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Abstract. Any attempt to provide a foundation of thermodynamics
faces this central question: how come that a qualitatively different type
of behavior emerges (as an effective description) from the underlying
physical substrate?
Quantum thermodynamics is able to show that the partitioning of a
closed quantum system into a smaller and a significantly larger part typ-
ically gives rise to thermal properties of the former, even though the sys-
tem as a whole continues to exhibit unitary motion. Being based on en-
tanglement, this feature may show up already in rather small total quan-
tum systems, the dynamics of which can still be solved exactly. Further-
more, it allows for nano-thermodynamics, an entirely self-contradictory
concept in the classical regime.
This picture differes substantially from the classical (statistical) descrip-
tion: It is not the system as such, which is thermal; rather it is made
thermal by its environment. Thermal behavior is thus “apparent” only,
i.e. dependent on the way the observer chooses to look. A much closer
look would make the thermal properties disappear – just like a portrait
will become unrecognizable after focusing on individual pixels. However,
that very type of “looking” has to be included as part of the detailed
modeling. Operational quantum thermodynamics establishes an intuitive
link between the new quantum and the old classical description.

Keywords: Partitions, entanglement, typicality, Hilbert-space statis-
tics, thermal attractor, quantum measurement

1 Introduction

1.1 Concepts

Compared to synergetics as a truely interdisciplinary field [1], quantum thermo-
dynamics focusses on a much more restrictive theme – though fundamental in
its own right.

Despite these obvious differences in scale a common set of concepts can be rec-
ognized to enter both fields: This set includes, in particular, hierarchical aspects
(slow/fast variables, macro/micro-descriptions, relevant subspaces), interrelated
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with the extensive use of effective descriptions (coarse-graining, emergence, uni-
versality, control parameters).

It has long since been realized that physical phenomena are not just “out
there” but depend on the approrpiate level of description. Simplifications (based
on relevance concepts) and models (declaring certain constraints as given) are
the tools for intuitive understanding. These effective theories [2] try to capture
what is relevant in a given physical domain.

Effective theories are “closed”, i.e., they do not require the explicit input of
more detailed descriptions , except for the fit of some phenomenological param-
eters. This “closure” is quite remarkable and firther underlines the usefulness of
approaches on different hierarchical levels.

“Brute force” numerical studies may establish valuable tests and help to
find convincing effective descriptions, but cannot be a substitute for “qualitative
modeling”. In this context one may recall a comment by Picasso: “Art is a lie
that helps us see the truth” [3].

1.2 Operationality

Information, quantum dynamics, and thermodynamics are the basic input for
the study of quantum thermodynamic processes. Remarkably, these three fields
are particularly suitable for for an operational approach. In fact, the concept
of information can hardly be introduced without reference to communicating
agents. Observational quantum mechanics with its focus on measurementand
statistical features differs substantially from “abstract”(isolated) quantum me-
chanics. Thermodynamics can be seen as a control theory, its main laws as
statements about what can be done by agents equipped with limited resources.
And operations/descriptions eventually provide links between the three fields.

1.3 Contextuality

A common thread running through both synergetics and quantum thermody-
namics is contextuality.

In quantum physics contextuality has a rather dramatic significance: The
Kochen-Specker theorem [4] demonstrates that we arrive at a paradox (within
the rules of quantum mechanics), if we assume that all possible experimentally
answerable questions that can be asked about a given quantum system have def-
inite yes/no answers. As a consequence the answer to a certain question depends
on the context (of other questions having been posed).

A somewhat different type of contextuality is related to the choice of par-
titions. While also operational in nature, this choice has nothing to do with
actual measurement results as such, but rather concerns the mere possibility for
selecting global or local questions, respectively. A bi-partite scenario underlies
the emergence of local thermal behavior [5].
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2 Hilbert-space

The state space of quantum physics is a complex vector-space, the so-called
Hilbert-space H (of dimension d). Each quantum system μ, μ = A,B, . . . con-
tributes its own Hilbert-space, H(μ). A vector (“pure state”) in such a space
is conveniently written in Dirac-notation as ψ(μ) → |ψ(μ) > with the com-
plex conjugate ψ∗(μ) →< ψ(μ)|. The vectors are taken to be normalized, i.e.,
< ψ(μ)|ψ(μ) >= 1. The Hilbert-space can be spanned by a set of orthogonal
basis vectors, |f (j)(μ) >, j = 1, 2, . . . d(μ). In order to specify such a set (for
Hilbert-space μ) consider the eigen-equation of some properly chosen operator
F̂ (μ) with

F̂ (μ)|f (j)(μ) >= Fj(μ)|f (j)(μ) > . (1)

This is still entirely abstract; we postpone the specificatiom of model classes we
have in mind.

