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Abstract. We discuss synchronization and desynchronization transi-
tions in networks of delay-coupled excitable systems. These transitions
arise in response to varying the balance of excitatory and inhibitory cou-
plings in a small-world topology. To describe the local dynamics, we use
generic models for type-I excitability, which arises close to a saddle-node
bifurcation on an invariant cycle (SNIC or SNIPER), and for type-II ex-
citability, which occurs close to a Hopf bifurcation (FitzHugh-Nagumo
model). For large delay times both type-I and type-II systems behave
in a similar way. This is different for small delay times, where in case
of type-I excitability we find novel multiple transitions between synchro-
nization and desynchronization, when the fraction of inhibitory links is
increased. In contrast, only a single desynchronization transition occurs
for the FitzHugh-Nagumo model (type-II excitability) for all values of
the delay time.

Keywords: complex networks, delayed coupling, synchronization, exci-
tatory and inhibitory balancing, type-I and type-II excitability, small-
world

1 Introduction

The control of the dynamics on complex networks has recently gained much inter-
est within the interdisciplinary field of control of nonlinear dynamical systems [1].
Synchronization phenomena in networks are of great importance [2–5] in many
areas ranging from physics and chemistry to biology and engineering. Chaos
synchronization of lasers, for instance, may lead to new secure communication
schemes [6–8]. The synchronization of neurons is believed to play a crucial role in
the brain under normal conditions, for instance in the context of cognition, per-
ception, and learning [9–12], and under pathological conditions such as epilepsy
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[13] and Parkinson’s disease [14]. Time-delay effects are a key issue in realis-
tic networks. For example, the finite propagation time of light between coupled
semiconductor lasers [15–19] significantly influences the dynamics. Similar effects
occur in neuronal [20–23] and biological [24, 25] networks. The importance of the
effect of delay on synchronization in neural networks was already pointed out by
Hermann Haken in his early pioneering work on brain dynamics [26, 9]. There
exist different forms of synchronization, i.e., complete or isochronous (zero-lag)
synchronization, generalized synchronization, cluster or group synchronization,
and many other forms. Chimera states, where a network of identical oscillators
splits into distinct coexisting domains of coherent (phase-locked) and incoherent
(desynchronized) behavior, have gained much attention recently [27–34].

To determine the stability of a synchronized state in a network of identical
units, a powerful method has been developed [35], i.e., the master stability func-
tion (MSF). This approach has been extended to networks with coupling delays
[36–41], where the MSF depends non-trivially on delay times.

In this chapter we review recent work on synchronization and desynchroniza-
tion transitions in delay-coupled networks and how they are influenced by the
ratio between the number of excitatory and inhibitory links [42, 43]. The issue
of balancing excitation and inhibition in neuronal networks has recently found
great interest in the neurodynamics community [44–47]. In general, the stabil-
ity of synchronization depends in a complicated way on the local dynamics of
the nodes and the coupling topology. However, for large coupling delays syn-
chronizability relates in a simple way to the spectral properties of the network
topology, characterized by the eigenvalue spectrum of the coupling matrix. The
MSF used to determine the stability of synchronous solutions has a universal
structure in the limit of large delay: it is rotationally symmetric and increases
monotonically with the radius in the complex plane. This allows for a universal
classification of networks with respect to synchronization properties [39]. For
smaller coupling delays the synchronization properties depend in a more subtle
way upon the local dynamics, and the details of the network topology. Various
cluster-synchronization states, where certain clusters inside the network show
isochronous synchronization, can be realized by tuning the coupling parameters
such as the coupling phase, coupling strength, and delay time [37, 41]. To find
appropriate values of these control parameters, the speed-gradient method from
control theory can be applied to achieve a desired state of generalized synchrony
(adaptive synchronization) [48].

