl.2;C/ is the universal covering group of L"

C 
 SOe
1;3, the special

(proper) orthochronous Lorentz group. We can show [10, 11] that the ideal I D
R1;3e carries the D.1=2;0/ ˚ D.0;1=2/ representation of Sl.2;C/. Here we need to
know [10, 11] that each ˆ can be written as

ˆ D  1e C  2e3e1e C  3e3e0e C  4e1e0e D
X

i

 isi; (3.39)

s1 D e; s2 D e3e1e; s3 D e3e0e; s4 D e1e0e (3.40)

and where the  i are formally complex numbers, i.e., each  i D .ai C bie2e1/ with
ai; bi 2 R and the set fsi; i D 1; 2; 3; 4g is a basis in the mother spinors space.

Exercise 3.41 Prove Eq. (3.39).

Now we determine an explicit relation between representations of R4;1 and R3;1.
Let ff0; f1; f2; f3; f4g be an orthonormal basis of R4;1 with

�f20 D f21 D f22 D f23 D f24 D 1;

fAfB D �fBvA, A ¤ B and A;B D 0; 1; 2; 3; 4:

Define the pseudo-scalar

i D f0f1f2f3f4; i2 D �1; ifA D fAi; A D 0; 1; 2; 3; 4: (3.41)

Put

E� D f�f4; (3.42)

we can immediately verify that

E�E� C E�E� D 2	�
: (3.43)

8According to Definition 3.47 these ideals are algebraically equivalent. For example, e0 D ueu�1 ,
with u D .1C e3/ … �1;3.
9Elements of I0 are sometimes called Hestenes ideal spinors.
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Taking into account that R1;3 ' R
0
4;1 we can explicitly exhibit here this isomorphism

by considering the map jW R1;3 ! R
0
4;1 generated by the linear extension of the map

j# W R1;3 ! R
0
4;1, j

#.e�/ D E� D f�f4, where E�, (� D 0; 1; 2; 3) is an orthogonal
basis of R

1;3. Note that j.1R1;3/ D 1
R
0
4;1

, where 1R1;3 and 1
R
0
4;1

(usually denoted

simply by 1) are the identity elements in R1;3 and R
0
4;1. Now consider the primitive

idempotent of R1;3 ' R
0
4;1,

e041 D j.e/ D 1

2
.1C E0/ (3.44)

and the minimal left ideal I04;1 D R
0
4;1e

0
41.

The elements Z 2 I04;1 can be written analogously to ˆ 2 R1;3
1
2
.1C e0/ as,

Z D
X

ziNsi (3.45)

where

Ns1 D e041; Ns2 D E1E3e041; Ns3 D E3E0e041; Ns4 D E1E0e041 (3.46)

and where

zi D ai C E2E1bi;

are formally complex numbers, ai; bi 2 R.
Consider now the element f 2 R4;1

f D e041
1

2
.1C iE1E2/

D 1

2
.1C E0/1

2
.1C iE1E2/; (3.47)

with i defined as in Eq. (3.41).
Since fR4;1 f D Cf D fC it follows that f is a primitive idempotent of R4;1. We

can easily show that each ˆ 2 I D R4;1f can be written

‰ D
X

i

 ifi;  i 2 C;

f1 D f ; f2 D �E1E3f ; f3 D E3E0f ; f4 D E1E0f : (3.48)
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With the methods described in [10, 11] we find the following representation in C.4/

for the generators E� of R4;1 ' R1;3

E0 7! �
0

D
�

12 0

0 �12

�

$ Ei 7! �
i
D
�
0 ��i

�i 0

�

; (3.49)

where 12 is the unit 2 � 2 matrix and �i, (i D 1; 2; 3) are the standard Pauli
matrices. We immediately recognize the � -matrices in Eq. (3.49) as the standard
ones appearing, e.g., in [4].

The matrix representation of‰ 2 I will be denoted by the same letter in boldface,
i.e., ‰ 7! ‰ 2 C.4/f , where

f D 1

2
.1C �

0
/
1

2
.1C i�

1
�
2
/; i D p�1: (3.50)

We have

‰ D

0

B
B
@

 1 0 0 0

 2 0 0 0

 3 0 0 0

 4 0 0 0

1

C
C
A ;  i 2 C: (3.51)

Equations (3.49)–(3.51) are sufficient to prove that there are bijections between the
elements of the ideals R1;3 12 .1C e0/, R04;1

1
2
.1CE0/ and R4;1

1
2
.1CE0/ 12 .1C iE1E2/.

We can easily find that the following relation exist between ‰ 2 R4;1f and Z 2
R
0
4;1

1
2
.1C E0/;

‰ D Z
1

2
.1C iE1E2/: (3.52)

Decomposing Z into even and odd parts relative to the Z2-graduation of R04;1 '
R1;3, Z D Z0 C Z1 we obtain Z0 D Z1E0 which clearly shows that all information
of Z is contained in Z0. Then,

‰ D Z0
1

2
.1C E0/1

2
.1C iE1E2/: (3.53)

Now, if we take into account that R04;1
1
2
.1 C E0/ D R

00
4;1

1
2
.1 C E0/ where the

symbol R004;1 means R004;1 ' R
0
1;3 ' R3;0 we see that each Z 2 R

00
4;1

1
2
.1C E0/ can be

written

Z D  
1

2
.1C E0/  2 R

00
4;1 ' R

0
1;3: (3.54)
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Then putting Z0 D  =2, Eq. (3.54) can be written

‰ D  
1

2
.1C E0/1

2
.1C iE1E2/

D Z0
1

2
.1C iE1E2/: (3.55)

The matrix representation of  and Z in C.4/ (denoted by the same letter in
boldface) in the matrix representation generated by the spin basis given by Eq. (3.48)
are

