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Abstract. The Gross-Pitaevskii equation for a Bose-Einstein conden-
sate in a PT -symmetric double-well potential is investigated theoreti-
cally. An in- and outcoupling of atoms is modelled by an antisymmet-
ric imaginary potential rendering the Hamiltonian non-Hermitian. Sta-
tionary states with real energies and PT -symmetric wave functions are
found, which proves that Bose-Einstein condensates are a good candidate
for a first experimental verification of a PT -symmetric quantum system.
Time-resolved calculations demonstrate typical effects only observable in
PT -symmetric potentials, viz. an oscillation of the condensate’s proba-
bility density between these wells with an oscillation frequency critically
depending on the strength of the in- and outcoupling. PT -broken eigen-
states with complex energy eigenvalues are also solutions of the time-
independent Gross-Pitaevskii equation but are not true stationary states
of its time-dependent counterpart. The comparison of a one-dimensional
and a three-dimensional calculation shows that it is possible to extract
highly precise quantitative results for a fully three-dimensional physical
setup from a simple one-dimensional description.

Keywords: Bose-Einstein condensates, PT symmetry, Gross-Pitaevskii
equation, stationary states, dynamics

1 Introduction

Mainly due to the experimental accessibility, which became possible very re-
cently [1, 2], non-Hermitian PT -symmetric quantum mechanics has gained an
increasing attention over the last years [1–17]. It describes physical systems gov-
erned by a complex Hamiltonian which is not Hermitian but fulfils parity-time
symmetry. This means that the Hamiltonian remains invariant under the com-
bined action of the parity (P) and time reversal (T ) operators, i.e. [PT , H ] = 0,
with

Px = −x , Pp = −p (1a)

T x = x , T p = −p , T i = −i . (1b)
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In spite of their non-Hermiticity these Hamiltonians possess real energy spectra
for properly chosen physical parameters. Besides the emergence of real energy
eigenvalues, phenomena are observable which are only possible in non-Hermitian
systems and not known in Hermitian quantum mechanics describing the spectra
of bound states. The most striking effects are connected with so-called excep-
tional points [18], i.e. isolated points in the physical parameter space at which
two or even more solutions pass through a branch point singularity, where both
the energies and the wave functions of the two states become identical.

Bender and Boettcher introduced a simple and instructive model that covers
all interesting features of a PT -symmetric quantum system [3]. It consists of the
Hamiltonian

H = p2 − (ix)N , (2)

where N is allowed to assume the value of any real number. In a very simple cal-
culation it can be confirmed that [PT , H ] = 0, i.e. this Hamiltonian is PT sym-
metric. Evidently, N = 2 represents the harmonic oscillator, of which we know
that its spectrum is real and positive. Bender and Boettcher found that this fact
remains true for all N ≥ 2, however, if N is reduced below 2 one observes that
successively one pair of consecutive eigenvalues after the other passes through
a branch point singularity. Beyond the branch point both eigenvalues become
complex and complex conjugate. This eigenvalue structure already describes the
typical behaviour of parameter-dependent PT -symmetric Hamiltonians.

In the wake of the discovery of Bender and Boettcher, a large number of sys-
tems with PT -symmetric Hamiltonians have become the subject of theoretical
and experimental studies. It is no surprise that the most sophisticated experi-
mental progress in the investigation of PT -symmetric physical systems has been
achieved in optics [5, 7, 9, 12, 15, 16, 19]. The gain and loss contributions required
to set up a non-Hermitian PT -symmetric system can be implemented, e.g. with
optical pumping (gain) and absorptive media (loss), i.e. by exploiting well es-
tablished techniques.