We consider two generic types of local dynamics of the nodes, namely type-
I excitable dynamics (near a saddle-node bifurcation on an invariant cycle, or
saddle-node infinite period (SNIPER) bifurcation), and type-II excitable dynam-
ics (near a Hopf bifurcation, described, e.g., by the FitzHugh-Nagumo model).
Transitions between synchronization and desynchronization can be induced by
introducing inhibitory links into a regular excitatory network with a probability
p, and by changing the balance between excitatory and inhibitory links [42, 43].
The type of network we primarily focus on in our investigations is the small-world
(SW) network [49], which has a short average path distance between nodes, as
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well as a large degree of clustering (in other words, many triangles in the network
structure). These properties are found in many kinds of real-world structures,
such as the collaboration between film actors, power grids, the World Wide Web
and social relationships [49, 50, 3, 4]. In particular, large-scale cortical networks
also show these properties [51, 52]. The brain has an architecture enabling both
efficient global and local communication between neurons [53], which is captured
well by the SW model.

Inhibition plays an important role in the nervous system [54]. Here, when
constructing a network we begin with a regular ring network of excitatory links
and, as in Ref. [42, 43], we add long-range inhibitory links into the network
structure. This creates a SW network of the form proposed in Ref. [55].

In the following section, we introduce the model and the network topologies
considered in the present study. In Sec. 3 we use the master stability function to
investigate the stability of arbitrary synchronized networks with given coupling
parameters (i.e. the coupling strength and the length of delay between coupled
nodes). The MSF is calculated in Sec. 4 for networks coupled within a range of
small delay time and coupling strength, which reveals the existence of synchro-
nized states that have different stability conditions compared to coupling with
larger delay times. The implications these results may have for specific complex
networks are discussed in Sec. 5.

2 Models

In order to model excitability, the system must have a rest state, which corre-
sponds to a stable fixed point. Small perturbations from the rest state can lead
to a large excursion in the phase space, i.e., the emission of a spike (excited
state), before returning to the rest state. In the context of neurodynamics, this
is the firing state of the neuron [56].

Neurons can exhibit different excitability properties, depending upon the bi-
furcation scenario from the excitable to the oscillatory regime. In 1948, Hodgkin
classified two types of neural excitability [57]:

Type-I neurons can generate action potentials of arbitrarily low frequency.
This kind of behavior occurs near a saddle-node infinite period (SNIPER) bifur-
cation, also known as the SNIC bifurcation (saddle-node bifurcation on invariant
cycle). The arbitrarily low frequency coincides with the period of the limit cycle
going to infinity as the bifurcation parameter approaches a critical value, where
the bifurcation occurs.

Type-II neurons are associated with a supercritical Hopf bifurcation. The
frequencies of the action potentials remain within a certain non-zero range, while
the amplitude of the limit cycle approaches zero with the bifurcation parameter.

As our model for type-I excitability we consider a generic normal form of a
SNIPER bifurcation:

f(x) =

(
ẋ
ẏ

)
=

(
x(1 − x2 − y2) + y(x− b)
y(1− x2 − y2)− x(x − b)

)
, (1)



28 E. Schöll et al.

which reads in polar coordinates (x = r cosϕ, y = r sinϕ):

ṙ = r
(
1− r2

)
(2)

ϕ̇ = b− r cosϕ. (3)

b > 0 is the bifurcation parameter that influences the type of dynamics and
determines where in the (x, y)-plane the fixed points are located, as discussed
below. This model was used by Haken and coworkers [58, 59] for the first demon-
stration of coherence resonance [60], which occurs in excitable nonlinear systems
if noise is added; it denotes the counterintuitive effect that the coherence of noise-
induced oscillations is optimal for a certain finite noise intensity. Combining this
effect with time-delayed feedback, the coherence resonance can be conveniently
controlled [61, 62].

Here we focus on the deterministic dynamics of excitable elements (neurons)
coupled with time delay τ in a network. We consider the dynamics of a network
of N elements (labelled i = 1, ..., N) given by:

ẋi = f(xi) + σ
N∑
j=1

GijH(xj(t− τ)− xi(t)), (4)

where f(xi) is the local dynamics as described by Eq. (1) for each element xi =
(xi, yi). Gij determines the matrix G for the network structure, showing which
elements are coupling together, and H is the coupling function. H is taken to
be the 2× 2 identity matrix; this means that the x-variable at time t is coupled
with the x-variable at time t − τ , the y-variable at time t is coupled with the
y-variable at time t − τ , but there is no cross-coupling between the x- and y-
variable. The coupling parameters, which are identical for all connections, are
the coupling strength σ and delay time τ .