2.1 Partitioning

A classical particle is described by d = 6 coordinates, 3 position and 3 momentum
coordinates. For a composite system (N particles) the respective space is a direct
sum, the so-called Γ -space. Its dimension is

D =

N∑
μ=1

d(μ) = 6N . (2)

It scales linearly with N .

Definition 1 (Tensor space). In quantum mechanics each subsystem μ brings
its own Hilbert-space of dimension d(μ). For a composite system the total Hilbert-
space is thus a direct product (or tensor-) space of dimension

D =

N∏
μ=1

d(μ) . (3)

For d(μ) = d one finds D = dN , i.e., the total dimension scales exponentially
with N . Typical Hilbert-spaces become incredibly huge indeed.

Definition 2 (Product representation). A convenient set of basis vectors
for a composite system are product states. For N = 2 and if F̂ (A) and F̂ (B)
are complete operators within their respective subspace, A, B, the completeness
relation reads

1̂ = 1̂(A)⊗ 1̂(B) =

d(A)∑
i=1

d(B)∑
j=1

|f (i)(A), f (j)(B) >< f (i)(A), f (j)(B)| . (4)
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Any pure state for such a bi-partite system can thus be represented in terms of
those product-states, |f (i)(A) > ⊗|f (j)(B) >= |f (i)(A), f (j)(B) >, as

|ψ(A,B) > =

d(A)∑
i=1

d(B)∑
j=1

|f (i)(A), f (j)(B) > ψij ,

ψij = < f (i)(A), f (j)(B)|ψ(A,B) > . (5)

This is easily generalized to N = 3, 4, . . . .

The opposite to composition is partitioning:

Definition 3 (“Virtual” partitioning). Consider a total Hilbert-space of di-
mension d. If d is a prime number, the system is necessarily elementary. Other-
wise it has a non-trivial prime-factorization[8]

d =

r∏
j=1

q
nj

j . (6)

The number of such elementary subsystems, each of some prime-factor dimen-
sion qj, would be given by

Nd =

r∑
j=1

nj . (7)

Definition 4 (Operationally accessible partitioning). For a concrete sys-
tem Ĥ living in such a product-Hilbert-space of dimension d only a fraction of
those elementary subsystems will be ”real”, i.e. correspond to operationally well-
defined and accessible subunits. Its number, N ≤ Nd, and type is not an absolute
property of the system but contextual. It defines a kind of reference frame. Each
such unit is characterized by a (classical) index, ν = A,B,C, . . . . The index
serves as a kind of address.
For example, a Hilbert-space with Nd = 3 may be described as a single sys-
tem, N = 1, (ABC), as a bi-partite system, N=2, (A)(BC) or (AB)(C) or as
N = Nd, (A)(B)(C). This is more than a formal aspect. While all these decom-
positions are formally equivalent, i.e., span the same total space, they give rise
to different phenomena in terms of inter-subsystem correlations (entanglement).
Different decompositions also lead to different notations for states: |k(ABC) >
or |k(A);m(BC) > or |k(A);m(B);n(C) >, where the parameters k,m, n specify
the respective (sub-) states.

2.2 Typicality

We first note that the study of thermodynamic behavior is intimately related
to typicality [6]: We are not so much concerned with specific models and spe-
cific states, but rather with typical models and typical states. Indeed, we know
that thermal properties are not guaranteed; nevertheless, we want to argue that
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under given (rather weak) constraints thermal behavior will be “likely”. As a
consequence, we do not need to run tests for each case in question (which would
often be very hard to do) but instead base our judgement on mere probability
of being correct (accepting occasional failures).

So what are “typical properties” of pure states? Underlying is subjective igno-
rance about the actual state, which is conveniently represented by an ensemble.
Typical – in agreement with its colloquial meaning – are then properties, which
occur for “almost all” ensemble members. In order to quantify such a behav-
ior one needs to define a pure-state distribution function (cf. [5]). A convenient
way to proceed is to introduce a specific parametrization for the pure states in
question, with respect to a given basis set.

