
Bubbles, Jumps, and Scaling from Properly
Anticipated Prices

Felix Patzelt�, Klaus Pawelzik

Institut für Theoretische Physik, Universität Bremen
felix@neuro.uni-bremen.de

pawelzik@neuro.uni-bremen.de

http://neuro.uni-bremen.de

Abstract. Prices in financial markets exhibit extreme jumps far more
often than can be accounted for by external news. Further, magnitudes
of price changes are correlated over long times. These so called stylized
facts are quantified by scaling laws similar to, for example, turbulent
fluids. They are believed to reflect the complex interactions of heteroge-
nous agents which give rise to irrational herding. Therefore, the stylized
facts have been argued to provide evidence against the efficient market
hypothesis which states that prices rapidly reflect available information
and therefore are described by a martingale. Here we show, that in very
simple bidding processes efficiency is not opposed to, but causative to
scaling properties observed in real markets. Thereby, we link the styl-
ized facts not only to price efficiency, but also to the economic theory of
rational bubbles. We then demonstrate effects predicted from our nor-
mative model in the dynamics of groups of real human subjects playing a
modified minority game. An extended version of the latter can be played
online at seesaw.neuro.uni-bremen.de.
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1 Introduction

Many studies of financial datasets emphasise scaling properties [1]. Further, large
jumps in price time series often cannot be attributed to external events [2]. Some
claim that these findings contradict the efficient market hypothesis (EMH) [3].
However, the EMH foremost states, that no systematic profit is possible from
observing previous prices p because predictable price changes are eliminated by
traders exploiting them [4]. This property holds well as a stylized concept [5]. The
distribution of log-returns r(t) = log(pt/pt−1) would be Gaussian only if further
assumptions like a fast convergence according to the central limit theorem would
hold true which is not neccessarily the case. Furthermore, there are also economic
models with perfectly rational traders that can exhibit “rational bubbles” where
prices deviate far from fundamental values [6]. Hence, bubbles and crashes do
not disprove the EMH.
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Here, we establish a systematic link between these endogenous mechanisms
for bubbles and crashes on the one hand and the stylized facts on the other hand.
We show, that price efficiency in a simplistic bidding process links bubbles with
the most prominent stylized facts of financial price time series. While the model
is rather abstract and currently tied to a specific pricing rule, many qualitative
and quantitative features of real returns are captured both numerically and an-
alytically. Our model further makes directly testable predictions, some of which
were confirmed in behavioral group experiments.

2 The Model

Consider a market with N agents: Ns speculators and Nr random traders. At
discrete times t each agent places a market order to either buy or sell one unit of
an asset (e.g. a stock). Thereby, agents contribute to either the demand dt or to
the supply st = N−d. For simplicity we only allow market orders, that is, dt and
st do not depend on the price at which the orders are executed. Note, that the
latter is generally not known a priori at stock-, foreign exchange-, and similar
markets. We further require: 1. Increasing dt increases the price while increasing
st decreases the price. 2. The price pt is invariant to the traded volume: scaling
dt and st by the same factor yields the same price. This allows e.g. for some not
executed orders as long as the same fraction of buy and sell orders are affected.
Therefore,

pt =
dt
st

=
dt

N − dt
(1)

which naturally possesses the correct unit.
Agents make their decisions stochastically and we postulate price efficiency:

the probability for a speculator to buy at each time t is chosen such that the
expectation value of the new price given all previous observations

〈pt | pt−1, pt−2, . . . 〉 !
= pt−1 (2)

is the same as the previous price. This condition may be violated only if dt >
Ns+Nr/2 or if dt < Nr/2. In these cases, it is impossible to be price efficient in
this model due to the discretization of the traded assets. However, for Ns � Nr

and Ns � 1, we consider this boundary effect acceptable.
A model time series is shown in Fig. 1 A. The distribution of log-returns is

power-law tailed. The exponent in the cumulative distribution approaches ξ = 2
for large systems (Fig. 1 B). Finite size effects or large Nr/Ns increase ξ (not
shown). Log-returns are uncorrelated while their magnitudes are correlated for
long periods of time (Fig. 1 C) reflecting realistic volatility clustering.

3 Analytical Results

To obtain an explicit solution to Eq. (2), a good approximation for large N is
to require efficient demands instead of efficient prices:

〈dt, | dt−1, dt−2, . . . 〉 !
= dt−1. (3)
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Fig. 1. Price efficient model with Ns = 10000 speculators and Nr = 10 random (coin
flipping) traders. A: Time series. B: Complementary cumulative distribution of log
return magnitudes (solid black line) and a Gaussian with the same variance (dashed
gray line). Straight line: analytical result. C: Autocorrelation of the log returns (dashed
line) and of their magnitudes (solid line).

Since agents choose stochastically, the demands generated by the speculators
and random traders each are binomially distributed. Eq. (3) is fulfilled, if the
probability for each speculator to buy at time t is

P (buy | dt−1) =
1

2
+

dt −N/2

Ns
(4)

Fig. 2 A shows a comparison of Eq. (4) with a numerical optimization with
respect to Eq. (2). For efficient prices, there is a slight drift away from the system
boundaries that is not present for efficient demands. However, this difference
decreases with an increased system size N .

Eq. (4) further shows why a small number of random agents is important
for a finite system. For Nr = 0, we obtain P (buy | dt−1) = dt−1/N . Then, if by
chance the system ends up in the boundary states d = 0 and d = N , it can never
leave unless we allow for a violation of Eq. (2) as discussed above. An alternative
to random agents would be a reset rule like P (buy | dt−1 ∈ {0, N}) = 1/2.