Due to the well known analogy that the wave equation for the transverse
electric field mode is formally equivalent to a one-dimensional Schrödinger equa-
tion these optical systems can be considered as a simulation of the motion of
a quantum particle in a potential of the form V (x) = −k2n2(x), where n is
the (complex) refractive index. However, these studies cannot completely sub-
stitute studies of quantum systems, and the verification of PT symmetry in a
true quantum system is highly desirable. Klaiman et al. [9] proposed a quantum
analogue to the optical experiments consisting of a Bose-Einstein condensate in
a double-well potential. The gain and loss terms could be realised by coherently
removing atoms from one well and injecting atoms into the other.

At sufficiently low temperatures one may assume that all atoms of a dilute
gas of weakly interacting Bosons trapped in an optical potential are in their
ground state. Then the system can be well described by the Gross-Pitaevskii
equation [20, 21], i.e. the Hartree approximation of the corresponding many-
particle equation, where all single-particle orbitals are given by the same state.
In a particle number scaled form and in appropriate units the Gross-Pitaevskii
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equation reads

iψ̇(x, t) =
(
−Δ+ V (x)− g|ψ(x, t)|2

)
ψ(x, t) . (3)

The trapping potential for the atoms is described by V (x). Additionally, the
atoms interact via the short-range van der Waals force, of which a description
with an s-wave scattering process is sufficient in the dilute gas. Its strength g is
determined by the scattering length.

It is the scattering term −g|ψ(x, t)|2 which needs a further consideration
since it leads to a crucial modification of the Schrödinger equation. The Gross-
Pitaevskii equation (3) is nonlinear in the wave function. This has direct con-
sequences for the PT symmetry of the system. For a PT -symmetric system
we require, as mentioned above, [PT , H ] = 0. Since the kinetic energy term
in the Hamiltonian is always PT symmetric one directly obtains the necessary
condition for the potential,

V ∗(−x) = V (x) . (4)

This has also to be fulfilled by the scattering term. Thus, for the total Hamilto-
nian to be PT symmetric the square modulus of the wave function which is the
solution of the Gross-Pitaevskii equation has to be a symmetric function of x.

In previous studies of PT -symmetric systems with nonlinearity it was found
that the nonlinearity not necessarily destroys the appearance of real eigenvalues
in the spectrum or their coalescence in branch point singularities. Indeed, PT -
symmetric eigenstates with real energies have been found for a non-Hermitian
Bose-Hubbard model [10, 11, 22], quantum mechanical model potentials [8], opti-
cal waveguide structures [7, 15], and for Bose-Einstein condensate in an idealised
double-δ trap [23, 24], or in a spatially extended double well [25].

In this article we will solve the Gross-Pitaevskii equation for a Bose-Einstein
condensate in a double well with antisymmetric imaginary potential contribu-
tions describing effectively gain and loss processes. We show that it exhibits PT -
symmetric solutions, which is important because PT -symmetric wave functions
always have a square modulus which is a symmetric function of the coordinate x.
A Bose-Einstein condensate is a fully three-dimensional object, however, for the
investigation of the PT symmetry only a gain-loss profile in one spatial direction
is required. Thus, one may assume that it is sufficient to reduce the theoretical
description to one dimension without losing any relevant information. We will
demonstrate that this is exactly the case. But the correspondence of the one- and
three-dimensional solutions we obtain is even stronger. We show that the solution
of a Gross-Pitaevskii equation with adequately rescaled nonlinearity is capable
of providing quantitatively correct predictions for the fully three-dimensional
treatment. By the variation of the trap frequencies it will always be possible to
realise a regime in which the influence of the two additional dimensions can be
obtained without any explicit calculation. Furthermore, we show that a stable
dynamics of condensate wave functions is possible in the system with gain and
loss. This will be crucial for an experimental observability.
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Fig. 1. Visualisation of the PT -symmetric external potential in x direction. The real
part (solid line) defines the confinement of the condensed atom cloud, and the imaginary
part (dashed line) describes the in-/outcoupling of atoms.

