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Abstract. In this article we discuss an extension of a method to ex-
tract Langevin equations from noisy time series to spatio-temporal data
governed by stochastic partial differential equations (SPDEs). The re-
construction of the SPDEs from data is traced back to the estimation of
multivariate conditional moments.
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1 Introduction

The synergetic approach to complex systems, composed of many interacting
subsystems, shows that the influence of the fast degrees of freedom on the or-
der parameter dynamics can be described by dynamical noise. This leads to a
mathematical description in terms of nonlinear Langevin equations of the form

ẏ = D(1)(y) +
√
D(2)(y)Γ (1)

or a corresponding Fokker-Planck equation [1]. Here, y(t) is the order param-
eter, D(1)(y), D(2)(y) are the drift and diffusion coefficients, respectively, and
Γ (t) describes a Gaussian distributed and δ-correlated stochastic force with zero
mean. The two coefficients are defined according to

D(n)(Y ) = lim
τ→0

1

τ

1

n!
〈[y(t+ τ) − y(t)]n|y(t) = Y 〉 (2)

which can for example be derived from the Kramers–Moyal expansion [2].
Pursuing the question of how to formulate an evolution equation for the

velocity fluctuations on different scales in turbulent flows, Friedrich and Peinke
[3] proposed to estimate these coefficients directly from experimental data by
the approximation

D
(n)
∗ (Y ) =

1

τmin

1

n!
〈[y(t+ τ)− y(t)]n|y(t) = Y 〉 (3)

with D(n) ≈ D
(n)
∗ . In this context, τmin is the smallest available time scale which

is still big enough to ensure that the stochastic dynamics can be described by a
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Markov process. In a large number of subsequent publications this method has
been successfully applied to different scientific topics like turbulence research
[3–5], finance [6], medicine [7–10] or engineering [11] to mention just a few. Be-
sides applications to different scientific disciplines, research focused on technical
questions connected to finite sampling times [12, 13] or measurement noise [14].
An recent overview is given in [15].

2 Outline of the Method

Many physical observables of complex systems do not only depend on time but
also on space [1]. The dynamics of these systems is also influenced by dynamical
noise [16]. In this contribution we want to show how the estimation of Langevin
equations can be extended to spatio-temporal data governed by equations like

∂ty(z, t) = D(1)[y(z, t)] +
√
D(2)[y(z, t)]Γ (z, t) (4)

where the drift and the diffusion coefficient depend on a spatially extended field
y(z, t). In general, the time evolution at the point z depends only implicitly via
operators like e.g. spatial derivatives or integral expressions on the evolution at
other points z′. Due to this, we make the assumption that D(1) and D(2) are
functions of the operators and y(z, t) only and rewrite the equation as

ẏz,t = D(1)[O1, . . . , ON ] +
√
D(2)[O1, . . . , ON ]Γz,t (5)

with yz,t := y(z, t) and the noise term Γz,t := Γ (z, t). The stochastic force is
defined according to

〈Γz,t〉 = 0 , 〈Γz,tΓz′,t′〉 = δ(t− t′)C(|z − z′|) (6)

where C(|z − z′|) denotes the spatial correlation of the noise. The Oi represent
the various operators. For example, in case of the reaction-diffusion equation

∂tyz,t = εΔyz,t + yz,t − y3z,t +
√
q(1 + y2z,t)Γz,t (7)

we would have O1 := yz,t and O2 := Δyz,t. The drift and diffusion coefficients
are then

D(1)[O1, O2] = O1 −O3
1 + εO2 (8)

D(2)[O1, O2] = q(1 +O2
1) . (9)

One can show [17] that in close analogy to the normal Langevin equation (1),
the drift and diffusion coefficient are defined as the multidimensional conditional
averages

D(1)[Y1, . . . , YN ] = lim
τ→0

1

τ
〈yz,t+τ − yz,t|O1 = Y1, . . . , ON = YN 〉 (10)

D(2)[Y1, . . . , YN ] = lim
τ→0

1

τ

1

2
〈[yz,t+τ − yz,t]

2|O1 = Y1, . . . , ON = YN 〉 . (11)
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Fig. 1. Snapshot of a solution of the nonlinear SPDE (7).