‰ D

0

B
B
@

 1 � �
2  3  �

4

 2  �
1  4 � �

3

 3  �
4  1 � �

2

 4 � �
3  2  �

1

1

C
C
A ; Z D

0

B
B
@

 1 � �
2 0 0

 2  �
1 0 0

 3  �
4 0 0

 4 � �
3 0 0

1

C
C
A : (3.56)

3.5 Algebraic Spin Frames and Spinors

We introduce now the fundamental concept of algebraic spin frames.10 This is the
concept that will permit us to define spinors (steps (i)–(vii)).11

(i) In this section .V;�/ refers always to Minkowski vector space.
(ii) Let SO.V;�/ be the group of endomorphisms of V that preserves � and the

space orientation. This group is isomorphic to SO1;3 but there is no natural
isomorphism. We write SO.V;�/ ' SO1;3. Also, the connected component
to the identity is denoted by SOe.V;�/ and SOe.V;�/ ' SOe

1;3. Note that
SOe.V;�/ preserves besides orientation also the time orientation.

(iii) We denote by C`.V;�/ the Clifford algebra12 of .V;�/ and by Spine.V;�/ '
Spine

1;3 the connected component of the spin group Spin.V;�/ ' Spin1;3.
Consider the 2 W 1 homomorphism L W Spine.V;�/ ! SOe.V;�/, u 7! L.u/ 

Lu. Spine.V;�/ acts on V identified as the space of 1-vectors of C`.V; 	/ '
R1;3 through its adjoint representation in the Clifford algebra C`.V;�/ which

10The name spin frame will be reserved for a section of the spinor bundle structure PSpine
1;3
.M/

which will be introduced in Chap. 7.
11This section follows the developments given in [22].
12We reserve the notation Rp;q for the Clifford algebra of the vector space R

n equipped with a
metric of signature .p; q/, p C q D n. C`.V; g/ and Rp;q are isomorphic, but there is no canonical
isomorphism. Indeed, an isomorphism can be exhibit only after we fix an orthonormal basis of V.
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is related with the vector representation of SOe.V;�/ as follows13:

Spine.V;�/ 3 u 7! Adu 2 Aut.C`.V; 	//
AdujV W V ! V; v 7! uvu�1 D Lu ˇ v: (3.57)

In Eq. (3.57) Lu ˇ v denotes the standard action Lu on v and where we
identified Lu 2 SOe.V;�/ with Lu 2 V ˝ V� and

� .Lu ˇ v;Lu ˇ v/ D � .v; v/ : (3.58)

(iv) Let B be the set of all oriented and time oriented orthonormal basis14 of V.
Choose among the elements of B a basis b0 D fb0; : : : :;b3g, hereafter called
the fiducial frame of V. With this choice, we define a 1 � 1 mapping

† W SOe.V;�/ ! B; (3.59)

given by

Lu 7! † .Lu/ WD †Lu D Lb0 (3.60)

where †Lu D Lub0 is a short for fe1; : : : :; e3;g 2 B, such that denoting the
action of Lu on bi 2 b0 by Lu ˇ bi we have

ei D Lu ˇ bi WD Lj�
�ibj, i; j D 0; : : : ; 3: (3.61)

In this way, we can identify a given vector basis b of V with the isometry Lu

that takes the fiducial basis b0 to b. The fiducial basis b0 will be also denoted
by †L0 , where L0 D e, is the identity element of SOe.V;�/.

Since the group SOe.V;�/ is not simple connected their elements cannot
distinguish between frames whose spatial axes are rotated in relation to the fiducial
vector frame †L0 by multiples of 2 or by multiples of 4 . For what follows it is
crucial to make such a distinction. This is done by introduction of the concept of
algebraic spin frames.

Definition 3.42 Let b0 2 B be a fiducial frame and choose an arbitrary u0 2
Spine.V;�/. Fix once and for all the pair .u0; b0/ with u0 D 1 and call it the fiducial
algebraic spin frame.

Definition 3.43 The space Spine.V;�/ � B D f.u; b/; ubu�1 D u0b0u�1
0 g will be

called the space of algebraic spin frames and denoted by S.

13Aut.C`.V; g// denotes the (inner) automorphisms of C`.V; g/.
14We will call the elements of B (in what follows) simply by orthonormal basis.



86 3 The Hidden Geometrical Nature of Spinors

Remark 3.44 It is crucial for what follows to observe here that Definition 3.43
implies that a given b 2 B determines two, and only two, algebraic spin frames,
namely .u; b/ and .�u; b/, since ˙ub.˙u�1/ D u0b0u�1

0 .

(v) We now parallel the construction in (iv) but replacing SOe.V;�/ by its universal
covering group Spine.V;�/ and B by S. Thus, we define the 1 � 1 mapping

„ W Spine.V;�/ ! S;
u 7! „.u/W D „u D .u; b/,

(3.62)

where ubu�1 D b0 .

The fiducial algebraic spin frame will be denoted in what follows by „0. It is
obvious from Eq. (3.62) that „.�u/ 
 „�u D .�u; b/ ¤ „u.