In Sect. 2 we present the system and the corresponding Gross-Pitaevskii
equation. Additionally, we introduce two numerical methods for the calculation
of the stationary states. Then we discuss the numerical results for the energy
eigenvalues and investigate quantitatively the quality of one-dimensional model
calculations for the fully three-dimensional condensate in Sect. 3. Finally, we
study the stability of the condensate with numerically accurate dynamical com-
putations in Sect. 4. Conclusions are drawn in Sect. 5.

2 Theoretical description of the Bose-Einstein condensate
in the double well

2.1 Gross-Pitaevskii equation

The Bose-Einstein condensate of atoms with mass m is, in the mean-field limit,
described by the Gross-Pitaevskii equation (3), where we assume a potential of
the form

V (x) =
m

2
ω2
xx

2 +
m

2
ω2
y,z(y

2 + z2) + v0e
−σx2

+ iΓxe−ρx2

. (5)

It consists of a three-dimensional harmonic trap with trapping frequencies ωx

for the x direction and ωy,z for the two remaining spatial coordinates. To form
a double well it is superimposed with a Gaussian barrier in x direction. This
results in the one-dimensional projection of the potential as shown in Fig. 1. It
is obvious that the barrier has its maximum at x = 0. Its height is v0 and the
width of the Gaussian is given by σ. The imaginary contribution of strength Γ
is an effective description of a gain or loss of atoms. As can be confirmed by a
simple calculation the external potential (5) is PT symmetric.
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The coherent addition and removal of atoms proposed by Klaiman et al. [9]
can in principle be achieved by several methods. For example, appropriate laser
setups forming Bragg beams may be exploited to actively transport atoms from
a reservoir to one of the wells and to eject atoms from the other [26, 27]. The
reservoir can be a third well or a completely independent trap geometry. One
may also imagine a geometry with multiple wells in a row. If these wells are
close enough such that the condensate’s probability density may tunnel from
one well to its neighbouring well a flow of particles with a defined direction
could be generated by different potential offsets for the single wells. However, in
this article we concentrate on the effects of the PT -symmetric external potential
and will keep the equations as simple as possible. Thus, we adopt the formalism
used for the optical systems [5, 7, 9, 12, 15, 16, 19], where a complex refractive
index was used, and simulate an outcoupling of atoms with a negative imaginary
potential contribution in the left well, whereas a positive imaginary part in
the right well reflects in incoupling of atoms. Since the potential affects the
probability amplitude of the whole condensate the physical interpretation is a
coherent coupling, which is in agreement with our physical interpretation of
the process since we do not consider individual atoms but a macroscopic wave
function of the condensed phase.

With the length scale a0 =
√
�/2mωx defined by the trap frequency in

the direction of the double well and the unit of energy E0 = �
2/2ma20 the

dimensionless potential assumes the form

V (x) =
1

4
x2 +

1

4
ω2
y,z(y

2 + z2) + v0e
−σx2

+ iΓxe−ρx2

. (6)

Then the dynamics is governed by the time-dependent Gross-Pitaevskii equation
(3). To obtain stationary solutions we solve its time-independent variant, viz.

(
−Δ+ V (x)− g|φ(x)|2

)
φ(x) = μφ(x) , (7)

where the chemical potential μ has been introduced with the usual ansatz
ψ(x, t) = φ(x)e−iμt. For all calculations we keep the parameters v0 = 4 and
σ = 0.5 fixed. The width parameter ρ of the imaginary gain-loss potential is
chosen to be

ρ =
σ

2 ln(4v0σ)
. (8)

This choice guarantees that the extrema of the real and imaginary potential parts
coincide, as is illustrated in Fig. 1. A one-dimensional description is obtained
with the potential

V (x) =
1

4
x2 + v0e

−σx2

+ iΓxe−ρx2

, (9)

in which only the x direction is considered and all y and z terms are removed.
Obviously it contains all the relevant information about the PT symmetry.
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2.2 Numerical methods

We apply two independent methods to solve the time-dependent and time-
independent Gross-Pitaevskii equations (3) and (7). Our first method is a Gaus-
sian variational approach [28, 29] based on the idea to restrict the wave function
to a Gaussian form, viz.