Definition 5 (Parametrization of pure states). Any pure state |φ > in a
given d-dimensional Hilbert-space (for the moment we suppress index μ) can be
written in that basis |f (j) > as

|φ >=

d∑
j=1

(ηj + iξj)|f (j) > . (8)

Here, ηj , ξj are 2d real parameters. The normalization condition reads

G(η1, ξ1, η2, ξ2, . . . ηd, ξd) =

d∑
j=1

(η2j + ξ2j ) = 1 . (9)

The corresponding pure state distribution does not relate to a concrete physi-
cal scenario like a thermal equilibrium state. There should be no bias, except
symmetry (see below).

Definition 6 (Pure-state distribution w). The distribution function para-
metrized as w(η1, ξ1, . . . ηd, ξd, ) may now be considered a “prior” in the sense
of Bayesian statistics. A simple way to arrive at this distribution is to apply
the maximum entropy principle (MEP) subject to the single macro-constraint
(norm)

G =

∫
ddηddξw(η1, ξ1, . . . ηd, ξd)

d∑
j=1

(η2j + ξ2j ) = const. (10)

This procedure immediately leads to the Gaussian [7]

w(η1, ξ1, . . . ηd, ξd) =

(
1

√
πγ

)2d

exp (−G(η1, ξ1, . . . ηd, ξd)/γ) (11)

We note that this distribution fulfills the normalization condition on average
only. This deficiency can be cured in the asymptotic limit for large d, if we set
γ = 1/d. In this limit the fluctuations of G become negligible.
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Alternatively, the above result can be obtained by requiring the distribution
function w(η1, ξ2, . . . ηd, ξd) to be invariant under unitary transformations [5].
The choice of the underlying representation is arbitrqary should thus not matter.

According to eq.(11) an unbiased ensemble of pure states is characterized
by the distribution function w(η1, ξ1, . . . ηd, ξd). This function allows us to de-
fine Hilbert-space averages of any function h(|φ >) = h(η1, ξ1, . . . ηd, ξd) as an
integral over the 2d- dimensional parameter-space:

h =

∫
w(η1, ξ1, . . . ηd, ξd)h(η1, ξ1, . . . ηd, ξd)d

dηddξ . (12)

Likewise one can define higher moments. Recall that this Hilbert-space statistics
reflects subjective ignorance (an entirely classical concept); it has nothing to do
with the statistical features of quantum mechanics proper.

3 Hilbert-space average method (HAM)

3.1 Landscapes

Proposition 1 (Hilbert-space average method (HAM)).
The function h(|φ >) can be visualized as a “landscape” over its 2d-dimensional

parameter-space. We can approximate

h(|φ >) = h(η1, ξ1, . . . ηd, ξd) ≈ h (13)

provided that landscape of h is “flat” enough.

In particular let us consider some operator Ŷ acting on the Hilbert-space H. Its
eigen-representation reads

Ŷ =
∑
k

Yk|y(k) >< y(k)| . (14)

We are free to take these eigenfunctions as the basis for the ensemble of pure
states |φ > and their distribution w,

|φ >=

d∑
j=1

(ηj + iξj)|y(j) > . (15)

The expectation value of Ŷ with resepct to |φ > is an example for h(|φ >); its
Hilbert-space average is

h = < φ|Ŷ |φ > = < Y > =
∑
j

Yj(η2j + ξ2j ) =
1

d
Tr{Ŷ } . (16)

In the last step we have used that by symmetry and normalization η2j = ξ2j =
1/(2d). Correspondingly one finds for

< Y >2 =
1

d(d+ 1)

(
Tr{Ŷ 2}+ Tr{Ŷ }2

)
(17)
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(for details see [5]), which allows us to introduce the Hilbert-space variance

Δ2(< Y >) =
1

d+ 1

(
Tr{Ŷ 2}/d− Tr{Ŷ }2/d2

)
. (18)

HAM is thus justified for Ŷ , if

Δ(< Y >) � < Y > . (19)

Definition 7 (Accessible region (AR)). Unless the system is non-integrable,
the Hilbert-space accessible from some initially prepared state may severely be
constrained by various constants of motion. The system will never be able to
leave the respective subspace.

While the distinction between integrable and non-integrable models is often
considered essential for the resulting statistical behavior, it is of minor concern
here. We simply have to make sure that certain conditions of subsystem dimen-
sions and weak inter-subsystem couplings are obeyed. The arguments in terms of
HAM then go through.