Definition 3.45 The natural right action of a 2 Spine.V;�/ denoted by ˇ on S is
given by

a ˇ „u D a ˇ .u; b/ D .ua;Ada�1b/ D .ua; a�1ba/: (3.63)

Observe that if „u0 D .u0; b0/ D u0 ˇ „0 and „u D .u; b/ D u ˇ „0 then,

„uK D .u�1u0/ˇ „u D .u0; u0�1ubu�1u0/:

Note that there is a natural 2 � 1 mapping

s W S ! B; „˙u 7! b D .˙u�1/b0.˙u/; (3.64)

such that

s..u�1u0/ˇ „u// D Ad.u�1u0/�1 .s.„u//: (3.65)

Indeed,

s..u�1u0/ˇ „u// D s..u�1u0/ˇ .u; b//

D u0�1ub.u0�1u/�1 D b0

D Ad.u�1u0/�1b D Ad.u�1u0/�1 .s.„u//: (3.66)

This means that the natural right actions of Spine.V;�/, respectively on S and B,
commute. In particular, this implies that the algebraic spin frames „u;„�u 2 S,
which are, of course distinct, determine the same vector frame †Lu D s.„u/ D
s.„�u/ D †L�u . We have,

†Lu D †L�u D Lu�1u0†Lu0
; Lu�1u0 2 SOe

1;3: (3.67)
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Also, from Eq. (3.65), we can write explicitly

u0†Lu0
u�1
0 D u†Lu u�1; u0†Lu0

u�1
0 D .�u/†L�u.�u/�1; u 2 Spine.V; g/;

(3.68)

where the meaning of Eq. (3.68) of course, is that if †Lu D †L�u D b D
fe0; : : : :; e3;g 2 B and †Lu0

D b0 2 B is the fiducial frame, then

u0bju
�1
0 D .˙u/ej.˙u�1/: (3.69)

In resume, we can say that the space S of algebraic spin frames can be thought
as an extension of the space B of vector frames, where even if two vector frames
have the same ordered vectors, they are considered distinct if the spatial axes of one
vector frame is rotated by an odd number of 2 rotations relative to the other vector
frame and are considered the same if the spatial axes of one vector frame is rotated
by an even number of 2 rotations relative to the other frame. Even if the possibility
of such a distinction seems to be impossible at first sight, Aharonov and Susskind
[1] claim that it can be implemented physically in a spacetime where the concept of
algebraic spin frame is enlarged to the concept of spin frame used for the definition
of spinor fields. See Chap. 7 for details.

(vi) Before we proceed an important digression on the notation used below is
necessary. We recalled above how to construct a minimum left (or right) ideal
for a given real Clifford algebra once a vector basis b 2 B for V ,! C`.V; g/
is given. That construction suggests to label a given primitive idempotent and
its corresponding ideal with the subindex b. However, taking into account the
above discussion of vector and algebraic spin frames and their relationship
we find useful for what follows (specially in view of the Definition 3.46 and
the definitions of algebraic and Dirac-Hestenes spinors (see Definitions 3.48
and 3.50 below) to label a given primitive idempotent and its corresponding
ideal with a subindex „u. This notation is also justified by the fact that a given
idempotent is according to definition 3.48 representative of a particular spinor
in a given algebraic spin frame „u.

(vii) Next we recall Theorem 3.28 which says that a minimal left ideal of C`.V;�/
is of the type

I„u D C`.V;�/e„u (3.70)

where e„u is a primitive idempotent of C`.V;�/.
It is easy to see that all ideals I„u D C`.V;�/e„u and I„u0 D C`.V;�/e„u0 such

that

e„u0 D .u0�1u/e„u.u
0�1u/�1 (3.71)

u; u0 2 Spine.V; 	/ are isomorphic. We have the
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Definition 3.46 Any two ideals I„u D C`.V;�/e„u and I„u0 D C`.V;�/e„u0 such
that their generator idempotents are related by Eq. (3.71) are said geometrically
equivalent.

Remark 3.47 If u is simply an element of the Clifford group, then the ideals are said
to be algebraically equivalent.

But take care, no equivalence relation has been defined until now. We observe
moreover that we can write

I„u0 D I„u.u
0�1u/�1; (3.72)

an equation that will play a key role in what follows.

3.6 Algebraic Dirac Spinors of Type I„u

Let fI„ug be the set of all ideals geometrically equivalent to a given minimal I„uo
as

defined by Eq. (3.72). Let be

T D f.„u; ‰„u/ j u 2 Spine.V;�/, „u 2 S, ‰„u 2 I„ug: (3.73)

Let „u;„u0 2 S,‰„u 2 I„u , ‰„u0 2 I„u0 . We define an equivalence relation E on T
by setting

.„u; ‰„u/ � .„u0 ; ‰„u0 /; (3.74)

if and only if and

(i) us.„u/u
�1 D u0s.„u0/u0�1;

(ii) ‰„u0 u
0�1 D ‰„u u�1: (3.75)

Definition 3.48 An equivalence class

‰„u D Œ.„u; ‰„u/� 2 T=E (3.76)

is called an algebraic spinor of type I„u for C`.V;�/.  „u 2 I„u is said to be a
representative of the algebraic spinor ‰„u in the algebraic spin frame „u.

We observe that the pairs .„u; ‰„u/ and .„�u; ‰„�u/ D .„�u;�‰„u/ are
equivalent, but the pairs .„u; ‰„u/ and .„�u;�‰„�u/ D .„�u; ‰„u/ are not. This
distinction is essential in order to give a structure of linear space (over the real field)



3.7 Dirac-Hestenes Spinors (DHS) 89

to the set T. Indeed, a natural linear structure on T is given by

aŒ.„u; ‰„u/�C bŒ.„u; ‰
0
„u
/� D Œ.„u; a‰„u/�C Œ.„u0 ; b‰0

„u
/�;

.a C b/Œ.„u; ‰„u/� D aŒ.„u; ‰„u/�C bŒ.„u; ‰„u/�: (3.77)

Remark 3.49 The definition just given is not a standard one in the literature [5, 8].
However, the fact is that the standard definition (licit as it is from the mathematical
point of view) is not adequate for a comprehensive formulation of the Dirac
equation using algebraic spinor fields or Dirac-Hestenes spinor fields which will
be introduced in Chap. 7.