For synchronous dynamics, the 2(N − 1) constraints xs ≡ x1 = x2 =
· · · = xN define a 2-dimensional synchronization manifold (SM) within the 2N -
dimensional phase space and the coupled system is reduced to an effective single
system with feedback:

ẋs = f(xs) + σH(xs(t− τ) − xs(t)), (5)

with unity row sum
∑

j Gij = 1, so that the nodes all receive the same level of
input while they are synchronized. Any non-unity but constant row sum can be
rescaled using the coupling strength σ.

Without delay, while the bifurcation parameter b < 1, there exists an unstable
focus at the origin, as well as a saddle point and a stable node situated on the
unit circle at (xi, yi) = (b,

√
1− b2) and (b,−

√
1− b2), respectively. At b = 1

the saddle point and stable node collide, so that for b > 1 a limit cycle exists
along the unit circle. In the case of b < 1 (excitable regime), a perturbation
which pushes the system from the stable node beyond the saddle point can
result in a single oscillation along the unit circle. Delayed coupling can induce
a homoclinic bifurcation, such that a limit cycle is produced that bypasses the
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saddle point and stable node [61, 62]. Here, we will consider the excitable regime
with b = 0.95 and investigate for which topologies the synchronized dynamics of
complex networks is stable.

Next, as a paradigmatic model for type-II excitability we consider the Fitz-
Hugh-Nagumo (FHN) model [63, 64], which exhibits a supercritical Hopf bifur-
cation:

f(x) =

(
˙εx
ẏ

)
=

(
xi − x3

i

3 − yi
xi + a

)
, (6)

where x and y denote the activator and inhibitor variables, respectively. The
parameter a determines the threshold of excitability. A single FHN oscillator is
excitable for a > 1 and exhibits self-sustained periodic firing beyond the Hopf
bifurcation at a = 1. Here, we will focus on the excitable regime with a = 1.3.
The time-scale parameter ε is chosen as ε = 0.01. The coupling function H is
chosen with components H11 = 1/ε and zero otherwise.

In this chapter, complex small-world (SW) networks are considered, which
we construct as a variation to the method proposed in Ref. [49], introduced
in Refs. [55, 65]: (i) Each of the N nodes in a one-dimensional ring is given
excitatory links to its k nearest neighbors on each side. Note that in terms of the
matrix G, an excitatory link between the ith and jth node means that Gij > 0,
while for an inhibitory link Gij < 0. (ii) For each of the kN links we add with a
probability of p another inhibitory link with strength -1 between two randomly
chosen nodes (i.e. on average pkN randomly distributed inhibitory links). (iii)
Self-coupling and multiple links between the same two nodes are not allowed.
(iv) Finally, the entries in each row of G are normalized to ensure a unity row
sum. If a row sum is equal to zero, then the network realization is discarded.

In the following, we determine the stability of the synchronized dynamics
and compare the synchronization/desynchronization transitions for different lo-
cal dynamics.

3 Stability of Synchronization

In the master stability approach [35], the stability of a synchronized state is
determined by splitting the stability problem into a topological part, which is
determined by the eigenvalues of the coupling matrix G, and a dynamical part,
which is given for an arbitrary network by the master stability equation