3.2 Embedded system A(B): thermalizing environment

We now turn to a bi-partite quantum system A(B) with Hilbert-space dimension
d(A,B) = dAdB. Here A is the embedded system of interest; to stress this func-
tional asymmetry only B is written in parenthesis. Thermalizing environments
B are the prime target of quantum thermodynamics: Here one is concerned with
the question under which conditions an embedding quantum system is able to
impart thermal properties on the embedded system A.

A simple argument can be based on Hilbert-space statistics (cf. [5]): Here we
consider a closed bi-partite system A(B) under energy-exchange; the subsystem
A is taken to be a spin. We apply HAM for Ŷ → Ĥ , and accept that the
Hamiltonian Ĥ is not complete: degeneracies will show up.

Example 1 (Equilibrium via energy exchange). We take system A to be a two-
level system with energy-splitting ΔE and B to be a multi-level system with
states |j, k(B) >, where k describes the degeneracies, k = 1, 2, . . . gj . (The de-
generacy structure will turn out to be essential!) We single out two energy bands,
j = 0 and j+1 = 1, and assume weak (resonant) interaction between A and B,
E1−E0 = ΔE. The total energy of the system (A,B) is taken to be ΔE. Energy
conservation then induces a correlation between allowed states in A and B, i.e.,
not all d(A,B) states of the product-space are accessible. The accessible region
AR can be projected out via the follwing two projectors,

P̂0 = |0(A) >< 0(A)| ⊗
g1∑
k=1

|1, k(B) >< 1, k(B)| ,

P̂1 = |1(A) >< 1(A)| ⊗
g0∑

m=1

|0,m(B) >< 0,m(B)| . (20)
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The accessible Hilbert-space has dimension dacc(A,B) = g0+ g1. The respective
occupation probabilities < P0 >,< P1 >, averaged according to HAM, eq.(16),
are then found to be

< P0 > =
Tr{P̂0}
d(B)

=
g1

g0 + g1
, (21)

< P1 > =
Tr{P̂1}
d(B)

=
g0

g0 + g1
. (22)

The relative variance, Δ(< Pμ >)/< Pμ > scales with 1/dacc(B).

For dacc(B) � 1 HAM is thus justified (i.e. the above properties are typical)
and the expected equilibrium state of A reflects the degeneracy structure of the
embedding subsystem B.

Definition 8 (Embedding temperature). Even though the embedding sys-
tem B is not a bath (i.e., is not in a stationary thermal state) the smaller sub-
system A may be said to be in a thermal state with temperature T (A),

ΔE

kBT (A)
= ln

(
< P0 >

< P1 >

)
= ln

(
g1
g0

)
. (23)

This effective temperature will be called “embedding temperature”, as it derives
from the degeneracy structure of the quantum environment B with respect to the
transition energy ΔE selected by A. In general, a different subsystem A (different
transition energy) will have a different embedding temperature even within the
same B.

On the other hand, different embeddings B will lead to different temperatures
T (A) for given A. In particular, for g0 = g1 one finds

< P0 > = < P1 > ≈ 0, 5 . (24)

so that T (A) = ∞. For g0 = 1 � g1

< P0 > ≈ 1 , < P1 > ≈ 0 . (25)

This would imply T (A) = 0, apparently giving a simple route to zero tempera-
ture.

Remark 1 (Embedding temperature and third law). For the weak coupling con-
dition to be valid in the limit T (A) → 0, the interaction energy must be small
compared to the energy of subsystem A, which approaches zero. As the thermal
relaxation time depends on the interaction strength, this essentially means that
the time to reach thermal equilibrium would go to infinity. In this sense the
third law is saved: There is no efficient process to reach the absolute zero of
temperature.
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Remark 2 (Negative temperature). Negative embedding temperatures obtain for
g1 < g0. Such a degeneracy structure can be realized by means of a cluster of
non-interacting (identical) spins in the high energy regime. For g1 → 1 � g0 one
would get T (A) → −0 (total inversion).

For such special Hamilton models (with bounded spectrum) embedding tem-
peratures can be positive or negative: they both characterize possible equilibrium
states.