We end this section recalling that as observed above a given Clifford algebra
Rp;q may have minimal ideals that are not geometrically equivalent since they may
be generated by primitive idempotents that are related by elements of the group R

?
p;q

which are not elements of Spine.V;�/ [see Eqs. (3.36)–(3.38)] where different, non
geometrically equivalent primitive ideals for R1;3 are shown). These ideals may be
said to be of different types. However, from the point of view of the representation
theory of the real Clifford algebras all these primitive ideals carry equivalent (i.e.,
isomorphic) modular representations of the Clifford algebra and no preference may
be given to any one.15 In what follows, when no confusion arises and the ideal I„u

is clear from the context, we use the wording algebraic Dirac spinor for any one of
the possible types of ideals.

The most important property concerning algebraic Dirac spinors is a coincidence
given by Eq. (3.78) below. It permit us to define a new kind of spinors.

3.7 Dirac-Hestenes Spinors (DHS)

Let „u 2 S be an algebraic spin frame for .V;�/ such that

s.„u/ D fe0; e1; e2; e3g 2 B:

Then, it follows from Eq. (3.54) that

I„u D C`.V;�/e„u D C`0.V;�/e„u ; (3.78)

when

e„u D 1

2
.1C e0/: (3.79)

15The fact that there are ideals that are algebraically, but not geometrically equivalent seems to
contain the seed for new Physics, see [18, 19].
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Then, each ‰„u 2 I„u can be written as

‰„u D  „u e„u ;  „u 2 C`0.V;�/: (3.80)

From Eq. (3.75) we get

 „u0 u
0�1ue„u D  „u e„u ;  „u ;  „u0 2 C`0.V;�/: (3.81)

A possible solution for Eq. (3.81) is

 „u0 u
0�1 D  „u u�1: (3.82)

Let S � C`.V;�/ and consider an equivalence relation E such that

.„u; �„u/ � .„u0 ; �„u0 / .mod E/; (3.83)

if and only if �„u0 and �„u are related by

�„u0 u
0�1 D �„u u�1: (3.84)

This suggests the following

Definition 3.50 The equivalence classes Œ.„u; �„u/� 2 S � C`.V;�/=E are the
Hestenes spinors.

Among the Hestenes spinors, an important subset is the one consisted of Dirac-
Hestenes spinors where Œ.„u;  „u/� 2 .S � C`0.V;�//=E .

We say that �„u . „u/ is a representative of a Hestenes (Dirac-Hestenes) spinor
in the algebraic spin frame „u.

3.7.1 What is a Covariant Dirac Spinor (CDS)

Let L0 W S ! B and let L0.„u/ D fE0; E1; E2; E3g and L0.„u0/ D fE 0
0; E 0

1; E 0
2; E 0

3g
with L0.„u/ D uL0.„o/u�1, L.„u0/ D u0L0.„o/u0�1 be two arbitrary basis for
R
1;3 ,! R4;1.
As we already know f„0

D 1
2
.1 C E0/ 12 .1 C iE1E2/ [Eq. (3.48)] is a primitive

idempotent of R4;1 ' C.4/. If u 2 Spin .1; 3/ � Spin.4; 1/ then all ideals I„u D
I„0

u�1 are geometrically equivalent to I„0
. From Eq. (3.49) we can write

I„u 3 ‰„u D
X

 ifi; and I„0
u

3 ‰„u D
X

 0
i f 0

i ; (3.85)

where

f1 D f„u ; f2 D �E1E3f„u ; f3 D E3E0f„u ; f4 D E1E0f„u
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and

f 0
1 D f„u ; f 0

2 D �E 0
1E 0
3f„u ; f 0

3 D E 0
3E 0
0f„u ; f4 D E 0

1E 0
0f„u :

Since ‰„u0 D ‰„u.u
0�1u/�1, we get

‰„0
u

D
X

i

 i.u
0�1u/�1f 0

i D
X

i;k

SikŒ.u
�1u0/� ifk D

X

k

 kfk:

Then

 k D
X

i

Sik.u
�1u0/ i; (3.86)

where Sik.u�1u0/ are the matrix components of the representation in C.4/ of (u�1u0)
2 Spine

1;3. As proved in [10, 11] the matrices S.u/ correspond to the representation
D.1=2;0/ ˚ D.0;1=2/ of Sl.2;C/ ' Spine

1;3.

Remark 3.51 We remark that all the elements of the set fI„ug of the ideals
geometrically equivalent to I„0

under the action of u 2 Spine
1;3 � Spine

4;1 have
the same image I D C.4/f where f is given by Eq. (3.47), i.e.,

f D 1

2
.1C �

0
/.1C i�

1
�
2
/; i D p�1;

where �
�
; � D 0; 1; 2; 3 are the Dirac matrices given by Eq. (3.50). Then, if

� W R4;1 ! C.4/ 
 End.C.4//;

x 7! �.x/ W C.4/f ! C.4/f (3.87)

it follows that

�.E�/ D �.E 0
�/; �. f�/ D �. f 0

�/ (3.88)

for all fE�g, fE 0
�g such that E 0

� D .u0�1u/E�.u0�1u/�1. Observe that all information
concerning the geometrical images of the algebraic spin frames „u, „u0 ; : : : ; under
L0disappear in the matrix representation of the ideals I„u ; I„u0 ; : : : :; in C.4/ since
all these ideals are mapped in the same ideal I D C.4/f .

Taking into account Remark 3.51 and taking into account the definition of
algebraic spinors given above and Eq. (3.86) we are lead to the following

Definition 3.52 A covariant Dirac spinor for R1;3 is an equivalence class of pairs
.„m

u ;‰/, where„m
u is a matrix algebraic spin frame associated to the algebraic spin

frame „u through the S.u�1/ 2 D. 12 ;0/˚D.0; 12 / representation of Spine
1;3; u 2 Spine

1;3.
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We say that ‰; ‰ 0 2 C.4/f are equivalent and write

.„m
u ;‰/ � .„m

u0 ;‰
0/; (3.89)

if and only if,

‰ 0 D S.u0�1u/‰; us.„u/u
�1 D u0s.„u0/u0�1: (3.90)

Remark 3.53 The definition of CDS just given agrees with that given in [6] except
for the irrelevant fact that there, as well as in the majority of Physics textbook’s,
authors use as the space of representatives of a CDS a complex four-dimensional
space C4 instead of I D C.4/f .