δẋ(t) = [Df(xs)− σH]δx(t) + (α+ iβ)Hδx(t− τ), (7)

which is found by linearizing Eq. (4) around Eq. (5) and is used to calculate
the largest Lyapunov exponent Λ(α, β, σ, τ), called the master stability function
(MSF). Here δx is the perturbation of x away from the SM (i.e. x = xs + δx)
and Df(xs) is the Jacobian matrix of Eq. (1) evaluated on the SM. Important
for this approach is that, whereas one can calculate Lyapunov exponents for a
specific network topology using the eigenvalues of the matrix G, one considers
here a continuous complex parameter α+ iβ representing the complex plane of
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Fig. 1. MSF Λ for the SNIPER model (type-I excitability) for coupling parameters
σ = 0.3 and (a) τ = 10, (b) τ = 7, (c) τ = 6.5, and (d) τ = 6. α and β are the real
and imaginary parts of the scaled eigenvalues of the coupling matrix, σνk, respectively,
and Λ is the largest Lyapunov exponent. White dots in panel (a) represent the scaled
eigenvalues of a unidirectional ring of 11 nodes (σν1, . . . , σν11). b = 0.95.

possible eigenvalues scaled by the coupling strength σ (i.e. α+ iβ is a continuous
parametrization of σνj , where νj are the eigenvalues of G, j = 1, ..., N). Thus,
one can calculate the Lyapunov exponents for a region of the (α, β)-plane which
gives sub-regions of stability, where Λ < 0, and instability, where Λ > 0. It is
then easy to compare the synchronous stability of various networks by simply
observing whether any of their eigenvalues fall inside an unstable region of the
(α, β)-plane. If all the eigenvalues lie within stable regions, then perturbations
away from the SM will decay exponentially.

Because of the unity row sum condition, G always has an eigenvalue ν1 = 1.
This longitudinal eigenvalue (all others are called transversal) corresponds to
perturbations within the SM and Λ(σν1, 0, σ, τ) is always zero because we are
looking at periodic dynamics. As such, it is only the transversal eigenvalues that
are important for determining the stability of synchronization.

Figure 1(a) shows the MSF of the SNIPER model (type-I excitability) with
coupling parameters σ = 0.3 and τ = 10. The white dots represent the eigen-
values of the matrix G for a unidirectional ring of 11 nodes. All eigenvalues are
within the stable region of the MSF, thus the synchronization of all 11 nodes
coupled with these parameters is stable.
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According to Ref. [39], for τ in the order of the system’s characteristic time
scale (in this case, the period of the oscillations) and above, the MSF will al-
ways tend towards a rotational symmetry. Examples such as the one above in
Fig. 1(a) confirm these general findings for the SNIPER model. When calculat-
ing MSFs for a large fixed τ while varying σ it becomes evident that the size of
the stable region is scaled by σ, so that the stable region can be estimated very
well by the circle S((0, 0), σ) (that is, a circle centered at the origin with a ra-
dius σ). Changes in large values of τ , however, despite influencing the Lyapunov
exponents quantitatively, do not affect the shape of the stable region.

This rotational symmetry of the MSF was also found for type-II neurons,
modelled as FitzHugh-Nagumo oscillators by Eq.(6) [42], see Fig. 2. In this case
σ and τ do not affect whether the eigenvalues fit into the stable region of the
MSF, so that only the topology of a network is important for the stability of its
synchronization. Furthermore, because Gershgorin’s circle theorem [66] guaran-
tees that the eigenvalues of a network’s coupling matrix with no self-coupling
and purely excitatory coupling (i.e. Gii = 0 and Gij ≥ 0, 1 ≤ i, j ≤ N) lie within
the unit circle on the complex plane, the synchronization of such a network will
always be stable. Finally, if additional inhibitory links are introduced with prob-
ability p to construct a SW network as described in Sec. 2, phase transitions
from stable to unstable synchronization are found with increasing probability of
inhibition p [42]. It should be noted from a comparison of Figs. 1 and 2 that all
these results apply for the SNIPER neurons only with sufficiently large τ .

As an example, Fig. 3 shows two realizations of the SW coupling scheme
with N = 20, k = 2, and p = 0.05 (panels (a) and (b)) and the corresponding
eigenvalues of the coupling matrix depicted in the plot of the MSF in the complex
(α, β)-plane (panels (c) and (d)). It can be seen that in panel (c) all eigenvalues
lie in the stability domain, and hence synchronization is stable, whereas in panel
(d) one eigenvalue lies outside the stability domain, leading to desynchronization.
A statistical analysis for a large number of realizations can predict transitions
from stable synchronization to desynchronization, as will be discussed in detail
in Sec. 5 below.