Proposition 2 (Embedding temperature versus bath temperature).
Consider a more general environment B with discrete energy-spectrum {Ej, j =
1, 2, . . . } and respective degeneracies gj. Furthermore, let this system be in a
thermal state with partition sum Z(B) and temperature β(B) = 1/kBT (B),

ρ̂equ(B) =
1

Z(B)

∑
j

exp (−β(B)Ej)

gj∑
k=1

|j, k(B) >< j, k(B)| . (26)

Then consider a two-level system A in its excited state |1(A) >, which is weakly
coupled to B. What will now be the effect of B on A?

Energy conservation implies that the initial pure state |1(A); j,m(B) > with
1 ≤ m ≤ gj would preferably be coupled to |0(A); j+1, k(B) > with 1 ≤ k ≤ gj+1,
so that – under HAM – the equilibrium state is expected to be

< P0 >j =
Tr{P̂0}
dj(C)

=
gj+1

gj + gj+1
, (27)

< P1 >j =
Tr{P̂1}
dj(C)

=
gj

gj + gj+1
. (28)

But in addition to taking the quantum expectation value and to apply the HAM we
have now, in a third step, to perform a thermal averaging over the environmental
states j:

ρ̂equ(A) =
1

Z(B)

∑
j

gj exp (−β(B)Ej)×

{< P0 >j |0(A) >< 0(A)|+< P1 >j |1(A) >< 1(A)|} . (29)

In general, this equation lacks a clear interpretation. For more transparent re-
sults specific models are needed about the environmental spectrum Ej and the
degeneracy gj.

For the following we assume for the environment B an equidistant spectrum,

Ej = jΔE . (30)

All transitions between adjacent levels are thus resonant with the two-level sys-
tem A. The following examples concern the degeneracy of B.
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Example 2 (Exponential degeneracy). We assume

gj = exp (γjΔE) , (31)

γ is a real positive parameter. Then

< P0 > =
1

1 + exp (−γΔE)
, (32)

< P1 > =
1

1 + exp (γΔE)
, (33)

independent of j. The resulting temperature is ΔE/kBT (A) = γ �= β(B).

Example 3 (Binomial degeneracy).

gj =

(
n

j

)
=

n!

(n− j)!j!
(34)

Here, n is an integer > 0; for an intuitive realization we could think of an
environment consisting of n non-interacting spins with identical energy splitting
ΔE. One then finds,

< P0 >j =
n− j

n+ 1
, (35)

< P1 >j =
j + 1

n+ 1
. (36)

Here we have made use of the identity

(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
. (37)

After thermal averaging over the various bands j and with the partition sum

Z(B) =

n∑
j=0

(
n

j

)
exp (−β(B)jΔE) = (1 + exp (−β(B)ΔE))

n
(38)

one gets in the thermodynamic limit, n → ∞,

β(A) ≈ β(B) . (39)

In this case there is no conflict between embedding temperature and the bath
temperature.

Both degeneracy models are idealized; deviations from the strict exponential
form appear to be mandatory, though.
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4 Observational quantum-thermodynamics

Quantum-thermodynamic settings do not include the observer: No means what-
soever are provided to transfer information to the outside world. In that sense
the scenarios are similar to those studied in abstract quantum theory, i.e. based
on isolated systems. It thus appears quite natural to add a section on obser-
vational quantum thermodynamics, just as we would have to add a section on
observational quantum mechanics. In either case observation requires additional
physical interactions: The act of observation tends to influence the observed.

In the following we will be concerned with a thermal system under permanent
(“stroboscopic”) supervision [9].

4.1 Periodic measurements

We will be concerned with the following bi-partite system

Ĥ(AB) =
δ(A)

2
σ̂3(A) + Ĥ0(B) + V̂ (BB) + λV̂ (AB) . (40)

The environment B consists of n � 1 spins. The corresponding product states

|ψ(B) >= |m(1),m(2), . . . ,m(n) > m(μ) = ∓1 , (41)

are eigenfunctions to Ĥ0(B) with eigenvalues Ek(B) = δ(B)k, where k denotes
the number of spins in state m = 1. For given band-index k all the states,
|nk >,nk = 1, 2, . . . gk, have the same energy. Now focus on some index k0, the
“working point” in energy-space. For n > k0 � 1 the binomial degeneracies (cf.
Example 3) can be approximated by

gk ≈ g0 exp (β(k0)Ek) , (42)

β(k0) ≈
1

δ(B)
ln (

n

k0
− 1) . (43)

Due to the weak interaction V̂ (BB), each degenerate energy-level k becomes a
band of width Δεk � δ(B).