3.1 Stationary solution

For large Ns, we can neglect the random agents, and the difference between
price- and demand efficiency. We thus consider N agents who buy at each time
t with probability dt−1/N . The stationary demand distribution π then satisfies

πj =

N∑
i=0

πi πij , πi,j =

(
N

j

) (
i

N

)j (
1− i

N

)N−j

(5)

where the probability to move from state i = dt−1 to state j = dt is given
by the transition matrix πij . For large N , Eq. (5) is satisfied by the uniform
distribution. To show this, we first divide by πi = πj = const, and obtain

1 =

1∑
x=0

(
N

j

)
xj (1− x)N−j , with x =

i

N
. (6)
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Fig. 2. A: Probability for an agent to buy at time t for different previous demands dt−1

normalized by the system size N = Ns+Nr. Fraction of random traders: Nr/Ns = 0.1.
The demand efficient solution is given by Eq. (4) (dotted black). The price efficient
solutions for N = 22 (solid blue) and N = 110 (dashed red) were obtained by numerical
optimization. B: Distribution of demands in a simulation of Ns = 1000 speculators and
Nr = 1 random trader for 108 time steps.

For large N , we can replace the sum over x � 1 with an integral. The right
hand side of Eq. (6) then reads

(
N

j

)
N

∫ 1

0

xj(1 − x)N−jdx =

(
N

j

)
N

Γ (j + 1)Γ (N − j + 1)

Γ (N + 2)
(7)

=
N

N + 1

N�1−→ 1 � (8)

Fig. 2 B shows the demand distribution for a simulation of the price efficient
model. It is uniform except for the very edges where it drops sharply. For higher
ratios Nr/Ns, the edges can also exhibit peaks.

3.2 Tail Exponent

The log return for two subsequent demands d and d′ can be expressed as

r = log

(
d′

N − d′
N − d

d

)
≈ Δ

(
1

d
− 1

N − d

)
, where Δ = d′ − d. (9)

The approximation is obtained by expanding for small Δ up to the first order.
This is possible, because the standard deviation for the binomial distribution
is proportional to

√
N and vanishes for demands close to zero or close to N .

Hence, the distribution of Δ will be very localized for large N . Fluctuations in
r are then dominated by d, especially for d � N , and N − d � N . Due to the
symmetry with respect to N/2, we now analyze only the case d � N where
r ≈ Δ

d . For the scaling of the tail of the return magnitudes, the shape of p(Δ) is
negligible. The expected fluctuations in r can be expressed by

〈r2|d〉 ≈
(
〈Δ〉
d

)2

≈ 1

d
:= r̃2. (10)

Using the probability integral transform, and p(d) = const. yields

p(r̃) ∝ |r̃|−3, and therefore p(r) ∝∼ |r|−3 (11)

for sufficiently large N and r, and in agreement with simulations (Fig. 1 B).
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Fig. 3. A: Top: choices in an experiment with 11 Subjects. Red and blue correspond to
the choices ci = ±1, white to skipping a round. Middle: model with equal probabilities
for ci ± 1. Bottom: demand efficient model. Skipping probabilities for the models were
equal to the experiments. B: Variance of the outcomes, correlation coefficient of the
player choices with the respective last excess demand, and the probability for a bubble.
The latter is quantified by the relative number of rounds, where one choice was made
by twice as many subjects (agents) as the other choice.

4 Experiments

Testing for tail exponents or stationary distributions with limited time and sub-
jects appears impossible. However, the uniform distribution of demands implies a
dynamics which spends significant amounts of time near the system boundaries,
that is, in bubble phases. This testable prediction reflects that a mean reverting
trend may be easily exploited and eliminated by traders. We let subjects play a
game (an extension is playable online [7]) where players i in each round chose
ci,t = 1 or ci,t = −1 before a countdown ran out. These choices correspond to
the market orders in the model above. No decision was registered as ci,t = 0. A
superplayer chose Ct = −

∑
i ci,t−1 = −dt−1. The players whose choices were in

the minority won 1 point. Due to the superplayer, betting against the change
in the other players decisions is rewarded. Note, that each new round is a nash
equilibrium: If all players repeat their choices, the outcome dt−dt−1 (a linearized
return) is zero. A single player who changes, loses. Yet, players did not stay in
these equilibria.

Fig. 3 shows the subjects’ choices and two models: agents chosing by flipping
a coin, and agents betting demand efficient on average. The experiment and the
efficient model show clusters where one choice is preferred. These bubble phases
are absent for coin flipping agents. Efficient betting causes a decrease in the
outcome variance, but increases the probability for a bubble phase. This effect
is significant, but not as strong for the real subjects as for the efficient model.
This may be due to a heterogenity of players or the use of other information
which is not captured by the simple model. Nevertheless, players bet against the
superplayer and therefore against mean reversion as much as the efficient model.
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5 Summary

We presented an analytically tractable model which relates price efficiency to
bubbles, power-law log returns and volatility clusters. The lack of mean reversion
leads to a uniform demand distribution. The non-linear price causes the system
to be more susceptible in bubble phases. This is analogous to, for example, many
buyers betting up the price of a scarce resource. Then, in absolute terms small
fluctuations in the availability of said resource may lead to large relative price
changes. Another analogy would be a liquidity crisis.

We successfully tested model predictions with human subjects. Instead of a
player payoff based on the excess demand like in other minority games, we use
the return. This correctly compares the price at which an asset is sold by an agent
not to a fundamental price, but to the price at which the agent bought said asset,
and vice versa. Our game combines information efficiency as in minority games
with bubbles as in majority games in a simpler way than the $-game [8] [9],
and without the necessity to fine tune to a phase transition (for an overview of
games, see [10]). Even if player choices were not efficient, adjusting their impact
based on our payoff rule (trading success) is a learning algorithm allowing for
collective efficiency with respect to the information available to the agents. [11].
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