4 Small delay times

If the delay time is not large enough, type-I excitability (SNIPER model) dis-
plays a distinctly different behavior than type-II excitability (FHN model): the
rotational symmetry of the MSF no longer holds. In fact, while reducing τ one
can witness how the rotational symmetry begins to break down. This is depicted
in Fig. 1. For a constant coupling strength of σ = 0.3, the MSFs are numerically
calculated for decreasing delay times. While at τ = 10 the MSF still has its
circular form (Fig. 1(a)), when decreasing τ , the stable (i.e. dark blue/green)
region of the MSF begins to show signs of deformation. By τ = 7 (see Fig. 1(b))
the stable region is clearly larger than the unit circle scaled by σ = 0.3 and has
definitely lost its rotational symmetry. By τ = 6.5 (see Fig. 1(c)) the stable re-
gion has already split into two disconnected regions. Letting τ decrease further,
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Fig. 2. Same as in Fig. 1 for the FitzHugh-Nagumo model (type-II excitability, a = 1.3,
ε = 0.01) for coupling parameters σ = 0.3 and (a) τ = 10, (b) τ = 7, (c) τ = 6.5, and
(d) τ = 6.

the stable regions become increasingly smaller (see Fig. 1(d)). Note that the
delay-induced limit cycle coexists alongside the stable fixed point and whether
it is reached or not is therefore dependent on initial conditions. For τ less than
about 4 (not shown here), the coupling is no longer able to induce the homoclinic
bifurcation that creates the limit cycle at all (as discussed in Sec. 2), in other
words, the neurons no longer oscillate. Instead, all solutions approach the stable
fixed point.

It is now obvious that, in this regime of small delay, small changes in τ can
have a great impact on the stability. The seemingly sudden change in the MSFs
in Fig. 1 between τ = 7 and τ = 6.5 can be traced back to a qualitative change
at a critical value τc, which will be discussed below. Except for this value, the
boundary of stability evolves continuously with τ . This becomes clear by plotting
the MSF versus the real part α of the eigenvalue (with β = 0) for varying τ .
Taking this one slice of the eigenvalue plane gives a good indication of the growth
and decay of the stable region in the MSF while changing τ . Figure 4 shows the
MSF as a function of the real part α (β = 0) and the delay time τ , with fixed
coupling strength 0.3. This produces a MSF on an (α, τ)-plane, which can be
used for network topologies with a coupling matrix that yields real eigenvalues,
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Fig. 3. Synchronization and desynchronization in a small-world network (σ = 0.3,
τ = 1): (a) and (b) are two different realizations with N = 20, k = 2, and p = 0.005.
(c),(d): Master stability function Λ of the FitzHugh-Nagumo system (a = 1.3, ε = 0.01).
Dark gray (pink) circles in (c) and (d) mark transversal eigenvalues of the networks
shown in panels (a) and (b), respectively; light gray (turquoise) circle: longitudinal
eigenvalue.

e.g., symmetric matrices for undirected networks. In the following we restrict
ourselves to undirected networks.

The stability depends on both σ and τ . In Fig. 4 the vertical boundary line at
α = σ, corresponding to the longitudinal eigenvalue (i.e. ν1 = 1, where Λ = 0),
can be easily identified. It separates regimes of stable and unstable synchroniza-
tion. Another characteristic is that the τ -dependent MSF has a critical delay
time τc at which the stable region splits into two separate, disconnected regions.
For values above τc the stable region is found to the left of the longitudinal eigen-
value; whereas for values below τc there may be one stable region to the right
of the longitudinal eigenvalue and one to the left. τc seems to be an important
value, because it marks the most significant τ -dependent qualitative change in
the MSF. Ultimately, the MSF can be divided into three regimes of τ : (i) two
or more smaller separate regions of stability exist when τ < τc; (ii) one large
region of stability exists when τ > τc; (iii) the MSF has one rotationally sym-
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Fig. 4. MSF Λ of the SNIPER model (b = 0.95) for a fixed coupling strength σ = 0.3
in the plane of the real part α (β = 0) and the delay time τ . The horizontal red line
shows the position of the critical delay time τc.

metric region of stability in the limit of τ → ∞ (which holds already in good
approximation if τ is of the order of the intrinsic oscillation period or larger).