The interaction between subsystem A and B is scaled by the strength factor
λ and given by

V̂ (AB) = σ̂1(A)⊗ Î(AB) , (44)

Î(AB) =
∑
k

∑
nk,mk+1

Ck+1,k(nk,mk+1)|nk > < mk+1|+ c.c. . (45)

Here c.c. means complex conjugate term to be added. Only transitions between
next neighbor bands are allowed. The coupling parameters Ck+1,k(nk,mk+1)
form a set of hermitian matrices Ci,j(a, b). The respective entries are taken from

a Gaussian distribution normalized to |Ci,j(a, b)|2 =
√
(gigj).

Note that this random-matrix model (for the subsystem-interaction) is an
essential ingredient: in this way the Hamilton-model represents a whole class
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of models rather than one given variant. Indeed, one can show that different
realizations typically lead to the same desired behavior, eq.(50). (This does not
exclude the existence of very special interaction types which would violate this
simple picture. )

The total state will be written as

ρ̂(AB) = ρ̂(A)⊗ ρ̂(B)− Ĉ(AB) , (46)

ρ̂(A) = TrB{ρ̂(AB)} ρ̂(B) = TrA{ρ̂(AB)} . (47)

Here Ĉ(AB) specifies the correlation between A and B, i.e., the deviation from
product-form. Let the initial state at time t0 have zero correlation; in particular,
we start from the special product-state

ρ̂(AB; t0) = ρ̂(A; t0)⊗ ρ̂(B; k0) , (48)

ρ̂(B; k0) ≡
1

gk0

gk0∑
nk0=1

|nk0 > < nk0 | . (49)

Resonance will be assumed, i.e., δ(B) = δ(A) = δ. Then the subsystem B acts
as a thermalizing environment, correlation Ĉ(AB) builts up, and A relaxes to a
state with temperature

1

kBT (A)
= β(A) = β(k0) , (50)

independent of the initial state of A. Up to this point this is just a typical scenario
for quantum thermodynamics. The relaxation time scales with the interaction
strength between system and environment.

Now we intend to retrieve information about A. This could be done in two
different ways: Direct measurements on A or indirect measurements via B ex-
ploiting the correlation between A and B.

Measuring the energy of subsystem A directly would mean to find it in the
ground- or excited state with probability Pm(A) given by the thermal distri-
bution. Immediately after measurement the subsystem would be found in the
respective energy eigenstate |m(A) >,m∓ 1. This momentary state and the as-
sociated information gain would not last for long, though: With the embedding
still present system A would again relax to its equilibrium state.

We switch now to the indirect measurement scenario. We restrict ourselves to
the measurement of the band-index, k i.e., to an incomplete measurement. The
projection by P̂k1(B) at time t1 = t0+Δt also influences subsystem A (co-jump,
cf. [10]):

ρ̂′(A; t1) =
TrB{P̂k1(B)ρ̂(AB; t1}
TrB{P̂k1(B)ρ̂(B; t1)}

(51)

= ρ̂(A; t1) +
TrB{P̂k1(B)Ĉ(AB; t1}
TrB{P̂k1(B)ρ̂(B; t1)}

. (52)
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Fig. 1. Subsystem A subject to periodic measurements of the environment B [9]: single
trajectory ρ00(t) (solid line) and ensemble avarage ρ00(t) (broken line). Chosen param-
eters: δ = 0.8u, β = 0.75u−1, λ = 4 × 10−3u, Δt = 2u−1, u = arbitrary energy unit.
Initial state: unperturbed attractor.

After measurement we simplify the total state as the product state

ρ̂(AB; t1) ≈ ρ̂′(A; t1)⊗ ρ̂(B; k1) . (53)

This is an approximation as, due to the incomplete measurement, some cor-
relations between A and B could still have survived. The whole process is now
iterated: unitary evolution steps of durationΔt are interrupted by instantaneous
measurement projections as described above. The result is a stochastic trajectory
as shown in Fig. 1.