3.7.2 Canonical Form of a Dirac-Hestenes Spinor

Let v 2 R
1;3 ,! R1;3 be a non lightlike vector, i.e., v2 D v 	 v ¤ 0 and consider a

linear mapping

L W R1;3 ! R
1;3, v 7! z D  v Q , z2 D �v2 (3.91)

with  2 R1;3 and � 2 R
C. Now, recall that if R 2 Spine

1;3 then w D Rv QR is such
that w2 D v2. It follows that the most general solution of Eq. (3.91) is

 D �1=2e
ˇ
2 e5R; (3.92)

where ˇ 2 R is called the Takabayasi angle and e5 D e0e1e2e3 2 V4
R
1;3 ,! R1;3

is the pseudoscalar of the algebra. Now, Eq. (3.92) shows that  2 R
0
1;3 ' R3;0:

Moreover, we have that  Q ¤ 0 since

 Q D �eˇe5 D � C e5!;

� D � cosˇ; ! D � sinˇ: (3.93)

The Secret

Now, let  „u be a representative of a Dirac-Hestenes spinor (Definition 3.50) in
a given spin frame „u. Since  „u 2 R

0
1;3 ' R3;0 we have disclosed the real

geometrical meaning of a Dirac-Hestenes spinor. Indeed, a Dirac-Hestenes spinor
such that  „u

Q „u ¤ 0 induces the linear mapping given by Eq. (3.91), which
rotates a vector and dilate it. Observe, that even if we started our considerations
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with v 2 R
1;3 ,! R1;3 and v2 ¤ 0, the linear mapping (3.91) also rotates and

‘dilate’ a light vector.

3.7.3 Bilinear Invariants and Fierz Identities

Definition 3.54 Given a representative  „u of a DHS in the algebraic spin frame
field „u the bilinear invariants16 associated with it are the objects: � � ?! 2
.
V0

R
1;3 C V4

R
1;3/ ,! R1;3, J D J�e� 2 R

1;3 ,! R1;3, S D 1
2
S��e�e� 2

V2
R
1;3 ,! R1;3, K D K�e� 2 R

1;3 ,! R1;3 such that

 „u
Q „u D � � ?!  „u e0 Q „u D J;

 „u e1e2 Q „u D S  „u e0e3 Q „u D ?S;

 „u e3 Q „u D K  „u e0e1e2 Q „u D ?K:

(3.94)

and where ?! D �e5� sinˇ

The bilinear invariants satisfy the so called Fierz identities, which are

J2 D �2 C !2; J 	 K D 0; J2 D �K2; J ^ K D .! � ?�/S (3.95)

8
<

:

SxJ D �!K SxK D �!J;
.?S/xJ D ��K .?S/xK D ��J;
S 	 S D hS QSi0 D �2 � !2 .?S/ 	 S D �2�!:

(3.96)

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

JS D .! � ?�/K;
SJ D �.! C ?�/K;
SK D .! � ?�/J;
KS D �.! C ?�/J;
S2 D !2 � �2 � 2�.?!/;

S�1 D KSK=J4:

(3.97)

Exercise 3.55 Prove the Fierz identities.

16In Physics literature the components of J, S and K when written in terms of covariant Dirac
spinors are called bilinear covariants:
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3.7.4 Reconstruction of a Spinor

The importance of the bilinear invariants is that once we know !, � , J, K and F
we can recover from them the associate covariant Dirac spinor (and thus the DHS)
except for a phase. This can be done with an algorithm due to Crawford [7] and
presented in a very pedagogical way in [14–16]. Here we only give the result for the
case where � and/or ! are non null. Define the object B 2 C ˝ R1;3 ' R4;1 called
boomerang and given by (i D p�1)

B D � C J C iS � ie5K C e5! (3.98)

Then, we can construct ‰ D Bf 2 R4;1f , where f is the idempotent given by
Eq. (3.47) which has the following matrix representation in C.4/ (once the standard
representation of the Dirac gamma matrices are used)

O‰ D

0

B
B
@

 1 0 0 0

 2 0 0 0

 3 0 0 0

 4 0 0 0

1

C
C
A (3.99)

Now, it can be easily verified that ‰ D Bf determines the same bilinear
covariants as the ones determined by  „u . Note however that this spinor is not
unique. In fact, B determines a class of elements B� where � is an arbitrary element
of R4;1f which differs one from the other by a complex phase factor.

3.7.5 Lounesto Classification of Spinors

A very interesting classification of spinors have been devised by Lounesto [14–16]
based on the values of the bilinear invariants. He identified six different classes
and proved that there are no other classes based on distinctions between bilinear
covariants. Lounesto classes are:

1. � ¤ 0; ! ¤ 0.
2. � ¤ 0; ! D 0.
3. � D 0; ! ¤ 0.
4. � D 0 D !; K ¤ 0; S ¤ 0.
5. � D 0 D !; K D 0; S ¤ 0.
6. � D 0 D !; K ¤ 0; S D 0.

The current density J is always non-zero. Type 1, 2 and 3 spinor are denominated
Dirac spinor for spin-1/2 particles and type 4, 5, and 6 are singular spinors
respectively called flag-dipole, flagpole and Weyl spinor. Majorana spinor is a
particular case of a type 5 spinor. It is worthwhile to point out a peculiar feature
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of types 4, 5 and 6 spinor: although J is always non-zero, we have due to Fierz
identities that J2 D �K2 D 0.