ψ(z,x) =

NG∑
k=1

e−[A
k
x(x−qkx)

2+Ak
y,z(y

2+z2)]eip
k
x(x−qkx)−ϕk

. (10)

Within this approach the dynamics is described by the small set of variational
parameters

z(t) =
{
Ak

x(t), A
k
y,z(t), q

k
x(t), p

k
x(t), ϕ

k
}

. (11)

The most simple ansatz is a superposition of two Gaussian wave functions, each
of them located in one of the wells, i.e. NG = 2 in (10). Then the real coordinates
q1x, q

2
x, p

1
x and p2x determine the positions and momenta of the Gaussians. The

widths of the Gaussians are given by the complex parameters A1
x, A

2
x, A

1
y,z and

A2
y,z, where we chose identical widths for the y and z directions, in agreement

with the symmetry of the external potential (5). Finally, the complex quantities
ϕ1 and ϕ2 determine the amplitudes and phases.

The application of the McLachlan time-dependent variational principle [30],

δI = δ||iχ(z(t),x) −Hψ(z(t),x)||2 !
= 0 , (12)

leads to a set of ordinary differential equations for the parameters (11) after the
variation with respect to χ and the subsequent replacement ψ̇ ≡ χ. Stationary
states or solutions of the time-independent Gross-Pitaevskii equation (7) are
found if the conditions Ȧk

x = Ȧk
y,z = q̇kx = ṗkx = 0, and ϕ̇1 = ϕ̇2 are fulfilled. A

detailed explanation of the procedure can be found in reference [25].
The advantage of the Gaussian variational method is its high scalability, i.e.

the difference of the numerical costs between the one- and three-dimensional
descriptions is very moderate. Nevertheless, it provides highly precise solutions
[31–33]. However, since in this analysis of PT -symmetric Bose-Einstein conden-
sates the method is applied for the first time to nonlinear complex potentials
we compare its results to numerically exact solutions of the Gross-Pitaevskii
equation in one dimension. To obtain the numerically exact stationary states
the wave functions are integrated outward from x = 0 in positive and negative
direction using a Runge-Kutta algorithm. The initial values Reψ(0), ψ′(0) ∈ C,
and μ ∈ C are chosen such that the wave functions are square integrable
(ψ(∞) → 0, ψ(−∞) → 0) and normalised ||ψ|| = 1. For numerically exact
dynamical calculations we apply the split-operator method.

3 Stationary states

3.1 General behaviour of the solutions

Fig. 2 shows the results of the solution of the Gross-Pitaevskii equation (7). Let
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Fig. 2. Real and imaginary parts of the energy eigenvalues μ of the stationary Gross-
Pitaevskii equation (7) as a function of the the gain-loss parameter Γ . The Gaussian
approximation (solid lines) and the numerically exact solutions (dashed lines) show
an excellent agreement. In the left panel, g increases from top to bottom, in the right
panel from right to left.

us first concentrate on the linear case g = 0, which exhibits the typical behaviour
known from other PT -symmetric systems (top curve in the left panel and right-
most curve in the right panel). Below a critical value ΓEP ≈ 0.04 of the gain-loss
parameter Γ we find two real eigenvalues, corresponding to a ground state with
completely symmetric wave function for Γ = 0 and an excited state, of which
the wave function is completely antisymmetric for Γ = 0. At ΓEP ≈ 0.04 the two
solutions merge in an exceptional point, where we have confirmed that indeed
the wave functions become identical. Increasing Γ further we obtain two complex
conjugate solutions. One also notes that the agreement between the Gaussian
approximation and the numerically exact solution is excellent.