5 Multiple synchronization and desynchronization
transitions

An obvious observation is that networks with purely excitatory coupling, which
are always stable for large delay times as mentioned at the end of Sec. 3, may
not show stable synchronization for τ < τc. It was explained in Sec. 3 that
increasing the probability p of inhibitory links in the network can be a factor
leading to unstable synchronization. This occurs because a larger probability of
inhibition can push a part of the eigenvalue spectrum of any network beyond
the longitudinal eigenvalue at α = σ (because Gershgorin’s circle theorem no
longer guarantees that all eigenvalues stay within the unit circle) and into the
unstable region of the MSF. Now, in case of excitability of type-I for smaller τ ,
there may be a pocket of stability to the right of the longitudinal eigenvalue, so
that increasing inhibition can make the otherwise unstable synchronization of a
network stable.

This means that the transitions between stable and unstable synchronization
as a function of the probability of inhibition p discussed in Ref. [42] are no
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(a) (c) (e)

(b) (d) (f)

Fig. 5. Fraction of desynchronized networks f in dependence of the probability of
additional inhibitory links p for 500 realizations of networks of N = 200 with (a)
k = 20, (c) k = 40, and (e) k = 50. Corresponding eigenvalue spectra for (b) k = 20,
(d) k = 40, and (f) k = 50 with 100 realizations for each p value. Here the green shaded
regions represent the stable regions of the real part of the MSF typical for the SNIPER
model for large delay and for the FitzHugh-Nagumo system for both small and large
delay.

longer valid when τ is small in case of type-I excitability. The transitions are
now sensitive to the coupling parameters, not just the network parameters N
and k. Due to the multiple regions of stability, eigenvalues may wander in and
out of stable regions, while increasing the probability of inhibition p. For large τ ,
or for any τ in case of type-II excitability, increasing p in the SW network model
only results in one transition where the fraction of desynchronizing networks (i.e.
networks with unstable synchronization) f(p) switches from 0 to 1 (cf. Fig. 5).

For small τ , in case of excitability of type-I it is possible that f(p) jumps
back to 0, before increasing again to 1. This will occur if there is a separate
region of stability to the right side in the MSF that is large enough that all the
eigenvalues lying over there can fit inside.

The observation of multiple transitions between stable and unstable synchro-
nization can be explained by looking at the eigenvalue spectra for SW networks
for various p values. As discussed above in relation to the MSF method, each
network topology has a coupling matrix G, the eigenvalues from which can be
used to determine the stability of the network’s synchronized state. Because
the “short-cuts” in the SW network are randomly introduced, each network
with specific N , k and p values may have many realizations. By calculating the
eigenvalues for a large number of realizations of the SW network with certain
parameters (i.e. given N , k and p), one can find the bounds for the eigenvalue
spectra.



36 E. Schöll et al.

Fig. 6. Spectra of eigenvalues ν of undirected small-world networks with N = 200 and
k = 20 and varying probability p of inhibitory links. 500 realizations of the eigenvalue
spectrum are plotted for each value of p.

Figure 6 displays the superimposed eigenvalue spectra of 500 realizations
for SW networks with parameters N = 200 and k = 20 (regular ring with
excitatory coupling of k nearest neighbors on either side) in dependence on
the probability of inhibition p. The longitudinal eigenvalues located at ν1 =
1 have been removed. One can see that the bounds for possible eigenvalues
shift depending on the value of p. One can also see how the spectra begin to
increasingly resemble the semicircular distribution [3] of a random network for
larger p values, where the networks have lost their SW properties. The change of
the eigenvalue spectrum with increasing p has been discussed in detail elsewhere
[43].