Spinors belonging to class 4 have not previously been identified in the literature.
For the applications we have in mind we are interested (besides Dirac spinors which
belong to classes 1 or 2 or 3) in spinors belonging to classes 5 and 6, respectively
the Majorana and Weyl spinors.

Remark 3.56 In [2] Ahluwalia-Khalilova and Grumiller introduced from physical
considerations a supposedly new kind of spinors representing dark matter that they
dubbed ELKO spinors. The acronym stands for the German word Eigenspinoren des
Ladungskonjugationsoperators. It has been proved in [9] that from the algebraic
point of view ELKO spinors are simply class 5 spinors. In [2] it is claimed that
differently from the case of Dirac, Majorana and Weyl spinor fields which have
mass dimension 3=2, ELKO spinor fields must have mass dimension 1 and thus
instead of satisfying Dirac equation satisfy a Klein-Gordon equation. A thoughtful
analysis of this claim is given in Chap. 16.

3.8 Majorana and Weyl Spinors

Recall that for Majorana spinors � D 0, ! D 0, K D 0, S ¤ 0, J;¤ 0

Given a representative of an arbitrary Dirac-Hestenes spinor we may construct
the Majorana spinors

 Ṁ D 1

2
. ˙  e01/ : (3.100)

Note that defining an operator CW 7!  e01 (charge conjugation) we have

C Ṁ D ˙ Ṁ ; (3.101)

i.e., Majorana spinors are eigenvectors of the charge conjugation operator. Majorana
spinors satisfy

Q Ṁ Ṁ D  Ṁ
Q Ṁ D 0: (3.102)

For Weyl spinors � D ! D S D 0 and K ¤ 0, J ¤ 0.
Given a representative of an arbitrary Dirac-Hestenes spinor we may construct

the Weyl spinors

 Ẇ D 1

2
.  e5 e21/ : (3.103)



96 3 The Hidden Geometrical Nature of Spinors

Weyl spinors are ‘eigenvectors’ of the chirality operator e5 D e0e1e2e3, i.e.,

e5 Ẇ D ˙ Ẇ e21: (3.104)

We have also,

Q Ẇ Ẇ D  Ẇ
Q Ẇ D 0: (3.105)

For future reference we introduce the parity operator acting on the space of Dirac-
Hestenes spinors. The parity operator P in this formalism [13] is represented in such
a way that for  2 R

0
1;3

P D �e0 e0 : (3.106)

The following Dirac-Hestenes spinors are eigenstates of the parity operator with
eigenvalues ˙1:

P " D C " ;  " D e0 �e0 �  � ;
P # D � # ;  # D e0 Ce0 C  C ;

(3.107)

where  ˙ WD  Ẇ

3.9 Dotted and Undotted Algebraic Spinors

Dotted and undotted covariant spinor fields are very popular subjects in General
Relativity. Dotted and undotted algebraic spinor fields may be introduced using the
methods of Chap. 7 and are briefly discussed in Exercise 7.63. A preliminary to
that job is a deep understanding of the algebraic aspects of those concepts, i.e., the
dotted and undotted algebraic spinors which we now discuss. Their relation with
Weyl spinors will become apparent in a while.

Recall that the spacetime algebra R1;3 is the real Clifford algebra associated
with Minkowski vector space R

1;3, which is a four dimensional real vector space,
equipped with a Lorentzian bilinear form

� W R1;3 � R
1;3 ! R: (3.108)

Let fe0; e1; e2; e3g be an arbitrary orthonormal basis of R1;3, i.e.,

�.e�; e�/ D 	��; (3.109)

where the matrix with entries 	�� is the diagonal matrix diag.1;�1;�1;�1/. Also,
fe0; e1; e2; e3g is the reciprocal basis of fe0; e1; e2; e3g, i.e., �.e�; e�/ D ı

�
� . We have
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in obvious notation

�.e�; e�/ D 	��;

where the matrix with entries 	�� is the diagonal matrix diag.1;�1;�1;�1/.
The spacetime algebra R1;3 is generate by the following algebraic fundamental

relation

e�e� C e�e� D 2	��: (3.110)

As we already know (Sect. 3.7.1) the spacetime algebra R1;3 as a vector space

over the real field is isomorphic to the exterior algebra
V
R
1;3 D

M4

jD0
Vj

R
1;3 of

R
1;3. We code that information writing

V
R
1;3 ,! R1;3. Also, we make the following

identifications:
V0

R
1;3 
 R and

V1
R
1;3 
 R

1;3. Moreover, we identify the exterior
product of vectors by

e�^e� D 1

2
.e�e� � e�e�/ ; (3.111)

and also, we identify the scalar product of vectors by

�.e�; e�/ D 1

2
.e�e� C e�e�/ : (3.112)

Then we can write

e�e� D �.e�; e�/C e�^ e�: (3.113)

Now, an arbitrary element C 2 R1;3 can be written as sum of nonhomogeneous
multivectors, i.e.,

C D s C c�e� C 1

2
c��e�e� C 1

3Š
c���e�e�e� C pe5 (3.114)

where s; c�; c��; c���; p 2 R and c��; c��� are completely antisymmetric in all
indices. Also e5 D e0e1e2e3 is the generator of the pseudoscalars. Recall also that
as a matrix algebra we have that R1;3 ' H.2/, the algebra of the 2 � 2 quaternionic
matrices.