Obviously the real eigenvalues do not vanish in the case g �= 0. This is
an important result since it indicates a persistence of the PT symmetry in
the nonlinear quantum system. Non-decaying states are present. However, if we
want to be sure about the symmetry we have to look at the wave functions.
As mentioned in the introduction the PT symmetry of the Gross-Pitaevskii
equation (7) depends on its solution, or, to be more precise, on the shape of the
wave function’s square modulus. It has to be a symmetric function of x. Is this
the case? The answer to this question is given in Figs. 3(a) and (b), which show
the wave functions belonging to both real eigenvalues for g = 0.2 and Γ = 0.03.
The square moduli are symmetric functions of x. This confirms that the case of
exact PT symmetry is fulfilled.

There are also, as in the linear case, states with complex eigenvalues. From
linear PT -symmetric models we know that these complex eigenvalue solutions
belong to PT -broken wave functions. This behaviour is also found in our case,
cf. Figs. 3(c) and (d). This has crucial impact on the nonlinear Gross-Pitaevskii
equation. Since the square moduli of the wave functions are not symmetric func-
tions of x the PT symmetry of the Hamiltonian is destroyed.
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Fig. 3. The wave functions of the ground (a) and the excited (b) eigenstates with real
eigenvalues possess symmetric square moduli, and thus correspond to the case of exact
PT symmetry. By contrast, the wave functions of the complex eigenvalue solutions with
negative (c) and positive (d) imaginary part do not have symmetric square moduli. All
wave functions are shown for g = 0.2 and Γ = 0.03. Since there are almost no visible
differences between the variational Gaussian and the numerically exact solutions only
the variational wave functions are drawn.

In Fig. 2 we observe a further crucial difference between the linear and the
nonlinear system. In the linear case g = 0 the two complex eigenvalue solutions
emerge exactly at the value ΓEP at which the non-decaying eigenstates with real
eigenvalues vanish. This does not hold for the nonlinear system, i.e. for g �= 0. In
the latter case the complex eigenvalue solutions are born at a value Γc < ΓEP. At
the exceptional point ΓEP only the real eigenvalue states vanish and new complex
solutions do not appear. It is known that this unusual bifurcation scenario has
its origin in the non-analyticity of the Gross-Pitaevskii equation [25, 34], which
is a topic of ongoing research.

3.2 Importance of the one-dimensional solutions

Since only the x coordinate is relevant for the PT symmetry of the potential
(5) it is not surprising that the one-dimensional calculations considered so far
already cover qualitatively all relevant effects. However, we want to go one step
further and ask whether the one-dimensional calculations are also capable of
providing precise quantitative predictions for a completely three-dimensional
setup. To do so, we investigate simple but plausible assumptions on the two
remaining directions and their influence on the energy eigenvalues.

The first effect of the two additional directions is clearly the interaction of
the atoms in the condensate with the trapping potentials defined by the trap fre-
quency ωy,z in (6). If we assume that only the ground state of the corresponding
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Fig. 4. The real (a) and nonvanishing imaginary (b) parts of the energy eigenval-
ues of the one-dimensional model (dashed lines) are compared with the fully three-
dimensional calculations (solid lines). One observes a very good quantitative descrip-
tion by the simple one-dimensional treatment of the system. The differences can hardly
be seen in the graph. Again, in the left panel, g increases from top to bottom, and in
the right panel from right to left.

oscillators is occupied, which is reasonable in the condensed phase, we obtain an
energy shift by a value of Δμ = ωy,z = 2 in the units introduced in Sect. 2.1.

Since the Gross-Pitaevskii equation (7) contains also the nonlinear scattering
term we have to take into account the normalisation integral for the energy
contribution of the s-wave contact interaction. An estimate of the difference
between the one- and three-dimensional contact energies can be extracted from
its expectation value. We wish to describe the three-dimensional setup by an
equivalent one-dimensional model, and thus we demand that the expectation
values of both contact energies are identical, viz.