The eigenvalue spectra bridge the gap between observations of the MSF (i.e.
the dependence of the stability of synchronization on the eigenvalues) and what
is seen in these transitions (i.e. the dependence of stability on the network topol-
ogy). Increasing p allows isolated eigenvalues to increase in value and, in terms
of the MSF, shift their locations further to the right in the (α, β)-plane. This
is visualized in Fig. 7. Figures 7(b), (d) and (f) show the eigenvalue spectra for
SW networks with N = 200 elements and k = 20, 40, and 50, respectively.

Figures 7(a), (c) and (e) show the corresponding fraction of desynchronized
networks f in dependence on the probability of additional inhibitory links p.
Consider, for instance, SW networks with parameters N = 200 and k = 40.
In Fig. 7(c) f(p) is shown for the exemplary coupling parameters σ = 0.3 and
τ = 6.5 with a corresponding plot of eigenvalues in Fig. 7(d). Note that the grey
(green) shaded regions represent the stable regions of the line β = 0 on the (α, β)-
plane of the MSF for σ = 0.3 and τ = 6.5 (cf. Fig. 1(c)). For coupling parameters
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(a) (c) (e)

(b) (d) (f)

Fig. 7. Fraction of desynchronized networks f in dependence of the probability of
additional inhibitory links p for 500 realizations of networks of N = 200 with (a)
k = 20, (c) k = 40, and (e) k = 50 with σ = 0.3 and τ = 6.5. Corresponding eigenvalue
spectra for (b) k = 20, (d) k = 40, and (f) k = 50 with 100 realizations for each p
value. Here the green shaded regions represent the stable regions of the real part of the
MSF of the SNIPER model (b = 0.95).

where this region of stability is not large enough, f may briefly dip below 1
without decreasing to 0, because only some realizations may have eigenvalues
that fit inside the stable region. In Fig. 7(a) where k = 20, f dips down to 0.14,
because at most 14% of the realizations show stable synchronization (i.e. all
the eigenvalues are inside the stable region). If the distance between the larger
isolated eigenvalues matches the distance between stable regions (which is almost
the case in Fig. 7(b)), then the transition curve only just touches the f = 0 axis
at some value of p before increasing back to f = 1. Figure 7(e) is an example
where a further transition is possible, because not only do all eigenvalues begin
in stable regions at p = 0, but there is another regime of p where all eigenvalues
fit inside stable regions. Note that further types of transitions can also occur for
other network and coupling parameters.

The length of the transition from f = 0 to f = 1 is actually a measure of the
variance of the isolated eigenvalues for an ensemble of realizations. For example,
the variance of the isolated eigenvalues decreases as N is increased, so that the
length of transition will be shorter in larger networks, and the transition becomes
sharper.

When constructing a histogram of the eigenspectra for a particular value of
p, the larger isolated eigenvalues seen to the right, e.g., in Fig. 7(b), result in
small peaks of eigenvalues. See Fig. 8(a) for 1000 realizations of p = 0.2. For each
realization of many SW networks there are isolated eigenvalues that are larger
than most other eigenvalues in the spectrum. The small peaks of eigenvalues
result from perturbations in isolated eigenvalues. For comparison, Fig. 8(b) shows
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(a) (b) (c)

Fig. 8. (a), (b): Histograms (1000 bins) of eigenvalue spectra for 1000 realizations of
(a) SW networks and (b) random networks with the same number of nodes, the same
number of excitatory links and the same probability of inhibitory links (N = 100,
k = 10, p = 0.2). (c): The eigenvalue spectrum for a regular network with N = 100
and k = 10. νn is the nth eigenvalue, n = 1, . . . , N .

the reference case of 1000 random networks with the same number of nodes and
excitatory links and the same probability of inhibitory links as considered in
Fig. 8(a).