3.9.1 Pauli Algebra

Next, we recall (again) that the Pauli algebra R3;0 is the real Clifford algebra
associated with the Euclidean vector space R

3;0, equipped as usual, with a positive
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definite bilinear form. As a matrix algebra we have that R3;0 ' C .2/, the algebra
of 2 � 2 complex matrices. Moreover, we recall that R3;0 is isomorphic to the even
subalgebra of the spacetime algebra, i.e., writing R1;3 D R

.0/
1;3 ˚ R

.1/
1;3 we have,

R3;0 ' R
.0/
1;3: (3.115)

The isomorphism is easily exhibited by putting � i D eie0, i D 1; 2; 3. Indeed,
with ıij D diag.1; 1; 1/, we have

� i� j C � j� i D 2ıij; (3.116)

which is the fundamental relation defining the algebra R3;0. Elements of the Pauli
algebra will be called Pauli numbers.17 As a vector space over the real field, we
have that R3;0 is isomorphic to

V
R
3;0 ,! R3;0 � R1;3. So, any Pauli number can be

written as

P D s C pi� i C 1

2
pi

ij�
i� j C pI; (3.117)

where s; pi; pij; p 2 R and pij D �pji and also

I D �i D� 1� 2� 3 D e5: (3.118)

Note that I2 D �1 and that I commutes with any Pauli number. We can trivially
verify

� i� j D I"
i j
k � k C ıij; (3.119)

Œ� i; � j� D � i� j�� j� i D 2� i^� j D 2I"
i j
k � k:

In that way, writing R3;0 D R
.0/
3;0 C R

.1/
3;0, any Pauli number can be written as

P D Q1 C IQ2; Q1 2 R
.0/
3;0; IQ2 2 R

.1/
3;0; (3.120)

with

Q1 D a0 C ak.I�
k/; a0 D s; ak D 1

2
"

i j
k pij; (3.121)

Q2 D I
�
b0 C bk.I�

k
�
/; b0 D p; bk D �pk:

17Sometimes they are also called ‘complex quaternions’. This last terminology will become
obvious in a while.
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3.9.2 Quaternion Algebra

Equation (3.121) show that the quaternion algebra R0;2 D H can be identified as
the even subalgebra of R3;0, i.e.,

R0;2 D H ' R
.0/
3;0: (3.122)

The statement is obvious once we identify the basis f1; O{; O|; Okg of H with

f1, I� 1, I� 2, I� 3g; (3.123)

which are the generators of R.0/3;0. We observe moreover that the even subalgebra of
the quaternions can be identified (in an obvious way) with the complex field, i.e.,
R
.0/
0;2 ' C. Returning to Eq. (3.117) we see that any P 2 R3;0 can also be written as

P D P1 C IL2; (3.124)

where

P1 D .s C pk�
k/ 2

^0
R
3;0 ˚

^1
R
3;0 
 R˚

^1
R
3;0;

IL2 D I.p C Ilk�
k/ 2

^2
R
3;0 ˚

^3
R
3;0; (3.125)

with lk D �"i j
k pij 2 R. The important fact that we want to emphasize here is that

the subspaces .R˚V1
R
3;0/ and .

V2
R
3;0 ˚ V3

R
3;0/ do not close separately any

algebra. In general, if A;C 2 .R˚V1
R
3;0/ then

AC 2 R˚
^1

R
3;0 ˚

^2
R
3;0: (3.126)

To continue, we introduce

� i D eie0 D �� i; i D 1; 2; 3: (3.127)

Then, I D �� 1� 2� 3 and the basis f1; O{ ; O| ; Okg of H can be identified with
f1;�I� 1;�I� 2, �I� 3g.
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Now, we know that R3;0 ' C .2/. This permit us to represent the Pauli numbers
by 2� 2 complex matrices, in the usual way (i D p�1). We write R3;0 3 P 7! P 2
C.2/, with

� 1 7! �1 D
�
0 1

1 0

�

;

� 2 7! �2 D
�
0 �i
i 0

�

;

� 3 7! �3 D
�
1 0

0 �1
�

:

(3.128)

3.9.3 Minimal Left and Right Ideals in the Pauli Algebra
and Spinors

The elements e˙ D 1
2
.1C � 3/ D 1

2
.1C e3e0/ 2 R

.0/
1;3 ' R3;0, e2˙ D e˙ are minimal

idempotents of R3;0. They generate the minimal left and right ideals

I˙ D R
.0/
1;3e˙; R˙ D e˙R

.0/
1;3: (3.129)

From now on we write e D eC. It can be easily shown (see below) that, e.g.,
I D IC has the structure of a 2-dimensional vector space over the complex field
[10, 13], i.e., I ' C

2. The elements of the vector space I are called representatives
of algebraic contravariant undotted spinors18 and the elements of C2 are the usual
contravariant undotted spinors used in physics textbooks. They carry the D. 12 ;0/

representation of Sl.2;C/ [17]. If '2 I we denote by ' 2 C
2 the usual matrix

representative19 of ' is

' D
�
'1

'2

�

; '1; '2 2 C: (3.130)

Denoting by PI D eR.0/1;3 the space of the algebraic covariant dotted spinors, we

have the isomorphism, PI ' .C2/� ' C2, where � denotes Hermitian conjugation.
The elements of .C2/� are the usual contravariant spinor fields used in physics

textbooks. They carry the D.0; 12 / representation of Sl.2;C/ [17]. If
�
� 2 PI, then

18We omit in the following the term representative and call the elements of I simply by algebraic
contravariant undotted spinors. However, the reader must always keep in mind that any algebraic
spinor is an equivalence class, as defined and discussed in Sect. 4.6.
19The matrix representation of the elements of the ideals I; PI, are of course, 2�2 complex matrices
(see, [10], for details). It happens that both columns of that matrices have the same information
and the representation by column matrices is enough here for our purposes.
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its matrix representation in .C2/� is a row matrix usually denoted by

P� D �
�P1 �P2

�
; �P1; �P2 2 C: (3.131)