∫

R3

dx dy dz g3D|ψ3D(x)|4 !
=

∫

R

dx g1D|ψ1D(x)|4 . (13)

This leads to the relation

g3D =
4π

ωy,z
g1D (14)

between the value g1D which has to be used in the one-dimensional model in
order that it results in the same contact energy as a three-dimensional wave
function with g3D. Again, we assumed that the harmonic oscillator ground state
with its wave function ψ0 is a good approximation for the directions y and z.
Furthermore, we used the product ansatz

ψ3D(x) ≈ ψ1D(x)ψ0(y)ψ0(z) . (15)

Of course, these simple considerations are only correct in the linear form of
the Gross-Pitaevskii equation (7), with g = 0. However, in Fig. 4 we observe
a remarkable agreement between the one-dimensional results based on the sim-
ple assumptions and the results of the fully three-dimensional calculations even
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the excited state ψe, and the PT -broken states ψn/p. All calculations are carried out
for a nonlinearity of g3D = 1.2π/ωy,z, i.e. g1D = 0.3. For higher values of ωy,z the
ratio converges to unity, i. e. the agreement between the solutions in one and three
dimensions becomes better and better. The PT -symmetric solutions converge faster
than the PT -broken solutions.

for nonlinearities as large as g1D ≈ 0.3. It is almost impossible to identify the
differences.

In a further step one may assume that the one-dimensional description even
becomes better when the geometry of the setup is designed to favour the spa-
tial extension in only the x direction. The previous calculations for the three-
dimensional potential were carried out with a constant trapping frequency of
ωy,z = 2. The trapping frequencies influence the condensate’s shape, and thus
it is expected that they have an impact on how precise the stationary solutions
in one dimension can be transferred to solutions in three dimensions. The limit
ωy,z → ∞ effectively describes the one-dimensional potential because the widths
of the wave function in y and z directions must vanish. Therefore the behaviour
in the three-dimensional potential can be predicted more accurately by the one-
dimensional solutions for higher values of ωy,z. Figure 5 confirms the convergence
of the energy eigenvalues in the three-dimensional potential to the solutions in
one dimension with increasing ωy,z. What is shown is the value of the ratio

μ3D −Δμ

μ1D
=

μ3D − ωy,z

μ1D
. (16)

If the solutions in three dimensions are exactly described by the product ansatz
(15) the ratio will be equal to one. Indeed, we observe convergence to unity for
increasing values of ωy,z.

The convergence in the limit ωy,z → ∞ is expected. What is, however, of
greater interest is, at which values of the trapping frequencies the one-dimensional
model becomes sufficiently accurate. We see from Figure 5 that in particular for
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the stationary solutions with real eigenvalues, i.e. the PT -symmetric states, one
has rapid convergence. To achieve a good agreement between the solutions in
one and three dimensions it is obviously sufficient to choose a trapping frequency
ωy,z which is larger than that for the x direction, i.e. in the units used for our
calculation ωy,z > 1. This is remarkable since this does by far not mean that
we are investigating a quasi one-dimensional setup. The spatial extension in y
and z directions may be comparable to that in x direction and it is still possi-
ble to extract quantitatively correct values from a simple and numerically less
expensive one-dimensional calculation.

4 Dynamics of the condensate

Before we investigate the temporal evolution of the wave functions we have to
note an important consequence of the nonlinear system with gain and loss. In
Sect. 3.1 we observed PT -broken solutions with complex energy eigenvalues and
called them stationary states. From the point of view of the time-dependent
Gross-Pitaevskii equation (3) this is not correct. The consequence of the imag-
inary parts of the energies is a decay or growth of the state’s probability am-
plitude. This affects the scattering term −g|ψ|2, and introduces an explicit time
dependence into the nonlinear Hamiltonian. Thus, these states cannot be con-
sidered to be true stationary solutions of the time-dependent Gross-Pitaevskii
equation. Strictly speaking, they lose their physical relevance. We will see, how-
ever, that they still have important consequences for the dynamics of the whole
system.