The spectrum of a regular ring network, i.e., a SW network with p = 0, can
be found analytically using the graph’s symmetry operations [67] and is given
by

νl =
1

k

k∑
j=1

cos

(
2πj

l

N

)
=

1

k

(
cos

(
kπ l

N

)
sin

(
(k + 1)π l

N

)

sin
(
π l

N

) − 1

)
, (8)

where l = 1, ..., N−1. Figure 8(c) shows this eigenspectrum for the p = 0 case. As
p is increased these eigenvalues will be slightly perturbed (in a random manner)
by the changing network structure, of which many realizations are possible. The
isolated eigenvalues to the right-hand side in Fig. 8(c) eventually evolve into
the smaller side peaks of eigenvalues in histograms for larger p as depicted in
Fig. 8(a) for p = 0.2. These peaks show the distribution of the eigenvalue under
the influence of the random nature of the SW “short-cuts” creation process –
which is why the smaller eigenvalue peaks can be approximated by a normal
distribution. To be precise, because the multiplicity of the above mentioned
isolated eigenvalues at p = 0 is 2, the smaller eigenvalue peaks are two normal
distributions that, at least for small p values, overlap each other to a large extent.
This is furthermore the reason why the desynchronization transitions observed
in Ref. [42] and Figs. 7(a), (c), and (e) look like the cumulative (integrated)
distribution function. They reflect how an increase of p brings the area of the
small eigenvalue peak accumulatively into the unstable region of the MSF.

To explain why the peaks wander with increasing p, consider not normalizing
the rows of matrix G, so that the row sums are not necessarily equal to 1. Then
the location of the longitudinal eigenvalue decreases with p, because it is equal
to the average row sum of G given by 2k(1−p). The locations of the other peaks
increase slightly to maintain the eigenvalue sum of zero; a result of the trace of
G being zero, since there is no self-feedback coupling. For large N this has only
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a small effect. Thus, scaling the eigenvalues so that the longitudinal eigenvalue
is always at 1 means that the transversal eigenvalues are multiplied by 1

2k(1−p) .

Accordingly they appear to increase with p, as seen in Figs. 7(b), (d) and (f).

6 Conclusion

We have investigated transitions between synchronization and desynchronization
in complex networks of delay-coupled excitable elements of type I and type II,
induced by varying the balance between excitatory and inhibitory couplings in a
small-world topology. In our analysis we have used the master stability function
approach. For large delay times it seems that both type-I neurons and type-II
neurons must fulfill similar topological conditions in the network to allow for a
stable synchronized state. This is different when considering small delay times.
In case of the SNIPER model (type-I excitability), for a range of small cou-
pling strengths and small delay times we have found novel multiple transitions
between synchronization and desynchronization, when the fraction of inhibitory
links is increased. This is different for the FitzHugh-Nagumo model (type-II
excitability), where only a single transition from synchronization to desynchro-
nization occurs for all values of the delay time. This can be explained by the
different nature of the stability domains of the master stability function which
consists of disconnected stability islands in case of type-I excitability for small
τ . A small world model for complex networks with regular excitatory couplings
and random inhibitory shortcuts has eigenvalue spectra with gaps between the
larger eigenvalues, so that histograms of many realizations reveal isolated peaks
of possible eigenvalues. Synchronization occurs whenever the domains of the
eigenvalues fall onto the stability islands. It was shown that, because of this,
small world networks can go through multiple transitions of synchronization
and desynchronization in dependence on the probability of inhibitory short-cuts
for the model of type-I excitability. Note that the same has also been shown for
the Stuart-Landau model in Ref. [43], demonstrating that multiple transitions
can also appear in networks of oscillatory nodes and are not limited to excitable
systems.
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62. Aust, R., Hövel, P., Hizanidis, J., Schöll, E.: Delay control of coherence resonance
in type-I excitable dynamics. Eur. Phys. J. ST 187, 77 (2010)

63. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve
membrane. Biophys. J. 1, 445 (1961)

64. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simu-
lating nerve axon. Proc. IRE 50, 2061 (1962)

65. Monasson, R.: Diffusion, localization and dispersion relations on”small-world” lat-
tices. Eur. Phys. J. B 12, 555 (1999)
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