The following representation of
�
� 2 PI in .C2/� is extremely convenient. We say that

to a covariant undotted spinor � there corresponds a covariant dotted spinor P� given
by

PI 3 �
� 7! P� D N�" 2 .C2/�; N�1; N�2 2 C; (3.132)

with

" D
�
0 1

�1 0
�

: (3.133)

We can easily find a basis for I and PI. Indeed, since I D R
.0/
1;3e we have that any

'2 I can be written as

' D '1#1 C '2#2

where

#1 D e; #2 D � 1e;

'1 D a C ib; '2 D c C id; a; b; c; d 2 R: (3.134)

Analogously we find that any
�
� 2 PI can be written as

�
� D �

P1sP1 C � P2s
P2;

sP1 D e; sP2 D e� 1: (3.135)

Defining the mapping

� W I ˝ PI !R
.0/
1;3 ' R3;0;

�.'˝ �
�/ D '

�
�; (3.136)

we have

1 
 � 0 D �.s1 ˝ sP1 C s2 ˝ sP2/;

� 1 D ��.s1 ˝ sP2 C s2 ˝ sP1/;
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� 2 D �Œi.s1 ˝ sP2 � s2 ˝ sP1/�;

� 3 D ��.s1 ˝ sP1 � s2 ˝ sP2/: (3.137)

From this it follows the identification

R3;0 ' R
.0/
1;3 ' C.2/ DI ˝C

PI; (3.138)

and then, each Pauli number can be written as an appropriate sum of Clifford
products of algebraic contravariant undotted spinors and algebraic covariant dotted
spinors. And, of course, a representative of a Pauli number in C

2 can be written as
an appropriate Kronecker product of a complex column vector by a complex row
vector.

Take an arbitrary P 2R3;0 such that

P D 1

jŠ
pk1k2 ���kj � k1k2���kj ; (3.139)

where pk1k2:::kj 2 R and

� k1k2:::kj
D � k1 	 	 	 � kj ; and � 0 
 1 2 R: (3.140)

With the identification R3;0 ' R
.0/
1;3 ' I ˝C

PI, we can also write

P D PA
PB�.sA ˝ s PB/ D PA

PBsAs PB; (3.141)

where the PA
PB D XA

PB C iYA
PB, XA

PB;Y
A

PB 2 R.
Finally, the matrix representative of the Pauli number P 2 R3;0 is P 2 C.2/ given

by

P D PA
PBsAs PB; (3.142)

with PA
PB 2 C and

s1 D
�
1

0

�

; s2 D
�
0

1

�

;

sP1 D �
1 0

�
; sP2 D �

0 1
�
:

(3.143)

It is convenient for our purposes to introduce also covariant undotted spinors and
contravariant dotted spinors. Let ' 2 C

2 be given as in Eq. (3.130). We define the
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covariant version of undotted spinor ' 2 C
2 as '� 2 .C2/t ' C2 such that

'� D .'1; '2/ 
 'AsA;

'A D 'B"BA; 'B D "BA'A;

s1 D �
1 0

�
; s2 D �

0 1
�
; (3.144)

where20 "AB D "AB D adiag.1;�1/. We can write due to the above identifications
that there exists " 2 C.2/ given by Eq. (3.133) which can be written also as

" D "ABsA � sB D "ABsA � sB D
�
0 1

�1 0
�

D i�2 (3.145)

where � denotes here the Kronecker product of matrices. We have, e.g.,

s1 � s2 D
�
1

0

�

�
�
0

1

�

D
�
1

0

�
�
0 1

� D
�
0 1

0 0

�

;

s1 � s1 D �
1 0

�
�
�
0 1

� D
�
1

0

�
�
1 0

� D
�
1 0

0 0

�

: (3.146)

We now introduce the contravariant version of the dotted spinor

P� D �
�P1 �P2

� 2 C2

as being P�� 2 C
2 such that

P�� D
 
�

P1

�
P2

!

D �
PAs PA;

�
PB D "

PB PA� PA; � PA D " PB PA �
PB;

sP1 D
�
1

0

�

; sP2 D
�
0

1

�

; (3.147)

where " PA PB D "
PA PB D adiag.1;�1/. Then, due to the above identifications we see

that there exists P" 2 C.2/ such that

P" D "
PA PBs PA � s PB D " PA PBs PA � PsB D

�
0 1

�1 0
�

D ": (3.148)

20The symbol adiag means the antidiagonal matrix.
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Also, recall that even if fsAg,fs PAg and fs PAg,fsAg are bases of distinct spaces, we
can identify their matrix representations, as it is obvious from the above formulas.
So, we have sA 
 s PA and also s PA D sA. This is the reason for the representation of a
dotted covariant spinor as in Eq. (3.132). Moreover, the above identifications permit
us to write the matrix representation of a Pauli number P 2 R3;0 as, e.g.,

P D PABsA � sB (3.149)

besides the representation given by Eq. (3.142).

Exercise 3.57 Consider the ideal I D R1;3
1
2
.1 � e0e3/. Show that � 2 I is a

representative in a spin frame „u of a covariant Dirac spinor21 ‰ 2 C.4/1
2
.1 C

�
0
/.1 C i�

1
�
2
/. Let  be the representative (in the same spin frame „u) of

a Dirac-Hestenes spinor, associated to a mother spinor ˆ 2 R1;3
1
2
.1 C e0/ by

ˆ D  1
2
.1Ce0/. Show that � 2 I can be written as � D  1

2
.1Ce0/ 12 .1�e0e3/.

(a) Show that �e5 D �e21:
(b) Weyl spinors are defined as eigenspinors of the chirality operator, i.e., �

5
‰˙ D

˙i‰˙. Show that Weyl spinors corresponds to the even and odd parts of �:
(c) Relate the even and odd parts of � to the algebraic dotted and undotted

spinors.22
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