If we prepare the condensate in a state close to the stationary real eigenvalue
solutions for values of Γ below the appearance of the PT -broken states their
influence is supposed to be negligible. This can be confirmed in a numerically
exact propagation of such initial states using the split-operator method. Since
we have demonstrated in Sect. 3.2 that a fully three-dimensional calculation is
not necessary we restrict our calculations to the one-dimensional model which
is more illustrative.

In Figs. 6(a), (b), and (c) we visualise the evolution of the probability am-
plitude of an initial wave packet

ψ(x, t = 0) =
1√
2

(
φg(x) + eiϕφe(x)

)
, (17)

where φg(x) and φe(x) are the ground and excited state, respectively, and ϕ =
π/2 was chosen. We observe the same behaviour as it appears already in linear
systems [9]. An oscillation of the probability amplitude between the two wells
sets in, and the oscillation frequency decreases with increasing Γ . Close to the
exceptional point at Γ ≈ 0.04 the oscillation period tends to infinity. A de-
tailed quantitative analysis reveals that the influence of the nonlinearity is only
a slightly higher oscillation frequency as compared to the linear case Γ = 0.

A drastic qualitative change of the wave function’s behaviour is observed in
Fig. 6(d), where the phase was chosen to be ϕ = π and the gain-loss parameter
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Fig. 6. Visualisation of the probability amplitude’s spatial distribution as a function
of time. The initial wave packet is defined by (17). In all calculations g = 0.2 was
chosen. For the choice ϕ = π/2 stable oscillations are observable in the cases Γ = 0
(a), Γ = 0.02 (b), and Γ = 0.04 (c). For Γ = 0.03 and ϕ = π we observe an explosion
of the wave packet (d).

Γ = 0.03 is in a regime in which the additional PT -broken states are present
for g = 0.2, cf. Fig. 2. The condensate does not oscillate between the wells.
The probability amplitude tunnels into the well with gain (x > 0) which leads
immediately to an “explosion” of the wave function, i.e. it grows beyond all
limits. Of course this is only correct in our description of the gain and loss
effects with imaginary potentials which correspond to infinitely large reservoirs.
In a realistic situation this description will break down at some point.

There is a simple explanation for the exploding behaviour. The two PT -
broken solutions with complex eigenvalues exist and they possess a considerable
overlap with the time-evolved wave function (17). In this case the eigenstate
with positive imaginary part of the energy can dominate the long-time behaviour
since it grows. This can also happen close to the ground state, which does not
need to be stable in the nonlinear system with gain and loss. In fact, a detailed
stability analysis by solving the Bogoliubov-de Gennes equations confirms that
the ground state becomes unstable as soon as the complex eigenvalue solutions
emerge at a critical value Γc [25].

As we have seen in Fig. 6(c) the instability of the ground state does not
necessarily lead immediately to a destruction of the oscillation. For the value
Γ = 0.04, i.e. very close to the exceptional point also the PT -broken solutions
exist. However, the probability amplitude almost pulsates in both wells with a
low frequency as it is known from linear PT -symmetric systems, and does not
seem to be disturbed by the growing and decaying complex eigenvalue solutions.
An extensive study of the initial conditions reveals that the phase ϕ in (17)
critically influences the fate of the initial wave packet.
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5 Conclusion

The most important result of this work is the verification of the existence of
PT -symmetric eigenstates of the Gross-Pitaevskii equation for a Bose-Einstein
condensate in an external PT -symmetric potential. Due to an incoupling and
outcoupling of atoms in the two wells, which can be described by imaginary po-
tential contributions, the Hamiltonian is complex and non-Hermitian. It does not
necessarily need to support true stationary states. However, the PT -symmetric
solutions possess real energy eigenvalues, and thus demonstrate that stationary
eigenstates that do not decay or grow exist even though a gain and loss of atoms
is always present. This behaviour is known from linear PT -symmetric quantum
systems, but its appearance in the mean-field description of Bose-Einstein con-
densates is a nontrivial finding since the Hamiltonian of the Gross-Pitaevskii
equation is nonlinear. Thus, the solution has an effect on the Hamiltonian’s
symmetry, i.e. only after the wave functions have been found one can be sure
that the system fulfils any symmetry. In other words, one may conclude that the
Hamiltonian picks as real eigenvalue solutions exactly those states which render
itself PT symmetric.