It is important to note that in contrast to ordinary Langevin equations the
number of conditions is not known in advance, because we do not know on how
many operators the right-hand side of the SPDE depends. Therefore one has
to use different combinations of operators in order to test which combination
is more suitable to reproduce the data. As criterion for the correct selection of

the operators, one could rearrange (4) (using the estimated coefficients D
(1,2)
∗ )

to extract the noise, and analyze it for Gaussianity and δ-correlation. A further
discussion of this question and related issues will be presented in [17].

The definitions of the drift and diffusion coefficients relate the problem of
finding the structure of the SPDE to an estimation of multidimensional con-
ditional averages or, in other words, to a multidimensional regression problem.
Since kernel based methods show better convergence properties than histograms,
we choose a local linear estimator [18] to determine the conditional averages.

3 Numerical Example

We now turn to a simple example illustrating the outlined procedure. By nu-
merically integrating equation (7) we produce a time series of noisy spatial fields
y(z, t). The data are then used to reconstruct the SPDE. The parameters used
for the simulation are ε = 0.25 and q = 1. The correlation function of the noise
is proportional to exp(|z− z′|2/(2l2c)) with lc = 0.5. The computational domain
is discretized by a 2562 grid and has a side length of L = 100. In Fig. 1, an
example of the solution of (7) is depicted. Without noise, the equation shows
moving fronts as solutions. Due to the strong noise, these structures are not
visible anymore.
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Fig. 2. Visualization of D
(1)
∗ [Y1, Y2] estimated from the simulation data. The two thick

lines highlight the cuts Y1 = 0 and Y2 = 0 shown in Fig. 3.

Fig. 3. The estimated drift coefficient (dots) D
(1)
∗ [Y1, Y2 = 0] (left), D

(1)
∗ [Y1 = 0, Y2]

(right) together with the exact result (line).

Given the data from 100 time steps, the unknown coefficients are estimated
via the conditional moments

D
(1)
∗ [Y1, Y2] =

1

τmin
〈yz,t+τ − yz,t|Y1 = yz,t, Y2 = Δyz,t〉 (12)

D
(2)
∗ [Y1, Y2] =

1

τmin

1

2
〈[yz,t+τ − yz,t]

2|Y1 = yz,t, Y2 = Δyz,t〉 , (13)

where τmin is the time difference between two subsequent time steps. In Fig. 2,
a three-dimensional plot of (12) is shown. One can clearly see the cubic depen-
dence on Y1 and the linear dependence on Y2, i.e. Δyz. At the boundaries, the
estimation of D(1) becomes less reliable due to the small amount of data in this
region, which results in larger fluctuations in the conditional moment.

For a better quantitative comparison, cuts along the Y1-axis and the Y2-axis

are shown in Fig. 3 . In the center, the estimated conditional moment D
(1)
∗
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Fig. 4. The estimated diffusion coefficient (dots)D
(2)
∗ [Y1, Y2 = 0] (left),D

(2)
∗ [Y1 = 0, Y2]

(right) together with the exact result (line).

correctly reconstructs the dependence of D(1) on Y1 and Y2. In Fig. 4, the same

plot is shown for D
(2)
∗ : The diffusion coefficient also is estimated correctly.

4 Conlusion and Outlook

In this paper, we have shown that the method to extract drift and diffusion
coefficients for Langevin equations from time-series as introduced in [3] can be
extended to processes governed by SPDEs. In contrast to pure time-series, one
has to estimate conditional moments depending on several conditions, each con-
dition representing one kind of operator in the right hand side of the SPDE.
Since the number and the kind of operators are not known in advance one has
to test several combinations of operators, or one has to make assumptions on
the general structure of the SPDE [17] to reduce the complexity of the problem.
Also the methods reviewed in [15] and the extension presented here are suited to
analyze experimental data, we want to point out that these methods can also be
valuable tools to analyze data from large scale simulations of complex systems
where a reduced description in terms of lower number of degrees of freedom is
needed. An example for this approach can be found in the context of simulations
of large biomolecules [19].
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