These trajectories correspond to the classical statistical idea that the ther-
mal system is always in some well-defined state, but “fluctuates” between those
such that the time-average is identical with the ensemble average. We now in-
vestigate the ensemble-average over such trajectories after a certain number of
measurements (i.e. after the memory about the inital state has been lost). The
result represents an attractor state, which can be expressed analytically as [9]

ρ00(Δt) =
exp (−βδ/2) sin2 δΔt+ exp (βδ/2)δ2(Δt)2

2 coshβδ/2(sin2 δΔt+ δ2(Δt)2)
. (54)

The corresponding function is shown in Fig. 2.
This attractor state can alternatively be calculated as a time-average over a

single trajectory; it has two remarkable bounds:

lim
Δt→0

ρ00(Δt) = 1/2 . (55)

This lower bound means that for very rapid repetitions of measurements the
system eventually heats up to T (A) → ∞. Only apparently is this in conflict
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Fig. 2. Attractor for subsystem A depending on the time Δt between periodic mea-
surements on B. Parameters as before. Broken line: upper bound and unperturbed
attractor [9].

with the so-called Zeno effect, i.e. the freezing-in of the original state under
“continuous” measurement: Indeed, for Δt → 0 it would take infinitely long to
reach that attractor state.

An upper bound for ρ00 is reached for

Δt =
nπ

δ
n = 1, 2, . . . . (56)

This bound corresponds to kBT (A) = 1/β(k0). Remarkably, this is the same
temperature subsystem A would gain in the absence of any measurements. At
these waiting times one finds a strict correlation between measuring the band-
index k to have gone up by 1 (compared to its previous value) or down by 1 and
the state of A: For “up” A is in the ground state, for “down” A is in the excited
state. This is the strict “measurement logic”. It guarantees that our information
retrieval “makes sense”.

For Δt → 0, on the other hand, the correlation goes to zero: System B has
no (useful) information about A. The measurements of the environment B only
lead to an additional perturbation of A.

Observational quantum-thermodynamics thus provides an interesting link
between the abstract thermal properties, which are stationary, and the mea-
sured thermal properties, which are fluctuating. The long-time average and the
ensemble average of the latter agree with the former result, provided the mea-
surement is run under optimal conditions, i.e. there is a clear measurement logic
(in which case the information gained is “useful”). While measurement interac-
tions mean perturbations – indeed, the observed local dynamics is stochastic,
the unobserved dynamics stationary – the underlying thermal parameters turn
out to be the same.
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5 Summary

We have started from (abstract) Hilbert-space and used partitioning as a kind
of external reference frame. This frame defines the notion of local versus global
properties.

The parametrization of pure states (for the total system) allows to introduce
functions on this parameter-space; examples are expectation-values of operators.
These functions can be visualized as “landscapes”. Flat landscapes may well be
approximated by the respective average value, the so-called Hilbert-space average
(HAM). This average is then “typical”. Rarely will we find large deviations. A
simple analogue would be the height within the Netherlands (average applicable)
versus the height in Switzerland (average does not give a good predictor for one’s
actual height).

Typicality can be extended to composite quantum systems: For bi-partite
systems in a pure state the local entropy of the smaller subsystem is found to
be typically maximum (confirming entanglement as a typical feature).

These feartures do not depend on details of the Hamilton-model considered.
Such details constrain the motion in Hilbert-space: In fact, the accessible region
is, in general, much different from the total region (due to conservation laws).

It turns out that for weak coupling and for the environment B being suffi-
ciently larger than the embedded system A, the latter exhibits thermal behavior
(canonical distribution).

The effective dynamics for the embedded system shows irreversibility (relax-
ation into an equilibrium state), even though the total dynamics continues to
be unitary. This underlines the fact that the thermal properties of A are emer-
gent and contextual; they are absent from the point of view of the unpartitioned
description.

The equilibrium state is quasi-stationary (temporal fluctuations occur as fi-
nite size effects) and characterized by a temperature.

Periodic observation of the environment allows to re-interprete the equilib-
rium state of the embedded system in terms of a time average over measure-
ment results. Under ideal conditions this time-average approaches the ensemble-
average (ergodicity); the resulting value is the same as obtained without obser-
vation. There is a “peaceful coexistence” between the classical and the quantum
picture.

This coexistence has remarkable consequences: Without it a quasi-classical
understanding of thermal phenomena would not have been possible, thus block-
ing scientific progress in this field at a time when quantum mechanics was un-
known yet. On the other hand, the discussion of “quantum corrections” proper
– based on quantum thermodynamics – will not be straight-forward but will
require detailed analysis based on the formulation of pertinent quantum models.

Acknowledgments. I thank Hermann Haken for numerous and very valuable
discussions.
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