The real energy eigenvalues are the only true stationary states of the system.
It is also possible to find solutions of the time-independent Gross-Pitaevskii
equation with complex energy eigenvalues. However, they cannot be considered
to be physical. Due to the decay or growth enforced by the imaginary energy
contributions these states introduce an explicit time dependence into the non-
linear Hamiltonian, and thus are not stationary solutions of the time-dependent
Gross-Pitaevskii equation. As is known from linear systems the complex ener-
gies found for the time-independent Gross-Pitaevskii equation belong to wave
functions with broken PT symmetry. Since their square moduli are not sym-
metric functions of the spatial coordinates they destroy also the Hamiltonian’s
PT symmetry. A striking difference between linear and nonlinear systems is the
point of emergence of the states with broken PT symmetry. In linear systems
they are born exactly at the critical parameter value ΓEP at which the two real
eigenvalue states vanish in an exceptional point. For a nonvanishing nonlinearity
g we observe that the complex eigenvalue solutions bifurcate from the ground
state at a lower gain-loss parameter Γc.

It is remarkable that the effects of the PT -symmetric double well can be
excellently described by one-dimensional calculations. Of course, one can im-
mediately see that it is possible to construct a one-dimensional PT -symmetric
potential. Then one does not expect to lose any qualitative information when one
reduces a fully three-dimensional physical system to a one-dimensional descrip-
tion. Our calculations showed that for Bose-Einstein condensates in a double
well the correspondence between three- and one-dimensional calculations is even
stronger. Highly precise quantitative predictions for the energy eigenvalues of the
physical condensate wave function can be obtained from simple one-dimensional
considerations. This fact holds for condensate geometries which by far cannot
be called one-dimensional.
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The time evolution of the wave functions revealed that for low enough gain-
loss parameters Γ the condensate behaves as waves in linear PT -symmetric
systems. The probability amplitude oscillates between the wells, where the os-
cillation frequency decreases for increasing Γ and tends to zero close to the
exceptional point at which the real eigenvalues solutions merge. As soon as Γ
is strong enough for the appearance of the PT -broken complex energy states
the temporal evolution of the condensate can become unstable and lead to an
infinite growth of the probability amplitude in the well with gain. This effect
depends critically on the preparation of the initial state. For an experimental
realisation the most important finding is the existence of a stable dynamics.

The present work shows that Bose-Einstein condensates are good candidates
for the first experimental observation of a PT -symmetric quantum system. How-
ever, there are still some questions which have to be answered. So far, we intro-
duced the coherent in- and outcoupling of atoms only via complex potentials.
A topic of ongoing research are several setups with additional wells acting as
reservoirs of atoms. These setups are based on the idea that one has a closed
system in which the double well is embedded. We wish to investigate how it is
possible to drive a coherent flow of atoms between the reservoir and the two wells
such that the double well alone can effectively be described by the imaginary
potential presented in this article.

From the theoretical point of view it would be desirable to understand how a
coherent in- or outcoupling of atoms can be understood on a microscopic level.
This will require considerations beyond the mean-field limit but will certainly
provide more insight into the physical processes. The systems also revealed a
number of mathematical challenges. The unusual bifurcation scenario with the
PT -symmetric solutions bifurcating from the ground state has its origin in the
non-analyticity of the Gross-Pitaevskii equation. The investigation of the nature
of these bifurcation points requires a proper analytic extension.
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